
NetApp Astra Trident Overview
NetApp Solutions
NetApp
May 17, 2024

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions/containers/rh-os-
n_trident_ontap_nfs.html on May 17, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Astra Trident Overview . 1

Download Astra Trident . 1

Install the Trident Operator with Helm . 3

Manually install the Trident Operator . 5

Prepare worker nodes for storage . 8

Create storage-system backends . 13

NetApp ONTAP NFS configuration . 13

NetApp ONTAP iSCSI configuration . 15

NetApp Element iSCSI configuration . 18

Astra Trident Overview

Astra Trident is an open-source and fully supported storage orchestrator for containers

and Kubernetes distributions, including Red Hat OpenShift. Trident works with the entire

NetApp storage portfolio, including the NetApp ONTAP and Element storage systems,

and it also supports NFS and iSCSI connections. Trident accelerates the DevOps

workflow by allowing end users to provision and manage storage from their NetApp

storage systems without requiring intervention from a storage administrator.

An administrator can configure a number of storage backends based on project needs and storage system

models that enable advanced storage features, including compression, specific disk types, or QoS levels that

guarantee a certain level of performance. After they are defined, these backends can be used by developers in

their projects to create persistent volume claims (PVCs) and to attach persistent storage to their containers on

demand.

Astra Trident has a rapid development cycle, and just like Kubernetes, is released four times a year.

The latest version of Astra Trident is 22.01 released in January 2022. A support matrix for what version of

Trident has been tested with which Kubernetes distribution can be found here.

Starting with the 20.04 release, Trident setup is performed by the Trident operator. The operator makes large

scale deployments easier and provides additional support including self healing for pods that are deployed as a

part of the Trident install.

With the 21.01 release, a Helm chart was made available to ease the installation of the Trident Operator.

Download Astra Trident

To install Trident on the deployed user cluster and provision a persistent volume, complete the following steps:

1. Download the installation archive to the admin workstation and extract the contents. The current version of

Trident is 22.01, which can be downloaded here.

1

https://docs.netapp.com/us-en/trident/trident-get-started/requirements.html#supported-frontends-orchestrators
https://github.com/NetApp/trident/releases/download/v22.01.0/trident-installer-22.01.0.tar.gz

[netapp-user@rhel7 ~]$ wget

https://github.com/NetApp/trident/releases/download/v22.01.0/trident-

installer-22.01.0.tar.gz

--2021-05-06 15:17:30--

https://github.com/NetApp/trident/releases/download/v22.01.0/trident-

installer-22.01.0.tar.gz

Resolving github.com (github.com)... 140.82.114.3

Connecting to github.com (github.com)|140.82.114.3|:443... connected.

HTTP request sent, awaiting response... 302 Found

Location: https://github-

releases.githubusercontent.com/77179634/a4fa9f00-a9f2-11eb-9053-

98e8e573d4ae?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-

Credential=AKIAIWNJYAX4CSVEH53A%2F20210506%2Fus-east-

1%2Fs3%2Faws4_request&X-Amz-Date=20210506T191643Z&X-Amz-Expires=300&X-

Amz-

Signature=8a49a2a1e08c147d1ddd8149ce45a5714f9853fee19bb1c507989b9543eb36

30&X-Amz-

SignedHeaders=host&actor_id=0&key_id=0&repo_id=77179634&response-

content-disposition=attachment%3B%20filename%3Dtrident-installer-

22.01.0.tar.gz&response-content-type=application%2Foctet-stream

[following]

--2021-05-06 15:17:30-- https://github-

releases.githubusercontent.com/77179634/a4fa9f00-a9f2-11eb-9053-

98e8e573d4ae?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-

Credential=AKIAIWNJYAX4CSVEH53A%2F20210506%2Fus-east-

1%2Fs3%2Faws4_request&X-Amz-Date=20210506T191643Z&X-Amz-Expires=300&X-

Amz-

Signature=8a49a2a1e08c147d1ddd8149ce45a5714f9853fee19bb1c507989b9543eb36

30&X-Amz-

SignedHeaders=host&actor_id=0&key_id=0&repo_id=77179634&response-

content-disposition=attachment%3B%20filename%3Dtrident-installer-

22.01.0.tar.gz&response-content-type=application%2Foctet-stream

Resolving github-releases.githubusercontent.com (github-

releases.githubusercontent.com)... 185.199.108.154, 185.199.109.154,

185.199.110.154, ...

