aws

Database Developer Guide

Amazon Redshift

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Redshift Database Developer Guide

Amazon Redshift: Database Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Redshift Database Developer Guide

Table of Contents

INEFOAUCEION cevveerrriiiiiiiiiiiiiiiiiiiiiieieieiiiieessesssans 1
PrEIEGQUISITES ..ottt ettt et e s sae s s e e s e e e st e s sae s st e s ae s st e s besssaesssassssasssessssesssessstesssesssaessseessaens 1
Are you @ database AEVELOPEIT ...ttt e et e te st e s te s e s e et et e saesaesbassessaeseeneans 2
System and arChit@CtUIE OVEIVIEWouioveeieieeceeeeeetetete ettt saeste st e ae s e s e e s s e s e st e sesaanes 3

Data warehouse System arChit@CtUIEccuooveeveieeeeeceeeeeeere ettt e e et aes 4
PEITOIMIANCE ...ttt ettt st sa e st st st s b et et s e sbe b e e s b et e st ssessansesasassesasans 7
COLUMNAI SEOTQAQE ..ueiieeetecteeieeee ettt e te s teste e e e e e e e s et et e s be st e s sasseeseesaesse st assassansassassaesesssensansansansan 10
Workload Mana@gemMENT ...ttt et e teste s e se e e s a et e st e sae s e seeseena e e e naeaanes 12
Using Amazon Redshift with Other SErviCes ... 13
SAMPLE AALADASE ..ttt e e st e e ettt e b e be e seean e nes 14
CATEGORY taBLe ..ttt ettt et e s te s e e s e e s et et e sae st e seebessaesnennannans 16
DATE AL ..ttt ettt e s ae e e e s ettt et et e st e e ae e e e e e e et e tentenaeeseereeraanes 17
EVENT D10 .ottt sttt sa et et e st e st e e e e e b e st et e s seeseesaesaensansensansanes 17
VENUE TDLE .ttt ettt e te e st e e e e et te st st e s ae s s e et e e e e e et e b e sbassassassasseensensansans 18
USERS 3D ..ttt sttt ettt et s e st et s s a et a e st e s et e e enesbe e enaenans 18
LISTING £DLE ettt et e st et e st e s b e s e e e et e e e st et et e s bessaesaesaenaensansansansan 19
SALES taBLE ..ottt sttt a e b et b et e s b et et eae s e et enasaan 20

BESt PracCliCeS ..uciiciiiiiinneennnnniiiiiiieieniineneasssssssssssseessass 22

Conduct @ Proof OF CONCEPL ...ttt e e sa et e st et saasbe s e e e enaens 22
STEP T1: SCOPE YOUF PO ...ttt ettt ssressteeste s st s s aessse e s e e s saessssesssasssnasssessssessssessaassseanns 23
Step 2: Launch AmMazon REdSHIft ...ttt sr et sae e seens 24
Step 3: LOAd YOUI dAta oottt ettt ettt e s te s e s e e e s e et e te st et e b e saesneseennenean 25
Step 4: ANALYZE YOUT At c.ooviieeeeeeceeeeeee ettt te e e e a et ae st e st e e s e se s e e a e e enaenaan 27
STEP 5: OPTIMUZE ..ottt et e e re s e e s s st e s e e s sae e s b e s saaessaessaaesssesssaessnasssesssaesnses 29

Best practices for desSigning tables ...ttt ens 30
ChOOSE the DESE SOt KEY ..ottt ettt te e e e a et e st e sbesaessessaeneennans 30
Choose the best distribution StYLE ...ttt 31
Use QUEOMALIC COMPIESSIONuviiiiieiiiriiieieeitietessreestee st eseessseesaessseesssessseessaesssessssessssesssesssssssaessses 32
DEfiNE CONSLIAINTS .ottt ettt sttt e b e ba b e e s aases 33
Use the smallest possible COLUMN SIZE ...ttt ae e 33
Use date/time data types for date coOlUMNS ... 33

Best practices for loading data ...ttt s 34
Take the loading data tUtOrial ...t 34

Use 2@ COPY comMmMand t0 L0 Aataeeeeeeeeeeeeeeeeeeeeeeeeeeete et eeeeete e s e e evaeseeesanaeesesssaesssennaens 34

Amazon Redshift Database Developer Guide

Use a single COPY COMMIANA ...ttt stesaesse v e e e s s sa et et e aa b e ssessa e e e enanes 35
LOAAING A fIlES ettt ettt s a bt et a e s e e e nnenaannans 35
Compressing YOUr data filES ...ttt et 36
Verify data files before and after @ load ... 36
USE @ MULLISFOW INSEIT ..ttt sttt ettt st et s b et e e s et e e s e sasaenassaneen 36
USE @ DULK INSEIT ettt ettt sttt et e s e st et s s b et e e s e sa e s s e sanes 37
Load data in SOt KEY OFUEN ...ttt te st e e e sa et et e sae b e s seese e e e aeaesnantans 37
Load data in sequential BLOCKS ...ttt a et besaens 38
USE tiME-SEIIES TADLES ..ottt ettt sttt sa e st a s s b et e s b nes 38
Schedule around MaiNteNaNCe WINAOWS ..ottt sse e sse e ene 39
Best practices for deSigNiNg QUETIESeccueieeeeeeeeeeeetetecte ettt s e saestesae s e sse s e e e s e e saeneneens 39
WOTIKING WIth AQVISOK ...ttt s et e s te st e s se st sse e e e s e s e b et e bessasseesaesnenaansannan 41
Amazon RedShift REGIONS ...ttt e sae st e e e e e et et e aanas 42
Viewing AdVvisor reCOmMmMENAAtioNsccociiieiiieenireceeeeeeeeste et e e e s saesae st e ssa s e se s s enenns 43
AdVisor reCOMMENAALIONSccviivieriiiierietrerertetresre ettt et s e st e st e ste e s e sse st e e ssassesaesassessens 44
TUROKHIALS ceverreriiinniniiiiiiiiiittiieiieiieieiieeeeesses 59
Working with automatic table optimizationeiiiiiiiiiiiiiiineennnnniiiiiiiiiiiiieeesenieeenee 60
Enabling automatic table optimization ... e 61
Removing automatic table optimization ... 61
Monitoring actions of automatic table optimization ... 62
Working with cOlUmMN COMPIESSIONcuiviiieeececeeeeeer ettt e st e re e a e a e saesaesaans 62
COMPreSSIiON ENCOAINGS ..c.vcouieiieieieieteteete e e se e e e e s e s e saestestessessassasseessesaessessessassassassessasssensessensansan 64
Testing comPression ENCOAINGS ...cceiieiiieciecececeeeee ettt stese s e e e e s e e e e ssestesaessasseesee s essesesenes 74
Example: Choosing compression encodings for the CUSTOMER tablecooveeeeveierennnenee. 77
Working with data distribution STYLES ...t sae e 80
Data distribution CONCEPES ..ooveeeeeeeee ettt st e et et aa e 81
DISEIDULION STYLES ..ttt st s te e s e e e e e et e b e s be st e sa s e e saesnesneneanean 82
Viewing diStribDULION STYLES ...ttt sae st e s ae s n s 84
EValuating QUENY PALEINS ...ttt te e e sa et e st e sae s se e e s a e aenaentans 85
Designating distribution StYLES ...ttt aesaerans 86
Evaluating the qQUENY PLan ...ttt sttt et s ae st sa e nennan 87
QUENY PLAN EXAMIPLE ..ttt e e et e it ae s te st e st e s s e e e e e e e esa et esbessessassassassaessensantans 90
DiStribULION @XAMIPLES ..ottt ettt et st e s te e e e st et e st et e sae s s e esa e e e nae s esaensanes 94
WOTrKING WIth SOIt KEYS ..ottt te e st e s et e s s e e s et e st et et e s besaaesessnenaennaneanean 97
Multidimensional data layout sorting (PreVieW) ...ttt 98
COMPOUNG SOIE KEY ..ottt ste e e e e s et e st e st e testesse s e e e e e e aestesbessassassaeseeneensansansansanes 99

Amazon Redshift Database Developer Guide

INEErLEAVE SOIt KEY ..ttt ettt et e e e e s e e et et e s b e s s e e se e e e e esaanaansanean 100
Defining table CONSEIAINTS ...ttt a et et e s te s s e e e e e s e e saesaeeans 101
(oY Ta [T o« - | - T PPPOU U 103
USiNg COPY t0 10 At c..oueeeeeeeeeeetee ettt et este s e s e e e et e stesaesaassassneneennans 104
Credentials and acCesS PEIMISSIONSc.cceeueeereeieeieeeterte e stese s e e e e e e e e e e saesaesaessessessesseesessessenean 105
Preparing your iNPUL data ...ttt sae e st a e et aenas 107
Loading data from AMAzon S3 ...ttt te st ss et et e st ste e neaenaens 108
Loading data from AmMAazon EMR ...ttt e s s sae st stesaesre e saneaennens 121
Loading data from remote NOSLS ...t 127
Loading from Amazon DYNAamMODB ...ttt st a e e sae e aas 135
Verifying that the data loaded COrreCtly ... 139
Validating iNPUL data ..ottt re e e sa et et e s b e s ae s e e e e e e a e aenans 139
AULOMATIC COMPIESSION ...ueiiiiiiiecteeieccteete ettt ee s sre e st e s ste e st e s saeessaesssesssaesssaesssasssessssessssesseessseens 140
Optimizing fOr NArTOW TabLES ...ttt st s e e aenens 143
DEFAULL VALUES ...ttt ettt ettt ettt s s e st et s b e b et s e saaaesasnans 143
TrOUBLESNOOTING .ottt sttt et et e st esae s be e e e sa e e e e e s e b entanean 144
Continuous file INGESLION (PrEVIEW)c.eiieieeceeecec ettt e et stesaeste s e e e e e eaesaesaenaans 151
UPating WIth DML ...ttt st et e et ettt e s b e s s e sse e e se s e et et anbanaanes 153
Updating @and INSEITING ...ttt e et et e st st e s s e eesn e e e e e aabanbannas 153
Merge method 1: Replacing eXiStiNg FOWSc.coiiieiiieiieciececesecee et ste e ve e aeneae s 154
Merge method 2: Specifying a column list without using MERGEcccooeeienenvenienieienne 154
Creating a temporary staging table ... 155
Performing a merge operation by replacing existing rowsccocevevecenenencececceececceeee e 155
Performing a merge operation by specifying a column list without using the MERGE
COMIMANA .ttt ettt s te st et e e st et e e s be st et s e st et e e s et esassasestesassansessesansessssessentesessansentesensen 156
MEIGE EXAIMPLES ...ttt ettt et e st et e st e e e e e e e e e et et et e stessessaessessessansessansansasansassessneseassans 158
Performing @ AEEP COPY .euooioireieeeceetectete ettt et stestestesteste e e e e e e et e s e sastassessessssssessessansansansansans 161
ANQLYZING TADLES ...ttt ettt e st e st e s e e e e e sa et e b et e ae b e seeseeseeneennenaentans 166
AULOMALIC QNALYZE ettt st e s e et et e st e s ae st e s seese s e e e e saestenaantansans 166
AnNalysis Of NEW 1able data ...ttt st sae s 166
ANALYZE cOmMMANA NISTOIY vttt ettt et teste s e s se e e e e e saesessesaessassessaenssnsesaensansans 171
VaCUUMING TADLES .ttt te e e e s et e st st e st e sbe s e e e e e e e e s estestessassessassnesaansans 173
AULOMALIC TADLE SOIT ...ttt sttt et s s s st e s sbe e s e ssasaenees 173
AUtOMAtiC VACUUM AELELE ..ottt ettt ettt s e st e s s sesse s e e ssans 174
VACUUM FrEAUENCY .ceeeeeeeeeeteteteceeteeee e testestestestestes e s e e s ssaessessessassassassasssessessensensansassassessesssensanes 175
Sort stage and MEIGE SLAGE ..c..ccuieeeeeieeeeecteeceee ettt sae s testesbe s e e e e e et e s e sesaesaessassassnenaannans 175

Amazon Redshift Database Developer Guide

VacuUM ThreSHOLA ..ottt et et ettt e s e st e s e sae e s e snans 176
VACUUIM LYPES ittt et e ssteeste s st sssteeaessseesssesssaesssessssesssasssaesssessssesssesssessssessssesssessssesssenses 176
ManNaging VACUUM TIMES ..ccuviiiiirieiieeieeeieestessreestessteestesssessseessseesssesssesssaesssessseesssessssesssessssesssasns 176
Managing concurrent Writ€ OPEratioNSc.ccoiiriiriiiriereecteee ettt s e e s e e s sae s raessaeesanessaeessnesanas 185
SErializable ISOLAtION ...couiieeeere ettt et a et e e 186
Write and read/Writ€ OPEratioNScccieiiieeecceceeee ettt aestesse e s s e e e nennens 191
CoNCUITENt WIILE EXAMPLES ..ottt ettt et e et s e e et sa et e st e sae s e se e e e nn e e esneaenes 192
Tutorial: Loading data from Amazon S3 ...ttt saesae s e s e s e e e e s e e nnan 194
PrErQQUISITES .ottt ettt st s st e s sae s s e e s sa e s st e s s b e s saessae e s st essseesssesssaesssessseesssesssesnnnes 195
OVEIVIBW ...ttt sttt et s e s st st st et s b e et e e st s b e st e e st s b e et e e st s be st e st s beenbe st essesaseseensasans 195
SIS ettt ettt et e b st e s b e s r e e e b e e st e et e e a e e et e e Rt e et e e ae e et e e st et eesaeesnsanares 196
StEP 1: Create @ CLUSLEN .ottt ettt st et e e e et e a e b e saesaesaessesseennennens 196
Step 2: Download the data files ...t 197
Step 3: Upload the files to an Amazon S3 bucket ... 198
Step 4: Create the SAMPLE tabLES ... sae s 200
Step 5: Run the COPY COMMANGS ...cceiieieieiecteceeeeteeete et e e e e st stesae s e sse s e e e s nenaenaanes 203
Step 6: Vacuum and analyze the database ... 221
Step 7: ClEAN UP YOUI FESOUICESceeeeeerererrersessessessesesssesessessessessessessessssssssssssessessassassassessassssneen 221
SUMIMAIY eetieitiieteeriteeteertt et eeseeestesstesssaesstessstesssessseasssessseasssesssaesssessstesssessseesssessseesssessseesssessseessesssaens 222
UNLOAding data ...ccceeeeciiiiiiiiiiiiiinnennneiiiiiiceiieniesses 223
Unloading data t0 AMAzOon S3 ...ttt ste e ste e s e e e st e saestestesaessesse s s e e e saesanaansans 223
Unloading encrypted data files ...ttt aan 227
Unloading data in delimited or fixed-width format ..o 228
Reloading unloaded data ...ttt ettt an 230
Creating user-defined fUNCLIONScccuueiiiiiiiiiiiiiiinennniiiiiieeeiiiinseessssssssssssssssssssssssssssssssssssssanss 231
UDF SeCUrity @and PriVILEGES ..ottt sa et sae st e ae s e e e e e e e saesbensanaan 231
Creating @ SCAlar SQL UDF ...ttt te e teste s e s e e s e e e ae st e sbessessass e e e e s e s esanaansansanes 232
Scalar SQL fuNCtion @XAMPLE ...ttt ettt a e a e e aan 233
NAMUNG UDFS ettt ettt st sre s st e s ae s s e e s s e s st e s be e s st essseessaasssaesssassseesssesssesssessseesssensnes 233
Overloading fUNCLION NAMES ...ttt a st sa e s se s e sa e e e e aenaan 233
Preventing UDF Naming CONTLICESouiiiieeeceeeeeeeee ettt 234
Creating @ SCalar PYthon UDF ...ttt te e s et et ae e s s s a s a e a e aa e 234
Scalar Python UDF @XaMIPLE ...ttt e et st e saestesse s e s e e s e e s a e b e saesaaean 235
PYthon UDF data fYPES ..ottt ettt ettt steste e s se e s e sa et e s e b e b e s se e e e e ennennan 236
ANYELEMENT QA LYPE overververeereeeeeeeeeeseeesesesessesesesesesesesesessssssssesasesasesasesssssasesasesasesasesssssssssanes 237
Python languUage SUPPOIt ...ttt ettt st stesae s e e s ss s e s e st e b e saesaessasseesnenaannans 237

Vi

Amazon Redshift Database Developer Guide

UDF CONSEIAINTS ..ttt ettt sttt e st s s a e st e bt s b e st e s e s be st esnesnasas 242
LOgging €rrors and WArNINGSccceeeeieeereeieeieeeetestestestessessessesssssssessessessessessessessessssssessessessessanes 242
Creating a scalar Lambda UDF ...ttt steste e s e s s e e saesaesaessa s e s e e asaeaenaan 244
Registering @ Lambda UDF ettt steeve e et saesaessesaesse s e e e e e s nesa e s essaaas 244
Managing Lambda UDF security and privilegeseceeeceeeceeeeeseeeeeee et see e eeenea 245
Configuring the authorization parameter for Lambda UDFscccccevieciececenereeeceeeeeeeene 246
Using the JSON interface between Amazon Redshift and Lambdacccoeevevreerenennnee. 247
EXQMPLE USES OF UDFS ...ttt ettt stesteste st e st e e e e e s s s et et e tesbassa s e e e ssaenaennansanean 250
Creating Stored ProCeAUIESccciiiiieeueecciiiieeiiitiiteeeesssnssssssesseessses 252
StOred ProCEAUINE OVEIVIEWcuecueeeieieieieieeiecteeeeeertetetestestestestessesses e e s esaessessessessessassassassssssensensensans 252
NaAMING StOred PrOCEAUIESociiieeeteeeeeee et te et te e e e e et e saestestasse s e ssesssesaessensansansans 256
SECUNILY ANA PrIVILEGES ..ottt ettt te st e st e s e s e e e et et et e saesae s e s e e e esaessensansansans 256
RETUIMING @ FESULL ST ettt e e ettt e s ae s e e e e e e e e saeaabantans 258
ManNaging traNSACTIONSciciiiviieiierercteete ettt st es e e s sae s s e e s saeesaeessaessseessaeesseasssesssaesssesssaesssennn 260
TrAPPING EITOFS ..ueiiieeieieteeieeerteesteetessreestesssessstessseesssessstesssessssesssessseesssessseesssesssessssessseessessseessaesses 273
LOGQiNg STOred PrOCEAUIESocviceeeeeeeeeeteeetete ettt s et e st e stestessesse e e e e e s e saestetesassassessaesaanes 281
CONSIAEIALIONS ...ttt ettt sttt st et e e st et s e b et e e s s e be st ssasbastesassessensesassenseneons 281
PL/PGSQL langUage FEFEIrENCE ...ttt a e st st esae s se e e s e e s e s e saennan 283
PL/PGSQL reference CONVENTIONScc.ccuieieieieietetesteeseee ettt stestesteste s e s e e e ss e s e s e seaesaanes 283
SErUCTUrE OF PL/PGSQL ettt ettt e teste s e e e e e e e s e st e st e sa s s e s sa e e e e e aesbensanaanean 284
Supported PL/PGSQL StatemMENTS ..ottt 289
Creating Materialized VIEWSciiceeeeeeciiiiiiiiiiiiiinneneenesiiiiiiciiiinsasssns 306
Querying @ MAterialiZEd VIBW ..ottt saesae e a et saa s 309
Automatic query rewriting to use materialized VIEWScoeoueeieeeiecieceeeceee et 310
USQGE NOLES ..ottt st este et este st esaessae e st e s aess st asse e st asssaessaasssasssaesssessssesssessstesssessseenssens 310
LIMIEQEIONS ettt ettt et s a e st st e bt s b e st e b s b e et e sessbesntsssasananne 311
Refreshing @ MaterialiZed VIEW ...ttt sae st s ns 312
Autorefreshing @ Materialized VIEW ...ttt aan 315
Automated MAterialiZEd VIEWS ...ttt ettt sse st e e s ss e s s e saesae e 316
SQL scope and considerations for automated materialized Viewsccooeeeeereeveecieceecnenen, 317
Automated materialized views lImMItationsccocvieivirineninnencreceeee e 318
Billing for automated materialized VIEWS ...ttt 318
AdAItiONAl FESOUICESeeviieiieieieteeretet ettt ettt st e e s e st et s e sbe st e e sasse st ssessensenassessensesens 318
Using a user-defined function (UDF) in @ materialized VIEWccoeeeeeeeeiecieceeececeeeceeeee, 318
Referencing a UDF in @ Materialized VIEW ...ttt aens 319
STreamMiNg INGESTION ..ottt ee s sre e st e s s st e s e e s sse e s b e s saeessaessaesssassseasssessseannaens 321

vii

Amazon Redshift Database Developer Guide

DAtA FLOW ettt sttt et sa et et et et b et e b et e e ne 321
Streaming INGESTION USE CASEScouiieiiiriieitecterteect et esree s sreessae st e saessseessaessaessssessaesssassseannes 321
Streaming iNgestion CONSIAEratioNSc.cceceeeeeeeiiceeceece ettt s re e e aeaeaan 322
CONSIAEIALIONS ...ttt ettt sttt st st st e st et s b et e s s e be s ssasaa st esassessessesassenseneens 324
Getting started with streaming ingestion from Amazon Kinesis Data Streams 327
Getting started with streaming ingestion from Amazon Managed Streaming for Apache
KATK ettt sttt st sttt et et e b et et s st et e e s ae e e e e sete e ens 332
Electric vehicle station-data streaming ingestion tutorial, using Kinesisccccccceevveveunneene. 338
Creating views in the Data Catalog (PrevieW)iciiiiiiiiineneniiiiiiiiiiiiiecesssscecesssssssssss 343
PrErEGQUISITES ..oeieieeieeeteectertert ettt s e st s e e s st e st e ssae e s b e s sa e s s e sssaessae s st asssesssaessseassaesssesssaesssansseens 345
ENA-T0-ENA EXAMIPLE .ttt e te e e et e e e sa e st e st et e besaessessaeseesaesaesaesesansansans 346
CONSIAEIALIONS ..ttt ettt et sttt s s s e st e e s et et e e s s et e e ssesbe st esassestestesansensenassansessesans 347
Querying spatial data ...cciiieeeiiiiiiiiiiiiniiiieeieeeeienteeesesssessssssseeeetsssassssssssssssssessssssssassennans 348
Tutorial: Using spatial SQL fUNCLIONS ...cveouioeeeeeceeeeeee ettt 351
PrErEQUISITES .ottt ettt s e st e s ae s s e e st e s st e s b e s saessae e st essseesssesssaesssassseesssessseennnes 352
Step 1: Create tables and load test data ... 352
Step 2: Query spPatial data ...t 355
Step 3: ClEAN UP YOUI FESOUICESceeeueerererreiressessessesessaesessessessessessessessesssssssssessessassassassassassssnsen 359
LOAAING @ SNAPETILE .ttt ettt e s ra et st sb e ae b e aaereenaans 359
TEIMUNOLOGY ettt et e et e et e st et e s tesseesesse e s e s e st e ta st essassasseesaesaastessansansensansassessnaseanaans 361
BOUNING DOX ..ttt et et et et et e s ae s e st e e e e e e e b et essansassassessassaensansansans 361
GEOMELIIC VALIAILY ..eoueeieieeeceeee ettt ettt e st e e et e e s et e st e b e st e s s e e se e e s saesaenaansanean 362
GEOMELIIC SIMPLICITY weeveieieeeeeeeeee ettt te s e e e e e e e s e s te st e besbesseesa e e esaeaensansansan 364
H B ettt ettt st s e s a e s s b e e s bt e e s b e e e s b e e s e b e e e s r b e e e b e e e aa e e e s e e e s e e e e aaesesnaesenraees 366
CONSIAEIALIONS ..ottt ettt et st e sttt e st e e s st e e e e st et e e ssesse st esassassesessassensenassansessasans 366
Querying data with federated QUEKIESuuuueeiiiiiiiiiiiiiieennneciiniieiieiiinneeessessssssssseesssssssssssssssssnes 368
Getting started with using federated queries to PostgreSQLccoeeveeeceecieceecenececeeeeeeee e 369
Getting started using federated queries to PostgreSQL with CloudFormationc.c..c........ 370
Launching a CloudFormation stack for Redshift federated queriesccooeeeeeeeeeeveriecnnnnne 371
Querying data from the external SChemMA ... et 372
Getting started with using federated queries t0 MySQLc.ooooiiiececieceeceerre et 373
Creating @ Secret and AN TAM TOLE ...ttt ettt te et e s a e a e e aan 374
PrErEQUISITES .ottt ettt sre s st e s sae s s st e st e e st e s sae s ssaeesae e s st assseesssesasaesstasssessssessseennees 374
Examples of using a federated QUEIY ...ttt sa e saesaesaens 377
Example of using a federated query with PostgreSQLccooeveeeeeeieeieeceeecececeeeeeeee s 377
Example of using @ MiXed-Cas@ NAMEcoeoeeieieieietecectec et e et s re e e e e e e e e e e saesaensans 379

viii

Amazon Redshift Database Developer Guide

Example of using a federated query with MySQL ... 381
Data tyPe IfFEIrENCES ..ottt ettt ettt e b e e e e e e e e e e e e s e aanes 382
CONSIAEIALIONS ..ottt ettt et e st et s st e st e e s s et e e s e s b et e e ssebe st esasbassesessassentenassansessesans 386

Supported versions of federated databasescceeecececiceceeecee e 388

Querying external data using Amazon Redshift SPectrumcccueeeeeeeeciiiiicciinnnnnnnennnencssssseens 389
Amazon Redshift SPECIIUM OVEIVIEW ...ttt ettt ste e sse e e e s e st saa s 389

Amazon Redshift SPectrum REGIONS ..ottt sre e aesaesa et naas 390

Amazon Redshift Spectrum conSiderationscceoeceeeeececeerceeee et 391
Getting started with Amazon Redshift SPectrum ... 392

PrErEQUISITES .ottt ettt sre et e s s ae s st e s e e e s e e s b e s saessae e s st esssesssaesssaesstassseesssessssennaes 392

CLOUAFOIMATION .ttt sttt ettt s b et st et e e s et e e s s esbesassassestesassensensssansessesens 393

Getting started with Redshift Spectrum step by Step ..., 393

Step 1. Create an IAM IOl .ttt sttt st et e s ae e beean e e e e enae e nes 393

Step 2: Associate the IAM role With your ClUSEEN ... 397

Step 3: Create an external schema and an external table ..., 398

Step 4: Query your data in AMAzZOoN S3 ...ttt ettt nnan 399

Launch your CloudFormation stack and then query your dataccooeeveeiecenenenececeeeenne 402
IAM policies for Amazon Redshift SPECIIUM ..o 406

AMAZON S3 PEIMISSIONS ...uviiviieierireiriteerteetersreesteessessssessseesssesssessssesssessssesssessssessseesssassssssssesssssssaens 407

Cross-account AmMAzZOoN S3 PEITNISSIONScecvveeerierieerrreeesreesreessseeseessseesssesssesssesssessssesssessssesssssssaens 408

Grant or restrict access using Redshift SPectrum ... 408

MiINIMUM PEITMIISSIONS ...vviiiiieieieieeieieteesteestessreessteesseesstessseesssessseasssessssesssessssesssesssessssessseessssssssessses 409

CRAINING TAM TOLES ...ttt ettt e te s e e s e e e e et e b e ae s et e e saesaenaanaansansansanes 411

ACCESSING AWS GLUE dALA ..ottt ettt teere s e a et e b e tesaa s e sa e e e nnans 412
Using Redshift Spectrum with Lake FOrmation ...t 420

Using data filters for row-level and cell-level SecUritycooeeecececeniececeeeecee e 422
Creating data files for queries in Amazon Redshift Spectrum ... 422

Data formats for Redshift SPECLIUM ..ot 423

Compression types for Redshift SPeCtrUM ..ot 424

Encryption for Redshift SPeCtrum ...t 425
Creating externNal SCHEMIAS ...ttt e e st et e s ae s b e s sessa e e e e enneaennans 425

Working with external Catalogs ...t sre e s e e saennens 428
Creating eXterNal tABLES ... ettt a ettt ae e nnens 432

PSEUAOCOLUMNS ...ttt sttt sttt ettt e st s sae st e e s s e besa e e sse st esassassessesasansesessansan 434

Partitioning Redshift Spectrum external tables ... 435

Mapping t0 ORC COLUMNS ...cviiiieeieeectctete ettt e saeaestestesse s e e e s e e sae st e stessessassesseeseensensansanes 441

Amazon Redshift Database Developer Guide

Creating external tables for Hudi-managed data ... 444
Creating external tables for Delta Lake data ... 445
Using APache 1CeDErg tables ...ttt ettt ste s ae st s e e e e e e aesaasaens 447
Considerations when using Apache Iceberg tables ... 448
SUPPOIEEA At LYPES ettt ettt te s e e e e e e et et e st e saessassesseesnenaannans 450
Improving Amazon Redshift Spectrum query performanceooeceveeceeceececeseeeceeeeeeeeen 452
Setting data handling OPLIONS ...ttt s a et st aan 455
Performing correlated SUDQUETIES ... ieeiecieeeeeceeee ettt te et e et et saesae s e se e e e e e aa s 456
MORNILOFING METFICS ..viieiiereicteeeceeeece ettt et e s ste e s e e e st e st e s sae s s e e s saeesssesssaesssasssessssessssesssessseesssensns 457
TroubleSNOOTING QUEKIEScueeieeeeeeeceeeetee ettt ettt et e e s e e e s e e e et et e tesbe s asseese s e ennansensansan 457
RETIES EXCEEARM ...ttt et st sttt sa st et e s be st e e s s et e s s e saassanaen 458
ACCESS tIOtELEd ...ttt ettt st et b et e s sa st e e esasan 458
RESOUICE LMt @XCEEBAERMcueveeieiieeeceeteereete ettt ettt ettt et s saa s e e s sasae e nas 459
No rows returned for a partitioned table ... 460
NOt QUENOMIZEA EITOK ..ttt ettt st sb et st et e sse st e e saanns 460
Incompatible data FOrMALS ...ttt s a e e e b aens 460
Syntax error when using Hive DDL in Amazon Redshiftccoeiiiivioececeeeeeeeeeeeee, 461
Permission to create temporary tables ... 461
INVALIA FANGE ettt ettt e st e st e st e st e e se et e s e e e et et et e sessassasseesaesaessensansantans 462
Invalid Parquet Version NUMDET ...ttt a et et sae s ns 462
Tutorial: Querying nested data with Amazon Redshift Spectrumcccevvieieeeeenenenceceeeee 462
OVEIVIBW ...ttt st ettt st s st st st e st s b e et e e st s b e st e e st s b e et e s st s be st e st ssaesbe st essesasastensanane 462
Step 1: Create an external table that contains nested data ..o, 464
Step 2: Query your nested data in Amazon S3 with SQL extensionsccccccceeveeveeeecveeennene 465
NESLEA AT USE CASES ...ueeeieiieieieeeertete ettt ettt ae st et sbe st et s e be st e e sbasse e saassensesans 469
Nested data limitations (PreVIEW) ...ttt sae st e e nnan 471
Serializing complex NEStEA JSON ...ttt ettt st e sse e e e e e e e e e saesaenaan 473
Using HyperLogLog sketches in Amazon Redshiftuciiiiiiiiiiiiiinennnencciiiiiccinnnnneeeeseseeennnes 476
CONSIAEIALIONS ..ottt ettt st st e st et s st e st e e s et et e e s s et e e s sesbe st esassassestesansensenassansessesans 477
LIMIEQTIONS ettt ettt ettt a e st be st et e s ae et e st s enesabesntensesane 477
EXQIMIPLES ..ottt ettt et et et et et e st e st e et e e e e e et et e st et e b e s b e e seesaesae st et et e ta st aeseeseeneensententantan 478
Example: Return cardinality in @ SUDQUETYouieeoieeeeeeeeeee ettt 478
Example: Return an HLLSKETCH type from combined sketches in a subquery 479
Example: Return a HyperLogLog sketch from combining multiple sketches 479
Example: Generate HyperLoglLog sketches over S3 data using external tables 480
Querying data across databasesccciiueeeeeeeciiiiiiiiiiiiinnneenniiiiiiiiiiiiitssassssssssssssssesssssssssssssssses 484

Amazon Redshift Database Developer Guide

CONSIAEIALIONS ..ottt ettt et st e st et s st e st e e s s et et s e s b et et ssesbe st esassessessesassensensssansesaesans 486
LIMMIEQEIONS ettt ettt st st a e st et a e s b st e s s b e et e sessbe s st essesnnenne 486
Examples of using a cross-database QUENY ...ttt 487
Using cross-database queries with the query editor ... 492
Sharing data in AmMazon RedShiftcciueeeeeiiiiiiiiiiiiiinnnennnciiiniieiiiiiiesssssssssssssseeessssssssssssssssns 494
Multi-warehouse writes in Amazon Redshift (Preview) ... 494
Data SHAMNG OVEIVIEW ...ttt et et s te st e s e e s e e e e s et e st e stassassaesnesaensansansans 494
Data SNHArING USE CASESooiiieeteeecee ettt sttt e st e s ae s e se s e e e e s e e et et e sassassasanenaansans 494
Sharing data at different LEVELS ...t sr e aas 495
Managing data CONSISEEMNCY ...cucouiriieieeeieeceese ettt e e a et st e st e s e se e e e e s sneaeaanes 496
Considerations when using data sharing in Amazon Redshift ... 496
Regions where data sharing is available ... 498
What iS @ dAt@Share? ...ttt ettt st et a et s s s et e e s s e s e e esasans 501
StANAArd dAtAShArEScccoieiveeer ettt ettt b et s e st a st e e nans 501
AWS Data EXChange datashares ...ttt st 503
AWS Lake Formation-managed datashares ...t 506
Datashare producers and CONSUMIEKSccuecuicieriereeieieeeeete e stestes e eee s e sseaessessessessessesssesseseens 508
HOW data SHaring WOIKS ...ttt ettt ae st st s e e ettt 509
Managing datashares at different States ... 509
SHAMNG AAASNAIES ...ttt et e st e st e s e e e e e s e e e e b et e ssasbesseesaensensensansansans 510
Managing permissions for datashares ...t aas 510
Granular sharing using WITH PERMISSIONS (PreViEW)cccceeeeeeeeeeeeeereceeceeseseeeeeessesaennas 512
Working with views in Amazon Redshift data sharing ..., 513
Managing access to data sharing API operations with IAM policiesccccceverveeerciecieceerennene. 515
QUEINYING AAtASNAIES ..ottt st e s e e e s s et e st e st e st e s sessaesaesa e s estestassasassessnesesnaans 517
ACCESSING SNArEA At .ottt e e a e b te st e s e e s e e e e e e aenes 517
Accessing metadata for datashares ... 517
Integrating Amazon Redshift data sharing with business intelligence tools 518
Monitoring and auditing data ShariNg ... 518
Integrating Amazon Redshift data sharing with AWS CloudTrailcccoeovevecveceneneeeeeeeee 520
Managing data Sharing Tasks ...t aan 520
Managing data sharing using the SQL interface ... 520
Managing data sharing using the CONSOLE ..o 563
Managing data sharing with CloudFormation ... 577
Managing data sharing with writes using the console (Preview)cceeeeveeeeceeceeceeceenene. 583
Ingesting and querying semistructured data in Amazon Redshiftcccccceiiiiirnnnnnnnnecciiiieceenns 596

Xi

Amazon Redshift Database Developer Guide

Use cases for the SUPER data tYPe ..ttt ettt stesse st s se e s aesaesaenaans 596
Concepts for SUPER data tYPE USE ...ttt st saesaesaesse e s sa e s e n e a s nes 597
Considerations for SUPER data ..ottt st e st e ssesseseesessessesseassassenens 599
SUPER SAMPLE AAtASEL ...ttt ettt ste st ste e e e e et st e st e st e s sa s aesn e s e e eaansassannas 600
Loading semistructured data into Amazon Redshift ... 602
Parsing JSON documents t0 SUPER COLUMNSooeeiiieieeeceeeeeeeete ettt 602
Using COPY to load JSON data in Amazon Redshift ..o 603
Unloading semistructured dataoeoeeeeieceeeeeeeeeeee ettt s te st e a e e sa e aeaan 608
Unloading semistructured data in CSV or text formatscccoeeeeevececececeee e, 608
Unloading semistructured data in the Parquet format ..o 609
Querying semMistruCtured data ...ttt st s e et et aa e 609
NQVIGATION ettt st rae e st e s ae s sae e s b e s saa e s besssaessaessseasssesssaessseesssesssesssaesseensaens 610
UNNESTING QUEKIES ...ttt ceteestt st st e stessaessaessaeeseessaessssesssaesssassssssssessssesssessssesssessssesseesssnanns 611
ODbjJECt UNPIVOLING ettt et et e st e s aesbe s e s e e e e e e s et e saestasbassassessnennensanes 613
DYNAMUC TYPING ottt ssre s ee s st e s sae s st e s saesssa e s s e e s st esaesssaessaassssasssesssaessseesssesssennns 614
LaX SEIMANTICS .eeiuiiiiiiieieeteteeteet ettt sttt et s e st s b e et e s e e sb e st e se st e s st e saesbessessesnsasseesnanns 617
TYPES OF INTrOSPECLION ..ttt e e e e e e et e st e besbessa e e e e e snennan 617
OFAEE DY ettt te st s e e e e et et et et e st e e e e se e s e esee e e te st e saeseeseeneensentensansansans 619
Operators anNd FUNCLIONS ..ottt e st e s aesse e e e e e e et e stestesaassasanesesnnans 620
ArthMETIC OPEIALOIS ..ottt ettt e s e et e st e st et e sseesesse e e e s enseaansensans 620
Arthmetic FUNCHIONS ..ottt b e st sb st a et 620
ATTAY TUNCLIONS .ottt et et e st e st e s e s e e se e e et et e s et assassassassaesaensensanean 621
SUPER CONFIGUIALIONS ..ottt ettt et e steste st s e e et e e et esaasbe st e s se s e enaennenaanean 623
Lax and strict Modes fOr SUPERccoiriiiirenieireneteesesteteeseestee e sse st eessessesassessessesassessessons 623
Accessing JSON fields with uppercase and mixedcase lettersoovevececececenececeeceeeenns 623
PArSinNg OPTIONS ..ottt st ste s st e st e s sae e s sae s sae e s b e s saessaesssaesssasssassssessseesssesssesnnes 625
LIMIEQTIONS ettt et s s st a e st s s st e st e s ae et e s e s esesabesntensasane 626
Using SUPER data type with materialized VIEWS ..ot 628
Accelerating PartiQL QUETIESuecueeieeeeeteceeeeeeee et te e steste s e e e e e e e e saestesaessassessa e e e s e saeaessanaanen 629
Limitations for using the SUPER data type with materialized viewscccovevvevvecvecrecrennenee. 632
Using machine learning in Amazon Redshiftcceuuuueeciiiiiiiiiiiiinnneennnnniiiiiiiciiiinneasessssssssssseens 634
MacChing LEArNING OVEIVIBWc..ccuecieeieriecieieeetete e ste e e teeee e e s e s e saestestessessasse s e essessessessensassassassesssenean 635
How machine learning can solve @ problem ... 635
Terms and concepts for Amazon Redshift ML ... 637
Machine learning for NOVICES aNd EXPEItScoiciiieciecieiececereeee ettt e e e e sa e e saesaenaens 638
Costs for using AmMazon RedShift ML ...ttt 641

xii

Amazon Redshift Database Developer Guide

Getting started with Amazon RedShift ML ...t 642
AdMINISTIAtiVE SELUP .veveeieeeeee ettt e s e e e et ste st e st e s sessassessn e aennenaeaanes 643
Using model explainability with Amazon Redshift ML ..., 648
Amazon Redshift ML probability MEtriCs ... 649
Tutorials for AmMazon REAShiTt ML ...ttt sttt sae e 651

TuNING QUErY PErfOrMANCEccciiiiiiiieeeeeeeiiiiiieeeeeieeassssssssssssssssess 735

QUETY PrOCESSING ..eicuvieriirieeieieiteesttestessseesstessseessesssesssessssesssesssessssesssessssesssessssesssessssssssessssesssessssesssasns 735
Query planning and execution WOIKFLOWccoirieieiecieciesesececece ettt cve e aenens 736
QUETY PLAN ettt ettt et e st e st e st e s e e e e se e e e e e s s e se st e b e saesaesaesaeseastansansansansassesseesaanes 738
REVIEWING QUEIY PLAN SEEPS ..ottt te et a et e st e st e stasse s e s e e e e e e aesaensaneans 746
Factors affecting query performanCe ...t aas 748

Analyzing and iMProViNg QUETIEScccceeeeieieieietectestesteeesesseeeesaestessessessessessessessssssessessessessessassans 750
QueEry analysisS WOTKFLOWoe ottt ettt s e e st st naens 750
REVIEWING QUENY GLEITS .ttt ettt st et e e s e e s e e e s et e st e tesaessassessaesnenaennannan 751
ANAlyZing the QUENY PLan ..ttt sttt e st e s s e e e n et nes 754
Analyzing the QUErY SUMMAIY ...ttt te s e re e sa et et e sae b e s e e sneseans 754
IMProving qUEery PerformManCe ... cceceeieeeiciecestece ettt ste e s teste e e e e e s e saestestesaassassessnesaanes 761
Diagnostic queries for QUEry tUNING ..ottt ste e st e e e a e sae s 765

TroubLleSNOOtING QUEKIEScueeeeeeeeeeeeeeetetee ettt ettt et e e s e e e s e e e e s e sae b e be b assaese s e enaansensansan 769
CONNECLION TAILS .eviieiieretererer ettt s et et a et s st et e e et e e esasbassesasaassansenae 770
QUETY NANGS ..ttt te et e e et e st et e st e st e st e e b e s e e e et et estasbassassaeseeseensansansansan 771
QUENY TAKES 100 LONG .ottt ettt et e e e s e e e e e sa e s be st e ae s e seesnena e e ennenaanes 772
LOQA FAILS ettt ettt st ettt st sttt e et et e e s e e e e e se s e e enas 773
LOAd taKES 00 LONG ..ottt st te e e et sttt e e e ae e e e et e nean 774
LOQd data iS INCOITECEooviiiiieteeeterertete ettt sttt ettt et et st e st e e ssa st e e snanes 774
Setting the JDBC fetch Size parameter ...ttt 775

Implementing workload managementiiiiiiiiiiiineeennniiiiiiiiiiiiinaesessssssssseesssssssssssssssssnes 776

Modifying the WLM confiQUIation ...ttt teste e s e e sa s saessasaeas 778
Migrating from manual WLM to automatic WLM ...ttt 778

AUTOMATIC WLM Lttt ettt s a e st tsea e et s b st et s b e et e s se s sbesbesntenasne 780
PrIOTIEY ettt ettt et e st e st e s b e s s e e s b e s aa e s b e e st e s b e s sa e e b e e s st e e b e s sa e e bae st aesseesraeeneas 781
ConcurrenCy SCAlING MOAE ...ttt re e e et et ae st e st e e e e e e e e s e aeaenean 781
USEE GEOUPS «eeeveeeeieeeeeritietessseestessstessessseessessseesssesssessssessssesssesssessssesssessssessseesssessseesssesssssssaesssessssessn 782
QUETY GFOUPS «evveiviieieenteeiieiseessteestesssessseessseesseasssessssesssessssesssessssssssessssesssessssesssessssesssessssesssessseesssesns 782
WILACAIAS ..ottt sttt sttt ettt s bt et s st et e s b et et s se st et e sesbastenassansansone 782
QUENY MONITONING FULES ..ttt ste e ra et ae st e s ae s b e s se e e seesn e e e s enaeaenes 782

xiii

Amazon Redshift Database Developer Guide

Checking for aUEOMAtic WLM ...ttt e e ettt sae s e e nenan 783
QUETY PFIOTILY weieeiiciiieieiitieierceeste st eerte e st e s tessreessae s s e esssesssaesssessstasssesssaesssessssesssessssesseesseesssessssenses 783
MANUAL WLM Lottt sttt ettt ettt s s b et s et et s e be st e e s s esbe st ssassensenasansesassans 788
Concurrency SCAlING MOAE ...ttt ettt te b e s s e e e s e e e e s e aesaenean 790
CONCUITENCY LEVEL ..ttt ettt e st e st e et e e e e e et e st e be st e s s e esaeseeseensenaansanean 790
USEE GEOUPS «eeevvieieireeeritietessseestessseessessseessessseesssessssssssessssesssessssssssesssessssessssesssesssessssesssssssaessseessaesns 792
QUETY GFOUPS .evveiiiieeeenteesieiseessteesteessessssessseesstesssessssesssessssessssssssesssessssesssessssessssssssesssessssesssessssesssessns 792
WILACAIAS ..ottt sttt ettt s bt et st et e s b et et e se st et e e sbantenassansansens 792
WLM MEMOrY PEICENT 1O USE ...ociiiiiieeiiieteeiteerteertesste st essteesaessaessseessesssessssessssesssasssessssesssssssaens 793
WLM TIMIBOUL ...ttt ettt st et et ae st e st e s e b e st s ene st e st e snasaesneans 793
QUErY MONITONING FULES ..ttt ste e e et et s ae st e s b e s b e s e e e e e e sa e e e s ensenaanes 794
WLM qUErY QUEUE NOPPING .ottt ettt te e tesse e s e e e e e e saeste st e sessesses e e aesaessessansanean 794
Tutorial: Configuring ManUal WLM QUEUESeceeieieeeeeeeeeeeeeee et crete e sve e e e esae s e ssesaesaensans 797
CONCUITENCY SCALING ottt te e e e et e e et e st e ste st e s se s e e e essesaessessastensassessaesaansessensansansansas 813
Concurrency Scaling CAPAbIlItiesccueoueeueeieeeeeeeee et eae e 813
Limitations for concurrenCy SCAliNGc.coeoueeeeeeececceeeeeee ettt a e e e 814
Regions for coNCUITENCY SCALINGccveieieieeeeee ettt e e e sae st ae e e ne e e ns 815
Concurrency SCAliNg CANAIAAtEScouevuieieieeeecee et se ettt sae e e s e e aeaenans 816
Configuring concurrency SCAliNg QUEUESc.ccveieciecierieeeceeee et ctestestesse s e s e e e s esaesaessessassenns 785
Monitoring CONCUITENCY SCALING ..ooieieieieeee ettt ste st e st se e e e e e e s e e e saesaeneans 816
Concurrency SCAliNG SYSTEIM VIEWScueouieeieieicieeciestectesteete e ee s e seestesaestessesse s e e e e s e s saesensansans 817
ShOrt QUENY @CCELEIATION ...ttt ettt et e st s e e e e e e e et e b e sae s e seeseesaenaanaanes 818
Maximum SQA FUNTIMIE .ottt ceeree e e e sesreeeessaaeesesssasesesssasesesssssesssssssnesennnns 819
MONILOFING SQA ...ttt sttt et e st e e st e s sae s st e s s ae e st e s saesssaessaa e s st esseessaessaesstesseessaeneans 819
WLM quEUE aSSIGNIMENT FULESooviieieieeeeeeeetetete e ste s e e e e et et e saesaestestesse s e ssaeaesesaessessassassnssnsnnens 820
Queue asSIgNMENES EXAMPLE ...cvecueeeeiereeeecteseree ettt te e s e e e e e e s et estestessassessaesasssesansanes 822
ASSIgNING QUEIIES 1O QUEUES ...ceviieieiitieteeciteete st esiteesseessaessseestesssessssessssesssessseesssessssesssessseesssessssesssens 824
Assigning queries to queues based 0N USEr rOLESceciiiecececececeeeceeree e 824
Assigning queries to queues based 0N USEr groUPSccceeveeerieniesrenteneseseereeeessessessessessensens 825
AsSSIgNING @ QUErY tO @ QUENY GIOUP ..ueeieieereeirierireeneeesreestessseesssesssessssessseesssesssassssessssesssesssessssessns 825
Assigning queries t0 the SUPErUSEr QUEUEcccccvecieeierierieeeeeeeetectestestestesses e eee e esaesaessesassenes 826
Dynamic and StatiC PrOPEITIEScceeeeiiieietetecteceeee et et ste st e s e s te e e e e e e et e saestesaessassassessnesaanaans 826
WLM dynamic memory alloCation ...ttt sre e nan 828
DYNAMIC WLM @XAMPLE ...ttt te st e e se et e steste st e sse s e e e e e e aesaetesaassassessnesnanes 829
QUErY MONITONING FULES ..ottt et et et e ste st esse et e e e s e s et e stessessassesseeseensensansansansn 831
Defining @ qUEery MONITON FULE ...ttt sttt ns 831

Xiv

Amazon Redshift Database Developer Guide

Query monitoring metrics for Amazon Redshift provisionedccceeeeeeenenieevcceececeenee. 834
Query monitoring metrics for Amazon Redshift Serverlessovevececenececiecceeceeeeeene 837
Query monitoring rules tEMPLAtES ...ttt aan 838
System tables and views for query monitoring ruleseeeveecececececeeeeeeeeeecre e 840
WLM system tables @nd VIEWS ...ttt te e re e e e sae st e st e saesse s e sane e ennens 840
WLM SEIVICE ClASS IDSuevueeiiiriirieteisiestesteesteste e e stet et s se st et e e sse st et ssasse e s e ssassesassessessenassassessesansans 842
Managing database SECUNILYccccuuueeciiiiiiiiiiiiiiieennniiiiiiieiiiiiesasesssssssssssssesssssssssssssssssssssssssssssssne 843
Amazon Redshift SECUMItY OVEIVIEW ...ttt ettt steste st e e s aesaeaan 844
Default database USer PErmISSIONScccciceeieeceeeceeceetec et saesaestessesse s e e e e s essesaesanaans 845
SUPEIUSELS ...eveiiteetteeteesrteeteesaeeestessseessteesstesssesssaesssassseasssessssesssessstasssessssesssessseesssessseesssessseesssessssesssesssnans 846
USBIS ettt ettt sttt et s b e st a et b e s bRt e Rt et e et e R e s be et e Rt e b e et e e st e ebe st e ateseeaee 846
Creating, altering, and deleting USEIS ...ttt st nnan 847
GIOUPS eevteeteiertieiteesteestesestessseesstesssesesaessseesstesssessssessseesstasssessssesssessstesssessssesssessstesssesssaesssessseesssessssesssesssaens 848
Creating, altering, and deleting GroUPS ..ottt as 848
Example for controlling user and group @CCESSuiiieciecececeeececee ettt sa e 848
SCREIMAS ...ttt sttt st s st e st e s b e st et s aa s et e e s sesbe st euasbessentssessastesasansenessansan 850
Creating, altering, and deleting SCheMAS ... 851
SEAICR PN .ttt a et et e b s ae b e ae e e aeenaeaanes 851
Schema-based PEIMUSSIONSc.cceeiicieieiecieceeeeee et te et e e ste s e s e s e e e e s e s e stesessessessassessassnensansans 852
ROLE-DAsEd ACCESS CONLIOL ..ottt ettt ettt et st et s s s b e s sasee e nas 852
ROLE NIEIAICRY ..ttt ettt e s te e e s e e e et e st e st e st e s aeesaeseesa e e e naenaenaanes 853
ROLE @SSIGNIMENT ...ttt ettt et e st e st e et e e et e e e e e et et essa st essassasseessensensensansansans 853
Amazon Redshift system-defined roles ... 854
SYSTEM PEIMUSSIONS ..ccvviiiiiiiiietieiteesteestesetessteestessaesssaesssessstesssesssaesssessseesssessssesssessseesssessssesssessseasns 856
Database ObJeCt PEIrMISSIONScuccieciicieceeecee ettt e stesaesse s s e s e e e e e e s eaesannan 862
ALTER DEFAULT PRIVILEGES fOr RBACuoiteteteeeeeeetetetetestesteete e se s aesaessessessessas s e s e aanes 862
Considerations fOr rOlE USAQE ...ttt st e ae e e s essa e e e s e aenean 862
MANAGING FOLES ...ttt e e e e e e et e st et e st e s b e s be e e e e e st e ae st e tassessasessaeseansensensanes 863
Tutorial: Creating roles and querying with RBACccooierenereeececeeeetete e 863
ROW-LEVEL SECUNILY vttt e te e e ae e et e st e st e b e st e s e s e ese e s e s e aestessassassassesssensensaneans 882
Using RLS policies in SQL Stat@mMents ...ttt n e saesae e 883
Combining MUultiple POLICIES PEI USENccueeeieieeeteteteecer ettt ste e re s e e e e e e s e sesaesaasaens 883
RLS policy ownership and managementcccoiieeeeeeeeeceececeseeeee e sae e as 885
Policy-dependent objects and PrinCiPLes ...ttt 886
Considerations USING RLS POLICIESccuecueeiieeeeeeeeceeteeete ettt s ae e e nes 888
Best practices for RLS PerformManCe ...ttt ettt sae s 891

XV

Amazon Redshift Database Developer Guide

Creating, attaching, detaching, and dropping RLS poLliCiescccceereeciecriciecrecececeeeeeeeenee 893
MELEAAALA SECUIILY ..ottt e e et et e st e st e e se e e e s et et et e bessassessaeseesaensansansansan 897
DyNamic data Masking ...ttt ettt et e s n e aeaeaan 899

OVEIVIBW ...ttt sttt et s e s st st st et s b e et e e st s b e st e e st e b e et e e st s be st e st s saesbe st essesasestensasnns 899

ENA-10-ENA EXAMPLE .ottt te s te s ae e e e e s e et e st e st e b e s bessesseesnesaennansaneans 899

Considerations when using dynamic data masking ..o 903

Managing dynamic data masking POLICIESc.coueeuiiiiieieeeeee e 906

Masking POLiCY NIEIArCRY ...ttt sae st e s e e s e e et aan 907

Using DDM with SUPER type PAths ...ttt n s 909

Conditional dynamic data MASKINGcccecueeeieeeeeeeeeeeeee ettt sa e ae s 914

System views for dynamic data Masking ... 915
SCOPEA PEIMMISSIONS ...ueiereuieieterieeeeeeeerte st e rtestestestesseesee s esessessessassassassaesaessessassessansansassassassesssensansansansan 918

Considerations for using scoped PermMiSSIONScccceeeerieierieriectereeeee e rae e resses e e e e aeneas 918

Y 0] I Y=Y =] =1 1 Tl SRR 920
AMAZON REASNITE SQL ..ttt et ar e ebe e e ebesesseesbsessseesssesssessseessessseesssesnseessens 920

SQL functions supported on the leader NOAE ... 920

Amazon Redshift and PoStgreSQL ...ttt te s e s re e se e aesae e aan 923
USING SQL ettt ettt et s rte et e st e e s e e s st e s s e e s ae s ssa e s s e s saessbassstesssassssesssessseesssessseesssessseesssensses 931

SQL reference CONVENTIONSooiviieeiieeiceecteectecte ettt e e recaresseessesssecsssesssesssesssecsseessnesnns 931

BASIC ELEMIENTS ...ttt ettt et s e a et e sae st et ssa st et e sasbaeesaesassansenassanes 932

EXPIESSIONS ...eeeiiiiiieeiitcrteerteet st est e e st e sstessae e st e e sseessaesssaes st assseassaessseesssassseasssesseesssessseesssessseesseessseans 986

CONAITIONS ettt ettt sttt s st et et s s et et e e s be st et ssesae st esassessesassansansenssanes 991
SQL COMMENAS ..ottt ettt ettt et ere e e e sbeesaeessbeebseesbessssesssessssessessssesssessssesssesnseesssesnseenns 1019

ABORT ettt ettt e st e st e s e e st e s st e s s et e st e s sae e st e s aa e s st e s b e e sae e aa e s b e e s e et e e st e et e e raesnsanraans 1023

ALTER DATABASE ...ttt st ee e e st e s sae s seessse s st asssasssaesssassstasssesssassssassssesssessssesssessseanns 1024

ALTER DATASHAREetoetiteectterteesttestessreestesste s st e s ssesssaesssesssaassessssesssassssssssessssesssessssesssesssaesssens 1028

ALTER DEFAULT PRIVILEGESoo ottt et sstessaeeseessaessseessaeessnesssasssaesssasssnessnssnnns 1032

ALTER EXTERNAL VIEW (PrEVIEW) ...ocveveeieeieeeeeeteeetestesrestessessesessesessessessesssssesssssssssessessessenses 1036

ALTER FUNUGTION c.ctittieteeieecteesteesteeseesseessseesseesssessseesssesssaesssessssesssessssasssessssesssessssssssesssssssaessssanns 1038

ALTER GROUP ...ttt sste st st e e saeestesssessstessaeessaesssaasssassssasssasssassssassssesssessssesssessseanns 1039

ALTER IDENTITY PROVIDERotiitieieirteettrctenteesteeseesseessseesseesssessssesssessssessssssssesssesssaesssesssesssnes 1041

ALTER MASKING POLICY ..ottt cstee et esteesresseesssesssaesssesssaesssesssaesssessssesssessssasssessssesssens 1043

ALTER MATERIALIZED VIEWuuttiiitieiitirerteeeteesseeesseessssesssseesssseessssesssssesssssesssssesssssesssssessssnases 1043

ALTER RLS POLICY .etititeettertersttestee st sstessressstessaesssaesssessssessseessaesssessseesssesssessssassssesssessseesssesnes 1046

ALTER ROLE ..ttt et st essee st e s sse s veesaessstessae s st esssassseasssesssaesssessseesssessssesssessseesssennne 1047

ALTER PROCEDUREcetiiteittetercteeteesteste st ssressaeessesssessssessssesssesssssssssssseesssessssssssesssessssesssssnnes 1049

XVi

Amazon Redshift Database Developer Guide

ALTER SCHEMA ..ottt ettt sse et st st sb s b e a e sttt s b e b 1050
ALTER SYSTEM .ottt sttt sae et ettt e b b s e e st 1052
L I 1 = I TR 1054
ALTER TABLE APPENDoiiuiiiiiiiiititctttctntctcnt ettt esaesaes st esse s sessnesssesnas 1078
ALTER USER .ottt sttt sttt sb e sb s st et st bbb 1084
ANALYZE ..ottt a et sae bt sb e s b e st b s bbb s b s bt s b e s b e bt e aeea 1090
ANALYZE COMPRESSIONooiiiiiiiititetctciecnentet sttt sttt st et esessessesses e st e s ssnens 1093
ATTACH MASKING POLICY ..ottt sttt ssessessesaessessssssssssssessessens 1096
ATTACH RLS POLICY ettt sttt sttt et ssa s e sesses e s e sst st s s ssnesnes 1098
BEGIN ettt s a bbb a s s 1099
CALL ettt s b b besa e e st e e st ent 1101
CANCEL .ottt sttt st b bbbt st st st b e b e b e sae b e st sne s st sntenbennens 1104
CLOSE ..ttt sttt st b bbb s st b e b e b e b e e e st e e 1107
COMMENT L.ttt sttt b e bbbt st st s b e b e b e b e be st s besatenbesbennens 1107
COMMIT ettt st b ettt st st e b e b e b e b e s st e bt satesbesbesnens 1110
COPY ettt s b bbb sttt b e b e besa e e s st e e s et nt 1111
CREATE DATABASE ...ttt sttt sttt sb e bbb st et s 1213
CREATE DATASHARE ...ttt reses et sttt st sb b s sesse s e sas s s ssnens 1230
CREATE EXTERNAL FUNCTION ..ccoiiiiiiiiiientntiteteteiccestst et esessessesses e sse st et ssnssnessessens 1231
CREATE EXTERNAL SCHEMA ...ttt sttt ssesesesse ettt snesaesneaes 1242
CREATE EXTERNAL TABLE ..ottt sttt sa s esessessesassnssssens 1252
CREATE EXTERNAL VIEW (PrEVIEW) ...cvuiirieinieietreeinieietnieteteeses et se st e et et sse et e sassesessesencs 1281
CREATE FUNCTION ..ttt sttt sresse et sttt sbe b s s e st st e s 1283
CREATE GROUP ...ttt se ettt st st bbb st st st a b b 1290
CREATE IDENTITY PROVIDERcociiitiiiiiiiiniititctctetecicccntetst et ssessesses st ssenene 1291
CREATE LIBRARY ..ottt sttt sttt st sa b sttt s b b e s s s st e s 1292
CREATE MASKING POLICY ..ottt ettt sttt esessessessesses e st e s ssnessessesne 1296
CREATE MATERIALIZED VIEWcuooiiiiiiitititeiccttntetetesessesses sttt saessessessessessessseasnas 1297
CREATE MODEL ..ottt sttt ss s sttt s sa s b e b ae s st st s b e sa e 1303
CREATE PROGCEDURE ...ttt sttt saesae s e sse st st s sassa s b nes 1333
CREATE RLS POLICY .ttt sttt ese ettt st et s sb s ssesses e st s e sanenes 1338
CREATE ROLE ..ottt sttt st sa ettt sa st n s s 1340
CREATE SCHEMA ...ttt sttt b et sttt s b e sb b saesae s e st et s st 1341
CREATE TABLE ...ttt sre ettt a s b s sttt 1345
CREATE TABLE AS ..ttt sttt st sa b se s s s e st s b e sbene 1368
CREATE USER ...ttt sttt sa sttt st st sb e b s s st st s a b e b 1380

XVii

Amazon Redshift Database Developer Guide

CREATE VIEW ...ttt e e te e e ete s s eateseetae s s ssaesssaesssaassssasessaassssaeensasssnsssssnssessnsssessssesssssesnnns 1387
DEALLOGCATE ...ttt tt e e cte e e cte s e ctee s e s taesesaaesssa e s s saessssaseesaaesssasensasesnsssasssessnsesessssesssaeennns 1392
D] = I 4 U 1393
DELETE ..ottt s et e e et e e e s e aa e e e s s s e e e e e e aa e e e e s e e e e s e ssaaeasessaaesasssaaesansssaasessssaassnnssenes 1398
DESC DATASHARE ...ttt eeete e s ete e e te e e eaae s e aaesesseesessaesesaa e s e s e e s saesesaessnsaassssasensssasnsssesnnns 1401
DESC IDENTITY PROVIDER ...ttt escteeecteeecteesecsaesesasesesaesesaessssasssssasssssssssssassssaesnnns 1402
DETACH MASKING POLICY ..ottt setteeette s te e s teeesaessssaeessasassssaassssaassssaassnsasssssassnnsaesns 1403
DETAGCH RLS POLICY ettt ettt eectte s e steeseteessteesssaaesssaaaessaassssaassssasssssaesnssassnsssssnssassnnees 1404
DROP DATABASE ...ttt eeste e e stte s e ste e s e sae e s e teesesaeessssesessaesessaesessaessssaeesssseenssasessseesssssesssseenn 1405
DROP DATASHARE ...ttt ettt ctee e ectee e et eseaeeesteeessaeeesaeeessaassssaeessssasessaessssasenssaesnssasssssaesnns 1406
DROP EXTERNAL VIEW (PrEVIEW)eecieiecreeieeeeeeeteieetesiestestessesseessessesessessessessessessessssssessessessenses 1408
DROP FUNUCTION ..ottt eecteescteeessteeesrasesesasesesssessssesssssasssssssssaessssasssssssssssasssssssssssessssaeens 1410
DROP GROUP ...ttt ettt st e e cte e e te s e e te e s e ae s e ssa e s e saesesaassssaaesssaaesssaaesssaesnssaessseesnsseenssennn 1412
DROP IDENTITY PROVIDER ...ttt ettt st e s te e s e aeeseaessesae s s sae s s saassnsasensaasssaasnns 1413
DROP LIBRARYceteiiteeeeteeccteeectteessteeescteeessaeeesaeesesaessssaessstesssssasessesssssesssssessssseessssssssssesnsssesnssaeens 1414
DROP MASKING POLICY ettt ertte st e s cste e s eas e s esae s s estesssaaessssaessssaessssaassssassnssessssesnnnees 1414
DROP MODEL .ttt eeeteeseteeseeeesete e e s sasesesas e s e s e esesaa e s saassssaeassaesesasssssaeesssaesnssessnsseessseennn 1415
DROP MATERIALIZED VIEW ...ttt ettt eecteeecttesecsaeessasessssaessssaessssassssssssssssssssasensssesnssanan 1416
DROP PROCEDUREoeetteeetteectteecteeecteeseeeeseaesesaeesesaaesessesesssessssassssssssssssssssssssssasssssesssssassnsssennns 1417
DROP RLS POLICY ettt et eeeeeeseteeesstaesssaeesesaaeseaaesesaesssssesssssassssasssssasssssessnssssssssassnsssennns 1418
DROP ROLE ...ttt ettt e st e s rte e s e sae e s e e e e s e aaa e s et e s s esaeessa e e s saaenssaaenssaesnssassnsseesnsaanan 1419
DROP SCHEMA ...ttt tte et e e e sre e e e sae e s e ta e e et e e e e te e s esaaeessaaeessaasessaaassaeensaessssesnssanannes 1421
DROP TABLE ... ettt ettt secttese e se st e sestee s e saee s e ae e s e sae e s esaaesssaaessssasassaeesssaeesssaaennsaeenssaesnssaenns 1423
DROP USER ...ttt ee e e s ee s s sta e s s sae e s e aa e s e aa e s e e e e s esa e e s saa s s saeasssaassssaeansseesnssassnsasennns 1427
DROP VIEW ..ttt ettt e et e e st e s s ste e s e te e s e aa s s esae s e saesensaessssaessssaasessaeenssesanssassnssesssaesnnssesnnsens 1429
EIND ettt ee e e e s e e e s e e ae e e e e et e e e e e a e e e e e e e e e e e e aae e e e aae e e e raaeeeeesraaeeeenrraas 1431
EXECUTE ..ottt s et e e e te e e ette s e seese s st e e e sae s e baesessaaesssaaaessaeeassaeesssaaensaaesssaaesnsaesssaeensaeens 1432
EXPLAIN ettt s sttt s e ate e e s s aa e e s s et e e e e e s saa e s e s saaessasssaaaeesssaaessanssaaessnnssaeeessssseaennn 1433
ol 1 U 1441
(€] 272) I [USRS URRSRR 1443
IN S ERT ettt e e e rte e e e rte e s e ee e e e e e e s esae e e sae e e saae s saaesssaaessaeesssaeenssaaanssaeenssaeenssaesnsseennns 1469
INSERT (EXEEIrNAL TADLE) weeeieeeieeeeeeeeeeteett ettt ettt ce st e ce st e se st eesbeesssseessssessssssessssesssssessnne 1476
LOCK teeeeteeectee et e e st e e te e e e te e e e e e e s e sae e e saeeeaaeeessaesasssesesseesessaesasaseasaeaasaaaasaesansaeeassaeanssaeenssensnssees 1479
MERGE ... et e e e et e e s ee s e e e s e ae e s e aa e e s aa e e et e e eesaaesssaae s saaeesaeeensaeesnsaeennsaesnsaaann 1480
PREPARE ...ttt ettt ce et e e s s aa e e s e s sas e e e e s s aa e e s e s b e e e e e s aaa e e e s s saaeeaessaaeeassssaaesansssaasssnssenans 1486
REFRESH MATERIALIZED VIEWeueeieeeceeecteeccttesccieesecteesseeeseaeesssaessssaessssasssssasssssessnssassnsnsesnns 1488

xviii

Amazon Redshift Database Developer Guide

RESET ettt ettt et e s e e s sae e st e s sae e st e s b e e sa e e ae e s sa e s be s sae e ae e s st e e se e se e e beessaeesseesaeesraeraans 1491
REVOKE ...ttt ettt ssrtestessaeessae s s e e s tessae e s saessseessaesssaassseasssesssesssaesssassssesssesssaessseesssessseessaessses 1492
ROLLBACK ..ottt ettt este st eeste e st e s sae s s e e s saesssaessaessstassa e saesssaesssasssassssessseesssessseesssessseenseens 1511
SELECT ettt st e e e st e e ae st e s s bt s s e e s s e e s aa e e b e e s s e e e b e e s e e e e e e st e e aa et e e ae e s st e e saaeenaeesaesatenane 1512
SELECT INTO cetitiicteeteecteeterctesste et estessseessaessseessesssaesssessssesssesssessssassssesssesssassssessssesssessssesssesssaanns 1585
SE T ettt ettt et et e st e e e et e a e e e b e e a e e e b e e R e e et e e e e e e e b e e ea e e et e e b e e e b e e s e et e e st e saeenraesaas 1586
SET SESSION AUTHORIZATIONooitieteiteeteesteste st essessseestesssesssaessseesssessssssssessssssssesssssssaessnes 1591
SET SESSION CHARACTERISTICS ...eetiteeeeeteecterteesecstessveestessaessaessaeessaesssesssaessssssssasssesssassseens 1592
SHOW .ttt sttt ettt st e s b st et s e st e s e s b et et s b et et e sesbe st e st esessastesasansastesarsansensons 1592
SHOW COLUMNS ...ttt este st ssae s sse e st e s saesssaessaaesssassaesssaesssaesssasssassssessssesssessseesssennne 1594
SHOW EXTERNAL TABLE ...ttt sttt sstessae s aessaeesanesssesssaesssesssnesssesssassssassneans 1596
SHOW DATABASES ...ttt sste st estessreestessaeessaesssassaaessseesssesssassssassssssssessssesssessseesssesnnes 1599
SHOW MODEL ..ottt ste st esssessseessaessseesstesssaesssassseasssesssaesssesssessssessssesssessseesssennns 1602
SHOW DATASHARES ...ttt este st esaessse e st e s saessaesssaesssasssessssessssesssessssssssessssesssassseens 1605
SHOW PROCEDUREotitiiteeterteeteesteste st e stessaeestesssessaesssessssesssessssessssssssassssssssessssesssesssssnes 1606
SHOW SCHEMAS ...ttt ste s sae e s tessat e s stessse e s besssa e s saesssaesssasssaasssessaesssessssasssessssenseens 1607
SHOW TABLE ...ttt te st sre s st e st e s sat e s b e s ssaesae s s st e s aesssaessbaessaasssasssaesssessnsesssesnnes 1609
SHOW TABLES ...ttt sttt st e te s sae e te s sa e st e s ssa e st e s aaessaasssaassaesssaesssassnnesssessnes 1611
SHOW VIEW ..ottt st cste st e saessseessaesssesssaesssaes s e sssaasssessssasssesssessssessssesssessssesssesssassnnens 1612
START TRANSACTION ..ottt st este s st essaessaeesaessseessesssessssesssaesssessssssssessssssssessssessaessnes 1614
TRUNGATE ...ttt sttt estesste s st e s ste e st e s sse s saesssessstasssesssaesssassssesssessssesssessseesssessssesseessaesssenne 1614
UNLOAD ...ttt st este e st estessaessstessatss st e s saessseassasesssesssessssesssessssesssessssesssesssaessessssesssesssaanns 1616
UPDATE ..ceeeeeeeeeecteeettee et eeteeeete s e s aesesaee s s sat e sssae e s saaesessaesessaesessasssnsesssssessssnessnseesssssesssseessssaessssens 1649
VACUUM Lttt ettt te s ste e s ae s s st e st e s saa s s s e s s st s s st e s aa s saessaa e st asssesssaessseesssesssessssessseesseens 1657
Y O] I 0T g [t o] I =L (=] =] 4 Lo SIS 1665
Leader Node—0nly fUNCLIONSooieieeeee ettt ettt s ae e a e e nan 1666
Compute NOde—0nly FUNCLIONS ..ottt ne 1667
AGGregate FUNCLIONS ...ttt sae st e b e s e s s s e s e e s ennesaeaenes 1668
ATTAY TUNCLIONS ..ttt et et e st e st s e e e e et et et e st e s s e saeseeseesaesaanaansanen 1697
Bit-wise aggregate fUNCLIONS ...ttt ae st nnens 1702
CoNAItiIONAL EXPIrESSIONSocveeeieieteteieeteeeee et e e ste e stesteste s e s e e s e s esessassessassassesssessessensensansans 1710
Data type formatting fUNCLIONS ..ottt 1725
Date and time FUNCLIONS ..ottt sttt e st st be st e s e sae e e 1759
HASH TUNCHIONS ettt ettt st s s st e s b e e e e saaan 1831
HyYPerLogLog FUNCLIONSeoueeeeeeeeeeete ettt st te e s e sa et e st s s e s be s s e e s anennan 1841
JSON TUNCLIONS ..ttt ettt ettt et s bt e s b et e e s e ae st s e saa st esassansansnas 1846

