Configure Multi-tenancy on Red Hat
OpenShift with NetApp ONTAP

NetApp Solutions

NetApp
May 17, 2024

This PDF was generated from https://docs.netapp.com/us-en/netapp-solutions/containers/rh-os-
n_use_case_multitenancy_overview.html on May 17, 2024. Always check docs.netapp.com for the latest.

Table of Contents

Configure Multi-tenancy on Red Hat OpenShift with NetApp ONTAP
Configuring multitenancy on Red Hat OpenShift with NetApp
Architecture
Configuration

W = A

Configure Multi-tenancy on Red Hat OpenShift
with NetApp ONTAP

Configuring multitenancy on Red Hat OpenShift with
NetApp

Many organizations that run multiple applications or workloads on containers tend to
deploy one Red Hat OpenShift cluster per application or workload. This allows them to
implement strict isolation for the application or workload, optimize performance, and
reduce security vulnerabilities. However, deploying a separate Red Hat OpenShift cluster
for each application poses its own set of problems. It increases operational overhead
having to monitor and manage each cluster on its own, increases cost owing to dedicated
resources for different applications, and hinders efficient scalability.

To overcome these problems, one can consider running all the applications or workloads in a single Red Hat
OpenShift cluster. But in such an architecture, resource isolation and application security vulnerabilities are
one of the major challenges. Any security vulnerability in one workload could naturally spill over into another
workload, thus increasing the impact zone. In addition, any abrupt uncontrolled resource utilization by one
application can affect the performance of another application, because there is no resource allocation policy by
default.

Therefore, organizations look out for solutions that pick up the best in both worlds, for example, by allowing
them to run all their workloads in a single cluster and yet offering the benefits of a dedicated cluster for each
workload.

One such effective solution is to configure multitenancy on Red Hat OpenShift. Multitenancy is an architecture
that allows multiple tenants to coexist on the same cluster with proper isolation of resources, security, and so
on. In this context, a tenant can be viewed as a subset of the cluster resources that are configured to be used
by a particular group of users for an exclusive purpose. Configuring multitenancy on a Red Hat OpenShift
cluster provides the following advantages:

* Areduction in CapEx and OpEx by allowing cluster resources to be shared

* Lower operational and management overhead

» Securing the workloads from cross-contamination of security breaches

* Protection of workloads from unexpected performance degradation due to resource contention
For a fully realized multitenant OpenShift cluster, quotas and restrictions must be configured for cluster
resources belonging to different resource buckets: compute, storage, networking, security, and so on. Although
we cover certain aspects of all the resource buckets in this solution, we focus on best practices for isolating
and securing the data served or consumed by multiple workloads on the same Red Hat OpenShift cluster by

configuring multitenancy on storage resources that are dynamically allocated by Astra Trident backed by
NetApp ONTAP.

Architecture

Although Red Hat OpenShift and Astra Trident backed by NetApp ONTAP do not provide
isolation between workloads by default, they offer a wide range of features that can be
used to configure multitenancy. To better understand designing a multitenant solution on

a Red Hat OpenShift cluster with Astra Trident backed by NetApp ONTAP, let us consider
an example with a set of requirements and outline the configuration around it.

Let us assume that an organization runs two of its workloads on a Red Hat OpenShift cluster as part of two
projects that two different teams are working on. The data for these workloads reside on PVCs that are
dynamically provisioned by Astra Trident on a NetApp ONTAP NAS backend. The organization has a
requirement to design a multitenant solution for these two workloads and isolate the resources used for these
projects to make sure that security and performance is maintained, primarily focused on the data that serves
those applications.

The following figure depicts the multitenant solution on a Red Hat OpenShift cluster with Astra Trident backed
by NetApp ONTAP.

& RedHat
OpenShift

pod-1 pod-2 pod-3 pod-1 pod-2

pvc-1 pwc-2 pvc-3 pwe-1 pwc-2
project-1 praject-1 storageclass project-2 storageclass project-2
ontap-nas backend ontap-nas backend “

[project-1] [project-2]

TRIDENT NetApp

SVM [project-1] SWM [project-2] "

MetApp

Technology requirements

1. NetApp ONTAP storage cluster
2. Red Hat OpenShift cluster
3. Astra Trident

Red Hat OpenShift — Cluster resources

From the Red Hat OpenShift cluster point of view, the top-level resource to start with is the project. An
OpenShift project can be viewed as a cluster resource that divides the whole OpenShift cluster into multiple

virtual clusters. Therefore, isolation at project level provides a base for configuring multitenancy.

