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NetApp Storage Solutions for Apache Spark

TR-4570: NetApp Storage Solutions for Apache Spark:
Architecture, Use Cases, and Performance Results

Rick Huang, Karthikeyan Nagalingam, NetApp

This document focuses on the Apache Spark architecture, customer use cases, and the

NetApp storage portfolio related to big data analytics and artificial intelligence (AI). It also

presents various testing results using industry-standard AI, machine learning (ML), and

deep learning (DL) tools against a typical Hadoop system so that you can choose the

appropriate Spark solution. To begin, you need a Spark architecture, appropriate

components, and two deployment modes (cluster and client).

This document also provides customer use cases to address configuration issues, and it discusses an

overview of the NetApp storage portfolio relevant to big data analytics and AI, ML, and DL with Spark. We then

finish with testing results derived from Spark-specific use cases and the NetApp Spark solution portfolio.

Customer challenges

This section focuses on customer challenges with big data analytics and AI/ML/DL in data growth industries

such as retail, digital marketing, banking, discrete manufacturing, process manufacturing, government, and

professional services.

Unpredictable performance

Traditional Hadoop deployments typically use commodity hardware. To improve performance, you must tune

the network, operating system, Hadoop cluster, ecosystem components such as Spark, and hardware. Even if

you tune each layer, it can be difficult to achieve desired performance levels because Hadoop is running on

commodity hardware that was not designed for high performance in your environment.

Media and node failures

Even under normal conditions, commodity hardware is prone to failure. If one disk on a data node fails, the

Hadoop master by default considers that node to be unhealthy. It then copies specific data from that node over

the network from replicas to a healthy node. This process slows down the network packets for any Hadoop

jobs. The cluster must then copy the data back again and remove the over- replicated data when the unhealthy

node returns to a healthy state.

Hadoop vendor lock-in

Hadoop distributors have their own Hadoop distribution with their own versioning, which locks in the customer

to those distributions. However, many customers require support for in-memory analytics that does not tie the

customer to specific Hadoop distributions. They need the freedom to change distributions and still bring their

analytics with them.

Lack of support for more than one language

Customers often require support for multiple languages in addition to MapReduce Java programs to run their

jobs. Options such as SQL and scripts provide more flexibility for getting answers, more options for organizing

and retrieving data, and faster ways of moving data into an analytics framework.
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Difficulty of use

For some time, people have complained that Hadoop is difficult to use. Even though Hadoop has become

simpler and more powerful with each new version, this critique has persisted. Hadoop requires that you

understand Java and MapReduce programming patterns, a challenge for database administrators and people

with traditional scripting skill sets.

Complicated frameworks and tools

Enterprises AI teams face multiple challenges. Even with expert data science knowledge, tools and

frameworks for different deployment ecosystems and applications might not translate simply from one to

another. A data science platform should integrate seamlessly with corresponding big data platforms built on

Spark with ease of data movement, reusable models, code out of the box, and tools that support best practices

for prototyping, validating, versioning, sharing, reusing, and quickly deploying models to production.

Why choose NetApp?

NetApp can improve your Spark experience in the following ways:

• NetApp NFS direct access (shown in the figure below) allows customers to run big-data-analytics jobs on

their existing or new NFSv3 or NFSv4 data without moving or copying the data. It prevents multiple copies

of data and eliminates the need to sync the data with a source.

• More efficient storage and less server replication. For example, the NetApp E-Series Hadoop solution

requires two rather than three replicas of the data, and the FAS Hadoop solution requires a data source but

no replication or copies of data. NetApp storage solutions also produce less server-to-server traffic.

• Better Hadoop job and cluster behavior during drive and node failure.

• Better data-ingest performance.

For example, in the financial and healthcare sector, the movement of data from one place to another must

meet legal obligations, which is not an easy task. In this scenario, NetApp NFS direct access analyzes the

financial and healthcare data from its original location. Another key benefit is that using NetApp NFS direct
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access simplifies protecting Hadoop data by using native Hadoop commands and enabling data protection

workflows with the rich data management portfolio from NetApp.

NetApp NFS direct access provides two kinds of deployment options for Hadoop/Spark clusters:

• By default, Hadoop or Spark clusters use the Hadoop Distributed File System (HDFS) for data storage and

the default file system. NetApp NFS direct access can replace the default HDFS with NFS storage as the

default file system, enabling direct analytics on NFS data.

• In another deployment option, NetApp NFS direct access supports configuring NFS as additional storage

along with HDFS in a single Hadoop or Spark cluster. In this case, the customer can share data through

NFS exports and access it from the same cluster along with HDFS data.

The key benefits of using NetApp NFS direct access include the following:

• Analyzing the data from its current location, which prevents the time- and performance-consuming task of

moving analytics data to a Hadoop infrastructure such as HDFS.

• Reducing the number of replicas from three to one.

• Enabling users to decouple compute and storage to scale them independently.

• Providing enterprise data protection by leveraging the rich data management capabilities of ONTAP.

• Certification with the Hortonworks data platform.

• Enabling hybrid data analytics deployments.

• Reducing backup time by leveraging dynamic multithread capability.

See TR-4657: NetApp hybrid cloud data solutions - Spark and Hadoop based on customer use cases for

backing up Hadoop data, backup and disaster recovery from the cloud to on-premises, enabling DevTest on

existing Hadoop data, data protection and multicloud connectivity, and accelerating analytics workloads.

The following sections describe storage capabilities that are important for Spark customers.

Storage tiering

With Hadoop storage tiering, you can store files with different storage types in accordance with a storage

policy. Storage types include hot, cold, warm, all_ssd, one_ssd, and lazy_persist.

<<<<<<< HEAD

We performed validation of Hadoop storage tiering on a NetApp AFF storage controller and an E-Series

storage controller with SSD and SAS drives with different storage policies. The Spark cluster with AFF-A800

has four compute worker nodes, whereas the cluster with E-Series has eight. This is mainly to compare the

performance of solid-state drives (SSDs) versus hard-drive disks (HDDs).
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We performed validation of Hadoop storage tiering on a NetApp AFF storage controller and an E-Series

storage controller with SSD and SAS drives with different storage policies. The Spark cluster with AFF-

A800 has four compute worker nodes, whereas the cluster with E-Series has eight. We did this primarily

to compare the performance of solid-state drives to hard-drive disks.

>>>>>>> a51c9ddf73ca69e1120ce05edc7b0b9607b96eae

The following figure shows the performance of NetApp solutions for a Hadoop SSD.

• The baseline NL-SAS configuration used eight compute nodes and 96 NL-SAS drives. This

configuration generated 1TB of data in 4 minutes and 38 seconds. See TR-3969 NetApp E-Series

Solution for Hadoop for details on the cluster and storage configuration.

• Using TeraGen, the SSD configuration generated 1TB of data 15.66x faster than the NL-SAS

configuration. Moreover, the SSD configuration used half the number of compute nodes and half the

number of disk drives (24 SSd drives in total). Based on the job completion time, it was almost twice

as fast as the NL-SAS configuration.

• Using TeraSort, the SSD configuration sorted 1TB of data 1138.36 times more quickly than the NL-

SAS configuration. Moreover, the SSD configuration used half the number of compute nodes and half

the number of disk drives (24 SSd drives in total). Therefore, per drive, it was approximately three

times faster than the NL-SAS configuration.

<<<<<<< HEAD

• The takeaway is transitioning from spinning disks to all-flash improves performance. The number of

compute nodes was not the bottleneck. With NetApp’s all-flash storage, runtime performance scales

well.

• With NFS, the data was functionally equivalent to being pooled all together, which can reduce the

number of compute nodes depending on your workload. The Apache Spark cluster users do not have

to manually rebalance data when changing number of compute nodes.

• In summary, transitioning from spinning disks to all-flash improves performance. The number of compute

nodes was not the bottleneck. With NetApp all-flash storage, runtime performance scales well.
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• With NFS, data was functionally equivalent to being pooled all together, which can reduce the number of

compute nodes depending on your workload. Apache Spark cluster users do not need to manually

rebalance data when changing the number of compute nodes.

>>>>>>> a51c9ddf73ca69e1120ce05edc7b0b9607b96eae

Performance scaling - Scale out

When you need more computation power from a Hadoop cluster in an AFF solution, you can add data nodes

with an appropriate number of storage controllers. NetApp recommends starting with four data nodes per

storage controller array and increasing the number to eight data nodes per storage controller, depending on

workload characteristics.

AFF and FAS are perfect for in-place analytics. Based on computation requirements, you can add node

managers, and non-disruptive operations allow you to add a storage controller on demand without downtime.

We offer rich features with AFF and FAS, such as NVME media support, guaranteed efficiency, data reduction,

QOS, predictive analytics, cloud tiering, replication, cloud deployment, and security. To help customers meet

their requirements, NetApp offers features such as file system analytics, quotas, and on-box load balancing

with no additional license costs. NetApp has better performance in the number of concurrent jobs, lower

latency, simpler operations, and higher gigabytes per second throughput than our competitors. Furthermore,

NetApp Cloud Volumes ONTAP runs on all three major cloud providers.

Performance scaling - Scale up

Scale-up features allow you to add disk drives to AFF, FAS, and E-Series systems when you need additional

storage capacity. With Cloud Volumes ONTAP, scaling storage to the PB level is a combination of two factors:

tiering infrequently used data to object storage from block storage and stacking Cloud Volumes ONTAP

licenses without additional compute.

Multiple protocols

NetApp systems support most protocols for Hadoop deployments, including SAS, iSCSI, FCP, InfiniBand, and

NFS.

Operational and supported solutions

The Hadoop solutions described in this document are supported by NetApp. These solutions are also certified

with major Hadoop distributors. For information, see the MapR site, the Hortonworks site, and the Cloudera

certification and partner sites.

Target audience

The world of analytics and data science touches multiple disciplines in IT and business:

• The data scientist needs the flexibility to use their tools and libraries of choice.

• The data engineer needs to know how the data flows and where it resides.

• A DevOps engineer needs the tools to integrate new AI and ML applications into their CI and CD pipelines.

• Cloud administrators and architects must be able to set up and manage hybrid cloud resources.

• Business users want to have access to analytics, AI, ML, and DL applications.

In this technical report, we describe how NetApp AFF, E-Series, StorageGRID, NFS direct access, Apache

Spark, Horovod, and Keras help each of these roles bring value to business.
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Solution technology

Apache Spark is a popular programming framework for writing Hadoop applications that

works directly with the Hadoop Distributed File System (HDFS). Spark is production

ready, supports processing of streaming data, and is faster than MapReduce. Spark has

configurable in-memory data caching for efficient iteration, and the Spark shell is

interactive for learning and exploring data. With Spark, you can create applications in

Python, Scala, or Java. Spark applications consist of one or more jobs that have one or

more tasks.

Every Spark application has a Spark driver. In YARN-Client mode, the driver runs on the client locally. In

YARN-Cluster mode, the driver runs in the cluster on the application master. In the cluster mode, the

application continues to run even if the client disconnects.

There are three cluster managers:

• Standalone. This manager is a part of Spark, which makes it easy to set up a cluster.

• Apache Mesos. This is a general cluster manager that also runs MapReduce and other applications.