Connecting to github-releases.githubusercontent.com (github-

releases.githubusercontent.com)|185.199.108.154|:443... connected.

HTTP request sent, awaiting response... 200 OK

Length: 38349341 (37M) [application/octet-stream]

Saving to: ‘trident-installer-22.01.0.tar.gz’

100%[===

===>] 38,349,341 88.5MB/s

in 0.4s

2021-05-06 15:17:30 (88.5 MB/s) - ‘trident-installer-22.01.0.tar.gz’

2

saved [38349341/38349341]

2. Extract the Trident install from the downloaded bundle.

[netapp-user@rhel7 ~]$ tar -xzf trident-installer-22.01.0.tar.gz

[netapp-user@rhel7 ~]$ cd trident-installer/

[netapp-user@rhel7 trident-installer]$

Install the Trident Operator with Helm

1. First set the location of the user cluster’s kubeconfig file as an environment variable so that you don’t

have to reference it, because Trident has no option to pass this file.

[netapp-user@rhel7 trident-installer]$ export KUBECONFIG=~/ocp-

install/auth/kubeconfig

2. Run the Helm command to install the Trident operator from the tarball in the helm directory while creating

the trident namespace in your user cluster.

3

[netapp-user@rhel7 trident-installer]$ helm install trident

helm/trident-operator-22.01.0.tgz --create-namespace --namespace trident

NAME: trident

LAST DEPLOYED: Fri May 7 12:54:25 2021

NAMESPACE: trident

STATUS: deployed

REVISION: 1

TEST SUITE: None

NOTES:

Thank you for installing trident-operator, which will deploy and manage

NetApp's Trident CSI

storage provisioner for Kubernetes.

Your release is named 'trident' and is installed into the 'trident'

namespace.

Please note that there must be only one instance of Trident (and

trident-operator) in a Kubernetes cluster.

To configure Trident to manage storage resources, you will need a copy

of tridentctl, which is

available in pre-packaged Trident releases. You may find all Trident

releases and source code

online at https://github.com/NetApp/trident.

To learn more about the release, try:

 $ helm status trident

 $ helm get all trident

3. You can verify that Trident is successfully installed by checking the pods that are running in the namespace

or by using the tridentctl binary to check the installed version.

4

[netapp-user@rhel7 trident-installer]$ oc get pods -n trident

NAME READY STATUS RESTARTS AGE

trident-csi-5z45l 1/2 Running 2 30s

trident-csi-696b685cf8-htdb2 6/6 Running 0 30s

trident-csi-b74p2 2/2 Running 0 30s

trident-csi-lrw4n 2/2 Running 0 30s

trident-operator-7c748d957-gr2gw 1/1 Running 0 36s

[netapp-user@rhel7 trident-installer]$./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 22.01.0 | 22.01.0 |

+----------------+----------------+

In some cases, customer environments might require the customization of the Trident

deployment. In these cases, it is also possible to manually install the Trident operator and

update the included manifests to customize the deployment.

Manually install the Trident Operator

1. First, set the location of the user cluster’s kubeconfig file as an environment variable so that you don’t

have to reference it, because Trident has no option to pass this file.

[netapp-user@rhel7 trident-installer]$ export KUBECONFIG=~/ocp-

install/auth/kubeconfig

2. The trident-installer directory contains manifests for defining all the required resources. Using the

appropriate manifests, create the TridentOrchestrator custom resource definition.