Next up is to configure RBAC in the cluster. The best practice is to have all the developers working on a single
project or workload configured into a single user group in the Identity Provider (IdP). Red Hat OpenShift allows
IdP integration and user group synchronization thus allowing the users and groups from the IdP to be imported
into the cluster. This helps the cluster administrators to segregate access of the cluster resources dedicated to
a project to a user group or groups working on that project, thereby restricting unauthorized access to any
cluster resources. To learn more about IdP integration with Red Hat OpenShift, see the documentation here.

NetApp ONTAP

It is important to isolate the shared storage serving as a persistent storage provider for a Red Hat OpenShift
cluster to make sure that the volumes created on the storage for each project appear to the hosts as if they are
created on separate storage. To do this, create as many SVMs (storage virtual machines) on NetApp ONTAP
as there are projects or workloads, and dedicate each SVM to a workload.

Astra Trident

After you have different SVMs for different projects created on NetApp ONTAP, you must map each SVM to a
different Trident backend. The backend configuration on Trident drives the allocation of persistent storage to
OpenShift cluster resources, and it requires the details of the SVM to be mapped to. This should be the
protocol driver for the backend at the minimum. Optionally, it allows you to define how the volumes are
provisioned on the storage and to set limits for the size of volumes or usage of aggregates and so on. Details
concerning the definition of the Trident backends can be found here.

Red Hat OpenShift — storage resources

After configuring the Trident backends, the next step is to configure StorageClasses. Configure as many
storage classes as there are backends, providing each storage class access to spin up volumes only on one
backend. We can map the StorageClass to a particular Trident backend by using the storagePools parameter
while defining the storage class. The details to define a storage class can be found here. Thus, there is a one-
to-one mapping from StorageClass to Trident backend which points back to one SVM. This ensures that all
storage claims via the StorageClass assigned to that project are served by the SVM dedicated to that project
only.

Because storage classes are not namespaced resources, how do we ensure that storage claims to storage
class of one project by pods in another namespace or project gets rejected? The answer is to use
ResourceQuotas. ResourceQuotas are objects that control the total usage of resources per project. It can limit
the number as well as the total amount of resources that can be consumed by objects in the project. Aimost all
the resources of a project can be limited using ResourceQuotas and using this efficiently can help
organizations cut cost and outages due to overprovisioning or overconsumption of resources. Refer to the
documentation here for more information.

For this use case, we need to limit the pods in a particular project from claiming storage from storage classes
that are not dedicated to their project. To do that, we need to limit the persistent volume claims for other
storage classes by setting <storage-class-
name>.storageclass.storage.k8s.io/persistentvolumeclaims to 0. In addition, a cluster
administrator must ensure that the developers in a project should not have access to modify the
ResourceQuotas.

Configuration

For any multitenant solution, no user can have access to more cluster resources than is

https://docs.openshift.com/container-platform/4.7/authentication/understanding-identity-provider.html
https://docs.netapp.com/us-en/trident/trident-use/backends.html
https://docs.netapp.com/us-en/trident/trident-use/manage-stor-class.html
https://docs.openshift.com/container-platform/4.7/applications/quotas/quotas-setting-per-project.html

required. So, the entire set of resources that are to be configured as part of the
multitenancy configuration is divided between cluster-admin, storage-admin, and
developers working on each project.

The following table outlines the different tasks to be performed by different users:

Role Tasks
Cluster-admin Create projects for different applications or workloads

Create ClusterRoles and RoleBindings for storage-
admin

Create Roles and RoleBindings for developers
assigning access to specific projects

[Optional] Configure projects to schedule pods on
specific nodes

Storage-admin Create SVMs on NetApp ONTAP
Create Trident backends
Create StorageClasses
Create storage ResourceQuotas

Developers Validate access to create or patch PVCs or pods in
assigned project

Validate access to create or patch PVCs or pods in
another project

Validate access to view or edit Projects,
ResourceQuotas, and StorageClasses

Configuration

Following are the prerequisites for Configuring Multitenancy on Red Hat OpenShift with
NetApp.