Xix

Amazon Redshift Database Developer Guide

Machine 1earning fUNCLIONSov ittt sa ettt ns 1862
MAth FUNCLIONS ..ottt st ettt s et et a s b e sae e ssesaasnesaes 1865

(@] o T=Tex flt {01 3 (et Lo - OO RO 1904
SPALIAL FUNCLIONS .ttt a et et e st e st e st e e e s e e e e a et e aanes 1914
SEHNG FUNCLIONS ..ottt et e st e st e st e s e e e s e e et e st et e aassessasnnenaaneans 2054
SUPER type information fUNCLIONS ..ottt aens 2133
VARBYTE fUNCLIONS ..ottt sttt ettt sae st ettt s a s et et s e sse s s e saassesnssans 2149
WiINAOW TUNCLIONS ...ttt ettt ettt et e s e st e e s sb et e e sasaesaenas 2158
System administration fUNCLIONSceoiiieeeeeee ettt aenens 2224
System iNformation FUNCLIONS ...ttt eens 2235
RESEIVEA WOIASoviveiiiirieiitrienteteesteste et este st e e st sa et s e sse st e e sbestesessessestesassessessssessessessssansensesensen 2265
System tables and VIieWs referenceeueeecciiiiiiiiiiiinnennnnnsniiiiiicininineeessssssssssssssssssssssssssses 2270
SysStem tableS QNA VIEWSe ettt s te et sae st ae b e e e e e e e e e naennan 2270
Types of system tables and VIEWS ...ttt saeste e aeaenens 2271
Visibility of data in system tables and VIEWS ...t 2272
Filtering system-generated QUEKIEScoeoieeeieieeeececee ettt teste s e e ae s s e s e srenaens 2273
Migrating provisioned-only queries to SYS monitoring View qQUENIEsc.ccceveeveeeecveveecvenvennenn 2273
Migrating from provisioned clusters to Amazon Redshift Serverlessccccoevevvievircrenennee. 2273
Updating queries while staying on a provisioned clusterccooeeeeeeenneeceececececeene, 2274
Improving query identifier tracking using the SYS monitoring viewsccooeeeeeevieceecnenene 2274
EXQIMIPLE .ttt ettt et e st e et e e e e e e et et et et e b e e aeeRe e e e e et et e teeaeeseeneensentententanes 2274
System table query, process, and SESSSION idScceceecieeeeerieneceeeeere e sae e 2282
SVV MEtAAATa VIEWS ...ttt sttt ettt et st et st st et s sb et s e sse s e s ssassessenens 2282
SVV_ACTIVE_CURSORSetieieteecttesteerttestesstesstesssesstesssesssaesssasssessssssssessssssssessssesssessssssssessseans 2284
SVV_ALL_COLUMNS ...ttt estestesstessaesstessaessssessaesssaesssaessnessssasssessssesssassseasssessssensees 2285
SVV_ALL_SCHEMAS ...t teettrrtteteesteste s st essaessaeestesssassaesssaesssesssassssassssesssesssessssessssesssesssessnes 2287
SVV_ALL_TABLES ...ttt e te st e s stessveesaessstessaesssaesssassssasssesssaesssesssessssessssesssassseesssennne 2289
SVV_ALTER_TABLE_RECOMMENDATIONScootitieitrcterteestesreeseesseessseessaessnaessessssssssesssassnns 2290
SVV_ATTACHED_MASKING_POLICY ..utioeiitieieerterrerstessteestesssesssesssessseesssessssesssessssasssesssssssens 2292
SVV_COLUMNS ...ttt esae st et sse st et e e sse st e e saesae e s e sse st e e ssassesessassassesessassensesessessesessans 2294
SVV_COLUMN_PRIVILEGESotiotiitirteettieteriteestessseessessssessesssesssaesssessssessssssssessssssssesssssssassnns 2297
SVV_DATABASE_PRIVILEGESccuuteititeeteteetesteesteste st sste st e saessseessessseessaesssassssessnnesssesnns 2298
SVV_DATASHARE_PRIVILEGEScuetiteiteeteetieterctesseeestssseessveesstessseesssesssaesssessseasssessssesssassseens 2300
SVV_DATASHARES ...ttt este st e s stessseessaesssaesssessaaessaesssaesssassstasssesssaesssessseasssesssassnses 2301
SVV_DATASHARE_CONSUMERSciiteetiterttcrteertsseesseeeseessaesssaessseessaesssssssaessssesssesssssssaesane 2304
SVV_DATASHARE_OBUJECTSooeeteettrctenitcsteeresseessseesatessaesssaesssessseesssesssaesssessssesssessssesssessnnens 2305

XX

Amazon Redshift Database Developer Guide

SVV_DEFAULT_PRIVILEGESoooiiiiiiititetitcittntrtetstetercseit sttt sse s ssesse s sa s nnes 2307
SVV_DISKUSAGE ...ttt sttt sa ettt st b b sesae s sse st s 2308
SVV_EXTERNAL_COLUMNS ..ottt sttt sessessesse st e s sanesessessens 2312
SVV_EXTERNAL_DATABASES ...ttt st s s essessesaessessee e ssnns 2313
SVV_EXTERNAL_PARTITIONS ..ottt sttt ssesses s e st s esaesnens 2313
SVV_EXTERNAL_SCHEMAS ...ttt sttt st sae s s ses e s st ssasnsnes 2314
SVV_EXTERNAL_TABLES ..ottt sttt sae s s a e 2316
SVV_FUNCTION_PRIVILEGESoooiiiiiiiitiiittttstctctcscicie sttt ss s ssese e e sssenees 2317
SVV_GEOGRAPHY_COLUMNS ..ottt ettt sttt saesessessessessssssenassnens 2319
SVV_GEOMETRY_COLUMNS ..ottt etessesaesse sttt sssesaesaessessesnessnns 2320
SVV_IAM_PRIVILEGESooiiiiiitiiiiiittnttnteteterccsest st sttt se s st s se s b s saesnenes 2321
SVV_IDENTITY_PROVIDERSooiiiitiiiiiiiinitntetntctetercicieieste st sse s ssesses e se st esa s 2323
SVV_INTEGRATION ..ttt sttt sses et sttt sa b se e st s e st st esaesnens 2324
SVV_INTEGRATION_TABLE_STATE ...ttt esessessessessessse e sanennes 2326
SVV_INTERLEAVED _COLUMNSoootititiiientntntetetetcsrcesestst st stesesses s et et sanenessessens 2327
SVV_LANGUAGE_PRIVILEGESoootitiiiiintititittteteieicieststst st ssessessessessessessessessesnens 2329
SVV_MASKING_POLICY .ottt sttt ss s ssessessessesstsnssssesaessenne 2330
SVV_ML_MODEL_INFOoiiiiiiiiiiiiiicitntetnteteteteiessessests sttt ssessessesses e s e st esesssesessessens 2331
SVV_ML_MODEL_PRIVILEGES ..ottt esessessessesses st sesaesnenes 2332
SVV_MV_DEPENDENCY ...ttt ettt sttt st ssessessessessesssensssssnsessessens 2334
SVV_MVL_INFO .ottt ettt se et sttt et sb e s s s st et st ens 2335
SVV_QUERY_INFLIGHT ettt sttt st sae s s se e s et s s sanesnes 2337
SVV_QUERY_STATE ...ttt st eae st sttt sb b s s st sa s 2338
SVV_REDSHIFT_COLUMNS ..ottt stetesesesse ettt sa st enessessesaesnessaens 2341
SVV_REDSHIFT_DATABASES ...ttt sttt ssessessesses e e e ssnens 2344
SVV_REDSHIFT_FUNCTIONS ...ttt sttt sasssesessessessssnssssens 2345
SVV_REDSHIFT_SCHEMA_QUOTA ...ttt sttt s ssesessessse e st s s esaesnens 2347
SVV_REDSHIFT_SCHEMAS ...ttt st ss s s st easss s esaesnens 2348
SVV_REDSHIFT_TABLES ..ottt ettt n s ssesse s st sstesaene e 2349
SVV_RELATION_PRIVILEGESoooiiiitiiiiintititntetercicietst st sseressessessesse st sss s snesnes 2351
SVV_RLS_APPLIED_POLICY ...ttt sttt snesaessessessessssnssssesaesnenne 2352
SVV_RLS_ATTACHED_POLICY ..cetiiiiiitititetercicicitntetetstesessessessese st sasssessessessessesnssseens 2354
SVV_RLS_POLICY ittt sttt sttt st sb b e b ae s st st st et s b e b e s e 2355
SVV_RLS_RELATION ..ottt sttt resses ettt saesae s sseses e st et sanenessesnens 2357
SVV_ROLE_GRANTS ettt ettt sttt st e a b sae s s ssa st saenens 2358
SVV_ROLES ..ttt ettt sb ettt st st b b sae et s st st e b s b ens 2359

XXi

Amazon Redshift Database Developer Guide

SVV_SCHEMA_PRIVILEGESoootrteirteteteneeneeeeeetetestestessessessesseesesstessessessessessessesssensessessessenes 2360
SVV_SCHEMA_QUOTAL_STATE ..ttt ettt se e sse st st et st et saessessessas e st e e ssaesnessanes 2361
SVV_SYSTEM_PRIVILEGESoottitteeeeeeetrtete ettt et ettt essesaessesses e s e s e e saesaenes 2363
SVV_TABLE_INFO ...ttt st ettt et essesaesses e st et st st e saessessassassessaensensensensanes 2364
SVV_TABLES ...ttt ettt sttt et et et se s s s s et st et e b e s assassassesaeenssnsensensansens 2368
SVV_TRANSACTIONS ..ttt stestesses e s te e st e st e stessessessesses e et saetessessassassassasasenssnsens 2369
SVV_USER_GRANTS .ttt et stesaestesse et st et et s tessesaessessassesse st e e sntessessassessassassesnesneens 2371
SVV_USER_INFO ..ottt stesteseesaese st st et estesaessessesse st e e st e ssessassassesnessesnsensensensensanes 2372
SVV_VACUUM_PROGRESS ..ottt tste e stestessessessessessesstestesasssessessessessassassessssseens 2374
SVV_VACUUM_SUMDMARYcotititetintinenenesteststestestessessessessessessessesssessessessessessessessessasssessessessenes 2376
SYS MONITONING VIEWS ...cuiiiiiiiiieieccteeterstessteestes e sseesseeesstessaesesaesssassssesssessssesssessssesssessssesssassssasssenns 2378
SYS_ANALYZE_COMPRESSION_HISTORY ...uuioirieerietetrtetentenreseseseetetetessessessessessessesnesseens 2380
SYS_ANALYZE_HISTORY ...eiiiteietertentesteeeeeetetestestestessessesse st s e stessesaessessessessesssssssnsensensessessanes 2382
SYS_APPLIED_MASKING_POLICY_LOG ...oottriiieieertetetertenteseneseeeestestessessessessessesssesessessessenes 2384
SYS_AUTO_TABLE_OPTIMIZATION ...cuertiiiteeeeieneeeetetetestestessessessesesseeseestessessessessessessesssensenes 2386
SYS_CONNECTION_LOG .uuioirieirteientenieneseeesstestetestessessessessessesstesssssessessessessassassesnsensessessessassens 2388
SYS_COPY_JOB (PrEVIEW) .uveueiuirierieieierienteesestetsessestesessessestesessessessssessessssessessessssessensesessessensssanes 2392
SYS_COPY_REPLACEMENTScutitiietereerenereetetetestestessessessesseete st ssessessessessessessesnsensessensessassens 2393
SYS_DATASHARE_CHANGE_LOG ..ottt sttt stessesaes e st et et e stessessessassessesseenees 2394
SYS_DATASHARE_CROSS_REGION_USAGEcoooieirteieeeterreseneeee ettt ssessessessessesseeseens 2397
SYS_DATASHARE_USAGE_CONSUMERcootiteiirenenieietentestestessesseseseseeesstessessessessessessesnees 2399
SYS_DATASHARE_USAGE_PRODUCERccuooteirirteirtetenteneeeeeststetessessessesseseseesessaessessensens 2400
SYS_EXTERNAL_QUERY_DETAILooutiteteteereeeetetrtetetetessessessesseete st sstessessessessessesseensessessenses 2401
SYS_EXTERNAL_QUERY_ERRORcctitititererentetetetetesteseesresesee sttt estesaessesses e ssnesasaessessenee 2405
SYS_INTEGRATION_ACTIVITY eeeeeetetetetentesteseseeseseste st estessessessassesseesessessessessessassessesnsenssssens 2407
SYS_INTEGRATION_TABLE_STATE_CHANGEccoeotiteeeeereetnteeetetesreseeseesee st see e e ssenne 2409
SYS_LOAD_DETAIL .ttt teste e e e st et st e ste st essessessassesnt et sssessessessassassesnssnsensessensens 2411
SYS_LOAD_ERROR_DETAIL .uueeteirtetrtetesteseseseeeetetesteseessessessessessesstessessessessassessesssessessessessenes 2413
SYS_LOAD_HISTORY ...uiitetetetetestesteseese st st etestestessessessesses e st et e e sstessassessessassesasenssnsensensanssens 2416
SYS_MV_REFRESH_HISTORYetitititierteeetetetestetetesseseessessee e st et et estessessessessesasanessesaessessenes 2420
SYS_MV_STATE ...ttt ettt s s et st st s st et e st e s s e s assas e s st et e sessessassassasasenssnsensensansans 2422
SYS_PROCEDURE_CALL ...utititeteteeeeeetrtestetesteseessessesee st etestessessessessessesssensssssssessessessassessesssenses 2425
SYS_PROCEDURE_MESSAGES ..o oiietetetetrtetestesteseseses e s ststestessessessessessessessesssessessessessassens 2428
SYS_QUERY_DETAIL .ttt eeeste st ste st essessessesses e st et et essessassassasnsssesnsensessansansanes 2429
SYS_QUERY_HISTORY ...ttt st et st ste st et essessessessesse e e stessessessessassassesnsenesssenses 2435
SYS_QUERY_TEXT eeeeteeieeeeertetetetestestessesesesste st st e saessessessessessesseensestensessessessessassessesnsensensessensens 2442

xxii

Amazon Redshift Database Developer Guide

SYS_RESTORE_LOG ...utiiiiiieieeeetntetetestessesesestetsste st essessessessesstsntesssssessessessassessessesnsensessessensenes 2445
SYS_RESTORE_STATE ..ottt sttt ettt et e s essessasse st et et et et essessasaessesneenesnnns 2448
SYS_SCHEMA_QUOTA_VIOLATIONS ...ueieeetetetetestesienteseeeeestestetessessessessessessessenssssessessessens 2450
SYS_SERVERLESS _USAGE ..ottt ettt st ssesaessesses e st et e e estessessessassassesnssnseneens 2451
SYS_SESSION_HISTORY ...oouiiiieeieertetetetestestesesee e st e ste st e stessessessesses e ste st estesaessessassessessesseensenes 2454
SYS_SPATIAL_SIMPLIFY ...etitititirteeeeeeestetetetestessessesse et s ste st et estessessessessessessesssessessessassassessesnsenes 2455
SYS_STREAM_SCAN_ERRORSciititiietereneeentetetetestesresses e st st st essessessessessessesnsesesssessensensens 2457
SYS_STREAM_SCAN_STATES ...ttt steste e sses e st st et st ssessessesses e s e st e sassaessessanee 2458
SYS_TRANSACTION_HISTORY ...ttt stetestessessesse st et st esaesaessessessessessesnssssensenes 2460
SYS_UDF_LOG ..ttt sttt stesses s st st e st st e stessessessas e sse st et sstessessessassassessssnsansensans 2463
SYS_UNLOAD _DETAIL c.eteteieeeeeetetetetetestesresesesee st et estestessessessessessessesstensessessessessessassassessesnsenes 2465
SYS_UNLOAD_HISTORY ... cuieeetetetetetesteseeseeeste e stestessessessessessestensessessessessassessessesssensessessenses 2467
SYS_USERLOGueiiiieieteteteteeesteseseee st st et etessessessessesses e st et sstestessessessassassesssssesnsensessessansassans 2469
SYS_VACUUM_HISTORY ...coitiiiriiniineetntetetestestesreseste e stestessessessessessessessssssensessessessessassassessessens 2471
System view mapping for migrating to SYS monitoring VIeWsccceceeeeeeenenieeeeceeceeceeceene. 2474
SYS_QUERY_HISTORY ... uteteeeeeetetrtetetestesiesae st et s e ste st et essessesses e ssessestessessassessassassesnsenesssensen 2476
SYS_QUERY_DETAIL .eteteteeeeeeetetetetestestee et ste st st et essessessesses st st e e estessessassassasnsssesnsensessensansanes 2476
SYS_RESTORE_LOG ...utiiiiiiieieetetrtetetestesseses e stet st et essessessessessesstesesssessessessassessessssnsensessensessanes 2478
SYS_RESTORE_STATE ..ottt ettt et ettt e s essessas e st et et et e b essessasaessesneenesnnns 2478
SYS_TRANSACTION_HISTORY ...ttt stetestessessesse st et st estesaessessessessesssssesssensenes 2478
SYS_QUERY_TEXT eeeeeeeeeetrtetetetentestessessee e st et et e stessessessessessesssensensessenssessessassassessesnssnsensessensens 2478
SYS_CONNECTION_LOG ..uueeiriteirteientenreneeeeesstestetestessessessessessesstesssstessessessessassessesssessssessessessens 2478
SYS_SESSION_HISTORY ...oouiiieietrtetetetesiesresesee e ste st e stestessessessesses e ste st esaesaessessessessesnesssensenes 2479
SYS_LOAD_DETAIL .ttt teste e e e st et st e ste st essessessassesnt et sssessessessassassesnssnsensessensens 2479
SYS_LOAD_HISTORY ..ueiiteietetetertestesreseste st te st estessessessesses st sstesteseessessassessessassesasensensensensassens 2479
SYS_LOAD_ERROR_DETAIL .ueeiuieirtetetetertenteseseeestetestesaessessessesseesessessessessessassessesasensessessensenes 2479
SYS_UNLOAD_HISTORY ...ttt ste e stestessessessessessesstensesessessessassessessessssnsessessenses 2479
SYS_UNLOAD _DETAIL «uteteieeeeeetetetetestesteseesesseseestetestestessessessessessessssstensessessessessessassassesssensenes 2479
SYS_COPY_REPLACEMENTSetitititeeeneneseetetestestestessessesseseete st eeessessessessessessesnsensessensessassans 2480
SYS_DATASHARE_USAGE_CONSUMERcooiteiienenietetetestestessesseseseeeetestessessessessessessesnees 2480
SYS_DATASHARE_USAGE_PRODUCERccutoieieirtetrtetenreeeseeeetstestestessessessesesseeseesaessessensens 2480
SYS_DATASHARE_CROSS_REGION_USAGEc.ooieirietetetenteneesesee ettt ssessessessessesnesseeneens 2480
SYS_DATASHARE_CHANGE_LOG ..ottt sttt stesses e s e see st et e saessessessessassessesnees 2480
SYS_EXTERNAL_QUERY_DETAILootiteteteeereeeetetntetetetessessessessee st et sstessessessessassesseensessessenses 2481
SYS_EXTERNAL_QUERY_ERRORcctititeieererietetetetestestesrese st e st stestesaessesses e s e e e snessessenns 2481
SYS_VACUUM_HISTORY ...coitiiiienireetrtertestestestessessesee e sstestestessessessessessessssssensessessessessassassssnseseens 2481

xxiii

Amazon Redshift Database Developer Guide

SYS_ANALYZE_HISTORY ...oetieiiteeeestescttestessrecste st ssseessseesstessssssssessssssssasssesssasssssssssesssssssassssens 2481
SYS_ANALYZE_COMPRESSION_HISTORYuutiiiitiertirttesieerteesreestessaeeseessaessssessssessesssessssesnns 2481
SYS_MV_REFRESH_HISTORY ..ottt cstessteeseessresseessaesssaesssessssessssssssesssassssesssessssessnes 2482
SYS_MV_STATE ..ottt ettt te st e st e st e s sae s sae e s ste s se e st e s se e s saesssaesaasssaasssasssaesssessseesssensses 2482
SYS_PROCEDURE_CALL ..cevtiteeeteeteecteeteeeteetessreessseesstesssessssessessssasssessssssssessseasssessssesssasssessssenans 2482
SYS_PROCEDURE_MESSAGEStieitietterteetesetesstesseessaessseesssessseesssessssesssessssesssessssessssssssenns 2482
SYS_UDF_LOG .ttt seste st e ste st e e sse st et ssaste st s e sse st e e ssessesassassassssessessessssensensesassensessses 2482
SYS_USERLOG ...coiiieiiirienietnieseeteesiesteteeste st ssesseste st ssestestesassesaesassessensssassassessssensestesessensensesessensns 2482
SYS_SCHEMA_QUOTA_VIOLATIONS ...eetiteiteteecttestessresstessreestessaessssessseesssesssesssssssssssssessssssnes 2483
SYS_SPATIAL_SIMPLIFY ceeteeteteestestersrteste st essessseestessaesssaessseessaessseasssesssassssessseasssessssesssessseans 2483
System monitoring (ProviSioN@d ONLY) ...t 2483
STL VIEWS TOr LOGQING vttt e ettt e st e st este s e e s e e s et et e saasaessesseesnennns 2483
STV tables for sNapShot data ...t 2621
SVCS views for main and concurrency scaling clUSLErsScovveevieieeeceececececeeee e 2676
SVL VIEWS FOr Main CLUSTEN ..ottt sttt sr st et sa et saas 2705
SYStEM CAtALOG tADLES ...ttt s e s a et a e b et r e eennenean 2778
PG_ATTRIBUTE_INFO ...oueiitiieiteeteectentessteere st essessreessaessseesaesssaesssessssesssesssessssessssesssessssessnesnns 2779
PG_CLASS_INFO ittt cstessee s st e s saesstessaessaessse s st e ssaeasssesssassssessessssesssessssessssesssesssannns 2779
PG_DATABASE_INFO ...ootieeeteeeecteestestessresseee et sstesssesstes st assaesssaesssessssesssessssssssessseasssessssesssens 2781
PG_DEFAULT _ACL ..ceeiteeeteeteecteeeteesteeete s st esstessaeessaesssassssessssasssesssassssassssesssessssesssessssesssessssesssessseens 2782
PG_EXTERNAL_SCHEMA ...ttt scteste st esseessaeestesssessssessseesssesssassssassssesssesssessssessssessaanns 2785
PG_LIBRARY ..ttt sste st eseessae s st e s saeesstesssessstassaeesssasssaesssassssasssessssesssessssesssessssesssessseanns 2786
PG_PROC_INFO ..ttt ettt ssee s te s st e s saesssaessse e s st asssesssaasssassssasssassssasssasssnesssesssaesnees 2787
PG_STATISTIC_INDICATOR ..ueteitieteectenteeritestesseessaessseessesssesssessseesssesssessssessssssssesssessssessssssssesns 2788
PG_TABLE_DEF ...ttt ettt ste et estesste e s stessaeesae s saesssessssassaasssaesssasssaesssessssesssessseanns 2789
PG_USER_INFO ...ttt et st sstessvess e e s saesssaesssess e esssesssaesssasssaasssesssassssesssaesssesssaanns 2792
Querying the catalog tables ...t 2793
Configuration refEreNCecccciiiiiiieeeereciiiiieeeiiiiteneesseeissiseeeeettsssns 2800
Modifying the server conNfIQUration ...ttt sa s 2801
analyze_threShold_PerceNt ...ttt e s e e s e e e e aesaenean 2802
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2802
DESCIIPTION ettt ettt s e e st e st e s s ae e s e e s b e e aa e s saesssaes b eessaesssassssesssesssaesssessseesssens 2802
EXQIMIPLES ..ttt ettt e st e st e st et e s e e e s et et et e s esseesaesseseensa st antansanseeseeseenaanaans 2802
CASE_SUPET_NMULL_ON_BITON .ottt te e e e e e sae st e stesaessessessaess e e e s esesaessessassessessasssensansans 2803
VLN L= (123 = 10 1 L 1 T o Yo] () ISR 2803
DESCIIPTION ettt ettt sttt e s st e st e s st e e s e e st e e s st e s saesssaes b eessaesssasssesssesssaesssesseenssans 2803

XXiv

Amazon Redshift Database Developer Guide

datashare_break_glass_SESSION_VArcccecerieeeieeieeiectectestesesee e e e sestesaesaessessessesssesesessessassansens 2803
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2803
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s s sa e s b e s s st assbesssaesssessseesssassseesssessseesssessnes 2803
EXAIMIPLE ettt ettt et et e st e b e e e e e re e e et e ae b e teeseeaeeseeneensentetentanes 2804

ALESEYLE ettt ettt re et et e st e st e st e s e e e e e et e ae s benbe et e eseeseeaeese et ententantans 2804
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2804
DESCIIPLION ettt sttt s e s ve e st e e sae e st e s s ba e s s e s saeassbesssaesssessntesssassseesssessseesssesnnes 2803
EXAIMIPLE ettt ettt et et e st e b e e e e e re e e et e ae b e teeseeaeeseeneensentetentanes 2804

default_geometry_€NCOAING ...ttt e e et e st sae s e s e e e e e e e e saesaentans 2804
VLN L= (o 123 = 10 1 L 1 T o Yo] U) ISR 2804
DESCIIPLION ettt ettt et s it e s ve e st e e sae e s b e s s sa e s s e s saeessbesssaesssessnsesssasseesssessseesssessnes 2803

describe_field_Name_iN_UPPEICASEuceeeeeeereeeeeetetetesteseete e e e se st e saesaestessesse s e e e e s e saessessensansans 2805
VLN L= (123 = 10 1 L 1 T o Yo] U) ISR 2805
DESCIIPLION ettt ettt re et te s te e st e e sae e st e s sa e s b e s s e asssesssaesssessseesssassaesssessseesssesnnes 2803
EXAIMIPLE ettt ettt sttt ettt b e s e e ae e e et e ae st et e teeaeeseeneensentententenes 2804

(o o3Vl g [et= 1 =Ie (=] KTn YR =Y M Te (=] a1 2 (=] PSRRI 2805
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2805
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2803
USQGE NOLES ...ttt sttt s e st e ste e s e e s sae s aa e s b e ssseessaesssaesssa s saasssessssesssassssesssesssaessees 2806

eNable_case_SeNSItiVE _IAENTITIOI c....oiieeeeeeeeeeeeeee ettt et ceaeeeebesessbeesssreesssseesseessssesssnne 2807
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2807
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2807
EXQIMIPLES ettt ettt te st e e e e e e e et et e st et et e s e s e e aeese e st et e bebantensaeaeeseenneneanaans 2807
USQGE NOLES ...ttt ettt st s e st e sae e s e e s sae s aa e s b e s st essbesssaessaa s saesssesssesssessssesssesssaesnees 2808

enable_case_sensitive_super_attribUte ...t sa e e 2810
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2810
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s sa e s b e e saeassbessaesssessstesssassseesssessseesssessnes 2810
EXQIMIPLES <ottt ettt st e e e e e e e e e e et e st et et e b e et e e seesa et et e ae b e tenseeaeeseeneenaentan 2810
USQGE NOLES ...ttt sttt s te st e s te s st e s sae s ae e s b e s seessbesssaessa s saesssessseesssessssesssesssaensees 2811

eNable_NUMENIC_TOUNING ..ottt e te e s se s e e e e e e s et e besbasbessassneseennannan 2812
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2812
DESCIIPLION ettt ettt et sae s te e st e e sa e e s b e s s ba e s b e s saeassbesssaesssassneesssesssaesssessseesssensnes 2812
EXAIMIPLE ettt ettt e ettt ettt e b e e s e e ae e et e ae b e teeteeaeereeneensentetentanes 2812

ENADLE_reSULt_CACNE_TOI_SESSION .oiieeiieeieeeeeeeteeeeteeett et et ee st e e e saeesesaeessseessssesssssesssssesssssessnnees 2814
VLN L= (123 = 10 1 L 1 T o Yo] () ISR 2814
DESCIIPLION ettt ettt et s e s te e st e e sae e s b e s s sa e s b e s sseassbesssaesssassntesssessseesssessseesssennnes 2814

XXV

Amazon Redshift Database Developer Guide

EXAIMIPLE ettt ettt et et e st e b e e e e e re e e et e ae b e teeseeaeeseeneensentetentanes 2814
[T F=] 01 C=IYZ= Lol U 1815 o T o Yo Yo 13 SRRSO 2814
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2814
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s s sa e s b e s s st assbesssaesssessseesssassseesssessseesssessnes 2803
error_on_nondeterminiStiC_UPAAte ...ttt ste s ae st saesraaans 2814
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2814
DESCIIPLION ettt sttt s e s ve e st e e sae e st e s s ba e s s e s saeassbesssaesssessntesssassseesssessseesssesnnes 2803
EXAIMIPLE ettt ettt et et e st e b e e e e e re e e et e ae b e teeseeaeeseeneensentetentanes 2804
EXErA_TlOAt_AIGITS wourieeeeeeeeeee ettt e et et ae s ae e re e e e nean 2815
VLN L= (o 123 = 10 1 L 1 T o Yo] U) ISR 2815
DESCIIPLION ettt ettt et s it e s ve e st e e sae e s b e s s sa e s s e s saeessbesssaesssessnsesssasseesssessseesssessnes 2815
EXAIMIPLE ettt ettt et et e st e b e e e e e re e e et e ae b e teeseeaeeseeneensentetentanes 2815
interval_forbid_composite_LItErals ...t 2816
VLN L= (123 = 10 1 L 1 T o Yo] U) ISR 2816
DESCIIPTION ettt ettt ettt sste e s sae s sae e s b e s s sa e s b e s saeessbesssaesssessseesssasssaenssessseesssensnes 2803
jSON_SErializatioN_€NABLEcueeeeeeeeee ettt a e e aan 2817
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2817
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2803
json_serialization_parse_Nested_StriNgs ...ttt 2817
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2817
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2803
Max_concurrenCy_SCAlING_CLUSTEIS ...ttt ettt ae 2818
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2818
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2818
INAX_CUISOE_FESULE_SET_SIZE weeeeeieeeeeieeeeeeeeeeeeeee et et eeateeesteesebeesssaesssstesesssesesssesssssesssseessssessssesssnes 2818
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2818
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s sa e s b e e saeassbessaesssessstesssassseesssessseesssessnes 2818
MV_eNable_agmV_fOr_SESSION ...ttt sttt sttt ae e 2819
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2819
DESCIIPLION ettt sttt te s ve e s ste e s st e s b e s s sa e s b e s sseesssesssaesssassstesssassssesssessseesssensnes 2819
NAVIgAte_SUPEI_NMULL_ON_BITON ...ttt ettt sae et e e e e sa e st esbesaassessessa e e e nnennenes 2819
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2819
DESCIIPTION ettt ettt sat s te s te e s ae s sae e s b e s sa e s b e s saeassbesssaesssassseesssassseesssessseesssessnes 2803
PArSE_SUPEI_NULLON_BITON ..oeeeieeeeeeetetetetecteeteeee e et e st et e testessesse s e e e e e e s esessestessassessessassasnsesaanes 2819
VLN L= (123 = 10 1 L 1 T o Yo] () ISR 2819
DESCIIPLION ettt ettt et s e s te e st e e sae e s b e s s sa e s b e s sseassbesssaesssassntesssessseesssessseesssennnes 2803

XXVi

Amazon Redshift Database Developer Guide

pg_federation_repeatable_read ... e 2819
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2819
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s s sa e s b e s s st assbesssaesssessseesssassseesssessseesssessnes 2803
EXQIMIPLES ettt ettt ae st e e e e e e e e et et et e st et e s e e s e e aeere e s et eae b e tensaeaeeseennenaantans 2820

QUETY_GEOUP «eveeeurerireereeeseeesessseesssessseesssessssssssessseesssessssssssessssesssessssesssessseesssessssesssesssessssessssesssessssasssessses 2820
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2820
DESCIIPLION ettt sttt s e s ve e st e e sae e st e s s ba e s s e s saeassbesssaesssessntesssassseesssessseesssesnnes 2821

<=1 (el g oY | o o EPU OO U USRS 2821
VLN L= (o 123 = 10 1 L 1 T o Yo] U) ISR 2821
DESCIIPLION ettt ettt et s it e s ve e st e e sae e s b e s s sa e s s e s saeessbesssaesssessnsesssasseesssessseesssessnes 2822
EXAIMIPLE ettt ettt et et e st e b e e e e e re e e et e ae b e teeseeaeeseeneensentetentanes 2822

spectrum_enable_pseudo_COLUMNS ...ttt a e st et saa e 2823
VLN L= (123 = 10 1 L 1 T o Yo] U) ISR 2823
DESCIIPLION ettt ettt re et te s te e st e e sae e st e s sa e s b e s s e asssesssaesssessseesssassaesssessseesssesnnes 2823
EXAIMIPLE ettt ettt sttt ettt b e s e e ae e e et e ae st et e teeaeeseeneensentententenes 2824

E€NADLE_SPECLIUM_OIM ..ottt te e et e e se e et e s ae s besbassa e s saena e e eaaaanes 2824
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2824
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2824
EXAIMIPLE ettt ettt sttt et st s a e b e e a e s e e ae e e et e ae b et e teeaeeseeneeneentententanes 2824

SPECIIUM_QUENY_IMAXEITON .uvteeveieeeesreestesssesseessseesseesssessssssssessssssssessssssssessssesssessssssssessssesssesssessssessses 2824
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2824
DESCIIPLION ettt ettt ee st e s te e s ae e sae e s b e s s ba e s b e s saeesssesssaesssassntesssesseenssessseesssesnnes 2824
EXAIMIPLE ettt ettt sttt et st s a e b e e a e s e e ae e e et e ae b et e teeaeeseeneeneentententanes 2825

Y = 10 0 A L1 a1 R A1 1 [<T0 1 U SRR 2825
VLN L= (o 1=3 = 10 1 L1 T o Yo] U) ISR 2825
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s sa e s b e e saeassbessaesssessstesssassseesssessseesssessnes 2825
EXAIMIPLE ottt ettt e ettt et e b b e s s e e ae e e et e ae et et e aeeaeeseeseensentententanes 2825

stored_proC_lOg_MIN_MESSAGEScccceeeeriecierteeresteeeeeeeetestestestessessesseessessessessessessessassessesssesessensans 2826
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2826
DESCIIPLION ettt sttt te s ve e s ste e s st e s b e s s sa e s b e s sseesssesssaesssassstesssassssesssessseesssensnes 2803

L[0 4 T=Vdo] o= USRS 2826
VLN L= (1= = 10 1 L 1 T o Yo] U) ISR 2826
SYNEAX ettt s et e s st e st e et e st s st e e st e et e e e b e et e et e e ae e e ae e s b e e b e e aa e aeessaesaeeatennaanane 2826
DESCIIPLION ettt ettt ettt s te e st e s sae e s b e s s sa e s b e s saeassbesssaesssessseesssassseesssessseesssesnnes 2827
TiME ZONE FOIMALS ettt et et ae e e be e sae e b e e see b e essesssensesssessaessesssensenns 2827
EXQIMIPLES <ottt et ae st e e e e e s e et et et et et e s e e s e e seeseea s et e ae b e tensaeaeeseeneenaantans 2829

XXVii

Amazon Redshift Database Developer Guide

USE TIPS _SSL ettt ettt st et et et e s re e e e e et et e te b e aeeseereene e e et enteaanes 2830
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2830
DESCIIPLION ettt ettt re et e st e s te e st e e sae e s b e s s sa e s b e s s st assbesssaesssessseesssassseesssessseesssessnes 2803

WLM_QUETNY_SLOT_COUNT ...ttt ettt s te st e st e s se e e e e e e e e e s e stesaassassassnennannans 2830
VLN L= (o 1= = 10 1 L 1 T o Yo] U) ISR 2830
DESCIIPLION ettt sttt s e s ve e st e e sae e st e s s ba e s s e s saeassbesssaesssessntesssassseesssessseesssesnnes 2831
EXQIMIPLES ettt ettt ae st e e e e e e e e et et et e st et e s e e s e e aeere e s et eae b e tensaeaeeseennenaantans 2831

DOCUMENT NISTOIY uueuiiiiiiiiiiiiiiieenenniiiiiiieiiiieiesaessssssssssssseesssns 2832

EQrlIEr UPAALES ..ottt st e e s e ettt e st e s e s b e s seese e e e e et astatansessassnesessaanean 2842

XXViii

Amazon Redshift Database Developer Guide

Introduction

Welcome to the Amazon Redshift Database Developer Guide. Amazon Redshift is a fully managed,
petabyte-scale data warehouse service in the cloud. Amazon Redshift Serverless lets you access
and analyze data without the usual configurations of a provisioned data warehouse. Resources

are automatically provisioned and data warehouse capacity is intelligently scaled to deliver fast
performance for even the most demanding and unpredictable workloads. You don't incur charges
when the data warehouse is idle, so you only pay for what you use. Regardless of the size of the
dataset, you can load data and start querying right away in the Amazon Redshift query editor v2 or
in your favorite business intelligence (BI) tool. Enjoy the best price performance and familiar SQL
features in an easy-to-use, zero administration environment.

This guide focuses on using Amazon Redshift to create and manage a data warehouse. If you work
with databases as a designer, software developer, or administrator, it gives you the information you
need to design, build, query, and maintain your data warehouse.

Topics

Prerequisites

Are you a database developer?

System and architecture overview

Sample database

Prerequisites

Before you use this guide, you should read Amazon Redshift Serverless, which goes over how to
complete the following tasks.

» Create a data warehouse with Amazon Redshift Serverless.
» Loading in sample data with Amazon Redshift query editor v2

« Loading in data from Amazon S3.

You should also know how to use your SQL client and should have a fundamental understanding of
the SQL language.

Prerequisites 1

https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html

Amazon Redshift Database Developer Guide

Are you a database developer?

If you are a first-time Amazon Redshift user, we recommend you read Amazon Redshift Serverless
to learn how to get started.

If you are a database user, database designer, database developer, or database administrator, the
following table will help you find what you're looking for.

If you want to... We recommend...

Learn about the
internal architect

The System and architecture overview gives a high-level overview of

Amazon Redshift's internal architecture.
ure of the Amazon
Redshift data
warehouse.

If you want a broader overview of the Amazon Redshift web service, go
to the Amazon Redshift product detail page.

Create databases Common database tasks is a quick introduction to the basics of SQL

development.

, tables, users, and
other database

objects The Amazon Redshift SQL has the syntax and examples for Amazon

Redshift SQL commands and functions and other SQL elements.

Amazon Redshift best practices for designing tables provides a
summary of our recommendations for choosing sort keys, distribution
keys, and compression encodings.

Learn how to design
tables for optimum
performance.

Load data.

Working with automatic table optimization details considerations

for applying compression to the data in table columns and choosing
distribution and sort keys.

Loading data explains the procedures for loading large datasets from
Amazon DynamoDB tables or from flat files stored in Amazon S3
buckets.

Amazon Redshift best practices for loading data provides for tips for
loading your data quickly and effectively.

Are you a database developer?

https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html
https://aws.amazon.com/redshift/
https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html

Amazon Redshift

Database Developer Guide

If you want to...

Manage users,
groups, and database
security.

Monitor and optimize
system performance.

Analyze and report
information from
very large datasets.

Interact with Amazon
Redshift resources
and tables.

Follow a tutorial

to become more
familiar with Amazon
Redshift.

We recommend...

Managing database security covers database security topics.

The System tables and views reference details system tables and views

that you can query for the status of the database and monitor queries
and processes.

Also consult the Amazon Redshift Management Guide to learn how to

use the AWS Management Console to check the system health, monitor
metrics, and back up and restore clusters.

Many popular software vendors are certifying Amazon Redshift with
their offerings to enable you to continue to use the tools you use today.
For more information, see the Amazon Redshift partner page.

The SQL reference has all the details for the SQL expressions,
commands, and functions Amazon Redshift supports.

See the Amazon Redshift Serverless API guide, the Amazon Redshift
API guide, and the Amazon Redshift Data API guide to learn more
about how you can programmatically interact with resources and run
operations.

Follow a tutorial in Tutorials for Amazon Redshift to learn more about
Amazon Redshift features.

System and architecture overview

An Amazon Redshift data warehouse is an enterprise-class relational database query and

management system.

Amazon Redshift supports client connections with many types of applications, including business
intelligence (BI), reporting, data, and analytics tools.

System and architecture overview

https://docs.aws.amazon.com/redshift/latest/mgmt/
https://aws.amazon.com/redshift/partners/
https://docs.aws.amazon.com/redshift-serverless/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift-data/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorials-redshift.html

Amazon Redshift Database Developer Guide

When you run analytic queries, you are retrieving, comparing, and evaluating large amounts of
data in multiple-stage operations to produce a final result.

Amazon Redshift achieves efficient storage and optimum query performance through a
combination of massively parallel processing, columnar data storage, and very efficient, targeted
data compression encoding schemes. This section presents an introduction to the Amazon Redshift
system architecture.

Topics

Data warehouse system architecture

Performance

Columnar storage

Workload management

Using Amazon Redshift with other services

Data warehouse system architecture

This section introduces the elements of the Amazon Redshift data warehouse architecture as
shown in the following figure.

@ JDBC/ODBC @ @ Data API

¥ \
Amazon Redshift Serverless or Provisioned
o Data sharing Query Live Data
+ clusters
]
=Y
g Incremental MVs
(& a Leadsr Node Operational
a AWS Databases

° r i Nitro

S 8|cNt[[enz2||cne || cne

£ E Redshift ML
5 C%|un (|lum |[|jum ||mm
&
% Cluster Amazon
] Serverless data warehouse Sagemaker
<
:'qfa :'R'eas'hi?t'méﬁa'géd's't&égé'"""""""""""""'": iAmazons3 7777 !
1 1 ! 1

] p

c% | " Fm " " m i Tm 1 PParquet o {JSON} !

Client applications

Data warehouse system architecture 4

Amazon Redshift Database Developer Guide

Amazon Redshift integrates with various data loading and ETL (extract, transform, and load) tools
and business intelligence (Bl) reporting, data mining, and analytics tools. Amazon Redshift is
based on open standard PostgreSQL, so most existing SQL client applications will work with only
minimal changes. For information about important differences between Amazon Redshift SQL and
PostgreSQL, see Amazon Redshift and PostgreSQL.

Clusters
The core infrastructure component of an Amazon Redshift data warehouse is a cluster.

A cluster is composed of one or more compute nodes. If a cluster is provisioned with two or more
compute nodes, an additional leader node coordinates the compute nodes and handles external
communication. Your client application interacts directly only with the leader node. The compute
nodes are transparent to external applications.

Leader node

The leader node manages communications with client programs and all communication with
compute nodes. It parses and develops execution plans to carry out database operations, in
particular, the series of steps necessary to obtain results for complex queries. Based on the
execution plan, the leader node compiles code, distributes the compiled code to the compute
nodes, and assigns a portion of the data to each compute node.

The leader node distributes SQL statements to the compute nodes only when a query references
tables that are stored on the compute nodes. All other queries run exclusively on the leader node.
Amazon Redshift is designed to implement certain SQL functions only on the leader node. A
query that uses any of these functions will return an error if it references tables that reside on the
compute nodes. For more information, see SQL functions supported on the leader node.

Compute nodes

The leader node compiles code for individual elements of the execution plan and assigns the code
to individual compute nodes. The compute nodes run the compiled code and send intermediate
results back to the leader node for final aggregation.

Each compute node has its own dedicated CPU and memory, which are determined by the node
type. As your workload grows, you can increase the compute capacity of a cluster by increasing the
number of nodes, upgrading the node type, or both.

Amazon Redshift provides several node types for your compute needs. For details of each node
type, see Amazon Redshift clusters in the Amazon Redshift Management Guide.

Data warehouse system architecture 5

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html

Amazon Redshift Database Developer Guide

Redshift Managed Storage

Data warehouse data is stored in a separate storage tier Redshift Managed Storage (RMS). RMS
provides the ability to scale your storage to petabytes using Amazon S3 storage. RMS lets you scale
and pay for computing and storage independently, so that you can size your cluster based only on
your computing needs. It automatically uses high-performance SSD-based local storage as tier-1
cache. It also takes advantage of optimizations, such as data block temperature, data block age,
and workload patterns to deliver high performance while scaling storage automatically to Amazon
S3 when needed without requiring any action.

Node slices

A compute node is partitioned into slices. Each slice is allocated a portion of the node's memory
and disk space, where it processes a portion of the workload assigned to the node. The leader
node manages distributing data to the slices and apportions the workload for any queries or other
database operations to the slices. The slices then work in parallel to complete the operation.

The number of slices per node is determined by the node size of the cluster. For more information
about the number of slices for each node size, go to About clusters and nodes in the Amazon

Redshift Management Guide.

When you create a table, you can optionally specify one column as the distribution key. When the
table is loaded with data, the rows are distributed to the node slices according to the distribution
key that is defined for a table. Choosing a good distribution key enables Amazon Redshift to use
parallel processing to load data and run queries efficiently. For information about choosing a
distribution key, see Choose the best distribution style.

Internal network

Amazon Redshift takes advantage of high-bandwidth connections, close proximity, and custom
communication protocols to provide private, very high-speed network communication between
the leader node and compute nodes. The compute nodes run on a separate, isolated network that
client applications never access directly.

Databases

A cluster contains one or more databases. User data is stored on the compute nodes. Your SQL
client communicates with the leader node, which in turn coordinates query run with the compute
nodes.

Data warehouse system architecture 6

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

Amazon Redshift is a relational database management system (RDBMS), so it is compatible with
other RDBMS applications. Although it provides the same functionality as a typical RDBMS,
including online transaction processing (OLTP) functions such as inserting and deleting data,
Amazon Redshift is optimized for high-performance analysis and reporting of very large datasets.

Amazon Redshift is based on PostgreSQL. Amazon Redshift and PostgreSQL have a number of
very important differences that you need to take into account as you design and develop your data
warehouse applications. For information about how Amazon Redshift SQL differs from PostgreSQL,
see Amazon Redshift and PostgreSQL.

Performance

Amazon Redshift achieves extremely fast query run by employing these performance features.

Topics

« Massively parallel processing

o Columnar data storage

« Data compression

o Query optimizer

» Result caching

o Compiled code

Massively parallel processing

Massively parallel processing (MPP) enables fast run of the most complex queries operating on
large amounts of data. Multiple compute nodes handle all query processing leading up to final
result aggregation, with each core of each node running the same compiled query segments on
portions of the entire data.

Amazon Redshift distributes the rows of a table to the compute nodes so that the data can be
processed in parallel. By selecting an appropriate distribution key for each table, you can optimize
the distribution of data to balance the workload and minimize movement of data from node to
node. For more information, see Choose the best distribution style.

Loading data from flat files takes advantage of parallel processing by spreading the workload
across multiple nodes while simultaneously reading from multiple files. For more information
about how to load data into tables, see Amazon Redshift best practices for loading data.

Performance 7

Amazon Redshift Database Developer Guide

Columnar data storage

Columnar storage for database tables drastically reduces the overall disk 1/0 requirements and is
an important factor in optimizing analytic query performance. Storing database table information
in a columnar fashion reduces the number of disk 1/0 requests and reduces the amount of data
you need to load from disk. Loading less data into memory enables Amazon Redshift to perform
more in-memory processing when executing queries. See Columnar storage for a more detailed

explanation.

When columns are sorted appropriately, the query processor is able to rapidly filter out a large
subset of data blocks. For more information, see Choose the best sort key.

Data compression

Data compression reduces storage requirements, thereby reducing disk I/O, which improves query
performance. When you run a query, the compressed data is read into memory, then uncompressed
during query run. Loading less data into memory enables Amazon Redshift to allocate more
memory to analyzing the data. Because columnar storage stores similar data sequentially, Amazon
Redshift is able to apply adaptive compression encodings specifically tied to columnar data types.
The best way to enable data compression on table columns is by allowing Amazon Redshift to
apply optimal compression encodings when you load the table with data. To learn more about
using automatic data compression, see Loading tables with automatic compression.

Query optimizer

The Amazon Redshift query run engine incorporates a query optimizer that is MPP-aware and also
takes advantage of the columnar-oriented data storage. The Amazon Redshift query optimizer
implements significant enhancements and extensions for processing complex analytic queries
that often include multi-table joins, subqueries, and aggregation. To learn more about optimizing
queries, see Tuning query performance.

Result caching

To reduce query runtime and improve system performance, Amazon Redshift caches the results
of certain types of queries in memory on the leader node. When a user submits a query, Amazon
Redshift checks the results cache for a valid, cached copy of the query results. If a match is found
in the result cache, Amazon Redshift uses the cached results and doesn't run the query. Result
caching is transparent to the user.

Performance 8

Amazon Redshift Database Developer Guide

Result caching is turned on by default. To turn off result caching for the current session, set the
enable_result_cache_for_session parameter to off.

Amazon Redshift uses cached results for a new query when all of the following are true:

» The user submitting the query has access permission to the objects used in the query.

« The table or views in the query haven't been modified.

» The query doesn't use a function that must be evaluated each time it's run, such as GETDATE.
» The query doesn't reference Amazon Redshift Spectrum external tables.

» Configuration parameters that might affect query results are unchanged.

« The query syntactically matches the cached query.

To maximize cache effectiveness and efficient use of resources, Amazon Redshift doesn't cache
some large query result sets. Amazon Redshift determines whether to cache query results based on
a number of factors. These factors include the number of entries in the cache and the instance type
of your Amazon Redshift cluster.

To determine whether a query used the result cache, query the SVL_QLOG system view. If a query
used the result cache, the source_query column returns the query ID of the source query. If result
caching wasn't used, the source_query column value is NULL.

The following example shows that queries submitted by userid 104 and userid 102 use the result
cache from queries run by userid 100.

select userid, query, elapsed, source_query from svl_qglog
where userid > 1
order by query desc;

userid | query | elapsed | source_query
——————— R e e
104 | 629035 | 27 | 628919
104 | 629034 | 60 | 628900
104 | 629033 | 23 | 628891
102 | 629017 | 1229393 |
102 | 628942 | 28 | 628919
102 | 628941 | 57 | 628900
102 | 628940 | 26 | 628891
100 | 628919 | 84295686 |
100 | 628900 | 87015637 |

Performance 9

Amazon Redshift Database Developer Guide

100 | 628891 | 58808694 |

Compiled code

The leader node distributes fully optimized compiled code across all of the nodes of a cluster.
Compiling the query decreases the overhead associated with an interpreter and therefore increases
the runtime speed, especially for complex queries. The compiled code is cached and shared across
sessions on the same cluster. As a result, future runs of the same query will be faster, often even
with different parameters.

The query run engine compiles different code for the JDBC and ODBC connection protocols, so two
clients using different protocols each incur the first-time cost of compiling the code. Clients that
use the same protocol, however, benefit from sharing the cached code.

Columnar storage

Columnar storage for database tables is an important factor in optimizing analytic query
performance, because it drastically reduces the overall disk 1/0 requirements. It reduces the
amount of data you need to load from disk.

The following series of illustrations describe how columnar data storage implements efficiencies,
and how that translates into efficiencies when retrieving data into memory.

This first illustration shows how records from database tables are typically stored into disk blocks

by row.
SSN Name Age Addr City st
101259797 SMITH 88 |899 FIRST ST JUNO AL
892375862 CHIN 37 (16137 MAIN ST POMONA CA
318370701 HANDU 12 [42 JUNE ST CHICAGD IC

101258787 |SMITH| 88| 898 FIRST ST|JUNO|AL |892375862 | CHIN |37 16137 MAIN ST|POMONA |CA |318370701 [HANDU |12 |42 JUNE ST|CHICAGO|IL

Block 1 Block 2 Block 2

In a typical relational database table, each row contains field values for a single record. In row-wise
database storage, data blocks store values sequentially for each consecutive column making up the
entire row. If block size is smaller than the size of a record, storage for an entire record may take

Columnar storage 10

Amazon Redshift Database Developer Guide

more than one block. If block size is larger than the size of a record, storage for an entire record
may take less than one block, resulting in an inefficient use of disk space. In online transaction
processing (OLTP) applications, most transactions involve frequently reading and writing all of the
values for entire records, typically one record or a small number of records at a time. As a result,
row-wise storage is optimal for OLTP databases.

The next illustration shows how with columnar storage, the values for each column are stored
sequentially into disk blocks.

SSN Name Age Addr City 5t
101259797 SMITH 88 | 899 FIRST ST JUND AL
BO2375862 CHIN 37 16137 MAIN ST POMONA CA
318370701 HANDU 12 42 JUNE ST CHICAGO IL

101258787 | 8823756862 | 318370701 | 4662481680 | 378568310 | 2313466875 | 317346551 | 770336528 | 277332171 | 455124508 | 735885647 | 387586301

Block 1

Using columnar storage, each data block stores values of a single column for multiple rows. As
records enter the system, Amazon Redshift transparently converts the data to columnar storage for
each of the columns.

In this simplified example, using columnar storage, each data block holds column field values
for as many as three times as many records as row-based storage. This means that reading the
same number of column field values for the same number of records requires a third of the I/O
operations compared to row-wise storage. In practice, using tables with very large numbers of
columns and very large row counts, storage efficiency is even greater.

An added advantage is that, since each block holds the same type of data, block data can use a
compression scheme selected specifically for the column data type, further reducing disk space and
I/0. For more information about compression encodings based on data types, see Compression

encodings.

The savings in space for storing data on disk also carries over to retrieving and then storing that
data in memory. Since many database operations only need to access or operate on one or a small
number of columns at a time, you can save memory space by only retrieving blocks for columns
you actually need for a query. Where OLTP transactions typically involve most or all of the columns
in a row for a small number of records, data warehouse queries commonly read only a few columns
for a very large number of rows. This means that reading the same number of column field values

Columnar storage 11

Amazon Redshift Database Developer Guide

for the same number of rows requires a fraction of the 1/0 operations. It uses a fraction of the
memory that would be required for processing row-wise blocks. In practice, using tables with

very large numbers of columns and very large row counts, the efficiency gains are proportionally
greater. For example, suppose a table contains 100 columns. A query that uses five columns will
only need to read about five percent of the data contained in the table. This savings is repeated for
possibly billions or even trillions of records for large databases. In contrast, a row-wise database
would read the blocks that contain the 95 unneeded columns as well.

Typical database block sizes range from 2 KB to 32 KB. Amazon Redshift uses a block size of 1 MB,
which is more efficient and further reduces the number of I/O requests needed to perform any
database loading or other operations that are part of query run.

Workload management

Amazon Redshift workload management (WLM) enables users to flexibly manage priorities within
workloads so that short, fast-running queries won't get stuck in queues behind long-running
queries.

Amazon Redshift WLM creates query queues at runtime according to service classes, which define
the configuration parameters for various types of queues, including internal system queues and
user-accessible queues. From a user perspective, a user-accessible service class and a queue are
functionally equivalent. For consistency, this documentation uses the term queue to mean a user-
accessible service class as well as a runtime queue.

When you run a query, WLM assigns the query to a queue according to the user's user group or by
matching a query group that is listed in the queue configuration with a query group label that the
user sets at runtime.

Currently, the default for clusters using the default parameter group is to use automatic WLM.
Automatic WLM manages query concurrency and memory allocation. For more information, see
Implementing automatic WLM.

With manual WLM, Amazon Redshift configures one queue with a concurrency level of five, which
enables up to five queries to run concurrently, plus one predefined Superuser queue, with a
concurrency level of one. You can define up to eight queues. Each queue can be configured with
a maximum concurrency level of 50. The maximum total concurrency level for all user-defined
queues (not including the Superuser queue) is 50.

Workload management 12

Amazon Redshift Database Developer Guide

The easiest way to modify the WLM configuration is by using the Amazon Redshift Management
Console. You can also use the Amazon Redshift command line interface (CLI) or the Amazon
Redshift API.

For more information about implementing and using workload management, see Implementing
workload management.

Using Amazon Redshift with other services

Amazon Redshift integrates with other AWS services to enable you to move, transform, and load
your data quickly and reliably, using data security features.

Moving data between Amazon Redshift and Amazon S3

Amazon Simple Storage Service (Amazon S3) is a web service that stores data in the cloud. Amazon
Redshift leverages parallel processing to read and load data from multiple data files stored in
Amazon S3 buckets. For more information, see Loading data from Amazon S3.

You can also use parallel processing to export data from your Amazon Redshift data warehouse to
multiple data files on Amazon S3. For more information, see Unloading data.

Using Amazon Redshift with Amazon DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service. You can use the COPY command
to load an Amazon Redshift table with data from a single Amazon DynamoDB table. For more
information, see Loading data from an Amazon DynamoDB table.

Importing data from remote hosts over SSH

You can use the COPY command in Amazon Redshift to load data from one or more remote hosts,
such as Amazon EMR clusters, Amazon EC2 instances, or other computers. COPY connects to

the remote hosts using SSH and runs commands on the remote hosts to generate data. Amazon
Redshift supports multiple simultaneous connections. The COPY command reads and loads the
output from multiple host sources in parallel. For more information, see Loading data from remote
hosts.

Automating data loads using AWS Data Pipeline

You can use AWS Data Pipeline to automate data movement and transformation into and out
of Amazon Redshift. By using the built-in scheduling capabilities of AWS Data Pipeline, you

Using Amazon Redshift with other services 13

Amazon Redshift Database Developer Guide

can schedule and run recurring jobs without having to write your own complex data transfer or
transformation logic. For example, you can set up a recurring job to automatically copy data from
Amazon DynamoDB into Amazon Redshift. For a tutorial that walks you through the process of
creating a pipeline that periodically moves data from Amazon S3 to Amazon Redshift, see Copy
data to Amazon Redshift using AWS Data Pipeline in the AWS Data Pipeline Developer Guide.

Migrating data using AWS Database Migration Service (AWS DMS)

You can migrate data to Amazon Redshift using AWS Database Migration Service. AWS DMS can
migrate your data to and from most widely used commercial and open-source databases such

as Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, Aurora DB cluster, DynamoDB,
Amazon S3, MariaDB, and MySQL. For more information, see Using an Amazon Redshift database

as a target for AWS Database Migration Service.

Sample database

Topics

« CATEGORY table

» DATE table

o EVENT table
« VENUE table
« USERS table
o LISTING table

o SALES table

Most of the examples in the Amazon Redshift documentation use a sample database called TICKIT.
This small database consists of seven tables: two fact tables and five dimensions. You can load the
TICKIT dataset by following the steps in Step 4: Load data from Amazon S3 to Amazon Redshift in
the Amazon Redshift Getting Started Guide.

Sample database 14

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-copydata-redshift.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-copydata-redshift.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-create-sample-db.html

Amazon Redshift Database Developer Guide

CATEGORY
DATE
SALES
|Iiiiiii|||||

USERS
LISTING

This sample database application helps analysts track sales activity for the fictional TICKIT web

site, where users buy and sell tickets online for sporting events, shows, and concerts. In particular,
analysts can identify ticket movement over time, success rates for sellers, and the best-selling
events, venues, and seasons. Analysts can use this information to provide incentives to buyers and
sellers who frequent the site, to attract new users, and to drive advertising and promotions.

For example, the following query finds the top five sellers in San Diego, based on the number of
tickets sold in 2008:

select sellerid, username, (firstname ||' '|| lastname) as name,
city, sum(qtysold)

from sales, date, users

where sales.sellerid = users.userid

and sales.dateid = date.dateid

and year = 2008

and city 'San Diego'

group by sellerid, username, name, city

order by 5 desc

limit 5;

sellerid | username name city | sum

Sample database 15

Amazon Redshift

Database Developer Guide

—————————— R et ettt ittt ittt
49977 | JIK84WTE | Julie Hanson | San Diego | 22
19750 | AAS23BDR | Charity Zimmerman | San Diego | 21
29069 | SVL81IMEQ | Axel Grant | San Diego | 17
43632 | VAGO8HKW | Griffin Dodson | San Diego | 16
36712 | RXT4OMKU | Hiram Turner | San Diego | 14

(5 rows)

The database used for the examples in this guide contains a small data set; the two fact tables each

contain less than 200,000 rows, and the dimensions range from 11 rows in the CATEGORY table up
to about 50,000 rows in the USERS table.

In particular, the database examples in this guide demonstrate the key features of Amazon Redshift

table design:

« Data distribution
o Data sort

» Columnar compression

CATEGORY table

Column name Data type

CATID SMALLINT

CATGROUP VARCHAR(10)
CATNAME VARCHAR(10)
CATDESC VARCHAR(50)

Description

Primary key, a unique ID value for each row. Each row
represents a specific type of event for which tickets are
bought and sold.

Descriptive name for a group of events, such as Shows
and Sports.

Short descriptive name for a type of event within a group,
such as Opera and Musicals.

Longer descriptive name for the type of event, such as
Musical theatre.

CATEGORY table

16

Amazon Redshift

Database Developer Guide

DATE table

Column name

DATEID

CALDATE
DAY
WEEK
MONTH
QTR
YEAR

HOLIDAY

EVENT table

Column name

EVENTID

VENUEID
CATID
DATEID

EVENTNAME

Data type

SMALLINT

DATE
CHAR(3)
SMALLINT
CHAR(5)
CHAR(5)
SMALLINT

BOOLEAN

Data type

INTEGER

SMALLINT
SMALLINT
SMALLINT

VARCHAR(200)

Description

Primary key, a unique ID value for each row. Each row
represents a day in the calendar year.

Calendar date, such as 2008-06-24 .
Day of week (short form), such as SA.
Week number, such as 26.

Month name (short form), such as JUN.
Quarter number (1 through 4).
Four-digit year (2008).

Flag that denotes whether the day is a public holiday
(U.S.).

Description

Primary key, a unique ID value for each row. Each
row represents a separate event that takes place at a
specific venue at a specific time.

Foreign-key reference to the VENUE table.
Foreign-key reference to the CATEGORY table.
Foreign-key reference to the DATE table.

Name of the event, such as Hamlet or La Traviata.

DATE table

Amazon Redshift Database Developer Guide

Column name Data type Description

STARTTIME TIMESTAMP Full date and start time for the event, such as
2008-10-10 19:30:00 .

VENUE table
Column name Data type Description
VENUEID SMALLINT Primary key, a unique ID value for each row. Each
row represents a specific venue where events take
place.
VENUENAME VARCHAR(100) Exact name of the venue, such as Cleveland
Browns Stadium.
VENUECITY VARCHAR(30) City name, such as Cleveland .
VENUESTATE CHAR(2) Two-letter state or province abbreviation (United
States and Canada), such as OH.
VENUESEATS INTEGER Maximum number of seats available at the venue
, if known, such as 73200. For demonstration
purposes, this column contains some null values
and zeroes.
USERS table
Column name Data type Description
USERID INTEGER Primary key, a unique ID value for each row. Each

row represents a registered user (a buyer or seller or
both) who has listed or bought tickets for at least
one event.

VENUE table 18

Amazon Redshift

Database Developer Guide

Column name

USERNAME

FIRSTNAME

LASTNAME

CITYy

STATE

EMAIL

PHONE

LIKESPORTS, ...

LISTING table

Column name

LISTID

SELLERID

EVENTID

DATEID

Data type

CHAR(8)

VARCHAR(30)
VARCHAR(30)
VARCHAR(30)
CHAR(2)

VARCHAR(100)

CHAR(14)

BOOLEAN

Data type

INTEGER

INTEGER

INTEGER

SMALLINT

Description

An 8-character alphanumeric username, such as
PGLOSLII.

The user's first name, such as Victor.

The user's last name, such as Hexrnandez .
The user's home city, such as Naperville .
The user's home state, such as GA.

The user's email address; this column contains
random Latin values, such as turpiseac
cumsanlaoreet.oxg

The user's 14-character phone number, such as
(818) 765-4255.

A series of 10 different columns that identify the

user's likes and dislikes with true and false values.

Description

Primary key, a unique ID value for each row. Each row
represents a listing of a batch of tickets for a specific
event.

Foreign-key reference to the USERS table, identifying
the user who is selling the tickets.

Foreign-key reference to the EVENT table.

Foreign-key reference to the DATE table.

LISTING table

19

Amazon Redshift

Database Developer Guide

Column name

NUMTICKETS

PRICEPERTICKET

TOTALPRICE

LISTTIME

SALES table

Column name

SALESID

LISTID

SELLERID

BUYERID

EVENTID
DATEID

QTYSOLD

Data type

SMALLINT

DECIMAL(8,2)

DECIMAL(8,2)

TIMESTAMP

Data type

INTEGER

INTEGER

INTEGER

INTEGER

INTEGER
SMALLINT

SMALLINT

Description

The number of tickets available for sale, such as 2 or
20.

The fixed price of an individual ticket, such as 27.00
or 206.00.

The total price for this listing (NUMTICKETS*PRICEPE
RTICKET).

The full date and time when the listing was posted,
such as 2008-03-18 07:19:35 .

Description

Primary key, a unique ID value for each row. Each row
represents a sale of one or more tickets for a specific
event, as offered in a specific listing.

Foreign-key reference to the LISTING table.

Foreign-key reference to the USERS table (the user who
sold the tickets).

Foreign-key reference to the USERS table (the user who
bought the tickets).

Foreign-key reference to the EVENT table.
Foreign-key reference to the DATE table.

The number of tickets that were sold, from 1 to 8. (A
maximum of 8 tickets can be sold in a single transacti
on.)

SALES table

20

Amazon Redshift

Database Developer Guide

Column name

PRICEPAID

COMMISSION

SALETIME

Data type

DECIMAL(8,2)

DECIMAL(8,2)

TIMESTAMP

Description

The total price paid for the tickets, such as 75.00 or
488.00. The individual price of a ticket is PRICEPAID/
QTYSOLD.

The 15% commission that the business collects from
the sale, such as 11.25 or 73.20. The seller receives
85% of the PRICEPAID value.

The full date and time when the sale was completed,
such as 2008-05-24 06:21:47 .

SALES table

21

Amazon Redshift Database Developer Guide

Amazon Redshift best practices

Following, you can find best practices for planning a proof of concept, designing tables, loading
data into tables, and writing queries for Amazon Redshift, and also a discussion of working with
Amazon Redshift Advisor.

Amazon Redshift is not the same as other SQL database systems. To fully realize the benefits of
the Amazon Redshift architecture, you must specifically design, build, and load your tables to use
massively parallel processing, columnar data storage, and columnar data compression. If your data
loading and query execution times are longer than you expect, or longer than you want, you might
be overlooking key information.

If you are an experienced SQL database developer, we strongly recommend that you review this
topic before you begin developing your Amazon Redshift data warehouse.

If you are new to developing SQL databases, this topic is not the best place to start. We
recommend that you begin by reading Common database tasks and trying the examples yourself.

In this topic, you can find an overview of the most important development principles, along with
specific tips, examples, and best practices for implementing those principles. No single practice
can apply to every application. Evaluate all of your options before finishing a database design. For
more information, see Working with automatic table optimization, Loading data, Tuning query
performance, and the reference chapters.

Topics

» Conduct a proof of concept (POC) for Amazon Redshift

Amazon Redshift best practices for designing tables

Amazon Redshift best practices for loading data

Amazon Redshift best practices for designing queries

Working with recommendations from Amazon Redshift Advisor

Conduct a proof of concept (POC) for Amazon Redshift

Amazon Redshift is a popular cloud data warehouse, which offers a fully managed cloud-based
service that integrates with an organization’s Amazon Simple Storage Service data lake, real-time
streams, machine learning (ML) workflows, transactional workflows, and much more. The following

Conduct a proof of concept 22

https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html

Amazon Redshift Database Developer Guide

sections guide you through the process of doing a proof of concept (POC) on Amazon Redshift. The
information here helps you set goals for your POC, and takes advantage of tools that can automate
the provisioning and configuration of services for your POC.

(® Note

For a copy of this information as a PDF, choose the link Run your own Redshift POC on the
Amazon Redshift resources page.

When doing a POC of Amazon Redshift, you test, prove out, and adopt features ranging from
best-in-class security capabilities, elastic scaling, easy integration and ingestion, and flexible
decentralized data architecture options.

DGR ©

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

Follow the these steps to conduct a successful POC.

Step 1: Scope your POC

= =Rt

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

©]

When conducting a POC, you can either choose to use your own data, or you can choose to use
benchmarking datasets. When you choose your own data you run your own queries against the
data. With benchmarking data, sample queries are provided with the benchmark. See Use sample
datasets for more details if you are not ready to conduct a POC with your own data just yet.

In general, we recommend using two weeks of data for an Amazon Redshift POC.

Start by doing the following:

Step 1: Scope your POC 23

https://aws.amazon.com/redshift/resources/

Amazon Redshift Database Developer Guide

1.

Identify your business and functional requirements, then work backwards. Common examples
are: faster performance, lower costs, test a new workload or feature, or comparison between
Amazon Redshift and another data warehouse.

. Set specific targets which become the success criteria for the POC. For example, from faster

performance, come up with a list of the top five processes you wish to accelerate, and include
the current run times along with your required run time. These can be reports, queries, ETL
processes, data ingestion, or whatever your current pain points are.

. Identify the specific scope and artifacts needed to run the tests. What datasets do you need

to migrate or continuously ingest into Amazon Redshift, and what queries and processes are
needed to run the tests to measure against the success criteria? There are two ways to do this:

Bring your own data

» To test your own data, come up with the minimum viable list of data artifacts which is
required to test for your success criteria. For example, if your current data warehouse has 200
tables, but the reports you want to test only need 20, your POC can be run faster by using
only the smaller subset of tables.

Use sample datasets

« If you don't have your own datasets ready, you can still get started doing a POC on Amazon
Redshift by using the industry-standard benchmark datasets such as TPC-DS or TPC-H and run
sample benchmarking queries to harness the power of Amazon Redshift. These datasets can

be accessed from within your Amazon Redshift data warehouse after it is created. For detailed
instructions on how to access these datasets and sample queries, see Step 2: Launch Amazon
Redshift.

Step 2: Launch Amazon Redshift

B % 2= ®

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

Step 2: Launch Amazon Redshift 24

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCDS
https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCH

Amazon Redshift Database Developer Guide

Amazon Redshift accelerates your time to insights with fast, easy, and secure cloud data
warehousing at scale. You can start quickly by launching your warehouse on the Redshift Serverless
console and get from data to insights in seconds. With Redshift Serverless, you can focus on
delivering on your business outcomes without worrying about managing your data warehouse.

Set up Amazon Redshift Serverless

The first time you use Redshift Serverless, the console leads you through the steps required to
launch your warehouse. You might also be eligible for a credit towards your Redshift Serverless
usage in your account. For more information about choosing a free trial, see Amazon Redshift free

trial. Follow the steps in the Creating a data warehouse with Redshift Serverless in the Amazon
Redshift Getting Started Guide to create a data warehouse with Redshift Serverless. If you do not
have a dataset that you would like to load, the guide also contains steps on how to load a sample
data set.