[netapp-user@rhel7 trident-installer]$ oc create -f

deploy/crds/trident.netapp.io_tridentorchestrators_crd_post1.16.yaml

customresourcedefinition.apiextensions.k8s.io/tridentorchestrators.tride

nt.netapp.io created

3. If one does not exist, create a Trident namespace in your cluster using the provided manifest.

[netapp-user@rhel7 trident-installer]$ oc apply -f deploy/namespace.yaml

namespace/trident created

4. Create the resources required for the Trident operator deployment, such as a ServiceAccount for the

operator, a ClusterRole and ClusterRoleBinding to the ServiceAccount, a dedicated

5

PodSecurityPolicy, or the operator itself.

[netapp-user@rhel7 trident-installer]$ oc create -f deploy/bundle.yaml

serviceaccount/trident-operator created

clusterrole.rbac.authorization.k8s.io/trident-operator created

clusterrolebinding.rbac.authorization.k8s.io/trident-operator created

deployment.apps/trident-operator created

podsecuritypolicy.policy/tridentoperatorpods created

5. You can check the status of the operator after it’s deployed with the following commands:

[netapp-user@rhel7 trident-installer]$ oc get deployment -n trident

NAME READY UP-TO-DATE AVAILABLE AGE

trident-operator 1/1 1 1 23s

[netapp-user@rhel7 trident-installer]$ oc get pods -n trident

NAME READY STATUS RESTARTS AGE

trident-operator-66f48895cc-lzczk 1/1 Running 0 41s

6. With the operator deployed, we can now use it to install Trident. This requires creating a

TridentOrchestrator.

[netapp-user@rhel7 trident-installer]$ oc create -f

deploy/crds/tridentorchestrator_cr.yaml

tridentorchestrator.trident.netapp.io/trident created

[netapp-user@rhel7 trident-installer]$ oc describe torc trident

Name: trident

Namespace:

Labels: <none>

Annotations: <none>

API Version: trident.netapp.io/v1

Kind: TridentOrchestrator

Metadata:

 Creation Timestamp: 2021-05-07T17:00:28Z

 Generation: 1

 Managed Fields:

 API Version: trident.netapp.io/v1

 Fields Type: FieldsV1

 fieldsV1:

 f:spec:

 .:

 f:debug:

 f:namespace:

 Manager: kubectl-create

 Operation: Update

6

 Time: 2021-05-07T17:00:28Z

 API Version: trident.netapp.io/v1

 Fields Type: FieldsV1

 fieldsV1:

 f:status:

 .:

 f:currentInstallationParams:

 .:

 f:IPv6:

 f:autosupportHostname:

 f:autosupportImage:

 f:autosupportProxy:

 f:autosupportSerialNumber:

 f:debug:

 f:enableNodePrep:

 f:imagePullSecrets:

 f:imageRegistry:

 f:k8sTimeout:

 f:kubeletDir:

 f:logFormat:

 f:silenceAutosupport:

 f:tridentImage:

 f:message:

 f:namespace:

 f:status:

 f:version:

 Manager: trident-operator

 Operation: Update

 Time: 2021-05-07T17:00:28Z

 Resource Version: 931421

 Self Link:

/apis/trident.netapp.io/v1/tridentorchestrators/trident

 UID: 8a26a7a6-dde8-4d55-9b66-a7126754d81f

Spec:

 Debug: true

 Namespace: trident

Status:

 Current Installation Params:

 IPv6: false

 Autosupport Hostname:

 Autosupport Image: netapp/trident-autosupport:21.01

 Autosupport Proxy:

 Autosupport Serial Number:

 Debug: true

 Enable Node Prep: false

 Image Pull Secrets:

7

 Image Registry:

 k8sTimeout: 30

 Kubelet Dir: /var/lib/kubelet

 Log Format: text

 Silence Autosupport: false

 Trident Image: netapp/trident:22.01.0

 Message: Trident installed

 Namespace: trident

 Status: Installed

 Version: v22.01.0

Events:

 Type Reason Age From Message

 ---- ------ ---- ---- -------

 Normal Installing 80s trident-operator.netapp.io Installing

Trident

 Normal Installed 68s trident-operator.netapp.io Trident

installed

7. You can verify that Trident is successfully installed by checking the pods that are running in the namespace

or by using the tridentctl binary to check the installed version.