Prerequisites

* NetApp ONTAP cluster

* Red Hat OpenShift cluster

 Trident installed on the cluster

« Admin workstation with tridentctl and oc tools installed and added to $PATH
* Admin access to ONTAP

* Cluster-admin access to OpenShift cluster

* Cluster is integrated with Identity Provider

+ Identity provider is configured to efficiently distinguish between users in different teams

Configuration: cluster-admin tasks
The following tasks are performed by the Red Hat OpenShift cluster-admin:

1. Log into Red Hat OpenShift cluster as the cluster-admin.

2. Create two projects corresponding to different projects.

oc create namespace project-1

oc create namespace project-2
3. Create the developer role for project-1.

cat << EOF | oc create -f -
apiVersion: rbac.authorization.k8s.io/vl
kind: Role
metadata:
namespace: project-1
name: developer-project-1
rules:
- verbs:
— LIS |
apiGroups:
- apps
- batch
- autoscaling
- extensions
- networking.k8s.io
- policy
- apps.openshift.io
- build.openshift.io
- image.openshift.io
- ingress.operator.openshift.io
- route.openshift.io
- snapshot.storage.k8s.io
- template.openshift.io
resources:

— T %0

- verbs:

— T %70

apiGroups:

L}

resources:
- bindings
- configmaps

- endpoints

- events
- persistentvolumeclaims
- pods
- pods/log
- pods/attach
- podtemplates
- replicationcontrollers
- services
- limitranges
- namespaces
- componentstatuses
- nodes
- verbs:
Vo

apiGroups:

- trident.netapp.io

resources:
- tridentsnapshots
EOF
@ The role definition provided in this section is just an example. Developer roles must be defined
based on end-user requirements.

. Similarly, create developer roles for project-2.

5. All OpenShift and NetApp storage resources are usually managed by a storage admin. Access for storage
administrators is controlled by the trident operator role that is created when Trident is installed. In addition
to this, the storage admin also requires access to ResourceQuotas to control how storage is consumed.

. Create a role for managing ResourceQuotas in all projects in the cluster to attach it to storage admin.

cat << EOF | oc create -f -
kind: ClusterRole
apiVersion: rbac.authorization.k8s.io/vl
metadata:
name: resource-quotas-role
rules:
- verbs:

I |

apiGroups:

L}

resources:
- resourcequotas
- verbs:
— LIS |
apiGroups:
- gquota.openshift.io
resources:

B T |

EOF

7. Make sure that the cluster is integrated with the organization’s identity provider and that user groups are
synchronized with cluster groups. The following example shows that the identity provider has been
integrated with the cluster and synchronized with the user groups.

$ oc get groups

NAME USERS
ocp-netapp-storage-admins ocp-netapp-storage-admin
ocp-project-1 ocp-project-l-user
ocp-project-2 ocp-project-2-user

8. Configure ClusterRoleBindings for storage admins.

cat << EOF | oc create -f -
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/v1l
metadata:
name: netapp-storage-admin-trident-operator
subjects:
- kind: Group
apiGroup: rbac.authorization.k8s.io
name: ocp-netapp-storage-admins
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: trident-operator
kind: ClusterRoleBinding
apiVersion: rbac.authorization.k8s.io/vl
metadata:
name: netapp-storage-admin-resource-quotas-cr
subjects:
- kind: Group
apiGroup: rbac.authorization.k8s.io
name: ocp-netapp-storage-admins
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: resource-quotas-role
EQOF

CD For storage admins, two roles must be bound: trident-operator and resource-quotas.

9. Create RoleBindings for developers binding the developer-project-1 role to the corresponding group (ocp-
project-1) in project-1.

cat << EOF | oc create -f -
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl
metadata:

name: project-l-developer

namespace: project-1
subjects:

- kind: Group

apiGroup: rbac.authorization.k8s.io

name: ocp-project-1

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: developer-project-1

EQOF

10. Similarly, create RoleBindings for developers binding the developer roles to the corresponding user group
in project-2.

Configuration: Storage-admin tasks
The following resources must be configured by a storage administrator:

1. Log into the NetApp ONTAP cluster as admin.

2. Navigate to Storage > Storage VMs and click Add. Create two SVMs, one for project-1 and the other for
project-2, by providing the required details. Also create a vsadmin account to manage the SVM and its
resources.