• Hadoop YARN. This is a resource manager in Hadoop 3.
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The resilient distributed dataset (RDD) is the primary component of Spark. RDD recreates the lost and missing

data from data stored in memory in the cluster and stores the initial data that comes from a file or is created

programmatically. RDDs are created from files, data in memory, or another RDD. Spark programming performs

two operations: transformation and actions. Transformation creates a new RDD based on an existing one.

Actions return a value from an RDD.

Transformations and actions also apply to Spark Datasets and DataFrames. A dataset is a distributed

collection of data that provides the benefits of RDDs (strong typing, use of lambda functions) with the benefits

of Spark SQL’s optimized execution engine. A Dataset can be constructed from JVM objects and then

manipulated using functional transformations (map, flatMap, filter, and so on.). A DataFrame is a dataset

organized into named columns. It is conceptually equivalent to a table in a relational database or a data frame

in R/Python. DataFrames can be constructed from a wide array of sources such as structured data files, tables

in Hive/HBase, external databases on-premises or in the cloud, or existing RDDs.

Spark applications include one or more Spark jobs. Jobs run tasks in executors, and executors run in YARN

containers. Each executor runs in a single container, and executors exist throughout the life of an application.

An executor is fixed after the application starts, and YARN does not resize the already allocated container. An

executor can run tasks concurrently on in-memory data.

NetApp Spark solutions overview

NetApp has three storage portfolios: FAS/AFF, E-Series, and Cloud Volumes ONTAP. We

have validated AFF and the E-Series with ONTAP storage system for Hadoop solutions

with Apache Spark.

The data fabric powered by NetApp integrates data management services and applications (building blocks)

for data access, control, protection, and security, as shown in the figure below.

The building blocks in the figure above include:

• NetApp NFS direct access. Provides the latest Hadoop and Spark clusters with direct access to NetApp

NFS volumes without additional software or driver requirements.

• NetApp Cloud Volumes ONTAP and Cloud Volume Services. Software-defined connected storage

based on ONTAP running in Amazon Web Services (AWS) or Azure NetApp Files (ANF) in Microsoft Azure
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cloud services.

• NetApp SnapMirror technology. Provides data protection capabilities between on-premises and ONTAP

Cloud or NPS instances.

• Cloud service providers. These providers include AWS, Microsoft Azure, Google Cloud, and IBM Cloud.

• PaaS. Cloud-based analytics services such as Amazon Elastic MapReduce (EMR) and Databricks in AWS

as well as Microsoft Azure HDInsight and Azure Databricks.

The following figure depicts the Spark solution with NetApp storage.

The ONTAP Spark solution uses the NetApp NFS direct access protocol for in-place analytics and AI, ML, and

DL workflows using access to existing production data. Production data available to Hadoop nodes is exported

to perform in-place analytical and AI, ML, and DL jobs. You can access data to process in Hadoop nodes either

with NetApp NFS direct access or without it. In Spark with the standalone or yarn cluster manager, you can

configure an NFS volume by using file:///<target_volume. We validated three use cases with different

datasets. The details of these validations are presented in the section “Testing Results.” (xref)

The following figure depicts NetApp Apache Spark/Hadoop storage positioning.
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We identified the unique features of the E-Series Spark solution, the AFF/FAS ONTAP Spark solution, and the

StorageGRID Spark solution, and performed detailed validation and testing. Based upon our observations,

NetApp recommends the E-Series solution for greenfield installations and new scalable deployments and the

AFF/FAS solution for in-place analytics, AI, ML, and DL workloads using existing NFS data, and StorageGRID

for AI, ML, and DL and modern data analytics when object storage is required.

A data lake is a storage repository for large datasets in native form that can be used for analytics, AI, ML, and

DL jobs. We built a data lake repository for the E-Series, AFF/FAS, and StorageGRID SG6060 Spark solutions.

The E-Series system provides HDFS access to the Hadoop Spark cluster, whereas existing production data is

accessed through the NFS direct access protocol to the Hadoop cluster. For datasets that reside in object

storage, NetApp StorageGRID provides S3 and S3a secure access.

Use case summary

This page describes the different areas in which this solution can be used.

Streaming data

Apache Spark can process streaming data, which is used for streaming extract, transform, and load (ETL)

processes; data enrichment; triggering event detection; and complex session analysis:

• Streaming ETL. Data is continually cleaned and aggregated before it is pushed into datastores. Netflix

uses Kafka and Spark streaming to build a real-time online movie recommendation and data monitoring

solution that can process billions of events per day from different data sources. Traditional ETL for batch

processing is treated differently, however. This data is read first, and then it is converted into a database

format before being written to the database.

• Data enrichment. Spark streaming enriches the live data with static data to enable more real-time data

analysis. For example, online advertisers can deliver personalized, targeted ads directed by information

about customer behavior.

• Trigger event detection. Spark streaming allows you to detect and respond quickly to unusual behavior

that could indicate potentially serious problems. For example, financial institutions use triggers to detect

and stop fraud transactions, and hospitals use triggers to detect dangerous health changes detected in a

patient’s vital signs.
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• Complex session analysis. Spark streaming collects events such as user activity after logging in to a

website or application, which are then grouped and analyzed. For example, Netflix uses this functionality to

provide real-time movie recommendations.

For more streaming data configuration, Confluent Kafka verification, and performance tests, see TR-4912: Best

practice guidelines for Confluent Kafka tiered storage with NetApp.

Machine learning

The Spark integrated framework helps you run repeated queries on datasets using the machine learning library

(MLlib). MLlib is used in areas such as clustering, classification, and dimensionality reduction for some

common big data functions such as predictive intelligence, customer segmentation for marketing purposes,

and sentiment analysis. MLlib is used in network security to conduct real-time inspections of data packets for

indications of malicious activity. It helps security providers learn about new threats and stay ahead of hackers

while protecting their clients in real time.

Deep learning

TensorFlow is a popular deep learning framework used across the industry. TensorFlow supports the

distributed training on a CPU or GPU cluster. This distributed training allows users to run it on a large amount

of data with lot of deep layers.

Until fair recently, if we wanted to use TensorFlow with Apache Spark, we needed to perform all necessary ETL

for TensorFlow in PySpark and then write data to intermediate storage. That data would then be loaded onto

the TensorFlow cluster for the actual training process. This workflow required the user to maintain two different

clusters, one for ETL and one for distributed training of TensorFlow. Running and maintaining multiple clusters

was typically tedious and time consuming.

DataFrames and RDD in earlier Spark versions were not well-suited for deep learning because random access

was limited. In Spark 3.0 with project hydrogen, native support for the deep learning frameworks is added. This

approach allows non-MapReduce-based scheduling on the Spark cluster.

Interactive analysis

Apache Spark is fast enough to perform exploratory queries without sampling with development languages

other than Spark, including SQL, R, and Python. Spark uses visualization tools to process complex data and

visualize it interactively. Spark with structured streaming performs interactive queries against live data in web

analytics that enable you to run interactive queries against a web visitor’s current session.

Recommender system

Over the years, recommender systems have brought tremendous changes to our lives, as businesses and

consumers have responded to dramatic changes in online shopping, online entertainment, and many other

industries. Indeed, these systems are among the most evident success stories of AI in production. In many

practical use cases, recommender systems are combined with conversational AI or chatbots interfaced with an

NLP backend to obtain relevant information and produce useful inferences.

Today, many retailers are adopting newer business models like buying online and picking up in store, curbside

pickup, self-checkout, scan-and-go, and more. These models have become prominent during the COVID-19

pandemic by making shopping safer and more convenient for consumers. AI is crucial for these growing digital

trends, which are influenced by consumer behavior and vice versa. To meet the growing demands of

consumers, to augment the customer experience, to improve operational efficiency, and to grow revenue,

NetApp helps its enterprise customers and businesses use machine- learning and deep- learning algorithms to

design faster and more accurate recommender systems.
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There are several popular techniques used for providing recommendations, including collaborative filtering,

content-based systems, the deep learning recommender model (DLRM), and hybrid techniques. Customers

previously utilized PySpark to implement collaborative filtering for creating recommendation systems. Spark

MLlib implements alternating least squares (ALS) for collaborative filtering, a very popular algorithm among

enterprises before the rise of DLRM.

Natural language processing

Conversational AI, made possible by natural language processing (NLP), is the branch of AI helping computers

communicate with humans. NLP is prevalent in every industry vertical and many use cases, from smart

assistants and chatbots to Google search and predictive text. According to a Gartner prediction, by 2022, 70%

of people will be interacting with conversational AI platforms on a daily basis. For a high-quality conversation

between a human and a machine, responses must be rapid, intelligent, and natural sounding.

Customers need a large amount of data to process and train their NLP and automatic speech recognition

(ASR) models. They also need to move data across the edge, core, and cloud, and they need the power to

perform inference in milliseconds to establish natural communication with humans. NetApp AI and Apache

Spark is an ideal combination for compute, storage, data processing, model training, fine-tuning, and

deployment.

Sentiment analysis is a field of study within NLP in which positive, negative, or neutral sentiments are extracted

from text. Sentiment analysis has a variety of use cases, from determining support center employee

performance in conversations with callers to providing appropriate automated chatbot responses. It has also

been used to predict a firm’s stock price based on the interactions between firm representatives and the

audience at quarterly earnings calls. Furthermore, sentiment analysis can be used to determine a customer’s

view on the products, services, or support provided by the brand.

We used the Spark NLP library from John Snow Labs to load pretrained pipelines and Bidirectional Encoder

Representations from Transformers (BERT) models including financial news sentiment and FinBERT,

performing tokenization, named entity recognition, model training, fitting and sentiment analysis at scale. Spark

NLP is the only open-source NLP library in production that offers state-of-the-art transformers such as BERT,

ALBERT, ELECTRA, XLNet, DistilBERT, RoBERTa, DeBERTa, XLM- RoBERTa, Longformer, ELMO, Universal

Sentence Encoder, Google T5, MarianMT, and GPT2. The library works not only in Python and R, but also in

the JVM ecosystem (Java, Scala, and Kotlin) at scale by extending Apache Spark natively.

Major AI, ML, and DL use cases and architectures

Major AI, ML, and DL use cases and methodology can be divided into the following

sections:

Spark NLP pipelines and TensorFlow distributed inferencing

The following list contains the most popular open-source NLP libraries that have been adopted by the data

science community under different levels of development:

• Natural Language Toolkit (NLTK). The complete toolkit for all NLP techniques. It has been maintained since

the early 2000s.

• TextBlob. An easy-to-use NLP tools Python API built on top of NLTK and Pattern.

• Stanford Core NLP. NLP services and packages in Java developed by the Stanford NLP Group.

• Gensim. Topic Modelling for Humans started off as a collection of Python scripts for the Czech Digital

Mathematics Library project.
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• SpaCy. End-to-end industrial NLP workflows with Python and Cython with GPU acceleration for

transformers.

• Fasttext. A free, lightweight, open-source NLP library for the learning-of-word embeddings and sentence

classification created by Facebook’s AI Research (FAIR) lab.

Spark NLP is a single, unified solution for all NLP tasks and requirements that enables scalable, high-

performance, and high-accuracy NLP-powered software for real production use cases. It leverages transfer

learning and implements the latest state-of-the-art algorithms and models in research and across industries.