If you have previously launched Redshift Serverless in your account, follow the steps in Creating
a workgroup with a namespace in the Amazon Redshift Management Guide. After your warehouse

is available, you can opt to load the sample data available in Amazon Redshift. For information
about using Amazon Redshift query editor v2 to load data, see Loading sample data in the Amazon
Redshift Management Guide.

If you are bringing your own data instead of loading the sample data set, see Step 3: Load your
data.

Step 3: Load your data

@ B @ = ®

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

After launching Redshift Serverless, the next step is to load your data for the POC. Whether you
are uploading a simple CSV file, ingesting semi-structured data from S3, or streaming data directly,
Amazon Redshift provides the flexibility to quickly and easily move the data into Amazon Redshift
tables from the source.

Choose one of the following methods to load your data.

Step 3: Load your data 25

https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://aws.amazon.com/redshift/free-trial/
https://aws.amazon.com/redshift/free-trial/
https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html#serverless-console-resource-creation
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-console-workgroups-create-workgroup-wizard.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-console-workgroups-create-workgroup-wizard.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-sample-data

Amazon Redshift Database Developer Guide

Upload a local file

For quick ingestion and analysis, you can use Amazon Redshift query editor v2 to easily load data

files from your local desktop. It has the capability to process files in various formats such as CSV,
JSON, AVRO, PARQUET, ORC, and more. To enable your users, as an administrator, to load data
from a local desktop using query editor v2 you have to specify a common Amazon S3 bucket, and
the user account must be configured with the proper permissions. You can follow Data load made

easy and secure in Amazon Redshift using Query Editor V2 for step-by-step guidance.

Load an Amazon S3 file

To load data from an Amazon S3 bucket into Amazon Redshift, begin by using the COPY command,
specifying the source Amazon S3 location and target Amazon Redshift table. Ensure that the IAM
roles and permissions are properly configured to allow Amazon Redshift access to the designated
Amazon S3 bucket. Follow Tutorial: Loading data from Amazon S3 for step-by-step guidance. You
can also choose the Load data option in query editor v2 to directly load data from your S3 bucket.

Continuous data ingestion

Autocopy (in preview) is an extension of the COPY command and automates continuous data

loading from Amazon S3 buckets. When you create a copy job, Amazon Redshift detects when new
Amazon S3 files are created in a specified path, and then loads them automatically without your
intervention. Amazon Redshift keeps track of the loaded files to verify that they are loaded only
one time. For instructions on how to create copy jobs, see COPY JOB (preview)

® Note

Autocopy is currently in preview and supported only in provisioned clusters in specific
AWS Regions. To create a preview cluster for autocopy, see Continuous file ingestion from

Amazon S3 (preview).

Load your streaming data

Streaming ingestion provides low-latency, high-speed ingestion of stream data from Amazon
Kinesis Data Streams and Amazon Managed Streaming for Apache Kafka into Amazon Redshift.
Amazon Redshift streaming ingestion uses a materialized view, which is updated directly from

the stream utilizing auto refresh. The materialized view maps to the stream data source. You can

Step 3: Load your data 26

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-data-local
https://aws.amazon.com/blogs/big-data/data-load-made-easy-and-secure-in-amazon-redshift-using-query-editor-v2/
https://aws.amazon.com/blogs/big-data/data-load-made-easy-and-secure-in-amazon-redshift-using-query-editor-v2/
https://docs.aws.amazon.com/redshift/latest/dg/t_loading-tables-from-s3.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-loading-data.html
https://docs.aws.amazon.com/redshift/latest/dg/loading-data-copy-job.html
https://docs.aws.amazon.com/redshift/latest/dg/t_loading-tables-from-s3.html
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/msk/
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh.html#materialized-view-auto-refresh

Amazon Redshift Database Developer Guide

perform filtering and aggregations on the stream data as part of the materialized view definition.
For step-by-step guidance to load data from a stream, see Getting started with Amazon Kinesis

Data Streams or an Getting started with Amazon Managed Streaming for Apache Kafka.

Step 4: Analyze your data

B

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

After creating your Redshift Serverless workgroup and namespace, and loading your data, you can
immediately run queries by opening the Query editor v2 from the navigation panel of the Redshift
Serverless console. You can use query editor v2 to test query functionality or query performance
against your own datasets.

Query using Amazon Redshift query editor v2

You can access query editor v2 from the Amazon Redshift console. See Simplify your data analysis

with Amazon Redshift query editor v2 for a complete guide on how to configure, connect, and run

queries with query editor v2.

Alternatively, if you want to run a load test as part of your POC, you can do this by the following
steps to install and run Apache JMeter.

Run a load test using Apache JMeter

To perform a load test to simulate “N" users submitting queries concurrently to Amazon Redshift,
you can use Apache JMeter, an open-source Java based tool.

To install and configure Apache JMeter to run against your Redshift Serverless workgroup, follow
the instructions in Automate Amazon Redshift load testing with the AWS Analytics Automation
Toolkit. It uses the AWS Analytics Automation toolkit (AAA), an open source utility for dynamically
deploying Redshift solutions, to automatically launch these resources. If you have loaded your own
data into Amazon Redshift, be sure to perform the Step #5 — Customize SQL option, to make sure
you supply the appropriate SQL statements you would like to test against your tables. Test each of
these SQL statements one time using query editor v2 to make sure they run without errors.

Step 4: Analyze your data 27

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion-getting-started.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion-getting-started.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion-getting-started-MSK.html
https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://aws.amazon.com/blogs/big-data/simplify-your-data-analysis-with-amazon-redshift-query-editor-v2/
https://aws.amazon.com/blogs/big-data/simplify-your-data-analysis-with-amazon-redshift-query-editor-v2/
https://jmeter.apache.org/
https://aws.amazon.com/blogs/big-data/automate-amazon-redshift-load-testing-with-the-aws-analytics-automation-toolkit/
https://aws.amazon.com/blogs/big-data/automate-amazon-redshift-load-testing-with-the-aws-analytics-automation-toolkit/
https://github.com/aws-samples/amazon-redshift-infrastructure-automation/tree/main

Amazon Redshift Database Developer Guide

After you complete customizing your SQL statements and finalizing your test plan, save and run
your test plan against your Redshift Serverless workgroup. To monitor the progress of your test,
open the Redshift Serverless console, navigate to Query and database monitoring, choose the
Query history tab and view information about your queries.

For performance metrics, choose the Database performance tab on the Redshift Serverless
console, to monitor metrics such as Database Connections and CPU utilization. Here you can
view a graph to monitor the RPU capacity used and observe how Redshift Serverless automatically
scales to meet concurrent workload demands while the load test is running on your workgroup.

RPU capacity used

Overall capacity in Redshift processing units (RPUs).

Average capacity used
70
60
50
40
30

20

10

0

Feb 22 Feb 22 Feb 22 Feb 23 Feb 23 Feb 23 Feb 23
6:00 AM 12:00 PM 6:00 PM 12:00 AM 6:00 AM 12:00 PM 6:00 PM

Time (UTC -05:00)

Database connections is another useful metric to monitor while running the load test to see
how your workgroup is handling numerous concurrent connections at a given time to meet the
increasing workload demands.

Step 4: Analyze your data 28

https://console.aws.amazon.com/redshiftv2/home?#serverless-query-and-database-monitoring

Amazon Redshift Database Developer Guide

Database connections
The number of active database connections.

Count

0
Thu Feb 22 2024 12:00:00 GMT-0500 (Eastern Standard Time)

Time (UTC -05:00)

== awsdatacatalog == dev = testdrive

Step 5: Optimize

~-B % 2 {9

Scope POC Launch Amazon Redshift Load Data Analyze Data Optimize

Amazon Redshift empowers tens of thousands of users to process exabytes of data every day and
power their analytics workloads by offering a variety of configurations and features to support
individual use cases. When choosing between these options, customers are looking for tools that
help them determine the most optimal data warehouse configuration to support their Amazon
Redshift workload.

Test drive

You can use Test Drive to automatically replay your existing workload on potential configurations
and analyze the corresponding outputs to evaluate the optimal target to migrate your workload to.

Step 5: Optimize 29

https://github.com/aws/redshift-test-drive/tree/main

Amazon Redshift Database Developer Guide

See Find the best Amazon Redshift configuration for your workload using Redshift Test Drive for

information about using Test Drive to evaluate different Amazon Redshift configurations.

Amazon Redshift best practices for designing tables

As you plan your database, certain key table design decisions heavily influence overall query
performance. These design choices also have a significant effect on storage requirements, which
in turn affects query performance by reducing the number of I/O operations and minimizing the
memory required to process queries.

In this section, you can find a summary of the most important design decisions and best practices
for optimizing query performance. Working with automatic table optimization provides more

detailed explanations and examples of table design options.

Topics

o Choose the best sort key

» Choose the best distribution style

o Let COPY choose compression encodings

» Define primary key and foreign key constraints

o Use the smallest possible column size

» Use date/time data types for date columns

Choose the best sort key

Amazon Redshift stores your data on disk in sorted order according to the sort key. The Amazon
Redshift query optimizer uses sort order when it determines optimal query plans.

® Note

When you use automatic table optimization, you don't need to choose the sort key of your
table. For more information, see Working with automatic table optimization.

Some suggestions for the best approach follow:

» To have Amazon Redshift choose the appropriate sort order, specify AUTO for the sort key.

Best practices for designing tables 30

https://aws.amazon.com/blogs/big-data/find-the-best-amazon-redshift-configuration-for-your-workload-using-redshift-test-drive/

Amazon Redshift Database Developer Guide

« If recent data is queried most frequently, specify the timestamp column as the leading column
for the sort key.

Queries are more efficient because they can skip entire blocks that fall outside the time range.

« If you do frequent range filtering or equality filtering on one column, specify that column as the
sort key.

Amazon Redshift can skip reading entire blocks of data for that column. It can do so because it
tracks the minimum and maximum column values stored on each block and can skip blocks that
don't apply to the predicate range.

« If you frequently join a table, specify the join column as both the sort key and the distribution
key.

Doing this enables the query optimizer to choose a sort merge join instead of a slower hash join.
Because the data is already sorted on the join key, the query optimizer can bypass the sort phase
of the sort merge join.

Choose the best distribution style

When you run a query, the query optimizer redistributes the rows to the compute nodes as

needed to perform any joins and aggregations. The goal in selecting a table distribution style is to
minimize the impact of the redistribution step by locating the data where it needs to be before the
query is run.

(® Note

When you use automatic table optimization, you don't need to choose the distribution style
of your table. For more information, see Working with automatic table optimization.

Some suggestions for the best approach follow:
1. Distribute the fact table and one dimension table on their common columns.

Your fact table can have only one distribution key. Any tables that join on another key aren't
collocated with the fact table. Choose one dimension to collocate based on how frequently it is
joined and the size of the joining rows. Designate both the dimension table's primary key and
the fact table's corresponding foreign key as the DISTKEY.

Choose the best distribution style 31

Amazon Redshift Database Developer Guide

2. Choose the largest dimension based on the size of the filtered dataset.

Only the rows that are used in the join must be distributed, so consider the size of the dataset
after filtering, not the size of the table.

3. Choose a column with high cardinality in the filtered result set.

If you distribute a sales table on a date column, for example, you should probably get fairly
even data distribution, unless most of your sales are seasonal. However, if you commonly use a
range-restricted predicate to filter for a narrow date period, most of the filtered rows occur on a
limited set of slices and the query workload is skewed.

4. Change some dimension tables to use ALL distribution.

If a dimension table cannot be collocated with the fact table or other important joining tables,
you can improve query performance significantly by distributing the entire table to all of the
nodes. Using ALL distribution multiplies storage space requirements and increases load times
and maintenance operations, so you should weigh all factors before choosing ALL distribution.

To have Amazon Redshift choose the appropriate distribution style, specify AUTO for the
distribution style.

For more information about choosing distribution styles, see Working with data distribution styles.

Let COPY choose compression encodings

You can specify compression encodings when you create a table, but in most cases, automatic
compression produces the best results.

ENCODE AUTO is the default for tables. When a table is set to ENCODE AUTO, Amazon Redshift
automatically manages compression encoding for all columns in the table. For more information,
see CREATE TABLE and ALTER TABLE.

The COPY command analyzes your data and applies compression encodings to an empty table
automatically as part of the load operation.

Automatic compression balances overall performance when choosing compression encodings.
Range-restricted scans might perform poorly if sort key columns are compressed much more highly
than other columns in the same query. As a result, automatic compression chooses a less efficient
compression encoding to keep the sort key columns balanced with other columns.

Use automatic compression 32

Amazon Redshift Database Developer Guide

Suppose that your table's sort key is a date or timestamp and the table uses many large varchar
columns. In this case, you might get better performance by not compressing the sort key column
at all. Run the ANALYZE COMPRESSION command on the table, then use the encodings to create a
new table, but leave out the compression encoding for the sort key.

There is a performance cost for automatic compression encoding, but only if the table is empty
and does not already have compression encoding. For short-lived tables and tables that you
create frequently, such as staging tables, load the table once with automatic compression or run
the ANALYZE COMPRESSION command. Then use those encodings to create new tables. You can
add the encodings to the CREATE TABLE statement, or use CREATE TABLE LIKE to create a new
table with the same encoding.

For more information, see Loading tables with automatic compression.

Define primary key and foreign key constraints

Define primary key and foreign key constraints between tables wherever appropriate. Even though
they are informational only, the query optimizer uses those constraints to generate more efficient
query plans.

Do not define primary key and foreign key constraints unless your application enforces the
constraints. Amazon Redshift does not enforce unique, primary-key, and foreign-key constraints.

See Defining table constraints for additional information about how Amazon Redshift uses
constraints.

Use the smallest possible column size

Don't make it a practice to use the maximum column size for convenience.

Instead, consider the largest values you are likely to store in your columns and size them
accordingly. For instance, a CHAR column for storing chemical symbols from the periodic table
would only need to be CHAR(2).

Use date/time data types for date columns

Amazon Redshift stores DATE and TIMESTAMP data more efficiently than CHAR or VARCHAR, which
results in better query performance. Use the DATE or TIMESTAMP data type, depending on the
resolution you need, rather than a character type when storing date/time information. For more
information, see Datetime types.

Define constraints 33

Amazon Redshift Database Developer Guide

Amazon Redshift best practices for loading data

Topics

» Take the loading data tutorial

+ Use a COPY command to load data

» Use a single COPY command to load from multiple files

« Loading data files

« Compressing your data files

» Verify data files before and after a load

+ Use a multi-row insert

e Use a bulk insert

» Load data in sort key order

» Load data in sequential blocks

e Use time-series tables

« Schedule around maintenance windows

Loading very large datasets can take a long time and consume a lot of computing resources. How
your data is loaded can also affect query performance. This section presents best practices for
loading data efficiently using COPY commands, bulk inserts, and staging tables.

Take the loading data tutorial

Tutorial: Loading data from Amazon S3 walks you beginning to end through the steps to upload
data to an Amazon S3 bucket and then use the COPY command to load the data into your tables.
The tutorial includes help with troubleshooting load errors and compares the performance

difference between loading from a single file and loading from multiple files.

Use a COPY command to load data

The COPY command loads data in parallel from Amazon S3, Amazon EMR, Amazon DynamoDB, or
multiple data sources on remote hosts. COPY loads large amounts of data much more efficiently
than using INSERT statements, and stores the data more effectively as well.

For more information about using the COPY command, see Loading data from Amazon S3 and

Loading data from an Amazon DynamoDB table.

Best practices for loading data 34

Amazon Redshift Database Developer Guide

Use a single COPY command to load from multiple files

Amazon Redshift can automatically load in parallel from multiple compressed data files. You can
specify the files to be loaded by using an Amazon S3 object prefix or by using a manifest file.

However, if you use multiple concurrent COPY commands to load one table from multiple files,
Amazon Redshift is forced to perform a serialized load. This type of load is much slower and
requires a VACUUM process at the end if the table has a sort column defined. For more information
about using COPY to load data in parallel, see Loading data from Amazon S3.

Loading data files

Source-data files come in different formats and use varying compression algorithms. When loading
data with the COPY command, Amazon Redshift loads all of the files referenced by the Amazon S3
bucket prefix. (The prefix is a string of characters at the beginning of the object key name.) If the
prefix refers to multiple files or files that can be split, Amazon Redshift loads the data in parallel,
taking advantage of Amazon Redshift's MPP architecture. This divides the workload among the
nodes in the cluster. In contrast, when you load data from a file that can't be split, Amazon Redshift
is forced to perform a serialized load, which is much slower. The following sections describe the
recommended way to load different file types into Amazon Redshift, depending on their format
and compression.

Loading data from files that can be split

The following files can be automatically split when their data is loaded:

« an uncompressed CSV file
» a CSV file compressed with BZIP
« a columnar file (Parquet/ORC)

Amazon Redshift automatically splits files 128MB or larger into chunks. Columnar files, specifically
Parquet and ORC, aren't split if they're less than 128MB. Redshift makes use of slices working in
parallel to load the data. This provides fast load performance.

Loading data from files that can't be split

File types such as JSON, or CSV, when compressed with other compression algorithms, such as
GZIP, aren't automatically split. For these we recommend manually splitting the data into multiple

Use a single COPY command 35

Amazon Redshift Database Developer Guide

smaller files that are close in size, from 1 MB to 1 GB after compression. Additionally, make the
number of files a multiple of the number of slices in your cluster. For more information about how
to split your data into multiple files and examples of loading data using COPY, see Loading data
from Amazon S3.

Compressing your data files

When you want to compress large load files, we recommend that you use gzip, lzop, bzip2, or
Zstandard to compress them and split the data into multiple smaller files.

Specify the GZIP, LZOP, BZIP2, or ZSTD option with the COPY command. This example loads the
TIME table from a pipe-delimited lzop file.

copy time

from 's3://mybucket/data/timerows.lzo’

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
1zop

delimiter '|';

There are instances when you don't have to split uncompressed data files. For more information
about splitting your data and examples of using COPY to load data, see Loading data from Amazon
S3.

Verify data files before and after a load

Before you load data from Amazon S3, first verify that your Amazon S3 bucket contains all the
correct files, and only those files. For more information, see Verifying that the correct files are

present in your bucket.

After the load operation is complete, query the STL_LOAD_COMMITS system table to verify that
the expected files were loaded. For more information, see Verifying that the data loaded correctly.

Use a multi-row insert

If a COPY command is not an option and you require SQL inserts, use a multi-row insert whenever
possible. Data compression is inefficient when you add data only one row or a few rows at a time.

Multi-row inserts improve performance by batching up a series of inserts. The following example
inserts three rows into a four-column table using a single INSERT statement. This is still a small
insert, shown simply to illustrate the syntax of a multi-row insert.

Compressing your data files 36

https://docs.aws.amazon.com/redshift/latest/dg/t_Loading-data-from-S3.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Loading-data-from-S3.html

Amazon Redshift Database Developer Guide

insert into category_stage values
(default, default, default, default),
(20, default, 'Country', default),
(21, 'Concerts', 'Rock', default);

For more details and examples, see INSERT.

Use a bulk insert

Use a bulk insert operation with a SELECT clause for high-performance data insertion.

Use the INSERT and CREATE TABLE AS commands when you need to move data or a subset of data
from one table into another.

For example, the following INSERT statement selects all of the rows from the CATEGORY table and
inserts them into the CATEGORY_STAGE table.

insert into category_stage
(select * from category);

The following example creates CATEGORY_STAGE as a copy of CATEGORY and inserts all of the
rows in CATEGORY into CATEGORY_STAGE.

create table category_stage as
select * from category;

Load data in sort key order

Load your data in sort key order to avoid needing to vacuum.

If each batch of new data follows the existing rows in your table, your data is properly stored in
sort order, and you don't need to run a vacuum. You don't need to presort the rows in each load
because COPY sorts each batch of incoming data as it loads.

For example, suppose that you load data every day based on the current day's activity. If your

sort key is a timestamp column, your data is stored in sort order. This order occurs because the
current day's data is always appended at the end of the previous day's data. For more information,
see Loading your data in sort key order. For more information about vacuum operations, see

Vacuuming tables.

Use a bulk insert 37

https://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage_space202.html

Amazon Redshift Database Developer Guide

Load data in sequential blocks

If you need to add a large quantity of data, load the data in sequential blocks according to sort
order to eliminate the need to vacuum.

For example, suppose that you need to load a table with events from January 2017 to December
2017. Assuming each month is in a single file, load the rows for January, then February, and so on.
Your table is completely sorted when your load completes, and you don't need to run a vacuum.
For more information, see Use time-series tables.

When loading very large datasets, the space required to sort might exceed the total available
space. By loading data in smaller blocks, you use much less intermediate sort space during each
load. In addition, loading smaller blocks make it easier to restart if the COPY fails and is rolled
back.

Use time-series tables

If your data has a fixed retention period, you can organize your data as a sequence of time-series
tables. In such a sequence, each table is identical but contains data for different time ranges.

You can easily remove old data simply by running a DROP TABLE command on the corresponding
tables. This approach is much faster than running a large-scale DELETE process and saves you

from having to run a subsequent VACUUM process to reclaim space. To hide the fact that the data
is stored in different tables, you can create a UNION ALL view. When you delete old data, refine
your UNION ALL view to remove the dropped tables. Similarly, as you load new time periods into
new tables, add the new tables to the view. To signal the optimizer to skip the scan on tables that
don't match the query filter, your view definition filters for the date range that corresponds to each
table.

Avoid having too many tables in the UNION ALL view. Each additional table adds a small processing
time to the query. Tables don't need to use the same time frame. For example, you might have
tables for differing time periods, such as daily, monthly, and yearly.

If you use time-series tables with a timestamp column for the sort key, you effectively load your
data in sort key order. Doing this eliminates the need to vacuum to re-sort the data. For more
information, see Loading your data in sort key order.

Load data in sequential blocks 38

Amazon Redshift Database Developer Guide

Schedule around maintenance windows

If a scheduled maintenance occurs while a query is running, the query is terminated and rolled
back and you need to restart it. Schedule long-running operations, such as large data loads or
VACUUM operation, to avoid maintenance windows. You can also minimize the risk, and make
restarts easier when they are needed, by performing data loads in smaller increments and
managing the size of your VACUUM operations. For more information, see Load data in sequential

blocks and Vacuuming tables.

Amazon Redshift best practices for designing queries

To maximize query performance, follow these recommendations when creating queries:

» Design tables according to best practices to provide a solid foundation for query performance.
For more information, see Amazon Redshift best practices for designing tables.

« Avoid using select *.Include only the columns you specifically need.

« Use a CASE conditional expression to perform complex aggregations instead of selecting from

the same table multiple times.

» Don't use cross-joins unless absolutely necessary. These joins without a join condition result in
the Cartesian product of two tables. Cross-joins are typically run as nested-loop joins, which are
the slowest of the possible join types.

» Use subqueries in cases where one table in the query is used only for predicate conditions and
the subquery returns a small number of rows (less than about 200). The following example uses
a subquery to avoid joining the LISTING table.

select sum(sales.qtysold)
from sales
where salesid in (select listid from listing where listtime > '2008-12-26');

» Use predicates to restrict the dataset as much as possible.

« In the predicate, use the least expensive operators that you can. Comparison condition operators
are preferable to LIKE operators. LIKE operators are still preferable to SIMILAR TO or POSIX
operators.

» Avoid using functions in query predicates. Using them can drive up the cost of the query by

requiring large numbers of rows to resolve the intermediate steps of the query.

Schedule around maintenance windows 39

Amazon Redshift Database Developer Guide

« If possible, use a WHERE clause to restrict the dataset. The query planner can then use row order
to help determine which records match the criteria, so it can skip scanning large numbers of disk
blocks. Without this, the query execution engine must scan participating columns entirely.

« Add predicates to filter tables that participate in joins, even if the predicates apply the same
filters. The query returns the same result set, but Amazon Redshift is able to filter the join tables
before the scan step and can then efficiently skip scanning blocks from those tables. Redundant
filters aren't needed if you filter on a column that's used in the join condition.

For example, suppose that you want to join SALES and LISTING to find ticket sales for tickets
listed after December, grouped by seller. Both tables are sorted by date. The following query
joins the tables on their common key and filters for 1isting.listtime values greater than
December 1.

select listing.sellerid, sum(sales.qtysold)
from sales, listing

where sales.salesid = listing.listid

and listing.listtime > '2008-12-01'

group by 1 order by 1;

The WHERE clause doesn't include a predicate for sales.saletime, so the execution engine
is forced to scan the entire SALES table. If you know the filter would result in fewer rows
participating in the join, then add that filter as well. The following example cuts execution time
significantly.

select listing.sellerid, sum(sales.qtysold)
from sales, listing

where sales.salesid = listing.listid

and listing.listtime > '2008-12-01'

and sales.saletime > '2008-12-01'

group by 1 order by 1;

» Use sort keys in the GROUP BY clause so the query planner can use more efficient aggregation.
A query might qualify for one-phase aggregation when its GROUP BY list contains only sort key
columns, one of which is also the distribution key. The sort key columns in the GROUP BY list
must include the first sort key, then other sort keys that you want to use in sort key order. For
example, it is valid to use the first sort key, the first and second sort keys, the first, second, and
third sort keys, and so on. It is not valid to use the first and third sort keys.

Best practices for designing queries 40

Amazon Redshift Database Developer Guide

You can confirm the use of one-phase aggregation by running the EXPLAIN command and
looking for XN GroupAggregate in the aggregation step of the query.

« If you use both GROUP BY and ORDER BY clauses, make sure that you put the columns in the
same order in both. That is, use the approach just following.

group by a, b, c
order by a, b, c

Don't use the following approach.

group by b, c, a
order by a, b, ¢

Working with recommendations from Amazon Redshift Advisor

To help you improve the performance and decrease the operating costs for your Amazon Redshift
cluster, Amazon Redshift Advisor offers you specific recommendations about changes to make.
Advisor develops its customized recommendations by analyzing performance and usage metrics for
your cluster. These tailored recommendations relate to operations and cluster settings. To help you
prioritize your optimizations, Advisor ranks recommendations by order of impact.

Advisor bases its recommendations on observations regarding performance statistics or operations
data. Advisor develops observations by running tests on your clusters to determine if a test value is
within a specified range. If the test result is outside of that range, Advisor generates an observation
for your cluster. At the same time, Advisor creates a recommendation about how to bring the
observed value back into the best-practice range. Advisor only displays recommendations that
should have a significant impact on performance and operations. When Advisor determines that a
recommendation has been addressed, it removes it from your recommendation list.

For example, suppose that your data warehouse contains a large number of uncompressed

table columns. In this case, you can save on cluster storage costs by rebuilding tables using the
ENCODE parameter to specify column compression. In another example, suppose that Advisor
observes that your cluster contains a significant amount of data in uncompressed table data. In
this case, it provides you with the SQL code block to find the table columns that are candidates for
compression and resources that describe how to compress those columns.

Working with Advisor 41

Amazon Redshift Database Developer Guide

Amazon Redshift Regions

The Amazon Redshift Advisor feature is available only in the following AWS Regions:

« US East (N. Virginia) Region (us-east-1)

« US East (Ohio) Region (us-east-2)

« US West (N. California) Region (us-west-1)

» US West (Oregon) Region (us-west-2)
 Africa (Cape Town) Region (af-south-1)

« Asia Pacific (Hong Kong) Region (ap-east-1)

« Asia Pacific (Hyderabad) Region (ap-south-2)
« Asia Pacific (Jakarta) Region (ap-southeast-3)
« Asia Pacific (Melbourne) Region (ap-southeast-4)
« Asia Pacific (Mumbai) Region (ap-south-1)

« Asia Pacific (Osaka) Region (ap-northeast-3)
« Asia Pacific (Seoul) Region (ap-northeast-2)

« Asia Pacific (Singapore) Region (ap-southeast-1)
« Asia Pacific (Sydney) Region (ap-southeast-2)
« Asia Pacific (Tokyo) Region (ap-northeast-1)
« Canada (Central) Region (ca-central-1)

» Canada West (Calgary) Region (ca-west-1)

« China (Beijing) Region (cn-north-1)

« China (Ningxia) Region (cn-northwest-1)

» Europe (Frankfurt) Region (eu-central-1)

» Europe (Ireland) Region (eu-west-1)

» Europe (London) Region (eu-west-2)

» Europe (Milan) Region (eu-south-1)

» Europe (Paris) Region (eu-west-3)

» Europe (Spain) Region (eu-south-2)

» Europe (Stockholm) Region (eu-north-1)

Amazon Redshift Regions 42

Amazon Redshift Database Developer Guide

» Europe (Zurich) Region (eu-central-2)

o Israel (Tel Aviv) Region (il-central-1)

» Middle East (Bahrain) Region (me-south-1)
» Middle East (UAE) Region (me-central-1)

» South America (Sao Paulo) Region (sa-east-1)

Topics

« Viewing Amazon Redshift Advisor recommendations

« Amazon Redshift Advisor recommendations

Viewing Amazon Redshift Advisor recommendations

You can access Amazon Redshift Advisor recommendations using the Amazon Redshift console,
Amazon Redshift API, or AWS CLI. To access recommendations you must have permission
redshift:ListRecommendations attached to your IAM role or identity.

Viewing Amazon Redshift Advisor recommendations on the Amazon Redshift
provisioned console

You can view Amazon Redshift Advisor recommendations on the AWS Management Console.

To view Amazon Redshift Advisor recommendations for Amazon Redshift clusters on the
console

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Advisor.

3. Expand each recommendation to see more details. On this page, you can sort and group
recommendations.

Viewing Amazon Redshift Advisor recommendations using Amazon Redshift API
operations

You can list Amazon Redshift Advisor recommendations for Amazon Redshift clusters using the
Amazon Redshift API. Typically, you develop and application in your programming language of

Viewing Advisor recommendations 43

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

your choice to call the redshift:ListRecommendations API using an AWS SDK. For more
information, see ListRecommendations in the Amazon Redshift APl Reference.

Viewing Amazon Redshift Advisor recommendations using AWS Command Line
Interface operations

You can list Amazon Redshift Advisor recommendations for Amazon Redshift clusters using the
AWS Command Line Interface. For more information, see list-recommendations in the AWS CLI

Command Reference.

Amazon Redshift Advisor recommendations

Amazon Redshift Advisor offers recommendations about how to optimize your Amazon Redshift
cluster to increase performance and save on operating costs. You can find explanations for each
recommendation in the console, as described preceding. You can find further details on these
recommendations in the following sections.

Topics

o Compress Amazon S3 file objects loaded by COPY

« Isolate multiple active databases

» Reallocate workload management (WLM) memory

» Skip compression analysis during COPY

« Split Amazon S3 objects loaded by COPY

« Update table statistics

« Enable short query acceleration

« Alter distribution keys on tables

« Alter sort keys on tables

« Alter compression encodings on columns

» Data type recommendations

Compress Amazon S3 file objects loaded by COPY

The COPY command takes advantage of the massively parallel processing (MPP) architecture in
Amazon Redshift to read and load data in parallel. It can read files from Amazon S3, DynamoDB
tables, and text output from one or more remote hosts.

Advisor recommendations 44

https://docs.aws.amazon.com/redshift/latest/APIReference/API_ListRecommendations.html
https://docs.aws.amazon.com/cli/latest/reference/redshift/list-recommendations.html

Amazon Redshift Database Developer Guide

When loading large amounts of data, we strongly recommend using the COPY command to load
compressed data files from S3. Compressing large datasets saves time uploading the files to
Amazon S3. COPY can also speed up the load process by uncompressing the files as they are read.

Analysis

Long-running COPY commands that load large uncompressed datasets often have an opportunity
for considerable performance improvement. The Advisor analysis identifies COPY commands

that load large uncompressed datasets. In such a case, Advisor generates a recommendation to
implement compression on the source files in Amazon S3.

Recommendation

Ensure that each COPY that loads a significant amount of data, or runs for a significant duration,
ingests compressed data objects from Amazon S3. You can identify the COPY commands that
load large uncompressed datasets from Amazon S3 by running the following SQL command as a
superuser.

SELECT
wq.userid, query, exec_start_time AS starttime, COUNT(*) num_files,
ROUND(MAX(wq.total_exec_time/1000000.0),2) execution_secs,
ROUND(SUM(transfer_size)/(1024.0*1024.0),2) total_mb,
SUBSTRING(querytxt,1,60) copy_sql

FROM stl_s3client s

JOIN stl_query q USING (query)

JOIN stl_wlm_query wg USING (query)

WHERE s.userid>1 AND http_method = 'GET'
AND POSITION('COPY ANALYZE' IN querytxt) = 0
AND aborted = @ AND final_state='Completed'

GROUP BY 1, 2, 3, 7

HAVING SUM(transfer_size) = SUM(data_size)

AND SUM(transfer_size)/(1024*1024) >= 5

ORDER BY 6 DESC, 5 DESC;

If the staged data remains in Amazon S3 after you load it, which is common in data lake
architectures, storing this data in a compressed form can reduce your storage costs.

Implementation tips

« The ideal object size is 1-128 MB after compression.

Advisor recommendations 45

Amazon Redshift Database Developer Guide

» You can compress files with gzip, lzop, or bzip2 format.

Isolate multiple active databases

As a best practice, we recommend isolating databases in Amazon Redshift from one another.
Queries run in a specific database and can't access data from any other database on the cluster.
However, the queries that you run in all databases of a cluster share the same underlying cluster
storage space and compute resources. When a single cluster contains multiple active databases,
their workloads are usually unrelated.

Analysis

The Advisor analysis reviews all databases on the cluster for active workloads running at the same
time. If there are active workloads running at the same time, Advisor generates a recommendation
to consider migrating databases to separate Amazon Redshift clusters.

Recommendation

Consider moving each actively queried database to a separate dedicated cluster. Using a separate
cluster can reduce resource contention and improve query performance. It can do so because

it allows you to set the size for each cluster for the storage, cost, and performance needs of

each workload. Also, unrelated workloads often benefit from different workload management
configurations.

To identify which databases are actively used, you can run this SQL command as a superuser.

SELECT database,
COUNT(*) as num_queries,
AVG(DATEDIFF(sec,starttime,endtime)) avg_duration,
MIN(starttime) as oldest_ts,
MAX(endtime) as latest_ts

FROM stl_query

WHERE userid > 1

GROUP BY database;

Implementation tips

« Because a user must connect to each database specifically, and queries can only access a single
database, moving databases to separate clusters has minimal impact for users.

Advisor recommendations 46

Amazon Redshift Database Developer Guide

« One option to move a database is to take the following steps:
1. Temporarily restore a snapshot of the current cluster to a cluster of the same size.
2. Delete all databases from the new cluster except the target database to be moved.

3. Resize the cluster to an appropriate node type and count for the database's workload.

Reallocate workload management (WLM) memory

Amazon Redshift routes user queries to Implementing manual WLM for processing. Workload

management (WLM) defines how those queries are routed to the queues. Amazon Redshift
allocates each queue a portion of the cluster's available memory. A queue's memory is divided
among the queue's query slots.

When a queue is configured with more slots than the workload requires, the memory allocated to
these unused slots goes underutilized. Reducing the configured slots to match the peak workload
requirements redistributes the underutilized memory to active slots, and can result in improved
query performance.

Analysis

The Advisor analysis reviews workload concurrency requirements to identify query queues with
unused slots. Advisor generates a recommendation to reduce the number of slots in a queue when
it finds the following:

« A queue with slots that are completely inactive throughout the analysis.

« A queue with more than four slots that had at least two inactive slots throughout the analysis.

Recommendation

Reducing the configured slots to match peak workload requirements redistributes underutilized
memory to active slots. Consider reducing the configured slot count for queues where the slots
have never been fully used. To identify these queues, you can compare the peak hourly slot
requirements for each queue by running the following SQL command as a superuser.

WITH
generate_dt_series AS (select sysdate - (n * interval '5 second') as dt from (select
row_number() over () as n from stl_scan limit 17280)),
apex AS (

Advisor recommendations 47

Amazon Redshift Database Developer Guide

SELECT iq.dt, iq.service_class, iq.num_query_tasks, count(ig.slot_count) as
service_class_queries, sum(iq.slot_count) as service_class_slots
FROM
(select gds.dt, wq.service_class, wscc.num_query_tasks, wqg.slot_count
FROM stl_wlm_query wq
JOIN stv_wlm_service_class_config wscc ON (wscc.service_class =
wqg.service_class AND wscc.service_class > 5)
JOIN generate_dt_series gds ON (wqg.service_class_start_time <= gds.dt AND
wq.service_class_end_time > gds.dt)
WHERE wq.userid > 1 AND wq.service_class > 5) iq
GROUP BY iqg.dt, iq.service_class, iqg.num_query_tasks),
maxes as (SELECT apex.service_class, trunc(apex.dt) as d, date_part(h,apex.dt) as
dt_h, max(service_class_slots) max_service_class_slots
from apex group by apex.service_class, apex.dt,
date_part(h,apex.dt))
SELECT apex.service_class - 5 AS queue, apex.service_class, apex.num_query_tasks AS

max_wlm_concurrency, maxes.d AS day, maxes.dt_h || ':00 - ' || maxes.dt_h || ':59' as
hour, MAX(apex.service_class_slots) as max_service_class_slots
FROM apex

JOIN maxes ON (apex.service_class = maxes.service_class AND apex.service_class_slots =
maxes.max_service_class_slots)

GROUP BY apex.service_class, apex.num_query_tasks, maxes.d, maxes.dt_h

ORDER BY apex.service_class, maxes.d, maxes.dt_h;

The max_service_class_slots column represents the maximum number of WLM query slots
in the query queue for that hour. If underutilized queues exist, implement the slot reduction
optimization by modifying a parameter group, as described in the Amazon Redshift Management
Guide.

Implementation tips

« If your workload is highly variable in volume, make sure that the analysis captured a peak
utilization period. If it didn't, run the preceding SQL repeatedly to monitor peak concurrency
requirements.

» For more details on interpreting the query results from the preceding SQL code, see the
wlm_apex_hourly.sgl script on GitHub.

Advisor recommendations 48

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html#parameter-group-modify
https://github.com/awslabs/amazon-redshift-utils/blob/master/src/AdminScripts/wlm_apex_hourly.sql

Amazon Redshift Database Developer Guide

Skip compression analysis during COPY

When you load data into an empty table with compression encoding declared with the COPY
command, Amazon Redshift applies storage compression. This optimization ensures that data in
your cluster is stored efficiently even when loaded by end users. The analysis required to apply
compression can require significant time.

Analysis

The Advisor analysis checks for COPY operations that were delayed by automatic compression
analysis. The analysis determines the compression encodings by sampling the data while it's being
loaded. This sampling is similar to that performed by the ANALYZE COMPRESSION command.

When you load data as part of a structured process, such as in an overnight extract, transform,
load (ETL) batch, you can define the compression beforehand. You can also optimize your table
definitions to skip this phase permanently without any negative impacts.

Recommendation

To improve COPY responsiveness by skipping the compression analysis phase, implement either of
the following two options:

» Use the column ENCODE parameter when creating any tables that you load using the COPY
command.

« Turn off compression altogether by supplying the COMPUPDATE OFF parameter in the COPY
command.

The best solution is generally to use column encoding during table creation, because this
approach also maintains the benefit of storing compressed data on disk. You can use the ANALYZE
COMPRESSION command to suggest compression encodings, but you must recreate the table to
apply these encodings. To automate this process, you can use the AWSColumnEncodingUrtility,
found on GitHub.

To identify recent COPY operations that triggered automatic compression analysis, run the
following SQL command.

WITH xids AS (
SELECT xid FROM stl_query WHERE userid>1 AND aborted=0
AND querytxt = 'analyze compression phase 1' GROUP BY xid

Advisor recommendations 49

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/ColumnEncodingUtility

Amazon Redshift Database Developer Guide

INTERSECT SELECT xid FROM stl_commit_stats WHERE node=-1)

SELECT a.userid, a.query, a.xid, a.starttime, b.complyze_sec,
a.copy_sec, a.copy_sql

FROM (SELECT q.userid, g.query, q.xid, date_trunc('s',qg.starttime)
starttime, substring(querytxt,1,100) as copy_sql,
ROUND(datediff(ms,starttime,endtime): :numeric / 1000.0, 2) copy_sec
FROM stl_query g JOIN xids USING (xid)
WHERE (querytxt ilike 'copy %from%' OR querytxt ilike '$% copy %from%')
AND querytxt not like 'COPY ANALYZE %') a

LEFT JOIN (SELECT xid,
ROUND(sum(datediff(ms,starttime,endtime)): :numeric / 1000.0,2) complyze_sec
FROM stl_query g JOIN xids USING (xid)
WHERE (querytxt like 'COPY ANALYZE %'
OR querytxt like 'analyze compression phase %')
GROUP BY xid) b ON a.xid = b.xid

WHERE b.complyze_sec IS NOT NULL ORDER BY a.copy_sql, a.starttime;

Implementation tips

« Ensure that all tables of significant size created during your ETL processes (for example, staging
tables and temporary tables) declare a compression encoding for all columns except the first sort
key.

» Estimate the expected lifetime size of the table being loaded for each of the COPY commands
identified by the SQL command preceding. If you are confident that the table will remain
extremely small, turn off compression altogether with the COMPUPDATE OFF parameter.
Otherwise, create the table with explicit compression before loading it with the COPY command.

Split Amazon S3 objects loaded by COPY

The COPY command takes advantage of the massively parallel processing (MPP) architecture in
Amazon Redshift to read and load data from files on Amazon S3. The COPY command loads the
data in parallel from multiple files, dividing the workload among the nodes in your cluster. To
achieve optimal throughput, we strongly recommend that you divide your data into multiple files
to take advantage of parallel processing.

Analysis

The Advisor analysis identifies COPY commands that load large datasets contained in a small
number of files staged in Amazon S3. Long-running COPY commands that load large datasets

Advisor recommendations 50

Amazon Redshift Database Developer Guide

from a few files often have an opportunity for considerable performance improvement. When
Advisor identifies that these COPY commands are taking a significant amount of time, it creates a
recommendation to increase parallelism by splitting the data into additional files in Amazon S3.

Recommendation

In this case, we recommend the following actions, listed in priority order:

1. Optimize COPY commands that load fewer files than the number of cluster nodes.
2. Optimize COPY commands that load fewer files than the number of cluster slices.

3. Optimize COPY commands where the number of files is not a multiple of the number of cluster
slices.

Certain COPY commands load a significant amount of data or run for a significant duration. For
these commands, we recommend that you load a number of data objects from Amazon S3 that
is equivalent to a multiple of the number of slices in the cluster. To identify how many S3 objects
each COPY command has loaded, run the following SQL code as a superuser.

SELECT
query, COUNT(*) num_files,
ROUND(MAX(wq.total_exec_time/1000000.0),2) execution_secs,
ROUND(SUM(transfer_size)/(1024.0*1024.0),2) total_mb,
SUBSTRING(querytxt,1,60) copy_sql

FROM stl_s3client s

JOIN stl_query q USING (query)

JOIN stl_wlm_query wg USING (query)

WHERE s.userid>1 AND http_method = 'GET'
AND POSITION('COPY ANALYZE' IN querytxt) = 0
AND aborted = @ AND final_state='Completed'

GROUP BY query, querytxt

HAVING (SUM(transfer_size)/(1024*1024))/COUNT(*) >= 2

ORDER BY CASE

WHEN COUNT(*) < (SELECT max(node)+1 FROM stv_slices) THEN 1

WHEN COUNT(*) < (SELECT COUNT(*) FROM stv_slices WHERE node=@) THEN 2

ELSE 2+((COUNT(*) % (SELECT COUNT(*) FROM stv_slices))/(SELECT COUNT(*)::DECIMAL FROM

stv_slices))

END, (SUM(transfer_size)/(1024.0*1024.0))/COUNT(*) DESC;

Advisor recommendations 51

Amazon Redshift Database Developer Guide

Implementation tips

« The number of slices in a node depends on the node size of the cluster. For more information
about the number of slices in the various node types, see Clusters and Nodes in Amazon Redshift
in the Amazon Redshift Management Guide.

» You can load multiple files by specifying a common prefix, or prefix key, for the set, or by
explicitly listing the files in a manifest file. For more information about loading files, see Loading
data from compressed and uncompressed files.

« Amazon Redshift doesn't take file size into account when dividing the workload. Split your load
data files so that the files are about equal size, between 1 MB and 1 GB after compression.

Update table statistics

Amazon Redshift uses a cost-based query optimizer to choose the optimum execution plan for
queries. The cost estimates are based on table statistics gathered using the ANALYZE command.
When statistics are out of date or missing, the database might choose a less efficient plan for query
execution, especially for complex queries. Maintaining current statistics helps complex queries run
in the shortest possible time.

Analysis

The Advisor analysis tracks tables whose statistics are out-of-date or missing. It reviews table
access metadata associated with complex queries. If tables that are frequently accessed with
complex patterns are missing statistics, Advisor creates a critical recommendation to run ANALYZE.
If tables that are frequently accessed with complex patterns have out-of-date statistics, Advisor
creates a suggested recommendation to run ANALYZE.

Recommendation

Whenever table content changes significantly, update statistics with ANALYZE. We recommend
running ANALYZE whenever a significant number of new data rows are loaded into an existing
table with COPY or INSERT commands. We also recommend running ANALYZE whenever a
significant number of rows are modified using UPDATE or DELETE commands. To identify tables
with missing or out-of-date statistics, run the following SQL command as a superuser. The results
are ordered from largest to smallest table.

To identify tables with missing or out-of-date statistics, run the following SQL command as a
superuser. The results are ordered from largest to smallest table.

Advisor recommendations 52

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

SELECT
ti.schema||'.'||ti."table" tablename,
ti.size table_size_mb,
ti.stats_off statistics_accuracy
FROM svv_table_info ti
WHERE ti.stats_off > 5.00
ORDER BY ti.size DESC;

Implementation tips

The default ANALYZE threshold is 10 percent. This default means that the ANALYZE command
skips a given table if fewer than 10 percent of the table's rows have changed since the last
ANALYZE. As a result, you might choose to issue ANALYZE commands at the end of each ETL
process. Taking this approach means that ANALYZE is often skipped but also ensures that ANALYZE
runs when needed.

ANALYZE statistics have the most impact for columns that are used in joins (for example, JOIN
tbl_a ON col_b) or as predicates (for example, WHERE col_b = 'xyz'). By default, ANALYZE
collects statistics for all columns in the table specified. If needed, you can reduce the time required
to run ANALYZE by running ANALYZE only for the columns where it has the most impact. You can
run the following SQL command to identify columns used as predicates. You can also let Amazon
Redshift choose which columns to analyze by specifying ANALYZE PREDICATE COLUMNS.

WITH predicate_column_info as (
SELECT ns.nspname AS schema_name, c.relname AS table_name, a.attnum as col_num,
a.attname as col_name,

CASE
WHEN 10002 = s.stakindl THEN array_to_string(stavaluesl, '|]|')
WHEN 10002 = s.stakind2 THEN array_to_string(stavalues2, '||')
WHEN 10002 = s.stakind3 THEN array_to_string(stavalues3, '||')
WHEN 10002 = s.stakind4 THEN array_to_string(stavalues4, '||')

ELSE NULL::varchar

END AS pred_ts
FROM pg_statistic s
JOIN pg_class c ON c.oid = s.starelid
JOIN pg_namespace ns ON c.relnamespace = ns.oid
JOIN pg_attribute a ON c.oid = a.attrelid AND a.attnum = s.staattnum)

SELECT schema_name, table_name, col_num, col_name,
pred_ts NOT LIKE '2000-01-01%' AS is_predicate,

Advisor recommendations 53

Amazon Redshift Database Developer Guide

CASE WHEN pred_ts NOT LIKE '2000-01-01%' THEN (split_part(pred_ts,
"|]',1))::timestamp ELSE NULL::timestamp END as first_predicate_use,
CASE WHEN pred_ts NOT LIKE '%]||2000-01-01%' THEN (split_part(pred_ts,
"I1',2))::timestamp ELSE NULL::timestamp END as last_analyze
FROM predicate_column_info;

For more information, see Analyzing tables.

Enable short query acceleration

Short query acceleration (SQA) prioritizes selected short-running queries ahead of longer-running
queries. SQA runs short-running queries in a dedicated space, so that SQA queries aren't forced to
wait in queues behind longer queries. SQA only prioritizes queries that are short-running and are in
a user-defined queue. With SQA, short-running queries begin running more quickly and users see
results sooner.

If you turn on SQA, you can reduce or eliminate workload management (WLM) queues that are
dedicated to running short queries. In addition, long-running queries don't need to contend with
short queries for slots in a queue, so you can configure your WLM queues to use fewer query slots.
When you use lower concurrency, query throughput is increased and overall system performance is
improved for most workloads. For more information, see Working with short query acceleration.

Analysis

Advisor checks for workload patterns and reports the number of recent queries where SQA would
reduce latency and the daily queue time for SQA-eligible queries.

Recommendation

Modify the WLM configuration to turn on SQA. Amazon Redshift uses a machine learning algorithm
to analyze each eligible query. Predictions improve as SQA learns from your query patterns. For
more information, see Configuring Workload Management.

When you turn on SQA, WLM sets the maximum runtime for short queries to dynamic by default.
We recommend keeping the dynamic setting for SQA maximum runtime.

Implementation tips

To check whether SQA is turned on, run the following query. If the query returns a row, then SQA is
turned on.

select * from stv_wlm_service_class_config

Advisor recommendations 54

https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html

Amazon Redshift Database Developer Guide

where service_class = 14;

For more information, see Monitoring SQA.

Alter distribution keys on tables

Amazon Redshift distributes table rows throughout the cluster according to the table distribution
style. Tables with KEY distribution require a column as the distribution key (DISTKEY). A table row
is assigned to a node slice of a cluster based on its DISTKEY column value.

An appropriate DISTKEY places a similar number of rows on each node slice and is frequently
referenced in join conditions. An optimized join occurs when tables are joined on their DISTKEY
columns, accelerating query performance.

Analysis

Advisor analyzes your cluster’s workload to identify the most appropriate distribution key for the
tables that can significantly benefit from a KEY distribution style.

Recommendation

Advisor provides ALTER TABLE statements that alter the DISTSTYLE and DISTKEY of a table based
on its analysis. To realize a significant performance benefit, make sure to implement all SQL
statements within a recommendation group.

Redistributing a large table with ALTER TABLE consumes cluster resources and requires temporary
table locks at various times. Implement each recommendation group when other cluster workload
is light. For more details on optimizing table distribution properties, see the Amazon Redshift
Engineering's Advanced Table Design Playbook: Distribution Styles and Distribution Keys.

For more information about ALTER DISTSYLE and DISTKEY, see ALTER TABLE.

(® Note

If you don't see a recommendation that doesn't necessarily mean that the current
distribution styles are the most appropriate. Advisor doesn't provide recommendations
when there isn't enough data or the expected benefit of redistribution is small.

Advisor recommendations apply to a particular table and don't necessarily apply to a table
that contains a column with the same name. Tables that share a column name can have
different characteristics for those columns unless data inside the tables is the same.

Advisor recommendations 55

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-distribution-styles-and-distribution-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-distribution-styles-and-distribution-keys/

Amazon Redshift Database Developer Guide

If you see recommendations for staging tables that are created or dropped by ETL jobs,
modify your ETL processes to use the Advisor recommended distribution keys.

Alter sort keys on tables

Amazon Redshift sorts table rows according to the table sort key. The sorting of table rows is
based on the sort key column values.

Sorting a table on an appropriate sort key can accelerate performance of queries, especially those
with range-restricted predicates, by requiring fewer table blocks to be read from disk.

Analysis

Advisor analyzes your cluster's workload over several days to identify a beneficial sort key for your
tables.

Recommendation

Advisor provides two groups of ALTER TABLE statements that alter the sort key of a table based on
its analysis:

« Statements that alter a table that currently doesn't have a sort key to add a COMPOUND sort
key.

» Statements that alter a sort key from INTERLEAVED to COMPOUND or no sort key.

Using compound sort keys significantly reduces maintenance overhead. Tables with compound
sort keys don't need the expensive VACUUM REINDEX operations that are necessary for
interleaved sorts. In practice, compound sort keys are more effective than interleaved sort
keys for the vast majority of Amazon Redshift workloads. However, if a table is small, it's more
efficient not to have a sort key to avoid sort key storage overhead.

When sorting a large table with the ALTER TABLE, cluster resources are consumed and table locks
are required at various times. Implement each recommendation when a cluster's workload is
moderate. More details on optimizing table sort key configurations can be found in the Amazon
Redshift Engineering's Advanced Table Design Playbook: Compound and Interleaved Sort Keys.

For more information about ALTER SORTKEY, see ALTER TABLE.

Advisor recommendations 56

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/

Amazon Redshift Database Developer Guide

® Note

If you don't see a recommendation for a table, that doesn't necessarily mean that the
current configuration is the best. Advisor doesn't provide recommendations when there
isn't enough data or the expected benefit of sorting is small.

Advisor recommendations apply to a particular table and don't necessarily apply to a table
that contains a column with the same name and data type. Tables that share column names
can have different recommendations based on the data in the tables and the workload.

Alter compression encodings on columns

Compression is a column-level operation that reduces the size of data when it's stored.
Compression is used in Amazon Redshift to conserve storage space and improve query
performance by reducing the amount of disk I/O. We recommend an optimal compression
encoding for each column based on its data type and on query patterns. With optimal
compression, queries can run more efficiently and the database can take up minimal storage space.

Analysis

Advisor performs analysis of your cluster's workload and database schema continually to identify
the optimal compression encoding for each table column.

Recommendation

Advisor provides ALTER TABLE statements that change the compression encoding of particular
columns, based on its analysis.

Changing column compression encodings with ALTER TABLE consumes cluster resources and
requires table locks at various times. It's best to implement recommendations when the cluster
workload is light.

For reference, ALTER TABLE examples shows several statements that change the encoding for a

column.

(® Note

Advisor doesn't provide recommendations when there isn't enough data or the expected
benefit of changing the encoding is small.

Advisor recommendations 57

Amazon Redshift Database Developer Guide

Data type recommendations

Amazon Redshift has a library of SQL data types for various use cases. These include integer types
like INT and types to store characters, like VARCHAR. Redshift stores types in an optimized way

to provide fast access and good query performance. Also, Redshift provides functions for specific
types, which you can use to format or perform calculations on query results.

Analysis

Advisor performs analysis of your cluster's workload and database schema continually to identify
columns that can benefit significantly from a data type change.

Recommendation

Advisor provides an ALTER TABLE statement that adds a new column with the suggested data
type. An accompanying UPDATE statement copies data from the existing column to the new
column. After you create the new column and load the data, change your queries and ingestion
scripts to access the new column. Then leverage features and functions specialized to the new data
type, found in SQL functions reference.

Copying existing data to the new column can take time. We recommend that you implement each
advisor recommendation when the cluster’s workload is light. Reference the list of available data

types at Data types.

Note that Advisor doesn't provide recommendations when there isn't enough data or the expected
benefit of changing the data type is small.

Advisor recommendations 58

Amazon Redshift

Database Developer Guide

Tutorials for Amazon Redshift

Follow the steps in these tutorials to learn about Amazon Redshift features:

Tutorial: Loading data from Amazon S3

Tutorial: Querying nested data with Amazon Redshift Spectrum

Tutorial: Configuring manual workload management (WLM) queues

Tutorial: Using spatial SQL functions with Amazon Redshift

Tutorials for Amazon Redshift ML

59

Amazon Redshift Database Developer Guide

Working with automatic table optimization

Automatic table optimization is a self-tuning capability that automatically optimizes the design of
tables by applying sort and distribution keys without the need for administrator intervention. By
using automation to tune the design of tables, you can get started and get the fastest performance
without investing time to manually tune and implement table optimizations.

Automatic table optimization continuously observes how queries interact with tables. It uses
advanced artificial intelligence methods to choose sort and distribution keys to optimize
performance for the cluster's workload. If Amazon Redshift determines that applying a key
improves cluster performance, tables are automatically altered within hours from the time the
cluster was created, with minimal impact to queries.

To take advantage of this automation, an Amazon Redshift administrator creates a new table,
or alters an existing table to enable it to use automatic optimization. Existing tables with a
distribution style or sort key of AUTO are already enabled for automation. When you run queries
against those tables, Amazon Redshift determines if a sort key or distribution key will improve
performance. If so, then Amazon Redshift automatically modifies the table without requiring
administrator intervention. If a minimum number of queries are run, optimizations are applied
within hours of the cluster being launched.

If Amazon Redshift determines that a distribution key improves the performance of queries, tables
where distribution style is AUTO can have their distribution style changed to KEY.

Topics

« Enabling automatic table optimization

« Removing automatic table optimization from a table

» Monitoring actions of automatic table optimization

» Working with column compression

» Working with data distribution styles

» Working with sort keys

« Defining table constraints

60

Amazon Redshift Database Developer Guide

Enabling automatic table optimization

By default, tables created without explicitly defining sort keys or distributions keys are set to AUTO.
At the time of table creation, you can also explicitly set a sort or a distribution key manually. If you
set the sort or distribution key, then the table is not automatically managed.

To enable an existing table to be automatically optimized, use the ALTER statement options
to change the table to AUTO. You might choose to define automation for sort keys, but not for
distribution keys (and vice versa). If you run an ALTER statement to convert a table to be an
automated table, existing sort keys and distribution styles are preserved.

ALTER TABLE table_name ALTER SORTKEY AUTO;

ALTER TABLE table_name ALTER DISTSTYLE AUTO;

For more information, see ALTER TABLE.

Initially, a table has no distribution key or sort key. The distribution style is set to either EVEN or
ALL depending on table size. As the table grows in size, Amazon Redshift applies the optimal
distribution keys and sort keys. Optimizations are applied within hours after a minimum number
of queries are run. When determining sort key optimizations, Amazon Redshift attempts to
optimize the data blocks read from disk during a table scan. When determining distribution style
optimizations, Amazon Redshift tries to optimize the number of bytes transferred between cluster
nodes.

Removing automatic table optimization from a table

You can remove a table from automatic optimization. Removing a table from automation involves
selecting a sort key or distribution style. To change distribution style, specify a specific distribution
style.

ALTER TABLE table_name ALTER DISTSTYLE EVEN;
ALTER TABLE table_name ALTER DISTSTYLE ALL;

ALTER TABLE table_name ALTER DISTSTYLE KEY DISTKEY c1;

Enabling automatic table optimization 61

Amazon Redshift Database Developer Guide

To change a sort key, you can define a sort key or choose none.

ALTER TABLE table_name ALTER SORTKEY(cl, c2);

ALTER TABLE table_name ALTER SORTKEY NONE;

Monitoring actions of automatic table optimization

The system view SVV_ALTER_TABLE_RECOMMENDATIONS records the current Amazon Redshift
Advisor recommendations for tables. This view shows recommendations for all tables, those that
are defined for automatic optimization and those that aren't.

To view if a table is defined for automatic optimization, query the system view SVV_TABLE_INFO.
Entries appear only for tables visible in the current session's database. Recommendations are
inserted into the view twice per day starting within hours from the time the cluster was created.
After a recommendation is available, it's started within an hour. After a recommendation has been
applied (either by Amazon Redshift or by you), it no longer appears in the view.

The system view SVL_AUTO_WORKER_ACTION shows an audit log of all actions taken by Amazon
Redshift, and the previous state of the table.

The system view SVV_TABLE_INFO lists all of the tables in the system, along with a column to
indicate whether the sort key and distribution style of the table is set to AUTO.

For more information about these system views, see System monitoring (provisioned only).

Working with column compression

Compression is a column-level operation that reduces the size of data when it is stored.
Compression conserves storage space and reduces the size of data that is read from storage, which
reduces the amount of disk I/0O and therefore improves query performance.

ENCODE AUTO is the default for tables. When a table is set to ENCODE AUTO, Amazon Redshift
automatically manages compression encoding for all columns in the table. For more information,
see CREATE TABLE and ALTER TABLE.

However, if you specify compression encoding for any column in the table, the table is no longer
set to ENCODE AUTO. Amazon Redshift no longer automatically manages compression encoding
for all columns in the table.

Monitoring actions of automatic table optimization 62

Amazon Redshift Database Developer Guide

You can apply a compression type, or encoding, to the columns in a table manually when you create
the table. Or you can use the COPY command to analyze and apply compression automatically.
For more information, see Let COPY choose compression encodings. For details about applying

automatic compression, see Loading tables with automatic compression.

(@ Note

We strongly recommend using the COPY command to apply automatic compression.

You might choose to apply compression encodings manually if the new table shares the same data
characteristics as another table. Or you might do so if you discover in testing that the compression
encodings applied during automatic compression are not the best fit for your data. If you choose
to apply compression encodings manually, you can run the ANALYZE COMPRESSION command
against an already populated table and use the results to choose compression encodings.

To apply compression manually, you specify compression encodings for individual columns as part
of the CREATE TABLE statement. The syntax is as follows.

CREATE TABLE table_name (column_name
data_type ENCODE encoding-type)[, ...]

Here, encoding-type is taken from the keyword table in the following section.

For example, the following statement creates a two-column table, PRODUCT. When data is loaded
into the table, the PRODUCT_ID column is not compressed, but the PRODUCT_NAME column is
compressed, using the byte dictionary encoding (BYTEDICT).

create table product(
product_id int encode raw,
product_name char(20) encode bytedict);

You can specify the encoding for a column when it is added to a table using the ALTER TABLE
command.

ALTER TABLE table-name ADD [COLUMN] column_name column_type ENCODE encoding-type

Topics

Working with column compression 63

Amazon Redshift Database Developer Guide

» Compression encodings

» Testing compression encodings

« Example: Choosing compression encodings for the CUSTOMER table

Compression encodings

A compression encoding specifies the type of compression that is applied to a column of data values
as rows are added to a table.

ENCODE AUTO is the default for tables. When a table is set to ENCODE AUTO, Amazon Redshift
automatically manages compression encoding for all columns in the table. For more information,
see CREATE TABLE and ALTER TABLE.

However, if you specify compression encoding for any column in the table, the table is no longer
set to ENCODE AUTO. Amazon Redshift no longer automatically manages compression encoding
for all columns in the table.

When you use CREATE TABLE, ENCODE AUTO is disabled when you specify compression encoding
for any column in the table. If ENCODE AUTO is disabled, Amazon Redshift automatically assigns
compression encoding to columns for which you don't specify an ENCODE type as follows:

o Columns that are defined as sort keys are assigned RAW compression.

o Columns that are defined as BOOLEAN, REAL, or DOUBLE PRECISION data types are assigned
RAW compression.

o Columns that are defined as SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIMESTAMP, or
TIMESTAMPTZ data types are assigned AZ64 compression.

o Columns that are defined as CHAR or VARCHAR data types are assigned LZO compression.

You can change a table's encoding after creating it by using ALTER TABLE. If you disable ENCODE
AUTO using ALTER TABLE, Amazon Redshift no longer automatically manages compression
encodings for your columns. All columns will keep the compression encoding types that they had
when you disabled ENCODE AUTO until you change them or you enable ENCODE AUTO again.

The following table identifies the supported compression encodings and the data types that
support the encoding.

Compression encodings 64

Amazon Redshift

Database Developer Guide

Encoding type

Raw (no compression)

AZ64

Byte dictionary

Delta

LZO

Mostlyn

Run-length

Text

Keyword in CREATE TABLE
and ALTER TABLE

RAW

AZ64

BYTEDICT

DELTA

DELTA32K

LZO

MOSTLYS8
MOSTLY16
MOSTLY32

RUNLENGTH

TEXT255

TEXT32K

Data types

All

SMALLINT, INTEGER, BIGINT,
DECIMAL, DATE, TIMESTAMP,
TIMESTAMPTZ

SMALLINT, INTEGER, BIGINT,
DECIMAL, REAL, DOUBLE
PRECISION, CHAR, VARCHAR,
DATE, TIMESTAMP, TIMESTAMPTZ

SMALLINT, INT, BIGINT, DATE,
TIMESTAMP, DECIMAL

INT, BIGINT, DATE, TIMESTAMP,
DECIMAL

SMALLINT, INTEGER, BIGINT,
DECIMAL, CHAR, VARCHAR, DATE,
TIMESTAMP, TIMESTAMPTZ, SUPER

SMALLINT, INT, BIGINT, DECIMAL
INT, BIGINT, DECIMAL
BIGINT, DECIMAL

SMALLINT, INTEGER, BIGINT,
DECIMAL, REAL, DOUBLE
PRECISION, BOOLEAN, CHAR,
VARCHAR, DATE, TIMESTAMP,
TIMESTAMPTZ

VARCHAR only

VARCHAR only

Compression encodings

65

Amazon Redshift Database Developer Guide

Encoding type Keyword in CREATE TABLE Data types
and ALTER TABLE
Zstandard ZSTD SMALLINT, INTEGER, BIGINT,

DECIMAL, REAL, DOUBLE
PRECISION, BOOLEAN, CHAR,
VARCHAR, DATE, TIMESTAMP,
TIMESTAMPTZ, SUPER

Raw encoding

Raw encoding is the default encoding for columns that are designated as sort keys and columns
that are defined as BOOLEAN, REAL, or DOUBLE PRECISION data types. With raw encoding, data is
stored in raw, uncompressed form.

AZ64 encoding

AZ64 is a proprietary compression encoding algorithm designed by Amazon to achieve a high

compression ratio and improved query processing. At its core, the AZ64 algorithm compresses
smaller groups of data values and uses single instruction, multiple data (SIMD) instructions for
parallel processing. Use AZ64 to achieve significant storage savings and high performance for
numeric, date, and time data types.

You can use AZ64 as the compression encoding when defining columns using CREATE TABLE and
ALTER TABLE statements with the following data types:

e SMALLINT

« INTEGER

« BIGINT

« DECIMAL

- DATE

o TIMESTAMP

o TIMESTAMPTZ

Compression encodings 66

Amazon Redshift Database Developer Guide

Byte-dictionary encoding

In byte dictionary encoding, a separate dictionary of unique values is created for each block of
column values on disk. (An Amazon Redshift disk block occupies 1 MB.) The dictionary contains

up to 256 one-byte values that are stored as indexes to the original data values. If more than 256
values are stored in a single block, the extra values are written into the block in raw, uncompressed
form. The process repeats for each disk block.

This encoding is very effective on low cardinality string columns. This encoding is optimal when the
data domain of a column is fewer than 256 unique values.

For columns with the string data type (CHAR and VARCHAR) encoded with BYTEDICT, Amazon
Redshift performs vectorized scans and predicate evaluations that operate over compressed data
directly. These scans use hardware-specific single instruction and multiple data (SIMD) instructions
for parallel processing. This significantly speeds up the scanning of string columns. Byte-dictionary
encoding is especially space-efficient if a CHAR/VARCHAR column holds long character strings.

Suppose that a table has a COUNTRY column with a CHAR(30) data type. As data is loaded,
Amazon Redshift creates the dictionary and populates the COUNTRY column with the index value.
The dictionary contains the indexed unique values, and the table itself contains only the one-byte
subscripts of the corresponding values.

(® Note

Trailing blanks are stored for fixed-length character columns. Therefore, in a CHAR(30)
column, every compressed value saves 29 bytes of storage when you use the byte-
dictionary encoding.

The following table represents the dictionary for the COUNTRY column.

Unique data value Dictionary index Size (fixed length, 30 bytes
per value)

England 0 30

United States of America 1 30

Venezuela 2 30

Compression encodings 67

Amazon Redshift

Database Developer Guide

Unique data value

Dictionary index

Size (fixed length, 30 bytes
per value)

Sri Lanka 3 30
Argentina 4 30
Japan 5 30
Total 180
The following table represents the values in the COUNTRY column.
Original data value Original size (fixed Compressed value New size (bytes)

England
England

United States of
America

United States of
America

Venezuela
Sri Lanka
Argentina
Japan

Sri Lanka
Argentina

Total

length, 30 bytes per (index)
value)

30 0
30 0
30 1
30 1
30 2
30 3
30 4
30 5
30 3
30 4
300

10

Compression encodings

68

Amazon Redshift Database Developer Guide

The total compressed size in this example is calculated as follows: 6 different entries are stored in
the dictionary (6 * 30 = 180), and the table contains 10 1-byte compressed values, for a total of
190 bytes.

Delta encoding

Delta encodings are very useful for date time columns.

Delta encoding compresses data by recording the difference between values that follow each other
in the column. This difference is recorded in a separate dictionary for each block of column values
on disk. (An Amazon Redshift disk block occupies 1 MB.) For example, suppose that the column
contains 10 integers in sequence from 1 to 10. The first are stored as a 4-byte integer (plus a 1-
byte flag). The next nine are each stored as a byte with the value 1, indicating that it is one greater
than the previous value.

Delta encoding comes in two variations:

» DELTA records the differences as 1-byte values (8-bit integers)
» DELTA32K records differences as 2-byte values (16-bit integers)

If most of the values in the column could be compressed by using a single byte, the 1-byte
variation is very effective. However, if the deltas are larger, this encoding, in the worst case, is
somewhat less effective than storing the uncompressed data. Similar logic applies to the 16-bit
version.

If the difference between two values exceeds the 1-byte range (DELTA) or 2-byte range
(DELTA32K), the full original value is stored, with a leading 1-byte flag. The 1-byte range is from
-127 to 127, and the 2-byte range is from -32K to 32K.

The following table shows how a delta encoding works for a numeric column.

Original data Original size Difference Compressed Compressed
value (bytes) (delta) value size (bytes)
1 4 1 1+4 (flag +

actual value)

5 4 4 4 1

Compression encodings 69

Amazon Redshift Database Developer Guide

Original data Original size Difference Compressed Compressed
value (bytes) (delta) value size (bytes)
50 4 45 45 1
200 4 150 150 1+4 (flag +

actual value)

185 4 -15 -15 1
220 4 35 35 1
221 4 1 1 1
Totals 28 15

LZO encoding

LZO encoding provides a very high compression ratio with good performance. LZO encoding works
especially well for CHAR and VARCHAR columns that store very long character strings. They are
especially good for free-form text, such as product descriptions, user comments, or JSON strings.

Mostly encoding

Mostly encodings are useful when the data type for a column is larger than most of the stored
values require. By specifying a mostly encoding for this type of column, you can compress the
majority of the values in the column to a smaller standard storage size. The remaining values
that cannot be compressed are stored in their raw form. For example, you can compress a 16-bit
column, such as an INT2 column, to 8-bit storage.

In general, the mostly encodings work with the following data types:

« SMALLINT/INT2 (16-bit)

« INTEGER/INT (32-bit)

« BIGINT/INT8 (64-bit)

« DECIMAL/NUMERIC (64-bit)

Compression encodings 70

Amazon Redshift Database Developer Guide

Choose the appropriate variation of the mostly encoding to suit the size of the data type for the
column. For example, apply MOSTLY8 to a column that is defined as a 16-bit integer column.
Applying MOSTLY16 to a column with a 16-bit data type or MOSTLY32 to a column with a 32-bit
data type is disallowed.

Mostly encodings might be less effective than no compression when a relatively high number of
the values in the column can't be compressed. Before applying one of these encodings to a column,
perform a check. Most of the values that you are going to load now (and are likely to load in the
future) should fit into the ranges shown in the following table.

Encoding Compressed storage size Range of values that can be
compressed (values outside the range
are stored raw)

MOSTLYS8 1 byte (8 bits) -128 to 127

MOSTLY16 2 bytes (16 bits) -32768 to 32767

MOSTLY32 4 bytes (32 bits) -2147483648 to +2147483647
(® Note

For decimal values, ignore the decimal point to determine whether the value fits into the
range. For example, 1,234.56 is treated as 123,456 and can be compressed in a MOSTLY32
column.