[netapp-user@rhel7 trident-installer]$ oc get pods -n trident

NAME READY STATUS RESTARTS AGE

trident-csi-bb64c6cb4-lmd6h 6/6 Running 0 82s

trident-csi-gn59q 2/2 Running 0 82s

trident-csi-m4szj 2/2 Running 0 82s

trident-csi-sb9k9 2/2 Running 0 82s

trident-operator-66f48895cc-lzczk 1/1 Running 0 2m39s

[netapp-user@rhel7 trident-installer]$./tridentctl -n trident version

+----------------+----------------+

| SERVER VERSION | CLIENT VERSION |

+----------------+----------------+

| 22.01.0 | 22.01.0 |

+----------------+----------------+

Prepare worker nodes for storage

NFS

Most Kubernetes distributions come with the packages and utilities to mount NFS backends installed by

default, including Red Hat OpenShift.

However, for NFSv3, there is no mechanism to negotiate concurrency between the client and the server.

Hence the maximum number of client-side sunrpc slot table entries must be manually synced with supported

8

value on the server to ensure the best performance for the NFS connection without the server having to

decrease the window size of the connection.

For ONTAP, the supported maximum number of sunrpc slot table entries is 128 i.e. ONTAP can serve 128

concurrent NFS requests at a time. However, by default, Red Hat CoreOS/Red Hat Enterprise Linux has

maximum of 65,536 sunrpc slot table entries per connection. We need to set this value to 128 and this can be

done using Machine Config Operator (MCO) in OpenShift.

To modify the maximum sunrpc slot table entries in OpenShift worker nodes, complete the following steps:

1. Log into the OCP web console and navigate to Compute > Machine Configs. Click Create Machine Config.

Copy and paste the YAML file and click Create.

apiVersion: machineconfiguration.openshift.io/v1

kind: MachineConfig

metadata:

 name: 98-worker-nfs-rpc-slot-tables

 labels:

 machineconfiguration.openshift.io/role: worker

spec:

 config:

 ignition:

 version: 3.2.0

 storage:

 files:

 - contents:

 source: data:text/plain;charset=utf-

8;base64,b3B0aW9ucyBzdW5ycGMgdGNwX21heF9zbG90X3RhYmxlX2VudHJpZXM9MTI4Cg=

=

 filesystem: root

 mode: 420

 path: /etc/modprobe.d/sunrpc.conf

2. After the MCO is created, the configuration needs to be applied on all worker nodes and rebooted one by

one. The whole process takes approximately 20 to 30 minutes. Verify whether the machine config is

applied by using oc get mcp and make sure that the machine config pool for workers is updated.

[netapp-user@rhel7 openshift-deploy]$ oc get mcp

NAME CONFIG UPDATED UPDATING

DEGRADED

master rendered-master-a520ae930e1d135e0dee7168 True False

False

worker rendered-worker-de321b36eeba62df41feb7bc True False

False

9

iSCSI

To prepare worker nodes to allow for the mapping of block storage volumes through the iSCSI protocol, you

must install the necessary packages to support that functionality.

In Red Hat OpenShift, this is handled by applying an MCO (Machine Config Operator) to your cluster after it is

deployed.

To configure the worker nodes to run iSCSI services, complete the following steps:

1. Log into the OCP web console and navigate to Compute > Machine Configs. Click Create Machine Config.

Copy and paste the YAML file and click Create.

