
Deploying the Application
NetApp Solutions
NetApp
May 17, 2024

This PDF was generated from https://docs.netapp.com/us-en/netapp-
solutions/ai/mlrun_get_code_from_github.html on May 17, 2024. Always check docs.netapp.com for the
latest.



Table of Contents

Deploying the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Get Code from GitHub . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Configure Working Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1

Deploy Grafana Dashboard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13



Deploying the Application

The following sections describe how to install and deploy the application.

Get Code from GitHub

Now that the NetApp Cloud Volume or NetApp Trident volume is available to the Iguazio

cluster and the developer environment, you can start reviewing the application.

Users have their own workspace (directory). On every notebook, the path to the user directory is /User. The

Iguazio platform manages the directory. If you follow the instructions above, the NetApp Cloud volume is

available in the /netapp directory.

Get the code from GitHub using a Jupyter terminal.

At the Jupyter terminal prompt, clone the project.

cd /User

git clone .

You should now see the netops- netapp folder on the file tree in Jupyter workspace.

Configure Working Environment

Copy the Notebook set_env-Example.ipynb as set_env.ipynb. Open and edit

set_env.ipynb. This notebook sets variables for credentials, file locations, and

execution drivers.

1



If you follow the instructions above, the following steps are the only changes to make:

1. Obtain this value from the Iguazio services dashboard: docker_registry

Example: docker-registry.default-tenant.app.clusterq.iguaziodev.com:80

2. Change admin to your Iguazio username:

IGZ_CONTAINER_PATH = '/users/admin'

The following are the ONTAP system connection details. Include the volume name that was generated

when Trident was installed. The following setting is for an on-premises ONTAP cluster:

ontapClusterMgmtHostname = '0.0.0.0'

ontapClusterAdminUsername = 'USER'

ontapClusterAdminPassword = 'PASSWORD'

sourceVolumeName = 'SOURCE VOLUME'

The following setting is for Cloud Volumes ONTAP:

MANAGER=ontapClusterMgmtHostname

svm='svm'

email='email'

password=ontapClusterAdminPassword

weid="weid"

volume=sourceVolumeName

Create Base Docker Images

Everything you need to build an ML pipeline is included in the Iguazio platform. The developer can define the

specifications of the Docker images required to run the pipeline and execute the image creation from Jupyter

Notebook. Open the notebook create- images.ipynb and Run All Cells.

This notebook creates two images that we use in the pipeline.

• iguazio/netapp. Used to handle ML tasks.

• netapp/pipeline. Contains utilities to handle NetApp Snapshot copies.

2



Review Individual Jupyter Notebooks

The following table lists the libraries and frameworks we used to build this task. All these components have

been fully integrated with Iguazio’s role- based access and security controls.

Libraries/Framework Description

MLRun An managed by Iguazio to enable the assembly,

execution, and monitoring of an ML/AI pipeline.

Nuclio A serverless functions framework integrated with

Iguazio. Also available as an open-source project

managed by Iguazio.

Kubeflow A Kubernetes-based framework to deploy the pipeline.

This is also an open-source project to which Iguazio

contributes. It is integrated with Iguazio for added

security and integration with the rest of the

infrastructure.

Docker A Docker registry run as a service in the Iguazio

platform. You can also change this to connect to your

registry.

NetApp Cloud Volumes Cloud Volumes running on AWS give us access to

large amounts of data and the ability to take Snapshot

copies to version the datasets used for training.

Trident Trident is an open-source project managed by

NetApp. It facilitates the integration with storage and

compute resources in Kubernetes.

We used several notebooks to construct the ML pipeline. Each notebook can be tested individually before

being brought together in the pipeline. We cover each notebook individually following the deployment flow of

this demonstration application.

The desired result is a pipeline that trains a model based on a Snapshot copy of the data and deploys the

model for inference. A block diagram of a completed MLRun pipeline is shown in the following image.

3



Deploy Data Generation Function

This section describes how we used Nuclio serverless functions to generate network device data. The use

case is adapted from an Iguazio client that deployed the pipeline and used Iguazio services to monitor and

predict network device failures.

We simulated data coming from network devices. Executing the Jupyter notebook data- generator.ipynb

creates a serverless function that runs every 10 minutes and generates a Parquet file with new data. To deploy

the function, run all the cells in this notebook. See the Nuclio website to review any unfamiliar components in

this notebook.