Due to the lack of full support by Spark for the above libraries, Spark NLP was built on top of Spark ML to take

advantage of Spark’s general-purpose in-memory distributed data processing engine as an enterprise-grade

NLP library for mission-critical production workflows. Its annotators utilize rule-based algorithms, machine

learning, and TensorFlow to power deep learning implementations. This covers common NLP tasks including

but not limited to tokenization, lemmatization, stemming, part-of-speech tagging, named-entity recognition,

spell checking, and sentiment analysis.

Bidirectional Encoder Representations from Transformers (BERT) is a transformer-based machine learning

technique for NLP. It popularized the concept of pretraining and fine tuning. The transformer architecture in

BERT originated from machine translation, which models long-term dependencies better than Recurrent Neural

Network (RNN)-based language models. It also introduced the Masked Language Modelling (MLM) task,

where a random 15% of all tokens are masked and the model predicts them, enabling true bidirectionality.

Financial sentiment analysis is challenging due to the specialized language and lack of labeled data in that

domain. FinBERT, a language model based on pretrained BERT, was domain adapted on Reuters TRC2, a

financial corpus, and fine-tuned with labeled data ( Financial PhraseBank) for financial sentiment classification.

Researchers extracted 4, 500 sentences from news articles with financial terms. Then 16 experts and masters

students with finance backgrounds labeled the sentences as positive, neutral, and negative. We built an end-

to-end Spark workflow to analyze sentiment for Top-10 NASDAQ company earnings call transcripts from 2016

to 2020 using FinBERT and two other pre-trained pipelines ( Sentiment Analysis for Financial News, Explain

Document DL) from Spark NLP.

The underlying deep learning engine for Spark NLP is TensorFlow, an end-to-end, open-source platform for

machine learning that enables easy model building, robust ML production anywhere, and powerful

experimentation for research. Therefore, when executing our pipelines in Spark yarn cluster mode, we

were essentially running distributed TensorFlow with data and model parallelization across one master and

multiple worker nodes, as well as network- attached storage mounted on the cluster.

Horovod distributed training

The core Hadoop validation for MapReduce-related performance is performed with TeraGen, TeraSort,

TeraValidate, and DFSIO (read and write). The TeraGen and TeraSort validation results are presented in TR-

3969: NetApp Solutions for Hadoop for E-Series and in the section “Storage Tiering” (xref) for AFF.

Based upon customer requests, we consider distributed training with Spark to be one of the most important of

the various use cases. In this document, we used the Hovorod on Spark to validate Spark performance with

NetApp on-premises, cloud-native, and hybrid cloud solutions using NetApp All Flash FAS (AFF) storage

controllers, Azure NetApp Files, and StorageGRID.

The Horovod on Spark package provides a convenient wrapper around Horovod that makes running

distributed training workloads in Spark clusters simple, enabling a tight model design loop in which data

processing, model training, and model evaluation are all done in Spark where training and inferencing data

resides.

There are two APIs for running Horovod on Spark: a high-level Estimator API and a lower-level Run API.

Although both use the same underlying mechanism to launch Horovod on Spark executors, the Estimator API
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abstracts the data processing, model training loop, model checkpointing, metrics collection, and distributed

training. We used Horovod Spark Estimators, TensorFlow, and Keras for an end-to-end data preparation and

distributed training workflow based on the Kaggle Rossmann Store Sales competition.

The script keras_spark_horovod_rossmann_estimator.py can be found in the section "Python scripts

for each major use case." It contains three parts:

• The first part performs various data preprocessing steps over an initial set of CSV files provided by Kaggle

and gathered by the community. The input data is separated into a training set with a Validation subset,

and a testing dataset.

• The second part defines a Keras Deep Neural Network (DNN) model with logarithmic sigmoid activation

function and an Adam optimizer, and it performs distributed training of the model using Horovod on Spark.

• The third part performs prediction on the testing dataset using the best model that minimizes the validation

set overall mean absolute error. It then creates an output CSV file.

See the section “Machine Learning” for various runtime comparison results.

Multi-worker deep learning using Keras for CTR prediction

With the recent advances in ML platforms and applications, a lot of attention is now on learning at scale. The

click-through rate (CTR) is defined as the average number of click-throughs per hundred online ad impressions

(expressed as a percentage). It is widely adopted as a key metric in various industry verticals and use cases,

including digital marketing, retail, e-commerce, and service providers. See our TR-4904: Distributed training in

Azure - Click-Through Rate Prediction for more detail on the applications of CTR and an end-to-end Cloud AI

workflow implementation with Kubernetes, distributed data ETL, and model training using Dask and CUDA ML.

In this technical report we used a variation of the Criteo Terabyte Click Logs dataset (see TR-4904) for multi-

worker distributed deep learning using Keras to build a Spark workflow with Deep and Cross Network (DCN)

models, comparing its performance in terms of log loss error function with a baseline Spark ML Logistic

Regression model. DCN efficiently captures effective feature interactions of bounded degrees, learns highly

nonlinear interactions, requires no manual feature engineering or exhaustive searching, and has low

computational cost.

Data for web-scale recommender systems is mostly discrete and categorical, leading to a large and sparse

feature space that is challenging for feature exploration. This has limited most large-scale systems to linear

models such as logistic regression. However, identifying frequently predictive features and at the same time

exploring unseen or rare cross features is the key to making good predictions. Linear models are simple,

interpretable, and easy to scale, but they are limited in their expressive power.

Cross features, on the other hand, have been shown to be significant in improving the models’ expressiveness.

Unfortunately, it often requires manual feature engineering or exhaustive search to identify such features.

Generalizing to unseen feature interactions is often difficult. Using a cross neural network like DCN avoids

task-specific feature engineering by explicitly applying feature crossing in an automatic fashion. The cross

network consists of multiple layers, where the highest degree of interactions is provably determined by layer

depth. Each layer produces higher-order interactions based on existing ones and keeps the interactions from

previous layers.

A deep neural network (DNN) has the promise to capture very complex interactions across features. However,

compared to DCN, it requires nearly an order of magnitude more parameters, is unable to form cross features

explicitly, and may fail to efficiently learn some types of feature interactions. The cross network is memory

efficient and easy to implement. Jointly training the cross and DNN components together efficiently captures

predictive feature interactions and delivers state-of-the-art performance on the Criteo CTR dataset.

A DCN model starts with an embedding and stacking layer, followed by a cross network and a deep network in
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parallel. These in turn are followed by a final combination layer which combines the outputs from the two

networks. Your input data can be a vector with sparse and dense features. In Spark, both ml and mllib libraries

contain the type SparseVector. It is therefore important for users to distinguish between the two and be

mindful when calling their respective functions and methods. In web-scale recommender systems such as CTR

prediction, the inputs are mostly categorical features, for example ‘country=usa’. Such features are often

encoded as one-hot vectors, for example, ‘[0,1,0, …]’. One-hot-encoding (OHE) with SparseVector is

useful when dealing with real-world datasets with ever-changing and growing vocabularies. We modified

examples in DeepCTR to process large vocabularies, creating embedding vectors in the embedding and

stacking layer of our DCN.

The Criteo Display Ads dataset predicts the ads click-through rate. It has 13 integer features and 26

categorical features in which each category has a high cardinality. For this dataset, an improvement of 0.001 in

logloss is practically significant due to the large input size. A small improvement in prediction accuracy for a

large user base can potentially lead to a large increase in a company’s revenue. The dataset contains 11GB of

user logs from a period of 7 days, which equates to around 41 million records. We used Spark

dataFrame.randomSplit()function to randomly split the data for training (80%), cross-validation (10%),

and the remaining 10% for testing.

DCN was implemented on TensorFlow with Keras. There are four main components in implementing the model

training process with DCN:

• Data processing and embedding. Real-valued features are normalized by applying a log transform. For

categorical features, we embed the features in dense vectors of dimension 6×(category cardinality)1/4.

Concatenating all embeddings results in a vector of dimension 1026.

• Optimization. We applied mini-batch stochastic optimization with the Adam optimizer. The batch size was

set to 512. Batch normalization was applied to the deep network and the gradient clip norm was set at 100.

• Regularization. We used early stopping, as L2 regularization or dropout was not found to be effective.

• Hyperparameters. We report results based on a grid search over the number of hidden layers, the hidden

layer size, the initial learning rate, and the number of cross layers. The number of hidden layers ranged

from 2 to 5, with hidden layer sizes ranging from 32 to 1024. For DCN, the number of cross layers was

from 1 to 6. The initial learning rate was tuned from 0.0001 to 0.001 with increments of 0.0001. All

experiments applied early stopping at training step 150,000, beyond which overfitting started to occur.

In addition to DCN, we also tested other popular deep-learning models for CTR prediction, including DeepFM,

xDeepFM, AutoInt, and DCN v2.

Architectures used for validation

For this validation, we used four worker nodes and one master nodes with an AFF-A800 HA pair. All cluster

members were connected through 10GbE network switches.

For this NetApp Spark solution validation, we used three different storage controllers: the E5760, the E5724,

and the AFF-A800. The E-Series storage controllers were connected to five data nodes with 12Gbps SAS

connections. The AFF HA-pair storage controller provides exported NFS volumes through 10GbE connections

to Hadoop worker nodes. The Hadoop cluster members were connected through 10GbE connections in the E-

Series, AFF, and StorageGRID Hadoop solutions.
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Testing results

We used the TeraSort and TeraValidate scripts in the TeraGen benchmarking tool to
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measure the Spark performance validation with E5760, E5724, and AFF-A800

configurations. In addition, three major use cases were tested: Spark NLP pipelines and

TensorFlow distributed training, Horovod distributed training, and multi-worker deep

learning using Keras for CTR Prediction with DeepFM.

For both E-Series and StorageGRID validation, we used Hadoop replication factor 2. For AFF validation, we

only used one source of data.

The following table lists the hardware configuration for the Spark performance validation.

Type Hadoop worker

nodes

Drive type Drives per node Storage controller

SG6060 4 SAS 12 Single high-

availability (HA) pair

E5760 4 SAS 60 Single HA pair

E5724 4 SAS 24 Single HA pair

AFF800 4 SSD 6 Single HA pair

The following table lists software requirements.

Software Version

RHEL 7.9

OpenJDK Runtime Environment 1.8.0

OpenJDK 64-Bit Server VM 25.302

Git 2.24.1

GCC/G++ 11.2.1

Spark 3.2.1

PySpark 3.1.2

SparkNLP 3.4.2

TensorFlow 2.9.0

Keras 2.9.0

Horovod 0.24.3

Financial sentiment analysis

We published TR-4910: Sentiment Analysis from Customer Communications with NetApp AI, in which an end-

to-end conversational AI pipeline was built using the NetApp DataOps Toolkit, AFF storage, and NVIDIA DGX

System. The pipeline performs batch audio signal processing, automatic speech recognition (ASR), transfer

learning, and sentiment analysis leveraging the DataOps Toolkit, NVIDIA Riva SDK, and the Tao framework.

Expanding the sentiment analysis use case to the financial services industry, we built a SparkNLP workflow,

loaded three BERT models for various NLP tasks, such as named entity recognition, and obtained sentence-

level sentiment for NASDAQ Top 10 companies’ quarterly earnings calls.