For example, the VENUEID column in the VENUE table is defined as a raw integer column, which
means that its values consume 4 bytes of storage. However, the current range of values in the
column is @ to 3@9. Therefore, recreating and reloading this table with MOSTLY 16 encoding for
VENUEID would reduce the storage of every value in that column to 2 bytes.

If the VENUEID values referenced in another table were mostly in the range of 0 to 127, it might
make sense to encode that foreign-key column as MOSTLY8. Before making the choice, run several
queries against the referencing table data to find out whether the values mostly fall into the 8-bit,
16-bit, or 32-bit range.

Compression encodings 71

Amazon Redshift Database Developer Guide

The following table shows compressed sizes for specific numeric values when the MOSTLYS,
MOSTLY16, and MOSTLY32 encodings are used:

Original Original INT MOSTLYS8 MOSTLY16 MOSTLY32
value or BIGINT size compressed compressed size compressed size
(bytes) size (bytes) (bytes) (bytes)

1 4 1 2 4

10 4 1 2 4

100 4 1 2 4

1000 4 Same as raw 2 4

data size

10000 4 2 4

20000 4 2 4

40000 8 Same as raw data 4

size

100000 8 4
2000000000 8 4

Run length encoding

Run length encoding replaces a value that is repeated consecutively with a token that consists of
the value and a count of the number of consecutive occurrences (the length of the run). A separate
dictionary of unique values is created for each block of column values on disk. (An Amazon
Redshift disk block occupies 1 MB.) This encoding is best suited to a table in which data values are
often repeated consecutively, for example, when the table is sorted by those values.

For example, suppose that a column in a large dimension table has a predictably small domain,
such as a COLOR column with fewer than 10 possible values. These values are likely to fall in long
sequences throughout the table, even if the data is not sorted.

We don't recommend applying run length encoding on any column that is designated as a sort key.
Range-restricted scans perform better when blocks contain similar numbers of rows. If sort key

Compression encodings 72

Amazon Redshift Database Developer Guide

columns are compressed much more highly than other columns in the same query, range-restricted
scans might perform poorly.

The following table uses the COLOR column example to show how the run length encoding works.

Original data value Original size (bytes) = Compressed value Compressed size
(token) (bytes)

Blue 4 {2,Blue} 5

Blue 4 0
Green 5 {3,Green} 6
Green 5 0
Green 5 0

Blue 4 {1,Blue} 5
Yellow 6 {4 Yellow} 7
Yellow 6 0
Yellow 6 0
Yellow 6 0

Total 51 23

Text255 and Text32k encodings

Text255 and text32k encodings are useful for compressing VARCHAR columns in which the same
words recur often. A separate dictionary of unique words is created for each block of column
values on disk. (An Amazon Redshift disk block occupies 1 MB.) The dictionary contains the first
245 unique words in the column. Those words are replaced on disk by a one-byte index value
representing one of the 245 values, and any words that are not represented in the dictionary are
stored uncompressed. The process repeats for each 1-MB disk block. If the indexed words occur
frequently in the column, the column yields a high compression ratio.

Compression encodings 73

Amazon Redshift Database Developer Guide

For the text32k encoding, the principle is the same, but the dictionary for each block does not
capture a specific number of words. Instead, the dictionary indexes each unique word it finds until
the combined entries reach a length of 32K, minus some overhead. The index values are stored in
two bytes.

For example, consider the VENUENAME column in the VENUE table. Words such as Arena, Center,
and Theatre recur in this column and are likely to be among the first 245 words encountered in
each block if text255 compression is applied. If so, this column benefits from compression. This is
because every time those words appear, they occupy only 1 byte of storage (instead of 5, 6, or 7
bytes, respectively).

Zstandard encoding

Zstandard (ZSTD) encoding provides a high compression ratio with very good performance across
diverse datasets. ZSTD works especially well with CHAR and VARCHAR columns that store a wide
range of long and short strings, such as product descriptions, user comments, logs, and JSON
strings. Where some algorithms, such as Delta encoding or Mostly encoding, can potentially use
more storage space than no compression, ZSTD is very unlikely to increase disk usage.

ZSTD supports SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE PRECISION, BOOLEAN,
CHAR, VARCHAR, DATE, TIMESTAMP, and TIMESTAMPTZ data types.

Testing compression encodings

If you decide to manually specify column encodings, you might want to test different encodings
with your data.

(® Note

We recommend that you use the COPY command to load data whenever possible, and
allow the COPY command to choose the optimal encodings based on your data. Or you can
use the ANALYZE COMPRESSION command to view the suggested encodings for existing
data. For details about applying automatic compression, see Loading tables with automatic

compression.

To perform a meaningful test of data compression, you must have a large number of rows. For
this example, we create a table and insert rows by using a statement that selects from two tables;

Testing compression encodings 74

Amazon Redshift Database Developer Guide

VENUE and LISTING. We leave out the WHERE clause that would normally join the two tables. The
result is that each row in the VENUE table is joined to all of the rows in the LISTING table, for a
total of over 32 million rows. This is known as a Cartesian join and normally is not recommended.
However, for this purpose, it's a convenient method of creating many rows. If you have an existing
table with data that you want to test, you can skip this step.

After we have a table with sample data, we create a table with seven columns. Each has a different
compression encoding: raw, bytedict, lzo, run length, text255, text32k, and zstd. We populate each
column with exactly the same data by running an INSERT command that selects the data from the
first table.

To test compression encodings, do the following:

1. (Optional) First, use a Cartesian join to create a table with a large number of rows. Skip this step
if you want to test an existing table.

create table cartesian_venue(

venueid smallint not null distkey sortkey,
venuename varchar(100),

venuecity varchar(30),

venuestate char(2),

venueseats integer);

insert into cartesian_venue
select venueid, venuename, venuecity, venuestate, venueseats
from venue, listing;

2. Next, create a table with the encodings that you want to compare.

create table encodingvenue (

venueraw varchar(100) encode raw,
venuebytedict varchar(100) encode bytedict,
venuelzo varchar(100) encode 1zo,
venuerunlength varchar(1@@) encode runlength,
venuetext255 varchar(10@) encode text255,
venuetext32k varchar(100) encode text32k,
venuezstd varchar(1l00) encode zstd);

3. Insert the same data into all of the columns using an INSERT statement with a SELECT clause.

insert into encodingvenue

Testing compression encodings 75

Amazon Redshift Database Developer Guide

select venuename as venueraw, venuename as venuebytedict, venuename as venuelzo,
venuename as venuerunlength, venuename as venuetext32k, venuename as venuetext255,
venuename as venuezstd

from cartesian_venue;

4. Verify the number of rows in the new table.

select count(*) from encodingvenue

38884394
(1 row)

5. Query the STV_BLOCKLIST system table to compare the number of 1 MB disk blocks used by
each column.

The MAX aggregate function returns the highest block number for each column. The
STV_BLOCKLIST table includes details for three system-generated columns. This example uses
col < 6inthe WHERE clause to exclude the system-generated columns.

select col, max(blocknum)

from stv_blocklist b, stv_tbl_perm p

where (b.tbl=p.id) and name ='encodingvenue'
and col < 7

group by name, col

order by col;

The query returns the following results. The columns are numbered beginning with zero.
Depending on how your cluster is configured, your result might have different numbers, but
the relative sizes should be similar. You can see that BYTEDICT encoding on the second column
produced the best results for this dataset. This approach has a compression ratio of better

than 20:1. LZO and ZSTD encoding also produced excellent results. Different datasets produce
different results, of course. When a column contains longer text strings, LZO often produces the
best compression results.

col | max
_____ Fmm e
0 | 203
1] 10
2 | 22

Testing compression encodings 76

Amazon Redshift Database Developer Guide

3 | 204
4 | 56
51 72
6 | 20
(7 rows)

If you have data in an existing table, you can use the ANALYZE COMPRESSION command to

view the suggested encodings for the table. For example, the following example shows the
recommended encoding for a copy of the VENUE table, CARTESIAN_VENUE, that contains 38
million rows. Notice that ANALYZE COMPRESSION recommends LZO encoding for the VENUENAME
column. ANALYZE COMPRESSION chooses optimal compression based on multiple factors, which
include percent of reduction. In this specific case, BYTEDICT provides better compression, but LZO
also produces greater than 90 percent compression.

analyze compression cartesian_venue;

Table | Column | Encoding | Est_reduction_pct
——————————————— R el e ket
reallybigvenue | venueid | 1zo | 97.54
reallybigvenue | venuename | 1lzo | 91.71
reallybigvenue | venuecity | 1lzo | 96.01
reallybigvenue | venuestate | 1lzo | 97.68
reallybigvenue | venueseats | 1lzo | 98.21

Example: Choosing compression encodings for the CUSTOMER table

The following statement creates a CUSTOMER table that has columns with various data types. This
CREATE TABLE statement shows one of many possible combinations of compression encodings for
these columns.

create table customex(

custkey int encode delta,

custname varchar(30) encode raw,
gender varchar(7) encode text255,
address varchar(200) encode text255,
city varchar(30) encode text255,
state char(2) encode raw,

zipcode char(5) encode bytedict,
start_date date encode delta32k);

Example: Choosing compression encodings for the CUSTOMER table 77

Amazon Redshift

Database Developer Guide

The following table shows the column encodings that were chosen for the CUSTOMER table and
gives an explanation for the choices:

Column

CUSTKEY

CUSTNAME

GENDER

ADDRESS

Data type

int

varchar(30)

varchar(7)

varchar(200)

Encoding

delta

raw

text255

text255

Explanation

CUSTKEY consists

of unique, consecuti
ve integer values.
Because the differenc
es are one byte,
DELTA is a good
choice.

CUSTNAME has a
large domain with
few repeated values.
Any compression
encoding would
probably be ineffecti
ve.

GENDER is very small
domain with many
repeated values.
Text255 works well
with VARCHAR
columns in which the
same words recur.

ADDRESS is a large
domain, but contains
many repeated
words, such as
Street, Avenue,
North, South, and

so on. Text 255 and
text 32k are useful
for compressing

Example: Choosing compression encodings for the CUSTOMER table

78

Amazon Redshift

Database Developer Guide

Column Data type
CITYy varchar(30)
STATE char(2)

Encoding

text255

raw

Explanation

VARCHAR columns
in which the same
words recur. The
column length is
short, so text255 is a
good choice.

CITY is a large
domain, with some
repeated values.
Certain city names
are used much more
commonly than
others. Text255 is

a good choice for
the same reasons as
ADDRESS.

In the United States,
STATE is a precise
domain of 50 two-
character values.
Bytedict encoding
would yield some
compression, but
because the column
size is only two
characters, compressi
on might not be
worth the overhead
of uncompressing the
data.

Example: Choosing compression encodings for the CUSTOMER table

79

Amazon Redshift Database Developer Guide

Column Data type Encoding Explanation

ZIPCODE char(5) bytedict ZIPCODE is a known
domain of fewer
than 50,000 unique
values. Certain zip
codes occur much
more commonly
than others. Bytedict
encoding is very
effective when a
column contains a
limited number of
unique values.

START_DATE date delta32k Delta encodings
are very useful for
date time columns,
especially if the rows
are loaded in date
order.

Working with data distribution styles

When you load data into a table, Amazon Redshift distributes the rows of the table to each of
the compute nodes according to the table's distribution style. When you run a query, the query
optimizer redistributes the rows to the compute nodes as needed to perform any joins and
aggregations. The goal in choosing a table distribution style is to minimize the impact of the
redistribution step by locating the data where it must be before the query is run.

(® Note

This section will introduce you to the principles of data distribution in an Amazon Redshift
database. We recommend that you create your tables with DISTSTYLE AUTO. If you do so,
then Amazon Redshift uses automatic table optimization to choose the data distribution

Working with data distribution styles 80

Amazon Redshift Database Developer Guide

style. For more information, see Working with automatic table optimization. The rest of this
section provides details about distribution styles.

Topics

« Data distribution concepts

 Distribution styles

» Viewing distribution styles

« Evaluating query patterns

« Designating distribution styles

« Evaluating the query plan

e Query plan example

« Distribution examples

Data distribution concepts

Some data distribution concepts for Amazon Redshift follow.
Nodes and slices

An Amazon Redshift cluster is a set of nodes. Each node in the cluster has its own operating
system, dedicated memory, and dedicated disk storage. One node is the leader node, which
manages the distribution of data and query processing tasks to the compute nodes. The compute
nodes provide resources to do those tasks.

The disk storage for a compute node is divided into a number of slices. The number of slices per
node depends on the node size of the cluster. The nodes all participate in running parallel queries,
working on data that is distributed as evenly as possible across the slices. For more information
about the number of slices that each node size has, see About clusters and nodes in the Amazon
Redshift Management Guide.

Data redistribution

When you load data into a table, Amazon Redshift distributes the rows of the table to each of
the node slices according to the table's distribution style. As part of a query plan, the optimizer
determines where blocks of data must be located to best run the query. The data is then physically

Data distribution concepts 81

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

moved, or redistributed, while the query runs. Redistribution might involve either sending specific
rows to nodes for joining or broadcasting an entire table to all of the nodes.

Data redistribution can account for a substantial portion of the cost of a query plan, and the
network traffic it generates can affect other database operations and slow overall system
performance. To the extent that you anticipate where best to locate data initially, you can minimize
the impact of data redistribution.

Data distribution goals

When you load data into a table, Amazon Redshift distributes the table's rows to the compute
nodes and slices according to the distribution style that you chose when you created the table.
Data distribution has two primary goals:

» To distribute the workload uniformly among the nodes in the cluster. Uneven distribution, or
data distribution skew, forces some nodes to do more work than others, which impairs query
performance.

« To minimize data movement as a query runs. If the rows that participate in joins or aggregates
are already collocated on the nodes with their joining rows in other tables, the optimizer doesn't
need to redistribute as much data when queries run.

The distribution strategy that you choose for your database has important consequences for
query performance, storage requirements, data loading, and maintenance. By choosing the best
distribution style for each table, you can balance your data distribution and significantly improve
overall system performance.

Distribution styles

When you create a table, you can designate one of the following distribution styles: AUTO, EVEN,
KEY, or ALL.

If you don't specify a distribution style, Amazon Redshift uses AUTO distribution.
AUTO distribution

With AUTO distribution, Amazon Redshift assigns an optimal distribution style based on the size

of the table data. For example, if AUTO distribution style is specified, Amazon Redshift initially
assigns the ALL distribution style to a small table. When the table grows larger, Amazon Redshift
might change the distribution style to KEY, choosing the primary key (or a column of the composite
primary key) as the distribution key. If the table grows larger and none of the columns are suitable

Distribution styles 82

Amazon Redshift Database Developer Guide

to be the distribution key, Amazon Redshift changes the distribution style to EVEN. The change in
distribution style occurs in the background with minimal impact to user queries.

To view actions that Amazon Redshift automatically performed to alter a table distribution key,
see SVL_AUTO_WORKER_ACTION. To view current recommendations regarding altering a table
distribution key, see SVV_ALTER_TABLE_RECOMMENDATIONS.

To view the distribution style applied to a table, query the PG_CLASS_INFO system catalog view.
For more information, see Viewing distribution styles. If you don't specify a distribution style with
the CREATE TABLE statement, Amazon Redshift applies AUTO distribution.

EVEN distribution

The leader node distributes the rows across the slices in a round-robin fashion, regardless of the
values in any particular column. EVEN distribution is appropriate when a table doesn't participate
in joins. It's also appropriate when there isn't a clear choice between KEY distribution and ALL
distribution.

KEY distribution

The rows are distributed according to the values in one column. The leader node places matching
values on the same node slice. If you distribute a pair of tables on the joining keys, the leader node
collocates the rows on the slices according to the values in the joining columns. This way, matching
values from the common columns are physically stored together.

ALL distribution

A copy of the entire table is distributed to every node. Where EVEN distribution or KEY distribution
place only a portion of a table's rows on each node, ALL distribution ensures that every row is
collocated for every join that the table participates in.

ALL distribution multiplies the storage required by the number of nodes in the cluster, and

so it takes much longer to load, update, or insert data into multiple tables. ALL distribution is
appropriate only for relatively slow moving tables; that is, tables that are not updated frequently
or extensively. Because the cost of redistributing small tables during a query is low, there isn't a
significant benefit to define small dimension tables as DISTSTYLE ALL.

(® Note

After you have specified a distribution style for a column, Amazon Redshift handles data
distribution at the cluster level. Amazon Redshift does not require or support the concept

Distribution styles 83

Amazon Redshift Database Developer Guide

of partitioning data within database objects. You don't need to create table spaces or
define partitioning schemes for tables.

In certain scenarios, you can change the distribution style of a table after it is created. For more
information, see ALTER TABLE. For scenarios when you can't change the distribution style of a table
after it's created, you can recreate the table and populate the new table with a deep copy. For more
information, see Performing a deep copy

Viewing distribution styles

To view the distribution style of a table, query the PG_CLASS_INFO view or the SVV_TABLE_INFO
view.

The RELEFFECTIVEDISTSTYLE column in PG_CLASS_INFO indicates the current distribution style
for the table. If the table uses automatic distribution, RELEFFECTIVEDISTSTYLE is 10, 11, or 12,
which indicates whether the effective distribution style is AUTO (ALL), AUTO (EVEN), or AUTO
(KEY). If the table uses automatic distribution, the distribution style might initially show AUTO
(ALL), then change to AUTO (EVEN) or AUTO (KEY) when the table grows.

The following table gives the distribution style for each value in RELEFFECTIVEDISTSTYLE column:

RELEFFECTIVEDISTSTYLE Current distribution style
0 EVEN

1 KEY

8 ALL

10 AUTO (ALL)

11 AUTO (EVEN)

12 AUTO (KEY)

The DISTSTYLE column in SVV_TABLE_INFO indicates the current distribution style for the table. If
the table uses automatic distribution, DISTSTYLE is AUTO (ALL), AUTO (EVEN), or AUTO (KEY).

Viewing distribution styles 84

Amazon Redshift Database Developer Guide

The following example creates four tables using the three distribution styles and automatic
distribution, then queries SVV_TABLE_INFO to view the distribution styles.

create table public.dist_key (coll int)
diststyle key distkey (coll);

insert into public.dist_key values (1);

create table public.dist_even (coll int)
diststyle even;

insert into public.dist_even values (1);

create table public.dist_all (coll int)
diststyle all;

insert into public.dist_all values (1);
create table public.dist_auto (coll int);
insert into public.dist_auto values (1);

select "schema", "table", diststyle from SVV_TABLE_INFO
where "table" like 'dist%';

schema | table | diststyle
____________ S
public | dist_key | KEY(coll)
public | dist_even | EVEN
public | dist_all | ALL
public | dist_auto | AUTO(ALL)

Evaluating query patterns

Choosing distribution styles is only one aspect of database design. Consider distribution styles
within the context of the entire system, balancing distribution with other important factors such as
cluster size, compression encoding methods, sort keys, and table constraints.

Test your system with data that is as close to real data as possible.

Evaluating query patterns 85

Amazon Redshift Database Developer Guide

To make good choices for distribution styles, you must understand the query patterns for your
Amazon Redshift application. Identify the most costly queries in your system and base your initial
database design on the demands of those queries. Factors that determine the total cost of a query
include how long the query takes to run and how much computing resources it consumes. Other
factors that determine query cost are how often it is run, and how disruptive it is to other queries
and database operations.

Identify the tables that are used by the most costly queries, and evaluate their role in query
runtime. Consider how the tables are joined and aggregated.

Use the guidelines in this section to choose a distribution style for each table. When you have done
so, create the tables and load them with data that is as close as possible to real data. Then test the
tables for the types of queries that you expect to use. You can evaluate the query explain plans to
identify tuning opportunities. Compare load times, storage space, and query runtimes to balance
your system's overall requirements.

Designating distribution styles

The considerations and recommendations for designating distribution styles in this section use a
star schema as an example. Your database design might be based on a star schema, some variant
of a star schema, or an entirely different schema. Amazon Redshift is designed to work effectively
with whatever schema design you choose. The principles in this section can be applied to any
design schema.

1. Specify the primary key and foreign keys for all your tables.

Amazon Redshift does not enforce primary key and foreign key constraints, but the query
optimizer uses them when it generates query plans. If you set primary keys and foreign keys,
your application must maintain the validity of the keys.

2. Distribute the fact table and its largest dimension table on their common columns.

Choose the largest dimension based on the size of dataset that participates in the most common
join, not only the size of the table. If a table is commonly filtered, using a WHERE clause, only

a portion of its rows participate in the join. Such a table has less impact on redistribution than

a smaller table that contributes more data. Designate both the dimension table's primary key
and the fact table's corresponding foreign key as DISTKEY. If multiple tables use the same
distribution key, they are also collocated with the fact table. Your fact table can have only one
distribution key. Any tables that join on another key isn't collocated with the fact table.

3. Designate distribution keys for the other dimension tables.

Designating distribution styles 86

Amazon Redshift Database Developer Guide

Distribute the tables on their primary keys or their foreign keys, depending on how they most
commonly join with other tables.

4. Evaluate whether to change some of the dimension tables to use ALL distribution.

If a dimension table cannot be collocated with the fact table or other important joining tables,
you can improve query performance significantly by distributing the entire table to all of the
nodes. Using ALL distribution multiplies storage space requirements and increases load times
and maintenance operations, so you should weigh all factors before choosing ALL distribution.
The following section explains how to identify candidates for ALL distribution by evaluating the
EXPLAIN plan.

5. Use AUTO distribution for the remaining tables.

If a table is largely denormalized and does not participate in joins, or if you don't have a clear
choice for another distribution style, use AUTO distribution.

To let Amazon Redshift choose the appropriate distribution style, don't explicitly specify a
distribution style.

Evaluating the query plan

You can use query plans to identify candidates for optimizing the distribution style.

After making your initial design decisions, create your tables, load them with data, and test them.
Use a test dataset that is as close as possible to the real data. Measure load times to use as a
baseline for comparisons.

Evaluate queries that are representative of the most costly queries you expect to run, specifically
queries that use joins and aggregations. Compare runtimes for various design options. When you
compare runtimes, don't count the first time the query is run, because the first runtime includes
the compilation time.

DS_DIST_NONE

No redistribution is required, because corresponding slices are collocated on the compute
nodes. You typically have only one DS_DIST_NONE step, the join between the fact table and
one dimension table.

Evaluating the query plan 87

Amazon Redshift Database Developer Guide

DS_DIST_ALL_NONE

No redistribution is required, because the inner join table used DISTSTYLE ALL. The entire table
is located on every node.

DS_DIST_INNER

The inner table is redistributed.

DS_DIST_OUTER

The outer table is redistributed.

DS_BCAST_INNER

A copy of the entire inner table is broadcast to all the compute nodes.

DS_DIST_ALL_INNER

The entire inner table is redistributed to a single slice because the outer table uses DISTSTYLE
ALL.

DS_DIST_BOTH

Both tables are redistributed.

DS_DIST_NONE and DS_DIST_ALL_NONE are good. They indicate that no distribution was required
for that step because all of the joins are collocated.

DS_DIST_INNER means that the step probably has a relatively high cost because the inner table is
being redistributed to the nodes. DS_DIST_INNER indicates that the outer table is already properly
distributed on the join key. Set the inner table's distribution key to the join key to convert this to
DS_DIST_NONE. In some cases, distributing the inner table on the join key isn't possible because
the outer table isn't distributed on the join key. If this is the case, evaluate whether to use ALL
distribution for the inner table. If the table isn't updated frequently or extensively, and it's large
enough to carry a high redistribution cost, change the distribution style to ALL and test again.

ALL distribution causes increased load times, so when you retest, include the load time in your
evaluation factors.

DS_DIST_ALL_INNER is not good. It means that the entire inner table is redistributed to a single
slice because the outer table uses DISTSTYLE ALL, so that a copy of the entire outer table is located
on each node. This results in inefficient serial runtime of the join on a single node, instead taking

Evaluating the query plan 88

Amazon Redshift Database Developer Guide

advantage of parallel runtime using all of the nodes. DISTSTYLE ALL is meant to be used only for
the inner join table. Instead, specify a distribution key or use even distribution for the outer table.

DS_BCAST_INNER and DS_DIST_BOTH are not good. Usually these redistributions occur because
the tables are not joined on their distribution keys. If the fact table does not already have a
distribution key, specify the joining column as the distribution key for both tables. If the fact table
already has a distribution key on another column, evaluate whether changing the distribution key
to collocate this join improve overall performance. If changing the distribution key of the outer
table isn't an optimal choice, you can achieve collocation by specifying DISTSTYLE ALL for the inner
table.

The following example shows a portion of a query plan with DS_BCAST_INNER and DS_DIST_NONE
labels.

-> XN Hash Join DS_BCAST_INNER (cost=112.50..3272334142.59 rows=170771 width=84)
Hash Cond: ("outer".venueid = "inner".venueid)
-> XN Hash Join DS_BCAST_INNER (cost=109.98..3167290276.71 rows=172456
width=47)

Hash Cond: ("outer".eventid = "inner".eventid)
-> XN Merge Join DS_DIST_NONE (cost=0.00..6286.47 rows=172456 width=30)
Merge Cond: ("outer".listid = "inner".listid)

-> XN Seq Scan on listing (cost=0.00..1924.97 rows=192497
width=14)
-> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=24)

After changing the dimension tables to use DISTSTYLE ALL, the query plan for the same query
shows DS_DIST_ALL_NONE in place of DS_BCAST_INNER. Also, there is a dramatic change in the
relative cost for the join steps. The total cost is 14142 .59 compared to 3272334142 .59 in the
previous query.

-> XN Hash Join DS_DIST_ALL_NONE (cost=112.50..14142.59 rows=170771 width=84)

Hash Cond: ("outer".venueid = "inner".venueid)
-> XN Hash Join DS_DIST_ALL_NONE (cost=109.98..10276.71 rows=172456 width=47)
Hash Cond: ("outer".eventid = "inner".eventid)
-> XN Merge Join DS_DIST_NONE (cost=0.00..6286.47 rows=172456 width=30)
Merge Cond: ("outer".listid = "inner".listid)

-> XN Seq Scan on listing (cost=0.00..1924.97 rows=192497
width=14)
-> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=24)

Evaluating the query plan 89

Amazon Redshift Database Developer Guide

Query plan example

This example shows how to evaluate a query plan to find opportunities to optimize the
distribution.

Run the following query with an EXPLAIN command to produce a query plan.

explain

select lastname, catname, venuename, venuecity, venuestate, eventname,
month, sum(pricepaid) as buyercost, max(totalprice) as maxtotalprice

from
join
join
join
join
join

category join event on category.catid = event.catid
venue on venue.venueid = event.venueid

sales on sales.eventid = event.eventid

listing on sales.listid = listing.listid
date on sales.dateid = date.dateid
users on users.userid = sales.buyerid

group by lastname, catname, venuename, venuecity, venuestate, eventname, month

having sum(pricepaid)>9999
order by catname, buyercost desc;

In the TICKIT database, SALES is a fact table and LISTING is its largest dimension. In order to
collocate the tables, SALES is distributed on the LISTID, which is the foreign key for LISTING, and
LISTING is distributed on its primary key, LISTID. The following example shows the CREATE TABLE
commands for SALES and LISTING.

create table sales(

salesid integer not null,

listid integer not null distkey,

sellerid integer not null,

buyerid integer not null,

eventid integer not null encode mostlyl6,
dateid smallint not null,

gtysold smallint not null encode mostlyS8,
pricepaid decimal(8,2) encode delta32k,
commission decimal(8,2) encode delta32k,
saletime timestamp,

primary key(salesid),

foreign key(listid) references listing(listid),
foreign key(sellerid) references users(userid),
foreign key(buyerid) references users(userid),
foreign key(dateid) references date(dateid))

sortkey(listid,sellerid);

Query plan example 90

Amazon Redshift Database Developer Guide

create table listing(

listid integer not null distkey sortkey,
sellerid integer not null,

eventid integer not null encode mostlyl6,
dateid smallint not null,

numtickets smallint not null encode mostlysS,
priceperticket decimal(8,2) encode bytedict,
totalprice decimal(8,2) encode mostly32,
listtime timestamp,

primary key(listid),

foreign key(sellerid) references users(userid),
foreign key(eventid) references event(eventid),
foreign key(dateid) references date(dateid));

In the following query plan, the Merge Join step for the join on SALES and LISTING shows

DS_DIST_NONE, which indicates that no redistribution is required for the step. However, moving up

the query plan, the other inner joins show DS_BCAST_INNER, which indicates that the inner table

is broadcast as part of the query execution. Because only one pair of tables can be collocated using

key distribution, five tables must be rebroadcast.

QUERY PLAN
XN Merge (cost=1015345167117.54..1015345167544.46 rows=1000 width=103)
Merge Key: category.catname, sum(sales.pricepaid)
-> XN Network (cost=1015345167117.54..1015345167544.46 rows=170771 width=103)
Send to leader

-> XN Sort (cost=1015345167117.54..1015345167544.46 rows=170771 width=103)

Sort Key: category.catname, sum(sales.pricepaid)

-> XN HashAggregate (cost=15345150568.37..15345152276.08 rows=170771

width=103)
Filter: (sum(pricepaid) > 9999.00)
-> XN Hash Join DS_BCAST_INNER (cost=742.08..15345146299.10
rows=170771 width=103)
Hash Cond: ("outer".catid = "inner".catid)
-> XN Hash Join DS_BCAST_INNER
(cost=741.94..15342942456.61 rows=170771 width=97)
Hash Cond: ("outer".dateid = "inner".dateid)
-> XN Hash Join DS_BCAST_INNER
(cost=737.38..15269938609.81 rows=170766 width=90)

Hash Cond: ("outer".buyerid = "inner".userid)

-> XN Hash Join DS_BCAST_INNER
(cost=112.50..3272334142.59 rows=170771 width=84)

Query plan example

91

Amazon Redshift Database Developer Guide

Hash Cond: ("outer".venueid =
"inner".venueid)
-> XN Hash Join DS_BCAST_INNER
(cost=109.98..3167290276.71 rows=172456 width=47)
Hash Cond: ("outer".eventid =
"inner".eventid)
-> XN Merge Join DS_DIST_NONE
(cost=0.00..6286.47 rows=172456 width=30)

Merge Cond: ("outer".listid =

"inner".listid)

-> XN Seq Scan on listing

(cost=0.00..1924.97 rows=192497 width=14)
-> XN Seq Scan on sales
(cost=0.00..1724.56 rows=172456 width=24)
-> XN Hash (cost=87.98..87.98
rows=8798 width=25)
-> XN Seq Scan on event
(cost=0.00..87.98 rows=8798 width=25)

-> XN Hash (cost=2.02..2.02 rows=202

width=41)
-> XN Seq Scan on venue
(cost=0.00..2.02 rows=202 width=41)

-> XN Hash (cost=499.90..499.90 rows=49990

width=14)
-> XN Seq Scan on users
(cost=0.00..499.90 rows=49990 width=14)
-> XN Hash (cost=3.65..3.65 rows=365 width=11)
-> XN Seq Scan on date (cost=0.00..3.65
rows=365 width=11)
-> XN Hash (cost=0.11..0.11 rows=11 width=10)

-> XN Seq Scan on category (cost=0.00..0.11 rows=11

width=10)

One solution is to alter the tables to have DISTSTYLE ALL.

ALTER TABLE users ALTER DISTSTYLE ALL;
ALTER TABLE venue ALTER DISTSTYLE ALL;
ALTER TABLE category ALTER DISTSTYLE ALL;
ALTER TABLE date ALTER DISTSTYLE ALL;
ALTER TABLE event ALTER DISTSTYLE ALL;

Query plan example

92

Amazon Redshift Database Developer Guide

Run the same query with EXPLAIN again, and examine the new query plan. The joins now show
DS_DIST_ALL_NONE, indicating that no redistribution is required because the data was distributed
to every node using DISTSTYLE ALL.

QUERY PLAN
XN Merge (cost=1000000047117.54..1000000047544.46 rows=1000 width=103)
Merge Key: category.catname, sum(sales.pricepaid)
-> XN Network (cost=1000000047117.54..1000000047544.46 rows=170771 width=103)
Send to leader
-> XN Sort (cost=1000000047117.54..1000000047544 .46 rows=170771 width=103)
Sort Key: category.catname, sum(sales.pricepaid)
-> XN HashAggregate (cost=30568.37..32276.08 rows=170771 width=103)
Filter: (sum(pricepaid) > 9999.00)
-> XN Hash Join DS_DIST_ALL_NONE (cost=742.08..26299.10
rows=170771 width=103)
Hash Cond: ("outer".buyerid = "inner".userid)
-> XN Hash Join DS_DIST_ALL_NONE (cost=117.20..21831.99
rows=170766 width=97)
Hash Cond: ("outer".dateid = "inner".dateid)
-> XN Hash Join DS_DIST_ALL_NONE
(cost=112.64..17985.08 rows=170771 width=90)
Hash Cond: ("outer".catid = "inner".catid)
-> XN Hash Join DS_DIST_ALL_NONE
(cost=112.50..14142.59 rows=170771 width=84)
Hash Cond: ("outer".venueid =
"inner".venueid)
-> XN Hash Join DS_DIST_ALL_NONE
(cost=109.98..10276.71 rows=172456 width=47)
Hash Cond: ("outer".eventid =
"inner".eventid)
-> XN Merge Join DS_DIST_NONE
(cost=0.00..6286.47 rows=172456 width=30)
Merge Cond: ("outer".listid =
"inner".listid)
-> XN Seq Scan on listing
(cost=0.00..1924.97 rows=192497 width=14)
-> XN Seq Scan on sales
(cost=0.00..1724.56 rows=172456 width=24)
-> XN Hash (cost=87.98..87.98
rows=8798 width=25)
-> XN Seq Scan on event
(cost=0.00..87.98 rows=8798 width=25)

Query plan example 93

Amazon Redshift Database Developer Guide

-> XN Hash (cost=2.02..2.02 rows=202
width=41)
-> XN Seq Scan on venue
(cost=0.00..2.02 rows=202 width=41)
-> XN Hash (cost=0.11..0.11 rows=11 width=10)
-> XN Seq Scan on category
(cost=0.00..0.11 rows=11 width=10)
-> XN Hash (cost=3.65..3.65 rows=365 width=11)
-> XN Seq Scan on date (cost=0.00..3.65
rows=365 width=11)
-> XN Hash (cost=499.90..499.90 rows=49990 width=14)
-> XN Seq Scan on users (cost=0.00..499.90 rows=49990
width=14)

Distribution examples

The following examples show how data is distributed according to the options that you define in
the CREATE TABLE statement.

DISTKEY examples

Look at the schema of the USERS table in the TICKIT database. USERID is defined as the SORTKEY
column and the DISTKEY column:

select "column", type, encoding, distkey, sortkey

from pg_table_def where tablename = 'users';
column | type | encoding | distkey | sortkey
--------------- L e e e e e e e
userid | integer | none | t | 1
username | character(8) | none | f | 0
firstname | character varying(30) | text32k | f | 0

USERID is a good choice for the distribution column on this table. If you query the SVV_DISKUSAGE
system view, you can see that the table is very evenly distributed. Column numbers are zero-based,
so USERID is column O.

select slice, col, num_values as rows, minvalue, maxvalue
from svv_diskusage

Distribution examples 94

Amazon Redshift Database Developer Guide

where name='users' and col=0 and rows>0
order by slice, col;

slice| col | rows | minvalue | maxvalue
————— i R e et
0 | | 12496 | 4 | 49987

1 | 0 | 12498 | 1 | 49988

2 | @ | 12497 | 2 | 49989

3 | 0 | 12499 | 3 | 49990

(4 rows)

The table contains 49,990 rows. The rows (num_values) column shows that each slice contains
about the same number of rows. The minvalue and maxvalue columns show the range of values on
each slice. Each slice includes nearly the entire range of values, so there's a good chance that every
slice participates in running a query that filters for a range of user IDs.

This example demonstrates distribution on a small test system. The total number of slices is
typically much higher.

If you commonly join or group using the STATE column, you might choose to distribute on the
STATE column. The following example shows a case where you create a new table with the same
data as the USERS table but set the DISTKEY to the STATE column. In this case, the distribution
isn't as even. Slice 0 (13,587 rows) holds approximately 30 percent more rows than slice 3 (10,150
rows). In a much larger table, this amount of distribution skew can have an adverse impact on
query processing.

create table userskey distkey(state) as select * from users;

select slice, col, num_values as rows, minvalue, maxvalue from svv_diskusage
where name = 'userskey' and col=0 and rows>0
order by slice, col;

slice | col | rows | minvalue | maxvalue
—————— e i e e i
0 | ® | 13587 | 5] 49989
1| QO | 11245 | 2 | 49990
2 | 0 | 15008 | 1| 49976
3| 0 | 10150 | 4 | 49986
(4 rows)

Distribution examples 95

Amazon Redshift Database Developer Guide

DISTSTYLE EVEN example

If you create a new table with the same data as the USERS table but set the DISTSTYLE to EVEN,
rows are always evenly distributed across slices.

create table userseven diststyle even as
select * from users;

select slice, col, num_values as rows, minvalue, maxvalue from svv_diskusage
where name = 'userseven' and col=0 and rows>0
order by slice, col;

slice | col | rows | minvalue | maxvalue
—————— e e e e it
0| 0| 12497 | 4 | 49990
1 0 | 12498 | 8 | 49984
2| 0| 12498 | 2 | 49988
3 0 | 12497 | 1 49989
(4 rows)

However, because distribution is not based on a specific column, query processing can be degraded,
especially if the table is joined to other tables. The lack of distribution on a joining column often
influences the type of join operation that can be performed efficiently. Joins, aggregations, and
grouping operations are optimized when both tables are distributed and sorted on their respective
joining columns.

DISTSTYLE ALL example

If you create a new table with the same data as the USERS table but set the DISTSTYLE to ALL, all
the rows are distributed to the first slice of each node.

select slice, col, num_values as rows, minvalue, maxvalue from svv_diskusage
where name = 'usersall' and col=0 and rows > 0
order by slice, col;

slice | col | rows | minvalue | maxvalue
—————— L e e T R R
0 | Q@ | 49990 | 4 | 49990
2 | Q0 | 49990 | 2 | 49990
(4 rows)

Distribution examples 96

Amazon Redshift Database Developer Guide

Working with sort keys

® Note

We recommend that you create your tables with SORTKEY AUTO. If you do so, then
Amazon Redshift uses automatic table optimization to choose the sort key. For more
information, see Working with automatic table optimization. The rest of this section

provides details about the sort order.

When you create a table, you can alternatively define one or more of its columns as sort keys.
When data is initially loaded into the empty table, the rows are stored on disk in sorted order.
Information about sort key columns is passed to the query planner, and the planner uses this
information to construct plans that exploit the way that the data is sorted. For more information,
see CREATE TABLE. For information on best practices when creating a sort key, see Choose the best

sort key.

Sorting enables efficient handling of range-restricted predicates. Amazon Redshift stores
columnar data in 1 MB disk blocks. The min and max values for each block are stored as part of the
metadata. If a query uses a range-restricted predicate, the query processor can use the min and
max values to rapidly skip over large numbers of blocks during table scans. For example, suppose
that a table stores five years of data sorted by date and a query specifies a date range of one
month. In this case, you can remove up to 98 percent of the disk blocks from the scan. If the data is
not sorted, more of the disk blocks (possibly all of them) have to be scanned.

You can specify either a compound or interleaved sort key. A compound sort key is more efficient
when query predicates use a prefix, which is a subset of the sort key columns in order. An
interleaved sort key gives equal weight to each column in the sort key, so query predicates can use
any subset of the columns that make up the sort key, in any order.

To understand the impact of the chosen sort key on query performance, use the EXPLAIN
command. For more information, see Query planning and execution workflow.

To define a sort type, use either the INTERLEAVED or COMPOUND keyword with your CREATE
TABLE or CREATE TABLE AS statement. The default is COMPOUND. COMPOUND is recommended
when you update your tables regularly with INSERT, UPDATE, or DELETE operations. An
INTERLEAVED sort key can use a maximum of eight columns. Depending on your data and
cluster size, VACUUM REINDEX takes significantly longer than VACUUM FULL because it makes

Working with sort keys 97

Amazon Redshift Database Developer Guide

an additional pass to analyze the interleaved sort keys. The sort and merge operation can take
longer for interleaved tables because the interleaved sort might have to rearrange more rows than
a compound sort.

To view the sort keys for a table, query the SVV_TABLE_INFO system view.

Topics

» Multidimensional data layout sorting (preview)

« Compound sort key

« Interleaved sort key

Multidimensional data layout sorting (preview)

The following is prerelease documentation for the multidimensional data layout sorting of
tables, which is in preview release. The documentation and the feature are both subject to
change. We recommend that you use this feature only with test clusters, and not in production
environments. For preview terms and conditions, see Beta Service Participation in AWS Service
Terms.

(® Note

This feature is only available using a preview cluster or preview workgroup. To create a
preview cluster, see Creating a preview cluster in the Amazon Redshift Management Guide.

To create a preview workgroup, see Creating a preview workgroup in the Amazon Redshift
Management Guide.

A multidimensional data layout sort key is a type of AUTO sort key that is based on repetitive
predicates found in a workload. If your workload has repetitive predicates, then Amazon Redshift
can improve table scan performance by colocating data rows that satisfy the repetitive predicates.
Instead of storing data of a table in strict column order, a multidimensional data layout sort key
stores data by analyzing repetitive predicates that appear in a workload. More than one repetitive
predicate can be found in a workload. Depending on your workload, this kind of sort key can
improve performance of many predicates. Amazon Redshift automatically determines if this sort
key method should be used for tables that are defined with an AUTO sort key.

Multidimensional data layout sorting (preview) 98

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#cluster-preview
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html

Amazon Redshift Database Developer Guide

For example, suppose you have a table that has data sorted in column order. Many data blocks
might need to be examined to determine if they satisfy the predicates in your workload. But, if
the data is stored on disk in a predicate order, then fewer blocks need to be scanned to satisfy the
query. Using a multidimensional data layout sort key is beneficial in this case.

To view whether a query is using a multidimensional data layout key, see the step_attribute
column of the SYS_QUERY_DETAIL view. When the value ismulti-dimensional then
multidimensional data layout was used for the query. To view whether a table defined

with the AUTO sort key is using a multidimensional data layout, see the sortkeyl column
of the SVV_TABLE_INFO view. When the value is padb_internal_mddl_key_col then
multidimensional data layout was used for the table sort key.

To prevent Amazon Redshift from using a multidimensional data layout sort key, choose a different
table sort key option other than SORTKEY AUTO. For more information on SORTKEY options, see
CREATE TABLE.

Compound sort key

A compound key is made up of all of the columns listed in the sort key definition, in the order they
are listed. A compound sort key is most useful when a query's filter applies conditions, such as
filters and joins, that use a prefix of the sort keys. The performance benefits of compound sorting
decrease when queries depend only on secondary sort columns, without referencing the primary
columns. COMPOUND is the default sort type.

Compound sort keys might speed up joins, GROUP BY and ORDER BY operations, and window
functions that use PARTITION BY and ORDER BY. For example, a merge join, which is often faster
than a hash join, is feasible when the data is distributed and presorted on the joining columns.
Compound sort keys also help improve compression.

As you add rows to a sorted table that already contains data, the unsorted region grows, which
has a significant effect on performance. The effect is greater when the table uses interleaved
sorting, especially when the sort columns include data that increases monotonically, such as date
or timestamp columns. Run a VACUUM operation regularly, especially after large data loads, to re-
sort and re-analyze the data. For more information, see Managing the size of the unsorted region.

After vacuuming to resort the data, it's a good practice to run an ANALYZE command to update the
statistical metadata for the query planner. For more information, see Analyzing tables.

Compound sort key 99

Amazon Redshift Database Developer Guide

Interleaved sort key

An interleaved sort gives equal weight to each column, or subset of columns, in the sort key.

If multiple queries use different columns for filters, then you can often improve performance

for those queries by using an interleaved sort style. When a query uses restrictive predicates on
secondary sort columns, interleaved sorting significantly improves query performance as compared
to compound sorting.

/A Important

Don't use an interleaved sort key on columns with monotonically increasing attributes, such
as identity columns, dates, or timestamps.

The performance improvements you gain by implementing an interleaved sort key should be
weighed against increased load and vacuum times.

Interleaved sorts are most effective with highly selective queries that filter on one or more of the
sort key columns in the WHERE clause, for example select c_name from customer where
c_region = 'ASIA'.The benefits of interleaved sorting increase with the number of sorted
columns that are restricted.

An interleaved sort is more effective with large tables. Sorting is applied on each slice. Thus, an
interleaved sort is most effective when a table is large enough to require multiple 1 MB blocks
per slice. Here, the query processor can skip a significant proportion of the blocks using restrictive
predicates. To view the number of blocks a table uses, query the STV_BLOCKLIST system view.

When sorting on a single column, an interleaved sort might give better performance than a
compound sort if the column values have a long common prefix. For example, URLs commonly
begin with "http://www". Compound sort keys use a limited number of characters from the prefix,
which results in a lot of duplication of keys. Interleaved sorts use an internal compression scheme
for zone map values that enables them to better discriminate among column values that have a
long common prefix.

When migrating Amazon Redshift provisioned clusters to Amazon Redshift Serverless, Redshift
converts tables with interleaved sort keys and DISTSTYLE KEY to compound sort keys. The
DISTSTYLE doesn't change. For more information on distribution styles, see Working with data
distribution styles.

Interleaved sort key 100

https://docs.aws.amazon.com/redshift/latest/dg/t_Distributing_data.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Distributing_data.html

Amazon Redshift Database Developer Guide

VACUUM REINDEX

As you add rows to a sorted table that already contains data, performance might deteriorate over
time. This deterioration occurs for both compound and interleaved sorts, but it has a greater effect
on interleaved tables. A VACUUM restores the sort order, but the operation can take longer for
interleaved tables because merging new interleaved data might involve modifying every data
block.

When tables are initially loaded, Amazon Redshift analyzes the distribution of the values in the sort
key columns and uses that information for optimal interleaving of the sort key columns. As a table
grows, the distribution of the values in the sort key columns can change, or skew, especially with
date or timestamp columns. If the skew becomes too large, performance might be affected. To re-
analyze the sort keys and restore performance, run the VACUUM command with the REINDEX key
word. Because it must take an extra analysis pass over the data, VACUUM REINDEX can take longer
than a standard VACUUM for interleaved tables. To view information about key distribution skew
and last reindex time, query the SVV_INTERLEAVED_COLUMNS system view.

For more information about how to determine how often to run VACUUM and when to run a
VACUUM REINDEX, see Deciding whether to reindex.

Defining table constraints

Uniqueness, primary key, and foreign key constraints are informational only; they are not enforced
by Amazon Redshift when you populate a table. For example, if you insert data into a table with
dependencies, the insert can succeed even if it violates the constraint. Nonetheless, primary keys
and foreign keys are used as planning hints and they should be declared if your ETL process or
some other process in your application enforces their integrity.

For example, the query planner uses primary and foreign keys in certain statistical computations.
It does this to infer uniqueness and referential relationships that affect subquery decorrelation
techniques. By doing this, it can order large numbers of joins and remove redundant joins.

The planner leverages these key relationships, but it assumes that all keys in Amazon Redshift
tables are valid as loaded. If your application allows invalid foreign keys or primary keys, some
queries could return incorrect results. For example, a SELECT DISTINCT query might return
duplicate rows if the primary key is not unique. Do not define key constraints for your tables if you
doubt their validity. However, always declare primary and foreign keys and uniqueness constraints
when you know that they are valid.

Defining table constraints 101

Amazon Redshift Database Developer Guide

Amazon Redshift does enforce NOT NULL column constraints.

For more information about table constraints, see CREATE TABLE. For information about how to
drop a table with dependencies, see DROP TABLE.

Defining table constraints 102

Amazon Redshift Database Developer Guide

Loading data

Topics

« Using a COPY command to load data

» Continuous file ingestion from Amazon S3 (preview)

» Updating tables with DML commands

« Updating and inserting new data

» Performing a deep copy

« Analyzing tables

« Vacuuming tables

» Managing concurrent write operations

» Tutorial: Loading data from Amazon S3

A COPY command is the most efficient way to load a table. You can also add data to your tables
using INSERT commands, though it is much less efficient than using COPY. The COPY command

is able to read from multiple data files or multiple data streams simultaneously. Amazon Redshift
allocates the workload to the cluster nodes and performs the load operations in parallel, including
sorting the rows and distributing data across node slices.

(® Note

Amazon Redshift Spectrum external tables are read-only. You can't COPY or INSERT to an
external table.

To access data on other AWS resources, your cluster must have permission to access those
resources and to perform the necessary actions to access the data. You can use AWS Identity and
Access Management (IAM) to limit the access users have to your cluster resources and data.

After your initial data load, if you add, modify, or delete a significant amount of data, you should
follow up by running a VACUUM command to reorganize your data and reclaim space after deletes.
You should also run an ANALYZE command to update table statistics.

This section explains how to load data and troubleshoot data loads and presents best practices for
loading data.

103

Amazon Redshift

Database Developer Guide

Using a COPY command to load data

Topics

Credentials and access permissions

Preparing your input data

Loading data from Amazon S3

Loading data from Amazon EMR

Loading data from remote hosts

Loading data from an Amazon DynamoDB table

Verifying that the data loaded correctly

Validating input data

Loading tables with automatic compression

Optimizing storage for narrow tables

Loading default column values

Troubleshooting data loads

The COPY command leverages the Amazon Redshift massively parallel processing (MPP)

architecture to read and load data in parallel from files on Amazon S3, from a DynamoDB table, or

from text output from one or more remote hosts.

® Note

We strongly recommend using the COPY command to load large amounts of data. Using
individual INSERT statements to populate a table might be prohibitively slow. Alternatively,
if your data already exists in other Amazon Redshift database tables, use INSERT INTO ...
SELECT or CREATE TABLE AS to improve performance. For information, see INSERT or

CREATE TABLE AS.

To load data from another AWS resource, your cluster must have permission to access the resource
and perform the necessary actions.

To grant or revoke privilege to load data into a table using a COPY command, grant or revoke the
INSERT privilege.

Using COPY to load data

104

Amazon Redshift Database Developer Guide

Your data needs to be in the proper format for loading into your Amazon Redshift table. This
section presents guidelines for preparing and verifying your data before the load and for validating
a COPY statement before you run it.

To protect the information in your files, you can encrypt the data files before you upload them
to your Amazon S3 bucket; COPY will decrypt the data as it performs the load. You can also limit
access to your load data by providing temporary security credentials to users. Temporary security
credentials provide enhanced security because they have short life spans and cannot be reused
after they expire.

Amazon Redshift has features built in to COPY to load uncompressed, delimited data quickly. But
you can compress your files using gzip, lzop, or bzip2 to save time uploading the files.

If the following keywords are in the COPY query, automatic splitting of uncompressed data is not
supported: ESCAPE, REMOVEQUOTES, and FIXEDWIDTH. But the CSV keyword is supported.

To help keep your data secure in transit within the AWS Cloud, Amazon Redshift uses hardware
accelerated SSL to communicate with Amazon S3 or Amazon DynamoDB for COPY, UNLOAD,
backup, and restore operations.

When you load your table directly from an Amazon DynamoDB table, you have the option to
control the amount of Amazon DynamoDB provisioned throughput you consume.

You can optionally let COPY analyze your input data and automatically apply optimal compression
encodings to your table as part of the load process.

Credentials and access permissions

To load or unload data using another AWS resource, such as Amazon S3, Amazon DynamoDB,
Amazon EMR, or Amazon EC2, your cluster must have permission to access the resource and
perform the necessary actions to access the data. For example, to load data from Amazon S3, COPY
must have LIST access to the bucket and GET access for the bucket objects.

To obtain authorization to access a resource, your cluster must be authenticated. You can choose
either role-based access control or key-based access control. This section presents an overview
of the two methods. For complete details and examples, see Permissions to access other AWS
Resources.

Credentials and access permissions 105

Amazon Redshift Database Developer Guide

Role-based access control

With role-based access control, your cluster temporarily assumes an AWS Identity and Access
Management (IAM) role on your behalf. Then, based on the authorizations granted to the role, your
cluster can access the required AWS resources.

We recommend using role-based access control because it is provides more secure, fine-grained
control of access to AWS resources and sensitive user data, in addition to safeguarding your AWS
credentials.

To use role-based access control, you must first create an IAM role using the Amazon Redshift
service role type, and then attach the role to your cluster. The role must have, at a minimum, the
permissions listed in IAM permissions for COPY, UNLOAD, and CREATE LIBRARY. For steps to create
an IAM role and attach it to your cluster, see Creating an IAM Role to Allow Your Amazon Redshift
Cluster to Access AWS Services in the Amazon Redshift Management Guide.

You can add a role to a cluster or view the roles associated with a cluster by using the Amazon
Redshift Management Console, CLI, or API. For more information, see Authorizing COPY and
UNLOAD Operations Using IAM Roles in the Amazon Redshift Management Guide.

When you create an IAM role, IAM returns an Amazon Resource Name (ARN) for the role. To run
a COPY command using an IAM role, provide the role ARN using the IAM_ROLE parameter or the
CREDENTIALS parameter.

The following COPY command example uses IAM_ROLE parameter with the role MyRedshiftRole
for authentication.

copy customer from 's3://mybucket/mydata’
iam_role 'arn:aws:iam::12345678901:role/MyRedshiftRole’;

The AWS user must have, at a minimum, the permissions listed in IAM permissions for COPY,
UNLOAD, and CREATE LIBRARY.

Key-based access control

With key-based access control, you provide the access key ID and secret access key for a user that is
authorized to access the AWS resources that contain the data.

Credentials and access permissions 106

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-creating-an-iam-role
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-creating-an-iam-role
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html

Amazon Redshift Database Developer Guide

® Note

We strongly recommend using an IAM role for authentication instead of supplying a plain-
text access key ID and secret access key. If you choose key-based access control, never use
your AWS account (root) credentials. Always create an IAM user and provide that user's
access key ID and secret access key. For steps to create an IAM user, see Creating an IAM
User in Your AWS Account.

Preparing your input data

If your input data is not compatible with the table columns that will receive it, the COPY command
will fail.

Use the following guidelines to help ensure that your input data is valid:

« Your data can only contain UTF-8 characters up to four bytes long.

« Verify that CHAR and VARCHAR strings are no longer than the lengths of the corresponding
columns. VARCHAR strings are measured in bytes, not characters, so, for example, a four-
character string of Chinese characters that occupy four bytes each requires a VARCHAR(16)
column.

« Multibyte characters can only be used with VARCHAR columns. Verify that multibyte characters
are no more than four bytes long.

» Verify that data for CHAR columns only contains single-byte characters.

« Do notinclude any special characters or syntax to indicate the last field in a record. This field can
be a delimiter.

« If your data includes null terminators, also referred to as NUL (UTF-8 0000) or binary zero
(0x000), you can load these characters as NULLS into CHAR or VARCHAR columns by using the
NULL AS option in the COPY command: null as '\@' ornull as '\000' . If you do not use
NULL AS, null terminators will cause your COPY to fail.

« If your strings contain special characters, such as delimiters and embedded newlines, use the
ESCAPE option with the COPY command.

« Verify that all single and double quotation marks are appropriately matched.

« Verify that floating-point strings are in either standard floating-point format, such as 12.123, or
an exponential format, such as 1.0E4.

Preparing your input data 107

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

Amazon Redshift Database Developer Guide

« Verify that all timestamp and date strings follow the specifications for DATEFORMAT and
TIMEFORMAT strings. The default timestamp format is YYYY-MM-DD hh:mm:ss, and the default
date format is YYYY-MM-DD.

« For more information about boundaries and limitations on individual data types, see Data types.
For information about multibyte character errors, see Multibyte character load errors

Loading data from Amazon S3

Topics

» Loading data from compressed and uncompressed files

» Uploading files to Amazon S3

» Using the COPY command to load from Amazon S3

The COPY command leverages the Amazon Redshift massively parallel processing (MPP)
architecture to read and load data in parallel from a file or multiple files in an Amazon S3 bucket.
You can take maximum advantage of parallel processing by splitting your data into multiple files,
in cases where the files are compressed. (There are exceptions to this rule. These are detailed

in Loading data files.) You can also take maximum advantage of parallel processing by setting
distribution keys on your tables. For more information about distribution keys, see Working with
data distribution styles.

Data is loaded into the target table, one line per row. The fields in the data file are matched

to table columns in order, left to right. Fields in the data files can be fixed-width or character
delimited; the default delimiter is a pipe (]). By default, all the table columns are loaded, but you
can optionally define a comma-separated list of columns. If a table column is not included in the
column list specified in the COPY command, it is loaded with a default value. For more information,
see Loading default column values.

Loading data from compressed and uncompressed files

When you load compressed data, we recommend that you split the data for each table into
multiple files. When you load uncompressed, delimited data, the COPY command uses massively
parallel processing (MPP) and scan ranges to load data from large files in an Amazon S3 bucket.

Loading data from Amazon S3 108

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-use-multiple-files.html

Amazon Redshift Database Developer Guide

Loading data from multiple compressed files

In cases where you have compressed data, we recommend that you split the data for each table
into multiple files. The COPY command can load data from multiple files in parallel. You can load
multiple files by specifying a common prefix, or prefix key, for the set, or by explicitly listing the
files in a manifest file.

Split your data into files so that the number of files is a multiple of the number of slices in your
cluster. That way, Amazon Redshift can divide the data evenly among the slices. The number of
slices per node depends on the node size of the cluster. For example, each dc2.large compute node
has two slices, and each dc2.8xlarge compute node has 16 slices. For more information about the
number of slices that each node size has, see About clusters and nodes in the Amazon Redshift

Management Guide.

The nodes all participate in running parallel queries, working on data that is distributed as evenly
as possible across the slices. If you have a cluster with two dc2.large nodes, you might split your
data into four files or some multiple of four. Amazon Redshift doesn't take file size into account
when dividing the workload. Thus, you need to ensure that the files are roughly the same size, from
1 MB to 1 GB after compression.

To use object prefixes to identify the load files, name each file with a common prefix. For example,
you might split the venue. txt file might be split into four files, as follows.

venue.txt.1
venue.txt.2
venue.txt.3
venue.txt.4

If you put multiple files in a folder in your bucket and specify the folder name as the prefix, COPY
loads all of the files in the folder. If you explicitly list the files to be loaded by using a manifest file,
the files can reside in different buckets or folders.

For more information about manifest files, see Example: COPY from Amazon S3 using a manifest.

Loading data from uncompressed, delimited files

When you load uncompressed, delimited data, the COPY command uses the massively parallel
processing (MPP) architecture in Amazon Redshift. Amazon Redshift automatically uses slices
working in parallel to load ranges of data from a large file in an Amazon S3 bucket. The file must
be delimited for parallel loading to occur. For example, pipe delimited. Automatic, parallel data

Loading data from Amazon S3 109

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

loading with the COPY command is also available for CSV files. You can also take advantage
of parallel processing by setting distribution keys on your tables. For more information about
distribution keys, see Working with data distribution styles.

Automatic, parallel data loading isn't supported when the COPY query includes any of the
following keywords: ESCAPE, REMOVEQUOTES, and FIXEDWIDTH.

Data from the file or files is loaded into the target table, one line per row. The fields in the data
file are matched to table columns in order, left to right. Fields in the data files can be fixed-width
or character delimited; the default delimiter is a pipe (|). By default, all the table columns are
loaded, but you can optionally define a comma-separated list of columns. If a table column isn't
included in the column list specified in the COPY command, it's loaded with a default value. For
more information, see Loading default column values.

Follow this general process to load data from Amazon S3, when your data is uncompressed and
delimited:

1. Upload your files to Amazon S3.
2. Run a COPY command to load the table.
3. Verify that the data was loaded correctly.

For examples of COPY commands, see COPY examples. For information about data loaded into
Amazon Redshift, check the STL_LOAD_COMMITS and STL_LOAD_ERRORS system tables.

For more information about nodes and the slices contained in each, see About clusters and nodes

in the Amazon Redshift Management Guide.
Uploading files to Amazon S3

Topics

» Managing data consistency

» Uploading encrypted data to Amazon S3

 Verifying that the correct files are present in your bucket

There are a couple approaches to take when uploading text files to Amazon S3:

« If you have compressed files, we recommend that you split large files to take advantage of
parallel processing in Amazon Redshift.

Loading data from Amazon S3 110

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

« On the other hand, COPY automatically splits large, uncompressed, text-delimited file data to
facilitate parallelism and effectively distribute the data from large files.

Create an Amazon S3 bucket to hold your data files, and then upload the data files to the bucket.
For information about creating buckets and uploading files, see Working with Amazon S3 Buckets
in the Amazon Simple Storage Service User Guide.

/A Important

The Amazon S3 bucket that holds the data files must be created in the same AWS Region as
your cluster unless you use the REGION option to specify the Region in which the Amazon
S3 bucket is located.

Ensure that the S3 IP ranges are added to your allowlist. To learn more about the required S3 IP
ranges, see Network isolation.

You can create an Amazon S3 bucket in a specific Region either by selecting the Region when you
create the bucket by using the Amazon S3 console, or by specifying an endpoint when you create
the bucket using the Amazon S3 API or CLI.

Following the data load, verify that the correct files are present on Amazon S3.
Managing data consistency

Amazon S3 provides strong read-after-write consistency for COPY, UNLOAD, INSERT (external
table), CREATE EXTERNAL TABLE AS, and Amazon Redshift Spectrum operations on Amazon S3
buckets in all AWS Regions. In addition, read operations on Amazon S3 Select, Amazon S3 Access
Control Lists, Amazon S3 Object Tags, and object metadata (for example, HEAD object) are strongly
consistent. For more information about data consistency, see Amazon S3 Data Consistency Model

in the Amazon Simple Storage Service User Guide.
Uploading encrypted data to Amazon S3

Amazon S3 supports both server-side encryption and client-side encryption. This topic discusses
the differences between the server-side and client-side encryption and describes the steps to use
client-side encryption with Amazon Redshift. Server-side encryption is transparent to Amazon
Redshift.

Loading data from Amazon S3 111

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/redshift/latest/mgmt/security-network-isolation.html#network-isolation
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel

Amazon Redshift Database Developer Guide

Server-side encryption

Server-side encryption is data encryption at rest—that is, Amazon S3 encrypts your data as

it uploads it and decrypts it for you when you access it. When you load tables using a COPY
command, there is no difference in the way you load from server-side encrypted or unencrypted
objects on Amazon S3. For more information about server-side encryption, see Using Server-Side
Encryption in the Amazon Simple Storage Service User Guide.

Client-side encryption

In client-side encryption, your client application manages encryption of your data, the encryption
keys, and related tools. You can upload data to an Amazon S3 bucket using client-side encryption,
and then load the data using the COPY command with the ENCRYPTED option and a private
encryption key to provide greater security.

You encrypt your data using envelope encryption. With envelope encryption, your application
handles all encryption exclusively. Your private encryption keys and your unencrypted data are
never sent to AWS, so it's very important that you safely manage your encryption keys. If you
lose your encryption keys, you won't be able to unencrypt your data, and you can't recover your
encryption keys from AWS. Envelope encryption combines the performance of fast symmetric
encryption while maintaining the greater security that key management with asymmetric keys
provides. A one-time-use symmetric key (the envelope symmetric key) is generated by your
Amazon S3 encryption client to encrypt your data, then that key is encrypted by your root key
and stored alongside your data in Amazon S3. When Amazon Redshift accesses your data during a
load, the encrypted symmetric key is retrieved and decrypted with your real key, then the data is
decrypted.

To work with Amazon S3 client-side encrypted data in Amazon Redshift, follow the steps outlined
in Protecting Data Using Client-Side Encryption in the Amazon Simple Storage Service User Guide,
with the additional requirements that you use:

« Symmetric encryption — The AWS SDK for Java AmazonS3EncryptionClient class uses
envelope encryption, described preceding, which is based on symmetric key encryption. Use this
class to create an Amazon S3 client to upload client-side encrypted data.

« A 256-bit AES root symmetric key — A root key encrypts the envelope key. You pass the root
key to your instance of the AmazonS3EncryptionClient class. Save this key, because you will
need it to copy data into Amazon Redshift.

Loading data from Amazon S3 112

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

Amazon Redshift Database Developer Guide

« Object metadata to store encrypted envelope key - By default, Amazon S3 stores the envelope
key as object metadata for the AmazonS3EncryptionClient class. The encrypted envelope
key that is stored as object metadata is used during the decryption process.

(@ Note

If you get a cipher encryption error message when you use the encryption API for

the first time, your version of the JDK may have a Java Cryptography Extension (JCE)
jurisdiction policy file that limits the maximum key length for encryption and decryption
transformations to 128 bits. For information about addressing this issue, go to Specifying
Client-Side Encryption Using the AWS SDK for Java in the Amazon Simple Storage Service
User Guide.

For information about loading client-side encrypted files into your Amazon Redshift tables using
the COPY command, see Loading encrypted data files from Amazon S3.

Example: Uploading client-side encrypted data

For an example of how to use the AWS SDK for Java to upload client-side encrypted data, go to
Protecting data using client-side encryption in the Amazon Simple Storage Service User Guide.

The second option shows the choices you must make during client-side encryption so that the data
can be loaded in Amazon Redshift. Specifically, the example shows using object metadata to store
the encrypted envelope key and the use of a 256-bit AES root symmetric key.

This example provides example code using the AWS SDK for Java to create a 256-bit AES
symmetric root key and save it to a file. Then the example upload an object to Amazon S3 using an
S3 encryption client that first encrypts sample data on the client-side. The example also downloads
the object and verifies that the data is the same.

Verifying that the correct files are present in your bucket

After you upload your files to your Amazon S3 bucket, we recommend listing the contents of the
bucket to verify that all of the correct files are present and that no unwanted files are present. For
example, if the bucket mybucket holds a file named venue. txt.back, that file will be loaded,
perhaps unintentionally, by the following command:

copy venue from 's3://mybucket/venue' .. ;

Loading data from Amazon S3 113

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryptionUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryptionUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/encrypt-client-side-symmetric-master-key.html

Amazon Redshift Database Developer Guide

If you want to control specifically which files are loaded, you can use a manifest file to
explicitly list the data files. For more information about using a manifest file, see the
copy_from_s3_manifest_file option for the COPY command and Example: COPY from Amazon S3

using a manifest in the COPY examples.

For more information about listing the contents of the bucket, see Listing Object Keys in the
Amazon S3 Developer Guide.

Using the COPY command to load from Amazon S3

Topics

» Using a manifest to specify data files

o Loading compressed data files from Amazon S3

» Loading fixed-width data from Amazon S3

» Loading multibyte data from Amazon S3

» Loading encrypted data files from Amazon S3

Use the COPY command to load a table in parallel from data files on Amazon S3. You can specify
the files to be loaded by using an Amazon S3 object prefix or by using a manifest file.

The syntax to specify the files to be loaded by using a prefix is as follows:

copy <table_name> from 's3://<bucket_name>/<object_prefix>'
authorization;

The manifest file is a JSON-formatted file that lists the data files to be loaded. The syntax to
specify the files to be loaded by using a manifest file is as follows:

copy <table_name> from 's3://<bucket_name>/<manifest_file>'
authorization
manifest;

The table to be loaded must already exist in the database. For information about creating a table,
see CREATE TABLE in the SQL Reference.

The values for authorization provide the AWS authorization your cluster needs to access the
Amazon S3 objects. For information about required permissions, see IAM permissions for COPY,
UNLOAD, and CREATE LIBRARY. The preferred method for authentication is to specify the

Loading data from Amazon S3 114

https://docs.aws.amazon.com/AmazonS3/latest/dev/ListingKeysUsingAPIs.html

Amazon Redshift Database Developer Guide

IAM_ROLE parameter and provide the Amazon Resource Name (ARN) for an IAM role with the
necessary permissions. For more information, see Role-based access control .

To authenticate using the IAM_ROLE parameter, replace <aws-account-id> and <role-name>
as shown in the following syntax.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-name>'
The following example shows authentication using an IAM role.

copy customer
from 's3://mybucket/mydata’
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’;

For more information about other authorization options, see Authorization parameters

If you want to validate your data without actually loading the table, use the NOLOAD option with
the COPY command.

The following example shows the first few rows of a pipe-delimited data in a file named
venue.txt.

1|Toyota Park|Bridgeview|IL|@
2| Columbus Crew Stadium|Columbus|OH|@
3|RFK Stadium|Washington|DC|@

Before uploading the file to Amazon S3, split the file into multiple files so that the COPY command
can load it using parallel processing. The number of files should be a multiple of the number of
slices in your cluster. Split your load data files so that the files are about equal size, between 1

MB and 1 GB after compression. For more information, see Loading data from compressed and

uncompressed files.

For example, the venue. txt file might be split into four files, as follows:

venue.txt.1
venue.txt.2
venue.txt.3
venue.txt.4

The following COPY command loads the VENUE table using the pipe-delimited data in the data
files with the prefix 'venue' in the Amazon S3 bucket mybucket.

Loading data from Amazon S3 115

Amazon Redshift Database Developer Guide

® Note

The Amazon S3 bucket mybucket in the following examples does not exist. For sample
COPY commands that use real data in an existing Amazon S3 bucket, see Load sample data.

copy venue from 's3://mybucket/venue’
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole"
delimiter '|';

If no Amazon S3 objects with the key prefix 'venue' exist, the load fails.
Using a manifest to specify data files

You can use a manifest to make sure that the COPY command loads all of the required files,

and only the required files, for a data load. You can use a manifest to load files from different
buckets or files that do not share the same prefix. Instead of supplying an object path for the COPY
command, you supply the name of a JSON-formatted text file that explicitly lists the files to be
loaded. The URL in the manifest must specify the bucket name and full object path for the file, not
just a prefix.

For more information about manifest files, see the COPY example Using a manifest to specify data

files.

The following example shows the JSON to load files from different buckets and with file names
that begin with date stamps.

{
"entries": [
{"url":"s3://mybucket-alpha/2013-10-04-custdata", "mandatory":true},
{"url":"s3://mybucket-alpha/2013-10-05-custdata", "mandatory":true},
{"url":"s3://mybucket-beta/2013-10-04-custdata", "mandatory":true},
{"url":"s3://mybucket-beta/2013-10-05-custdata", "mandatory":true}

The optional mandatory flag specifies whether COPY should return an error if the file is not found.
The default of mandatory is false. Regardless of any mandatory settings, COPY will terminate if
no files are found.

Loading data from Amazon S3 116

https://docs.aws.amazon.com/redshift/latest/gsg/cm-dev-t-load-sample-data.html

Amazon Redshift Database Developer Guide

The following example runs the COPY command with the manifest in the previous example, which
isnamed cust.manifest.

copy customer

from 's3://mybucket/cust.manifest’

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole"
manifest;

Using a manifest created by UNLOAD

A manifest created by an UNLOAD operation using the MANIFEST parameter might have keys that
are not required for the COPY operation. For example, the following UNLOAD manifest includes a
meta key that is required for an Amazon Redshift Spectrum external table and for loading data
files in an ORC or Parquet file format. The meta key contains a content_length key with a value
that is the actual size of the file in bytes. The COPY operation requires only the url key and an
optional mandatory key.

{
"entries": [
{"url":"s3://mybucket/unload/manifest_0000_part_00", "meta": { "content_length":
5956875 1}3},
{"url":"s3://mybucket/unload/unload/manifest_0001_part_00", "meta":
{ "content_length": 5997091 }}
]
}

For more information about manifest files, see Example: COPY from Amazon S3 using a manifest.