When not using multipathing:

apiVersion: machineconfiguration.openshift.io/v1

kind: MachineConfig

metadata:

 labels:

 machineconfiguration.openshift.io/role: worker

 name: 99-worker-element-iscsi

spec:

 config:

 ignition:

 version: 3.2.0

 systemd:

 units:

 - name: iscsid.service

 enabled: true

 state: started

 osImageURL: ""

When using multipathing:

10

apiVersion: machineconfiguration.openshift.io/v1

kind: MachineConfig

metadata:

 name: 99-worker-ontap-iscsi

 labels:

 machineconfiguration.openshift.io/role: worker

spec:

 config:

 ignition:

 version: 3.2.0

 storage:

 files:

 - contents:

 source: data:text/plain;charset=utf-

8;base64,ZGVmYXVsdHMgewogICAgICAgIHVzZXJfZnJpZW5kbHlfbmFtZXMgbm8KICAgICA

gICBmaW5kX211bHRpcGF0aHMgbm8KfQoKYmxhY2tsaXN0X2V4Y2VwdGlvbnMgewogICAgICA

gIHByb3BlcnR5ICIoU0NTSV9JREVOVF98SURfV1dOKSIKfQoKYmxhY2tsaXN0IHsKfQoK

 verification: {}

 filesystem: root

 mode: 400

 path: /etc/multipath.conf

 systemd:

 units:

 - name: iscsid.service

 enabled: true

 state: started

 - name: multipathd.service

 enabled: true

 state: started

 osImageURL: ""

2. After the configuration is created, it takes approximately 20 to 30 minutes to apply the configuration to the

worker nodes and reload them. Verify whether the machine config is applied by using oc get mcp and

make sure that the machine config pool for workers is updated. You can also log into the worker nodes to

confirm that the iscsid service is running (and the multipathd service is running if using multipathing).

11

[netapp-user@rhel7 openshift-deploy]$ oc get mcp

NAME CONFIG UPDATED UPDATING

DEGRADED

master rendered-master-a520ae930e1d135e0dee7168 True False

False

worker rendered-worker-de321b36eeba62df41feb7bc True False

False

[netapp-user@rhel7 openshift-deploy]$ ssh core@10.61.181.22 sudo

systemctl status iscsid

● iscsid.service - Open-iSCSI

 Loaded: loaded (/usr/lib/systemd/system/iscsid.service; enabled;

vendor preset: disabled)

 Active: active (running) since Tue 2021-05-26 13:36:22 UTC; 3 min ago

 Docs: man:iscsid(8)

 man:iscsiadm(8)

 Main PID: 1242 (iscsid)

 Status: "Ready to process requests"

 Tasks: 1

 Memory: 4.9M

 CPU: 9ms

 CGroup: /system.slice/iscsid.service

 └─1242 /usr/sbin/iscsid -f

[netapp-user@rhel7 openshift-deploy]$ ssh core@10.61.181.22 sudo

systemctl status multipathd

 ● multipathd.service - Device-Mapper Multipath Device Controller

 Loaded: loaded (/usr/lib/systemd/system/multipathd.service; enabled;

vendor preset: enabled)

 Active: active (running) since Tue 2021-05-26 13:36:22 UTC; 3 min ago

 Main PID: 918 (multipathd)

 Status: "up"

 Tasks: 7

 Memory: 13.7M

 CPU: 57ms

 CGroup: /system.slice/multipathd.service

 └─918 /sbin/multipathd -d -s

It is also possible to confirm that the MachineConfig has been successfully applied and

services have been started as expected by running the oc debug command with the

appropriate flags.

12

Create storage-system backends

After completing the Astra Trident Operator install, you must configure the backend for the specific NetApp

storage platform you are using. Follow the links below in order to continue the setup and configuration of Astra

Trident.

• NetApp ONTAP NFS

• NetApp ONTAP iSCSI

• NetApp Element iSCSI

NetApp ONTAP NFS configuration

To enable Trident integration with the NetApp ONTAP storage system, you must create a

backend that enables communication with the storage system.