Add Storage VM X

ETORAGE WM NAME

project-1-svm

Access Protocol

& SMEB/CIFS, NFS ISCSI

Enable SMB/CIFS
B crsblenrs

B Allew NFS client access

Add at least one rule to allow NFS clisnts to sccess volumes in this storage VML ()

EXPORT FOLICY
Default
Rule Index Clients Access Protocols Read-Only R... Read/Wr
10.61.181.0,24 Ay Any Any
+ add
DEFAULT LaNousgE (D)
cutf_& b

METWORK INTERFACE
Use multiple network interfaces when client traffic is high.

K8s-Ontap-01

P ADDREES TUBMET MASK GATEWEY EROADCAST DOMAIN
Add opfional
gateway

10.61.181.224 24 Default-4 e

3. Log into the Red Hat OpenShift cluster as the storage administrator.

4. Create the backend for project-1 and map it to the SVM dedicated to the project. NetApp recommends
using the SVM’s vsadmin account to connect the backend to SVM instead of using the ONTAP cluster
administrator.

10

cat << EOF | tridentctl -n trident create backend -f
{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "nfs project 1",

"managementLIF": "172.21.224.210",

"dataLIF": "10.61.181.224",

"svm": "project-l-svm",
"username": "vsadmin",

"password": "NetAppl23"

EOF

@ We are using the ontap-nas driver for this example. Use the appropriate driver when creating
the backend based on the use case.

@ We assume that Trident is installed in the trident project.

5. Similarly create the Trident backend for project-2 and map it to the SVM dedicated to project-2.

6. Next, create the storage classes. Create the storage class for project-1 and configure it to use the storage
pools from backend dedicated to project-1 by setting the storagePools parameter.

cat << EOF | oc create -f -
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: project-1-sc
provisioner: csi.trident.netapp.io
parameters:
backendType: ontap-nas
storagePools: "nfs project 1:.*"
EOF

7. Likewise, create a storage class for project-2 and configure it to use the storage pools from backend
dedicated to project-2.

8. Create a ResourceQuota to restrict resources in project-1 requesting storage from storageclasses
dedicated to other projects.

11

cat << EOF | oc create -f -
kind: ResourceQuota
apiVersion: vl
metadata:
name: project-l-sc-rg
namespace: project-1
spec:
hard:
project-2-sc.storageclass.storage.k8s.io/persistentvolumeclaims: O
EOF

9. Similarly, create a ResourceQuota to restrict resources in project-2 requesting storage from storageclasses
dedicated to other projects.

Validation

To validate the multitenant architecture that was configured in the previous steps,
complete the following steps:

Validate access to create PVCs or pods in assigned project

1. Log in as ocp-project-1-user, developer in project-1.

2. Check access to create a new project.

oc create ns sub-project-1

3. Create a PVC in project-1 using the storageclass that is assigned to project-1.

12

cat << EOF | oc create -f -
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: test-pvc-project-1
namespace: project-1
annotations:
trident.netapp.io/reclaimPolicy: Retain
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: project-1l-sc
EQOF

4. Check the PV associated with the PVC.

oc get pv

5. Validate that the PV and its volume is created in an SVM dedicated to project-1 on NetApp ONTAP.

volume show -vserver project-1l-svm

6. Create a pod in project-1 and mount the PVC created in previous step.

13

cat << EOF | oc create -f -
kind: Pod
apiVersion: vl
metadata:
name: test-pvc-pod
namespace: project-1
spec:
volumes:
- name: test-pvc-project-1
persistentVolumeClaim:
claimName: test-pvc-project-1
containers:
- name: test-container
image: nginx
ports:
- containerPort: 80
name: "http-server"

volumeMounts:
- mountPath: "/usr/share/nginx/html"

name: test-pvc-project-1

EOF
7. Check if the pod is running and whether it mounted the volume.

oc describe pods test-pvc-pod -n project-1

Validate access to create PVCs or pods in another project or use resources dedicated to another
project

1. Log in as ocp-project-1-user, developer in project-1.

2. Create a PVC in project-1 using the storageclass that is assigned to project-2.

14

cat << EOF | oc create -f -
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: test-pvc-project-1l-sc-2
namespace: project-1
annotations:
trident.netapp.io/reclaimPolicy: Retain
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: project-2-sc
EQOF