Loading compressed data files from Amazon S3

To load data files that are compressed using gzip, lzop, or bzip2, include the corresponding option:
GZIP, LZOP, or BZIP2.

For example, the following command loads from files that were compressing using lzop.

copy customer from 's3://mybucket/customer.lzo’
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
delimiter '|' lzop;

Loading data from Amazon S3 117

Amazon Redshift Database Developer Guide

® Note

If you compress a data file with [zop compression and use the --filter option, the COPY
command doesn't support it.

Loading fixed-width data from Amazon S3

Fixed-width data files have uniform lengths for each column of data. Each field in a fixed-width
data file has exactly the same length and position. For character data (CHAR and VARCHAR) in a
fixed-width data file, you must include leading or trailing spaces as placeholders in order to keep
the width uniform. For integers, you must use leading zeros as placeholders. A fixed-width data file
has no delimiter to separate columns.

To load a fixed-width data file into an existing table, USE the FIXEDWIDTH parameter in the COPY
command. Your table specifications must match the value of fixedwidth_spec in order for the data
to load correctly.

To load fixed-width data from a file to a table, issue the following command:

copy table_name from 's3://mybucket/prefix’
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
fixedwidth 'fixedwidth_spec';

The fixedwidth_spec parameter is a string that contains an identifier for each column and the width
of each column, separated by a colon. The column:width pairs are delimited by commas. The
identifier can be anything that you choose: numbers, letters, or a combination of the two. The
identifier has no relation to the table itself, so the specification must contain the columns in the
same order as the table.

The following two examples show the same specification, with the first using numeric identifiers
and the second using string identifiers:

'0:3,1:25,2:12,3:2,4:6"

'venueid:3,venuename:25,venuecity:12,venuestate:2,venueseats:6'

The following example shows fixed-width sample data that could be loaded into the VENUE table
using the preceding specifications:

Loading data from Amazon S3 118

Amazon Redshift Database Developer Guide

1 Toyota Park Bridgeview ILO
2 Columbus Crew Stadium Columbus OHO
3 RFK Stadium Washington DCO
4 CommunityAmerica Ballpark Kansas City KS@
5 Gillette Stadium Foxborough MA68756

The following COPY command loads this data set into the VENUE table:

copy venue
from 's3://mybucket/data/venue_fw.txt'

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’

fixedwidth 'venueid:3,venuename:25,venuecity:12,venuestate:2,venueseats:6"';

Loading multibyte data from Amazon S3

If your data includes non-ASCIlI multibyte characters (such as Chinese or Cyrillic characters), you
must load the data to VARCHAR columns. The VARCHAR data type supports four-byte UTF-8
characters, but the CHAR data type only accepts single-byte ASCII characters. You cannot load
five-byte or longer characters into Amazon Redshift tables. For more information about CHAR and
VARCHAR, see Data types.

To check which encoding an input file uses, use the Linux file command:

$ file ordersdata.txt

ordersdata.txt: ASCII English text

$ file uni_ordersdata.dat
uni_ordersdata.dat: UTF-8 Unicode text

Loading encrypted data files from Amazon S3

You can use the COPY command to load data files that were uploaded to Amazon S3 using server-
side encryption, client-side encryption, or both.

The COPY command supports the following types of Amazon S3 encryption:

« Server-side encryption with Amazon S3-managed keys (SSE-S3)
« Server-side encryption with AWS KMS keys (SSE-KMS)

« Client-side encryption using a client-side symmetric root key

Loading data from Amazon S3 119

Amazon Redshift Database Developer Guide

The COPY command doesn't support the following types of Amazon S3 encryption:

« Server-side encryption with customer-provided keys (SSE-C)
 Client-side encryption using an AWS KMS key

 Client-side encryption using a customer-provided asymmetric root key

For more information about Amazon S3 encryption, see Protecting Data Using Server-Side

Encryption and Protecting Data Using Client-Side Encryption in the Amazon Simple Storage
Service User Guide.

The UNLOAD command automatically encrypts files using SSE-S3. You can also unload using SSE-
KMS or client-side encryption with a customer managed symmetric key. For more information, see
Unloading encrypted data files

The COPY command automatically recognizes and loads files encrypted using SSE-S3 and SSE-
KMS. You can load files encrypted using a client-side symmetric root key by specifying the
ENCRYPTED option and providing the key value. For more information, see Uploading encrypted
data to Amazon S3.

To load client-side encrypted data files, provide the root key value using the
MASTER_SYMMETRIC_KEY parameter and include the ENCRYPTED option.

copy customer from 's3://mybucket/encrypted/customer'’
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole"
master_symmetric_key '<root_key>'

encrypted

delimiter '|';

To load encrypted data files that are gzip, lzop, or bzip2 compressed, include the GZIP, LZOP, or
BZIP2 option along with the root key value and the ENCRYPTED option.

copy customer from 's3://mybucket/encrypted/customer’
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole"
master_symmetric_key '<root_key>'

encrypted

delimiter '|'

gzip;

Loading data from Amazon S3 120

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

Amazon Redshift Database Developer Guide

Loading data from Amazon EMR

You can use the COPY command to load data in parallel from an Amazon EMR cluster configured
to write text files to the cluster's Hadoop Distributed File System (HDFS) as fixed-width files,
character-delimited files, CSV files, or JSON-formatted files.

Process for loading data from Amazon EMR

This section walks you through the process of loading data from an Amazon EMR cluster. The
following sections provide the details that you must accomplish each step.

« Step 1: Configure IAM permissions

The users that create the Amazon EMR cluster and run the Amazon Redshift COPY command
must have the necessary permissions.

o Step 2: Create an Amazon EMR cluster

Configure the cluster to output text files to the Hadoop Distributed File System (HDFS). You will
need the Amazon EMR cluster ID and the cluster's main public DNS (the endpoint for the Amazon
EC2 instance that hosts the cluster).

» Step 3: Retrieve the Amazon Redshift cluster public key and cluster node IP addresses

The public key enables the Amazon Redshift cluster nodes to establish SSH connections to the
hosts. You will use the IP address for each cluster node to configure the host security groups to
permit access from your Amazon Redshift cluster using these IP addresses.

« Step 4: Add the Amazon Redshift cluster public key to each Amazon EC2 host's authorized
keys file

You add the Amazon Redshift cluster public key to the host's authorized keys file so that the host
will recognize the Amazon Redshift cluster and accept the SSH connection.

« Step 5: Configure the hosts to accept all of the Amazon Redshift cluster's IP addresses

Modify the Amazon EMR instance's security groups to add input rules to accept the Amazon
Redshift IP addresses.

« Step 6: Run the COPY command to load the data

From an Amazon Redshift database, run the COPY command to load the data into an Amazon
Redshift table.

Loading data from Amazon EMR 121

Amazon Redshift Database Developer Guide

Step 1: Configure IAM permissions

The users that create the Amazon EMR cluster and run the Amazon Redshift COPY command must
have the necessary permissions.

To configure IAM permissions

1. Add the following permissions for the user that will create the Amazon EMR cluster.

ec2:DescribeSecurityGroups
ec2:RevokeSecurityGroupIngress
ec2:AuthorizeSecurityGroupIngress
redshift:DescribeClusters

2. Add the following permission for the IAM role or user that will run the COPY command.

elasticmapreduce:ListInstances

3. Add the following permission to the Amazon EMR cluster's IAM role.

redshift:DescribeClusters

Step 2: Create an Amazon EMR cluster

The COPY command loads data from files on the Amazon EMR Hadoop Distributed File System
(HDFS). When you create the Amazon EMR cluster, configure the cluster to output data files to the
cluster's HDFS.

To create an Amazon EMR cluster

1. Create an Amazon EMR cluster in the same AWS Region as the Amazon Redshift cluster.

If the Amazon Redshift cluster is in a VPC, the Amazon EMR cluster must be in the same VPC
group. If the Amazon Redshift cluster uses EC2-Classic mode (that is, it is not in a VPC), the
Amazon EMR cluster must also use EC2-Classic mode. For more information, see Managing
Clusters in Virtual Private Cloud (VPC) in the Amazon Redshift Management Guide.

2. Configure the cluster to output data files to the cluster's HDFS. The HDFS file names must not
include asterisks (*) or question marks (?).

Loading data from Amazon EMR 122

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html

Amazon Redshift Database Developer Guide

/A Important

The file names must not include asterisks (*) or question marks (?).

3. Specify No for the Auto-terminate option in the Amazon EMR cluster configuration so that the
cluster remains available while the COPY command runs.

/A Important

If any of the data files are changed or deleted before the COPY completes, you might
have unexpected results, or the COPY operation might fail.

4. Note the cluster ID and the main public DNS (the endpoint for the Amazon EC2 instance that
hosts the cluster). You will use that information in later steps.

Step 3: Retrieve the Amazon Redshift cluster public key and cluster node IP
addresses

To retrieve the Amazon Redshift cluster public key and cluster node IP addresses for your
cluster using the console

1. Access the Amazon Redshift Management Console.

2. Choose the Clusters link in the navigation pane.

3. Select your cluster from the list.
4

Locate the SSH Ingestion Settings group.

Note the Cluster Public Key and Node IP addresses. You will use them in later steps.

Loading data from Amazon EMR 123

Amazon Redshift Database Developer Guide

55H Ingestion Settings
Cluster Public Key:

ssh-r=a

| »

ExanpleFKeyDAQRBRARARAOCKIVREZENI 92 xM4ZimOaleW
g3 IDXB3halmiMpevnnili /wERgpcomi TEoc3Fk+ELTgLlkd
gUgvDM1iaxMOBE2XJRWZBULdQCI1DUcuprnEth4XnnIRk
1x1pUPg/re/E8nQ95pVRS

S eYHHwtOraZlrbECLghJ40GQLeB5oFJOMLIMIVEDI 1xC
JfeekOgIeGAEWNOvdgMMPHS 12 IbvDA4ES+r=1HEgEO
gVhMiTiB4PE+9pnwSi
faEthXzuhEStbt2t1cuHOZqZHcynGtvDLint&Qc+06-_
EEBESCEyvu/ r6rafblI50oxddiopvnSSMpihiExample=/ :j
Amazon-Redshift

Mode IP Addresses:

Node Public IP Private IP
Leader 192.0.2.0 198.51.100.0
Compute-0 203.0.113.0 1024 34.0
Compute-1 198.51.100.0 192.02.0

You will use the private IP addresses in Step 3 to configure the Amazon EC2 host to accept the
connection from Amazon Redshift.

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift CLI, run the describe-clusters command. For example:

aws redshift describe-clusters --cluster-identifier <cluster-identifier>

The response will include a ClusterPublicKey value and the list of private and public IP addresses,
similar to the following:

"Clusters": [
{
"VpcSecurityGroups": [],
"ClusterStatus": "available",
"ClusterNodes": [
{

"PrivateIPAddress": "1@.nnn.nnn.nnn",

Loading data from Amazon EMR 124

Amazon Redshift

Database Developer Guide

Redshift",

"NodeRole": "LEADER",

"PublicIPAddress": "1@.nnn.nnn.nnn"
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "COMPUTE-Q",
"PublicIPAddress": "10@.nnn.nnn.nnn"
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "COMPUTE-1",
"PublicIPAddress": "1@.nnn.nnn.nnn"

"AutomatedSnapshotRetentionPeriod": 1,
"PreferredMaintenanceWindow":
"AvailabilityZone": "us-east-1la",
"NodeType": "dc2.large",

"ClusterPublicKey": "ssh-rsa AAAABexamplepublickey...Y3TAl Amazon-

"wed:05:30-wed:06:00"

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift API, use the DescribeClusters action. For more information, see describe-clusters in
the Amazon Redshift CLI Guide or DescribeClusters in the Amazon Redshift APl Guide.

Step 4: Add the Amazon Redshift cluster public key to each Amazon EC2 host's

authorized keys file

You add the cluster public key to each host's authorized keys file for all of the Amazon EMR cluster
nodes so that the hosts will recognize Amazon Redshift and accept the SSH connection.

To add the Amazon Redshift cluster public key to the host's authorized keys file

1.

Access the host using an SSH connection.

For information about connecting to an instance using SSH, see Connect to Your Instance in
the Amazon EC2 User Guide.

Copy the Amazon Redshift public key from the console or from the CLI response text.

Loading data from Amazon EMR

125

https://docs.aws.amazon.com/cli/latest/reference/redshift/describe-clusters.html
https://docs.aws.amazon.com/redshift/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html

Amazon Redshift Database Developer Guide

3. Copy and paste the contents of the public key into the /home/<ssh_username>/.ssh/
authorized_keys file on the host. Include the complete string, including the prefix "ssh-
rsa " and suffix "Amazon-Redshift". For example:

ssh-rsa AAAACTP3isxgGzVWoIWpbVvRCOzYdVifMrh.. uA70BnMHCaMiRdmvsDOedZzDOedZ Amazon-
Redshift

Step 5: Configure the hosts to accept all of the Amazon Redshift cluster's IP
addresses

To allow inbound traffic to the host instances, edit the security group and add one Inbound rule for
each Amazon Redshift cluster node. For Type, select SSH with TCP protocol on Port 22. For Source,
enter the Amazon Redshift cluster node private IP addresses you retrieved in Step 3: Retrieve the

Amazon Redshift cluster public key and cluster node IP addresses. For information about adding

rules to an Amazon EC2 security group, see Authorizing Inbound Traffic for Your Instances in the
Amazon EC2 User Guide.

Step 6: Run the COPY command to load the data

Run a COPY command to connect to the Amazon EMR cluster and load the data into an Amazon
Redshift table. The Amazon EMR cluster must continue running until the COPY command
completes. For example, do not configure the cluster to auto-terminate.

/A Important

If any of the data files are changed or deleted before the COPY completes, you might have
unexpected results, or the COPY operation might fail.

In the COPY command, specify the Amazon EMR cluster ID and the HDFS file path and file name.

copy sales
from 'emr://myemrclusterid/myoutput/part*' credentials
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’;

You can use the wildcard characters asterisk (*) and question mark (?) as part of the file name
argument. For example, part* loads the files part-0000, part-0001, and so on. If you specify
only a folder name, COPY attempts to load all files in the folder.

Loading data from Amazon EMR 126

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html

Amazon Redshift Database Developer Guide

/A Important

If you use wildcard characters or use only the folder name, verify that no unwanted files
will be loaded or the COPY command will fail. For example, some processes might write a
log file to the output folder.

Loading data from remote hosts

You can use the COPY command to load data in parallel from one or more remote hosts, such as
Amazon EC2 instances or other computers. COPY connects to the remote hosts using SSH and runs
commands on the remote hosts to generate text output.

The remote host can be an Amazon EC2 Linux instance or another Unix or Linux computer
configured to accept SSH connections. This guide assumes your remote host is an Amazon EC2
instance. Where the procedure is different for another computer, the guide will point out the
difference.

Amazon Redshift can connect to multiple hosts, and can open multiple SSH connections to each
host. Amazon Redshifts sends a unique command through each connection to generate text output
to the host's standard output, which Amazon Redshift then reads as it would a text file.

Before you begin

Before you begin, you should have the following in place:

« One or more host machines, such as Amazon EC2 instances, that you can connect to using SSH.

« Data sources on the hosts.

You will provide commands that the Amazon Redshift cluster will run on the hosts to generate
the text output. After the cluster connects to a host, the COPY command runs the commands,
reads the text from the hosts' standard output, and loads the data in parallel into an Amazon
Redshift table. The text output must be in a form that the COPY command can ingest. For more
information, see Preparing your input data

« Access to the hosts from your computer.

For an Amazon EC2 instance, you will use an SSH connection to access the host. You must access
the host to add the Amazon Redshift cluster's public key to the host's authorized keys file.

Loading data from remote hosts 127

Amazon Redshift Database Developer Guide

A running Amazon Redshift cluster.

For information about how to launch a cluster, see Amazon Redshift Getting Started Guide.

Loading data process

This section walks you through the process of loading data from remote hosts. The following

sections provide the details that that you must accomplish in each step.

Step 1: Retrieve the cluster public key and cluster node IP addresses

The public key enables the Amazon Redshift cluster nodes to establish SSH connections to the
remote hosts. You will use the IP address for each cluster node to configure the host security
groups or firewall to permit access from your Amazon Redshift cluster using these IP addresses.

Step 2: Add the Amazon Redshift cluster public key to the host's authorized keys file

You add the Amazon Redshift cluster public key to the host's authorized keys file so that the host
will recognize the Amazon Redshift cluster and accept the SSH connection.

Step 3: Configure the host to accept all of the Amazon Redshift cluster's IP addresses

For Amazon EC2, modify the instance's security groups to add input rules to accept the Amazon
Redshift IP addresses. For other hosts, modify the firewall so that your Amazon Redshift nodes
are able to establish SSH connections to the remote host.

Step 4: Get the public key for the host

You can optionally specify that Amazon Redshift should use the public key to identify the host.
You must locate the public key and copy the text into your manifest file.

Step 5: Create a manifest file

The manifest is a JSON-formatted text file with the details Amazon Redshift needs to connect to
the hosts and fetch the data.

Step 6: Upload the manifest file to an Amazon S3 bucket

Amazon Redshift reads the manifest and uses that information to connect to the remote host. If
the Amazon S3 bucket does not reside in the same Region as your Amazon Redshift cluster, you
must use the REGION option to specify the Region in which the data is located.

Step 7: Run the COPY command to load the data

Loading data from remote hosts 128

https://docs.aws.amazon.com/redshift/latest/gsg/

Amazon Redshift Database Developer Guide

From an Amazon Redshift database, run the COPY command to load the data into an Amazon
Redshift table.
Step 1: Retrieve the cluster public key and cluster node IP addresses

To retrieve the cluster public key and cluster node IP addresses for your cluster using the
console

1. Access the Amazon Redshift Management Console.
2. Choose the Clusters link in the navigation pane.

3. Select your cluster from the list.

4. Locate the SSH Ingestion Settings group.

Note the Cluster Public Key and Node IP addresses. You will use them in later steps.
l

S55H Ingestion Settings
Cluster Public Key:

ssh-r=a s

ExanmpleKeyDAQRBARARAOCKIVHEZEBNnI 92 xM4ZimCaleW
==sIDXEZhaUn¥Mpewvnnll] /wRRgpcomi TEo3Fk+EbTglk4
gUgQvDM1iaxMOBF 22X RWZBUidQCIDUcuprnRehd4¥dnnIR
1x1pUPg/ re/EnQ95pVRES
SEYHWNwtOraZlrbECLghJ40E0LeBSoFJOMLIMiAVEDS1xC
JEeekCgl8GAKWOvAgMMPHSr12) TbyDA+ES+rs1HEQED
gVh]) 7TiB4PE+9pnwSi
faEthXzuhEStbt2t1cuHOZqZHcynﬂtvDLint&Qc+0E-_
bEESCRyu/rérafblIS0xddiopwvnSSMpihiExample=/ :j
Amazon-Redshift

Mode IP Addresses:

Node Public IP Private IP
Leader 192.0.2.0 198.51.100.0
Compute-0 203.0.113.0 10.24.34.0
Compute-1 198.51.100.0 192.0.2.0

You will use the IP addresses in Step 3 to configure the host to accept the connection from
Amazon Redshift. Depending on what type of host you connect to and whether it is in a VPC,
you will use either the public IP addresses or the private IP addresses.

Loading data from remote hosts 129

Amazon Redshift Database Developer Guide

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift CLI, run the describe-clusters command.

For example:

aws redshift describe-clusters --cluster-identifier <cluster-identifier>

The response will include the ClusterPublicKey and the list of private and public IP addresses,
similar to the following:

{
"Clusters": [
{
"VpcSecurityGroups": [],
"ClusterStatus": "available",
"ClusterNodes": [
{
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "LEADER",
"PublicIPAddress": "1@.nnn.nnn.nnn"
b
{
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "COMPUTE-Q",
"PublicIPAddress": "1@.nnn.nnn.nnn"
1,
{
"PrivateIPAddress": "1@.nnn.nnn.nnn",
"NodeRole": "COMPUTE-1",
"PublicIPAddress": "1@.nnn.nnn.nnn"
}
1,
"AutomatedSnapshotRetentionPeriod": 1,
"PreferredMaintenanceWindow": "wed:05:30-wed:06:00",
"AvailabilityZone": "us-east-1la",
"NodeType": "dc2.large",
"ClusterPublicKey": "ssh-rsa AAAABexamplepublickey...Y3TAl Amazon-
Redshift",
}

Loading data from remote hosts 130

Amazon Redshift Database Developer Guide

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift API, use the DescribeClusters action. For more information, see describe-clusters in the
Amazon Redshift CLI Guide or DescribeClusters in the Amazon Redshift API Guide.

Step 2: Add the Amazon Redshift cluster public key to the host's authorized keys
file

You add the cluster public key to each host's authorized keys file so that the host will recognize
Amazon Redshift and accept the SSH connection.

To add the Amazon Redshift cluster public key to the host's authorized keys file

1. Access the host using an SSH connection.

For information about connecting to an instance using SSH, see Connect to Your Instance in
the Amazon EC2 User Guide.

2. Copy the Amazon Redshift public key from the console or from the CLI response text.

3. Copy and paste the contents of the public key into the /home/<ssh_username>/.ssh/
authorized_keys file on the remote host. The <ssh_username> must match the value
for the "username" field in the manifest file. Include the complete string, including the prefix
"ssh-rsa " and suffix "Amazon-Redshift". For example:

ssh-rsa AAAACTP3isxgGzVWoIWpbVvRCOzYdVifMrh.. uA70BnMHCaMiRdmvsDOedZD0OedZ Amazon-
Redshift

Step 3: Configure the host to accept all of the Amazon Redshift cluster's IP
addresses

If you are working with an Amazon EC2 instance or an Amazon EMR cluster, add Inbound rules

to the host's security group to allow traffic from each Amazon Redshift cluster node. For Type,
select SSH with TCP protocol on Port 22. For Source, enter the Amazon Redshift cluster node IP
addresses you retrieved in Step 1: Retrieve the cluster public key and cluster node IP addresses. For
information about adding rules to an Amazon EC2 security group, see Authorizing Inbound Traffic
for Your Instances in the Amazon EC2 User Guide.

Use the private IP addresses when:

Loading data from remote hosts 131

https://docs.aws.amazon.com/cli/latest/reference/redshift/describe-clusters.html
https://docs.aws.amazon.com/redshift/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html

Amazon Redshift Database Developer Guide

« You have an Amazon Redshift cluster that is not in a Virtual Private Cloud (VPC), and an Amazon
EC2 -Classic instance, both of which are in the same AWS Region.

« You have an Amazon Redshift cluster that is in a VPC, and an Amazon EC2 -VPC instance, both of
which are in the same AWS Region and in the same VPC.
Otherwise, use the public IP addresses.

For more information about using Amazon Redshift in a VPC, see Managing Clusters in Virtual
Private Cloud (VPC) in the Amazon Redshift Management Guide.

Step 4: Get the public key for the host

You can optionally provide the host's public key in the manifest file so that Amazon Redshift
can identify the host. The COPY command does not require the host public key but, for security
reasons, we strongly recommend using a public key to help prevent 'man-in-the-middle' attacks.

You can find the host's public key in the following location, where <ssh_host_rsa_key_name> is
the unique name for the host's public key:

/etc/ssh/<ssh_host_rsa_key_name>.pub

(® Note
Amazon Redshift only supports RSA keys. We do not support DSA keys.

When you create your manifest file in Step 5, you will paste the text of the public key into the
"Public Key" field in the manifest file entry.

Step 5: Create a manifest file

The COPY command can connect to multiple hosts using SSH, and can create multiple SSH
connections to each host. COPY runs a command through each host connection, and then loads
the output from the commands in parallel into the table. The manifest file is a text file in JSON
format that Amazon Redshift uses to connect to the host. The manifest file specifies the SSH

host endpoints and the commands that are run on the hosts to return data to Amazon Redshift.
Optionally, you can include the host public key, the login user name, and a mandatory flag for each
entry.

Loading data from remote hosts 132

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html

Amazon Redshift Database Developer Guide

Create the manifest file on your local computer. In a later step, you upload the file to Amazon S3.

The manifest file is in the following format:

{
"entries": [
{"endpoint":"<ssh_endpoint_or_IP>",
"command": "<remote_command>",
"mandatory":true,
"publickey": "<public_key>",
"username": "<host_user_name>"},
{"endpoint":"<ssh_endpoint_or_IP>",
"command": "<remote_command>",
"mandatory":true,
"publickey": "<public_key>",
"username": "host_user_name"}
]
}

The manifest file contains one "entries" construct for each SSH connection. Each entry represents a
single SSH connection. You can have multiple connections to a single host or multiple connections

to multiple hosts. The double quotation marks are required as shown, both for the field names and
the values. The only value that does not need double quotation marks is the Boolean value true or
false for the mandatory field.

The following describes the fields in the manifest file.

endpoint

The URL address or IP address of the host. For example,
"ec2-111-222-333.compute-1.amazonaws.com"or"22.33.44.56"

command

The command that will be run by the host to generate text or binary (gzip, lzop, or bzip2)
output. The command can be any command that the user "host_user_name" has permission to
run. The command can be as simple as printing a file, or it could query a database or launch

a script. The output (text file, gzip binary file, lzop binary file, or bzip2 binary file) must be in
a form the Amazon Redshift COPY command can ingest. For more information, see Preparing
your input data.

Loading data from remote hosts 133

Amazon Redshift Database Developer Guide

publickey

(Optional) The public key of the host. If provided, Amazon Redshift will use the public key

to identify the host. If the public key is not provided, Amazon Redshift will not attempt host
identification. For example, if the remote host's public key is: ssh-rsa AbcCbaxxx..xxxDHKJ
root@amazon.com, enter the following text in the public key field: AbcCbaxxx..xxxDHKJ.

mandatory

(Optional) Indicates whether the COPY command should fail if the connection fails. The default
is false. If Amazon Redshift does not successfully make at least one connection, the COPY
command fails.

username

(Optional) The username that will be used to log on to the host system and run the remote
command. The user login name must be the same as the login that was used to add the public
key to the host's authorized keys file in Step 2. The default username is "redshift".

The following example shows a completed manifest to open four connections to the same host and
run a different command through each connection:

"entries": [
{"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
"command": "cat loaddatal.txt",
"mandatory":true,
"publickey": "ec2publickeyportionoftheec2keypair",

"username": "ec2-user"},
{"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
"command": "cat loaddata2.txt",

"mandatory":true,
"publickey": "ec2publickeyportionoftheec2keypair",

"username": "ec2-user"},
{"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
"command": "cat loaddata3.txt",

"mandatory":true,
"publickey": "ec2publickeyportionoftheec2keypair",

"username": "ec2-user"},
{"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
"command": "cat loaddata4.txt",

"mandatory":true,

Loading data from remote hosts 134

Amazon Redshift Database Developer Guide

"publickey": "ec2publickeyportionoftheec2keypair",
"username": "ec2-user"}

Step 6: Upload the manifest file to an Amazon S3 bucket

Upload the manifest file to an Amazon S3 bucket. If the Amazon S3 bucket does not reside in the
same AWS Region as your Amazon Redshift cluster, you must use the REGION option to specify the
AWS Region in which the manifest is located. For information about creating an Amazon S3 bucket
and uploading a file, see Amazon Simple Storage Service User Guide.

Step 7: Run the COPY command to load the data

Run a COPY command to connect to the host and load the data into an Amazon Redshift table. In
the COPY command, specify the explicit Amazon S3 object path for the manifest file and include
the SSH option. For example,

copy sales
from 's3://mybucket/ssh_manifest'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’

delimiter '|'
ssh;

(@ Note

If you use automatic compression, the COPY command performs two data reads, which
means it runs the remote command twice. The first read is to provide a sample for
compression analysis, then the second read actually loads the data. If running the remote
command twice might cause a problem because of potential side effects, you should turn
off automatic compression. To turn off automatic compression, run the COPY command
with the COMPUPDATE option set to OFF. For more information, see Loading tables with
automatic compression.

Loading data from an Amazon DynamoDB table

You can use the COPY command to load a table with data from a single Amazon DynamoDB table.

Loading from Amazon DynamoDB 135

https://docs.aws.amazon.com/AmazonS3/latest/gsg/

Amazon Redshift Database Developer Guide

/A Important

The Amazon DynamoDB table that provides the data must be created in the same AWS
Region as your cluster unless you use the REGION option to specify the AWS Region in
which the Amazon DynamoDB table is located.

The COPY command uses the Amazon Redshift massively parallel processing (MPP) architecture

to read and load data in parallel from an Amazon DynamoDB table. You can take maximum
advantage of parallel processing by setting distribution styles on your Amazon Redshift tables. For
more information, see Working with data distribution styles.

/A Important

When the COPY command reads data from the Amazon DynamoDB table, the resulting
data transfer is part of that table's provisioned throughput.

To avoid consuming excessive amounts of provisioned read throughput, we recommend that you
not load data from Amazon DynamoDB tables that are in production environments. If you do load
data from production tables, we recommend that you set the READRATIO option much lower than
the average percentage of unused provisioned throughput. A low READRATIO setting will help
minimize throttling issues. To use the entire provisioned throughput of an Amazon DynamoDB
table, set READRATIO to 100.

The COPY command matches attribute names in the items retrieved from the DynamoDB table to
column names in an existing Amazon Redshift table by using the following rules:

« Amazon Redshift table columns are case-insensitively matched to Amazon DynamoDB item
attributes. If an item in the DynamoDB table contains multiple attributes that differ only in case,
such as Price and PRICE, the COPY command will fail.

« Amazon Redshift table columns that do not match an attribute in the Amazon DynamoDB table
are loaded as either NULL or empty, depending on the value specified with the EMPTYASNULL
option in the COPY command.

« Amazon DynamoDB attributes that do not match a column in the Amazon Redshift table
are discarded. Attributes are read before they are matched, and so even discarded attributes
consume part of that table's provisioned throughput.

Loading from Amazon DynamoDB 136

Amazon Redshift Database Developer Guide

e Only Amazon DynamoDB attributes with scalar STRING and NUMBER data types are supported.
The Amazon DynamoDB BINARY and SET data types are not supported. If a COPY command tries
to load an attribute with an unsupported data type, the command will fail. If the attribute does
not match an Amazon Redshift table column, COPY does not attempt to load it, and it does not
raise an error.

The COPY command uses the following syntax to load data from an Amazon DynamoDB table:

copy <redshift_tablename> from 'dynamodb://<dynamodb_table_name>'
authorization
readratio '<integer>';

The values for authorization are the AWS credentials needed to access the Amazon DynamoDB
table. If these credentials correspond to a user, that user must have permission to SCAN and
DESCRIBE the Amazon DynamoDB table that is being loaded.

The values for authorization provide the AWS authorization your cluster needs to access the
Amazon DynamoDB table. The permission must include SCAN and DESCRIBE for the Amazon
DynamoDB table that is being loaded. For more information about required permissions, see IAM
permissions for COPY, UNLOAD, and CREATE LIBRARY. The preferred method for authentication is
to specify the IAM_ROLE parameter and provide the Amazon Resource Name (ARN) for an IAM role

with the necessary permissions. For more information, see Role-based access control.

To authenticate using the IAM_ROLE parameter, <aws-account-id> and <role-name> as shown
in the following syntax.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-name>'

The following example shows authentication using an IAM role.

copy favoritemovies
from 'dynamodb://ProductCatalog’
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’;

For more information about other authorization options, see Authorization parameters

If you want to validate your data without actually loading the table, use the NOLOAD option with
the COPY command.

Loading from Amazon DynamoDB 137

Amazon Redshift Database Developer Guide

The following example loads the FAVORITEMOVIES table with data from the DynamoDB table my-
favorite-movies-table. The read activity can consume up to 50% of the provisioned throughput.

copy favoritemovies from 'dynamodb://my-favorite-movies-table'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole"
readratio 50;

To maximize throughput, the COPY command loads data from an Amazon DynamoDB table in
parallel across the compute nodes in the cluster.

Provisioned throughput with automatic compression

By default, the COPY command applies automatic compression whenever you specify an empty
target table with no compression encoding. The automatic compression analysis initially samples a
large number of rows from the Amazon DynamoDB table. The sample size is based on the value of
the COMPROWS parameter. The default is 100,000 rows per slice.

After sampling, the sample rows are discarded and the entire table is loaded. As a result, many
rows are read twice. For more information about how automatic compression works, see Loading
tables with automatic compression.

/A Important

When the COPY command reads data from the Amazon DynamoDB table, including the
rows used for sampling, the resulting data transfer is part of that table's provisioned
throughput.

Loading multibyte data from Amazon DynamoDB

If your data includes non-ASCIlI multibyte characters (such as Chinese or Cyrillic characters), you
must load the data to VARCHAR columns. The VARCHAR data type supports four-byte UTF-8
characters, but the CHAR data type only accepts single-byte ASCII characters. You cannot load
five-byte or longer characters into Amazon Redshift tables. For more information about CHAR and
VARCHAR, see Data types.

Loading from Amazon DynamoDB 138

Amazon Redshift Database Developer Guide

Verifying that the data loaded correctly

After the load operation is complete, query the STL_LOAD_COMMITS system table to verify that
the expected files were loaded. Run the COPY command and load verification within the same

transaction so that if there is problem with the load you can roll back the entire transaction.

The following query returns entries for loading the tables in the TICKIT database:

select query, trim(filename) as filename, curtime, status
from stl_load_commits
where filename like '%tickit%' order by query;

query | filename | curtime | status

——————— L ettt ittt ket
22475 | tickit/allusers_pipe.txt | 2013-02-08 20:58:23.274186 | 1
22478 | tickit/venue_pipe.txt | 2013-02-08 20:58:25.070604 | 1
22480 | tickit/category_pipe.txt | 2013-02-08 20:58:27.333472 | 1
22482 | tickit/date2008_pipe.txt | 2013-02-08 20:58:28.608305 | 1
22485 | tickit/allevents_pipe.txt | 2013-02-08 20:58:29.99489 | 1
22487 | tickit/listings_pipe.txt | 2013-02-08 20:58:37.632939 | 1
22489 | tickit/sales_tab.txt | 2013-02-08 20:58:37.632939 | 1
(6 rows)

Validating input data

To validate the data in the Amazon S3 input files or Amazon DynamoDB table before you actually
load the data, use the NOLOAD option with the COPY command. Use NOLOAD with the same
COPY commands and options you would use to load the data. NOLOAD checks the integrity of all
of the data without loading it into the database. The NOLOAD option displays any errors that occur
if you attempt to load the data.

For example, if you specified the incorrect Amazon S3 path for the input file, Amazon Redshift
would display the following error.

ERROR: No such file or directory

DETAIL:

Amazon Redshift error: The specified key does not exist
code: 2

context: S3 key being read :

location: step_scan.cpp:1883

Verifying that the data loaded correctly 139

Amazon Redshift Database Developer Guide

process: xenmaster [pid=22199]

To troubleshoot error messages, see the Load error reference.

For an example using the NOLOAD option, see COPY command with the NOLOAD option.

Loading tables with automatic compression

Topics

» How automatic compression works

» Automatic compression example

You can apply compression encodings to columns in tables manually, based on your own
evaluation of the data. Or you can use the COPY command with COMPUPDATE set to ON to
analyze and apply compression automatically based on sample data.

You can use automatic compression when you create and load a brand new table. The COPY
command performs a compression analysis. You can also perform a compression analysis without
loading data or changing the compression on a table by running the ANALYZE COMPRESSION
command on an already populated table. For example, you can run ANALYZE COMPRESSION when
you want to analyze compression on a table for future use, while preserving the existing data
definition language (DDL) statements.

Automatic compression balances overall performance when choosing compression encodings.
Range-restricted scans might perform poorly if sort key columns are compressed much more highly
than other columns in the same query. As a result, automatic compression skips the data analyzing
phase on the sort key columns and keeps the user-defined encoding types.

Automatic compression chooses RAW encoding if you haven't explicitly defined a type of encoding.
ANALYZE COMPRESSION behaves the same. For optimal query performance, consider using RAW
for sort keys.

How automatic compression works

When the COMPUPDATE parameter is ON, the COPY command applies automatic compression
whenever you run the COPY command with an empty target table and all of the table columns
either have RAW encoding or no encoding.

Automatic compression 140

Amazon Redshift Database Developer Guide

To apply automatic compression to an empty table, regardless of its current compression
encodings, run the COPY command with the COMPUPDATE option set to ON. To turn off automatic
compression, run the COPY command with the COMPUPDATE option set to OFF.

You cannot apply automatic compression to a table that already contains data.

® Note

Automatic compression analysis requires enough rows in the load data (at least 100,000
rows per slice) to generate a meaningful sample.

Automatic compression performs these operations in the background as part of the load
transaction:

1. An initial sample of rows is loaded from the input file. Sample size is based on the value of the
COMPROWS parameter. The default is 100,000.

. Compression options are chosen for each column.
. The sample rows are removed from the table.

. The table is recreated with the chosen compression encodings.

o A W N

. The entire input file is loaded and compressed using the new encodings.

After you run the COPY command, the table is fully loaded, compressed, and ready for use. If you
load more data later, appended rows are compressed according to the existing encoding.

If you only want to perform a compression analysis, run ANALYZE COMPRESSION, which is more
efficient than running a full COPY. Then you can evaluate the results to decide whether to use
automatic compression or recreate the table manually.

Automatic compression is supported only for the COPY command. Alternatively, you can
manually apply compression encoding when you create the table. For information about manual
compression encoding, see Working with column compression.

Automatic compression example

In this example, assume that the TICKIT database contains a copy of the LISTING table called
BIGLIST, and you want to apply automatic compression to this table when it is loaded with
approximately 3 million rows.

Automatic compression 141

Amazon Redshift Database Developer Guide

To load and automatically compress the table

1. Make sure that the table is empty. You can apply automatic compression only to an empty
table:

truncate biglist;

2. Load the table with a single COPY command. Although the table is empty, some earlier
encoding might have been specified. To facilitate that Amazon Redshift performs a
compression analysis, set the COMPUPDATE parameter to ON.

copy biglist from 's3://mybucket/biglist.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
delimiter '|' COMPUPDATE ON;

Because no COMPROWS option is specified, the default and recommended sample size of
100,000 rows per slice is used.

3. Look at the new schema for the BIGLIST table in order to review the automatically chosen
encoding schemes.

select "column", type, encoding
from pg_table_def where tablename = 'biglist';

Column | Type | Encoding
________________ Y S
listid | integer | az64
sellerid | integer | az64
eventid | integer | az64
dateid | smallint | none
numtickets | smallint | az64
priceperticket | numeric(8,2) | az64
totalprice | numeric(8,2) | az64
listtime | timestamp without time zone | az64

4. Verify that the expected number of rows were loaded:

select count(*) from biglist;

3079952

Automatic compression 142

Amazon Redshift Database Developer Guide

(1 row)

When rows are later appended to this table using COPY or INSERT statements, the same
compression encodings are applied.

Optimizing storage for narrow tables

If you have a table with very few columns but a very large number of rows, the three hidden
metadata identity columns (INSERT_XID, DELETE_XID, ROW_ID) will consume a disproportionate
amount of the disk space for the table.

In order to optimize compression of the hidden columns, load the table in a single COPY
transaction where possible. If you load the table with multiple separate COPY commands, the
INSERT_XID column will not compress well. You must perform a vacuum operation if you use
multiple COPY commands, but it will not improve compression of INSERT_XID.

Loading default column values

You can optionally define a column list in your COPY command. If a column in the table is omitted
from the column list, COPY will load the column with either the value supplied by the DEFAULT
option that was specified in the CREATE TABLE command, or with NULL if the DEFAULT option was
not specified.

If COPY attempts to assign NULL to a column that is defined as NOT NULL, the COPY command
fails. For information about assigning the DEFAULT option, see CREATE TABLE.

When loading from data files on Amazon S3, the columns in the column list must be in the same
order as the fields in the data file. If a field in the data file does not have a corresponding column in
the column list, the COPY command fails.

When loading from Amazon DynamoDB table, order does not matter. Any fields in the Amazon
DynamoDB attributes that do not match a column in the Amazon Redshift table are discarded.

The following restrictions apply when using the COPY command to load DEFAULT values into a
table:

o If an IDENTITY column is included in the column list, the EXPLICIT_IDS option must also be
specified in the COPY command, or the COPY command will fail. Similarly, if an IDENTITY column
is omitted from the column list, and the EXPLICIT_IDS option is specified, the COPY operation
will fail.

Optimizing for narrow tables 143

Amazon Redshift Database Developer Guide

» Because the evaluated DEFAULT expression for a given column is the same for all loaded rows, a
DEFAULT expression that uses a RANDOM() function will assign to same value to all the rows.

o DEFAULT expressions that contain CURRENT_DATE or SYSDATE are set to the timestamp of the
current transaction.

For an example, see "Load data from a file with default values" in COPY examples.

Troubleshooting data loads

Topics

S3ServiceException errors

System tables for troubleshooting data loads

Multibyte character load errors

Load error reference

This section provides information about identifying and resolving data loading errors.
S3ServiceException errors

The most common s3ServiceException errors are caused by an improperly formatted or incorrect
credentials string, having your cluster and your bucket in different AWS Regions, and insufficient
Amazon S3 permissions.

The section provides troubleshooting information for each type of error.
Invalid credentials string

If your credentials string was improperly formatted, you will receive the following error message:

ERROR: Invalid credentials. Must be of the format: credentials
'aws_access_key_id=<access-key-id>;aws_secret_access_key=<secret-access-key>
[; token=<temporary-session-token>]"'

Verify that the credentials string does not contain any spaces or line breaks, and is enclosed in
single quotation marks.

Invalid access key ID

If your access key ID does not exist, you will receive the following error message:

Troubleshooting 144

Amazon Redshift Database Developer Guide

[Amazon](500310) Invalid operation: S3ServiceException:The AWS Access Key Id you
provided does not exist in our records.

This is often a copy and paste error. Verify that the access key ID was entered correctly. Also, if you
are using temporary session keys, check that the value for token is set.

Invalid secret access key

If your secret access key is incorrect, you will receive the following error message:

[Amazon](500310) Invalid operation: S3ServiceException:The request signature we
calculated does not match the signature you provided.
Check your key and signing method.,Status 403,Error SignatureDoesNotMatch

This is often a copy and paste error. Verify that the secret access key was entered correctly and that
it is the correct key for the access key ID.

Bucket is in a different Region

The Amazon S3 bucket specified in the COPY command must be in the same AWS Region as the
cluster. If your Amazon S3 bucket and your cluster are in different Regions, you will receive an error
similar to the following:

ERROR: S3ServiceException:The bucket you are attempting to access must be addressed
using the specified endpoint.

You can create an Amazon S3 bucket in a specific Region either by selecting the Region when you
create the bucket by using the Amazon S3 Management Console, or by specifying an endpoint
when you create the bucket using the Amazon S3 API or CLI. For more information, see Uploading
files to Amazon S3.

For more information about Amazon S3 regions, see Accessing a Bucket in the Amazon Simple
Storage Service User Guide.

Alternatively, you can specify the Region using the REGION option with the COPY command.
Access denied

If the user does not have sufficient permissions, you will receive the following error message:

Troubleshooting 145

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro

Amazon Redshift Database Developer Guide

ERROR: S3ServiceException:Access Denied,Status 403,Error AccessDenied

One possible cause is the user identified by the credentials does not have LIST and GET access to
the Amazon S3 bucket. For other causes, see Troubleshoot Access Denied (403 Forbidden) errors in
Amazon S3 in the Amazon Simple Storage Service User Guide.

For information about managing user access to buckets, see Identity and access management in

Amazon S3 in the Amazon Simple Storage Service User Guide.
System tables for troubleshooting data loads

The following Amazon Redshift system tables can be helpful in troubleshooting data load issues:

o Query STL_LOAD_ERRORS to discover the errors that occurred during specific loads.

» Query STL_FILE_SCAN to view load times for specific files or to see if a specific file was even

read.

e Query STL_S3CLIENT_ERROR to find details for errors encountered while transferring data from
Amazon S3.

To find and diagnose load errors

1. Create a view or define a query that returns details about load errors. The following example
joins the STL_LOAD_ERRORS table to the STV_TBL_PERM table to match table IDs with actual
table names.

create view loadview as

(select distinct tbl, trim(name) as table_name, query, starttime,
trim(filename) as input, line_number, colname, err_code,
trim(err_reason) as reason

from stl_load_errors sl, stv_tbl_perm sp

where sl.tbl = sp.id);

2. Set the MAXERRORS option in your COPY command to a large enough value to enable COPY
to return useful information about your data. If the COPY encounters errors, an error message
directs you to consult the STL_LOAD_ERRORS table for details.

3. Query the LOADVIEW view to see error details. For example:

select * from loadview where table_name='venue';

Troubleshooting 146

https://docs.aws.amazon.com/AmazonS3/latest/userguide/troubleshoot-403-errors.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/troubleshoot-403-errors.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html

Amazon Redshift Database Developer Guide

tbl | table_name | query | starttime
———————— R e e e
100551 | venue | 20974 | 2013-01-29 19:05:58.365391
| input | line_number | colname | err_code | reason
R R R L R
| venue_pipe.txt | 1] 0 | 1214 | Delimiter not found

4. Fix the problem in the input file or the load script, based on the information that the view
returns. Some typical load errors to watch for include:

« Mismatch between data types in table and values in input data fields.

Mismatch between number of columns in table and number of fields in input data.

« Mismatched quotation marks. Amazon Redshift supports both single and double quotation
marks; however, these quotation marks must be balanced appropriately.

« Incorrect format for date/time data in input files.
o Out-of-range values in input files (for numeric columns).

o Number of distinct values for a column exceeds the limitation for its compression encoding.

Multibyte character load errors

Columns with a CHAR data type only accept single-byte UTF-8 characters, up to byte value 127, or
7F hex, which is also the ASCII character set. VARCHAR columns accept multibyte UTF-8 characters,
to a maximum of four bytes. For more information, see Character types.

If a line in your load data contains a character that is not valid for the column data type, COPY
returns an error and logs a row in the STL_LOAD_ERRORS system log table with error number
1220. The ERR_REASON field includes the byte sequence, in hex, for the invalid character.

An alternative to fixing not valid characters in your load data is to replace the not valid characters
during the load process. To replace not valid UTF-8 characters, specify the ACCEPTINVCHARS
option with the COPY command. If the ACCEPTINVCHARS option is set, the character you specify
replaces the code point. If the ACCEPTINVCHARS option isn't set, Amazon Redshift accepts the
characters as valid UTF-8. For more information, see ACCEPTINVCHARS.

The following list of code points are valid UTF-8, COPY operations don't return an error if the
ACCEPTINVCHARS option is not set. However, these code points are not valid characters. You can

Troubleshooting 147

Amazon Redshift Database Developer Guide

use the ACCEPTINVCHARS option to replace a code point with a character that you specify. These
code points include the range of values from @xFDD® to @xFDEF and values up to @x10QFFFF,
ending with FFFE or FFFF:

« OXFFFE, 0x1FFFE, 0x2FFFE, ..., 0XFFFFE, 0x10FFFE
- OXFFFF, 0x1FFFF, 0x2FFFF, ..., 0OxFFFFF, Ox10FFFF

The following example shows the error reason when COPY attempts to load UTF-8 character e@
al c7a4 into a CHAR column.

Multibyte character not supported for CHAR
(Hint: Try using VARCHAR). Invalid char: e0@ al c7a4

If the error is related to a VARCHAR data type, the error reason includes an error code as well as the
not valid UTF-8 hex sequence. The following example shows the error reason when COPY attempts
to load UTF-8 a4 into a VARCHAR field.

String contains invalid or unsupported UTF-8 codepoints.
Bad UTF-8 hex sequence: a4 (error 3)

The following table lists the descriptions and suggested workarounds for VARCHAR load errors. If
one of these errors occurs, replace the character with a valid UTF-8 code sequence or remove the
character.

Error code Description

1 The UTF-8 byte sequence exceeds the four-byte maximum supported by
VARCHAR.
2 The UTF-8 byte sequence is incomplete. COPY did not find the expected number

of continuation bytes for a multibyte character before the end of the string.

3 The UTF-8 single-byte character is out of range. The starting byte must not be
254, 255 or any character between 128 and 191 (inclusive).

4 The value of the trailing byte in the byte sequence is out of range. The continuat
ion byte must be between 128 and 191 (inclusive).

Troubleshooting 148

Amazon Redshift

Database Developer Guide

Error code

Description

The UTF-8 character is reserved as a surrogate. Surrogate code points (U+D800
through U+DFFF) are not valid.

The byte sequence exceeds the maximum UTF-8 code point.

The UTF-8 byte sequence does not have a matching code point.

Load error reference

If any errors occur while loading data from a file, query the STL_LOAD_ERRORS table to identify
the error and determine the possible explanation. The following table lists all error codes that

might occur during data loads:

Load error codes

Error code

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

Description

Unknown parse error. Contact support.

Field delimiter was not found in the input file.

Input data had more columns than were defined in the DDL.
Input data had fewer columns than were defined in the DDL.
Input data exceeded the acceptable range for the data type.

Date format is not valid. See DATEFORMAT and TIMEFORMAT strings for valid
formats.

Timestamp format is not valid. See DATEFORMAT and TIMEFORMAT strings for
valid formats.

Data contained a value outside of the expected range of 0-9.
FLOAT data type format error.

DECIMAL data type format error.

Troubleshooting

149

Amazon Redshift

Database Developer Guide

Error code

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

8001

9005

Description

BOOLEAN data type format error.

Input line contained no data.

Load file was not found.

A field specified as NOT NULL contained no data.
Delimiter not found.

CHAR field error.

Input line is not valid.

Identity column value is not valid.

When using NULL AS '\0', a field containing a null terminator (NUL, or UTF-8
0000) contained more than one byte.

UTF-8 hexadecimal contains an invalid digit.

String contains invalid or unsupported UTF-8 code points.

Encoding of the file is not the same as that specified in the COPY command.
Integer value overflow error.

Data type not valid.

Input data not well formed JSON format or super data type.

COPY with MANIFEST parameter requires full path of an Amazon S3 object.

Invalid end key specified.

Troubleshooting

150

Amazon Redshift Database Developer Guide

Continuous file ingestion from Amazon S3 (preview)

This is prerelease documentation for autocopy (SQL COPY JOB), which is in preview release.
The documentation and the feature are both subject to change. We recommend that you use
this feature only in test environments, and not in production environments. Public preview
will end on June 30, 2024. Preview clusters will be removed automatically two weeks after the
end of the preview. For preview terms and conditions, see Betas and Previews in AWS Service
Terms.

(® Note

You can create an Amazon Redshift cluster in Preview to test new features of Amazon
Redshift. You can't use those features in production or move your Preview cluster to a
production cluster or a cluster on another track. For preview terms and conditions, see Beta
and Previews in AWS Service Terms.

To create a cluster in Preview

1. Signin to the AWS Management Console and open the Amazon Redshift console at
https://console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Provisioned clusters dashboard, and choose
Clusters. The clusters for your account in the current AWS Region are listed. A subset
of properties of each cluster is displayed in columns in the list.

3. A banner displays on the Clusters list page that introduces preview. Choose the button
Create preview cluster to open the create cluster page.

4. Enter properties for your cluster. Choose the Preview track that contains the features
you want to test. We recommend entering a name for the cluster that indicates that
it is on a preview track. Choose options for your cluster, including options labeled as
-preview, for the features you want to test. For general information about creating
clusters, see Creating a cluster in the Amazon Redshift Management Guide.

5. Choose Create cluster to create a cluster in preview.

6. When your preview cluster is available, use your SQL client to load and query data.

Continuous file ingestion (preview) 151

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster

Amazon Redshift Database Developer Guide

Your cluster must be created with the preview track named: preview_2023. Use a new
cluster for testing, restoring a cluster into this track is not supported. The autocopy feature
is not available with Amazon Redshift Serverless workgroup.

This preview is available in the following AWS Regions:

» US East (Ohio) Region (us-east-2)

« US East (N. Virginia) Region (us-east-1)

» US West (Oregon) Region (us-west-2)

« Asia Pacific (Tokyo) Region (ap-northeast-1)
» Europe (Stockholm) Region (eu-north-1)

o Europe (Ireland) Region (eu-west-1)

You can use a COPY JOB to load data into your Amazon Redshift tables from files that are stored
in Amazon S3. Amazon Redshift detects when new Amazon S3 files are added to the path specified
in your COPY command. A COPY command is then automatically run without you having to create
an external data ingestion pipeline. Amazon Redshift keeps track of which files have been loaded.
Amazon Redshift determines the number of files batched together per COPY command. You can
see the resulting COPY commands in system views.

You define a COPY JOB one time. The same parameters are used for future runs.

You manage the load operations using options to CREATE, LIST, SHOW, DROP, ALTER, and RUN
jobs. For more information, see COPY JOB (preview).

You can query system views to see the COPY JOB status and progress. Views are provided as
follows:

SYS_COPY_JOB (preview) — contains a row for each currently defined COPY JOB.
STL_LOAD_ERRORS - contains errors from COPY commands.

STL_LOAD_COMMITS - contains information used to troubleshoot a COPY command data load.
SYS_LOAD_HISTORY - contains details of COPY commands.

SYS_LOAD_ERROR_DETAIL - contains details of COPY command errors.

To get the list of files loaded by a COPY JOB, run the following example replacing <job_id>:

Continuous file ingestion (preview) 152

Amazon Redshift Database Developer Guide

SELECT job_id, job_name, data_source, copy_query,filename,status, curtime
FROM sys_copy_job copyjob

JOIN stl_load_commits loadcommit

ON copyjob.job_id = loadcommit.copy_job_id

WHERE job_id = <job_id>;

Updating tables with DML commands

Amazon Redshift supports standard data manipulation language (DML) commands (INSERT,
UPDATE, and DELETE) that you can use to modify rows in tables. You can also use the TRUNCATE
command to do fast bulk deletes.

(@ Note

We strongly encourage you to use the COPY command to load large amounts of data.
Using individual INSERT statements to populate a table might be prohibitively slow.
Alternatively, if your data already exists in other Amazon Redshift database tables,
use INSERT INTO ... SELECT FROM or CREATE TABLE AS to improve performance. For
information, see INSERT or CREATE TABLE AS.

If you insert, update, or delete a significant number of rows in a table, relative to the number

of rows before the changes, run the ANALYZE and VACUUM commands against the table when
you are done. If a number of small changes accumulate over time in your application, you might
want to schedule the ANALYZE and VACUUM commands to run at regular intervals. For more
information, see Analyzing tables and Vacuuming tables.

Updating and inserting new data

You can efficiently add new data to an existing table by using the MERGE command. Perform a
merge operation by creating a staging table and then using one of the methods described in this
section to update the target table from the staging table. For more information on the MERGE
command, see MERGE.

Topics

» Merge method 1: Replacing existing rows

» Merge method 2: Specifying a column list without using MERGE

Updating with DML 153

Amazon Redshift Database Developer Guide

» Creating a temporary staging table

» Performing a merge operation by replacing existing rows

» Performing a merge operation by specifying a column list without using the MERGE command

« Merge examples

The Merge examples use a sample dataset for Amazon Redshift, called the TICKIT data set. As a
prerequisite, you can set up the TICKIT tables and data by following the instructions available in
Getting started with common database tasks. More detailed information about the sample data set

is found at Sample database.

Merge method 1: Replacing existing rows

If you are overwriting all of the columns in the target table, the fastest method to perform a merge
is to replace the existing rows. This scans the target table only once, by using an inner join to delete
rows that will be updated. After the rows are deleted, they are replaced with new rows by a single
insert operation from the staging table.

Use this method if all of the following are true:

» Your target table and your staging table contain the same columns.
» You intend to replace all of the data in the target table columns with all of the staging table

columns.

» You will use all of the rows in the staging table in the merge.

If any of these criteria do not apply, use Merge method 2: Specifying a column list without using
MERGE, described in the following section.

If you will not use all of the rows in the staging table, filter the DELETE and INSERT statements
by using a WHERE clause to leave out rows that are not changing. However, if most of the rows in
the staging table will not participate in the merge, we recommend performing an UPDATE and an
INSERT in separate steps, as described later in this section.

Merge method 2: Specifying a column list without using MERGE

Use this method to update specific columns in the target table instead of overwriting entire rows.
This method takes longer than the previous method because it requires an extra update step and
doesn't use the MERGE command. Use this method if any of the following are true:

Merge method 1: Replacing existing rows 154

https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html
https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

Amazon Redshift Database Developer Guide

» Not all of the columns in the target table are to be updated.

» Most rows in the staging table will not be used in the updates.

Creating a temporary staging table

The staging table is a temporary table that holds all of the data that will be used to make changes
to the target table, including both updates and inserts.

A merge operation requires a join between the staging table and the target table. To collocate
the joining rows, set the staging table's distribution key to the same column as the target table's
distribution key. For example, if the target table uses a foreign key column as its distribution key,
use the same column for the staging table's distribution key. If you create the staging table by
using a CREATE TABLE LIKE statement, the staging table will inherit the distribution key from
the parent table. If you use a CREATE TABLE AS statement, the new table does not inherit the
distribution key. For more information, see Working with data distribution styles

If the distribution key is not the same as the primary key and the distribution key is not updated
as part of the merge operation, add a redundant join predicate on the distribution key columns to
enable a collocated join. For example:

where target.primarykey = stage.primarykey
and target.distkey = stage.distkey

To verify that the query will use a collocated join, run the query with EXPLAIN and check for
DS_DIST_NONE on all of the joins. For more information, see Evaluating the query plan

Performing a merge operation by replacing existing rows

When you run the merge operation detailed in the procedure, put all of the steps except for
creating and dropping the temporary staging table in a single transaction. The transaction rolls
back if any step fails. Using a single transaction also reduces the number of commits, which saves
time and resources.

To perform a merge operation by replacing existing rows

1. Create a staging table, and then populate it with data to be merged, as shown in the following
pseudocode.

create temp table stage (like target);

Creating a temporary staging table 155

Amazon Redshift Database Developer Guide

insert into stage
select * from source
where source.filter = 'filter_expression';

2. Use MERGE to perform an inner join with the staging table to update the rows from the target
table that match the staging table, then insert all the remaining rows into the target table that
don't match the staging table.

We recommend you run the update and insert operations in a single MERGE command.

MERGE INTO target

USING stage [optional alias] on (target.primary_key = stage.primary_key)

WHEN MATCHED THEN

UPDATE SET col_namel = stage.col_namel , col_name2= stage.col_name2, col_name3 =

{expr}

WHEN NOT MATCHED THEN

INSERT (col_namel , col_name2, col_name3) VALUES (stage.col_namel, stage.col_name2,
{expr});

3. Drop the staging table.

drop table stage;

Performing a merge operation by specifying a column list without
using the MERGE command

When you run the merge operation detailed in the procedure, put all of the steps in a single
transaction. The transaction rolls back if any step fails. Using a single transaction also reduces the
number of commits, which saves time and resources.

To perform a merge operation by specifying a column list

1. Put the entire operation in a single transaction block.

begin transaction;

end transaction;

Performing a merge operation by specifying a column list without using the MERGE command 156

Amazon Redshift Database Developer Guide

2. Create a staging table, and then populate it with data to be merged, as shown in the following
pseudocode.

create temp table stage (like target);
insert into stage

select * from source

where source.filter = 'filter_expression';

3. Update the target table by using an inner join with the staging table.

 In the UPDATE clause, explicitly list the columns to be updated.
« Perform an inner join with the staging table.

« If the distribution key is different from the primary key and the distribution key is not being
updated, add a redundant join on the distribution key. To verify that the query will use a
collocated join, run the query with EXPLAIN and check for DS_DIST_NONE on all of the joins.
For more information, see Evaluating the query plan

« If your target table is sorted by timestamp, add a predicate to take advantage of range-
restricted scans on the target table. For more information, see Amazon Redshift best

practices for designing queries.

« If you will not use all of the rows in the merge, add a clause to filter the rows that you want
to change. For example, add an inequality filter on one or more columns to exclude rows
that have not changed.

« Put the update, delete, and insert operations in a single transaction block so that if there is a
problem, everything will be rolled back.

For example:

begin transaction;

update target

set coll = stage.coll,

col2 = stage.col2,

col3 = 'expression'

from stage

where target.primarykey = stage.primarykey
and target.distkey = stage.distkey

and target.col3 > 'last_update_time'

and (target.coll != stage.coll

Performing a merge operation by specifying a column list without using the MERGE command 157

Amazon Redshift Database Developer Guide

or target.col2 != stage.col2
or target.col3 = 'filter_expression');

4. Delete unneeded rows from the staging table by using an inner join with the target table.

Some rows in the target table already match the corresponding rows in the staging table, and

others were updated in the previous step. In either case, they are not needed for the insert.

delete from stage
using target
where stage.primarykey = target.primarykey;

5. Insert the remaining rows from the staging table. Use the same column list in the VALUES
clause that you used in the UPDATE statement in step two.

insert into target
(select coll, col2, 'expression'
from stage);

end transaction;

6. Drop the staging table.

drop table stage;

Merge examples

The following examples perform a merge to update the SALES table. The first example uses the
simpler method of deleting from the target table and then inserting all of the rows from the
staging table. The second example requires updating on select columns in the target table, so it
includes an extra update step.

The Merge examples use a sample dataset for Amazon Redshift, called the TICKIT data set. As

a prerequisite, you can set up the TICKIT tables and data by following the instructions available
in the guide Getting started with common database tasks. More detailed information about the
sample data set is found at Sample database.

Sample merge data source

The examples in this section need a sample data source that includes both updates and inserts.
For the examples, we will create a sample table named SALES_UPDATE that uses data from the

Merge examples

158

https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html
https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

Amazon Redshift Database Developer Guide

SALES table. We'll populate the new table with random data that represents new sales activity for
December. We will use the SALES_UPDATE sample table to create the staging table in the examples
that follow.

-- Create a sample table as a copy of the SALES table.

create table tickit.sales_update as
select * from tickit.sales;

-- Change every fifth row to have updates.

update tickit.sales_update
set qtysold = qtysold*2,
pricepaid = pricepaid*0.8,
commission = commission*1.1
where saletime > '2008-11-30'
and mod(sellerid, 5) = 0;

-- Add some new rows to have inserts.
-- This example creates a duplicate of every fourth row.

insert into tickit.sales_update

select (salesid + 172456) as salesid, listid, sellerid, buyerid, eventid, dateid,
qtysold, pricepaid, commission, getdate() as saletime

from tickit.sales_update

where saletime > '2008-11-30'

and mod(sellerid, 4) = 0;

Example of a merge that replaces existing rows based on matching keys

The following script uses the SALES_UPDATE table to perform a merge operation on the SALES
table with new data for December sales activity. This example replaces rows in the SALES table
that have updates. For this example, we will update the qtysold and pricepaid columns, but leave
commission and saletime unchanged.

MERGE into tickit.sales

USING tickit.sales_update sales_update

on (sales.salesid = sales_update.salesid

and sales.listid = sales_update.listid

and sales_update.saletime > '2008-11-30'

and (sales.qtysold != sales_update.qtysold

or sales.pricepaid != sales_update.pricepaid))

Merge examples 159

Amazon Redshift Database Developer Guide

WHEN MATCHED THEN

update SET qtysold = sales_update.qtysold,

pricepaid = sales_update.pricepaid

WHEN NOT MATCHED THEN

INSERT (salesid, listid, sellerid, buyerid, eventid, dateid, qtysold , pricepaid,
commission, saletime)

values (sales_update.salesid, sales_update.listid, sales_update.sellerid,
sales_update.buyerid, sales_update.eventid,

sales_update.dateid, sales_update.qtysold , sales_update.pricepaid,
sales_update.commission, sales_update.saletime);

-- Drop the staging table.
drop table tickit.sales_update;

-- Test to see that commission and salestime were not impacted.

SELECT sales.salesid, sales.commission, sales.salestime, sales_update.commission,
sales_update.salestime

FROM tickit.sales

INNER JOIN tickit.sales_update sales_update

ON

sales.salesid = sales_update.salesid

AND sales.listid = sales_update.listid

AND sales_update.saletime > '2008-11-30'

AND (sales.commission != sales_update.commission

OR sales.salestime != sales_update.salestime);

Example of a merge that specifies a column list without using MERGE

The following example performs a merge operation to update SALES with new data for December
sales activity. We need sample data that includes both updates and inserts, along with rows that
have not changed. For this example, we want to update the QTYSOLD and PRICEPAID columns but
leave COMMISSION and SALETIME unchanged. The following script uses the SALES_UPDATE table
to perform a merge operation on the SALES table.

-- Create a staging table and populate it with rows from SALES_UPDATE for Dec
create temp table stagesales as select * from sales_update
where saletime > '2008-11-30';

-- Start a new transaction
begin transaction;

-- Update the target table using an inner join with the staging table

Merge examples 160

Amazon Redshift Database Developer Guide

-- The join includes a redundant predicate to collocate on the distribution key -- A
filter on saletime enables a range-restricted scan on SALES

update sales

set qtysold = stagesales.qtysold,

pricepaid = stagesales.pricepaid

from stagesales

where sales.salesid = stagesales.salesid

and sales.listid = stagesales.listid

and stagesales.saletime > '2008-11-30'

and (sales.qtysold != stagesales.qtysold

or sales.pricepaid != stagesales.pricepaid);

-- Delete matching rows from the staging table
-- using an inner join with the target table

delete from stagesales

using sales

where sales.salesid = stagesales.salesid
and sales.listid = stagesales.listid;

-- Insert the remaining rows from the staging table into the target table
insert into sales
select * from stagesales;

-- End transaction and commit
end transaction;

-- Drop the staging table
drop table stagesales;

Performing a deep copy

A deep copy recreates and repopulates a table by using a bulk insert, which automatically sorts
the table. If a table has a large unsorted Region, a deep copy is much faster than a vacuum. We
recommend that you only make concurrent updates during a deep copy operation if you can track
them. After the process has completed, move the delta updates into the new table. A VACUUM
operation supports concurrent updates automatically.

You can choose one of the following methods to create a copy of the original table:

» Use the original table DDL.

Performing a deep copy 161

Amazon Redshift Database Developer Guide

If the CREATE TABLE DDL is available, this is the fastest and preferred method. If you create a
new table, you can specify all table and column attributes, including primary key and foreign
keys. You can find the original DDL by using the SHOW TABLE function.

» Use CREATE TABLE LIKE.

If the original DDL is not available, you can use CREATE TABLE LIKE to recreate the original table.
The new table inherits the encoding, distribution key, sort key, and not-null attributes of the
parent table. The new table doesn't inherit the primary key and foreign key attributes of the
parent table, but you can add them using ALTER TABLE.

« Create a temporary table and truncate the original table.

If you must retain the primary key and foreign key attributes of the parent table. If the parent
table has dependencies, you can use CREATE TABLE ... AS (CTAS) to create a temporary table.
Then truncate the original table and populate it from the temporary table.

Using a temporary table improves performance significantly compared to using a permanent
table, but there is a risk of losing data. A temporary table is automatically dropped at the
end of the session in which it is created. TRUNCATE commits immediately, even if it is inside a
transaction block. If the TRUNCATE succeeds but the session shuts down before the following
INSERT completes, the data is lost. If data loss is unacceptable, use a permanent table.

After you create a copy of a table, you might have to grant access to the new table. You can use
GRANT to define access privileges. To view and grant all of a table's access privileges, you must be
one of the following:

» A superuser.

» The owner of the table you want to copy.

« A user with the ACCESS SYSTEM TABLE privilege to see the table's privileges, and with the grant
privilege for all relevant permissions.

Additionally, you might have to grant usage permission for the schema your deep copy is in.
Granting usage permission is necessary if your deep copy's schema is different from the original
table's schema, and also isn't the public schema. To view and grant usage privileges you must be
one of the following:

« A superuser.

Performing a deep copy 162

Amazon Redshift Database Developer Guide

» A user who can grant the USAGE permission for the deep copy's schema.

To perform a deep copy using the original table DDL

1. (Optional) Recreate the table DDL by running a script called v_generate_tbl_ddl.
2. Create a copy of the table using the original CREATE TABLE DDL.

3. Use an INSERT INTO ... SELECT statement to populate the copy with data from the original
table.

4. Check for permissions granted on the old table. You can see these permissions in the
SVV_RELATION_PRIVILEGES system view.

5. If necessary, grant the permissions of the old table to the new table.

6. Grant usage permission to every group and user that has privileges in the original table. This
step isn't necessary if your deep copy table is in the public schema, or is in the same schema
as the original table.

7. Drop the original table.

8. Use an ALTER TABLE statement to rename the copy to the original table name.

The following example performs a deep copy on the SAMPLE table using a duplicate of SAMPLE
named sample_copy.

--Create a copy of the original table in the sample_namespace namespace using the
original CREATE TABLE DDL.
create table sample_namespace.sample_copy (..);

--Populate the copy with data from the original table in the public namespace.
insert into sample_namespace.sample_copy (select * from public.sample);

--Check SVV_RELATION_PRIVILEGES for the original table's privileges.
select * from svv_relation_privileges where namespace_name = 'public' and relation_name
= 'sample' order by identity_type, identity_id, privilege_type;

--Grant the original table's privileges to the copy table.

grant DELETE on table sample_namespace.sample_copy to group groupl;

grant INSERT, UPDATE on table sample_namespace.sample_copy to group group2;
grant SELECT on table sample_namespace.sample_copy to userl;

grant INSERT, SELECT, UPDATE on table sample_namespace.sample_copy to user2;

Performing a deep copy 163

Amazon Redshift Database Developer Guide

--Grant usage permission to every group and user that has privileges in the original
table.
grant USAGE on schema sample_namespace to group groupl, group group2, userl, user2;

--Drop the original table.
drop table public.sample;

--Rename the copy table to match the original table's name.
alter table sample_namespace.sample_copy rename to sample;

To perform a deep copy using CREATE TABLE LIKE

1. Create a new table using CREATE TABLE LIKE.

2. Use an INSERT INTO ... SELECT statement to copy the rows from the current table to the new
table.

3. Check for permissions granted on the old table. You can see these permissions in the
SVV_RELATION_PRIVILEGES system view.

4. If necessary, grant the permissions of the old table to the new table.

5. Grant usage permission to every group and user that has privileges in the original table. This
step isn't necessary if your deep copy table is in the public schema, or is in the same schema
as the original table.

6. Drop the current table.

7. Use an ALTER TABLE statement to rename the new table to the original table name.

The following example performs a deep copy on the SAMPLE table using CREATE TABLE LIKE.

--Create a copy of the original table in the sample_namespace namespace using CREATE
TABLE LIKE.
create table sameple_namespace.sample_copy (like public.sample);

--Populate the copy with data from the original table.
insert into sample_namespace.sample_copy (select * from public.sample);

--Check SVV_RELATION_PRIVILEGES for the original table's privileges.
select * from svv_relation_privileges where namespace_name = 'public' and relation_name
= 'sample' order by identity_type, identity_id, privilege_type;

--Grant the original table's privileges to the copy table.
grant DELETE on table sample_namespace.sample_copy to group groupl;

Performing a deep copy 164

Amazon Redshift Database Developer Guide

grant INSERT, UPDATE on table sample_namespace.sample_copy to group group2;
grant SELECT on table sample_namespace.sample_copy to userl;
grant INSERT, SELECT, UPDATE on table sample_namespace.sample_copy to user2;

--Grant usage permission to every group and user that has privileges in the original
table.
grant USAGE on schema sample_namespace to group groupl, group group2, userl, user2;

--Drop the original table.
drop table public.sample;

--Rename the copy table to match the original table's name.
alter table sample_namespace.sample_copy rename to sample;

To perform a deep copy by creating a temporary table and truncating the original table

1. Use CREATE TABLE AS to create a temporary table with the rows from the original table.
2. Truncate the current table.

3. Use an INSERT INTO ... SELECT statement to copy the rows from the temporary table to the
original table.

4. Drop the temporary table.

The following example performs a deep copy on the SALES table by creating a temporary table
and truncating the original table. Since the original table remains, you don't need to grant
permissions to the copy table.