The following script sentiment_analysis_spark. py uses the FinBERT model to process transcripts in
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HDFS and produce positive, neutral, and negative sentiment counts, as shown in the following table:

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp_2.12:3.4.3

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

--conf spark.driver.extraJavaOptions="-Xss10m -XX:MaxPermSize=1024M"

--conf spark.executor.extraJavaOptions="-Xss10m -XX:MaxPermSize=512M"

/sparkusecase/tr-4570-nlp/sentiment_analysis_spark.py

hdfs:///data1/Transcripts/

> ./sentiment_analysis_hdfs.log 2>&1

real13m14.300s

user557m11.319s

sys4m47.676s

The following table lists the earnings-call, sentence-level sentiment analysis for NASDAQ Top 10 companies

from 2016 to 2020.

Sentime

nt

counts

and

percenta

ge

All 10

Compani

es

AAPL AMD AMZN CSCO GOOGL INTC MSFT NVDA

Positive

counts

7447 1567 743 290 682 826 824 904 417

Neutral

counts

64067 6856 7596 5086 6650 5914 6099 5715 6189

Negative

counts

1787 253 213 84 189 97 282 202 89

Uncatego

rized

counts

196 0 0 76 0 0 0 1 0

(total

counts)

73497 8676 8552 5536 7521 6837 7205 6822 6695

In terms of percentages, most sentences spoken by the CEOs and CFOs are factual and therefore carry

neutral sentiment. During an earnings call, analysts ask questions which might convey positive or negative

sentiment. It is worth further investigating quantitatively how negative or positive sentiment affect stock prices

on the same or next day of trading.

The following table lists the sentence-level sentiment analysis for NASDAQ Top 10 companies, expressed in

percentage.
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Sentime

nt

percenta

ge

All 10

Compani

es

AAPL AMD AMZN CSCO GOOGL INTC MSFT NVDA

Positive 10.13% 18.06% 8.69% 5.24% 9.07% 12.08% 11.44% 13.25% 6.23%

Neutral 87.17% 79.02% 88.82% 91.87% 88.42% 86.50% 84.65% 83.77% 92.44%

Negative 2.43% 2.92% 2.49% 1.52% 2.51% 1.42% 3.91% 2.96% 1.33%

Uncatego

rized

0.27% 0% 0% 1.37% 0% 0% 0% 0.01% 0%

In terms of the workflow runtime, we saw a significant 4.78x improvement from local mode to a distributed

environment in HDFS, and a further 0.14% improvement by leveraging NFS.

-bash-4.2$ time ~/anaconda3/bin/spark-submit

--packages com.johnsnowlabs.nlp:spark-nlp_2.12:3.4.3

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

--conf spark.driver.extraJavaOptions="-Xss10m -XX:MaxPermSize=1024M"

--conf spark.executor.extraJavaOptions="-Xss10m -XX:MaxPermSize=512M"

/sparkusecase/tr-4570-nlp/sentiment_analysis_spark.py

file:///sparkdemo/sparknlp/Transcripts/

> ./sentiment_analysis_nfs.log 2>&1

real13m13.149s

user537m50.148s

sys4m46.173s

As the following figure shows, data and model parallelism improved the data processing and distributed

TensorFlow model inferencing speed. Data location in NFS yielded a slightly better runtime because the

workflow bottleneck is the downloading of pretrained models. If we increase the transcripts dataset size, the

advantage of NFS is more obvious.
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Distributed training with Horovod performance

The following command produced runtime information and a log file in our Spark cluster using a single master

node with 160 executors each with one core. The executor memory was limited to 5GB to avoid out-of-memory

error. See the section “Python scripts for each major use case” for more detail regarding the data processing,

model training, and model accuracy calculation in keras_spark_horovod_rossmann_estimator.py.

(base) [root@n138 horovod]# time spark-submit

--master local

--executor-memory 5g

--executor-cores 1

--num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir file:///sparkusecase/horovod

--local-submission-csv /tmp/submission_0.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_local. log 2>&1

The resulting runtime with ten training epochs was as follows:

real43m34.608s

user12m22.057s

sys2m30.127s

It took more than 43 minutes to process input data, train a DNN model, calculate accuracy, and produce
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TensorFlow checkpoints and a CSV file for prediction results. We limited the number of training epochs to 10,

which in practice is often set to 100 to ensure satisfactory model accuracy. The training time typically scales

linearly with the number of epochs.

We next used the four worker nodes available in the cluster and executed the same script in yarn mode with

data in HDFS:

(base) [root@n138 horovod]# time spark-submit

--master yarn

--executor-memory 5g

--executor-cores 1 --num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir hdfs:///user/hdfs/tr-4570/experiments/horovod

--local-submission-csv /tmp/submission_1.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_yarn.log 2>&1

The resulting runtime was improved as follows:

real8m13.728s

user7m48.421s

sys1m26.063s

With Horovod’s model and data parallelism in Spark, we saw a 5.29x runtime speedup of yarn versus local

mode with ten training epochs. This is shown in the following figure with the legends HDFS and Local. The

underlying TensorFlow DNN model training can be further accelerated with GPUs if available. We plan to

conduct this testing and publish results in a future technical report.

Our next test compared the runtimes with input data residing in NFS versus HDFS. The NFS volume on the

AFF A800 was mounted on /sparkdemo/horovod across the five nodes (one master, four workers) in our

Spark cluster. We ran a similar command as for previous tests, with the --data- dir parameter now pointing

to the NFS mount:

(base) [root@n138 horovod]# time spark-submit

--master yarn

--executor-memory 5g

--executor-cores 1

--num-executors 160

/sparkusecase/horovod/keras_spark_horovod_rossmann_estimator.py

--epochs 10

--data-dir file:///sparkdemo/horovod

--local-submission-csv /tmp/submission_2.csv

--local-checkpoint-file /tmp/checkpoint/

> /tmp/keras_spark_horovod_rossmann_estimator_nfs.log 2>&1
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The resulting runtime with NFS was as follows:

real 5m46.229s

user 5m35.693s

sys  1m5.615s

There was a further 1.43x speedup, as shown in the following figure. Therefore, with a NetApp all-flash storage

connected to their cluster, customers enjoy the benefits of fast data transfer and distribution for Horovod Spark

workflows, achieving 7.55x speedup versus running on a single node.

Deep learning models for CTR prediction performance

For recommender systems designed to maximize CTR, you must learn sophisticated feature interactions

behind user behaviors that can be mathematically calculated from low order to high order. Both low-order and

high-order feature interactions should be equally important for a good deep learning model without biasing

towards one or the other. Deep Factorization Machine (DeepFM), a factorization machine-based neural

network, combines factorization machines for recommendation and deep learning for feature learning in a new

neural network architecture.

Although conventional factorization machines model pairwise feature interactions as an inner product of latent

vectors between features and can theoretically capture high-order information, in practice, machine learning

practitioners usually only use second- order feature interactions due to the high computation and storage

complexity. Deep neural network variants like Google’s Wide & Deep Models on the other hand learns

sophisticated feature interactions in a hybrid network structure by combining a linear wide model and a deep

model.

There are two inputs to this Wide & Deep Model, one for the underlying wide model and the other for the deep,

the latter part of which still requires expert feature engineering and thus renders the technique less

generalizable to other domains. Unlike the Wide & Deep Model, DeepFM can be efficiently trained with raw
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features without any feature engineering because its wide part and deep part share the same input and the

embedding vector.

We first processed the Criteo train.txt (11GB) file into a CSV file named ctr_train.csv stored in an

NFS mount /sparkdemo/tr-4570-data using run_classification_criteo_spark.py from the

section “Python scripts for each major use case.” Within this script, the function process_input_file

performs several string methods to remove tabs and insert ‘,’ as the delimiter and ‘\n’ as newline. Note

that you only need to process the original train.txt once, so that the code block is shown as comments.

For the following testing of different DL models, we used ctr_train.csv as the input file. In subsequent

testing runs, the input CSV file was read into a Spark DataFrame with schema containing a field of ‘label’,

integer dense features ['I1', 'I2', 'I3', …, 'I13'], and sparse features ['C1', 'C2', 'C3',

…, 'C26']. The following spark-submit command takes in an input CSV, trains DeepFM models with 20%

split for cross validation, and picks the best model after ten training epochs to calculate prediction accuracy on

the testing set:

(base) [root@n138 ~]# time spark-submit --master yarn --executor-memory 5g

--executor-cores 1 --num-executors 160

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py --data

-dir file:///sparkdemo/tr-4570-data >

/tmp/run_classification_criteo_spark_local.log 2>&1

Note that since the data file ctr_train.csv is over 11GB, you must set a sufficient

spark.driver.maxResultSize greater than the dataset size to avoid error.

 spark = SparkSession.builder \

    .master("yarn") \

    .appName("deep_ctr_classification") \

    .config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-

utils_2.12:0.1.0") \

    .config("spark.executor.cores", "1") \

    .config('spark.executor.memory', '5gb') \

    .config('spark.executor.memoryOverhead', '1500') \

    .config('spark.driver.memoryOverhead', '1500') \

    .config("spark.sql.shuffle.partitions", "480") \

    .config("spark.sql.execution.arrow.enabled", "true") \

    .config("spark.driver.maxResultSize", "50gb") \

    .getOrCreate()

In the above SparkSession.builder configuration we also enabled Apache Arrow, which converts a Spark

DataFrame into a Pandas DataFrame with the df.toPandas() method.
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22/06/17 15:56:21 INFO scheduler.DAGScheduler: Job 2 finished: toPandas at

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py:96, took

627.126487 s

Obtained Spark DF and transformed to Pandas DF using Arrow.

After random splitting, there are over 36M rows in the training dataset and 9M samples in the testing set:

Training dataset size =  36672493

Testing dataset size =  9168124

Because this technical report is focused on CPU testing without using any GPUs, it is imperative that you build

TensorFlow with appropriate compiler flags. This step avoids invoking any GPU-accelerated libraries and takes

full advantage of TensorFlow’s Advanced Vector Extensions (AVX) and AVX2 instructions. These features are

designed for linear algebraic computations like vectorized addition, matrix multiplications inside a feed-forward,

or back-propagation DNN training. Fused Multiply Add (FMA) instruction available with AVX2 using 256-bit

floating point (FP) registers is ideal for integer code and data types, resulting in up to a 2x speedup. For FP

code and data types, AVX2 achieves 8% speedup over AVX.

2022-06-18 07:19:20.101478: I

tensorflow/core/platform/cpu_feature_guard.cc:151] This TensorFlow binary

is optimized with oneAPI Deep Neural Network Library (oneDNN) to use the

following CPU instructions in performance-critical operations:  AVX2 FMA

To enable them in other operations, rebuild TensorFlow with the

appropriate compiler flags.