A cell with the following comment is ignored when generating the function. Every cell in the notebook is

assumed to be part of the function. Import the Nuclio module to enable %nuclio magic.

# nuclio: ignore

import nuclio

In the spec for the function, we defined the environment in which the function executes, how it is triggered, and

the resources it consumes.

4

https://nuclio.io/


spec = nuclio.ConfigSpec(config={"spec.triggers.inference.kind":"cron",

 

"spec.triggers.inference.attributes.interval" :"10m",

                                "spec.readinessTimeoutSeconds" : 60,

                                "spec.minReplicas" : 1},……

The init_context function is invoked by the Nuclio framework upon initialization of the function.

def init_context(context):

    ….

Any code not in a function is invoked when the function initializes. When you invoke it, a handler function is

executed. You can change the name of the handler and specify it in the function spec.

def handler(context, event):

            …

You can test the function from the notebook prior to deployment.

%%time

# nuclio: ignore

init_context(context)

event = nuclio.Event(body='')

output = handler(context, event)

output

The function can be deployed from the notebook or it can be deployed from a CI/CD pipeline (adapting this

code).

addr = nuclio.deploy_file(name='generator',project='netops',spec=spec,

tag='v1.1')

Pipeline Notebooks

These notebooks are not meant to be executed individually for this setup. This is just a review of each

notebook. We invoked them as part of the pipeline. To execute them individually, review the MLRun

documentation to execute them as Kubernetes jobs.

snap_cv.ipynb

This notebook handles the Cloud Volume Snapshot copies at the beginning of the pipeline. It passes the name

of the volume to the pipeline context. This notebook invokes a shell script to handle the Snapshot copy. While

running in the pipeline, the execution context contains variables to help locate all files needed for execution.

5



While writing this code, the developer does not have to worry about the file location in the container that

executes it. As described later, this application is deployed with all its dependencies, and it is the definition of

the pipeline parameters that provides the execution context.

command = os.path.join(context.get_param('APP_DIR'),"snap_cv.sh")

The created Snapshot copy location is placed in the MLRun context to be consumed by steps in the pipeline.

context.log_result('snapVolumeDetails',snap_path)

The next three notebooks are run in parallel.

data-prep.ipynb

Raw metrics must be turned into features to enable model training. This notebook reads the raw metrics from

the Snapshot directory and writes the features for model training to the NetApp volume.

When running in the context of the pipeline, the input DATA_DIR contains the Snapshot copy location.

metrics_table = os.path.join(str(mlruncontext.get_input('DATA_DIR',

os.getenv('DATA_DIR','/netpp'))),

                             mlruncontext.get_param('metrics_table',

os.getenv('metrics_table','netops_metrics_parquet')))

describe.ipynb

To visualize the incoming metrics, we deploy a pipeline step that provides plots and graphs that are available

through the Kubeflow and MLRun UIs. Each execution has its own version of this visualization tool.

ax.set_title("features correlation")

plt.savefig(os.path.join(base_path, "plots/corr.png"))

context.log_artifact(PlotArtifact("correlation",  body=plt.gcf()),

local_path="plots/corr.html")

deploy-feature-function.ipynb

We continuously monitor the metrics looking for anomalies. This notebook creates a serverless function that

generates the features need to run prediction on incoming metrics. This notebook invokes the creation of the

function. The function code is in the notebook data- prep.ipynb. Notice that we use the same notebook as

a step in the pipeline for this purpose.

training.ipynb

After we create the features, we trigger the model training. The output of this step is the model to be used for

inferencing. We also collect statistics to keep track of each execution (experiment).

6



For example, the following command enters the accuracy score into the context for that experiment. This value

is visible in Kubeflow and MLRun.

context.log_result(‘accuracy’,score)

deploy-inference-function.ipynb

The last step in the pipeline is to deploy the model as a serverless function for continuous inferencing. This

notebook invokes the creation of the serverless function defined in nuclio-inference- function.ipynb.

Review and Build Pipeline

The combination of running all the notebooks in a pipeline enables the continuous run of experiments to

reassess the accuracy of the model against new metrics. First, open the pipeline.ipynb notebook. We take

you through details that show how NetApp and Iguazio simplify the deployment of this ML pipeline.