--Create a temp table copy using CREATE TABLE AS.
create temp table salestemp as select * from sales;

--Truncate the original table.
truncate sales;

--Copy the rows from the temporary table to the original table.
insert into sales (select * from salestemp);

--Drop the temporary table.
drop table salestemp;

Performing a deep copy 165

Amazon Redshift Database Developer Guide

Analyzing tables

The ANALYZE operation updates the statistical metadata that the query planner uses to choose
optimal plans.

In most cases, you don't need to explicitly run the ANALYZE command. Amazon Redshift monitors
changes to your workload and automatically updates statistics in the background. In addition, the
COPY command performs an analysis automatically when it loads data into an empty table.

To explicitly analyze a table or the entire database, run the ANALYZE command.

Topics

« Automatic analyze

« Analysis of new table data

o ANALYZE command history

Automatic analyze

Amazon Redshift continuously monitors your database and automatically performs analyze
operations in the background. To minimize impact to your system performance, automatic analyze
runs during periods when workloads are light.

Automatic analyze is enabled by default. To turn off automatic analyze, set the auto_analyze
parameter to false by modifying your cluster's parameter group.

To reduce processing time and improve overall system performance, Amazon Redshift skips
automatic analyze for any table where the extent of modifications is small.

An analyze operation skips tables that have up-to-date statistics. If you run ANALYZE as part of
your extract, transform, and load (ETL) workflow, automatic analyze skips tables that have current
statistics. Similarly, an explicit ANALYZE skips tables when automatic analyze has updated the
table's statistics.

Analysis of new table data

By default, the COPY command performs an ANALYZE after it loads data into an empty table. You
can force an ANALYZE regardless of whether a table is empty by setting STATUPDATE ON. If you

Analyzing tables 166

Amazon Redshift Database Developer Guide

specify STATUPDATE OFF, an ANALYZE is not performed. Only the table owner or a superuser can
run the ANALYZE command or run the COPY command with STATUPDATE set to ON.

Amazon Redshift also analyzes new tables that you create with the following commands:

« CREATE TABLE AS (CTAS)
« CREATE TEMP TABLE AS
o SELECT INTO

Amazon Redshift returns a warning message when you run a query against a new table that was
not analyzed after its data was initially loaded. No warning occurs when you query a table after
a subsequent update or load. The same warning message is returned when you run the EXPLAIN
command on a query that references tables that have not been analyzed.

Whenever adding data to a nonempty table significantly changes the size of the table, you can
explicitly update statistics. You do so either by running an ANALYZE command or by using the
STATUPDATE ON option with the COPY command. To view details about the number of rows that
have been inserted or deleted since the last ANALYZE, query the PG_STATISTIC_INDICATOR system
catalog table.

You can specify the scope of the ANALYZE command to one of the following:

The entire current database

A single table

One or more specific columns in a single table

Columns that are likely to be used as predicates in queries

The ANALYZE command gets a sample of rows from the table, does some calculations, and saves
resulting column statistics. By default, Amazon Redshift runs a sample pass for the DISTKEY
column and another sample pass for all of the other columns in the table. If you want to generate
statistics for a subset of columns, you can specify a comma-separated column list. You can run
ANALYZE with the PREDICATE COLUMNS clause to skip columns that aren’t used as predicates.

ANALYZE operations are resource intensive, so run them only on tables and columns that actually
require statistics updates. You don't need to analyze all columns in all tables regularly or on the
same schedule. If the data changes substantially, analyze the columns that are frequently used in
the following:

Analysis of new table data 167

Amazon Redshift Database Developer Guide

« Sorting and grouping operations
« Joins

e Query predicates

To reduce processing time and improve overall system performance, Amazon Redshift skips
ANALYZE for any table that has a low percentage of changed rows, as determined by the
analyze_threshold_percent parameter. By default, the analyze threshold is set to 10 percent. You
can change the analyze threshold for the current session by running a SET command.

Columns that are less likely to require frequent analysis are those that represent facts and
measures and any related attributes that are never actually queried, such as large VARCHAR
columns. For example, consider the LISTING table in the TICKIT database.

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'listing';

column | type | encoding | distkey | sortkey
——————————————— it it i ettt
listid | integer | none | t | 1
sellerid | integer | none | f | 0
eventid | integer | mostlyle | f | @
dateid | smallint | none | f | 0
numtickets | smallint | mostly8 | f | ©
priceperticket | numeric(8,2) | bytedict | f | 0
totalprice | numeric(8,2) | mostly32 | f | @
listtime | timestamp with... | none | f | 0

If this table is loaded every day with a large number of new records, the LISTID column, which is
frequently used in queries as a join key, must be analyzed regularly. If TOTALPRICE and LISTTIME
are the frequently used constraints in queries, you can analyze those columns and the distribution
key on every weekday.

analyze listing(listid, totalprice, listtime);

Suppose that the sellers and events in the application are much more static, and the date IDs refer
to a fixed set of days covering only two or three years. In this case,the unique values for these
columns don't change significantly. However, the number of instances of each unique value will
increase steadily.

Analysis of new table data 168

Amazon Redshift Database Developer Guide

In addition, consider the case where the NUMTICKETS and PRICEPERTICKET measures are queried
infrequently compared to the TOTALPRICE column. In this case, you can run the ANALYZE
command on the whole table once every weekend to update statistics for the five columns that are
not analyzed daily:

Predicate columns

As a convenient alternative to specifying a column list, you can choose to analyze only the columns
that are likely to be used as predicates. When you run a query, any columns that are used in a

join, filter condition, or group by clause are marked as predicate columns in the system catalog.
When you run ANALYZE with the PREDICATE COLUMNS clause, the analyze operation includes only
columns that meet the following criteria:

o The column is marked as a predicate column.
o The column is a distribution key.

o The column is part of a sort key.

If none of a table's columns are marked as predicates, ANALYZE includes all of the columns, even
when PREDICATE COLUMNS is specified. If no columns are marked as predicate columns, it might
be because the table has not yet been queried.

You might choose to use PREDICATE COLUMNS when your workload's query pattern is relatively
stable. When the query pattern is variable, with different columns frequently being used as
predicates, using PREDICATE COLUMNS might temporarily result in stale statistics. Stale statistics
can lead to suboptimal query runtime plans and long runtimes. However, the next time you run
ANALYZE using PREDICATE COLUMNS, the new predicate columns are included.

To view details for predicate columns, use the following SQL to create a view named
PREDICATE_COLUMNS.

CREATE VIEW predicate_columns AS

WITH predicate_column_info as (

SELECT ns.nspname AS schema_name, c.relname AS table_name, a.attnum as col_num,
a.attname as col_name,

CASE
WHEN 10002 = s.stakindl THEN array_to_string(stavaluesl, '|]')
WHEN 10002 = s.stakind2 THEN array_to_string(stavalues2, '||')
WHEN 10002 = s.stakind3 THEN array_to_string(stavalues3, '|]|')
WHEN 10002 = s.stakind4 THEN array_to_string(stavalues4, '||')

Analysis of new table data 169

Amazon Redshift Database Developer Guide

ELSE NULL::varchar
END AS pred_ts
FROM pg_statistic s
JOIN pg_class c ON c.oid = s.starelid
JOIN pg_namespace ns ON c.relnamespace = ns.oid
JOIN pg_attribute a ON c.oid = a.attrelid AND a.attnum = s.staattnum)
SELECT schema_name, table_name, col_num, col_name,
pred_ts NOT LIKE '2000-01-01%' AS is_predicate,
CASE WHEN pred_ts NOT LIKE '2000-01-01%' THEN (split_part(pred_ts,
"|]',1))::timestamp ELSE NULL::timestamp END as first_predicate_use,
CASE WHEN pred_ts NOT LIKE '%]||2000-01-01%' THEN (split_part(pred_ts,
"I1',2))::timestamp ELSE NULL::timestamp END as last_analyze
FROM predicate_column_info;

Suppose that you run the following query against the LISTING table. Note that LISTID, LISTTIME,
and EVENTID are used in the join, filter, and group by clauses.

select s.buyerid,l.eventid, sum(l.totalprice)
from listing 1

join sales s on 1l.listid = s.listid

where 1.listtime > '2008-12-01'

group by 1l.eventid, s.buyerid;

When you query the PREDICATE_COLUMNS view, as shown in the following example, you see that
LISTID, EVENTID, and LISTTIME are marked as predicate columns.

select * from predicate_columns
where table_name = 'listing';

schema_name | table_name | col_num | col_name | is_predicate |
first_predicate_use | last_analyze

———————————— R e i, R e e e e

Fer e - - Fer - - -

public | listing | 1 | listid | true | 2017-05-05
19:27:59 | 2017-05-03 18:27:41

public | listing | 2 | sellerid | false |

| 2017-05-03 18:27:41

public | listing | 3 | eventid | true | 2017-05-16
20:54:32 | 2017-05-03 18:27:41

public | listing | 4 | dateid | false |

| 2017-05-03 18:27:41

Analysis of new table data 170

Amazon Redshift Database Developer Guide

public | listing | 5 | numtickets | false |
| 2017-05-03 18:27:41
public | listing | 6 | priceperticket | false |
| 2017-05-03 18:27:41
public | listing | 7 | totalprice | false |
| 2017-05-03 18:27:41
public | listing | 8 | listtime | true | 2017-05-16

20:54:32 | 2017-05-03 18:27:41

Keeping statistics current improves query performance by enabling the query planner to choose
optimal plans. Amazon Redshift refreshes statistics automatically in the background, and you
can also explicitly run the ANALYZE command. If you choose to explicitly run ANALYZE, do the
following:

« Run the ANALYZE command before running queries.

e Run the ANALYZE command on the database routinely at the end of every regular load or update
cycle.

« Run the ANALYZE command on any new tables that you create and any existing tables or
columns that undergo significant change.

» Consider running ANALYZE operations on different schedules for different types of tables and
columns, depending on their use in queries and their propensity to change.

« To save time and cluster resources, use the PREDICATE COLUMNS clause when you run ANALYZE.

You don't have to explicitly run the ANALYZE command after restoring a snapshot to a provisioned
cluster or serverless namespace, nor after resuming a paused provisioned cluster. Amazon
Redshift preserves system table information in these cases, making manual ANALYZE commands
unnecessary. Amazon Redshift will continue to run automatic analyze operations as needed.

An analyze operation skips tables that have up-to-date statistics. If you run ANALYZE as part of
your extract, transform, and load (ETL) workflow, automatic analyze skips tables that have current
statistics. Similarly, an explicit ANALYZE skips tables when automatic analyze has updated the
table's statistics.

ANALYZE command history

It's useful to know when the last ANALYZE command was run on a table or database. When an
ANALYZE command is run, Amazon Redshift runs multiple queries that look like this:

ANALYZE command history 171

Amazon Redshift Database Developer Guide

padb_fetch_sample: select * from table_name

Query STL_ANALYZE to view the history of analyze operations. If Amazon Redshift analyzes a table
using automatic analyze, the is_background column is set to t (true). Otherwise, it is set to
(false). The following example joins STV_TBL_PERM to show the table name and runtime details.

select distinct a.xid, trim(t.name) as name, a.status, a.rows, a.modified_rows,
a.starttime, a.endtime

from stl_analyze a

join stv_tbl_perm t on t.id=a.table_id

where name = 'users'

order by starttime;

xid | name | status rows | modified_rows | starttime
endtime
——————— B e e e el
U P

1582 | users | Full | 49990 | 49990 | 2016-09-22 22:02:23 |
2016-09-22 22:02:28
244287 | users | Full | 24992 | 74988 | 2016-10-04 22:50:58 |
2016-10-04 22:51:01
244712 | users | Full | 49984 | 24992 | 2016-10-04 22:56:07 |
2016-10-04 22:56:07
245071 | users | Skipped | 49984 | 0 | 2016-10-04 22:58:17 |
2016-10-04 22:58:17
245439 | users | Skipped | 49984 | 1982 | 2016-10-04 23:00:13 |
2016-10-04 23:00:13
(5 rows)

Alternatively, you can run a more complex query that returns all the statements that ran in every
completed transaction that included an ANALYZE command:

select xid, to_char(starttime, 'HH24:MM:SS.MS') as starttime,
datediff(sec,starttime,endtime) as secs, substring(text, 1, 40)

from svl_statementtext

where sequence = 0

and xid in (select xid from svl_statementtext s where s.text like 'padb_fetch_sample
%')

order by xid desc, starttime;

xid | starttime | secs | substring

ANALYZE command history 172

Amazon Redshift Database Developer Guide

————— R it it ittt ettt
1338 | 12:04:28.511 | 4 | Analyze date

1338 | 12:04:28.511 | 1 | padb_fetch_sample: select count(*) from
1338 | 12:04:29.443 | 2 | padb_fetch_sample: select * from date
1338 | 12:04:31.456 | 1 | padb_fetch_sample: select * from date
1337 | 12:04:24.388 | 1 | padb_fetch_sample: select count(*) from
1337 | 12:04:24.388 | 4 | Analyze sales

1337 | 12:04:25.322 | 2 | padb_fetch_sample: select * from sales
1337 | 12:04:27.363 | 1 | padb_fetch_sample: select * from sales

Vacuuming tables

Amazon Redshift can automatically sort and perform a VACUUM DELETE operation on tables in the
background. To clean up tables after a load or a series of incremental updates, you can also run the
VACUUM command, either against the entire database or against individual tables.

(® Note

Only users with the necessary table permissions can effectively vacuum a table. If VACUUM
is run without the necessary table permissions, the operation completes successfully but
has no effect. For a list of valid table permissions to effectively run VACUUM, see VACUUM.
For this reason, we recommend vacuuming individual tables as needed. We also
recommend this approach because vacuuming the entire database is potentially an
expensive operation.

Automatic table sort

Amazon Redshift automatically sorts data in the background to maintain table data in the order of
its sort key. Amazon Redshift keeps track of your scan queries to determine which sections of the
table will benefit from sorting.

Depending on the load on the system, Amazon Redshift automatically initiates the sort. This
automatic sort lessens the need to run the VACUUM command to keep data in sort key order. If
you need data fully sorted in sort key order, for example after a large data load, then you can still
manually run the VACUUM command. To determine whether your table will benefit by running
VACUUM SORT, monitor the vacuum_sort_benefit columnin SVV_TABLE_INFO.

Vacuuming tables 173

Amazon Redshift Database Developer Guide

Amazon Redshift tracks scan queries that use the sort key on each table. Amazon Redshift
estimates the maximum percentage of improvement in scanning and filtering of data for each
table (if the table was fully sorted). This estimate is visible in the vacuum_sort_benefit column
in SVV_TABLE_INFO. You can use this column, along with the unsorted column, to determine

when queries can benefit from manually running VACUUM SORT on a table. The unsorted column
reflects the physical sort order of a table. The vacuum_sort_benefit column specifies the
impact of sorting a table by manually running VACUUM SORT.

For example, consider the following query:

select "table", unsorted,vacuum_sort_benefit from svv_table_info order by 1;

table | unsorted | vacuum_sort_benefit

sales | 85.71 | 5.00
event | 45.24 | 67.00

For the table “sales”, even though the table is ~86% physically unsorted, the query performance
impact from the table being 86% unsorted is only 5%. This might be either because only a

small portion of the table is accessed by queries, or very few queries accessed the table. For the
table “event”, the table is ~45% physically unsorted. But the query performance impact of 67%
indicates that either a larger portion of the table was accessed by queries, or the number of queries
accessing the table was large. The table "event" can potentially benefit from running VACUUM
SORT.

Automatic vacuum delete

When you perform a delete, the rows are marked for deletion, but not removed. Amazon Redshift
automatically runs a VACUUM DELETE operation in the background based on the number of
deleted rows in database tables. Amazon Redshift schedules the VACUUM DELETE to run during
periods of reduced load and pauses the operation during periods of high load.

Topics
VACUUM frequency

Sort stage and merge stage

Vacuum threshold

Vacuum types

Automatic vacuum delete 174

Amazon Redshift Database Developer Guide

« Managing vacuum times

VACUUM frequency

You should vacuum as often as necessary to maintain consistent query performance. Consider
these factors when determining how often to run your VACUUM command:

e Run VACUUM during time periods when you expect minimal activity on the cluster, such as
evenings or during designated database administration windows.

e Run VACUUM commands outside of maintenance windows. For more information, see Schedule
around maintenance windows.

« A large unsorted region results in longer vacuum times. If you delay vacuuming, the vacuum will
take longer because more data has to be reorganized.

« VACUUM is an I/0 intensive operation, so the longer it takes for your vacuum to complete, the
more impact it will have on concurrent queries and other database operations running on your
cluster.

« VACUUM takes longer for tables that use interleaved sorting. To evaluate whether interleaved
tables must be re-sorted, query the SVV_INTERLEAVED_COLUMNS view.

Sort stage and merge stage

Amazon Redshift performs a vacuum operation in two stages: first, it sorts the rows in the unsorted
region, then, if necessary, it merges the newly sorted rows at the end of the table with the existing
rows. When vacuuming a large table, the vacuum operation proceeds in a series of steps consisting
of incremental sorts followed by merges. If the operation fails or if Amazon Redshift goes offline
during the vacuum, the partially vacuumed table or database will be in a consistent state, but you
must manually restart the vacuum operation. Incremental sorts are lost, but merged rows that
were committed before the failure do not need to be vacuumed again. If the unsorted region is
large, the lost time might be significant. For more information about the sort and merge stages,
see Managing the volume of merged rows.

Users can access tables while they are being vacuumed. You can perform queries and write
operations while a table is being vacuumed, but when DML and a vacuum run concurrently,
both might take longer. If you run UPDATE and DELETE statements during a vacuum, system
performance might be reduced. Incremental merges temporarily block concurrent UPDATE and
DELETE operations, and UPDATE and DELETE operations in turn temporarily block incremental

VACUUM frequency 175

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-avoid-maintenance.html
https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-avoid-maintenance.html

Amazon Redshift Database Developer Guide

merge steps on the affected tables. DDL operations, such as ALTER TABLE, are blocked until the
vacuum operation finishes with the table.

(@ Note

Various modifiers to VACUUM control the way that it works. You can use them to tailor the
vacuum operation for the current need. For example, using VACUUM RECLUSTER shortens
the vacuum operation by not performing a full merge operation. For more information, see
VACUUM.

Vacuum threshold

By default, VACUUM skips the sort phase for any table where more than 95 percent of the table's
rows are already sorted. Skipping the sort phase can significantly improve VACUUM performance.
To change the default sort threshold for a single table, include the table name and the TO
threshold PERCENT parameter when you run the VACUUM command.

Vacuum types
For information about different vacuum types, see VACUUM.
Managing vacuum times

Depending on the nature of your data, we recommend following the practices in this section to
minimize vacuum times.

Topics

» Deciding whether to reindex

« Managing the size of the unsorted region

» Managing the volume of merged rows

» Loading your data in sort key order

« Using time series tables

Deciding whether to reindex

You can often significantly improve query performance by using an interleaved sort style, but over
time performance might degrade if the distribution of the values in the sort key columns changes.

Vacuum threshold 176

Amazon Redshift Database Developer Guide

When you initially load an empty interleaved table using COPY or CREATE TABLE AS, Amazon
Redshift automatically builds the interleaved index. If you initially load an interleaved table using
INSERT, you need to run VACUUM REINDEX afterwards to initialize the interleaved index.

Over time, as you add rows with new sort key values, performance might degrade if the
distribution of the values in the sort key columns changes. If your new rows fall primarily within
the range of existing sort key values, you don’t need to reindex. Run VACUUM SORT ONLY or
VACUUM FULL to restore the sort order.

The query engine is able to use sort order to efficiently select which data blocks need to be
scanned to process a query. For an interleaved sort, Amazon Redshift analyzes the sort key column
values to determine the optimal sort order. If the distribution of key values changes, or skews, as
rows are added, the sort strategy will no longer be optimal, and the performance benefit of sorting
will degrade. To reanalyze the sort key distribution you can run a VACUUM REINDEX. The reindex
operation is time consuming, so to decide whether a table will benefit from a reindex, query the
SVV_INTERLEAVED_COLUMNS view.

For example, the following query shows details for tables that use interleaved sort keys.

select tbl as tbl_id, stv_tbl_perm.name as table_name,
col, interleaved_skew, last_reindex

from svv_interleaved_columns, stv_tbl_perm

where svv_interleaved_columns.tbl = stv_tbl_perm.id
and interleaved_skew is not null;

tbl_id | table_name | col | interleaved_skew | last_reindex

100048 | customer | 0 | 3.65 | 2015-04-22 22:05:45
100068 | lineorder | 1] 2.65 | 2015-04-22 22:05:45
100072 | part | 0 | 1.65 | 2015-04-22 22:05:45
100077 | supplier | 1] 1.00 | 2015-04-22 22:05:45
(4 rows)

The value for interleaved_skew is a ratio that indicates the amount of skew. A value of 1 means
that there is no skew. If the skew is greater than 1.4, a VACUUM REINDEX will usually improve
performance unless the skew is inherent in the underlying set.

You can use the date value in 1ast_reindex to determine how long it has been since the last
reindex.

Managing vacuum times 177

Amazon Redshift Database Developer Guide

Managing the size of the unsorted region

The unsorted region grows when you load large amounts of new data into tables that already
contain data or when you do not vacuum tables as part of your routine maintenance operations. To
avoid long-running vacuum operations, use the following practices:

e Run vacuum operations on a regular schedule.

If you load your tables in small increments (such as daily updates that represent a small
percentage of the total number of rows in the table), running VACUUM regularly will help ensure
that individual vacuum operations go quickly.

« Run the largest load first.

If you need to load a new table with multiple COPY operations, run the largest load first. When
you run an initial load into a new or truncated table, all of the data is loaded directly into the
sorted region, so no vacuum is required.

« Truncate a table instead of deleting all of the rows.

Deleting rows from a table does not reclaim the space that the rows occupied until you perform
a vacuum operation; however, truncating a table empties the table and reclaims the disk space,
so no vacuum is required. Alternatively, drop the table and re-create it.

« Truncate or drop test tables.

If you are loading a small number of rows into a table for test purposes, don't delete the rows
when you are done. Instead, truncate the table and reload those rows as part of the subsequent
production load operation.

» Perform a deep copy.

If a table that uses a compound sort key table has a large unsorted region, a deep copy is much
faster than a vacuum. A deep copy recreates and repopulates a table by using a bulk insert,
which automatically re-sorts the table. If a table has a large unsorted region, a deep copy is
much faster than a vacuum. The trade off is that you cannot make concurrent updates during

a deep copy operation, which you can do during a vacuum. For more information, see Amazon
Redshift best practices for designing queries.

Managing vacuum times 178

Amazon Redshift Database Developer Guide

Managing the volume of merged rows

If a vacuum operation needs to merge new rows into a table's sorted region, the time required for a
vacuum will increase as the table grows larger. You can improve vacuum performance by reducing
the number of rows that must be merged.

Before a vacuum, a table consists of a sorted region at the head of the table, followed by an
unsorted region, which grows whenever rows are added or updated. When a set of rows is added
by a COPY operation, the new set of rows is sorted on the sort key as it is added to the unsorted
region at the end of the table. The new rows are ordered within their own set, but not within the
unsorted region.

The following diagram illustrates the unsorted region after two successive COPY operations, where
the sort key is CUSTID. For simplicity, this example shows a compound sort key, but the same
principles apply to interleaved sort keys, except that the impact of the unsorted region is greater
for interleaved tables.

Managing vacuum times 179

Amazon Redshift Database Developer Guide

300 D8/08/2013 300 09/05/2013

100 DE/06/2013 100 09/05/2013

200 D8/14/2013 200 09/13/2013
COPY #1 COPY #2

TN

CUSTID DATE CUSTID DATE
sortkey sortkey
100 07/04/2013 100 07/04/2013
200 07/02/2013 200 07/02/2013
300 07/03/2013 300 07/03/2013
100 08/06/2013 100 08/06/2013
Unsorted
Region 200 08/14/2013 200 08/14/2013
300 0B/08/2013 U“S(’r!:ed 300 0B8/08/2013 :I
Region 100 09/05/2013
200 09/13/2013
300 09/09/2013

~_

A vacuum restores the table's sort order in two stages:

1. Sort the unsorted region into a newly-sorted region.

The first stage is relatively cheap, because only the unsorted region is rewritten. If the range of
sort key values of the newly sorted region is higher than the existing range, only the new rows
need to be rewritten, and the vacuum is complete. For example, if the sorted region contains ID
values 1 to 500 and subsequent copy operations add key values greater than 500, then only the
unsorted region needs to be rewritten.

2. Merge the newly-sorted region with the previously-sorted region.

If the keys in the newly sorted region overlap the keys in the sorted region, then VACUUM needs
to merge the rows. Starting at the beginning of the newly-sorted region (at the lowest sort key),

Managing vacuum times 180

Amazon Redshift Database Developer Guide

the vacuum writes the merged rows from the previously sorted region and the newly sorted
region into a new set of blocks.

The extent to which the new sort key range overlaps the existing sort keys determines the extent
to which the previously-sorted region will need to be rewritten. If the unsorted keys are scattered
throughout the existing sort range, a vacuum might need to rewrite existing portions of the table.

The following diagram shows how a vacuum would sort and merge rows that are added to a table
where CUSTID is the sort key. Because each copy operation adds a new set of rows with key values
that overlap the existing keys, almost the entire table needs to be rewritten. The diagram shows
single sort and merge, but in practice, a large vacuum consists of a series of incremental sort and
merge steps.

R
N

CUSTID DATE //_\
sortkey

100 07/04/2013 \-//
200 07/02/2013 vacuum //—\
300 07/03/2013 P CUSTID DATE
| [to0 08/06/2013 s v
200 08/14/2013 100 07/04/2013 VACUUM
Unsorted 300 08/08/2013 200 07/02/2013 2. Merge > CUSTID DATE
Region 100 09/05/2013 300 07/03/2013 sortkey
200 09/13/2013 e 100 08/06/2013 100 07/04/2013
300 09/09/2013 Newly 100 09/05/2013 — | [100 08/06/2013
A Sorted 200 08/14/2013 100 09/05/2013
Region 200 09/13/2013 200 07/02/2013
Jole 08/08/2013 200 08/14/2013
. w Re:’;ﬁﬁ: 200 09/13/2013
300 07/03/2013
300 08/08/2013
300 05/09/2013

If the range of sort keys in a set of new rows overlaps the range of existing keys, the cost of the
merge stage continues to grow in proportion to the table size as the table grows while the cost of

the sort stage remains proportional to the size of the unsorted region. In such a case, the cost of
the merge stage overshadows the cost of the sort stage, as the following diagram shows.

Managing vacuum times 181

Amazon Redshift

R
N

Database Developer Guide

VACUUM
—_— >
1. Sort //—\
VACUUM v
2. Merge
Unsorted
Region
Newly Rewritten
SOrEed Portion
Region

~_

~_

To determine what proportion of a table was remerged, query SVV_VACUUM_SUMMARY after the
vacuum operation completes. The following query shows the effect of six successive vacuums as
CUSTSALES grew larger over time.

select * from svv_vacuum_summary
where table_name = 'custsales';

table_name | xid | sort_ | merge_ | elapsed_ | row_ | sortedrow_ | block_

| max_merge_
| | partitions
| partitions

| increments | time | delta | delta | delta

custsales | 7072 | 3| 2 |
| 47

143918314 | © | 88297472 | 1524

custsales
| 47
custsales
| 47
custsales
| 47
custsales
| 47

7122 |

7212 |

7289 |

7420 |

164157882

187433171

255482945

316583833

88297472

88297472

88297472

88297472

772

767

770

769

Managing vacuum times

182

Amazon Redshift Database Developer Guide

custsales | 9007 | 3 6 | 306685472 | 0 | 88297472 | 772
| 47
(6 rows)

The merge_increments column gives an indication of the amount of data that was merged for
each vacuum operation. If the number of merge increments over consecutive vacuums increases
in proportion to the growth in table size, it indicates that each vacuum operation is remerging an
increasing number of rows in the table because the existing and newly sorted regions overlap.

Loading your data in sort key order

If you load your data in sort key order using a COPY command, you might reduce or even remove
the need to vacuum.

COPY automatically adds new rows to the table's sorted region when all of the following are true:

» The table uses a compound sort key with only one sort column.
o The sort column is NOT NULL.
« The table is 100 percent sorted or empty.

« All the new rows are higher in sort order than the existing rows, including rows marked for
deletion. In this instance, Amazon Redshift uses the first eight bytes of the sort key to determine
sort order.

For example, suppose you have a table that records customer events using a customer ID and time.
If you sort on customer ID, it's likely that the sort key range of new rows added by incremental
loads will overlap the existing range, as shown in the previous example, leading to an expensive
vacuum operation.

If you set your sort key to a timestamp column, your new rows will be appended in sort order
at the end of the table, as the following diagram shows, reducing or even removing the need to
vacuum.

Managing vacuum times 183

Amazon Redshift Database Developer Guide

08/08/2013 | 300 05/09/2013 | 300

08/06/2013 |100 05/05/2013 | 100

08/14/2013 | 200 05/13/2013 | 200
COPY COPY

//—‘\ //—‘\

DATE CUSTID DATE CUSTID
sortkey sortkey
Q7/02/2013 200 — 07/02/2013 (200
07/03/2013 | 300 07/03/2013 |300
Sorted 07/04/2013 100 07/04/2013 (100
Region 08/06/2013 |100 Sorted 08/06/2013 | 100
08/08/2013 |300 Region 08/08/2013 | 300
08/14/2013 |200 08/14/2013 | 200
- 09/05/2013 | 100
_// 09/09/2013 | 300
09/13/2013 | 200

~_

Using time series tables

If you maintain data for a rolling time period, use a series of tables, as the following diagram
illustrates.

Managing vacuum times 184

Amazon Redshift Database Developer Guide

ustdata_q
Jan
Feb custdata_qg2
Apr 2013
201 May 50 custdata_g3
Tuul 2013
Create view cust data ww 20 CUStdata—cH
select * from custdata_gl 20| Aug 013
union all Mov 7 custdata_gl
Ezizﬁtaj':l:rm custdata g2 Dec 4 Jan 2014
select * from custdatz_g3 Feb 2014
unicn 211 Mar 2014
gelect * from cuatdata g¢

\/—\

Create a new table each time you add a set of data, then delete the oldest table in the series. You
gain a double benefit:

» You avoid the added cost of deleting rows, because a DROP TABLE operation is much more
efficient than a mass DELETE.

« If the tables are sorted by timestamp, no vacuum is needed. If each table contains data for one
month, a vacuum will at most have to rewrite one month’s worth of data, even if the tables are
not sorted by timestamp.

You can create a UNION ALL view for use by reporting queries that hides the fact that the data is
stored in multiple tables. If a query filters on the sort key, the query planner can efficiently skip
all the tables that aren't used. A UNION ALL can be less efficient for other types of queries, so you
should evaluate query performance in the context of all queries that use the tables.

Managing concurrent write operations

Topics

+ Serializable isolation

« Write and read/write operations

« Concurrent write examples

Amazon Redshift allows tables to be read while they are being incrementally loaded or modified.

Managing concurrent write operations 185

Amazon Redshift Database Developer Guide

In some traditional data warehousing and business intelligence applications, the database is
available to users only when the nightly load is complete. In such cases, no updates are allowed
during regular work hours, when analytic queries are run and reports are generated; however, an
increasing number of applications remain live for long periods of the day or even all day, making
the notion of a load window obsolete.

Amazon Redshift supports these types of applications by allowing tables to be read while they
are being incrementally loaded or modified. Queries simply see the latest committed version,
or snapshot, of the data, rather than waiting for the next version to be committed. If you want
a particular query to wait for a commit from another write operation, you have to schedule it
accordingly.

The following topics describe some of the key concepts and use cases that involve transactions,
database snapshots, updates, and concurrent behavior.

Serializable isolation

Some applications require not only concurrent querying and loading, but also the ability to write to
multiple tables or the same table concurrently. In this context, concurrently means overlapping, not
scheduled to run at precisely the same time. Two transactions are considered to be concurrent if
the second one starts before the first commits. Concurrent operations can originate from different
sessions that are controlled either by the same user or by different users.

® Note

Amazon Redshift supports a default automatic commit behavior in which each separately
run SQL command commits individually. If you enclose a set of commands in a transaction
block (defined by BEGIN and END statements), the block commits as one transaction,

so you can roll it back if necessary. Exceptions to this behavior are the TRUNCATE and
VACUUM commands, which automatically commit all outstanding changes made in the
current transaction.

Some SQL clients issue BEGIN and COMMIT commands automatically, so the client controls
whether a group of statements are run as a transaction or each individual statement is

run as its own transaction. Check the documentation for the interface you are using. For
example, when using the Amazon Redshift JDBC driver, a JDBC PreparedStatement

with a query string that contains multiple (semicolon separated) SQL commands runs all
the statements as a single transaction. In contrast, if you use SQL Workbench/J and set

Serializable isolation 186

Amazon Redshift Database Developer Guide

AUTO COMMIT ON, then if you run multiple statements, each statement runs as its own
transaction.

Concurrent write operations are supported in Amazon Redshift in a protective way, using write
locks on tables and the principle of serializable isolation. Serializable isolation preserves the illusion
that a transaction running against a table is the only transaction that is running against that table.
For example, two concurrently running transactions, T1 and T2, must produce the same results as
at least one of the following:

e T1and T2 run serially in that order.

e T2 and T1 run serially in that order.

Concurrent transactions are invisible to each other; they cannot detect each other's changes. Each
concurrent transaction will create a snapshot of the database at the beginning of the transaction.
A database snapshot is created within a transaction on the first occurrence of most SELECT
statements, DML commands such as COPY, DELETE, INSERT, UPDATE, and TRUNCATE, and the
following DDL commands:

ALTER TABLE (to add or drop columns)
CREATE TABLE

DROP TABLE

TRUNCATE TABLE

If any serial execution of the concurrent transactions produces the same results as their concurrent
execution, those transactions are deemed "serializable" and can be run safely. If no serial execution
of those transactions can produce the same results, the transaction that runs a statement that
might break the ability to serialize is stopped and rolled back.

System catalog tables (PG) and other Amazon Redshift system tables (STL and STV) are not locked
in a transaction. Therefore, changes to database objects that arise from DDL and TRUNCATE
operations are visible on commit to any concurrent transactions.

For example, suppose that table A exists in the database when two concurrent transactions, T1
and T2, start. Suppose that T2 returns a list of tables by selecting from the PG_TABLES catalog
table. Then T1 drops table A and commits, and then T2 lists the tables again. Table A is now no

Serializable isolation 187

Amazon Redshift Database Developer Guide

longer listed. If T2 tries to query the dropped table, Amazon Redshift returns a "relation does not
exist" error. The catalog query that returns the list of tables to T2 or checks that table A exists isn't
subject to the same isolation rules as operations performed on user tables.

Transactions for updates to these tables run in a read committed isolation mode. PG-prefix catalog
tables don't support snapshot isolation.

Serializable isolation for system tables and catalog tables

A database snapshot is also created in a transaction for any SELECT query that references a
user-created table or Amazon Redshift system table (STL or STV). SELECT queries that don't
reference any table don't create a new transaction database snapshot. INSERT, DELETE, and
UPDATE statements that operate solely on system catalog tables (PG) also don't create a new
transaction database snapshot.

How to fix serializable isolation errors
ERROR:1023 DETAIL: Serializable isolation violation on a table in Redshift

When Amazon Redshift detects a serializable isolation error, you see an error message such as the
following.

ERROR:1023 DETAIL: Serializable isolation violation on table in Redshift

To address a serializable isolation error, you can try the following methods:
» Retry the canceled transaction.

Amazon Redshift detected that a concurrent workload is not serializable. It suggests gaps in
the application logic, which can usually be worked around by retrying the transaction that
encountered the error. If the issue persists, try one of the other methods.

« Move any operations that don't have to be in the same atomic transaction outside of the
transaction.

This method applies when individual operations inside two transactions cross-reference each
other in a way that can affect the outcome of the other transaction. For example, the following
two sessions each start a transaction.

Sessionl_Redshift=# begin;

Serializable isolation 188

Amazon Redshift Database Developer Guide

Session2_Redshift=# begin;

The result of a SELECT statement in each transaction might be affected by an INSERT statement
in the other. In other words, suppose that you run the following statements serially, in any order.
In every case, the result is one of the SELECT statements returning one more row than if the
transactions were run concurrently. There is no order in which the operations can run serially that
produces the same result as when run concurrently. Thus, the last operation that is run results in
a serializable isolation error.

Sessionl_Redshift=# select * from tabl;
Sessionl_Redshift=# insert into tab2 values (1);

Session2_Redshift=# insert into tabl values (1);
Session2_Redshift=# select * from tab2;

In many cases, the result of the SELECT statements isn't important. In other words, the atomicity
of the operations in the transactions isn't important. In these cases, move the SELECT statements
outside of their transactions, as shown in the following examples.

Sessionl_Redshift=# begin;

Sessionl_Redshift=# insert into tabl values (1)
Sessionl_Redshift=# end;

Sessionl_Redshift=# select * from tab2;

Session2_Redshift # select * from tabl;
Session2_Redshift=# begin;

Session2_Redshift=# insert into tab2 values (1)
Session2_Redshift=# end;

In these examples, there are no cross-references in the transactions. The two INSERT statements
don't affect each other. In these examples, there is at least one order in which the transactions
can run serially and produce the same result as if run concurrently. This means that the
transactions are serializable.

 Force serialization by locking all tables in each session.

Serializable isolation 189

Amazon Redshift Database Developer Guide

The LOCK command blocks operations that can result in serializable isolation errors. When you
use the LOCK command, be sure to do the following:

» Lock all tables affected by the transaction, including those affected by read-only SELECT
statements inside the transaction.

o Lock tables in the same order, regardless of the order that operations are performed in.
o Lock all tables at the beginning of the transaction, before performing any operations.

» Use snapshot isolation for concurrent transactions

Use an ALTER DATABASE command with snapshot isolation. For more information about the
SNAPSHOT parameter for ALTER DATABASE, see Parameters.

ERROR:1018 DETAIL: Relation does not exist

When you run concurrent Amazon Redshift operations in different sessions, you see an error
message such as the following.

ERROR: 1018 DETAIL: Relation does not exist.

Transactions in Amazon Redshift follow snapshot isolation. After a transaction begins, Amazon
Redshift takes a snapshot of the database. For the entire lifecycle of the transaction, the
transaction operates on the state of the database as reflected in the snapshot. If the transaction
reads from a table that doesn't exist in the snapshot, it throws the 1018 error message shown
previously. Even when another concurrent transaction creates a table after the transaction has
taken the snapshot, the transaction can't read from the newly created table.

To address this serialization isolation error, you can try to move the start of the transaction to a
point where you know the table exists.

If the table is created by another transaction, this point is at least after that transaction has been
committed. Also, ensure that no concurrent transaction has been committed that might have
dropped the table.

sessionl # BEGIN;
sessionl = # DROP TABLE A;
sessionl = # COMMIT,;

session2 # BEGIN;

Serializable isolation 190

Amazon Redshift

Database Developer Guide

session3
session3
session3

session2

BEGIN;
CREATE TABLE A (id INT);
COMMIT;

SELECT * FROM A;

The last operation that is run as the read operation by session2 results in a serializable isolation
error. This error happens when session2 takes a snapshot and the table has already been dropped
by a committed session. In other words, even though a concurrent session3 has created the table,

session2 doesn't see the table because it's not in the snapshot.

To resolve this error, you can reorder the sessions as follows.

sessionl
sessionl
sessionl

session3
session3
session3

session2
session2

BEGIN;
DROP TABLE A;
COMMIT;

H

BEGIN;
CREATE TABLE A (id INT);
COMMIT,;

BEGIN;
SELECT * FROM A;

Now when session2 takes its snapshot, session3 has already been committed, and the table is in

the database. Session2 can read from the table without any error.

Write and read/write operations

You can manage the specific behavior of concurrent write operations by deciding when and how to

run different types of commands. The following commands are relevant to this discussion:

COPY commands, which perform loads (initial or incremental)
INSERT commands that append one or more rows at a time
UPDATE commands, which modify existing rows

DELETE commands, which remove rows

Write and read/write operations

191

Amazon Redshift Database Developer Guide

COPY and INSERT operations are pure write operations, but DELETE and UPDATE operations are
read/write operations. (For rows to be deleted or updated, they have to be read first.) The results
of concurrent write operations depend on the specific commands that are being run concurrently.
COPY and INSERT operations against the same table are held in a wait state until the lock is
released, then they proceed as normal.

UPDATE and DELETE operations behave differently because they rely on an initial table read before
they do any writes. Given that concurrent transactions are invisible to each other, both UPDATEs
and DELETEs have to read a snapshot of the data from the last commit. When the first UPDATE or
DELETE releases its lock, the second UPDATE or DELETE needs to determine whether the data that
it is going to work with is potentially stale. It will not be stale, because the second transaction does
not obtain its snapshot of data until after the first transaction has released its lock.

Potential deadlock situation for concurrent write transactions

Whenever transactions involve updates of more than one table, there is always the possibility of
concurrently running transactions becoming deadlocked when they both try to write to the same
set of tables. A transaction releases all of its table locks at once when it either commits or rolls
back; it does not relinquish locks one at a time.

For example, suppose that transactions T1 and T2 start at roughly the same time. If T1 starts
writing to table A and T2 starts writing to table B, both transactions can proceed without conflict;
however, if T1 finishes writing to table A and needs to start writing to table B, it will not be able to
proceed because T2 still holds the lock on B. Conversely, if T2 finishes writing to table B and needs
to start writing to table A, it will not be able to proceed either because T1 still holds the lock on

A. Because neither transaction can release its locks until all its write operations are committed,
neither transaction can proceed.

In order to avoid this kind of deadlock, you need to schedule concurrent write operations carefully.
For example, you should always update tables in the same order in transactions and, if specifying
locks, lock tables in the same order before you perform any DML operations.

Concurrent write examples

The following pseudo-code examples demonstrate how transactions either proceed or wait when
they are run concurrently.

Concurrent COPY operations into the same table

Transaction 1 copies rows into the LISTING table:

Concurrent write examples 192

Amazon Redshift Database Developer Guide

begin;
copy listing from ...;
end;

Transaction 2 starts concurrently in a separate session and attempts to copy more rows into the
LISTING table. Transaction 2 must wait until transaction 1 releases the write lock on the LISTING
table, then it can proceed.

begin;

[waits]

copy listing from ;
end;

The same behavior would occur if one or both transactions contained an INSERT command instead
of a COPY command.

Concurrent DELETE operations from the same table

Transaction 1 deletes rows from a table:

begin;
delete from listing where ...;
end;

Transaction 2 starts concurrently and attempts to delete rows from the same table. It will succeed
because it waits for transaction 1 to complete before attempting to delete rows.

begin

[waits]

delete from listing where ;
end;

The same behavior would occur if one or both transactions contained an UPDATE command to the
same table instead of a DELETE command.

Concurrent transactions with a mixture of read and write operations

In this example, transaction 1 deletes rows from the USERS table, reloads the table, runs a
COUNT(*) query, and then ANALYZE, before committing:

Concurrent write examples 193

Amazon Redshift Database Developer Guide

begin;
delete one row from USERS table;

copy ;

select count(*) from users;
analyze ;

end;

Meanwhile, transaction 2 starts. This transaction attempts to copy additional rows into the USERS
table, analyze the table, and then run the same COUNT(*) query as the first transaction:

begin;

[waits]

copy users from ...;

select count(*) from users;
analyze;

end;

The second transaction will succeed because it must wait for the first to complete. Its COUNT query
will return the count based on the load it has completed.

Tutorial: Loading data from Amazon S3

In this tutorial, you walk through the process of loading data into your Amazon Redshift database
tables from data files in an Amazon S3 bucket from beginning to end.

In this tutorial, you do the following:

« Download data files that use comma-separated value (CSV), character-delimited, and fixed width
formats.

« Create an Amazon S3 bucket and then upload the data files to the bucket.

« Launch an Amazon Redshift cluster and create database tables.

e Use COPY commands to load the tables from the data files on Amazon S3.

« Troubleshoot load errors and modify your COPY commands to correct the errors.

Estimated time: 60 minutes

Estimated cost: $1.00 per hour for the cluster

Tutorial: Loading data from Amazon S3 194

Amazon Redshift Database Developer Guide

Prerequisites

You need the following prerequisites:

« An AWS account to launch an Amazon Redshift cluster and to create a bucket in Amazon S3.

» Your AWS credentials (IAM role) to load test data from Amazon S3. If you need a new IAM role,
go to Creating IAM roles.

« An SQL client such as the Amazon Redshift console query editor.

This tutorial is designed so that it can be taken by itself. In addition to this tutorial, we recommend
completing the following tutorials to gain a more complete understanding of how to design and
use Amazon Redshift databases:

« Amazon Redshift Getting Started Guide walks you through the process of creating an Amazon

Redshift cluster and loading sample data.

Overview

You can add data to your Amazon Redshift tables either by using an INSERT command or by using
a COPY command. At the scale and speed of an Amazon Redshift data warehouse, the COPY
command is many times faster and more efficient than INSERT commands.

The COPY command uses the Amazon Redshift massively parallel processing (MPP) architecture to
read and load data in parallel from multiple data sources. You can load from data files on Amazon
S3, Amazon EMR, or any remote host accessible through a Secure Shell (SSH) connection. Or you
can load directly from an Amazon DynamoDB table.

In this tutorial, you use the COPY command to load data from Amazon S3. Many of the principles
presented here apply to loading from other data sources as well.

To learn more about using the COPY command, see these resources:

Amazon Redshift best practices for loading data

Loading data from Amazon EMR

Loading data from remote hosts

Loading data from an Amazon DynamoDB table

Prerequisites 195

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/redshift/latest/gsg/

Amazon Redshift Database Developer Guide

Steps

o Step 1: Create a cluster

» Step 2: Download the data files

» Step 3: Upload the files to an Amazon S3 bucket

o Step 4: Create the sample tables
» Step 5: Run the COPY commands

» Step 6: Vacuum and analyze the database

» Step 7: Clean up your resources

Step 1: Create a cluster

If you already have a cluster that you want to use, you can skip this step.
For the exercises in this tutorial, use a four-node cluster.
To create a cluster

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

Using the navigation menu, choose the Provisioned clusters dashboard.

/A Important

Make sure that you have the necessary permissions to perform the cluster operations.
For information on granting the necessary permissions, see Authorizing Amazon
Redshift to access AWS services.

2. At top right, choose the AWS Region in which you want to create the cluster. For the purposes
of this tutorial, choose US West (Oregon).

3. On the navigation menu, choose Clusters, then choose Create cluster. The Create cluster page
appears.

4. On the Create cluster page enter parameters for your cluster. Choose your own values for the
parameters, except change the following values:

« Choose dc2.1large for the node type.

Steps 196

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html

Amazon Redshift

Database Developer Guide

e Choose &4 for the Number of nodes.

« In the Cluster permissions section, choose an IAM role from Available IAM roles. This role
should be one that you previously created and that has access to Amazon S3. Then choose
Associate IAM role to add it to the list of Associated IAM roles for the cluster.

5. Choose Create cluster.

Follow the Amazon Redshift Getting Started Guide steps to connect to your cluster from a SQL

client and test a connection. You don't need to complete the remaining Getting Started steps to
create tables, upload data, and try example queries.

Next step

Step 2: Download the data files

Step 2: Download the data files

In this step, you download a set of sample data files to your computer. In the next step, you upload

the files to an Amazon S3 bucket.

To download the data files

1. Download the zipped file: LoadingDataSampleFiles.zip.
2. Extract the files to a folder on your computer.

3. Verify that your folder contains the following files.

customer-fw-
customer-fw.
customer-fw.
customer-fw.
customer-fw.
customer-fw.
customer-fw.
customer-fw.
customer-fw.
customer-fw.
customer-fw.

manifest
tbl-000
tb1-000.bak
tb1-001
tb1-002
tbl-003
tbl-004
tbl-005
tbl-006
tb1-007
tbl.log

dwdate-tab.tbl-000
dwdate-tab.tbl-001
dwdate-tab.tbl-002

Step 2: Download the data files

197

https://docs.aws.amazon.com/redshift/latest/gsg/
samples/LoadingDataSampleFiles.zip

Amazon Redshift

Database Developer Guide

dwdate-tab.tbl-003
dwdate-tab.tbl-004
dwdate-tab.tbl-005
dwdate-tab.tbl-006
dwdate-tab.tbl-007

part-csv.
part-csv.
part-csv.
part-csv.
part-csv.
part-csv.
part-csv.
part-csv.

Next step

Step 3: Upload the files to an Amazon S3 bucket

tb1l-000
tbl-001
tbl-002
tbl-003
tbl-004
tbl-005
tbl-006
tbl-007

Step 3: Upload the files to an Amazon S3 bucket

In this step, you create an Amazon S3 bucket and upload the data files to the bucket.

To upload the files to an Amazon S3 bucket

1. Create a bucket in Amazon S3.

For more information about creating a bucket, see Creating a bucket in the Amazon Simple

Storage Service User Guide.

a. Sign in to the AWS Management Console and open the Amazon S3 console at https://

console.aws.amazon.com/s3/.

b. Choose Create bucket.
c. Choose an AWS Region.

Create the bucket in the same Region as your cluster. If your cluster is in the US West

(Oregon) Region, choose US West (Oregon) Region (us-west-2).

d. Inthe Bucket Name box of the Create bucket dialog box, enter a bucket name.

The bucket name you choose must be unique among all existing bucket names in Amazon

S3. One way to help ensure uniqueness is to prefix your bucket names with the name of

Step 3: Upload the files to an Amazon S3 bucket

198

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Redshift Database Developer Guide

your organization. Bucket names must comply with certain rules. For more information, go
to Bucket restrictions and limitations in the Amazon Simple Storage Service User Guide.

e. Choose the recommended defaults for the rest of the options.

f. Choose Create bucket.

When Amazon S3 successfully creates your bucket, the console displays your empty
bucket in the Buckets panel.

2. Create a folder.

a. Choose the name of the new bucket.
b. Choose the Create Folder button.

c. Name the new folder 1load.

(@ Note

The bucket that you created is not in a sandbox. In this exercise, you add objects
to a real bucket. You're charged a nominal amount for the time that you store the
objects in the bucket. For more information about Amazon S3 pricing, go to the
Amazon S3 pricing page.

3. Upload the data files to the new Amazon S3 bucket.

a. Choose the name of the data folder.

b. Inthe Upload wizard, choose Add files.

Follow the Amazon S3 console instructions to upload all of the files you downloaded and
extracted,

c. Choose Upload.

User Credentials

The Amazon Redshift COPY command must have access to read the file objects in the Amazon

S3 bucket. If you use the same user credentials to create the Amazon S3 bucket and to run the
Amazon Redshift COPY command, the COPY command has all necessary permissions. If you want
to use different user credentials, you can grant access by using the Amazon S3 access controls. The
Amazon Redshift COPY command requires at least ListBucket and GetObject permissions to access

Step 3: Upload the files to an Amazon S3 bucket 199

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://aws.amazon.com/s3/pricing/

Amazon Redshift

Database Developer Guide

the file objects in the Amazon S3 bucket. For more information about controlling access to Amazon

S3 resources, go to Managing access permissions to your Amazon S3 resources.

Next step

Step 4: Create the sample tables

Step 4: Create the sample tables

For this tutorial, you use a set of five tables based on the Star Schema Benchmark (SSB) schema.

The following diagram shows the SSB data model.

PART

p_partkey

p_name
p_mfgr
p_category
p_color
p_type
p_size
p_container

LINEQORDER

lo_orderkey

Yy

SUPPLIER

s_supphkey

s_address
S _City
s_nation
s_region
s_phone

lo_linenumber
lo_custkey
lo_partkey
lo_suppkey
lo_orderdate
lo_shippriority
lo_quantity
lo_extendedprice
lo_ordertotalprice
lo_discount
lo_revenue
lo_supplycost
lo_tax
lo_commdate
lo_shipmode

CUSTOMER

c_custkey

C_custkey
C_name
¢_address
C_city
C_nation
C_region

DWDATE

d_datekey

F Y

d_date
d_dayofweek
d_manth

d_year
d_yearmonthnum
d_yearmonth
d_daynuminweek
d_daynuminyear
d_maonthnuminyear
d_weeknuminyear
d_sellingseason
d_lastdayinweekfl
d_lastdayinmanthfl
d_holidayfl
d_weekdayfl

The SSB tables might already exist in the current database. If so, drop the tables to remove them
from the database before you create them using the CREATE TABLE commands in the next step.
The tables used in this tutorial might have different attributes than the existing tables.

To create the sample tables

1. To drop the SSB tables, run the following commands in your SQL client.

Step 4: Create the sample tables

200

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Redshift

Database Developer Guide

drop table part cascade;
drop table supplier;
drop table customer;
drop table dwdate;

drop table lineorder;

2. Run the following CREATE TABLE commands in your SQL client.

CREATE TABLE part

INTEGER NOT NULL,

VARCHAR(22) NOT NULL,

VARCHAR(7) NOT NULL,
VARCHAR(9) NOT NULL,
VARCHAR(11) NOT NULL,
VARCHAR(25) NOT NULL,

INTEGER NOT NULL,

VARCHAR(1@) NOT NULL

NUL
NOT
NOT
NOT
NOT
NOT
NOT

(
p_partkey
p_name
p_mfgr VARCHAR(6),
p_category
p_brandl
p_color
p_type
p_size
p_container
)i
CREATE TABLE supplier
(
s_suppkey INTEGER NOT
S_name VARCHAR(25)
s_address VARCHAR(25)
s_city VARCHAR(10)
s_nation VARCHAR(15)
s_region VARCHAR(12)
s_phone VARCHAR(15)
e

CREATE TABLE customer

(
c_custkey
C_name
c_address
Cc_city
c_nation
c_region
c_phone
c_mktsegment

INTEGER NOT
VARCHAR(25)
VARCHAR(25)
VARCHAR(10)
VARCHAR(15)
VARCHAR(12)
VARCHAR(15)
VARCHAR(10)

L,

NULL,
NULL,
NULL,
NULL,
NULL,
NULL

NULL,

NOT
NOT
NOT
NOT
NOT
NOT
NOT

NULL,
NULL,
NULL,
NULL,
NULL,
NULL,
NULL

Step 4: Create the sample tables

201

Amazon Redshift Database Developer Guide

);

CREATE TABLE dwdate

(
d_datekey INTEGER NOT NULL,
d_date VARCHAR(19) NOT NULL,
d_dayofweek VARCHAR(10) NOT NULL,
d_month VARCHAR(1@) NOT NULL,
d_year INTEGER NOT NULL,
d_yearmonthnum INTEGER NOT NULL,
d_yearmonth VARCHAR(8) NOT NULL,
d_daynuminweek INTEGER NOT NULL,
d_daynuminmonth INTEGER NOT NULL,
d_daynuminyear INTEGER NOT NULL,
d_monthnuminyear INTEGER NOT NULL,
d_weeknuminyear INTEGER NOT NULL,
d_sellingseason VARCHAR(13) NOT NULL,
d_lastdayinweekfl VARCHAR(1) NOT NULL,
d_lastdayinmonthfl VARCHAR(1) NOT NULL,
d_holidayfl VARCHAR(1) NOT NULL,
d_weekdayfl VARCHAR(1) NOT NULL

I

CREATE TABLE lineorder

(
lo_orderkey INTEGER NOT NULL,
lo_linenumber INTEGER NOT NULL,
lo_custkey INTEGER NOT NULL,
lo_partkey INTEGER NOT NULL,
lo_suppkey INTEGER NOT NULL,
lo_orderdate INTEGER NOT NULL,
lo_orderpriority VARCHAR(15) NOT NULL,
lo_shippriority VARCHAR(1) NOT NULL,
lo_quantity INTEGER NOT NULL,
lo_extendedprice INTEGER NOT NULL,
lo_ordertotalprice INTEGER NOT NULL,
lo_discount INTEGER NOT NULL,
lo_revenue INTEGER NOT NULL,
lo_supplycost INTEGER NOT NULL,
lo_tax INTEGER NOT NULL,
lo_commitdate INTEGER NOT NULL,
lo_shipmode VARCHAR(10) NOT NULL

I

Step 4: Create the sample tables 202

Amazon Redshift Database Developer Guide

Next step

Step 5: Run the COPY commands

Step 5: Run the COPY commands

You run COPY commands to load each of the tables in the SSB schema. The COPY command
examples demonstrate loading from different file formats, using several COPY command options,
and troubleshooting load errors.

Topics
o COPY command syntax

» Loading the SSB tables

COPY command syntax

The basic COPY command syntax is as follows.

COPY table_name [column_list] FROM data_source CREDENTIALS access_credentials
[options]

To run a COPY command, you provide the following values.
Table name

The target table for the COPY command. The table must already exist in the database. The table
can be temporary or persistent. The COPY command appends the new input data to any existing
rows in the table.

Column list

By default, COPY loads fields from the source data to the table columns in order. You can
optionally specify a column list, that is a comma-separated list of column names, to map data
fields to specific columns. You don't use column lists in this tutorial. For more information, see
Column List in the COPY command reference.

Data source

You can use the COPY command to load data from an Amazon S3 bucket, an Amazon EMR cluster,
a remote host using an SSH connection, or an Amazon DynamoDB table. For this tutorial, you load

Step 5: Run the COPY commands 203

Amazon Redshift Database Developer Guide

from data files in an Amazon S3 bucket. When loading from Amazon S3, you must provide the
name of the bucket and the location of the data files. To do this, provide either an object path for
the data files or the location of a manifest file that explicitly lists each data file and its location.

» Key prefix

An object stored in Amazon S3 is uniquely identified by an object key, which includes the bucket
name, folder names, if any, and the object name. A key prefix refers to a set of objects with the
same prefix. The object path is a key prefix that the COPY command uses to load all objects that
share the key prefix. For example, the key prefix custdata.txt can refer to a single file or to a
set of files, including custdata.txt.001, custdata.txt.002, and so on.

+ Manifest file

In some cases, you might need to load files with different prefixes, for example from multiple
buckets or folders. In others, you might need to exclude files that share a prefix. In these cases,
you can use a manifest file. A manifest file explicitly lists each load file and its unique object key.
You use a manifest file to load the PART table later in this tutorial.

Credentials

To access the AWS resources that contain the data to load, you must provide AWS access
credentials for a user with sufficient privileges. These credentials include an IAM role Amazon
Resource Name (ARN). To load data from Amazon S3, the credentials must include ListBucket and
GetObject permissions. Additional credentials are required if your data is encrypted. For more
information, see Authorization parameters in the COPY command reference. For more information

about managing access, go to Managing access permissions to your Amazon S3 resources.

Options

You can specify a number of parameters with the COPY command to specify file formats, manage
data formats, manage errors, and control other features. In this tutorial, you use the following
COPY command options and features:

» Key prefix

For information on how to load from multiple files by specifying a key prefix, see Load the PART
table using NULL AS.

« CSV format

Step 5: Run the COPY commands 204

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Redshift Database Developer Guide

For information on how to load data that is in CSV format, see Load the PART table using NULL
AS.

« NULL AS

For information on how to load PART using the NULL AS option, see Load the PART table using
NULL AS.

o Character-delimited format

For information on how to use the DELIMITER option, see Load the SUPPLIER table using
REGION.

« REGION

For information on how to use the REGION option, see Load the SUPPLIER table using REGION.

o Fixed-format width

For information on how to load the CUSTOMER table from fixed-width data, see Load the
CUSTOMER table using MANIFEST.

« MAXERROR

For information on how to use the MAXERROR option, see Load the CUSTOMER table using
MANIFEST.

» ACCEPTINVCHARS

For information on how to use the ACCEPTINVCHARS option, see Load the CUSTOMER table
using MANIFEST.

« MANIFEST

For information on how to use the MANIFEST option, see Load the CUSTOMER table using
MANIFEST.

« DATEFORMAT

For information on how to use the DATEFORMAT option, see Load the DWDATE table using
DATEFORMAT.

« GZIP, LZOP and BZIP2

For information on how to compress your files, see Load the LINEORDER table using multiple

files.

Step 5: Run the COPY commands 205

Amazon Redshift Database Developer Guide

« COMPUPDATE

For information on how to use the COMPUPDATE option, see Load the LINEORDER table using

multiple files.
o Multiple files

For information on how to load multiple files, see Load the LINEORDER table using multiple files.

Loading the SSB tables

You use the following COPY commands to load each of the tables in the SSB schema. The
command to each table demonstrates different COPY options and troubleshooting techniques.

To load the SSB tables, follow these steps:

Replace the bucket name and AWS credentials
Load the PART table using NULL AS

Load the SUPPLIER table using REGION

Load the CUSTOMER table using MANIFEST
Load the DWDATE table using DATEFORMAT
Load the LINEORDER table using multiple files

AN A

Replace the bucket name and AWS credentials

The COPY commands in this tutorial are presented in the following format.

copy table from 's3://<your-bucket-name>/load/key _prefix'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>"
options;

For each COPY command, do the following:

1. Replace <your-bucket-name> with the name of a bucket in the same region as your cluster.

This step assumes the bucket and the cluster are in the same region. Alternatively, you can
specify the region using the REGION option with the COPY command.

2. Replace <aws-account-1id> and <role-name> with your own AWS account and IAM role. The
segment of the credentials string that is enclosed in single quotation marks must not contain

Step 5: Run the COPY commands 206

Amazon Redshift Database Developer Guide

any spaces or line breaks. Note that the ARN might differ slightly in format than the sample. It's
best to copy the ARN for the role from the IAM console, to ensure that it's accurate, when you
run the COPY commands.

Load the PART table using NULL AS
In this step, you use the CSV and NULL AS options to load the PART table.

The COPY command can load data from multiple files in parallel, which is much faster than loading
from a single file. To demonstrate this principle, the data for each table in this tutorial is split into
eight files, even though the files are very small. In a later step, you compare the time difference
between loading from a single file and loading from multiple files. For more information, see
Loading data files.

Key prefix

You can load from multiple files by specifying a key prefix for the file set, or by explicitly listing the
files in a manifest file. In this step, you use a key prefix. In a later step, you use a manifest file. The
key prefix 's3://mybucket/load/part-csv.tbl’ loads the following set of the files in the
load folder.

part-csv.tbl-000
part-csv.tbl-001
part-csv.tbl-002
part-csv.tbl-003
part-csv.tbl-004
part-csv.tbl-005
part-csv.tbl-006
part-csv.tbl-007

CSV format

CSV, which stands for comma separated values, is a common format used for importing and
exporting spreadsheet data. CSV is more flexible than comma-delimited format because it enables
you to include quoted strings within fields. The default quotation mark character for COPY from
CSV format is a double quotation mark ("), but you can specify another quotation mark character
by using the QUOTE AS option. When you use the quotation mark character within the field,
escape the character with an additional quotation mark character.

Step 5: Run the COPY commands 207

Amazon Redshift Database Developer Guide

The following excerpt from a CSV-formatted data file for the PART table shows strings enclosed
in double quotation marks ("LARGE ANODIZED BRASS"). It also shows a string enclosed in two
double quotation marks within a quoted string ("MEDIUM ""BURNISHED"" TIN").

15,dark sky,MFGR#3,MFGR#47,MFGR#3438,indigo, "LARGE ANODIZED BRASS",45,LG CASE

22,floral beige, MFGR#4, MFGR#44, MFGR#4421, medium, "PROMO, POLISHED BRASS",19,LG DRUM

23,bisque slate,MFGR#4,MFGR#41,MFGR#4137, firebrick, "MEDIUM ""BURNISHED"" TIN",42,JUMBO
JAR

The data for the PART table contains characters that cause COPY to fail. In this exercise, you
troubleshoot the errors and correct them.

To load data that is in CSV format, add csv to your COPY command. Run the following command
to load the PART table.

copy part from 's3://<your-bucket-name>/load/part-csv.tbl’
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
csv;

You might get an error message similar to the following.

An error occurred when executing the SQL command:
copy part from 's3://mybucket/load/part-csv.tbl’
credentials'

ERROR: Load into table 'part' failed. Check 'stl_load_errors' system table for
details. [SQL State=XX000]

Execution time: 1.46s

1 statement(s) failed.
1 statement(s) failed.

To get more information about the error, query the STL_LOAD_ERRORS table. The following query
uses the SUBSTRING function to shorten columns for readability and uses LIMIT 10 to reduce the
number of rows returned. You can adjust the values in substring(filename, 22, 25) to allow
for the length of your bucket name.

select query, substring(filename,22,25) as filename,line_number as line,
substring(colname,®,12) as column, type, position as pos, substring(raw_line,0,30) as
line_text,

Step 5: Run the COPY commands 208

Amazon Redshift Database Developer Gu

ide

substring(raw_field_value,®,15) as field_text,
substring(err_reason,@,45) as reason

from stl_load_errors

order by query desc

limit 10;

query | filename | 1line | column | type | pos |

—_——————— L P R L e L e Fm——— +--—--
333765 | part-csv.tbl-000 | 1] | | 0 |

line_text | field_text | reason

__________________ o
15,NUL next, | | Missing newline: Unexpected character 0x2c f

NULL AS

The part-csv.tbl data files use the NUL terminator character (\x@0@ or \x0) to indicate NULL
values.

® Note
Despite very similar spelling, NUL and NULL are not the same. NUL is a UTF-8 character
with codepoint x000 that is often used to indicate end of record (EOR). NULL is a SQL value
that represents an absence of data.

By default, COPY treats a NUL terminator character as an EOR character and terminates the
record, which often results in unexpected results or an error. There is no single standard method
of indicating NULL in text data. Thus, the NULL AS COPY command option enables you to specify
which character to substitute with NULL when loading the table. In this example, you want COPY
to treat the NUL terminator character as a NULL value.

(® Note

The table column that receives the NULL value must be configured as nullable. That is, it
must not include the NOT NULL constraint in the CREATE TABLE specification.

To load PART using the NULL AS option, run the following COPY command.

Step 5: Run the COPY commands

209

Amazon Redshift Database Developer Guide

copy part from 's3://<your-bucket-name>/load/part-csv.tbl’

credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>"
csv

null as '\000°';

To verify that COPY loaded NULL values, run the following command to select only the rows that

contain NULL.

select p_partkey, p_name, p_mfgr, p_category from part where p_mfgr is null;

p_partkey | p_name | p_mfgr | p_category

----------- L e e e
15 | NUL next | | MFGR#47
81 | NUL next | | MFGR#23
133 | NUL next | | MFGR#44

(2 rows)

Load the SUPPLIER table using REGION

In this step, you use the DELIMITER and REGION options to load the SUPPLIER table.

(® Note

The files for loading the SUPPLIER table are provided in an AWS sample bucket. You don't
need to upload files for this step.

Character-Delimited Format

The fields in a character-delimited file are separated by a specific character, such as a pipe
character (|), acomma (,) or a tab (\t). Character-delimited files can use any single ASCII
character, including one of the nonprinting ASCIl characters, as the delimiter. You specify the
delimiter character by using the DELIMITER option. The default delimiter is a pipe character (|).

The following excerpt from the data for the SUPPLIER table uses pipe-delimited format.

1|1]257368|465569|41365|19950218|2-HIGH| 0|17 |2608718]|9783671|4|2504369]|92072|2|
19950331 | TRUCK
1]2]257368]201928|8146]19950218 | 2-HIGH|0|36|6587676|9783671|9|5994785|109794 |6 |
19950416 | MAIL

Step 5: Run the COPY commands

210

Amazon Redshift Database Developer Guide

REGION

Whenever possible, you should locate your load data in the same AWS region as your Amazon
Redshift cluster. If your data and your cluster are in the same region, you reduce latency and avoid
cross-region data transfer costs. For more information, see Amazon Redshift best practices for

loading data

If you must load data from a different AWS region, use the REGION option to specify the AWS
region in which the load data is located. If you specify a region, all of the load data, including
manifest files, must be in the named region. For more information, see REGION.

If your cluster is in the US East (N. Virginia) Region, run the following command to load the
SUPPLIER table from pipe-delimited data in an Amazon S3 bucket located in the US West (Oregon)
Region. For this example, do not change the bucket name.

copy supplier from 's3://awssampledbuswest2/ssbgz/supplier.tbl’
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
delimiter '|'

gzip

region 'us-west-2';

If your cluster is not in the US East (N. Virginia) region, run the following command to load the
SUPPLIER table from pipe-delimited data in an Amazon S3 bucket located in the US East (N.
Virginia) region. For this example, do not change the bucket name.

copy supplier from 's3://awssampledb/ssbgz/supplier.tbl’

credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>"
delimiter '|'

gzip

region 'us-east-1';

Load the CUSTOMER table using MANIFEST

In this step, you use the FIXEDWIDTH, MAXERROR, ACCEPTINVCHARS, and MANIFEST options to
load the CUSTOMER table.

The sample data for this exercise contains characters that cause errors when COPY attempts
to load them. You use the MAXERRORS option and the STL_LOAD_ERRORS system table to
troubleshoot the load errors and then use the ACCEPTINVCHARS and MANIFEST options to
eliminate the errors.

Step 5: Run the COPY commands 211

Amazon Redshift Database Developer Guide

Fixed-Width Format

Fixed-width format defines each field as a fixed number of characters, rather than separating fields

with a delimiter. The following excerpt from the data for the CUSTOMER table uses fixed-width
format.

1 Customer#000000001 IVhzIApeRb MOROCCO ©OMOROCCO AFRICA 25-705
2 Customer#000000002 XSTf4,NCwDVaWNe6tE JORDAN 6JORDAN MIDDLE EAST 23-453
3 Customer#000000003 MGOkdTD ARGENTINASARGENTINAAMERICA 11-783

The order of the label/width pairs must match the order of the table columns exactly. For more
information, see FIXEDWIDTH.

The fixed-width specification string for the CUSTOMER table data is as follows.

fixedwidth 'c_custkey:10, c_name:25, c_address:25, c_city:10, c_nation:15,
c_region :12, c_phone:15,c_mktsegment:10'

To load the CUSTOMER table from fixed-width data, run the following command.

copy customer

from 's3://<your-bucket-name>/load/customer-fw.tbl'

credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>"

fixedwidth 'c_custkey:10, c_name:25, c_address:25, c_city:10, c_nation:15,
c_region :12, c_phone:15,c_mktsegment:10';

You should get an error message, similar to the following.

An error occurred when executing the SQL command:
copy customer

from 's3://mybucket/load/customer-fw.tbl'
credentials'...

ERROR: Load into table 'customer' failed. Check 'stl_load_errors' system table for
details. [SQL State=XX000]

Execution time: 2.95s

1 statement(s) failed.

MAXERROR

Step 5: Run the COPY commands

212

Amazon Redshift Database Developer Guide

By default, the first time COPY encounters an error, the command fails and returns an error
message. To save time during testing, you can use the MAXERROR option to instruct COPY to skip
a specified number of errors before it fails. Because we expect errors the first time we test loading
the CUSTOMER table data, add maxerror 10 to the COPY command.