To build TensorFlow from source, NetApp recommends using Bazel. For our environment, we executed the

following commands in the shell prompt to install dnf, dnf-plugins, and Bazel.

yum install dnf

dnf install 'dnf-command(copr)'

dnf copr enable vbatts/bazel

dnf install bazel5

You must enable GCC 5 or newer to use C++17 features during the build process, which is provided by RHEL

with Software Collections Library (SCL). The following commands install devtoolset and GCC 11.2.1 on our

RHEL 7.9 cluster:
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subscription-manager repos --enable rhel-server-rhscl-7-rpms

yum install devtoolset-11-toolchain

yum install devtoolset-11-gcc-c++

yum update

scl enable devtoolset-11 bash

. /opt/rh/devtoolset-11/enable

Note that the last two commands enable devtoolset-11, which uses /opt/rh/devtoolset-

11/root/usr/bin/gcc (GCC 11.2.1). Also, make sure your git version is greater than 1.8.3 (this comes

with RHEL 7.9). Refer to this article for updating git to 2.24.1.

We assume that you have already cloned the latest TensorFlow master repo. Then create a workspace

directory with a WORKSPACE file to build TensorFlow from source with AVX, AVX2, and FMA. Run the

configure file and specify the correct Python binary location. CUDA is disabled for our testing because we

did not use a GPU. A .bazelrc file is generated according to your settings. Further, we edited the file and set

build --define=no_hdfs_support=false to enable HDFS support. Refer to .bazelrc in the section

“Python scripts for each major use case,” for a complete list of settings and flags.

./configure

bazel build -c opt --copt=-mavx --copt=-mavx2 --copt=-mfma --copt=

-mfpmath=both -k //tensorflow/tools/pip_package:build_pip_package

After you build TensorFlow with the correct flags, run the following script to process the Criteo Display Ads

dataset, train a DeepFM model, and calculate the Area Under the Receiver Operating Characteristic Curve

(ROC AUC) from prediction scores.

(base) [root@n138 examples]# ~/anaconda3/bin/spark-submit

--master yarn

--executor-memory 15g

--executor-cores 1

--num-executors 160

/sparkusecase/DeepCTR/examples/run_classification_criteo_spark.py

--data-dir file:///sparkdemo/tr-4570-data

> . /run_classification_criteo_spark_nfs.log 2>&1

After ten training epochs, we obtained the AUC score on the testing dataset:
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Epoch 1/10

125/125 - 7s - loss: 0.4976 - binary_crossentropy: 0.4974 - val_loss:

0.4629 - val_binary_crossentropy: 0.4624

Epoch 2/10

125/125 - 1s - loss: 0.3281 - binary_crossentropy: 0.3271 - val_loss:

0.5146 - val_binary_crossentropy: 0.5130

Epoch 3/10

125/125 - 1s - loss: 0.1948 - binary_crossentropy: 0.1928 - val_loss:

0.6166 - val_binary_crossentropy: 0.6144

Epoch 4/10

125/125 - 1s - loss: 0.1408 - binary_crossentropy: 0.1383 - val_loss:

0.7261 - val_binary_crossentropy: 0.7235

Epoch 5/10

125/125 - 1s - loss: 0.1129 - binary_crossentropy: 0.1102 - val_loss:

0.7961 - val_binary_crossentropy: 0.7934

Epoch 6/10

125/125 - 1s - loss: 0.0949 - binary_crossentropy: 0.0921 - val_loss:

0.9502 - val_binary_crossentropy: 0.9474

Epoch 7/10

125/125 - 1s - loss: 0.0778 - binary_crossentropy: 0.0750 - val_loss:

1.1329 - val_binary_crossentropy: 1.1301

Epoch 8/10

125/125 - 1s - loss: 0.0651 - binary_crossentropy: 0.0622 - val_loss:

1.3794 - val_binary_crossentropy: 1.3766

Epoch 9/10

125/125 - 1s - loss: 0.0555 - binary_crossentropy: 0.0527 - val_loss:

1.6115 - val_binary_crossentropy: 1.6087

Epoch 10/10

125/125 - 1s - loss: 0.0470 - binary_crossentropy: 0.0442 - val_loss:

1.6768 - val_binary_crossentropy: 1.6740

test AUC 0.6337

In a manner similar to previous use cases, we compared the Spark workflow runtime with data residing in

different locations. The following figure shows a comparison of the deep learning CTR prediction for a Spark

workflows runtime.
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Hybrid cloud solution

A modern enterprise data center is a hybrid cloud that connects multiple distributed

infrastructure environments through a continuous data management plane with a

consistent operating model, on premises and/or in multiple public clouds. To get the most

out of a hybrid cloud, you must be able to seamlessly move data between your on-

premises and multi-cloud environments without the need for any data conversions or

application refactoring.

Customers have indicated that they start their hybrid cloud journey either by moving secondary storage to the

cloud for use cases such as data protection or by moving less business-critical workloads such as application

development and DevOps to the cloud. They then move on to more critical workloads. Web and content

hosting, DevOps and application development, databases, analytics, and containerized apps are among the

most popular hybrid-cloud workloads. The complexity, cost, and risks of enterprise AI projects have historically

hindered AI adoption from experimental stage to production.

With a NetApp hybrid-cloud solution, customers benefit from integrated security, data governance, and

compliance tools with a single control panel for data and workflow management across distributed

environments, while optimizing the total cost of ownership based on their consumption. The following figure is

an example solution of a cloud service partner tasked with providing multi-cloud connectivity for customers' big-

data-analytics data.
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In this scenario, IoT data received in AWS from different sources is stored in a central location in NetApp

Private Storage (NPS). The NPS storage is connected to Spark or Hadoop clusters located in AWS and Azure

enabling big-data-analytics applications running in multiple clouds accessing the same data. The main

requirements and challenges for this use case include the following:

• Customers want to run analytics jobs on the same data using multiple clouds.

• Data must be received from different sources such as on-premises and cloud environments through

different sensors and hubs.

• The solution must be efficient and cost effective.

• The main challenge is to build a cost-effective and efficient solution that delivers hybrid analytics services

between different on-premises and cloud environments.

Our data protection and multicloud connectivity solution resolves the pain point of having cloud analytics

applications across multiple hyperscalers. As shown in the figure above, data from sensors is streamed and

ingested into the AWS Spark cluster through Kafka. The data is stored in an NFS share residing in NPS, which

is located outside of the cloud provider within an Equinix data center.

Because NetApp NPS is connected to Amazon AWS and Microsoft Azure through Direct Connect and Express

Route connections respectively, customers can leverage the In-Place Analytics Module to access the data from

both Amazon and AWS analytics clusters. Consequently, because both on-premises and NPS storage runs

ONTAP software, SnapMirror can mirror the NPS data into the on-premises cluster, providing hybrid cloud

analytics across on-premises and multiple clouds.

For the best performance, NetApp typically recommends using multiple network interfaces and direct

connection or express routes to access the data from cloud instances. We have other data mover solutions

including XCP and BlueXP Copy and Sync to help customers build application-aware, secure, and cost-

effective hybrid-cloud Spark clusters.

Python scripts for each major use case

The following three Python scripts correspond to the three major use cases tested. First is

sentiment_analysis_sparknlp.py.

# TR-4570 Refresh NLP testing by Rick Huang

from sys import argv
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import os

import sparknlp

import pyspark.sql.functions as F

from sparknlp import Finisher

from pyspark.ml import Pipeline

from sparknlp.base import *

from sparknlp.annotator import *

from sparknlp.pretrained import PretrainedPipeline

from sparknlp import Finisher

# Start Spark Session with Spark NLP

spark = sparknlp.start()

print("Spark NLP version:")

print(sparknlp.version())

print("Apache Spark version:")

print(spark.version)

spark = sparknlp.SparkSession.builder \

     .master("yarn") \

     .appName("test_hdfs_read_write") \

     .config("spark.executor.cores", "1") \

     .config("spark.jars.packages", "com.johnsnowlabs.nlp:spark-

nlp_2.12:3.4.3")\

     .config('spark.executor.memory', '5gb') \

     .config('spark.executor.memoryOverhead','1000')\

     .config('spark.driver.memoryOverhead','1000')\

     .config("spark.sql.shuffle.partitions", "480")\

     .getOrCreate()

sc = spark.sparkContext

from pyspark.sql import SQLContext

sql = SQLContext(sc)

sqlContext = SQLContext(sc)

# Download pre-trained pipelines & sequence classifier

explain_pipeline_model = PretrainedPipeline('explain_document_dl',

lang='en').model#pipeline_sa =

PretrainedPipeline("classifierdl_bertwiki_finance_sentiment_pipeline",

lang="en")

# pipeline_finbert =

BertForSequenceClassification.loadSavedModel('/sparkusecase/bert_sequence_

classifier_finbert_en_3', spark)

sequenceClassifier = BertForSequenceClassification \

        .pretrained('bert_sequence_classifier_finbert', 'en') \

        .setInputCols(['token', 'document']) \

        .setOutputCol('class') \

        .setCaseSensitive(True) \

        .setMaxSentenceLength(512)

def process_sentence_df(data):

    # Pre-process: begin
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    print("1. Begin DataFrame pre-processing...\n")

    print(f"\n\t2. Attaching DocumentAssembler Transformer to the

pipeline")

    documentAssembler = DocumentAssembler() \

        .setInputCol("text") \

        .setOutputCol("document") \

        .setCleanupMode("inplace_full")

        #.setCleanupMode("shrink", "inplace_full")

    doc_df = documentAssembler.transform(data)

    doc_df.printSchema()

    doc_df.show(truncate=50)

    # Pre-process: get rid of  blank lines

    clean_df = doc_df.withColumn("tmp", F.explode("document")) \

        .select("tmp.result").where("tmp.end !=

-1").withColumnRenamed("result", "text").dropna()

    print("[OK!] DataFrame after initial cleanup:\n")

    clean_df.printSchema()

    clean_df.show(truncate=80)

    # for FinBERT

    tokenizer = Tokenizer() \

        .setInputCols(['document']) \

        .setOutputCol('token')

    print(f"\n\t3. Attaching Tokenizer Annotator to the pipeline")

    pipeline_finbert = Pipeline(stages=[

        documentAssembler,

        tokenizer,

        sequenceClassifier

        ])

    # Use Finisher() & construct PySpark ML pipeline

    finisher = Finisher().setInputCols(["token", "lemma", "pos",

"entities"])

    print(f"\n\t4. Attaching Finisher Transformer to the pipeline")

    pipeline_ex = Pipeline() \

        .setStages([

           explain_pipeline_model,

           finisher

           ])

    print("\n\t\t\t ---- Pipeline Built Successfully ----")

    # Loading pipelines to annotate

    #result_ex_df = pipeline_ex.transform(clean_df)

    ex_model = pipeline_ex.fit(clean_df)

    annotations_finished_ex_df = ex_model.transform(clean_df)

    # result_sa_df = pipeline_sa.transform(clean_df)

    result_finbert_df = pipeline_finbert.fit(clean_df).transform(clean_df)

    print("\n\t\t\t ----Document Explain, Sentiment Analysis & FinBERT

Pipeline Fitted Successfully ----")
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    # Check the result entities

    print("[OK!] Simple explain ML pipeline result:\n")

    annotations_finished_ex_df.printSchema()

    annotations_finished_ex_df.select('text',

'finished_entities').show(truncate=False)