1. There are sample backend files available in the downloaded installation archive in the sample-input

folder hierarchy. For NetApp ONTAP systems serving NFS, copy the backend-ontap-nas.json file to

your working directory and edit the file.

[netapp-user@rhel7 trident-installer]$ cp sample-input/backends-

samples/ontap-nas/backend-ontap-nas.json ./

[netapp-user@rhel7 trident-installer]$ vi backend-ontap-nas.json

2. Edit the backendName, managementLIF, dataLIF, svm, username, and password values in this file.

{

 "version": 1,

 "storageDriverName": "ontap-nas",

 "backendName": "ontap-nas+10.61.181.221",

 "managementLIF": "172.21.224.201",

 "dataLIF": "10.61.181.221",

 "svm": "trident_svm",

 "username": "cluster-admin",

 "password": "password"

}

It is a best practice to define the custom backendName value as a combination of the

storageDriverName and the dataLIF that is serving NFS for easy identification.

3. With this backend file in place, run the following command to create your first backend.

13

[netapp-user@rhel7 trident-installer]$./tridentctl -n trident create

backend -f backend-ontap-nas.json

+-------------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+----------------

+--------------------------------------+--------+---------+

| ontap-nas+10.61.181.221 | ontap-nas | be7a619d-c81d-445c-b80c-

5c87a73c5b1e | online | 0 |

+-------------------------+----------------

+--------------------------------------+--------+---------+

4. With the backend created, you must next create a storage class. Just as with the backend, there is a

sample storage class file that can be edited for the environment available in the sample-inputs folder. Copy

it to the working directory and make necessary edits to reflect the backend created.

[netapp-user@rhel7 trident-installer]$ cp sample-input/storage-class-

samples/storage-class-csi.yaml.templ ./storage-class-basic.yaml

[netapp-user@rhel7 trident-installer]$ vi storage-class-basic.yaml

5. The only edit that must be made to this file is to define the backendType value to the name of the storage

driver from the newly created backend. Also note the name-field value, which must be referenced in a later

step.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: basic-csi

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-nas"

There is an optional field called fsType that is defined in this file. This line can be deleted in

NFS backends.

6. Run the oc command to create the storage class.

[netapp-user@rhel7 trident-installer]$ oc create -f storage-class-

basic.yaml

storageclass.storage.k8s.io/basic-csi created

14

7. With the storage class created, you must then create the first persistent volume claim (PVC). There is a

sample pvc-basic.yaml file that can be used to perform this action located in sample-inputs as well.

[netapp-user@rhel7 trident-installer]$ cp sample-input/pvc-samples/pvc-

basic.yaml ./

[netapp-user@rhel7 trident-installer]$ vi pvc-basic.yaml

8. The only edit that must be made to this file is ensuring that the storageClassName field matches the one

just created. The PVC definition can be further customized as required by the workload to be provisioned.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: basic

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: basic-csi

9. Create the PVC by issuing the oc command. Creation can take some time depending on the size of the

backing volume being created, so you can watch the process as it completes.

[netapp-user@rhel7 trident-installer]$ oc create -f pvc-basic.yaml

persistentvolumeclaim/basic created

[netapp-user@rhel7 trident-installer]$ oc get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

basic Bound pvc-b4370d37-0fa4-4c17-bd86-94f96c94b42d 1Gi

RWO basic-csi 7s

NetApp ONTAP iSCSI configuration

To enable Trident integration with the NetApp ONTAP storage system, you must create a

backend that enables communication with the storage system.

1. There are sample backend files available in the downloaded installation archive in the sample-input

folder hierarchy. For NetApp ONTAP systems serving iSCSI, copy the backend-ontap-san.json file to

your working directory and edit the file.