To test using the FIXEDWIDTH and MAXERROR options, run the following command.

copy customer

from 's3://<your-bucket-name>/load/customer-fw.tbl'

credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>"

fixedwidth 'c_custkey:10, c_name:25, c_address:25, c_city:10, c_nation:15,
c_region :12, c_phone:15,c_mktsegment:10'

maxerror 10;

This time, instead of an error message, you get a warning message similar to the following.

Warnings:

Load into table 'customer' completed, 112497 record(s) loaded successfully.

Load into table 'customer' completed, 7 record(s) could not be loaded. Check
'stl_load_errors' system table for details.

The warning indicates that COPY encountered seven errors. To check the errors, query the
STL_LOAD_ERRORS table, as shown in the following example.

select query, substring(filename,22,25) as filename,line_number as line,
substring(colname,®,12) as column, type, position as pos, substring(raw_line,@,30) as
line_text,

substring(raw_field_value,,15) as field_text,

substring(err_reason,@,45) as error_reason

from stl_load_errors

order by query desc, filename

limit 7;

The results of the STL_LOAD_ERRORS query should look similar to the following.

query | filename | 1line | column | type | pos |
line_text | field_text | error_reason

———————— ittt il ekttt

R F-——— e R

F e e e e e e e e e E E E — — — — — —— — —— ——————m e — e ———————

Step 5: Run the COPY commands 213

Amazon Redshift

Database Developer Guide

334489 | customer-fw.tbl.log | 2 | c_custkey | int4 | -1] customer-
fw.tbl | customer-f | Invalid digit, Value 'c', Pos 0, Type: Integ
334489 | customer-fw.tbl.log | 6 | c_custkey | int4 | -1 | Complete
| Complete | Invalid digit, Value 'C', Pos @, Type: Integ
334489 | customer-fw.tbl.log | 3 | c_custkey | int4 | -1 | #Total rows
| #Total row | Invalid digit, Value '#', Pos 0, Type: Integ
334489 | customer-fw.tbl.log | 5 | c_custkey | int4 | -1 | #Status
| #Status | Invalid digit, Value '#', Pos @, Type: Integ
334489 | customer-fw.tbl.log | 1 | c_custkey | int4 | -1 | #Load file
| #Load file | Invalid digit, Value '#', Pos 0, Type: Integ
334489 | customer-fw.tbl000 | 1 | c_address | varchar | 34 | 1
Customer#000000001 | .Mayag.ezR | String contains invalid or unsupported UTF8
334489 | customer-fw.tbl000 | 1 | c_address | varchar | 34 | 1
Customer#000000001 | .Mayag.ezR | String contains invalid or unsupported UTF8
(7 rows)

By examining the results,

you can see that there are two messages in the error_reasons column:

Invalid digit, Value '#', Pos @, Type: Integ

These errors are caused by the customer-fw.tbl.log file. The problem is that it is a log file,
not a data file, and should not be loaded. You can use a manifest file to avoid loading the wrong

file.

String contains invalid or unsupported UTF8

The VARCHAR data type supports multibyte UTF-8 characters up to three bytes. If the load data
contains unsupported or invalid characters, you can use the ACCEPTINVCHARS option to replace
each invalid character with a specified alternative character.

Another problem with the load is more difficult to detect—the load produced unexpected results.
To investigate this problem, run the following command to query the CUSTOMER table.

select c_custkey, c_name, c_address

from customer
order by c_custkey
limit 10;

c_custkey |

___________ Fmm e

Cc_name c_address
_________________ oo e e e e — e, —, e, ——————

Step 5: Run the COPY commands

214

Amazon Redshift Database Developer Guide

2 | Customer#000000002 | XSTf4,NCwDVaWNe6tE

2 | Customer#000000002 | XSTf4,NCwDVaWNe6tE

3 | Customer#000000003 | MG9kdTD

3 | Customer#000000003 | MG9kdTD

4 | Customer#000000004 | XxVSJsL

4 | Customer#000000004 | XxVSJsL

5 | Customer#000000005 | KvpyuHCplrB84WgAi

5 | Customer#000000005 | KvpyuHCplrB84WgAi

6 | Customer#000000006 | sKZz@CsnMD7mp4Xd@YrBvx
6 | Customer#000000006 | sKZz@CsnMD7mp4Xd@YrBvx

(10 rows)

The rows should be unique, but there are duplicates.

Another way to check for unexpected results is to verify the number of rows that were loaded. In
our case, 100000 rows should have been loaded, but the load message reported loading 112497
records. The extra rows were loaded because the COPY loaded an extraneous file, customer -
fw.tb1l0000.bak.

In this exercise, you use a manifest file to avoid loading the wrong files.
ACCEPTINVCHARS

By default, when COPY encounters a character that is not supported by the column's data type, it
skips the row and returns an error. For information about invalid UTF-8 characters, see Multibyte
character load errors.

You could use the MAXERRORS option to ignore errors and continue loading, then query
STL_LOAD_ERRORS to locate the invalid characters, and then fix the data files. However,
MAXERRORS is best used for troubleshooting load problems and should generally not be used in a
production environment.

The ACCEPTINVCHARS option is usually a better choice for managing invalid characters.
ACCEPTINVCHARS instructs COPY to replace each invalid character with a specified valid character
and continue with the load operation. You can specify any valid ASCII character, except NULL,

as the replacement character. The default replacement character is a question mark (?). COPY
replaces multibyte characters with a replacement string of equal length. For example, a 4-byte
character would be replaced with '??7??"'.

COPY returns the number of rows that contained invalid UTF-8 characters. It also adds an entry
to the STL_REPLACEMENTS system table for each affected row, up to a maximum of 100 rows per

Step 5: Run the COPY commands 215

Amazon Redshift Database Developer Guide

node slice. Additional invalid UTF-8 characters are also replaced, but those replacement events are
not recorded.

ACCEPTINVCHARS is valid only for VARCHAR columns.
For this step, you add the ACCEPTINVCHARS with the replacement character '~'.
MANIFEST

When you COPY from Amazon S3 using a key prefix, there is a risk that you might load unwanted
tables. For example, the 's3://mybucket/load/ folder contains eight data files that share

the key prefix customer-fw.tbl: customer-fw.tb10000, customer-fw.tbl@001, and so
on. However, the same folder also contains the extraneous files customer-fw.tbl.log and
customer-fw.tbl-0001.bak.

To ensure that you load all of the correct files, and only the correct files, use a manifest file. The
manifest is a text file in JSON format that explicitly lists the unique object key for each source file
to be loaded. The file objects can be in different folders or different buckets, but they must be in
the same region. For more information, see MANIFEST.

The following shows the customer-fw-manifest text.

{
"entries": [
{"url":"s3://<your-bucket-name>/load/customer-fw.tbl-000"},
"url":"s3://<your-bucket-name>/load/customer-fw.tbl-001"},
{"url":"s3://<your-bucket-name>/load/customer-fw.tbl-002"},
"url":"s3://<your-bucket-name>/load/customer-fw.tbl-003"},
{"url":"s3://<your-bucket-name>/load/customer-fw.tbl-004"},
{"url":"s3://<your-bucket-name>/load/customer-fw.tbl-005"},
{"url":"s3://<your-bucket-name>/load/customer-fw.tbl-006"},
{"url":"s3://<your-bucket-name>/load/customer-fw.tbl-007"}
]
}

To load the data for the CUSTOMER table using the manifest file

1. Open the file customer-fw-manifest in a text editor.
2. Replace <your-bucket-name> with the name of your bucket.

3. Save thefile.

Step 5: Run the COPY commands 216

Amazon Redshift Database Developer Guide

4. Upload the file to the load folder on your bucket.
5. Run the following COPY command.

copy customer from 's3://<your-bucket-name>/load/customer-fw-manifest'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'"

fixedwidth 'c_custkey:10, c_name:25, c_address:25, c_city:10, c_nation:15,
c_region :12, c_phone:15,c_mktsegment:10'

maxerror 10

acceptinvchars as '/

manifest;

Load the DWDATE table using DATEFORMAT
In this step, you use the DELIMITER and DATEFORMAT options to load the DWDATE table.

When loading DATE and TIMESTAMP columns, COPY expects the default format, which is YYYY-
MM-DD for dates and YYYY-MM-DD HH:MI:SS for timestamps. If the load data does not use a
default format, you can use DATEFORMAT and TIMEFORMAT to specify the format.

The following excerpt shows date formats in the DWDATE table. Notice that the date formats in
column two are inconsistent.

19920104 1992-01-04 Sunday January 1992 199201 Janl992 1 4 4 1...

19920112 January 12, 1992 Monday January 1992 199201 Janl992 2 12 12 1...

19920120 January 20, 1992 Tuesday January 1992 199201 Janl1992 3 20 20 1...
DATEFORMAT

You can specify only one date format. If the load data contains inconsistent formats, possibly

in different columns, or if the format is not known at load time, you use DATEFORMAT with the
"auto' argument. When 'auto' is specified, COPY recognizes any valid date or time format
and convert it to the default format. The 'auto' option recognizes several formats that are not
supported when using a DATEFORMAT and TIMEFORMAT string. For more information, see Using
automatic recognition with DATEFORMAT and TIMEFORMAT.

To load the DWDATE table, run the following COPY command.

copy dwdate from 's3://<your-bucket-name>/load/dwdate-tab.tbl'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>"
delimiter '\t'

Step 5: Run the COPY commands 217

Amazon Redshift Database Developer Guide

dateformat 'auto';

Load the LINEORDER table using multiple files
This step uses the GZIP and COMPUPDATE options to load the LINEORDER table.

In this exercise, you load the LINEORDER table from a single data file and then load it again from
multiple files. Doing this enables you to compare the load times for the two methods.

(® Note

The files for loading the LINEORDER table are provided in an AWS sample bucket. You don't
need to upload files for this step.

GZIP, LZOP and BZIP2

You can compress your files using either gzip, lzop, or bzip2 compression formats. When loading
from compressed files, COPY uncompresses the files during the load process. Compressing your
files saves storage space and shortens upload times.

COMPUPDATE

When COPY loads an empty table with no compression encodings, it analyzes the load data to
determine the optimal encodings. It then alters the table to use those encodings before beginning
the load. This analysis process takes time, but it occurs, at most, once per table. To save time, you
can skip this step by turning COMPUPDATE off. To enable an accurate evaluation of COPY times,
you turn COMPUPDATE off for this step.

Multiple Files

The COPY command can load data very efficiently when it loads from multiple files in parallel
instead of from a single file. You can split your data into files so that the number of files is a
multiple of the number of slices in your cluster. If you do, Amazon Redshift divides the workload
and distributes the data evenly among the slices. The number of slices per node depends on the
node size of the cluster. For more information about the number of slices that each node size has,
go to About clusters and nodes in the Amazon Redshift Management Guide.

For example, the dc2.large compute nodes used in this tutorial have two slices each, so the four-
node cluster has eight slices. In previous steps, the load data was contained in eight files, even

Step 5: Run the COPY commands 218

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

though the files are very small. In this step, you compare the time difference between loading from
a single large file and loading from multiple files.

The files you use for this tutorial contain about 15 million records and occupy about 1.2 GB. These
files are very small in Amazon Redshift scale, but sufficient to demonstrate the performance
advantage of loading from multiple files. The files are large enough that the time required to
download them and then upload them to Amazon S3 is excessive for this tutorial. Thus, you load
the files directly from an AWS sample bucket.

The following screenshot shows the data files for LINEORDER.

WLELE Create Folder Actions v

All Buckets | load / lo

Name

m linearder-multi tol0000_part_00.0z
@ lineorder-multi tbl0001_part_00.gz
@ lineorder-multi tbl0002_part_00.gz
@ linearder-multitbl0003_part_00.0z
m linearder-multi tbl0004_part_00.0z
@ lineorder-multi tbl0005_part_00.gz
@ lineorder-multi tbl0006_part_00.gz
@ linearder-multi tbl0007_part_00.0z
m linearder-single thl000.gz

To evaluate the performance of COPY with multiple files

1. Run the following command to COPY from a single file. Do not change the bucket name.

copy lineorder from 's3://awssampledb/load/lo/lineorder-single.tbl’
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>"
gzip

compupdate off

region 'us-east-1';

2. Your results should be similar to the following. Note the execution time.

Warnings:

Step 5: Run the COPY commands 219

Amazon Redshift Database Developer Guide

Load into table 'lineorder' completed, 14996734 record(s) loaded successfully.

® row(s) affected.
copy executed successfully

Execution time: 51.56s

3. Run the following command to COPY from multiple files. Do not change the bucket name.

copy lineorder from 's3://awssampledb/load/lo/lineorder-multi.tbl’
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>"
gzip

compupdate off

region 'us-east-1';

4. Your results should be similar to the following. Note the execution time.

Warnings:
Load into table 'lineorder' completed, 14996734 record(s) loaded successfully.

@ row(s) affected.
copy executed successfully

Execution time: 17.7s

5. Compare execution times.

In our example, the time to load 15 million records decreased from 51.56 seconds to 17.7
seconds, a reduction of 65.7 percent.

These results are based on using a four-node cluster. If your cluster has more nodes, the time
savings is multiplied. For typical Amazon Redshift clusters, with tens to hundreds of nodes,
the difference is even more dramatic. If you have a single node cluster, there is little difference
between the execution times.

Next step

Step 6: Vacuum and analyze the database

Step 5: Run the COPY commands 220

Amazon Redshift Database Developer Guide

Step 6: Vacuum and analyze the database

Whenever you add, delete, or modify a significant number of rows, you should run a VACUUM
command and then an ANALYZE command. A vacuum recovers the space from deleted rows and
restores the sort order. The ANALYZE command updates the statistics metadata, which enables
the query optimizer to generate more accurate query plans. For more information, see Vacuuming
tables.

If you load the data in sort key order, a vacuum is fast. In this tutorial, you added a significant
number of rows, but you added them to empty tables. That being the case, there is no need to
resort, and you didn't delete any rows. COPY automatically updates statistics after loading an
empty table, so your statistics should be up-to-date. However, as a matter of good housekeeping,
you complete this tutorial by vacuuming and analyzing your database.

To vacuum and analyze the database, run the following commands.

vacuum;
analyze;

Next step

Step 7: Clean up your resources

Step 7: Clean up your resources

Your cluster continues to accrue charges as long as it is running. When you have completed this
tutorial, you should return your environment to the previous state by following the steps in Step 5:
Revoke access and delete your sample cluster in the Amazon Redshift Getting Started Guide.

If you want to keep the cluster, but recover the storage used by the SSB tables, run the following
commands.

drop table part;

drop table supplier;
drop table customer;
drop table dwdate;
drop table lineorder;

Next

Summary

Step 6: Vacuum and analyze the database 221

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-clean-up-tasks.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-clean-up-tasks.html

Amazon Redshift Database Developer Guide

Summary

In this tutorial, you uploaded data files to Amazon S3 and then used COPY commands to load the
data from the files into Amazon Redshift tables.

You loaded data using the following formats:

o Character-delimited
« CSV
» Fixed-width

You used the STL_LOAD_ERRORS system table to troubleshoot load errors, and then used the
REGION, MANIFEST, MAXERROR, ACCEPTINVCHARS, DATEFORMAT, and NULL AS options to resolve
the errors.

You applied the following best practices for loading data:

Use a COPY command to load data

Loading data files

Use a single COPY command to load from multiple files

Compressing your data files

Verify data files before and after a load

For more information about Amazon Redshift best practices, see the following links:

« Amazon Redshift best practices for loading data

« Amazon Redshift best practices for designing tables

« Amazon Redshift best practices for designing queries

Summary 222

Amazon Redshift Database Developer Guide

Unloading data

Topics

Unloading data to Amazon S3

Unloading encrypted data files

Unloading data in delimited or fixed-width format

Reloading unloaded data

To unload data from database tables to a set of files in an Amazon S3 bucket, you can use the
UNLOAD command with a SELECT statement. You can unload text data in either delimited format
or fixed-width format, regardless of the data format that was used to load it. You can also specify
whether to create compressed GZIP files.

You can limit the access users have to your Amazon S3 bucket by using temporary security
credentials.

Unloading data to Amazon S3

Amazon Redshift splits the results of a select statement across a set of files, one or more files per
node slice, to simplify parallel reloading of the data. Alternatively, you can specify that UNLOAD
should write the results serially to one or more files by adding the PARALLEL OFF option. You

can limit the size of the files in Amazon S3 by specifying the MAXFILESIZE parameter. UNLOAD
automatically encrypts data files using Amazon S3 server-side encryption (SSE-S3).

You can use any select statement in the UNLOAD command that Amazon Redshift supports, except
for a select that uses a LIMIT clause in the outer select. For example, you can use a select statement
that includes specific columns or that uses a where clause to join multiple tables. If your query
contains quotation marks (enclosing literal values, for example), you need to escape them in the
query text (\'). For more information, see the SELECT command reference. For more information

about using a LIMIT clause, see the Usage notes for the UNLOAD command.

For example, the following UNLOAD command sends the contents of the VENUE table to the
Amazon S3 bucket s3://mybucket/tickit/unload/.

unload ('select * from venue')

Unloading data to Amazon S3 223

Amazon Redshift Database Developer Guide

to 's3://mybucket/tickit/unload/venue_"
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’;

The file names created by the previous example include the prefix 'venue_".

venue_0000_part_00
venue_0001_part_00
venue_0002_part_00
venue_0003_part_00

By default, UNLOAD writes data in parallel to multiple files, according to the number of slices in
the cluster. To write data to a single file, specify PARALLEL OFF. UNLOAD writes the data serially,
sorted absolutely according to the ORDER BY clause, if one is used. The maximum size for a data
file is 6.2 GB. If the data size is greater than the maximum, UNLOAD creates additional files, up to
6.2 GB each.

The following example writes the contents VENUE to a single file. Only one file is required because
the file size is less than 6.2 GB.

unload ('select * from venue')

to 's3://mybucket/tickit/unload/venue_"

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
parallel off;

® Note

The UNLOAD command is designed to use parallel processing. We recommend leaving
PARALLEL enabled for most cases, especially if the files will be used to load tables using a
COPY command.

Assuming the total data size for VENUE is 5 GB, the following example writes the contents of
VENUE to 50 files, each 100 MB in size.

unload ('select * from venue')

to 's3://mybucket/tickit/unload/venue_"

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
parallel off

maxfilesize 100 mb;

Unloading data to Amazon S3 224

Amazon Redshift Database Developer Guide

If you include a prefix in the Amazon S3 path string, UNLOAD will use that prefix for the file names.

unload ('select * from venue')
to 's3://mybucket/tickit/unload/venue_"
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’;

You can create a manifest file that lists the unload files by specifying the MANIFEST option in the
UNLOAD command. The manifest is a text file in JSON format that explicitly lists the URL of each
file that was written to Amazon S3.

The following example includes the manifest option.

unload ('select * from venue')

to 's3://mybucket/tickit/venue_"

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
manifest;

The following example shows a manifest for four unload files.

{

"entries": [
{"url":"s3://mybucket/tickit/venue_0000_part_00"},
{"url":"s3://mybucket/tickit/venue_0001_part_00"},
{"url":"s3://mybucket/tickit/venue_0002_part_00"},
{"url":"s3://mybucket/tickit/venue_0003_part_00"}

]

}

The manifest file can be used to load the same files by using a COPY with the MANIFEST option.
For more information, see Using a manifest to specify data files.

After you complete an UNLOAD operation, confirm that the data was unloaded correctly by
navigating to the Amazon S3 bucket where UNLOAD wrote the files. You will see one or more
numbered files per slice, starting with the number zero. If you specified the MANIFEST option, you
will also see a file ending with 'manifest'. For example:

mybucket/tickit/venue_0000_part_00
mybucket/tickit/venue_0001_part_00
mybucket/tickit/venue_0002_part_00
mybucket/tickit/venue_0003_part_00

Unloading data to Amazon S3 225

Amazon Redshift Database Developer Guide

mybucket/tickit/venue_manifest

You can programmatically get a list of the files that were written to Amazon S3 by calling an
Amazon S3 list operation after the UNLOAD completes. You can also query STL_UNLOAD_LOG.

The following query returns the pathname for files that were created by an UNLOAD. The
PG_LAST_QUERY_ID function returns the most recent query.

select query, substring(path,@,40) as path
from stl_unload_log

where query=2320

order by path;

query | path

_______ S
2320 | s3://my-bucket/venue@000_part_00
2320 | s3://my-bucket/venue@00l_part_00
2320 | s3://my-bucket/venue@002_part_00
2320 | s3://my-bucket/venue@003_part_00

(4 rows)

If the amount of data is very large, Amazon Redshift might split the files into multiple parts per
slice. For example:

venue_0000_part_00
venue_0000_part_01
venue_0000_part_02
venue_0001_part_00
venue_0001_part_01
venue_0001_part_02

The following UNLOAD command includes a quoted string in the select statement, so the
quotation marks are escaped (=\'OH\' ').

unload ('select venuename, venuecity from venue where venuestate=\'OH\' ')
to 's3://mybucket/tickit/venue/ '
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’;

By default, UNLOAD will fail rather than overwrite existing files in the destination bucket. To
overwrite the existing files, including the manifest file, specify the ALLOWOVERWRITE option.

Unloading data to Amazon S3 226

Amazon Redshift Database Developer Guide

unload ('select * from venue')

to 's3://mybucket/venue_pipe_'

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
manifest

allowoverwrite;

Unloading encrypted data files

UNLOAD automatically creates files using Amazon S3 server-side encryption with AWS-
managed encryption keys (SSE-S3). You can also specify server-side encryption with an AWS
Key Management Service key (SSE-KMS) or client-side encryption with a customer managed key.
UNLOAD doesn't support Amazon S3 server-side encryption using a customer managed key. For
more information, see Protecting data using server-side encryption.

To unload to Amazon S3 using server-side encryption with an AWS KMS key, use the KMS_KEY_ID
parameter to provide the key ID as shown in the following example.

unload ('select venuename, venuecity from venue')

to 's3://mybucket/encrypted/venue_'

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole"
KMS_KEY_ID '1234abcd-12ab-34cd-56ef-1234567890@ab'
encrypted;

If you want to provide your own encryption key, you can create client-side encrypted data files in
Amazon S3 by using the UNLOAD command with the ENCRYPTED option. UNLOAD uses the same
envelope encryption process that Amazon S3 client-side encryption uses. You can then use the
COPY command with the ENCRYPTED option to load the encrypted files.

The process works like this:

1. You create a base64 encoded 256-bit AES key that you will use as your private encryption key, or
root symmetric key.

2. You issue an UNLOAD command that includes your root symmetric key and the ENCRYPTED
option.

3. UNLOAD generates a one-time-use symmetric key (called the envelope symmetric key) and an
initialization vector (IV), which it uses to encrypt your data.

4. UNLOAD encrypts the envelope symmetric key using your root symmetric key.

Unloading encrypted data files 227

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

Amazon Redshift Database Developer Guide

5. UNLOAD then stores the encrypted data files in Amazon S3 and stores the encrypted envelope
key and IV as object metadata with each file. The encrypted envelope key is stored as object
metadata x-amz-meta-x-amz-key and the IV is stored as object metadata x-amz-meta-x-

amz-1iv.

For more information about the envelope encryption process, see the Client-side data encryption
with the AWS SDK for Java and Amazon S3 article.

To unload encrypted data files, add the root key value to the credentials string and include the
ENCRYPTED option. If you use the MANIFEST option, the manifest file is also encrypted.

unload ('select venuename, venuecity from venue')

to 's3://mybucket/encrypted/venue_'

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
master_symmetric_key '<root_key>'

manifest

encrypted;

To unload encrypted data files that are GZIP compressed, include the GZIP option along with the
root key value and the ENCRYPTED option.

unload ('select venuename, venuecity from venue')
to 's3://mybucket/encrypted/venue_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’

master_symmetric_key '<root_key>'
encrypted gzip;

To load the encrypted data files, add the MASTER_SYMMETRIC_KEY parameter with the same root
key value and include the ENCRYPTED option.

copy venue from 's3://mybucket/encrypted/venue_
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole"
master_symmetric_key '<root_key>'

encrypted;

Unloading data in delimited or fixed-width format

You can unload data in delimited format or fixed-width format. The default output is pipe-
delimited (using the '|' character).

Unloading data in delimited or fixed-width format 228

https://aws.amazon.com/articles/2850096021478074
https://aws.amazon.com/articles/2850096021478074

Amazon Redshift Database Developer Guide

The following example specifies a comma as the delimiter:

unload ('select * from venue')

to 's3://mybucket/tickit/venue/comma’

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
delimiter ',"';

The resulting output files look like this:

20,Air Canada Centre,Toronto,ON,

60,Rexall Place,Edmonton,AB,Q

100,U.S. Cellular Field,Chicago, IL, 40615
200,A1 Hirschfeld Theatre,New York City,NY,0
240,San Jose Repertory Theatre,San Jose,CA,0
300,Kennedy Center Opera House,Washington,DC,0

To unload the same result set to a tab-delimited file, issue the following command:

unload ('select * from venue')

to 's3://mybucket/tickit/venue/tab'’

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole"
delimiter as '\t';

Alternatively, you can use a FIXEDWIDTH specification. This specification consists of an identifier
for each table column and the width of the column (number of characters). The UNLOAD command
will fail rather than truncate data, so specify a width that is at least as long as the longest entry for
that column. Unloading fixed-width data works similarly to unloading delimited data, except that
the resulting output contains no delimiting characters. For example:

unload ('select * from venue')

to 's3://mybucket/tickit/venue/fw'

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’
fixedwidth '0:3,1:100,2:30,3:2,4:6";

The fixed-width output looks like this:

20 Air Canada Centre Toronto ONO
60 Rexall Place Edmonton ABO

Unloading data in delimited or fixed-width format 229

Amazon Redshift Database Developer Guide

100U.S. Cellular Field Chicago IL40615
200A1 Hirschfeld Theatre New York CityNYO
240San Jose Repertory TheatreSan Jose CAQ

300Kennedy Center Opera HouseWashington DCO

For more details about FIXEDWIDTH specifications, see the UNLOAD command.

Reloading unloaded data

To reload the results of an unload operation, you can use a COPY command.

The following example shows a simple case in which the VENUE table is unloaded using a manifest
file, truncated, and reloaded.

unload ('select * from venue order by venueid')

to 's3://mybucket/tickit/venue/reload_"'

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole"
manifest

delimiter '|';

truncate venue;

copy venue

from 's3://mybucket/tickit/venue/reload_manifest'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole’

manifest
delimiter '|';

After it is reloaded, the VENUE table looks like this:

select * from venue order by venueid limit 5;

venueid | venuename | venuecity | venuestate | venueseats
————————— el e e e
1 | Toyota Park | Bridgeview | IL | 0
2 | Columbus Crew Stadium | Columbus | OH | 0
3 | RFK Stadium | Washington | DC | 0
4 | CommunityAmerica Ballpark | Kansas City | KS | 0
5 | Gillette Stadium | Foxborough | MA | 68756
(5 rows)

Reloading unloaded data 230

Amazon Redshift Database Developer Guide

Creating user-defined functions

You can create a custom scalar user-defined function (UDF) using either a SQL SELECT clause or

a Python program. The new function is stored in the database and is available for any user with
sufficient privileges to run. You run a custom scalar UDF in much the same way as you run existing
Amazon Redshift functions.

For Python UDFs, in addition to using the standard Python functionality, you can import your own
custom Python modules. For more information, see Python language support for UDFs. Note that

Python 3 isn't available for Python UDFs. To get Python 3 support for Amazon Redshift UDFs, use
Creating a scalar Lambda UDF instead.

You can also create AWS Lambda UDFs that use custom functions defined in Lambda as part of
your SQL queries. Lambda UDFs enable you to write complex UDFs and integrate with third-party
components. They also can help you overcome some of the limitations of current Python and

SQL UDFs. For example, they can help you access network and storage resources and write more
full-fledged SQL statements. You can create Lambda UDFs in any of the programming languages
supported by Lambda, such as Java, Go, PowerShell, Node.js, C#, Python, and Ruby. Or you can use
a custom runtime.

By default, all users can run UDFs. For more information about privileges, see UDF security and
privileges.

Topics
« UDF security and privileges
» Creating a scalar SQL UDF

« Naming UDFs

» Creating a scalar Python UDF

» Creating a scalar Lambda UDF

» Example uses of user-defined functions (UDFs)

UDF security and privileges

To create a UDF, you must have permission for usage on language for SQL or plpythonu (Python).
By default, USAGE ON LANGUAGE SQL is granted to PUBLIC, but you must explicitly grant USAGE
ON LANGUAGE PLPYTHONU to specific users or groups.

UDF security and privileges 231

Amazon Redshift Database Developer Guide

To revoke usage for SQL, first revoke usage from PUBLIC. Then grant usage on SQL only to the
specific users or groups permitted to create SQL UDFs. The following example revokes usage on
SQL from PUBLIC. Then it grants usage to the user group udf_devs.

revoke usage on language sql from PUBLIC;
grant usage on language sql to group udf_devs;

To run a UDF, you must have permission to do so for each function. By default, permission to run
new UDFs is granted to PUBLIC. To restrict usage, revoke this permission from PUBLIC for the
function. Then grant the privilege to specific individuals or groups.

The following example revokes execution on function f_py_greater from PUBLIC. Then it grants
usage to the user group udf_devs.

revoke execute on function f_py_greater(a float, b float) from PUBLIC;
grant execute on function f_py_greater(a float, b float) to group udf_devs;

Superusers have all privileges by default.

For more information, see GRANT and REVOKE.

Creating a scalar SQL UDF

A scalar SQL UDF incorporates a SQL SELECT clause that runs when the function is called and
returns a single value. The CREATE FUNCTION command defines the following parameters:

« (Optional) Input arguments. Each argument must have a data type.
« One return data type.

« One SQL SELECT clause. In the SELECT clause, refer to the input arguments using $1, $2, and so
on, according to the order of the arguments in the function definition.
The input and return data types can be any standard Amazon Redshift data type.

Don't include a FROM clause in your SELECT clause. Instead, include the FROM clause in the SQL
statement that calls the SQL UDF.

The SELECT clause can't include any of the following types of clauses:

« FROM

Creating a scalar SQL UDF 232

Amazon Redshift Database Developer Guide

« INTO
WHERE
GROUP BY
ORDER BY
LIMIT

Scalar SQL function example

The following example creates a function that compares two numbers and returns the larger value.
For more information, see CREATE FUNCTION.

create function f_sql_greater (float, float)
returns float
stable

as $$
select case when $1 > $2 then $1
else $2
end
$$ language sql;

The following query calls the new f_sql_greater function to query the SALES table and return
either COMMISSION or 20 percent of PRICEPAID, whichever is greater.

select f_sqgl_greater(commission, pricepaid*0.20) from sales;

Naming UDFs

You can avoid potential conflicts and unexpected results considering your UDF naming conventions
before implementation. Because function names can be overloaded, they can collide with existing
and future Amazon Redshift function names. This topic discusses overloading and presents a
strategy for avoiding conflict.

Overloading function names

A function is identified by its name and signature, which is the number of input arguments and the
data types of the arguments. Two functions in the same schema can have the same name if they
have different signatures. In other words, the function names can be overloaded.

Scalar SQL function example 233

Amazon Redshift Database Developer Guide

When you run a query, the query engine determines which function to call based on the number of
arguments you provide and the data types of the arguments. You can use overloading to simulate
functions with a variable number of arguments, up to the limit allowed by the CREATE FUNCTION
command.

Preventing UDF naming conflicts

We recommend that you name all UDFs using the prefix f_. Amazon Redshift reserves the f_
prefix exclusively for UDFs and by prefixing your UDF names with f_, you ensure that your UDF
name won't conflict with any existing or future Amazon Redshift built-in SQL function names. For
example, by naming a new UDF f_sum, you avoid conflict with the Amazon Redshift SUM function.
Similarly, if you name a new function f_fibonacci, you avoid conflict if Amazon Redshift adds a
function named FIBONACCI in a future release.

You can create a UDF with the same name and signature as an existing Amazon Redshift built-in
SQL function without the function name being overloaded if the UDF and the built-in function
exist in different schemas. Because built-in functions exist in the system catalog schema,
pg_catalog, you can create a UDF with the same name in another schema, such as public or a user-
defined schema. In some cases, you might call a function that is not explicitly qualified with a
schema name. If so, Amazon Redshift searches the pg_catalog schema first by default. Thus, a
built-in function runs before a new UDF with the same name.

You can change this behavior by setting the search path to place pg_catalog at the end. If you

do so, your UDFs take precedence over built-in functions, but the practice can cause unexpected
results. Adopting a unique naming strategy, such as using the reserved prefix f_, is a more reliable
practice. For more information, see SET and search_path.

Creating a scalar Python UDF

A scalar Python UDF incorporates a Python program that runs when the function is called and
returns a single value. The CREATE FUNCTION command defines the following parameters:

o (Optional) Input arguments. Each argument must have a name and a data type.
o One return data type.

« One executable Python program.

The input and return data types can be SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE
PRECISION, BOOLEAN, CHAR, VARCHAR, DATE, or TIMESTAMP. In addition, Python UDFs can use

Preventing UDF naming conflicts 234

Amazon Redshift Database Developer Guide

the data type ANYELEMENT, which Amazon Redshift automatically converts to a standard data
type based on the arguments supplied at runtime. For more information, see ANYELEMENT data

type

When an Amazon Redshift query calls a scalar UDF, the following steps occur at runtime:
1. The function converts the input arguments to Python data types.

For a mapping of Amazon Redshift data types to Python data types, see Python UDF data types.

2. The function runs the Python program, passing the converted input arguments.

3. The Python code returns a single value. The data type of the return value must correspond to
the RETURNS data type specified by the function definition.

4. The function converts the Python return value to the specified Amazon Redshift data type, then
returns that value to the query.

(® Note

Python 3 isn't available for Python UDFs. To get Python 3 support for Amazon Redshift
UDFs, use Creating a scalar Lambda UDF instead.

Scalar Python UDF example

The following example creates a function that compares two numbers and returns the larger
value. Note that the indentation of the code between the double dollar signs ($$) is a Python
requirement. For more information, see CREATE FUNCTION.

create function f_py_greater (a float, b float)
returns float
stable
as $$
if a > b:
return a
return b
$$ language plpythonu;

The following query calls the new f_greater function to query the SALES table and return either
COMMISSION or 20 percent of PRICEPAID, whichever is greater.

Scalar Python UDF example 235

Amazon Redshift Database Developer Guide

select f_py_greater (commission, pricepaid*0.20) from sales;

Python UDF data types

Python UDFs can use any standard Amazon Redshift data type for the input arguments and

the function's return value. In addition to the standard data types, UDFs support the data type
ANYELEMENT, which Amazon Redshift automatically converts to a standard data type based on
the arguments supplied at runtime. Scalar UDFs can return a data type of ANYELEMENT. For more
information, see ANYELEMENT data type.

During execution, Amazon Redshift converts the arguments from Amazon Redshift data types to
Python data types for processing. It then converts the return value from the Python data type to
the corresponding Amazon Redshift data type. For more information about Amazon Redshift data

types, see Data types.

The following table maps Amazon Redshift data types to Python data types.

Amazon Redshift data type Python data type
smallint int
integer

bigint

short

long

decimal or numeric decimal
double float
real

boolean bool
char string
varchar

Python UDF data types 236

Amazon Redshift Database Developer Guide

Amazon Redshift data type Python data type
timestamp datetime
ANYELEMENT data type

ANYELEMENT is a polymorphic data type. This means that if a function is declared using
ANYELEMENT for an argument's data type, the function can accept any standard Amazon Redshift
data type as input for that argument when the function is called. The ANYELEMENT argument is
set to the data type actually passed to it when the function is called.

If a function uses multiple ANYELEMENT data types, they must all resolve to the same actual

data type when the function is called. All ANYELEMENT argument data types are set to the actual
data type of the first argument passed to an ANYELEMENT. For example, a function declared as
f_equal(anyelement, anyelement) will take any two input values, so long as they are of the
same data type.

If the return value of a function is declared as ANYELEMENT, at least one input argument must
be ANYELEMENT. The actual data type for the return value is the same as the actual data type
supplied for the ANYELEMENT input argument.

Python language support for UDFs

You can create a custom UDF based on the Python programming language. The Python 2.7
standard library is available for use in UDFs, with the exception of the following modules:

 ScrolledText
o Tix

« Tkinter

o tk

 turtle

« smtpd

In addition to the Python Standard Library, the following modules are part of the Amazon Redshift
implementation:

e numpy 1.8.2

ANYELEMENT data type 237

https://docs.python.org/2/library/index.html
https://docs.python.org/2/library/index.html
http://www.numpy.org/

Amazon Redshift Database Developer Guide

e pandas 0.14.1
python-dateutil 2.2

pytz 2014.7

scipy 0.12.1
six 1.3.0

wsgiref 0.1.2

You can also import your own custom Python modules and make them available for use in UDFs
by executing a CREATE LIBRARY command. For more information, see Importing custom Python

library modules.

/A Important

Amazon Redshift blocks all network access and write access to the file system through
UDFs.

(® Note

Python 3 isn't available for Python UDFs. To get Python 3 support for Amazon Redshift
UDFs, use Creating a scalar Lambda UDF instead.

Importing custom Python library modules

You define scalar functions using Python language syntax. You can use the Python Standard
Library modules and Amazon Redshift preinstalled modules. You can also create your own custom
Python library modules and import the libraries into your clusters, or use existing libraries from
Python or third parties.

You cannot create a library that contains a module with the same name as a Python Standard
Library module or an Amazon Redshift preinstalled Python module. If an existing user-installed
library uses the same Python package as a library you create, you must drop the existing library
before installing the new library.

You must be a superuser or have USAGE ON LANGUAGE plpythonu privilege to install custom
libraries; however, any user with sufficient privileges to create functions can use the installed

Python language support 238

https://pandas.pydata.org/
https://dateutil.readthedocs.org/en/latest/
https://pypi.org/project/pytz/2014.7/
https://www.scipy.org/
https://pypi.org/project/six/1.3.0/
https://pypi.python.org/pypi/wsgiref

Amazon Redshift Database Developer Guide

libraries. You can query the PG_LIBRARY system catalog to view information about the libraries
installed on your cluster.

To import a custom Python module into your cluster

This section provides an example of importing a custom Python module into your cluster. To
perform the steps in this section, you must have an Amazon S3 bucket, where you upload the
library package. You then install the package in your cluster. For more information about creating
buckets, go to Creating a bucket in the Amazon Simple Storage Service User Guide.

In this example, let's suppose that you create UDFs to work with positions and distances in your
data. Connect to your Amazon Redshift cluster from a SQL client tool, and run the following
commands to create the functions.

CREATE FUNCTION f_distance (x1 float, yl float, x2 float, y2 float) RETURNS float
IMMUTABLE as $$
def distance(xl, yl, x2, y2):
import math
return math.sqrt((y2 - yl) ** 2 + (x2 - x1) ** 2)

return distance(x1l, yl, x2, y2)
$$ LANGUAGE plpythonu;

CREATE FUNCTION f_within_range (x1 float, yl float, x2 float, y2 float) RETURNS bool
IMMUTABLE as $$
def distance(xl, yl, x2, y2):
import math
return math.sqrt((y2 - yl) ** 2 + (x2 - x1) ** 2)

return distance(x1l, yl, x2, y2) < 20
$$ LANGUAGE plpythonu;

Note that a few lines of code are duplicated in the previous functions. This duplication is necessary
because a UDF cannot reference the contents of another UDF, and both functions require the same
functionality. However, instead of duplicating code in multiple functions, you can create a custom
library and configure your functions to use it.

To do so, first create the library package by following these steps:

1. Create a folder named geometry. This folder is the top level package of the library.

Python language support 239

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/CreatingaBucket.html

Amazon Redshift Database Developer Guide

2. In the geometry folder, create a file named __init__.py. Note that the file name contains two
double underscore characters. This file indicates to Python that the package can be initialized.

3. Also in the geometry folder, create a folder named trig. This folder is the subpackage of the
library.

4. In the trig folder, create another file named __init__.py and a file named line. py. In this
folder, __init__.py indicates to Python that the subpackage can be initialized and that
line.py is the file that contains library code.

Your folder and file structure should be the same as the following:

geometry/
_init__.py
trig/
_init__.py
line.py

For more information about package structure, go to Modules in the Python tutorial on the
Python website.

5. The following code contains a class and member functions for the library. Copy and paste it into
line.py.

class LineSegment:
def __init_ (self, x1, yl, x2, y2):

self.x1 = x1
self.yl =yl
self.x2 = x2
self.y2 = y2

def angle(self):
import math
return math.atan2(self.y2 - self.yl, self.x2 - self.xl)
def distance(self):
import math
return math.sqrt((self.y2 - self.yl) ** 2 + (self.x2 - self.xl) ** 2)

After you have created the package, do the following to prepare the package and upload it to
Amazon S3.

Python language support 240

https://docs.python.org/2/tutorial/modules.html

Amazon Redshift Database Developer Guide

1. Compress the contents of the geometry folder into a .zip file named geometry.zip. Do not
include the geometry folder itself; only include the contents of the folder as shown following:

geometry.zip
_init__.py
trig/
_init__.py
line.py

2. Upload geometry.zip to your Amazon S3 bucket.

/A Important

If the Amazon S3 bucket does not reside in the same region as your Amazon Redshift
cluster, you must use the REGION option to specify the region in which the data is
located. For more information, see CREATE LIBRARY.

3. From your SQL client tool, run the following command to install the library. Replace
<bucket_name> with the name of your bucket, and replace <access key id>and <secret
key> with an access key and secret access key from your AWS Identity and Access Management
(IAM) user credentials.

CREATE LIBRARY geometry LANGUAGE plpythonu FROM 's3://<bucket_name>/geometry.zip'
CREDENTIALS 'aws_access_key_id=<access key id>;aws_secret_access_key=<secret key>';

After you install the library in your cluster, you need to configure your functions to use the library.
To do this, run the following commands.

CREATE OR REPLACE FUNCTION f_distance (x1 float, yl float, x2 float, y2 float) RETURNS
float IMMUTABLE as $$
from trig.line import LineSegment

return LineSegment(x1l, yl, x2, y2).distance()
$$ LANGUAGE plpythonu;

CREATE OR REPLACE FUNCTION f_within_range (x1 float, yl float, x2 float, y2 float)
RETURNS bool IMMUTABLE as $$

from trig.line import LineSegment

return LineSegment(x1, yl, x2, y2).distance() < 20

Python language support 241

Amazon Redshift Database Developer Guide

$$ LANGUAGE plpythonu;

In the preceding commands, import trig/line eliminates the duplicated code from the original
functions in this section. You can reuse the functionality provided by this library in multiple UDFs.
Note that to import the module, you only need to specify the path to the subpackage and module
name (trig/line).

UDF constraints

Within the constraints listed in this topic, you can use UDFs anywhere you use the Amazon Redshift
built-in scalar functions. For more information, see SQL functions reference.

Amazon Redshift Python UDFs have the following constraints:

« Python UDFs cannot access the network or read or write to the file system.
« The total size of user-installed Python libraries cannot exceed 100 MB.

« The number of Python UDFs that can run concurrently per cluster is limited to one-fourth
of the total concurrency level for the cluster. For example, if the cluster is configured with a
concurrency of 15, a maximum of three UDFs can run concurrently. After the limit is reached,
UDFs are queued for execution within workload management queues. SQL UDFs don't have a
concurrency limit. For more information, see Implementing workload management.

« When using Python UDFs, Amazon Redshift doesn't support the SUPER and HLLSKETCH data
types.

Logging errors and warnings in UDFs

You can use the Python logging module to create user-defined error and warning messages in your
UDFs. Following query execution, you can query the SVL_UDF_LOG system view to retrieve logged

messages.

® Note

UDF logging consumes cluster resources and might affect system performance. We
recommend implementing logging only for development and troubleshooting.

During query execution, the log handler writes messages to the SVL_UDF_LOG system view, along
with the corresponding function name, node, and slice. The log handler writes one row to the

UDF constraints 242

Amazon Redshift Database Developer Guide

SVL_UDF_LOG per message, per slice. Messages are truncated to 4096 bytes. The UDF log is limited
to 500 rows per slice. When the log is full, the log handler discards older messages and adds a
warning message to SVL_UDF_LOG.

® Note

The Amazon Redshift UDF log handler escapes newlines (\n), pipe (|) characters, and
backslash (\) characters with a backslash (\) character.

By default, the UDF log level is set to WARNING. Messages with a log level of WARNING, ERROR,
and CRITICAL are logged. Messages with lower severity INFO, DEBUG, and NOTSET are ignored. To
set the UDF log level, use the Python logger method. For example, the following sets the log level
to INFO.

logger.setLevel(logging.INFOQ)

For more information about using the Python logging module, see Logging facility for Python in
the Python documentation.

The following example creates a function named f_pyerror that imports the Python logging
modaule, instantiates the logger, and logs an error.

CREATE OR REPLACE FUNCTION f_pyerroxr()
RETURNS INTEGER
VOLATILE AS

$$
import logging

logger = logging.getlLogger()
logger.setlLevel(logging.INFO)
logger.info('Your info message here')
return 0

$$ language plpythonu;

The following example queries SVL_UDF_LOG to view the message logged in the previous example.

select funcname, node, slice, trim(message) as message
from svl_udf_log;

Logging errors and warnings 243

https://docs.python.org/2.7/library/logging.html

Amazon Redshift Database Developer Guide

funcname | query | node | slice | message
———————————— R e i e e e 2

f_pyerror | 12345 | 1] 1 | Your info message here

Creating a scalar Lambda UDF

Amazon Redshift can use custom functions defined in AWS Lambda as part of SQL queries. You can
write scalar Lambda UDFs in any programming languages supported by Lambda, such as Java, Go,
PowerShell, Node.js, C#, Python, and Ruby. Or you can use a custom runtime.

Lambda UDFs are defined and managed in Lambda, and you can control the access privileges to
invoke these UDFs in Amazon Redshift. You can invoke multiple Lambda functions in the same
query or invoke the same function multiple times.

Use Lambda UDFs in any clauses of the SQL statements where scalar functions are supported. You
can also use Lambda UDFs in any SQL statement such as SELECT, UPDATE, INSERT, or DELETE.

(® Note

Using Lambda UDFs can incur additional charges from the Lambda service. Whether it does
so depends on factors such as the numbers of Lambda requests (UDF invocations) and the
total duration of the Lambda program execution. However, there is no additional charge

to use Lambda UDFs in Amazon Redshift. For information about AWS Lambda pricing, see
AWS Lambda Pricing.

The number of Lambda requests varies depending on the specific SQL statement clause

where the Lambda UDF is used. For example, suppose the function is used in a WHERE
clause such as the following.

SELECT a, b FROM t1 WHERE lambda_multiply(a, b) = 64; SELECT a, b
FROM t1 WHERE a*b = lambda_multiply(2, 32)

In this case, Amazon Redshift calls the first SELECT statement for each and calls the second
SELECT statement only once.

However, using a UDF in the projection part of the query might only invoke the Lambda
function once for every qualified or aggregated row in the result set.

Registering a Lambda UDF

The CREATE EXTERNAL FUNCTION command creates the following parameters:

Creating a scalar Lambda UDF 244

https://aws.amazon.com/lambda/pricing

Amazon Redshift Database Developer Guide

» (Optional) A list of arguments with data type.

One return data type.

One function name of the external function that is called by Amazon Redshift.

One IAM role that the Amazon Redshift cluster is authorized to assume and call to Lambda.

One Lambda function name that the Lambda UDF invokes.

For information about CREATE EXTERNAL FUNCTION, see CREATE EXTERNAL FUNCTION.

The input and return data types for this function can be any standard Amazon Redshift data type.

Amazon Redshift ensures that the external function can send and receive batched arguments and
results.

Managing Lambda UDF security and privileges

To create a Lambda UDF, make sure that you have permissions for usage on the LANGUAGE
EXFUNC. You must explicitly grant USAGE ON LANGUAGE EXFUNC or revoke USAGE ON
LANGUAGE EXFUNC to specific users, groups, or public.

The following example grants usage on EXFUNC to PUBLIC.

grant usage on language exfunc to PUBLIC;

The following example revokes usage on exfunc from PUBLIC and then grants usage to the user
group lambda_udf_devs.

revoke usage on language exfunc from PUBLIC;
grant usage on language exfunc to group lambda_udf_devs;

To run a Lambda UDF, make sure that you have permission for each function called. By default,
permission to run new Lambda UDFs is granted to PUBLIC. To restrict usage, revoke this permission
from PUBLIC for the function. Then, grant the privilege to specific users or groups.

The following example revokes execution on the function exfunc_sum from PUBLIC. Then, it grants
usage to the user group lambda_udf_devs.

revoke execute on function exfunc_sum(int, int) from PUBLIC;
grant execute on function exfunc_sum(int, int) to group lambda_udf_devs;

Managing Lambda UDF security and privileges 245

Amazon Redshift Database Developer Guide

Superusers have all privileges by default.

For more information about granting and revoking privileges, see GRANT and REVOKE.

Configuring the authorization parameter for Lambda UDFs

The CREATE EXTERNAL FUNCTION command requires authorization to invoke Lambda functions in
AWS Lambda. To start authorization, specify an AWS Identity and Access Management (IAM) role
when you run the CREATE EXTERNAL FUNCTION command. For more information about IAM roles,
see |IAM roles in the IAM User Guide.

If there is an existing IAM role with permissions to invoke Lambda functions attached to your
cluster, then you can substitute your role Amazon Resource Name (ARN) in the IAM_ROLE
parameter for the command. Following sections describe the steps for using an IAM role in the
CREATE EXTERNAL FUNCTION command.

Creating an IAM role for Lambda

The IAM role requires permission to invoke Lambda functions. While creating the 1AM role, provide
the permission in one of the following ways:

« Attach the AWSLambdaRole policy on the Attach permissions policy page while creating an IAM
role. The AWSLambdaRole policy grants permissions to invoke Lambda functions which is the
minimal requirement. For more information and other policies, see Identity-based IAM policies
for AWS Lambda in the AWS Lambda Developer Guide.

» Create your own custom policy to attach to your IAM role with the 1ambda: InvokeFunction
permission of either all resources or a particular Lambda function with the ARN of that function.
For more information on how to create a policy, see Creating IAM policies in the IAM User Guide.

The following example policy enables invoking Lambda on a particular Lambda function.

"Version": "2012-10-17",
"Statement": [
{
"Sid": "Invoke",
"Effect": "Allow",
"Action": [
"lambda:InvokeFunction"

1,

Configuring the authorization parameter for Lambda UDFs 246

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-identity-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-identity-based.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Redshift Database Developer Guide

"Resource": "arn:aws:lambda:us-west-2:123456789012:function:my-function"

For more information on resources for Lambda functions, see Resources and conditions for
Lambda actions in the IJAM API Reference.

After creating your custom policy with the required permissions, you can attach your policy to
the IAM role on the Attach permissions policy page while creating an IAM role.

For steps to create an IAM role, see Authorizing Amazon Redshift to access other AWS services on

your behalf in the Amazon Redshift Management Guide.

If you don't want to create a new IAM role, you can add the permissions mentioned previously to
your existing 1AM role.

Associating an IAM role with the cluster

Attach the IAM role to your cluster. You can add a role to a cluster or view the roles associated with
a cluster by using the Amazon Redshift Management Console, CLI, or API. For more information,
see Associating an IAM Role With a Cluster in the Amazon Redshift Management Guide.

Including the IAM role in the command

Include the IAM role ARN in the CREATE EXTERNAL FUNCTION command. When you create an IAM
role, IAM returns an Amazon Resource Name (ARN) for the role. To specify an IAM role, provide
the role ARN with the TAM_ROLE parameter. The following shows the syntax for the IAM_ROLE
parameter.

IAM_ROLE 'arn:aws:iam::aws-account-id:role/role-name'

To invoke Lambda functions which reside in other accounts within the same Region, see Chaining
IAM roles in Amazon Redshift.

Using the JSON interface between Amazon Redshift and AWS Lambda

Amazon Redshift uses a common interface for all Lambda functions that Amazon Redshift
communicates to.

Using the JSON interface between Amazon Redshift and Lambda 247

https://docs.aws.amazon.com/lambda/latest/dg/lambda-api-permissions-ref.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-api-permissions-ref.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-chaining-roles.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-chaining-roles.html

Amazon Redshift

Database Developer Guide

The following table shows the list of input fields that the designated Lambda functions that you
can expect for the JSON payload.

Field name

request_id

cluster

user

database

external_
function

query_id

num_recor

ds

arguments

Description

A universally unique
identifier (UUID) that
uniquely identifies
each invoke request.

The full Amazon
Resource Name (ARN)
of the cluster.

The name of the user
that makes the call.

The name of the
database that the
query is running on.

The fully qualified
name of the external
function that makes
the call.

The query ID of the
query that is making
the call.

The number of
arguments in the
payload.

The data payload in
the specified format.

Value range

A valid UUID.

A valid cluster ARN.

A valid user name.

A valid database name.

A valid fully qualified function name.

A valid query ID.

A value of 1 - 2/64.

The data in array format must be a JSON array. Each
element is a record that is an array if the number of
arguments is larger than 1. By using an array, Amazon

Using the JSON interface between Amazon Redshift and Lambda

248

Amazon Redshift Database Developer Guide

Field name Description Value range

Redshift preserves the order of the records in the
payload.

The order of the JSON array determines the order of batch processing. The Lambda function must

process the arguments iteratively and produce the exact number of records. The following is an
example of a payload.

{
"request_id" : "23FF1F97-F28A-44AA-AB67-266ED976BF40",
"cluster" : "arn:aws:redshift:xxxx",
"user" : "adminuser",
"database" : "dbl",
"external_function": "public.foo",
"query_id" : 5678234,
"num_records" : 4,
"arguments" : [
[1, 21,
[3, null],
null,
[4, 6]
]
}

The return output of the Lambda function contains the following fields.

Field name Description Value range

success The indication of A value of "true" or "false".
success or failure for
the function.

error_msg The error message A valid message.
if the success value
is "false" (if the
function fails);
otherwise, this field is
ignored.

Using the JSON interface between Amazon Redshift and Lambda

249

Amazon Redshift Database Developer Guide

Field name Description Value range
num_recor The number of records A value of 1 - 27264.
ds in the payload.

results The results of the call N/A

in the specified format.

The following is an example of the Lambda function output.

"success": true, // true indicates the call succeeded

"error_msg" : "my function isn't working", // shall only exist when success != true
"num_records": 4, // number of records in this payload

"results" : [

When you call Lambda functions from SQL queries, Amazon Redshift ensures the security of the
connection with the following considerations:

« GRANT and REVOKE permissions. For more information about UDF security and privileges, see
UDF security and privileges.

« Amazon Redshift only submits the minimum set of data to the designated Lambda function.

« Amazon Redshift only calls the designated Lambda function with the designated IAM role.

Example uses of user-defined functions (UDFs)

You can use user-defined functions to solve business problems by integrating Amazon Redshift
with other components. Following are some examples of how others have used UDFs for their use
cases:

« Accessing external components using Amazon Redshift Lambda UDFs — describes how Amazon
Redshift Lambda UDFs work and walks through creating a Lambda UDF.

Example uses of UDFs 250

https://aws.amazon.com/blogs/big-data/accessing-external-components-using-amazon-redshift-lambda-udfs/

Amazon Redshift

Database Developer Guide

Translate and analyze text using SQL functions with Amazon Redshift, Amazon Translate, and
Amazon Comprehend - provides prebuilt Amazon Redshift Lambda UDFs that you can install
with a few clicks to translate, redact, and analyze text fields.

Access Amazon Location Service from Amazon Redshift — describes how to use Amazon Redshift
Lambda UDFs to integrate with Amazon Location Service.

Data Tokenization with Amazon Redshift and Protegrity — describes how to integrate Amazon
Redshift Lambda UDFs with the Protegrity Serverless product.

Amazon Redshift UDFs — a collection of Amazon Redshift SQL, Lambda, and Python UDFs.

Example uses of UDFs 251

https://aws.amazon.com/blogs/machine-learning/translate-and-analyze-text-using-sql-functions-with-amazon-redshift-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-and-analyze-text-using-sql-functions-with-amazon-redshift-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/big-data/access-amazon-location-service-from-amazon-redshift/
https://aws.amazon.com/blogs/apn/data-tokenization-with-amazon-redshift-and-protegrity/
https://github.com/aws-samples/amazon-redshift-udfs

Amazon Redshift Database Developer Guide

Creating stored procedures in Amazon Redshift

You can define an Amazon Redshift stored procedure using the PostgreSQL procedural language
PL/pgSQL to perform a set of SQL queries and logical operations. The procedure is stored in the
database and available for any user with sufficient database privileges.

Unlike a user-defined function (UDF), a stored procedure can incorporate data definition language
(DDL) and data manipulation language (DML) in addition to SELECT queries. A stored procedure
doesn't need to return a value. You can use procedural language, including looping and conditional
expressions, to control logical flow.

For details about SQL commands to create and manage stored procedures, see the following
command topics:

e CREATE PROCEDURE

e ALTER PROCEDURE

« DROP PROCEDURE

« SHOW PROCEDURE

. CALL

e GRANT

« REVOKE

e ALTER DEFAULT PRIVILEGES

Topics

» Overview of stored procedures in Amazon Redshift

« PL/pgSQL language reference

Overview of stored procedures in Amazon Redshift

Stored procedures are commonly used to encapsulate logic for data transformation, data
validation, and business-specific logic. By combining multiple SQL steps into a stored procedure,
you can reduce round trips between your applications and the database.

For fine-grained access control, you can create stored procedures to perform functions without
giving a user access to the underlying tables. For example, only the owner or a superuser can

Stored procedure overview 252

Amazon Redshift Database Developer Guide

truncate a table, and a user needs write privileges to insert data into a table. Instead of granting a
user privileges on the underlying tables, you can create a stored procedure that performs the task.
You then give the user privileges to run the stored procedure.

A stored procedure with the DEFINER security attribute runs with the privileges of the stored
procedure's owner. By default, a stored procedure has INVOKER security, which means the
procedure uses the privileges of the user that calls the procedure.

To create a stored procedure, use the CREATE PROCEDURE command. To run a procedure, use the
CALL command. Examples follow later in this section.

® Note

Some clients might display the following error when creating an Amazon Redshift stored
procedure.

ERROR: 42601: [Amazon](500310) unterminated dollar-quoted string at or near "$$

This error occurs due to the inability of the client to correctly parse the CREATE
PROCEDURE statement with semicolons delimiting statements and with dollar sign ($)
quoting. This results in only a part of the statement sent to the Amazon Redshift server.
You can often work around this error by using the Run as batch or Execute selected
option of the client.

For example, when using an Aginity client, use the Run entire script as batch
option. When you use SQL Workbench/J, we recommend version 124. When you use SQL
Workbench/J version 125, consider specifying an alternate delimiter as a workaround.
CREATE PROCEDURE contains SQL statements delimited with a semicolon (;). Defining an
alternate delimiter such as a slash (/) and placing it at the end of the CREATE PROCEDURE
statement sends the statement to the Amazon Redshift server for processing. Following is
an example.

CREATE OR REPLACE PROCEDURE test()
AS $%
BEGIN
SELECT 1 a;
END;
$$
LANGUAGE plpgsql

’

Stored procedure overview 253

Amazon Redshift Database Developer Guide

/

For more information, see Alternate delimiter in the SQL Workbench/J documentation. Or
use a client with better support for parsing CREATE PROCEDURE statements, such as the
query editor in the Amazon Redshift console or TablePlus.

Topics

« Naming stored procedures

» Security and privileges for stored procedures

e Returning a result set

« Managing transactions

 Trapping errors

» Logging stored procedures

» Considerations for stored procedure support

The following example shows a procedure with no output arguments. By default, arguments are
input (IN) arguments.

CREATE OR REPLACE PROCEDURE test_spl(fl int, f2 varchar)
AS $%
BEGIN
RAISE INFO 'f1 = %, f2 = %', f1, f2;
END;
$$ LANGUAGE plpgsql;

call test_spl(5, 'abc');
INFO: f1 = 5, f2 = abc
CALL

® Note

When you write stored procedures, we recommend a best practice for securing sensitive
values:

Don't hardcode any sensitive information in stored procedure logic. For example, don't
assign a user password in a CREATE USER statement in the body of a stored procedure. This

Stored procedure overview 254

http://www.sql-workbench.net/manual/profiles.html#profile-alternate-delimiter
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor.html

Amazon Redshift Database Developer Guide

poses a security risk, because hardcoded values can be recorded as schema metadata in
catalog tables. Instead, pass sensitive values, such as passwords, as arguments to the stored
procedure, by means of parameters.

For more information about stored procedures, see CREATE PROCEDURE and Creating
stored procedures in Amazon Redshift. For more information about catalog tables, see
System catalog tables.

The following example shows a procedure with output arguments. Arguments are input (IN), input
and output (INOUT), and output (OUT).

CREATE OR REPLACE PROCEDURE test_sp2(fl IN int, f2 INOUT varchar(256), out_var OUT
varchar(256))
AS $%
DECLARE
loop_var int;
BEGIN
IF f1 is null OR f2 is null THEN
RAISE EXCEPTION 'input cannot be null';
END IF;
DROP TABLE if exists my_etl;
CREATE TEMP TABLE my_etl(a int, b varchar);
FOR loop_var IN 1..f1 LOOP
insert into my_etl values (loop_var, f2);

f2 := f2 || '+ || f2;
END LOOP;
SELECT INTO out_var count(*) from my_etl;

END;

$$ LANGUAGE plpgsql;

call test_sp2(2,'2019');
column?2

2019+2019+2019+2019
(1 row)

Stored procedure overview 255

Amazon Redshift Database Developer Guide

Naming stored procedures

If you define a procedure with the same name and different input argument data types or
signature, you create a new procedure. As a result, the procedure name is overloaded. For more
information, see Overloading procedure names. Amazon Redshift doesn't enable procedure

overloading based on output arguments. You can't have two procedures with the same name and
input argument data types but different output argument types.

The owner or a superuser can replace the body of a stored procedure with a new one with the same
signature. To change the signature or return types of a stored procedure, drop the stored procedure
and recreate it. For more information, see DROP PROCEDURE and CREATE PROCEDURE.

You can avoid potential conflicts and unexpected results by considering your naming conventions
for stored procedures before implementing them. Because you can overload procedure names, they
can collide with existing and future Amazon Redshift procedure names.

Overloading procedure names

A procedure is identified by its name and signature, which is the number of input arguments and
the data types of the arguments. Two procedures in the same schema can have the same name if
they have different signatures. In other words, you can overload procedure names.

When you run a procedure, the query engine determines which procedure to call based on

the number of arguments that you provide and the data types of the arguments. You can use
overloading to simulate procedures with a variable number of arguments, up to the limit allowed
by the CREATE PROCEDURE command. For more information, see CREATE PROCEDURE.

Preventing naming conflicts

We recommend that you name all procedures using the prefix sp_. Amazon Redshift reserves the
sp_ prefix exclusively for stored procedures. By prefixing your procedure names with sp_, you
make sure that your procedure name won't conflict with any existing or future Amazon Redshift
procedure name.

Security and privileges for stored procedures

By default, all users have privileges to create a procedure. To create a procedure, you must
have USAGE privilege on the language PL/pgSQL, which is granted to PUBLIC by default. Only
superusers and owners have the privilege to call a procedure by default. Superusers can run

Naming stored procedures 256

Amazon Redshift Database Developer Guide

REVOKE USAGE on PL/pgSQL from a user if they want to prevent the user from creating a stored
procedure.

To call a procedure, you must be granted EXECUTE privilege on the procedure. By default,
EXECUTE privilege for new procedures is granted to the procedure owner and superusers. For more
information, see GRANT.

The user creating a procedure is the owner by default. The owner has CREATE, DROP, and EXECUTE
privileges on the procedure by default. Superusers have all privileges.

The SECURITY attribute controls a procedure's privileges to access database objects. When you
create a stored procedure, you can set the SECURITY attribute to either DEFINER or INVOKER.

If you specify SECURITY INVOKER, the procedure uses the privileges of the user invoking the
procedure. If you specify SECURITY DEFINER, the procedure uses the privileges of the owner of the
procedure. INVOKER is the default.

Because a SECURITY DEFINER procedure runs with the privileges of the user that owns it, you must
make sure that the procedure can't be misused. To make sure that SECURITY DEFINER procedures
can't be misused, do the following:

o Grant EXECUTE on SECURITY DEFINER procedures to specific users, and not to PUBLIC.

» Qualify all database objects that the procedure must access with the schema names. For
example, use myschema.mytable instead of just mytable.

« If you can't qualify an object name by its schema, set search_path when creating the
procedure by using the SET option. Set search_path to exclude any schemas that are writable
by untrusted users. This approach prevents any callers of this procedure from creating objects
(for example, tables or views) that mask objects intended to be used by the procedure. For more
information about the SET option, see CREATE PROCEDURE.

The following example sets search_path to admin to ensure that the user_creds table
is accessed from the admin schema and not from public or any other schema in the caller's
search_path.

CREATE OR REPLACE PROCEDURE sp_get_credentials(userid int, o_creds OUT varchar)
AS $%
BEGIN

SELECT creds INTO o_creds

FROM user_creds

WHERE user_id = $1;

Security and privileges 257

Amazon Redshift Database Developer Guide

END;

$$ LANGUAGE plpgsql
SECURITY DEFINER

-- Set a secure search_path
SET search_path = admin;

Returning a result set
You can return a result set using a cursor or a temp table.

Returning a cursor

To return a cursor, create a procedure with an INOUT argument defined with a refcursor data
type. When you call the procedure, give the cursor a name. Then you can fetch the results from the
cursor by name.

The following example creates a procedure named get_result_set with an INOUT argument
named rs_out using the refcursor data type. The procedure opens the cursor using a SELECT
statement.

CREATE OR REPLACE PROCEDURE get_result_set (param IN integer, rs_out INOUT refcursor)

AS $%
BEGIN
OPEN rs_out FOR SELECT * FROM fact_tbl where id >= param;
END;
$$ LANGUAGE plpgsql;

The following CALL command opens the cursor with the name mycursor. Use cursors only within
transactions.

BEGIN;
CALL get_result_set(1l, 'mycursor');

After the cursor is opened, you can fetch from the cursor, as the following example shows.

FETCH ALL FROM mycursor;

id | secondary_id | name

Returning a result set 258

Amazon Redshift Database Developer Guide

2 | 1 | Mary
1| 3 | Mike
(4 rows)

In the end, the transaction is either committed or rolled back.

COMMIT;

A cursor returned by a stored procedure is subject to the same constraints and performance
considerations as described in DECLARE CURSOR. For more information, see Cursor constraints.

The following example shows the calling of the get_result_set stored procedure using a
refcursor data type from JDBC. The literal 'mycursor' (the name of the cursor) is passed to the
prepareStatement. Then the results are fetched from the ResultSet.

static void refcursor_example(Connection conn) throws SQLException {
conn.setAutoCommit(false);
PreparedStatement proc = conn.prepareStatement("CALL get_result_set(1,
'mycursor')");
proc.execute();
ResultSet rs = statement.executeQuery("fetch all from mycursor");
while (rs.next()) {
int n = rs.getInt(1);
System.out.println("n " + n);

}

Using a temp table

To return results, you can return a handle to a temp table containing result rows. The client can
supply a name as a parameter to the stored procedure. Inside the stored procedure, dynamic SQL
can be used to operate on the temp table. The following shows an example.

CREATE PROCEDURE get_result_set(param IN integer, tmp_name INOUT varchar(256)) as $$
DECLARE
row record;

BEGIN
EXECUTE 'drop table if exists ' || tmp_name;
EXECUTE 'create temp table ' || tmp_name || ' as select * from fact_tbl where id <= '
|| param;

END;

$$ LANGUAGE plpgsql;

Returning a result set 259

Amazon Redshift Database Developer Guide

CALL get_result_set(2, 'myresult');
tmp_name

myresult
(1 row)

SELECT * from myresult;
id | secondary_id | name

e Fmm e
1] 1 | Joe
2 | 1 | Mary
1] 2 | Ed
1| 3 | Mike
(4 rows)

Managing transactions

You can create a stored procedure with default transaction management behavior or nonatomic
behavior.

Default mode stored procedure transaction management

The default transaction mode automatic commit behavior causes each SQL command that runs
separately to commit individually. A call to a stored procedure is treated as a single SQL command.
The SQL statements inside a procedure behave as if they are in a transaction block that implicitly
begins when the call starts and ends when the call finishes. A nested call to another procedure is
treated like any other SQL statement and operates within the context of the same transaction as
the caller. For more information about automatic commit behavior, see Serializable isolation.

However, suppose that you call a stored procedure from within a user specified transaction block
(defined by BEGIN...COMMIT). In this case, all statements in the stored procedure run in the context
of the user-specified transaction. The procedure doesn't commit implicitly on exit. The caller
controls the procedure commit or rollback.

If any error is encountered while running a stored procedure, all changes made in the current
transaction are rolled back.

You can use the following transaction control statements in a stored procedure:

o COMMIT - commits all work done in the current transaction and implicitly begins a new
transaction. For more information, see COMMIT.

Managing transactions 260

Amazon Redshift Database Developer Guide

o ROLLBACK - rolls back the work done in the current transaction and implicitly begins a new
transaction. For more information, see ROLLBACK.

TRUNCATE is another statement that you can issue from within a stored procedure and influences
transaction management. In Amazon Redshift, TRUNCATE issues a commit implicitly. This behavior
stays the same in the context of stored procedures. When a TRUNCATE statement is issued from
within a stored procedure, it commits the current transaction and begins a new one. For more
information, see TRUNCATE.

All statements that follow a COMMIT, ROLLBACK, or TRUNCATE statement run in the context of a
new transaction. They do so until a COMMIT, ROLLBACK, or TRUNCATE statement is encountered or
the stored procedure exits.

When you use a COMMIT, ROLLBACK, or TRUNCATE statement from within a stored procedure, the
following constraints apply:

o If the stored procedure is called from within a transaction block, it can't issue a COMMIT,
ROLLBACK, or TRUNCATE statement. This restriction applies within the stored procedure's own
body and within any nested procedure call.

« If the stored procedure is created with SET config options, it can't issue a COMMIT, ROLLBACK,
or TRUNCATE statement. This restriction applies within the stored procedure's own body and
within any nested procedure call.

« Any cursor that is open (explicitly or implicitly) is closed automatically when a COMMIT,
ROLLBACK, or TRUNCATE statement is processed. For constraints on explicit and implicit cursors,
see Considerations for stored procedure support.

Additionally, you can't run COMMIT or ROLLBACK using dynamic SQL. However, you can run
TRUNCATE using dynamic SQL. For more information, see Dynamic SQL.

When working with stored procedures, consider that the BEGIN and END statements in PL/pgSQL
are only for grouping. They don't start or end a transaction. For more information, see Block.

The following example demonstrates transaction behavior when calling a stored procedure from
within an explicit transaction block. The two insert statements issued from outside the stored
procedure and the one from within it are all part of the same transaction (3382). The transaction is
committed when the user issues the explicit commit.