    # Check the result sentiment from FinBERT

    print("[OK!] Sentiment Analysis FinBERT pipeline result:\n")

    result_finbert_df.printSchema()

    result_finbert_df.select('text', 'class.result').show(80, False)

    sentiment_stats(result_finbert_df)

    return

def sentiment_stats(finbert_df):

    result_df = finbert_df.select('text', 'class.result')

    sa_df = result_df.select('result')

    sa_df.groupBy('result').count().show()

    # total_lines = result_clean_df.count()

    # num_neutral = result_clean_df.where(result_clean_df.result ==

['neutral']).count()

    # num_positive = result_clean_df.where(result_clean_df.result ==

['positive']).count()

    # num_negative = result_clean_df.where(result_clean_df.result ==

['negative']).count()

    # print(f"\nRatio of neutral sentiment = {num_neutral/total_lines}")

    # print(f"Ratio of positive sentiment = {num_positive / total_lines}")

    # print(f"Ratio of negative sentiment = {num_negative /

total_lines}\n")

    return

def process_input_file(file_name):

    # Turn input file to Spark DataFrame

    print("START processing input file...")

    data_df = spark.read.text(file_name)

    data_df.show()

    # rename first column 'text' for sparknlp

    output_df = data_df.withColumnRenamed("value", "text").dropna()

    output_df.printSchema()

    return output_dfdef process_local_dir(directory):

    filelist = []

    for subdir, dirs, files in os.walk(directory):

        for filename in files:

            filepath = subdir + os.sep + filename

            print("[OK!] Will process the following files:")

            if filepath.endswith(".txt"):

                print(filepath)

                filelist.append(filepath)

    return filelist

def process_local_dir_or_file(dir_or_file):
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    numfiles = 0

    if os.path.isfile(dir_or_file):

        input_df = process_input_file(dir_or_file)

        print("Obtained input_df.")

        process_sentence_df(input_df)

        print("Processed input_df")

        numfiles += 1

    else:

        filelist = process_local_dir(dir_or_file)

        for file in filelist:

            input_df = process_input_file(file)

            process_sentence_df(input_df)

            numfiles += 1

    return numfiles

def process_hdfs_dir(dir_name):

    # Turn input files to Spark DataFrame

    print("START processing input HDFS directory...")

    data_df = spark.read.option("recursiveFileLookup",

"true").text(dir_name)

    data_df.show()

    print("[DEBUG] total lines in data_df = ", data_df.count())

    # rename first column 'text' for sparknlp

    output_df = data_df.withColumnRenamed("value", "text").dropna()

    print("[DEBUG] output_df looks like: \n")

    output_df.show(40, False)

    print("[DEBUG] HDFS dir resulting data_df schema: \n")

    output_df.printSchema()

    process_sentence_df(output_df)

    print("Processed HDFS directory: ", dir_name)

    returnif __name__ == '__main__':

    try:

        if len(argv) == 2:

            print("Start processing input...\n")

    except:

        print("[ERROR] Please enter input text file or path to

process!\n")

        exit(1)

    # This is for local file, not hdfs:

    numfiles = process_local_dir_or_file(str(argv[1]))

    # For HDFS single file & directory:

    input_df = process_input_file(str(argv[1]))

    print("Obtained input_df.")

    process_sentence_df(input_df)

    print("Processed input_df")

    numfiles += 1

    # For HDFS directory of subdirectories of files:
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    input_parse_list = str(argv[1]).split('/')

    print(input_parse_list)

    if input_parse_list[-2:-1] == ['Transcripts']:

        print("Start processing HDFS directory: ", str(argv[1]))

        process_hdfs_dir(str(argv[1]))

    print(f"[OK!] All done. Number of files processed = {numfiles}")

The second script is keras_spark_horovod_rossmann_estimator.py.

# Copyright 2022 NetApp, Inc.

# Authored by Rick Huang

#

# Licensed under the Apache License, Version 2.0 (the "License");

# you may not use this file except in compliance with the License.

# You may obtain a copy of the License at

#

#     http://www.apache.org/licenses/LICENSE-2.0

#

# Unless required by applicable law or agreed to in writing, software

# distributed under the License is distributed on an "AS IS" BASIS,

# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.

# See the License for the specific language governing permissions and

# limitations under the License.

#

==========================================================================

====

# The below code was modified from: https://www.kaggle.com/c/rossmann-

store-sales

import argparse

import datetime

import os

import sys

from distutils.version import LooseVersion

import pyspark.sql.types as T

import pyspark.sql.functions as F

from pyspark import SparkConf, Row

from pyspark.sql import SparkSession

import tensorflow as tf

import tensorflow.keras.backend as K

from tensorflow.keras.layers import Input, Embedding, Concatenate, Dense,

Flatten, Reshape, BatchNormalization, Dropout

import horovod.spark.keras as hvd

from horovod.spark.common.backend import SparkBackend

from horovod.spark.common.store import Store

from horovod.tensorflow.keras.callbacks import BestModelCheckpoint
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parser = argparse.ArgumentParser(description='Horovod Keras Spark Rossmann

Estimator Example',

 

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('--master',

                    help='spark cluster to use for training. If set to

None, uses current default cluster. Cluster'

                         'should be set up to provide a Spark task per

multiple CPU cores, or per GPU, e.g. by'

                         'supplying `-c <NUM_GPUS>` in Spark Standalone

mode')

parser.add_argument('--num-proc', type=int,

                    help='number of worker processes for training,

default: `spark.default.parallelism`')

parser.add_argument('--learning_rate', type=float, default=0.0001,

                    help='initial learning rate')

parser.add_argument('--batch-size', type=int, default=100,

                    help='batch size')

parser.add_argument('--epochs', type=int, default=100,

                    help='number of epochs to train')

parser.add_argument('--sample-rate', type=float,

                    help='desired sampling rate. Useful to set to low

number (e.g. 0.01) to make sure that '

                         'end-to-end process works')

parser.add_argument('--data-dir', default='file://' + os.getcwd(),

                    help='location of data on local filesystem (prefixed

with file://) or on HDFS')

parser.add_argument('--local-submission-csv', default='submission.csv',

                    help='output submission predictions CSV')

parser.add_argument('--local-checkpoint-file', default='checkpoint',

                    help='model checkpoint')

parser.add_argument('--work-dir', default='/tmp',

                    help='temporary working directory to write

intermediate files (prefix with hdfs:// to use HDFS)')

if __name__ == '__main__':

    args = parser.parse_args()

    # ================ #

    # DATA PREPARATION #

    # ================ #

    print('================')

    print('Data preparation')

    print('================')

    # Create Spark session for data preparation.

    conf = SparkConf() \

        .setAppName('Keras Spark Rossmann Estimator Example') \

        .set('spark.sql.shuffle.partitions', '480') \
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        .set("spark.executor.cores", "1") \

        .set('spark.executor.memory', '5gb') \

        .set('spark.executor.memoryOverhead','1000')\

        .set('spark.driver.memoryOverhead','1000')

    if args.master:

        conf.setMaster(args.master)

    elif args.num_proc:

        conf.setMaster('local[{}]'.format(args.num_proc))

    spark = SparkSession.builder.config(conf=conf).getOrCreate()

    train_csv = spark.read.csv('%s/train.csv' % args.data_dir,

header=True)

    test_csv = spark.read.csv('%s/test.csv' % args.data_dir, header=True)

    store_csv = spark.read.csv('%s/store.csv' % args.data_dir,

header=True)

    store_states_csv = spark.read.csv('%s/store_states.csv' %

args.data_dir, header=True)

    state_names_csv = spark.read.csv('%s/state_names.csv' % args.data_dir,

header=True)

    google_trend_csv = spark.read.csv('%s/googletrend.csv' %

args.data_dir, header=True)

    weather_csv = spark.read.csv('%s/weather.csv' % args.data_dir,

header=True)

    def expand_date(df):

        df = df.withColumn('Date', df.Date.cast(T.DateType()))

        return df \

            .withColumn('Year', F.year(df.Date)) \

            .withColumn('Month', F.month(df.Date)) \

            .withColumn('Week', F.weekofyear(df.Date)) \

            .withColumn('Day', F.dayofmonth(df.Date))

    def prepare_google_trend():

        # Extract week start date and state.

        google_trend_all = google_trend_csv \

            .withColumn('Date', F.regexp_extract(google_trend_csv.week,

'(.*?) -', 1)) \

            .withColumn('State', F.regexp_extract(google_trend_csv.file,

'Rossmann_DE_(.*)', 1))

        # Map state NI -> HB,NI to align with other data sources.

        google_trend_all = google_trend_all \

            .withColumn('State', F.when(google_trend_all.State == 'NI',

'HB,NI').otherwise(google_trend_all.State))

        # Expand dates.

        return expand_date(google_trend_all)

    def add_elapsed(df, cols):

        def add_elapsed_column(col, asc):

            def fn(rows):

                last_store, last_date = None, None
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                for r in rows:

                    if last_store != r.Store:

                        last_store = r.Store

                        last_date = r.Date

                    if r[col]:

                        last_date = r.Date

                    fields = r.asDict().copy()

                    fields[('After' if asc else 'Before') + col] = (r.Date

- last_date).days

                    yield Row(**fields)

            return fn

        df = df.repartition(df.Store)

        for asc in [False, True]:

            sort_col = df.Date.asc() if asc else df.Date.desc()

            rdd = df.sortWithinPartitions(df.Store.asc(), sort_col).rdd

            for col in cols:

                rdd = rdd.mapPartitions(add_elapsed_column(col, asc))

            df = rdd.toDF()

        return df

    def prepare_df(df):

        num_rows = df.count()

        # Expand dates.

        df = expand_date(df)

        df = df \

            .withColumn('Open', df.Open != '0') \

            .withColumn('Promo', df.Promo != '0') \

            .withColumn('StateHoliday', df.StateHoliday != '0') \

            .withColumn('SchoolHoliday', df.SchoolHoliday != '0')

        # Merge in store information.

        store = store_csv.join(store_states_csv, 'Store')

        df = df.join(store, 'Store')

        # Merge in Google Trend information.

        google_trend_all = prepare_google_trend()

        df = df.join(google_trend_all, ['State', 'Year',

'Week']).select(df['*'], google_trend_all.trend)

        # Merge in Google Trend for whole Germany.

        google_trend_de = google_trend_all[google_trend_all.file ==

'Rossmann_DE'].withColumnRenamed('trend', 'trend_de')

        df = df.join(google_trend_de, ['Year', 'Week']).select(df['*'],

google_trend_de.trend_de)

        # Merge in weather.

        weather = weather_csv.join(state_names_csv, weather_csv.file ==

state_names_csv.StateName)

        df = df.join(weather, ['State', 'Date'])

        # Fix null values.

        df = df \
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            .withColumn('CompetitionOpenSinceYear',

F.coalesce(df.CompetitionOpenSinceYear, F.lit(1900))) \

            .withColumn('CompetitionOpenSinceMonth',

F.coalesce(df.CompetitionOpenSinceMonth, F.lit(1))) \

            .withColumn('Promo2SinceYear', F.coalesce(df.Promo2SinceYear,

F.lit(1900))) \

            .withColumn('Promo2SinceWeek', F.coalesce(df.Promo2SinceWeek,

F.lit(1)))