We use MLRun to provide context and handle resource allocation to each step of the pipeline. The MLRun API

service runs in the Iguazio platform and is the point of interaction with Kubernetes resources. Each developer

cannot directly request resources; the API handles the requests and enables access controls.

# MLRun API connection definition

mlconf.dbpath = 'http://mlrun-api:8080'

The pipeline can work with NetApp Cloud Volumes and on-premises volumes. We built this demonstration to

use Cloud Volumes, but you can see in the code the option to run on-premises.

7



# Initialize the NetApp snap fucntion once for all functions in a notebook

if [ NETAPP_CLOUD_VOLUME ]:

    snapfn =

code_to_function('snap',project='NetApp',kind='job',filename="snap_cv.ipyn

b").apply(mount_v3io())

    snap_params = {

    "metrics_table" : metrics_table,

    "NETAPP_MOUNT_PATH" : NETAPP_MOUNT_PATH,

    'MANAGER' : MANAGER,

    'svm' : svm,

    'email': email,

    'password': password ,

    'weid': weid,

    'volume': volume,

    "APP_DIR" : APP_DIR

       }

else:

    snapfn =

code_to_function('snap',project='NetApp',kind='job',filename="snapshot.ipy

nb").apply(mount_v3io())

….

snapfn.spec.image = docker_registry + '/netapp/pipeline:latest'

snapfn.spec.volume_mounts =

[snapfn.spec.volume_mounts[0],netapp_volume_mounts]

      snapfn.spec.volumes = [ snapfn.spec.volumes[0],netapp_volumes]

The first action needed to turn a Jupyter notebook into a Kubeflow step is to turn the code into a function. A

function has all the specifications required to run that notebook. As you scroll down the notebook, you can see

that we define a function for every step in the pipeline.

Part of the Notebook Description

<code_to_function>

(part of the MLRun module)

Name of the function:

Project name. used to organize all project artifacts.

This is visible in the MLRun UI.

Kind. In this case, a Kubernetes job. This could be

Dask, mpi, sparkk8s, and more. See the MLRun

documentation for more details.

File. The name of the notebook. This can also be a

location in Git (HTTP).

image The name of the Docker image we are using for this

step. We created this earlier with the create-

image.ipynb notebook.

volume_mounts & volumes Details to mount the NetApp Cloud Volume at run

time.

We also define parameters for the steps.

8



params={   "FEATURES_TABLE":FEATURES_TABLE,

           "SAVE_TO" : SAVE_TO,

           "metrics_table" : metrics_table,

           'FROM_TSDB': 0,

           'PREDICTIONS_TABLE': PREDICTIONS_TABLE,

           'TRAIN_ON_LAST': '1d',

           'TRAIN_SIZE':0.7,

           'NUMBER_OF_SHARDS' : 4,

           'MODEL_FILENAME' : 'netops.v3.model.pickle',

           'APP_DIR' : APP_DIR,

           'FUNCTION_NAME' : 'netops-inference',

           'PROJECT_NAME' : 'netops',

           'NETAPP_SIM' : NETAPP_SIM,

           'NETAPP_MOUNT_PATH': NETAPP_MOUNT_PATH,

           'NETAPP_PVC_CLAIM' : NETAPP_PVC_CLAIM,

           'IGZ_CONTAINER_PATH' : IGZ_CONTAINER_PATH,

           'IGZ_MOUNT_PATH' : IGZ_MOUNT_PATH

            }

After you have the function definition for all steps, you can construct the pipeline. We use the kfp module to

make this definition. The difference between using MLRun and building on your own is the simplification and

shortening of the coding.

The functions we defined are turned into step components using the as_step function of MLRun.

Snapshot Step Definition

Initiate a Snapshot function, output, and mount v3io as source:

snap = snapfn.as_step(NewTask(handler='handler',params=snap_params),

name='NetApp_Cloud_Volume_Snapshot',outputs=['snapVolumeDetails','training

_parquet_file']).apply(mount_v3io())

Parameters Details

NewTask NewTask is the definition of the function run.

(MLRun module) Handler. Name of the Python function to invoke. We

used the name handler in the notebook, but it is not

required.

params. The parameters we passed to the execution.

Inside our code, we use context.get_param

(‘PARAMETER’) to get the values.