15

[netapp-user@rhel7 trident-installer]$ cp sample-input/backends-

samples/ontap-san/backend-ontap-san.json ./

[netapp-user@rhel7 trident-installer]$ vi backend-ontap-san.json

2. Edit the managementLIF, dataLIF, svm, username, and password values in this file.

{

 "version": 1,

 "storageDriverName": "ontap-san",

 "managementLIF": "172.21.224.201",

 "dataLIF": "10.61.181.240",

 "svm": "trident_svm",

 "username": "admin",

 "password": "password"

}

3. With this backend file in place, run the following command to create your first backend.

[netapp-user@rhel7 trident-installer]$./tridentctl -n trident create

backend -f backend-ontap-san.json

+------------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+------------------------+----------------

+--------------------------------------+--------+---------+

| ontapsan_10.61.181.241 | ontap-san | 6788533c-7fea-4a35-b797-

fb9bb3322b91 | online | 0 |

+------------------------+----------------

+--------------------------------------+--------+---------+

4. With the backend created, you must next create a storage class. Just as with the backend, there is a

sample storage class file that can be edited for the environment available in the sample-inputs folder. Copy

it to the working directory and make necessary edits to reflect the backend created.

[netapp-user@rhel7 trident-installer]$ cp sample-input/storage-class-

samples/storage-class-csi.yaml.templ ./storage-class-basic.yaml

[netapp-user@rhel7 trident-installer]$ vi storage-class-basic.yaml

5. The only edit that must be made to this file is to define the backendType value to the name of the storage

driver from the newly created backend. Also note the name-field value, which must be referenced in a later

step.

16

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: basic-csi

provisioner: csi.trident.netapp.io

parameters:

 backendType: "ontap-san"

There is an optional field called fsType that is defined in this file. In iSCSI backends, this

value can be set to a specific Linux filesystem type (XFS, ext4, etc) or can be deleted to

allow OpenShift to decide what filesystem to use.

6. Run the oc command to create the storage class.

[netapp-user@rhel7 trident-installer]$ oc create -f storage-class-

basic.yaml

storageclass.storage.k8s.io/basic-csi created

7. With the storage class created, you must then create the first persistent volume claim (PVC). There is a

sample pvc-basic.yaml file that can be used to perform this action located in sample-inputs as well.

[netapp-user@rhel7 trident-installer]$ cp sample-input/pvc-samples/pvc-

basic.yaml ./

[netapp-user@rhel7 trident-installer]$ vi pvc-basic.yaml

8. The only edit that must be made to this file is ensuring that the storageClassName field matches the one

just created. The PVC definition can be further customized as required by the workload to be provisioned.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: basic

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: basic-csi

9. Create the PVC by issuing the oc command. Creation can take some time depending on the size of the

backing volume being created, so you can watch the process as it completes.

17

[netapp-user@rhel7 trident-installer]$ oc create -f pvc-basic.yaml

persistentvolumeclaim/basic created

[netapp-user@rhel7 trident-installer]$ oc get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

basic Bound pvc-7ceac1ba-0189-43c7-8f98-094719f7956c 1Gi

RWO basic-csi 3s

NetApp Element iSCSI configuration

To enable Trident integration with the NetApp Element storage system, you must create a

backend that enables communication with the storage system using the iSCSI protocol.

1. There are sample backend files available in the downloaded installation archive in the sample-input

folder hierarchy. For NetApp Element systems serving iSCSI, copy the backend-solidfire.json file to

your working directory and edit the file.

[netapp-user@rhel7 trident-installer]$ cp sample-input/backends-

samples/solidfire/backend-solidfire.json ./

[netapp-user@rhel7 trident-installer]$ vi ./backend-solidfire.json

a. Edit the user, password, and MVIP value on the EndPoint line.

b. Edit the SVIP value.