        # Days & months competition was open, cap to 2 years.

        df = df.withColumn('CompetitionOpenSince',

                           F.to_date(F.format_string('%s-%s-15',

df.CompetitionOpenSinceYear,

 

df.CompetitionOpenSinceMonth)))

        df = df.withColumn('CompetitionDaysOpen',

                           F.when(df.CompetitionOpenSinceYear > 1900,

                                  F.greatest(F.lit(0), F.least(F.lit(360 *

2), F.datediff(df.Date, df.CompetitionOpenSince))))

                           .otherwise(0))

        df = df.withColumn('CompetitionMonthsOpen',

(df.CompetitionDaysOpen / 30).cast(T.IntegerType()))

        # Days & weeks of promotion, cap to 25 weeks.

        df = df.withColumn('Promo2Since',

                           F.expr('date_add(format_string("%s-01-01",

Promo2SinceYear), (cast(Promo2SinceWeek as int) - 1) * 7)'))

        df = df.withColumn('Promo2Days',

                           F.when(df.Promo2SinceYear > 1900,

                                  F.greatest(F.lit(0), F.least(F.lit(25 *

7), F.datediff(df.Date, df.Promo2Since))))

                           .otherwise(0))

        df = df.withColumn('Promo2Weeks', (df.Promo2Days /

7).cast(T.IntegerType()))

        # Check that we did not lose any rows through inner joins.

        assert num_rows == df.count(), 'lost rows in joins'

        return df

    def build_vocabulary(df, cols):

        vocab = {}

        for col in cols:

            values = [r[0] for r in df.select(col).distinct().collect()]

            col_type = type([x for x in values if x is not None][0])

            default_value = col_type()

            vocab[col] = sorted(values, key=lambda x: x or default_value)

        return vocab

    def cast_columns(df, cols):

        for col in cols:

            df = df.withColumn(col,
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F.coalesce(df[col].cast(T.FloatType()), F.lit(0.0)))

        return df

    def lookup_columns(df, vocab):

        def lookup(mapping):

            def fn(v):

                return mapping.index(v)

            return F.udf(fn, returnType=T.IntegerType())

        for col, mapping in vocab.items():

            df = df.withColumn(col, lookup(mapping)(df[col]))

        return df

    if args.sample_rate:

        train_csv = train_csv.sample(withReplacement=False,

fraction=args.sample_rate)

        test_csv = test_csv.sample(withReplacement=False,

fraction=args.sample_rate)

    # Prepare data frames from CSV files.

    train_df = prepare_df(train_csv).cache()

    test_df = prepare_df(test_csv).cache()

    # Add elapsed times from holidays & promos, the data spanning training

& test datasets.

    elapsed_cols = ['Promo', 'StateHoliday', 'SchoolHoliday']

    elapsed = add_elapsed(train_df.select('Date', 'Store', *elapsed_cols)

                          .unionAll(test_df.select('Date', 'Store',

*elapsed_cols)),

                          elapsed_cols)

    # Join with elapsed times.

    train_df = train_df \

        .join(elapsed, ['Date', 'Store']) \

        .select(train_df['*'], *[prefix + col for prefix in ['Before',

'After'] for col in elapsed_cols])

    test_df = test_df \

        .join(elapsed, ['Date', 'Store']) \

        .select(test_df['*'], *[prefix + col for prefix in ['Before',

'After'] for col in elapsed_cols])

    # Filter out zero sales.

    train_df = train_df.filter(train_df.Sales > 0)

    print('===================')

    print('Prepared data frame')

    print('===================')

    train_df.show()

    categorical_cols = [

        'Store', 'State', 'DayOfWeek', 'Year', 'Month', 'Day', 'Week',

'CompetitionMonthsOpen', 'Promo2Weeks', 'StoreType',

        'Assortment', 'PromoInterval', 'CompetitionOpenSinceYear',

'Promo2SinceYear', 'Events', 'Promo',

        'StateHoliday', 'SchoolHoliday'
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    ]

    continuous_cols = [

        'CompetitionDistance', 'Max_TemperatureC', 'Mean_TemperatureC',

'Min_TemperatureC', 'Max_Humidity',

        'Mean_Humidity', 'Min_Humidity', 'Max_Wind_SpeedKm_h',

'Mean_Wind_SpeedKm_h', 'CloudCover', 'trend', 'trend_de',

        'BeforePromo', 'AfterPromo', 'AfterStateHoliday',

'BeforeStateHoliday', 'BeforeSchoolHoliday', 'AfterSchoolHoliday'

    ]

    all_cols = categorical_cols + continuous_cols

    # Select features.

    train_df = train_df.select(*(all_cols + ['Sales', 'Date'])).cache()

    test_df = test_df.select(*(all_cols + ['Id', 'Date'])).cache()

    # Build vocabulary of categorical columns.

    vocab = build_vocabulary(train_df.select(*categorical_cols)

 

.unionAll(test_df.select(*categorical_cols)).cache(),

                             categorical_cols)

    # Cast continuous columns to float & lookup categorical columns.

    train_df = cast_columns(train_df, continuous_cols + ['Sales'])

    train_df = lookup_columns(train_df, vocab)

    test_df = cast_columns(test_df, continuous_cols)

    test_df = lookup_columns(test_df, vocab)

    # Split into training & validation.

    # Test set is in 2015, use the same period in 2014 from the training

set as a validation set.

    test_min_date = test_df.agg(F.min(test_df.Date)).collect()[0][0]

    test_max_date = test_df.agg(F.max(test_df.Date)).collect()[0][0]

    one_year = datetime.timedelta(365)

    train_df = train_df.withColumn('Validation',

                                   (train_df.Date > test_min_date -

one_year) & (train_df.Date <= test_max_date - one_year))

    # Determine max Sales number.

    max_sales = train_df.agg(F.max(train_df.Sales)).collect()[0][0]

    # Convert Sales to log domain

    train_df = train_df.withColumn('Sales', F.log(train_df.Sales))

    print('===================================')

    print('Data frame with transformed columns')

    print('===================================')

    train_df.show()

    print('================')

    print('Data frame sizes')

    print('================')

    train_rows = train_df.filter(~train_df.Validation).count()

    val_rows = train_df.filter(train_df.Validation).count()

    test_rows = test_df.count()

38



    print('Training: %d' % train_rows)

    print('Validation: %d' % val_rows)

    print('Test: %d' % test_rows)

    # ============== #

    # MODEL TRAINING #

    # ============== #

    print('==============')

    print('Model training')

    print('==============')

    def exp_rmspe(y_true, y_pred):

        """Competition evaluation metric, expects logarithic inputs."""

        pct = tf.square((tf.exp(y_true) - tf.exp(y_pred)) /

tf.exp(y_true))

        # Compute mean excluding stores with zero denominator.

        x = tf.reduce_sum(tf.where(y_true > 0.001, pct,

tf.zeros_like(pct)))

        y = tf.reduce_sum(tf.where(y_true > 0.001, tf.ones_like(pct),

tf.zeros_like(pct)))

        return tf.sqrt(x / y)

    def act_sigmoid_scaled(x):

        """Sigmoid scaled to logarithm of maximum sales scaled by 20%."""

        return tf.nn.sigmoid(x) * tf.math.log(max_sales) * 1.2

    CUSTOM_OBJECTS = {'exp_rmspe': exp_rmspe,

                      'act_sigmoid_scaled': act_sigmoid_scaled}

    # Disable GPUs when building the model to prevent memory leaks

    if LooseVersion(tf.__version__) >= LooseVersion('2.0.0'):

        # See https://github.com/tensorflow/tensorflow/issues/33168

        os.environ['CUDA_VISIBLE_DEVICES'] = '-1'

    else:

 

K.set_session(tf.Session(config=tf.ConfigProto(device_count={'GPU': 0})))

    # Build the model.

    inputs = {col: Input(shape=(1,), name=col) for col in all_cols}

    embeddings = [Embedding(len(vocab[col]), 10, input_length=1,

name='emb_' + col)(inputs[col])

                  for col in categorical_cols]

    continuous_bn = Concatenate()([Reshape((1, 1), name='reshape_' +

col)(inputs[col])

                                   for col in continuous_cols])

    continuous_bn = BatchNormalization()(continuous_bn)

    x = Concatenate()(embeddings + [continuous_bn])

    x = Flatten()(x)

    x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

    x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)
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    x = Dense(1000, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

    x = Dense(500, activation='relu',

kernel_regularizer=tf.keras.regularizers.l2(0.00005))(x)

    x = Dropout(0.5)(x)

    output = Dense(1, activation=act_sigmoid_scaled)(x)

    model = tf.keras.Model([inputs[f] for f in all_cols], output)

    model.summary()

    opt = tf.keras.optimizers.Adam(lr=args.learning_rate, epsilon=1e-3)

    # Checkpoint callback to specify options for the returned Keras model

    ckpt_callback = BestModelCheckpoint(monitor='val_loss', mode='auto',

save_freq='epoch')

    # Horovod: run training.

    store = Store.create(args.work_dir)

    backend = SparkBackend(num_proc=args.num_proc,

                           stdout=sys.stdout, stderr=sys.stderr,

                           prefix_output_with_timestamp=True)

    keras_estimator = hvd.KerasEstimator(backend=backend,

                                         store=store,

                                         model=model,

                                         optimizer=opt,

                                         loss='mae',

                                         metrics=[exp_rmspe],

                                         custom_objects=CUSTOM_OBJECTS,

                                         feature_cols=all_cols,

                                         label_cols=['Sales'],

                                         validation='Validation',

                                         batch_size=args.batch_size,

                                         epochs=args.epochs,

                                         verbose=2,

 

checkpoint_callback=ckpt_callback)

    keras_model =

keras_estimator.fit(train_df).setOutputCols(['Sales_output'])

    history = keras_model.getHistory()

    best_val_rmspe = min(history['val_exp_rmspe'])

    print('Best RMSPE: %f' % best_val_rmspe)

    # Save the trained model.

    keras_model.save(args.local_checkpoint_file)

    print('Written checkpoint to %s' % args.local_checkpoint_file)

    # ================ #

    # FINAL PREDICTION #

    # ================ #

    print('================')

    print('Final prediction')

    print('================')
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    pred_df=keras_model.transform(test_df)

    pred_df.printSchema()

    pred_df.show(5)

    # Convert from log domain to real Sales numbers

    pred_df=pred_df.withColumn('Sales_pred', F.exp(pred_df.Sales_output))

    submission_df = pred_df.select(pred_df.Id.cast(T.IntegerType()),

pred_df.Sales_pred).toPandas()

    submission_df.sort_values(by=['Id']).to_csv(args.local_submission_csv,

index=False)

    print('Saved predictions to %s' % args.local_submission_csv)

    spark.stop()

The third script is run_classification_criteo_spark.py.