9



Parameters Details

as_step Name. Name of the Kubeflow pipeline step.

outputs. These are the values that the step adds to

the dictionary on completion. Take a look at the

snap_cv.ipynb notebook.

mount_v3io(). This configures the step to mount /User

for the user executing the pipeline.

prep = data_prep.as_step(name='data-prep',

handler='handler',params=params,

                          inputs = {'DATA_DIR':

snap.outputs['snapVolumeDetails']} ,

 

out_path=artifacts_path).apply(mount_v3io()).after(snap)

Parameters Details

inputs You can pass to a step the outputs of a previous step.

In this case, snap.outputs['snapVolumeDetails'] is the

name of the Snapshot copy we created on the snap

step.

out_path A location to place artifacts generating using the

MLRun module log_artifacts.

You can run pipeline.ipynb from top to bottom. You can then go to the Pipelines tab from the Iguazio

dashboard to monitor progress as seen in the Iguazio dashboard Pipelines tab.

10



Because we logged the accuracy of training step in every run, we have a record of accuracy for each

experiment, as seen in the record of training accuracy.

If you select the Snapshot step, you can see the name of the Snapshot copy that was used to run this

experiment.

11



The described step has visual artifacts to explore the metrics we used. You can expand to view the full plot as

seen in the following image.

The MLRun API database also tracks inputs, outputs, and artifacts for each run organized by project. An

example of inputs, outputs, and artifacts for each run can be seen in the following image.

12



For each job, we store additional details.

There is more information about MLRun than we can cover in this document. Al artifacts, including the

definition of the steps and functions, can be saved to the API database, versioned, and invoked individually or

as a full project. Projects can also be saved and pushed to Git for later use. We encourage you to learn more

at the MLRun GitHub site.

Deploy Grafana Dashboard

After everything is deployed, we run inferences on new data. The models predict failure

on network device equipment. The results of the prediction are stored in an Iguazio

TimeSeries table. You can visualize the results with Grafana in the platform integrated

with Iguazio’s security and data access policy.

You can deploy the dashboard by importing the provided JSON file into the Grafana interfaces in the cluster.

13

https://github.com/mlrun/mlrun


1. To verify that the Grafana service is running, look under Services.

2. If it is not present, deploy an instance from the Services section:

a. Click New Service.

b. Select Grafana from the list.

c. Accept the defaults.

d. Click Next Step.

e. Enter your user ID.

f. Click Save Service.

g. Click Apply Changes at the top.

3. To deploy the dashboard, download the file NetopsPredictions-Dashboard.json through the Jupyter

interface.

14



4. Open Grafana from the Services section and import the dashboard.

5. Click Upload *.json File and select the file that you downloaded earlier (NetopsPredictions-

Dashboard.json). The dashboard displays after the upload is completed.

15



Deploy Cleanup Function

When you generate a lot of data, it is important to keep things clean and organized. To do so, deploy the

cleanup function with the cleanup.ipynb notebook.

Benefits

NetApp and Iguazio speed up and simplify the deployment of AI and ML applications by building in essential

frameworks, such as Kubeflow, Apache Spark, and TensorFlow, along with orchestration tools like Docker and

Kubernetes. By unifying the end-to-end data pipeline, NetApp and Iguazio reduce the latency and complexity

inherent in many advanced computing workloads, effectively bridging the gap between development and

operations. Data scientists can run queries on large datasets and securely share data and algorithmic models

with authorized users during the training phase. After the containerized models are ready for production, you

can easily move them from development environments to operational environments.

16



Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by

copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including

photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission

of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED

WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY

AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL

NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR

CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE

GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT

(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS

SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp

assumes no responsibility or liability arising from the use of products described herein, except as expressly

agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any

patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or

pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set

forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013

(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)

and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this

Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-

exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in

connection with and in support of the U.S. Government contract under which the Data was delivered. Except

as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed

without the prior written approval of NetApp, Inc. United States Government license rights for the Department

of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.

Other company and product names may be trademarks of their respective owners.

17

http://www.netapp.com/TM

	Deploying the Application : NetApp Solutions
	Table of Contents
	Deploying the Application
	Get Code from GitHub
	Configure Working Environment
	Deploy Grafana Dashboard