3. Create a PVC in project-2.

cat << EOF | oc create -f -
kind: PersistentVolumeClaim
apiVersion: vl
metadata:
name: test-pvc-project-2-sc-1
namespace: project-2
annotations:
trident.netapp.io/reclaimPolicy: Retain
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1Gi
storageClassName: project-1l-sc
EOF

4. Make sure that PVCs test-pvc-project-1-sc-2 and test-pvc-project-2-sc-1 were not
created.

oc get pvc -n project-1

oc get pvc -n project-2

5. Create a pod in project-2.

cat << EOF | oc create -f -
kind: Pod
apiVersion: vl
metadata:
name: test-pvc-pod

namespace: project-1

spec:
containers:
- name: test-container
image: nginx
ports:
- containerPort: 80
name: "http-server"
EOF

Validate access to view and edit Projects, ResourceQuotas, and StorageClasses

1. Log in as ocp-project-1-user, developer in project-1.

2. Check access to create new projects.

oc create ns sub-project-1

3. Validate access to view projects.

oc get ns

4. Check if the user can view or edit ResourceQuotas in project-1.

oc get resourcequotas -n project-1

oc edit resourcequotas project-l-sc-rg -n project-1

5. Validate that the user has access to view the storageclasses.

oc get sc

6. Check access to describe the storageclasses.

7. Validate the user’s access to edit the storageclasses.

oc edit sc project-1l-sc

16

Scaling: Adding more projects

In a multitenant configuration, adding new projects with storage resources requires
additional configuration to make sure that multitenancy is not violated. For adding more
projects in a multitenant cluster, complete the following steps:

1. Log into the NetApp ONTAP cluster as a storage admin.

2. Navigate to Storage — Storage VMs and click Add. Create a new SVM dedicated to project-3. Also
create a vsadmin account to manage the SVM and its resources.

17

Add Storage VM X

STORAGE WM NAME

project-3-svm

Access Protocol

& SME/CIFS, NF5 iSCSI

Ensble SME/CIFS
BB ersblenrs

M Allow NFS client access

Add at lezst ene rule to allow NFS clients to sccezs volumes in this storage VL ()

EXPORT POLICY
Default
RULE=
Rule Index Clients Access Protocols Read-Only R... Read/Wr
10.61.181.0/24 Any Any Any
=+ add
DEFAULT LANGILAGE @
c.utf_& b

METWORK INTERFACE
Use multiple network interfaces when client traffic is high.

K3s-Ontap-01

P ADDREEE EUBMET MASK QATEWAY EROADCAST DOMAIN

Add optional
gateway

10.61.181.223 24 Default-4 s

3. Log into the Red Hat OpenShift cluster as cluster admin.

4. Create a new project.

oc create ns project-3

5. Make sure that the user group for project-3 is created on IdP and synchronized with the OpenShift cluster.

18

oCc get groups

6. Create the developer role for project-3.

cat << EOF | oc create -f -
apiVersion: rbac.authorization.k8s
kind: Role

metadata:

namespace: project-3

name: developer-project-3

rules:

verbs:
— %1
apiGroups:
- apps
- batch
- autoscaling
- extensions
- networking.k8s.io
- policy
- apps.openshift.io
- build.openshift.io
- image.openshift.io

- ingress.operator.openshift.

- route.openshift.io

- snapshot.storage.k8s.1io

- template.openshift.io
resources:

I T |

verbs:

B B |

apiGroups:

resources:
- bindings
- configmaps
- endpoints
- events
- persistentvolumeclaims
- pods
- pods/log
- pods/attach
- podtemplates
- replicationcontrollers
- services

.lo/v1

io

19

- limitranges
- namespaces
- componentstatuses
- nodes
- verbs:
Vo
apiGroups:
- trident.netapp.io
resources:
- tridentsnapshots
EQOF

CD The role definition provided in this section is just an example. The developer role must be
defined based on the end-user requirements.

7. Create RoleBinding for developers in project-3 binding the developer-project-3 role to the corresponding
group (ocp-project-3) in project-3.

cat << EOF | oc create -f -
kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/vl
metadata:

name: project-3-developer

namespace: project-3
subjects:

- kind: Group

apiGroup: rbac.authorization.k8s.io

name: ocp-project-3

roleRef:
apiGroup: rbac.authorization.k8s.io
kind: Role
name: developer-project-3

EOF

8. Login to the Red Hat OpenShift cluster as storage admin

9. Create a Trident backend and map it to the SVM dedicated to project-3. NetApp recommends using the
SVM’s vsadmin account to connect the backend to the SVM instead of using the ONTAP cluster
administrator.