 {

 "version": 1,

 "storageDriverName": "solidfire-san",

 "Endpoint": "https://trident:password@172.21.224.150/json-

rpc/8.0",

 "SVIP": "10.61.180.200:3260",

 "TenantName": "trident",

 "Types": [{"Type": "Bronze", "Qos": {"minIOPS": 1000, "maxIOPS":

2000, "burstIOPS": 4000}},

 {"Type": "Silver", "Qos": {"minIOPS": 4000, "maxIOPS":

6000, "burstIOPS": 8000}},

 {"Type": "Gold", "Qos": {"minIOPS": 6000, "maxIOPS":

8000, "burstIOPS": 10000}}]

}

2. With this back-end file in place, run the following command to create your first backend.

18

[netapp-user@rhel7 trident-installer]$./tridentctl -n trident create

backend -f backend-solidfire.json

+-------------------------+----------------

+--------------------------------------+--------+---------+

| NAME | STORAGE DRIVER | UUID

| STATE | VOLUMES |

+-------------------------+----------------

+--------------------------------------+--------+---------+

| solidfire_10.61.180.200 | solidfire-san | b90783ee-e0c9-49af-8d26-

3ea87ce2efdf | online | 0 |

+-------------------------+----------------

+--------------------------------------+--------+---------+

3. With the backend created, you must next create a storage class. Just as with the backend, there is a

sample storage class file that can be edited for the environment available in the sample-inputs folder. Copy

it to the working directory and make necessary edits to reflect the backend created.

[netapp-user@rhel7 trident-installer]$ cp sample-input/storage-class-

samples/storage-class-csi.yaml.templ ./storage-class-basic.yaml

[netapp-user@rhel7 trident-installer]$ vi storage-class-basic.yaml

4. The only edit that must be made to this file is to define the backendType value to the name of the storage

driver from the newly created backend. Also note the name-field value, which must be referenced in a later

step.

apiVersion: storage.k8s.io/v1

kind: StorageClass

metadata:

 name: basic-csi

provisioner: csi.trident.netapp.io

parameters:

 backendType: "solidfire-san"

There is an optional field called fsType that is defined in this file. In iSCSI backends, this

value can be set to a specific Linux filesystem type (XFS, ext4, and so on), or it can be

deleted to allow OpenShift to decide what filesystem to use.

5. Run the oc command to create the storage class.

[netapp-user@rhel7 trident-installer]$ oc create -f storage-class-

basic.yaml

storageclass.storage.k8s.io/basic-csi created

19

6. With the storage class created, you must then create the first persistent volume claim (PVC). There is a

sample pvc-basic.yaml file that can be used to perform this action located in sample-inputs as well.

[netapp-user@rhel7 trident-installer]$ cp sample-input/pvc-samples/pvc-

basic.yaml ./

[netapp-user@rhel7 trident-installer]$ vi pvc-basic.yaml

7. The only edit that must be made to this file is ensuring that the storageClassName field matches the one

just created. The PVC definition can be further customized as required by the workload to be provisioned.

kind: PersistentVolumeClaim

apiVersion: v1

metadata:

 name: basic

spec:

 accessModes:

 - ReadWriteOnce

 resources:

 requests:

 storage: 1Gi

 storageClassName: basic-csi

8. Create the PVC by issuing the oc command. Creation can take some time depending on the size of the

backing volume being created, so you can watch the process as it completes.

[netapp-user@rhel7 trident-installer]$ oc create -f pvc-basic.yaml

persistentvolumeclaim/basic created

[netapp-user@rhel7 trident-installer]$ oc get pvc

NAME STATUS VOLUME CAPACITY

ACCESS MODES STORAGECLASS AGE

basic Bound pvc-3445b5cc-df24-453d-a1e6-b484e874349d 1Gi

RWO basic-csi 5s

20

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

21

http://www.netapp.com/TM

	NetApp Astra Trident Overview : NetApp Solutions
	Table of Contents
	Astra Trident Overview
	Download Astra Trident
	Install the Trident Operator with Helm
	Manually install the Trident Operator
	Prepare worker nodes for storage
	Create storage-system backends
	NetApp ONTAP NFS configuration
	NetApp ONTAP iSCSI configuration
	NetApp Element iSCSI configuration