import tempfile, string, random, os, uuid

import argparse, datetime, sys, shutil

import csv

import numpy as np

from sklearn.model_selection import train_test_split

from tensorflow.keras.callbacks import EarlyStopping

from pyspark import SparkContext

from pyspark.sql import SparkSession, SQLContext, Row, DataFrame

from pyspark.mllib import linalg as mllib_linalg

from pyspark.mllib.linalg import SparseVector as mllibSparseVector

from pyspark.mllib.linalg import VectorUDT as mllibVectorUDT

from pyspark.mllib.linalg import Vector as mllibVector, Vectors as

mllibVectors

from pyspark.mllib.regression import LabeledPoint

from pyspark.mllib.classification import LogisticRegressionWithSGD

from pyspark.ml import linalg as ml_linalg

from pyspark.ml.linalg import VectorUDT as mlVectorUDT

from pyspark.ml.linalg import SparseVector as mlSparseVector

from pyspark.ml.linalg import Vector as mlVector, Vectors as mlVectors

from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import OneHotEncoder

from math import log

from math import exp  # exp(-t) = e^-t

from operator import add

from pyspark.sql.functions import udf, split, lit

from pyspark.sql.functions import size, sum as sqlsum

import pyspark.sql.functions as F

import pyspark.sql.types as T

from pyspark.sql.types import ArrayType, StructType, StructField,

LongType, StringType, IntegerType, FloatType

from pyspark.sql.functions import explode, col, log, when
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from collections import defaultdict

import pandas as pd

import pyspark.pandas as ps

from sklearn.metrics import log_loss, roc_auc_score

from sklearn.model_selection import train_test_split

from sklearn.preprocessing import LabelEncoder, MinMaxScaler

from deepctr.models import DeepFM

from deepctr.feature_column import SparseFeat, DenseFeat,

get_feature_names

spark = SparkSession.builder \

    .master("yarn") \

    .appName("deep_ctr_classification") \

    .config("spark.jars.packages", "io.github.ravwojdyla:spark-schema-

utils_2.12:0.1.0") \

    .config("spark.executor.cores", "1") \

    .config('spark.executor.memory', '5gb') \

    .config('spark.executor.memoryOverhead', '1500') \

    .config('spark.driver.memoryOverhead', '1500') \

    .config("spark.sql.shuffle.partitions", "480") \

    .config("spark.sql.execution.arrow.enabled", "true") \

    .config("spark.driver.maxResultSize", "50gb") \

    .getOrCreate()

# spark.conf.set("spark.sql.execution.arrow.enabled", "true") # deprecated

print("Apache Spark version:")

print(spark.version)

sc = spark.sparkContext

sqlContext = SQLContext(sc)

parser = argparse.ArgumentParser(description='Spark DCN CTR Prediction

Example',

 

formatter_class=argparse.ArgumentDefaultsHelpFormatter)

parser.add_argument('--data-dir', default='file://' + os.getcwd(),

                    help='location of data on local filesystem (prefixed

with file://) or on HDFS')

def process_input_file(file_name, sparse_feat, dense_feat):

    # Need this preprocessing to turn Criteo raw file into CSV:

    print("START processing input file...")

    # only convert the file ONCE

    # sample = open(file_name)

    # sample = '\n'.join([str(x.replace('\n', '').replace('\t', ',')) for

x in sample])

    # # Add header in data file and save as CSV

    # header = ','.join(str(x) for x in (['label'] + dense_feat +

sparse_feat))

    # with open('/sparkdemo/tr-4570-data/ctr_train.csv', mode='w',

encoding="utf-8") as f:
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    #     f.write(header + '\n' + sample)

    #     f.close()

    # print("Raw training file processed and saved as CSV: ", f.name)

    raw_df = sqlContext.read.option("header", True).csv(file_name)

    raw_df.show(5, False)

    raw_df.printSchema()

    # convert columns I1 to I13 from string to integers

    conv_df = raw_df.select(col('label').cast("double"),

                            *(col(i).cast("float").alias(i) for i in

raw_df.columns if i in dense_feat),

                            *(col(c) for c in raw_df.columns if c in

sparse_feat))

    print("Schema of raw_df with integer columns type changed:")

    conv_df.printSchema()

    # result_pdf = conv_df.select("*").toPandas()

    tmp_df = conv_df.na.fill(0, dense_feat)

    result_df = tmp_df.na.fill('-1', sparse_feat)

    result_df.show()

    return result_df

if __name__ == "__main__":

    args = parser.parse_args()

    # Pandas read CSV

    # data = pd.read_csv('%s/criteo_sample.txt' % args.data_dir)

    # print("Obtained Pandas df.")

    dense_features = ['I' + str(i) for i in range(1, 14)]

    sparse_features = ['C' + str(i) for i in range(1, 27)]

    # Spark read CSV

    # process_input_file('%s/train.txt' % args.data_dir, sparse_features,

dense_features) # run only ONCE

    spark_df = process_input_file('%s/data.txt' % args.data_dir,

sparse_features, dense_features) # sample data

    # spark_df = process_input_file('%s/ctr_train.csv' % args.data_dir,

sparse_features, dense_features)

    print("Obtained Spark df and filled in missing features.")

    data = spark_df

    # Pandas

    #data[sparse_features] = data[sparse_features].fillna('-1', )

    #data[dense_features] = data[dense_features].fillna(0, )

    target = ['label']

    label_npa = data.select("label").toPandas().to_numpy()

    print("label numPy array has length = ", len(label_npa)) # 45,840,617

w/ 11GB dataset

    label_npa.ravel()

    label_npa.reshape(len(label_npa), )

    # 1.Label Encoding for sparse features,and do simple Transformation

for dense features
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    print("Before LabelEncoder():")

    data.printSchema()  # label: float (nullable = true)

    for feat in sparse_features:

        lbe = LabelEncoder()

        tmp_pdf = data.select(feat).toPandas().to_numpy()

        tmp_ndarray = lbe.fit_transform(tmp_pdf)

        print("After LabelEncoder(), tmp_ndarray[0] =", tmp_ndarray[0])

        # print("Data tmp PDF after lbe transformation, the output ndarray

has length = ", len(tmp_ndarray)) # 45,840,617 for 11GB dataset

        tmp_ndarray.ravel()

        tmp_ndarray.reshape(len(tmp_ndarray), )

        out_ndarray = np.column_stack([label_npa, tmp_ndarray])

        pdf = pd.DataFrame(out_ndarray, columns=['label', feat])

        s_df = spark.createDataFrame(pdf)

        s_df.printSchema() # label: double (nullable = true)

        print("Before joining data df with s_df, s_df example rows:")

        s_df.show(1, False)

        data = data.drop(feat).join(s_df, 'label').drop('label')

        print("After LabelEncoder(), data df example rows:")

        data.show(1, False)

        print("Finished processing sparse_features: ", feat)

    print("Data DF after label encoding: ")

    data.show()

    data.printSchema()

    mms = MinMaxScaler(feature_range=(0, 1))

    # data[dense_features] = mms.fit_transform(data[dense_features]) # for

Pandas df

    tmp_pdf = data.select(dense_features).toPandas().to_numpy()

    tmp_ndarray = mms.fit_transform(tmp_pdf)

    tmp_ndarray.ravel()

    tmp_ndarray.reshape(len(tmp_ndarray), len(tmp_ndarray[0]))

    out_ndarray = np.column_stack([label_npa, tmp_ndarray])

    pdf = pd.DataFrame(out_ndarray, columns=['label'] + dense_features)

    s_df = spark.createDataFrame(pdf)

    s_df.printSchema()

    data.drop(*dense_features).join(s_df, 'label').drop('label')

    print("Finished processing dense_features: ", dense_features)

    print("Data DF after MinMaxScaler: ")

    data.show()

    # 2.count #unique features for each sparse field,and record dense

feature field name

    fixlen_feature_columns = [SparseFeat(feat,

vocabulary_size=data.select(feat).distinct().count() + 1, embedding_dim=4)

                              for i, feat in enumerate(sparse_features)] +

\
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                             [DenseFeat(feat, 1, ) for feat in

dense_features]

    dnn_feature_columns = fixlen_feature_columns

    linear_feature_columns = fixlen_feature_columns

    feature_names = get_feature_names(linear_feature_columns +

dnn_feature_columns)

    # 3.generate input data for model

    # train, test = train_test_split(data.toPandas(), test_size=0.2,

random_state=2020) # Pandas; might hang for 11GB data

    train, test = data.randomSplit(weights=[0.8, 0.2], seed=200)

    print("Training dataset size = ", train.count())

    print("Testing dataset size = ", test.count())

    # Pandas:

    # train_model_input = {name: train[name] for name in feature_names}

    # test_model_input = {name: test[name] for name in feature_names}

    # Spark DF:

    train_model_input = {}

    test_model_input = {}

    for name in feature_names:

        if name.startswith('I'):

            tr_pdf = train.select(name).toPandas()

            train_model_input[name] = pd.to_numeric(tr_pdf[name])

            ts_pdf = test.select(name).toPandas()

            test_model_input[name] = pd.to_numeric(ts_pdf[name])

    # 4.Define Model,train,predict and evaluate

    model = DeepFM(linear_feature_columns, dnn_feature_columns,

task='binary')

    model.compile("adam", "binary_crossentropy",

                  metrics=['binary_crossentropy'], )

    lb_pdf = train.select(target).toPandas()

    history = model.fit(train_model_input,

pd.to_numeric(lb_pdf['label']).values,

                        batch_size=256, epochs=10, verbose=2,

validation_split=0.2, )

    pred_ans = model.predict(test_model_input, batch_size=256)

    print("test LogLoss",

round(log_loss(pd.to_numeric(test.select(target).toPandas()).values,

pred_ans), 4))

    print("test AUC",

round(roc_auc_score(pd.to_numeric(test.select(target).toPandas()).values,

pred_ans), 4))

Conclusion

In this document, we discuss the Apache Spark architecture, customer use cases, and
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the NetApp storage portfolio as it relates to big data, modern analytics, and AI, ML, and

DL. In our performance validation tests based on industry-standard benchmarking tools

and customer demand, the NetApp Spark solutions demonstrated superior performance

relative to native Hadoop systems. A combination of the customer use cases and

performance results presented in this report can help you to choose an appropriate Spark

solution for your deployment.

Where to find additional information

The following references were used in this TR:

• Apache Spark architecture and components

http://spark.apache.org/docs/latest/cluster-overview.html

• Apache Spark use cases

https://www.qubole.com/blog/big-data/apache-spark-use-cases/

• Apache challenges

http://www.infoworld.com/article/2897287/big-data/5-reasons-to-turn-to-spark-for-big-data-analytics.html

• Spark NLP

https://www.johnsnowlabs.com/spark-nlp/

• BERT

https://arxiv.org/abs/1810.04805

• Deep and Cross Network for Ad Click Predictions

https://arxiv.org/abs/1708.05123

• FlexGroup

http://www.netapp.com/us/media/tr-4557.pdf

• Streaming ETL

https://www.infoq.com/articles/apache-spark-streaming

• NetApp E-Series Solutions for Hadoop

https://www.netapp.com/media/16420-tr-3969.pdf

• NetApp Modern Data Analytics Solutions

Data Analytics Solutions

• SnapMirror
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https://docs.netapp.com/us-en/ontap/data-protection/snapmirror-replication-concept.html

• XCP

https://mysupport.netapp.com/documentation/docweb/index.html?productID=63942&language=en-US

• BlueXP Copy and Sync

https://cloud.netapp.com/cloud-sync-service

• DataOps Toolkit

https://github.com/NetApp/netapp-dataops-toolkit
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