20

cat << EOF | tridentctl -n trident create backend -f
{

"version": 1,

"storageDriverName": "ontap-nas",

"backendName": "nfs project 3",

"managementLIF": "172.21.224.210",

"dataLIF": "10.61.181.228",

"svm": "project-3-svm",

"username": "vsadmin",

"password": "NetApp!23"

EOF

CD We are using the ontap-nas driver for this example. Use the appropriate driver for creating the
backend based on the use-case.

CD We assume that Trident is installed in the trident project.

10. Create the storage class for project-3 and configure it to use the storage pools from backend dedicated to
project-3.

cat << EOF | oc create -f -
apiVersion: storage.k8s.io/vl
kind: StorageClass
metadata:
name: project-3-sc
provisioner: csi.trident.netapp.io
parameters:
backendType: ontap-nas
storagePools: "nfs project 3:.*"
EQOF

11. Create a ResourceQuota to restrict resources in project-3 requesting storage from storageclasses
dedicated to other projects.

cat << EOF | oc create -f -
kind: ResourceQuota
apiVersion: vl
metadata:
name: project-3-sc-rq
namespace: project-3
spec:
hard:

project-l-sc.storageclass.storage.k8s.io/persistentvolumeclaims: O

project-2-sc.storageclass.storage.k8s.io/persistentvolumeclaims: 0
EOF

12. Patch the ResourceQuotas in other projects to restrict resources in those projects from accessing storage

22

from the storageclass dedicated to project-3.

oc patch resourcequotas project-l-sc-rg -n project-1 --patch
"{"spec":{"hard":{ "project-3-
sc.storageclass.storage.k8s.io/persistentvolumeclaims": 0}}}'

oc patch resourcequotas project-2-sc-rg -n project-2 —--patch
"{"spec":{"hard":{ "project-3-

sc.storageclass.storage.k8s.io/persistentvolumeclaims": 0}}}'

Copyright information

Copyright © 2024 NetApp, Inc. All Rights Reserved. Printed in the U.S. No part of this document covered by
copyright may be reproduced in any form or by any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, or storage in an electronic retrieval system—without prior written permission
of the copyright owner.

Software derived from copyrighted NetApp material is subject to the following license and disclaimer:

THIS SOFTWARE IS PROVIDED BY NETAPP “AS IS” AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE, WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL
NETAPP BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

NetApp reserves the right to change any products described herein at any time, and without notice. NetApp
assumes no responsibility or liability arising from the use of products described herein, except as expressly
agreed to in writing by NetApp. The use or purchase of this product does not convey a license under any
patent rights, trademark rights, or any other intellectual property rights of NetApp.

The product described in this manual may be protected by one or more U.S. patents, foreign patents, or
pending applications.

LIMITED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set
forth in subparagraph (b)(3) of the Rights in Technical Data -Noncommercial Items at DFARS 252.227-7013
(FEB 2014) and FAR 52.227-19 (DEC 2007).

Data contained herein pertains to a commercial product and/or commercial service (as defined in FAR 2.101)
and is proprietary to NetApp, Inc. All NetApp technical data and computer software provided under this
Agreement is commercial in nature and developed solely at private expense. The U.S. Government has a non-
exclusive, non-transferrable, nonsublicensable, worldwide, limited irrevocable license to use the Data only in
connection with and in support of the U.S. Government contract under which the Data was delivered. Except
as provided herein, the Data may not be used, disclosed, reproduced, modified, performed, or displayed
without the prior written approval of NetApp, Inc. United States Government license rights for the Department
of Defense are limited to those rights identified in DFARS clause 252.227-7015(b) (FEB 2014).

Trademark information

NETAPP, the NETAPP logo, and the marks listed at http://www.netapp.com/TM are trademarks of NetApp, Inc.
Other company and product names may be trademarks of their respective owners.

23

http://www.netapp.com/TM

	Configure Multi-tenancy on Red Hat OpenShift with NetApp ONTAP : NetApp Solutions
	Table of Contents
	Configure Multi-tenancy on Red Hat OpenShift with NetApp ONTAP
	Configuring multitenancy on Red Hat OpenShift with NetApp
	Architecture
	Configuration