CREATE OR REPLACE PROCEDURE sp_insert_table_a(a int) LANGUAGE plpgsql

Managing transactions 261

Amazon Redshift Database Developer Guide

AS $$
BEGIN
INSERT INTO test_table_a values (a);
END;
$$;

Begin;
insert into test_table_a values (1);
Call sp_insert_table_a(2);
insert into test_table_a values (3);
Commit;

select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,

sequence;

userid | xid | pid | type | stmt_text

———————— B L e i e H e R e
103 | 3382 | 599 | UTILITY | Begin;
103 | 3382 | 599 | QUERY | insert into test_table_a values (1);
103 | 3382 | 599 | UTILITY | Call sp_insert_table_a(2);
103 | 3382 | 599 | QUERY | INSERT INTO test_table_a values ($1)
103 | 3382 | 599 | QUERY | insert into test_table_a values (3);
103 | 3382 | 599 | UTILITY | COMMIT

In contrast, take an example when the same statements are issued from outside of an explicit
transaction block and the session has autocommit set to ON. In this case, each statement runs in its
own transaction.

insert into test_table_a values (1);
Call sp_insert_table_a(2);
insert into test_table_a values (3);

select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
sequence;

userid | xid | pid | type |

stmt_text

103 | 3388 | 599 | QUERY | insert into test_table_a values (1);
103 | 3388 | 599 | UTILITY | COMMIT

Managing transactions 262

Amazon Redshift Database Developer Guide

103 | 3389 | 599 | UTILITY | Call sp_insert_table_a(2);

103 | 3389 | 599 | QUERY | INSERT INTO test_table_a values ($1)
103 | 3389 | 599 | UTILITY | COMMIT

103 | 3390 | 599 | QUERY | insert into test_table_a values (3);
103 | 3390 | 599 | UTILITY | COMMIT

The following example issues a TRUNCATE statement after inserting into test_table_a. The
TRUNCATE statement issues an implicit commit that commits the current transaction (3335) and
starts a new one (3336). The new transaction is committed when the procedure exits.

CREATE OR REPLACE PROCEDURE sp_truncate_proc(a int, b int) LANGUAGE plpgsql
AS $%
BEGIN
INSERT INTO test_table_a values (a);
TRUNCATE test_table_b;
INSERT INTO test_table_b values (b);
END;
$$;

Call sp_truncate_proc(l,2);

select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,

sequence;
userid | xid | pid | type |
stmt_text

———————— R e e t

e e e e e e e e e e e e e e e = = ————— -
103 | 3335 | 23636 | UTILITY | Call sp_truncate_proc(l,2);
103 | 3335 | 23636 | QUERY | INSERT INTO test_table_a values ($1)
103 | 3335 | 23636 | UTILITY | TRUNCATE test_table_b
103 | 3335 | 23636 | UTILITY | COMMIT
103 | 3336 | 23636 | QUERY | INSERT INTO test_table_b values ($1)
103 | 3336 | 23636 | UTILITY | COMMIT

The following example issues a TRUNCATE from a nested call. The TRUNCATE commits all work
done so far in the outer and inner procedures in a transaction (3344). It starts a new transaction
(3345). The new transaction is committed when the outer procedure exits.

CREATE OR REPLACE PROCEDURE sp_inner(c int, d int) LANGUAGE plpgsql
AS $$

Managing transactions 263

Amazon Redshift Database Developer Guide

BEGIN
INSERT INTO inner_table values (c);
TRUNCATE outer_table;
INSERT INTO inner_table values (d);
END;
$$;

CREATE OR REPLACE PROCEDURE sp_outer(a int, b int, c int, d int) LANGUAGE plpgsql
AS $%
BEGIN
INSERT INTO outer_table values (a);
Call sp_inner(c, d);
INSERT INTO outer_table values (b);
END;
$$;

Call sp_outer(l, 2, 3, 4);

select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,

sequence;
userid | xid | pid | type |
stmt_text
———————— B L
o e e e e e e e e e e e i m m m m m m — — — — — — — — ——————— — — ———
103 | 3344 | 23636 | UTILITY | Call sp_outer(l, 2, 3, 4);
103 | 3344 | 23636 | QUERY | INSERT INTO outer_table values ($1)
103 | 3344 | 23636 | UTILITY | CALL sp_inner($1 , $2)
103 | 3344 | 23636 | QUERY | INSERT INTO inner_table values ($1)
103 | 3344 | 23636 | UTILITY | TRUNCATE outer_table
103 | 3344 | 23636 | UTILITY | COMMIT
103 | 3345 | 23636 | QUERY | INSERT INTO inner_table values ($1)
103 | 3345 | 23636 | QUERY | INSERT INTO outer_table values ($1)
103 | 3345 | 23636 | UTILITY | COMMIT

The following example shows that cursor curl was closed when the TRUNCATE statement
committed.

CREATE OR REPLACE PROCEDURE sp_open_cursor_truncate()
LANGUAGE plpgsql

AS $$
DECLARE

Managing transactions 264

Amazon Redshift Database Developer Guide

rec RECORD;
curl cursor for select * from test_table_a order by 1;
BEGIN
open curl;
TRUNCATE table test_table_b;
Loop
fetch curl into rec;
raise info '%', rec.cl;
exit when not found;
End Loop;
END

$$;

call sp_open_cursor_truncate();
ERROR: cursor "curl" does not exist
CONTEXT: PL/pgSQL function "sp_open_cursor_truncate" line 8 at fetch

The following example issues a TRUNCATE statement and can't be called from within an explicit
transaction block.

CREATE OR REPLACE PROCEDURE sp_truncate_atomic() LANGUAGE plpgsql
AS $3%
BEGIN
TRUNCATE test_table_b;
END;
$$;

Begin;
Call sp_truncate_atomic();

ERROR: TRUNCATE cannot be invoked from a procedure that is executing in an atomic
context.

HINT: Try calling the procedure as a top-level call i.e. not from within an explicit
transaction block.

Or, if this procedure (or one of its ancestors in the call chain) was created with SET
config options, recreate the procedure without them.

CONTEXT: SQL statement "TRUNCATE test_table_b"

PL/pgSQL function "sp_truncate_atomic" line 2 at SQL statement

The following example shows that a user who is not a superuser or the owner of a table can issue
a TRUNCATE statement on the table. The user does this using a Security Definer stored
procedure. The example shows the following actions:

Managing transactions 265

Amazon Redshift Database Developer Guide

e The user1 creates table test_tbl.
» The user1 creates stored procedure sp_truncate_test_tbl.
« The user1 grants EXECUTE privilege on the stored procedure to user2.

e The user2 runs the stored procedure to truncate table test_tbl. The example shows the row
count before and after the TRUNCATE command.

set session_authorization to userl;
create table test_tbl(id int, name varchar(20));
insert into test_tbl values (1, 'john'), (2, 'mary');
CREATE OR REPLACE PROCEDURE sp_truncate_test_tbl() LANGUAGE plpgsql
AS $%
DECLARE
tbl_rows int;
BEGIN
select count(*) into tbl_rows from test_tbl;
RAISE INFO 'RowCount before Truncate: %', tbl_rows;
TRUNCATE test_tbl;
select count(*) into tbl_rows from test_tbl;
RAISE INFO 'RowCount after Truncate: %', tbl_rows;
END;
$$ SECURITY DEFINER;
grant execute on procedure sp_truncate_test_tbl() to user2;
reset session_authorization;

set session_authorization to user2;
call sp_truncate_test_tbl();

INFO: RowCount before Truncate: 2
INFO: RowCount after Truncate: 0
CALL

reset session_authorization;

The following example issues COMMIT twice. The first COMMIT commits all work done in
transaction 10363 and implicitly starts transaction 10364. Transaction 10364 is committed by the
second COMMIT statement.

CREATE OR REPLACE PROCEDURE sp_commit(a int, b int) LANGUAGE plpgsql
AS $$
BEGIN

INSERT INTO test_table values (a);

Managing transactions 266

Amazon Redshift Database Developer Guide

COMMIT;
INSERT INTO test_table values (b);
COMMIT;

END;

$$;

call sp_commit(1,2);

select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,

sequence;
userid | xid | pid | type |
stmt_text
———————— e T s S
S S
100 | 10363 | 3089 | UTILITY | call sp_commit(1,2);
100 | 10363 | 3089 | QUERY | INSERT INTO test_table values ($1)
100 | 10363 | 3089 | UTILITY | COMMIT
100 | 10364 | 3089 | QUERY | INSERT INTO test_table values ($1)
100 | 10364 | 3089 | UTILITY | COMMIT

The following example issues a ROLLBACK statement if sum_vals is greater than 2. The
first ROLLBACK statement rolls back all the work done in transaction 10377 and starts a new
transaction 10378. Transaction 10378 is committed when the procedure exits.

CREATE OR REPLACE PROCEDURE sp_rollback(a int, b int) LANGUAGE plpgsql
AS $%
DECLARE

sum_vals int;
BEGIN

INSERT INTO test_table values (a);

SELECT sum(cl) into sum_vals from test_table;

IF sum_vals > 2 THEN

ROLLBACK;
END IF;

INSERT INTO test_table values (b);
END;
$$;

call sp_rollback(1l, 2);

select userid, xid, pid, type, trim(text) as stmt_text

Managing transactions 267

Amazon Redshift Database Developer Guide

from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
sequence;

userid | xid | pid | type |
stmt_text

———————— e T s S
S S

100 | 10377 | 3089 | UTILITY | call sp_rollback(l, 2);

100 | 10377 | 3089 | QUERY | INSERT INTO test_table values ($1)

100 | 10377 | 3089 | QUERY | SELECT sum(cl) from test_table

100 | 10377 | 3089 | QUERY | Undoing 1 transactions on table 133646 with current

xid 10377 : 10377
100 | 10378 | 3089 | QUERY | INSERT INTO test_table values ($1)
100 | 10378 | 3089 | UTILITY | COMMIT

Nonatomic mode stored procedure transaction management

A stored procedure created in NONATOMIC mode has different transaction control behavior from
a procedure created in default mode. Similar to the automatic commit behavior of SQL commands
outside stored procedures, each SQL statement inside a NONATOMIC procedure runs in its own
transaction and commits automatically. If a user begins an explicit transaction block within a
NONATOMIC stored procedure, then the SQL statements within the block do not automatically
commit. The transaction block controls commit or rollback of statements within it.

In NONATOMIC stored procedures, you can open an explicit transaction block inside the procedure
using the START TRANSACTION statement. However, if there is already an open transaction block,
this statement will do nothing because Amazon Redshift does not support sub transactions. The
previous transaction continues.

When you work with cursor FOR loops inside a NONATOMIC procedure, make sure you open an
explicit transaction block before iterating through the results of a query. Otherwise, the cursor is
closed when the SQL statement inside the loop is automatically committed.

Some of the considerations when using NONATOMIC mode behavior are as follows:

« Each SQL statement inside the stored procedure is automatically committed if there is no open
transaction block, and the session has autocommit set to ON.

e You can issue a COMMIT/ROLLBACK/TRUNCATE statement to end the transaction if the stored
procedure is called from within a transaction block. This is not possible in default mode.

Managing transactions 268

Amazon Redshift Database Developer Guide

» You can issue a START TRANSACTION statement to begin a transaction block inside the stored
procedure.

The following examples demonstrate transaction behavior when working with NONATOMIC stored
procedures. The session for all the following examples has autocommit set to ON.

In the following example, a NONATOMIC stored procedure has two INSERT statements. When the
procedure is called outside of a transaction block, every INSERT statement within the procedure
automatically commits.

CREATE TABLE test_table_a(v int);
CREATE TABLE test_table_b(v int);

CREATE OR REPLACE PROCEDURE sp_nonatomic_insert_table_a(a int, b int) NONATOMIC AS
$$
BEGIN
INSERT INTO test_table_a values (a);
INSERT INTO test_table_b values (b);
END;
$$
LANGUAGE plpgsql;

Call sp_nonatomic_insert_table_a(1,2);

Select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
sequence;

type | stmt_text

I I I

+ + +
1 | 1792 | 1073807554 | UTILITY | Call sp_nonatomic_insert_table_a(1,2);
1 | 1792 | 1073807554 | QUERY | INSERT INTO test_table_a values ($1)
1 | 1792 | 1073807554 | UTILITY | COMMIT
1 | 1793 | 1073807554 | QUERY | INSERT INTO test_table_b values ($1)
1 | 1793 | 1073807554 | UTILITY | COMMIT

(5 rows)

However, when the procedure is called from within a BEGIN..COMMIT block, all the statements are
part of the same transaction (xid=1799).

Begin;

Managing transactions 269

Amazon Redshift Database Developer Guide

INSERT INTO test_table_a values (10);

Call sp_nonatomic_insert_table_a(20,30);

INSERT INTO test_table_b values (40);
Commit;

Select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
sequence;

userid | xid | pid | type | stmt_text
———————— R L e e Ha i L e e e e e
1 | 1799 | 1073914035 | UTILITY | Begin;
1 | 1799 | 1073914035 | QUERY | INSERT INTO test_table_a values (10);
1 | 1799 | 1073914035 | UTILITY | Call sp_nonatomic_insert_table_a(20,30);
1 | 1799 | 1073914035 | QUERY | INSERT INTO test_table_a values ($1)
1 | 1799 | 1073914035 | QUERY | INSERT INTO test_table_b values ($1)
1 | 1799 | 1073914035 | QUERY | INSERT INTO test_table_b values (40);
1 | 1799 | 1073914035 | UTILITY | COMMIT
(7 rows)

In this example, two INSERT statements are between START TRANSACTION...COMMIT. When the
procedure is called outside of a transaction block, the two INSERT statements are in the same
transaction (xid=1866).

CREATE OR REPLACE PROCEDURE sp_nonatomic_txn_block(a int, b int) NONATOMIC AS
$$
BEGIN
START TRANSACTION;
INSERT INTO test_table_a values (a);
INSERT INTO test_table_b values (b);
COMMIT;
END;
$$
LANGUAGE plpgsql;

Call sp_nonatomic_txn_block(1,2);
Select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,

sequence;

userid | xid | pid | type | stmt_text

Managing transactions 270

Amazon Redshift Database Developer Guide

1 | 1865 | 1073823998 | UTILITY | Call sp_nonatomic_txn_block(1,2);
1 | 1866 | 1073823998 | QUERY | INSERT INTO test_table_a values ($1)
1 | 1866 | 1073823998 | QUERY | INSERT INTO test_table_b values ($1)
1 | 1866 | 1073823998 | UTILITY | COMMIT

(4 rows)

When the procedure is called from within a BEGIN...COMMIT block, the START TRANSACTION inside
the procedure does nothing because there is already an open transaction. The COMMIT inside the
procedure commits the current transaction (xid=1876) and starts a new one.

Begin;
INSERT INTO test_table_a values (10);
Call sp_nonatomic_txn_block(20,30);
INSERT INTO test_table_b values (40);
Commit;

Select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,

sequence;

userid | xid | pid | type | stmt_text

-------- B i T T e T JE e e e T T
1 | 1876 | 1073832133 | UTILITY | Begin;
1 | 1876 | 1073832133 | QUERY | INSERT INTO test_table_a values (10);
1 | 1876 | 1073832133 | UTILITY | Call sp_nonatomic_txn_block(20,30);
1 | 1876 | 1073832133 | QUERY | INSERT INTO test_table_a values ($1)
1 | 1876 | 1073832133 | QUERY | INSERT INTO test_table_b values ($1)
1 | 1876 | 1073832133 | UTILITY | COMMIT
1 | 1878 | 1073832133 | QUERY | INSERT INTO test_table_b values (40);
1 | 1878 | 1073832133 | UTILITY | COMMIT

(8 rows)

This example shows how to work with cursor loops. Table test_table_a has three values. The
objective is to iterate through the three values and insert them into table test_table_b. If a
NONATOMIC stored procedure is created in the following way, it will throw the error cursor "cur1"
does not exist after executing INSERT statement in the first loop. This is because the auto commit
of the INSERT closes the open cursor.

insert into test_table_a values (1), (2), (3);

CREATE OR REPLACE PROCEDURE sp_nonatomic_cursor() NONATOMIC
LANGUAGE plpgsql

Managing transactions 271

Amazon Redshift Database Developer Guide

AS $$
DECLARE
rec RECORD;
curl cursor for select * from test_table_a order by 1;
BEGIN
open curl;
Loop
fetch curl into rec;
exit when not found;

101

raise info '%', rec.v;
insert into test_table_b values (rec.v);
End Loop;
END

$$;

CALL sp_nonatomic_cursor();

INFO: 1
ERROR: cursor "curl" does not exist
CONTEXT: PL/pgSQL function "sp_nonatomic_cursor" line 7 at fetch

To make the cursor loop work, put it between START TRANSACTION...COMMIT.

insert into test_table_a values (1), (2), (3);

CREATE OR REPLACE PROCEDURE sp_nonatomic_cursor() NONATOMIC
LANGUAGE plpgsql
AS $%
DECLARE
rec RECORD;
curl cursor for select * from test_table_a order by 1;
BEGIN
START TRANSACTION;
open curl;
Loop
fetch curl into rec;
exit when not found;
raise info '%', rec.v;
insert into test_table_b values (rec.v);
End Loop;
COMMIT;
END

$$;

Managing transactions 272

Amazon Redshift Database Developer Guide

CALL sp_nonatomic_cursor();

INFO: 1
INFO: 2
INFO: 3
CALL

Trapping errors

When a query or command in a stored procedure causes an error, subsequent queries don't run and
the transaction is rolled back. But you can handle errors using an EXCEPTION block.

(@ Note

The default behavior is that an error will cause subsequent queries not to run, even when
there are no additional error-generating conditions in the stored procedure.

[<<label>>]
[DECLARE
declarations]
BEGIN
statements
EXCEPTION
WHEN OTHERS THEN
statements
END;

When an exception occurs, and you add an exception-handling block, you can write RAISE
statements and most other PL/pgSQL statements. For example, you can raise an exception with a
custom message or insert a record into a logging table.

When entering the exception-handling block, the current transaction is rolled back and a new
transaction is created to run the statements in the block. If the statements in the block run without
error, the transaction is committed and the exception is re-thrown. Lastly, the stored procedure
exits.

Trapping errors 273

Amazon Redshift Database Developer Guide

The only supported condition in an exception block is OTHERS, which matches every error type
except query cancellation. Also, if an error occurs in an exception-handling block, it can be caught
by an outer exception-handling block.

When an error occurs inside the NONATOMIC procedure, the error is not re-thrown if it is handled
by an exception block. See the PL/pgSQL statement RAISE to throw an exception caught by the
exception handling block. This statement is only valid in exception handling blocks. For more
information see RAISE.

Controlling what happens after an error in a stored procedure, with the CONTINUE handler

The CONTINUE handler is a type of exception handler that controls the flow of execution within a
NONATOMIC stored procedure. By using it, you can catch and handle exceptions without ending
the existing statement block. Normally, when an error occurs in a stored procedure, the flow is
interrupted and the error is returned to the caller. However, in some use cases, the error condition
isn't severe enough to warrant interrupting the flow. You might want to handle the error gracefully,
using error-handling logic of your choosing in a seperate transaction, and then continue running
statements that follow the error. The following shows the syntax.

[DECLARE
declarations]
BEGIN
statements
EXCEPTION
[CONTINUE_HANDLER | EXIT_HANDLER] WHEN OTHERS THEN
handler_statements
END;

There are several system tables available to help you gather information about various

types of errors. For more information, see STL_LOAD_ERRORS, STL_ERROR, and
SYS_STREAM_SCAN_ERRORS. There are also additional system tables you can use to troubleshoot
errors. More information about these can be found at System tables and views reference.

Example

The following example shows how to write statements in the exception-handling block. The stored
procedure is using default transaction management behavior.

CREATE TABLE employee (firstname varchar, lastname varchar);
INSERT INTO employee VALUES ('Tomas', 'Smith');
CREATE TABLE employee_error_log (message varchar);

Trapping errors 274

Amazon Redshift Database Developer Guide

CREATE OR REPLACE PROCEDURE update_employee_sp() AS

$$
BEGIN
UPDATE employee SET firstname = 'Adam' WHERE lastname = 'Smith';
EXECUTE 'select invalid';
EXCEPTION WHEN OTHERS THEN
RAISE INFO 'An exception occurred.';
INSERT INTO employee_error_log VALUES ('Error message: ' || SQLERRM);
END;

$$
LANGUAGE plpgsql;

CALL update_employee_sp();

INFO: An exception occurred.

ERROR: column "invalid" does not exist

CONTEXT: SQL statement "select invalid"

PL/pgSQL function "update_employee_sp" line 3 at execute statement

In this example, if we call update_employee_sp, the informational message An exception
occurred. is raised and the error message is inserted in the logging table's employee_error_log
log. The original exception is thrown again before the stored procedure exits. The following queries
show records that result from running the example.

SELECT * from employee;

firstname | lastname

SELECT * from employee_error_log;

message

Error message: column "invalid" does not exist

For more information about RAISE, including formatting help and a list of additional levels, see
Supported PL/pgSQL statements.

The following example shows how to write statements in the exception-handling block. The stored
procedure is using NONATOMIC transaction management behavior. In this example, there is no

Trapping errors 275

Amazon Redshift Database Developer Guide

error thrown back to caller after the procedure call completes. The UPDATE statement is not rolled
back due to the error in the next statement. The informational message is raised and the error
message is inserted in the logging table.

CREATE TABLE employee (firstname varchar, lastname varchar);
INSERT INTO employee VALUES ('Tomas', 'Smith');
CREATE TABLE employee_error_log (message varchar);

-- Create the SP in NONATOMIC mode
CREATE OR REPLACE PROCEDURE update_employee_sp_2() NONATOMIC AS

$$
BEGIN
UPDATE employee SET firstname = 'Adam' WHERE lastname = 'Smith';
EXECUTE 'select invalid';
EXCEPTION WHEN OTHERS THEN
RAISE INFO 'An exception occurred.';
INSERT INTO employee_error_log VALUES ('Error message: ' || SQLERRM);
END;
$$
LANGUAGE plpgsql;

CALL update_employee_sp_2();
INFO: An exception occurred.
CALL

SELECT * from employee;

firstname | lastname

SELECT * from employee_error_log;

message

Error message: column "invalid" does not exist
(1 row)

This example shows how to create a procedure with two sub blocks. When the stored procedure is
called, the error from the first sub block is handled by its exception handling block. After the first
sub block completes, the procedure continues to execute the second sub block. You can see from

Trapping errors 276

Amazon Redshift Database Developer Guide

the result that no error is thrown when the procedure call completes. The UPDATE and INSERT
operations on table employee are committed. Error messages from both exception blocks are
inserted in the logging table.

CREATE TABLE employee (firstname varchar, lastname varchar);
INSERT INTO employee VALUES ('Tomas', 'Smith');
CREATE TABLE employee_error_log (message varchar);

CREATE OR REPLACE PROCEDURE update_employee_sp_3() NONATOMIC AS

$$
BEGIN
BEGIN
UPDATE employee SET firstname = 'Adam' WHERE lastname = 'Smith';
EXECUTE 'select invalidl';
EXCEPTION WHEN OTHERS THEN
RAISE INFO 'An exception occurred in the first block.';
INSERT INTO employee_error_log VALUES ('Error message: ' || SQLERRM);
END;
BEGIN
INSERT INTO employee VALUES ('Edie', 'Robertson’');
EXECUTE 'select invalid2';
EXCEPTION WHEN OTHERS THEN
RAISE INFO 'An exception occurred in the second block.';
INSERT INTO employee_error_log VALUES ('Error message: ' || SQLERRM);
END;
END;
$$

LANGUAGE plpgsql;

CALL update_employee_sp_3();

INFO: An exception occurred in the first block.
INFO: An exception occurred in the second block.
CALL

SELECT * from employee;

firstname | lastname
___________ B
Adam | Smith

Edie | Robertson
(2 rows)

SELECT * from employee_error_log;

Trapping errors 277

Amazon Redshift Database Developer Guide

message

Error message: column "invalidl" does not exist
Error message: column "invalid2" does not exist
(2 rows)

The following example shows how to use the CONTINUE exception handler. This sample creates
two tables and uses them in a stored procedure. The CONTINUE handler controls the flow of
execution in a stored procedure with NONATOMIC transaction-management behavior.

CREATE TABLE tbl_1 (a int);
CREATE TABLE tbl_error_logging(info varchar, err_state varchar, err_msg varchar);

CREATE OR REPLACE PROCEDURE sp_exc_handling_1() NONATOMIC AS

$$
BEGIN
INSERT INTO tbl_1 VALUES (1);
-- Expect an error for the insert statement following, because of the invalid value
INSERT INTO tbl_1 VALUES ("val");
INSERT INTO tbl_1 VALUES (2);
EXCEPTION CONTINUE_HANDLER WHEN OTHERS THEN
INSERT INTO tbl_error_logging VALUES ('Encountered error', SQLSTATE, SQLERRM);
END;
$$ LANGUAGE plpgsql;

Call the stored procedure:

CALL sp_exc_handling_1();

Flow proceeds like so:

1. An error occurs because an attempt is made to insert an incompatible data type in a column.
Control passes to the EXCEPTION block. When the exception-handling block is entered, the
current transaction is rolled back and a new implicit transaction is created to run the statements
in it.

2. If the statements in CONTINUE_HANDLER run without error, control passes to the
statement immediately following the statement causing the exception. (If a statement in
CONTINUE_HANDLER raises a new exception, you can handle it with an exception handler within
the EXCEPTION block.)

Trapping errors 278

Amazon Redshift Database Developer Guide

After you call the sample stored procedure, the tables contain the following records:

e If yourun SELECT * FROM tbl_1;, it returns two records. These contain the values 1 and 2.

e If yourun SELECT * FROM tbl_error_logging;, it returns one record with these values:
Encountered error, 42703, and column "val" does not exist in tbl_1.

The following additional error-handling example uses both an EXIT handler and a CONTINUE
handler. It creates two tables: a data table and a logging table. It also creates a stored procedure
that demonstrates error handling:

CREATE TABLE tbl_1 (a int);
CREATE TABLE tbl_error_logging(info varchar, err_state varchar, err_msg varchar);

CREATE OR REPLACE PROCEDURE sp_exc_handling_2() NONATOMIC AS
$$
BEGIN
INSERT INTO tbl_1 VALUES (1);
BEGIN
INSERT INTO tbl_1 VALUES (100);
-- Expect an error for the insert statement following, because of the invalid
value
INSERT INTO tbl_1 VALUES ("val");
INSERT INTO tbl_1 VALUES (101);
EXCEPTION EXIT_HANDLER WHEN OTHERS THEN
INSERT INTO tbl_error_logging VALUES ('Encountered error', SQLSTATE, SQLERRM);
END;
INSERT INTO tbl_1 VALUES (2);
-- Expect an error for the insert statement following, because of the invalid value
INSERT INTO tbl_1 VALUES ("val");
INSERT INTO tbl_1 VALUES (3);
EXCEPTION CONTINUE_HANDLER WHEN OTHERS THEN
INSERT INTO tbl_error_logging VALUES ('Encountered error', SQLSTATE, SQLERRM);
END;
$$ LANGUAGE plpgsql;

After you create the stored procedure, call it with the following:

CALL sp_exc_handling_2();

Trapping errors 279

Amazon Redshift Database Developer Guide

When an error occurs in the inner exception block, which is bracketed by the inner set of BEGIN and
END, it's handled by the EXIT handler. Any errors that occur in the outer block are handled by the
CONTINUE handler.

After you call the sample stored procedure, the tables contain the following records:

e If yourun SELECT * FROM tbl_1;, it returns four records, with the values 1, 2, 3, and 100.

e If yourun SELECT * FROM tbl_error_logging;, it returns two records. They have these
values: Encountered error, 42703, and column "val" does not exist in tbl_1.

If the table tbl_error_logging doesn't exist, it raises an exception.

The following example shows how to use the CONTINUE exception handler with the FOR loop. This
sample creates three tables and uses them in a FOR loop within a stored procedure. The FOR loop
is result set variant, meaning that it iterates over the results of a query:

CREATE TABLE tbl_1 (a int);

INSERT INTO tbl_1 VALUES (1), (2), (3);

CREATE TABLE tbl_2 (a int);

CREATE TABLE tbl_error_logging(info varchar, err_state varchar, err_msg varchar);

CREATE OR REPLACE PROCEDURE sp_exc_handling_loop() NONATOMIC AS
$$
DECLARE
rec RECORD;
BEGIN
FOR rec IN SELECT a FROM tbl_1
LOOP
IF rec.a = 2 THEN
-- Expect an error for the insert statement following, because of the
invalid value
INSERT INTO tbl_2 VALUES("val");
ELSE
INSERT INTO tbl_2 VALUES (rec.a);
END IF;
END LOOP;
EXCEPTION CONTINUE_HANDLER WHEN OTHERS THEN
INSERT INTO tbl_error_logging VALUES ('Encountered error', SQLSTATE, SQLERRM);
END;
$$ LANGUAGE plpgsql;

Trapping errors 280

Amazon Redshift Database Developer Guide

Call the stored procedure:

CALL sp_exc_handling_loop();

After you call the sample stored procedure, the tables contain the following records:

e If yourun SELECT * FROM tbl_2;, it returns two records. These contain the values 1 and 3.

e If yourun SELECT * FROM tbl_error_logging;, it returns one record with these values:
Encountered error, 42703, and column "val" does not exist in tbl_2.

Usage notes regarding the CONTINUE handler:

o CONTINUE_HANDLER and EXIT_HANDLER keywords can be used only in NONATOMIC stored
procedures.

o CONTINUE_HANDLER and EXIT_HANDLER keywords are optional. EXIT_HANDLER is the default.

Logging stored procedures
Details about stored procedures are logged in the following system tables and views:

o SVL_STORED_PROC_CALL - details are logged about the stored procedure call's start time
and end time, and whether the call is ended before completion. For more information, see
SVL_STORED_PROC_CALL.

o SVL_STORED_PROC_MESSAGES - messages in stored procedures emitted by the RAISE
query are logged with the corresponding logging level. For more information, see
SVL_STORED_PROC_MESSAGES.

o SVL_QLOG - the query ID of the procedure call is logged for each query called from a stored
procedure. For more information, see SVL_QLOG.

o STL_UTILITYTEXT - stored procedure calls are logged after they are completed. For more
information, see STL_UTILITYTEXT.

o PG_PROC_INFO - this system catalog view shows information about stored procedures. For more
information, see PG_PROC_INFO.

Considerations for stored procedure support

The following considerations apply when you use Amazon Redshift stored procedures.

Logging stored procedures 281

Amazon Redshift Database Developer Guide

Differences between Amazon Redshift and PostgreSQL for stored procedure
support

The following are differences between stored procedure support in Amazon Redshift and
PostgreSQL:

« Amazon Redshift doesn't support subtransactions, and hence has limited support for exception
handling blocks.

Considerations and limits

The following are considerations on stored procedures in Amazon Redshift:

o The maximum number of stored procedures for a database is 10,000.
« The maximum size of the source code for a procedure is 2 MB.

» The maximum number of explicit and implicit cursors that you can open concurrently in a
user session is one. FOR loops that iterate over the result set of a SQL statement open implicit
cursors. Nested cursors aren't supported.

» Explicit and implicit cursors have the same restrictions on the result set size as standard Amazon
Redshift cursors. For more information, see Cursor constraints.

« The maximum number of levels for nested calls is 16.

o The maximum number of procedure parameters is 32 for input arguments and 32 for output
arguments.

o The maximum number of variables in a stored procedure is 1,024.

« Any SQL command that requires its own transaction context isn't supported inside a stored
procedure. Examples include:

» PREPARE

« CREATE/DROP DATABASE
o CREATE EXTERNAL TABLE
« VACUUM

« SET LOCAL

» ALTER TABLE APPEND

Considerations 282

Amazon Redshift Database Developer Guide

e The registerOutParameter method call through the Java Database Connectivity (JDBC)
driver isn't supported for the refcursor data type. For an example of using the refcursor
data type, see Returning a result set.

PL/pgSQL language reference

Stored procedures in Amazon Redshift are based on the PostgreSQL PL/pgSQL procedural
language, with some important differences. In this reference, you can find details of PL/pgSQL
syntax as implemented by Amazon Redshift. For more information about PL/pgSQL, see PL/pgSQL
- SQL procedural language in the PostgreSQL documentation.

Topics

« PL/pgSQL reference conventions

 Structure of PL/pgSQL

« Supported PL/pgSQL statements

PL/pgSQL reference conventions

In this section, you can find the conventions that are used to write the syntax for the PL/pgSQL
stored procedure language.

Character Description
CAPS Words in capital letters are keywords.
[] Brackets denote optional arguments. Multiple arguments in brackets

indicate that you can choose any number of the arguments. In addition,
arguments in brackets on separate lines indicate that the Amazon Redshift
parser expects the arguments to be in the order that they are listed in the
syntax.

{} Braces indicate that you are required to choose one of the arguments inside
the braces.

Pipes indicate that you can choose between the arguments.

PL/pgSQL language reference 283

https://www.postgresql.org/docs/8.0/plpgsql.html
https://www.postgresql.org/docs/8.0/plpgsql.html

Amazon Redshift Database Developer Guide

Character Description

red italics Words in red italics indicate placeholders. Insert the appropriate value in
place of the word in red italics.

An ellipsis indicates that you can repeat the preceding element.

' Words in single quotation marks indicate that you must type the quotes.

Structure of PL/pgSQL

PL/pgSQL is a procedural language with many of the same constructs as other procedural
languages.

Topics
« Block

Variable declaration

Alias declaration

Built-in variables

Record types

Block

PL/pgSQL is a block-structured language. The complete body of a procedure is defined in a block,
which contains variable declarations and PL/pgSQL statements. A statement can also be a nested
block, or subblock.

End declarations and statements with a semicolon. Follow the END keyword in a block or subblock
with a semicolon. Don't use semicolons after the keywords DECLARE and BEGIN.

You can write all keywords and identifiers in mixed uppercase and lowercase. Identifiers are
implicitly converted to lowercase unless enclosed in double quotation marks.

A double hyphen (--) starts a comment that extends to the end of the line. A /* starts a block
comment that extends to the next occurrence of */. You can't nest block comments. However, you
can enclose double-hyphen comments in a block comment, and a double hyphen can hide the
block comment delimiters /* and */.

Structure of PL/pgSQL 284

Amazon Redshift Database Developer Guide

Any statement in the statement section of a block can be a subblock. You can use subblocks for
logical grouping or to localize variables to a small group of statements.

[<<label>>]
[DECLARE
declarations]
BEGIN
statements
END [label 7;

The variables declared in the declarations section preceding a block are initialized to their default
values every time the block is entered. In other words, they're not initialized only once per function
call.

The following shows an example.

CREATE PROCEDURE update_value() AS $$

DECLARE
value integer := 20;

BEGIN
RAISE NOTICE 'Value here is %', value; -- Value here is 20
value := 50;

-- Create a subblock

DECLARE
value integer := 80;
BEGIN
RAISE NOTICE 'Value here is %', value; -- Value here is 80
END;
RAISE NOTICE 'Value here is %', value; -- Value here is 50
END;

$$ LANGUAGE plpgsql;

Use a label to identify the block to use in an EXIT statement or to qualify the names of the
variables declared in the block.

Don't confuse the use of BEGIN/END for grouping statements in PL/pgSQL with the database
commands for transaction control. The BEGIN and END in PL/pgSQL are only for grouping. They
don't start or end a transaction.

Structure of PL/pgSQL 285

Amazon Redshift Database Developer Guide

Variable declaration

Declare all variables in a block, except for loop variables, in the block's DECLARE section. Variables
can use any valid Amazon Redshift data type. For supported data types, see Data types.

PL/pgSQL variables can be any Amazon Redshift supported data type, plus RECORD and
refcursor. For more information about RECORD, see Record types. For more information about
refcursor, see Cursors.

DECLARE
name [CONSTANT] type [NOT NULL] [{ DEFAULT | := } expression];

Following, you can find example variable declarations.

customerID integer;
numberofitems numeric(6);
link varchar;

onerow RECORD;

The loop variable of a FOR loop iterating over a range of integers is automatically declared as an
integer variable.

The DEFAULT clause, if given, specifies the initial value assigned to the variable when the block is
entered. If the DEFAULT clause is not given, then the variable is initialized to the SQL NULL value.
The CONSTANT option prevents the variable from being assigned to, so that its value remains
constant for the duration of the block. If NOT NULL is specified, an assignment of a null value
results in a runtime error. All variables declared as NOT NULL must have a non-null default value
specified.

The default value is evaluated every time the block is entered. For example, assigning now() to a
variable of type timestamp causes the variable to have the time of the current function call, not
the time when the function was precompiled.

quantity INTEGER DEFAULT 32;
url VARCHAR := 'http://mysite.com';
user_id CONSTANT INTEGER := 10;

The refcursor data type is the data type of cursor variables within stored procedures. A
refcursor value can be returned from within a stored procedure. For more information, see
Returning a result set.

Structure of PL/pgSQL 286

Amazon Redshift Database Developer Guide

Alias declaration

If stored procedure's signature omits the argument name, you can declare an alias for the
argument.

name ALIAS FOR $n;

Built-in variables

The following built-in variables are supported:

FOUND
SQLSTATE
SQLERRM

GET DIAGNOSTICS integer_var := ROW_COUNT;

FOUND is a special variable of type Boolean. FOUND starts out false within each procedure call.
FOUND is set by the following types of statements:

o SELECT INTO

Sets FOUND to true if it returns a row, false if no row is returned.

« UPDATE, INSERT, and DELETE

Sets FOUND to true if at least one row is affected, false if no row is affected.

« FETCH

Sets FOUND to true if it returns a row, false if no row is returned.

¢ FOR statement

Sets FOUND to true if the FOR statement iterates one or more times, and otherwise false. This
applies to all three variants of the FOR statement: integer FOR loops, record-set FOR loops, and
dynamic record-set FOR loops.

FOUND is set when the FOR loop exits. Inside the runtime of the loop, FOUND isn't modified by
the FOR statement. However, it can be changed by running other statements within the loop
body.

Structure of PL/pgSQL 287

Amazon Redshift Database Developer Guide

The following shows an example.

CREATE TABLE employee(empname varchar);
CREATE OR REPLACE PROCEDURE show_found()
AS $%
DECLARE
myrec record;
BEGIN
SELECT INTO myrec * FROM employee WHERE empname = 'John';
IF NOT FOUND THEN
RAISE EXCEPTION 'employee John not found';
END IF;
END;
$$ LANGUAGE plpgsql;

Within an exception handler, the special variable SQLSTATE contains the error code that
corresponds to the exception that was raised. The special variable SQLERRM contains the error
message associated with the exception. These variables are undefined outside exception handlers
and display an error if used.

The following shows an example.

CREATE OR REPLACE PROCEDURE sqglstate_sqlerrm() AS
$$
BEGIN
UPDATE employee SET firstname = 'Adam' WHERE lastname = 'Smith';
EXECUTE 'select invalid';
EXCEPTION WHEN OTHERS THEN
RAISE INFO 'error message SQLERRM %', SQLERRM;
RAISE INFO 'error message SQLSTATE %', SQLSTATE;
END;
$$ LANGUAGE plpgsql;

ROW_COUNT is used with the GET DIAGNOSTICS command. It shows the number of rows
processed by the last SQL command sent down to the SQL engine.

The following shows an example.

CREATE OR REPLACE PROCEDURE sp_row_count() AS

$$
DECLARE
integer_var int;

Structure of PL/pgSQL 288

Amazon Redshift Database Developer Guide

BEGIN
INSERT INTO tbl_row_count VALUES(1);
GET DIAGNOSTICS integer_var := ROW_COUNT;
RAISE INFO 'rows inserted = %', integer_var;
END;
$$ LANGUAGE plpgsql;

Record types

A RECORD type is not a true data type, only a placeholder. Record type variables assume the

actual row structure of the row that they are assigned during a SELECT or FOR command. The
substructure of a record variable can change each time it is assigned a value. Until a record variable
is first assigned to, it has no substructure. Any attempt to access a field in it throws a runtime error.

name RECORD;

The following shows an example.

CREATE TABLE tbl_record(a int, b int);
INSERT INTO tbl_record VALUES(1, 2);
CREATE OR REPLACE PROCEDURE record_example()
LANGUAGE plpgsql
AS $%
DECLARE

rec RECORD;
BEGIN

FOR rec IN SELECT a FROM tbl_record

LOOP

RAISE INFO 'a = %', rec.a;

END LOOP;
END;
$$;

Supported PL/pgSQL statements

PL/pgSQL statements augment SQL commands with procedural constructs, including looping and
conditional expressions, to control logical flow. Most SQL commands can be used, including data
manipulation language (DML) such as COPY, UNLOAD, and INSERT, and data definition language
(DDL) such as CREATE TABLE. For a list of comprehensive SQL commands, see SQL commands. In
addition, the following PL/pgSQL statements are supported by Amazon Redshift.

Supported PL/pgSQL statements 289

Amazon Redshift Database Developer Guide

Topics

« Assignment

o SELECT INTO
+ No-op

e Dynamic SQL

+ Return
« Conditionals: IF

« Conditionals: CASE
- Loops

- Cursors

» RAISE

« Transaction control

Assignment

The assignment statement assigns a value to a variable. The expression must return a single value.
identifier := expression;

Using the nonstandard = for assignment, instead of : =, is also accepted.

If the data type of the expression doesn't match the variable's data type or the variable has a size
or precision, the result value is implicitly converted.

The following shows examples.

customer_number := 20;
tip := subtotal * 0.15;

SELECT INTO

The SELECT INTO statement assigns the result of multiple columns (but only one row) into a record
variable or list of scalar variables.

SELECT INTO target select_expressions FROM ...;

Supported PL/pgSQL statements 290

Amazon Redshift Database Developer Guide

In the preceding syntax, target can be a record variable or a comma-separated list of simple
variables and record fields. The select_expressions list and the remainder of the command are
the same as in regular SQL.

If a variable list is used as target, the selected values must exactly match the structure of the
target, or a runtime error occurs. When a record variable is the target, it automatically configures
itself to the row type of the query result columns.

The INTO clause can appear almost anywhere in the SELECT statement. It usually appears just
after the SELECT clause, or just before FROM clause. That is, it appears just before or just after the
select_expressions list.

If the query returns zero rows, NULL values are assigned to target. If the query returns multiple
rows, the first row is assigned to target and the rest are discarded. Unless the statement contains
an ORDER BY, the first row is not deterministic.

To determine whether the assignment returned at least one row, use the special FOUND variable.

SELECT INTO customer_rec * FROM cust WHERE custname = lname;
IF NOT FOUND THEN

RAISE EXCEPTION 'employee % not found', lname;
END IF;

To test whether a record result is null, you can use the IS NULL conditional. There is no way to
determine whether any additional rows might have been discarded. The following example handles
the case where no rows have been returned.

CREATE OR REPLACE PROCEDURE select_into_null(return_webpage OUT varchar(256))
AS $$
DECLARE
customer_rec RECORD;
BEGIN
SELECT INTO customer_rec * FROM users WHERE user_id=3;
IF customer_rec.webpage IS NULL THEN
-- user entered no webpage, return "http://"
return_webpage = 'http://';
END IF;
END;
$$ LANGUAGE plpgsql;

Supported PL/pgSQL statements 291

Amazon Redshift Database Developer Guide

No-op

The no-op statement (NULL ;) is a placeholder statement that does nothing. A no-op statement can
indicate that one branch of an IF-THEN-ELSE chain is empty.

NULL;

Dynamic SQL

To generate dynamic commands that can involve different tables or different data types each time
they are run from a PL/pgSQL stored procedure, use the EXECUTE statement.

EXECUTE command-string [INTO target J;

In the preceding, command-string is an expression yielding a string (of type text) that contains
the command to be run. This command-string value is sent to the SQL engine. No substitution of
PL/pgSQL variables is done on the command string. The values of variables must be inserted in the
command string as it is constructed.

(® Note

You can't use COMMIT and ROLLBACK statements from within dynamic SQL. For
information about using COMMIT and ROLLBACK statements within a stored procedure, see
Managing transactions.

When working with dynamic commands, you often have to handle escaping of single quotation
marks. We recommend enclosing fixed text in quotation marks in your function body using dollar
quoting. Dynamic values to insert into a constructed query require special handling because they
might themselves contain quotation marks. The following example assumes dollar quoting for the
function as a whole, so the quotation marks don't need to be doubled.

EXECUTE 'UPDATE tbl SET '
| | quote_ident(colname)
I ="
| | quote_literal(newvalue)
|| ' WHERE key = '
| | quote_literal(keyvalue);

Supported PL/pgSQL statements 292

Amazon Redshift Database Developer Guide

The preceding example shows the functions quote_ident(text) and quote_literal(text).
This example passes variables that contain column and table identifiers to the quote_ident
function. It also passes variables that contain literal strings in the constructed command to the
quote_literal function. Both functions take the appropriate steps to return the input text
enclosed in double or single quotation marks respectively, with any embedded special characters
properly escaped.

Dollar quoting is only useful for quoting fixed text. Don't write the preceding example in the
following format.

EXECUTE 'UPDATE tbl SET '
| | quote_ident(colname)
Il = $$
|| newvalue
|| '$$ WHERE key = '
| | quote_literal(keyvalue);

You don't do this because the example breaks if the contents of newvalue happen to contain $$.
The same problem applies to any other dollar-quoting delimiter that you might choose. To safely
quote text that is not known in advance, use the quote_literal function.

Return

The RETURN statement returns back to the caller from a stored procedure.

RETURN;

The following shows an example.

CREATE OR REPLACE PROCEDURE return_example(a int)
AS $%
BEGIN
FOR b in 1..10 LOOP
IF b < a THEN
RAISE INFO 'b = %', b;
ELSE
RETURN;
END IF;
END LOOP;
END;

Supported PL/pgSQL statements 293

Amazon Redshift Database Developer Guide

$$ LANGUAGE plpgsql;

Conditionals: IF

The IF conditional statement can take the following forms in the PL/pgSQL language that Amazon
Redshift uses:

e IF... THEN

IF boolean-expression THEN
statements
END IF;

The following shows an example.

IF v_user_id <> 0@ THEN
UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

o IF... THEN ... ELSE

IF boolean-expression THEN
statements

ELSE
statements

END IF;

The following shows an example.

IF parentid IS NULL OR parentid = ''

THEN
return_name
RETURN;

ELSE
return_name = hp_true_filename(parentid) || '/' || fullname;
RETURN;

END IF;

fullname;

e IF... THEN ... ELSIF ... THEN ... ELSE

The key word ELSIF can also be spelled ELSEIF.

Supported PL/pgSQL statements 294

Amazon Redshift

Database Developer Guide

IF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

[ELSIF boolean-expression THEN
statements

1]

[ELSE
statements]

END IF;

The following shows an example.

IF number = @ THEN
result := 'zero';
ELSIF number > @ THEN
result := 'positive';
ELSIF number < @ THEN
result := 'negative';
ELSE
-- the only other possibility is that number is null
result := 'NULL';
END IF;

Conditionals: CASE

The CASE conditional statement can take the following forms in the PL/pgSQL language that

Amazon Redshift uses:

« Simple CASE

CASE search-expression

WHEN expression [, expression [... 1] THEN
Statements

[WHEN expression [, expression [...]] THEN
Statements

e]

[ELSE
statements]

END CASE;

Supported PL/pgSQL statements

295

Amazon Redshift Database Developer Guide

A simple CASE statement provides conditional execution based on equality of operands.

The search-expression value is evaluated one time and successively compared to each
expression in the WHEN clauses. If a match is found, then the corresponding statements run,
and then control passes to the next statement after END CASE. Subsequent WHEN expressions
aren't evaluated. If no match is found, the ELSE statements run. However, if ELSE isn't present,
then a CASE_NOT_FOUND exception is raised.

The following shows an example.

CASE x
WHEN 1, 2 THEN
msg := 'one or two';
ELSE
msg := 'other value than one or two';
END CASE;

o Searched CASE

CASE

WHEN boolean-expression THEN
statements

[WHEN boolean-expression THEN
statements
e]

[ELSE
statements]

END CASE;

The searched form of CASE provides conditional execution based on truth of Boolean
expressions.

Each WHEN clause's boolean-expression is evaluated in turn, until one is found that yields
true. Then the corresponding statements run, and then control passes to the next statement
after END CASE. Subsequent WHEN expressions aren't evaluated. If no true result is found,
the ELSE statements are run. However, if ELSE isn't present, then a CASE_NOT_FOUND
exception is raised.

The following shows an example.

Supported PL/pgSQL statements 296

Amazon Redshift Database Developer Guide

CASE
WHEN x BETWEEN @ AND 1@ THEN
msg := 'value is between zero and ten';
WHEN x BETWEEN 11 AND 2@ THEN
msg := 'value is between eleven and twenty';
END CASE;
Loops

Loop statements can take the following forms in the PL/pgSQL language that Amazon Redshift
uses:

« Simple loop

[<<label>>]
LOOP
statements
END LOOP [label J;

A simple loop defines an unconditional loop that is repeated indefinitely until terminated by an
EXIT or RETURN statement. The optional label can be used by EXIT and CONTINUE statements
within nested loops to specify which loop the EXIT and CONTINUE statements refer to.

The following shows an example.

CREATE OR REPLACE PROCEDURE simple_loop()
LANGUAGE plpgsql
AS $%
BEGIN
<<simple_while>>
LOOP
RAISE INFO 'I am raised once';
EXIT simple_while;
RAISE INFO 'I am not raised';
END LOOP;
RAISE INFO 'I am raised once as well';
END;
$$;

» Exit loop

Supported PL/pgSQL statements 297

Amazon Redshift Database Developer Guide

EXIT [label] [WHEN expression];

If Label isn't present, the innermost loop is terminated and the statement following the END
LOOP runs next. If Label is present, it must be the label of the current or some outer level of
nested loop or block. Then, the named loop or block is terminated and control continues with
the statement after the loop or block corresponding END.

If WHEN is specified, the loop exit occurs only if expression is true. Otherwise, control passes
to the statement after EXIT.

You can use EXIT with all types of loops; it isn't limited to use with unconditional loops.

When used with a BEGIN block, EXIT passes control to the next statement after the end of the
block. A label must be used for this purpose. An unlabeled EXIT is never considered to match a
BEGIN block.

The following shows an example.

CREATE OR REPLACE PROCEDURE simple_loop_when(x int)
LANGUAGE plpgsql

AS $%
DECLARE i INTEGER := 0;
BEGIN
<<simple_loop_when>>
LOOP
RAISE INFO 'i %', i;
i:=1i+1;
EXIT simple_loop_when WHEN (i >= x);
END LOOP;
END;
$$;

« Continue loop

CONTINUE [Iabel] [WHEN expression];

If Label is not given, the execution jumps to the next iteration of the innermost loop. That is,
all statements remaining in the loop body are skipped. Control then returns to the loop control

Supported PL/pgSQL statements 298

Amazon Redshift Database Developer Guide

expression (if any) to determine whether another loop iteration is needed. If Label is present, it
specifies the label of the loop whose execution is continued.

If WHEN is specified, the next iteration of the loop is begun only if expression is true.
Otherwise, control passes to the statement after CONTINUE.

You can use CONTINUE with all types of loops; it isn't limited to use with unconditional loops.

CONTINUE mylabel;

o WHILE loop

[<<label>>]

WHILE expression LOOP
statements

END LOOP [label 1;

The WHILE statement repeats a sequence of statements so long as the boolean-expression
evaluates to true. The expression is checked just before each entry to the loop body.

The following shows an example.

WHILE amount_owed > @ AND gift_certificate_balance > @ LOOP
-- some computations here
END LOOP;

WHILE NOT done LOOP
-- some computations here
END LOOP;

» FOR loop (integer variant)

[<<label>>]

FOR name IN [REVERSE] expression .. expression LOOP
statements

END LOOP [label 1;

The FOR loop (integer variant) creates a loop that iterates over a range of integer values. The
variable name is automatically defined as type integer and exists only inside the loop. Any
existing definition of the variable name is ignored within the loop. The two expressions giving

Supported PL/pgSQL statements 299

Amazon Redshift Database Developer Guide

the lower and upper bound of the range are evaluated one time when entering the loop. If you
specify REVERSE, then the step value is subtracted, rather than added, after each iteration.

If the lower bound is greater than the upper bound (or less than, in the REVERSE case), the loop
body doesn't run. No error is raised.

If a label is attached to the FOR loop, then you can reference the integer loop variable with a
qualified name, using that label.

The following shows an example.

FOR i IN 1..10 LOOP
-- i will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop
END LOOP;

FOR i IN REVERSE 10..1 LOOP
-- i will take on the values 10,9,8,7,6,5,4,3,2,1 within the loop
END LOOP;

» FOR loop (result set variant)

[<<label>>]

FOR target IN query LOOP
statements

END LOOP [label];

The target is a record variable or comma-separated list of scalar variables. The target is
successively assigned each row resulting from the query, and the loop body is run for each row.

The FOR loop (result set variant) enables a stored procedure to iterate through the results of a
query and manipulate that data accordingly.

The following shows an example.

CREATE PROCEDURE cs_refresh_reports() AS $$
DECLARE
reports RECORD;
BEGIN
FOR reports IN SELECT * FROM cs_reports ORDER BY sort_key LOOP
-- Now "reports" has one record from cs_reports

Supported PL/pgSQL statements 300

Amazon Redshift Database Developer Guide

EXECUTE 'INSERT INTO ' || quote_ident(reports.report_name) || ' ' ||
reports.report_query;
END LOOP;
RETURN;
END;

$$ LANGUAGE plpgsql;

« FOR loop with dynamic SQL

[<<label>>]

FOR record_or_row IN EXECUTE text_expression LOOP
statements

END LOOP;

A FOR loop with dynamic SQL enables a stored procedure to iterate through the results of a
dynamic query and manipulate that data accordingly.

The following shows an example.

CREATE OR REPLACE PROCEDURE for_loop_dynamic_sql(x int)
LANGUAGE plpgsql
AS $%
DECLARE
rec RECORD;
query text;
BEGIN
query := 'SELECT * FROM tbl_dynamic_sql LIMIT ' || x;
FOR rec IN EXECUTE query
LOOP
RAISE INFO 'a %', rec.a;
END LOOP;
END;
$$;

Cursors

Rather than running a whole query at once, you can set up a cursor. A cursor encapsulates a query
and reads the query result a few rows at a time. One reason for doing this is to avoid memory
overrun when the result contains a large number of rows. Another reason is to return a reference

Supported PL/pgSQL statements 301

Amazon Redshift Database Developer Guide

to a cursor that a stored procedure has created, which allows the caller to read the rows. This
approach provides an efficient way to return large row sets from stored procedures.

To use cursors in @ NONATOMIC stored procedure, place the cursor loop between START
TRANSACTION...COMMIT.

To set up a cursor, first you declare a cursor variable. All access to cursors in PL/pgSQL goes
through cursor variables, which are always of the special data type refcursor. A refcursor data
type simply holds a reference to a cursor.

You can create a cursor variable by declaring it as a variable of type refcursozr. Or, you can use
the cursor declaration syntax following.

name CURSOR [(arguments)] FOR query ;

In the preceding, arguments (if specified) is a comma-separated list of name datatype pairs that
each define names to be replaced by parameter values in query. The actual values to substitute for
these names are specified later, when the cursor is opened.

The following shows examples.

DECLARE
cursl refcursor;
curs2 CURSOR FOR SELECT * FROM tenkl;
curs3 CURSOR (key integer) IS SELECT * FROM tenkl WHERE uniquel = key;

All three of these variables have the data type refcursozr, but the first can be used with any
query. In contrast, the second has a fully specified query already bound to it, and the last has a
parameterized query bound to it. The key value is replaced by an integer parameter value when
the cursor is opened. The variable curs1 is said to be unbound because it is not bound to any
particular query.

Before you can use a cursor to retrieve rows, it must be opened. PL/pgSQL has three forms of the
OPEN statement, of which two use unbound cursor variables and the third uses a bound cursor
variable:

» Open for select: The cursor variable is opened and given the specified query to run. The cursor
can't be open already. Also, it must have been declared as an unbound cursor (that is, as a simple

Supported PL/pgSQL statements 302

Amazon Redshift Database Developer Guide

refcursor variable). The SELECT query is treated in the same way as other SELECT statements
in PL/pgSQL.

OPEN cursor_name FOR SELECT ...;

The following shows an example.

OPEN cursl FOR SELECT * FROM foo WHERE key = mykey;

» Open for execute: The cursor variable is opened and given the specified query to run. The cursor
can't be open already. Also, it must have been declared as an unbound cursor (that is, as a simple
refcursor variable). The query is specified as a string expression in the same way as in the
EXECUTE command. This approach gives flexibility so the query can vary from one run to the
next.

OPEN cursor_name FOR EXECUTE query_string;

The following shows an example.

OPEN cursl FOR EXECUTE 'SELECT * FROM ' || quote_ident($1);

« Open a bound cursor: This form of OPEN is used to open a cursor variable whose query was
bound to it when it was declared. The cursor can't be open already. A list of actual argument
value expressions must appear if and only if the cursor was declared to take arguments. These
values are substituted in the query.

OPEN bound_cursor_name [(argument_values) 1;

The following shows an example.

OPEN curs2;
OPEN curs3(42);

After a cursor has been opened, you can work with it by using the statements described following.
These statements don't have to occur in the same stored procedure that opened the cursor. You
can return a refcursor value out of a stored procedure and let the caller operate on the cursor.

Supported PL/pgSQL statements 303

Amazon Redshift Database Developer Guide

All portals are implicitly closed at transaction end. Thus, you can use a refcursor value to
reference an open cursor only until the end of the transaction.

o FETCH retrieves the next row from the cursor into a target. This target can be a row variable, a
record variable, or a comma-separated list of simple variables, just as with SELECT INTO. As with
SELECT INTO, you can check the special variable FOUND to see whether a row was obtained.

FETCH cursor INTO target;

The following shows an example.

FETCH cursl INTO rowvar;

o CLOSE closes the portal underlying an open cursor. You can use this statement to release
resources earlier than end of the transaction. You can also use this statement to free the cursor
variable to be opened again.

CLOSE cursor;

The following shows an example.

CLOSE cursl;

RAISE

Use the RAISE level statement to report messages and raise errors.

RAISE level 'format' [, variable [, ...11;

Possible levels are NOTICE, INFO, LOG, WARNING, and EXCEPTION. EXCEPTION raises an error,
which normally cancels the current transaction. The other levels generate only messages of
different priority levels.

Inside the format string, % is replaced by the next optional argument's string representation. Write
%?% to emit a literal %. Currently, optional arguments must be simple variables, not expressions,
and the format must be a simple string literal.

In the following example, the value of v_job_id replaces the % in the string.

Supported PL/pgSQL statements 304

Amazon Redshift Database Developer Guide

RAISE NOTICE 'Calling cs_create_job(%)', v_job_id;

Use the RAISE statement to re-throw the exception caught by an exception handling block. This
statement is only valid in exception handling blocks of NONATOMIC mode stored procedures.

RAISE;

Transaction control

You can work with transaction control statements in the PL/pgSQL language that Amazon Redshift
uses. For information about using the statements COMMIT, ROLLBACK, and TRUNCATE within a
stored procedure, see Managing transactions.

In NONATOMIC mode stored procedures, use START TRANSACTION to start a transaction block.

START TRANSACTION;

(® Note

The PL/pgSQL statement START TRANSACTION is different from the SQL command START
TRANSACTION in the following ways:

« Within stored procedures, START TRANSACTION is not synonymous with BEGIN.

» The PL/pgSQL statement does not support optional isolation level and access permission
keywords.

Supported PL/pgSQL statements 305

Amazon Redshift Database Developer Guide

Creating materialized views in Amazon Redshift

In a data warehouse environment, applications often must perform complex queries on large
tables. An example is SELECT statements that perform multi-table joins and aggregations on
tables that contain billions of rows. Processing these queries can be expensive, in terms of system
resources and the time it takes to compute the results.

Materialized views in Amazon Redshift provide a way to address these issues. A materialized view
contains a precomputed result set, based on an SQL query over one or more base tables. You

can issue SELECT statements to query a materialized view, in the same way that you can query
other tables or views in the database. Amazon Redshift returns the precomputed results from the
materialized view, without having to access the base tables at all. From the user standpoint, the
query results are returned much faster compared to when retrieving the same data from the base
tables.

Materialized views are especially useful for speeding up queries that are predictable and repeated.
Instead of performing resource-intensive queries against large tables (such as aggregates or
multiple joins), applications can query a materialized view and retrieve a precomputed result

set. For example, consider the scenario where a set of queries is used to populate dashboards,
such as Amazon QuickSight. This use case is ideal for a materialized view, because the queries are
predictable and repeated over and over again.

You can define a materialized view in terms of other materialized views. Use materialized views
on materialized views to expand the capability of materialized views. In this approach, an existing
materialized view plays the same role as a base table for the query to retrieve data.

This approach is especially useful for reusing precomputed joins for different aggregate or GROUP
BY options. For example, take a materialized view that joins customer information (containing
millions of rows) with item order detail information (containing billions of rows). This is an
expensive query to compute on demand repeatedly. You can use different GROUP BY options for
the materialized views created on top of this materialized view and join with other tables. Doing
this saves compute time otherwise used to run the expensive underlying join every time. The
STV_MV_DEPS table shows the dependencies of a materialized view on other materialized views.

When you create a materialized view, Amazon Redshift runs the user-specified SQL statement to
gather the data from the base table or tables and stores the result set. The following illustration
provides an overview of the materialized view tickets_mv that an SQL query defines by using
two base tables, events and sales.

306

Amazon Redshift Database Developer Guide

tickets_mv
eventname total_sales
Dolly Parton 10.00
Gotterburg 48.00
events sales

eventid | catid |eventname salesid | eventid | cust | price
1 8 Gotterburg 1 1 ¢l | 12.00
18 8 Gotterburg 2 18 c1 | 36.00
5311 9 Dolly Parton 3 5311 c2 | 10.00

You can then use these materialized views in queries to speed them up. In addition, Amazon
Redshift can automatically rewrite these queries to use materialized views, even when the query
doesn't explicitly reference a materialized view. Automatic rewrite of queries is especially powerful
in enhancing performance when you can't change your queries to use materialized views.

To update the data in the materialized view, you can use the REFRESH MATERIALIZED VIEW
statement at any time to manually refresh materialized views. Amazon Redshift identifies
changes that have taken place in the base table or tables, and then applies those changes to the
materialized view. Because automatic rewriting of queries requires materialized views to be up to
date, as a materialized view owner, make sure to refresh materialized views whenever a base table
changes.

Amazon Redshift provides a few ways to keep materialized views up to date for automatic
rewriting. You can configure materialized views with the automatic refresh option to refresh
materialized views when base tables of materialized views are updated. This autorefresh operation

307

Amazon Redshift Database Developer Guide

runs at a time when cluster resources are available to minimize disruptions to other workloads.
Because the scheduling of autorefresh is workload-dependent, you can have more control over
when Amazon Redshift refreshes your materialized views. You can schedule a materialized view
refresh job by using Amazon Redshift scheduler APl and console integration. For more information
about query scheduling, see Scheduling a query on the Amazon Redshift console.

Doing this is especially useful when there is a service level agreement (SLA) requirement for up-to-
date data from a materialized view. You can also manually refresh any materialized views that you
can autorefresh. For information on how to create materialized views, see CREATE MATERIALIZED
VIEW.

You can issue SELECT statements to query a materialized view. For information on how to query
materialized views, see Querying a materialized view. The result set eventually becomes stale when
data is inserted, updated, and deleted in the base tables. You can refresh the materialized view

at any time to update it with the latest changes from the base tables. For information on how to
refresh materialized views, see REFRESH MATERIALIZED VIEW.

For details about SQL commands used to create and manage materialized views, see the following
command topics:

CREATE MATERIALIZED VIEW
ALTER MATERIALIZED VIEW
REFRESH MATERIALIZED VIEW
DROP MATERIALIZED VIEW

For information about system tables and views to monitor materialized views, see the following
topics:

« STV_MV_INFO

o STL_MV_STATE

o SVL_MV_REFRESH_STATUS
« STV_MV_DEPS

Topics

e Querying a materialized view

« Automatic query rewriting to use materialized views

308

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-schedule-query.html

Amazon Redshift Database Developer Guide

Refreshing a materialized view

Automated materialized views

Using a user-defined function (UDF) in a materialized view

Streaming ingestion

Querying a materialized view

You can use a materialized view in any SQL query by referencing the materialized view name as the
data source, like a table or standard view.

When a query accesses a materialized view, it sees only the data that is stored in the materialized
view as of its most recent refresh. Thus, the query might not see all the latest changes from
corresponding base tables of the materialized view.

If other users want to query the materialized view, the owner of the materialized view grants the
SELECT permission to those users. The other users don't need to have the SELECT permission

on the underlying base tables. The owner of the materialized view can also revoke the SELECT
permission from other users to prevent them from querying the materialized view.

If the owner of the materialized view no longer has the SELECT permission on the underlying base
tables:
« The owner can no longer query the materialized view.

o Other users who have the SELECT permission on the materialized view can no longer query the
materialized view.

The following example queries the tickets_mv materialized view. For more information on the
SQL command used to create a materialized view, see CREATE MATERIALIZED VIEW.

SELECT sold
FROM tickets_mv
WHERE catgroup = 'Concerts';

Because the query results are precomputed, there's no need to access the underlying tables
(category, event, and sales). Amazon Redshift can return the results directly from
tickets_mv.

Querying a materialized view 309

Amazon Redshift Database Developer Guide

Automatic query rewriting to use materialized views

You can use automatic query rewriting of materialized views in Amazon Redshift to have Amazon
Redshift rewrite queries to use materialized views. Doing this accelerates query workloads even for
queries that don't explicitly reference a materialized view. When Amazon Redshift rewrites queries,
it only uses materialized views that are up to date.

Usage notes

To check if automatic rewriting of queries is used for a query, you can inspect the query plan or
STL_EXPLAIN. The following shows a SELECT statement and the EXPLAIN output of the original
query plan.

SELECT catgroup, SUM(qtysold) AS sold

FROM category c, event e, sales s

WHERE c.catid = e.catid AND e.eventid = s.eventid
GROUP BY 1;

EXPLAIN
XN HashAggregate (cost=920021.24..920021.24 rows=1 width=35)
-> XN Hash Join DS_BCAST_INNER (cost=440004.53..920021.22 rows=4 width=35)
Hash Cond: ("outer".eventid = "inner".eventid)
-> XN Seq Scan on sales s (cost=0.00..7.40 rows=740 width=6)
-> XN Hash (cost=440004.52..440004.52 rows=1 width=37)
-> XN Hash Join DS_BCAST_INNER (cost=0.01..440004.52 rows=1 width=37)
Hash Cond: ("outer".catid = "inner".catid)
-> XN Seq Scan on event e (cost=0.00..2.00 rows=200 width=6)
-> XN Hash (cost=0.01..0.01 rows=1 width=35)
-> XN Seq Scan on category ¢ (cost=0.00..0.01 rows=1
width=35)

The following shows the EXPLAIN output after a successful automatic rewriting. This output
includes a scan on the materialized view in the query plan that replaces parts of the original query
plan.

* EXPLAIN
XN HashAggregate (cost=11.85..12.35 rows=200 width=41)
-> XN Seq Scan on mv_tbl_ tickets_mv__ 0 derived_tablel (cost=0.00..7.90
rows=790 width=41)

Automatic query rewriting to use materialized views 310

Amazon Redshift Database Developer Guide

Only up-to-date (fresh) materialized views are considered for automatic rewriting of queries,
irrespective of the refresh strategy, such as auto, scheduled, or manual. Hence, the original query
returns up-to-date results. When a materialized view is explicitly referenced in queries, Amazon
Redshift accesses currently stored data in the materialized view. This data might not reflect the
latest changes from the base tables of the materialized view.

You can use automatic query rewriting of materialized views that are created on cluster version
1.0.20949 or later.

You can stop automatic query rewriting at the session level by using SET
mv_enable_aqgmv_for_session to FALSE.

Limitations

Following are limitations for using automatic query rewriting of materialized views:
« Automatic query rewriting works with materialized views that don't reference or include any of
the following:
» Subqueries
o Left, right, or full outer joins
» Set operations

« Any aggregate functions, except SUM, COUNT, MIN, MAX, and AVG. (These are the only
aggregate functions that work with automatic query rewriting.)

« Any aggregate functions with DISTINCT
« Any window functions

o SELECT DISTINCT or HAVING clauses

« External tables

« Other materialized views

« Automatic query rewriting rewrites SELECT queries that refer to user-defined Amazon Redshift
tables. Amazon Redshift doesn't rewrite the following queries:

o CREATE TABLE AS statements
o SELECT INTO statements
» Queries on catalogs or system tables

o Queries with outer joins or a SELECT DISTINCT clause

Limitations 311

Amazon Redshift Database Developer Guide

« If a query isn't automatically rewritten, check whether you have the SELECT permission on the
specified materialized view and the mv_enable_agmv_for_session option is set to TRUE.

You can also check if your materialized views are eligible for automatic rewriting of queries by
inspecting STV_MV_INFO. For more information, see STV_MV_INFO.

Refreshing a materialized view

When you create a materialized view, its contents reflect the state of the underlying database
table or tables at that time. The data in the materialized view remains unchanged, even when
applications change the data in the underlying tables. To update the data in the materialized
view, you can use the REFRESH MATERIALIZED VIEW statement at any time to manually refresh
materialized views. When you use this statement, Amazon Redshift identifies changes that have
taken place in the base table or tables and applies those changes to the materialized view.

Amazon Redshift has two strategies for refreshing a materialized view:

« In many cases, Amazon Redshift can perform an incremental refresh. In an incremental refresh,
Amazon Redshift quickly identifies the changes to the data in the base tables since the last
refresh and updates the data in the materialized view. Incremental refresh is supported on the
following SQL constructs used in the query when defining the materialized view:

« Constructs that contain the clauses SELECT, FROM, [INNER] JOIN, WHERE, GROUP BY, or
HAVING.

« Constructs that contain aggregations, such as SUM, MIN, MAX, AVG, and COUNT.

» Most built-in SQL functions, specifically the ones that are immutable, given that these have
the same input arguments and always produce the same output.

Incremental refresh is also supported for a materialized view that's based on a datashare table.

« If an incremental refresh isn't possible, then Amazon Redshift performs a full refresh. A full
refresh reruns the underlying SQL statement, replacing all of the data in the materialized view.

« Amazon Redshift automatically chooses the refresh method for a materialized view depending
on the SELECT query used to define the materialized view.

Refreshing a materialized view on a materialized view isn't a cascading process. In other words,
suppose that you have a materialized view A that depends on materialized view B. In this case,
when the REFRESH MATERIALIZED VIEW A is invoked, A is refreshed using the current version of

Refreshing a materialized view 312

Amazon Redshift Database Developer Guide

B, even when B is out-of-date. To bring A fully up to date, before refreshing A, first refresh B in a
separate transaction.

The following example shows how you can create a full refresh plan for a materialized view
programmatically. To refresh the materialized view v, first refresh materialized view u. To refresh
materialized view w, first refresh materialized view u and then materialized view v.

CREATE TABLE t(a INT);

CREATE MATERIALIZED VIEW u AS SELECT * FROM t;
CREATE MATERIALIZED VIEW v AS SELECT * FROM u;
CREATE MATERIALIZED VIEW w AS SELECT * FROM v;

WITH RECURSIVE recursive_deps (mv_tgt, 1lvl, mv_dep) AS

(SELECT trim(name) as mv_tgt, @ as 1lvl, trim(ref_name) as mv_dep
FROM stv_mv_deps
UNION ALL
SELECT R.mv_tgt, R.1lvl+l as 1lvl, trim(S.ref_name) as mv_dep
FROM stv_mv_deps S, recursive_deps R
WHERE R.mv_dep = S.name

SELECT mv_tgt, mv_dep from recursive_deps
ORDER BY mv_tgt, 1lvl DESC;

mv_tgt | mv_dep
________ B
v | u

w | u

w | v

(3 rows)

The following example shows an informative message when you run REFRESH MATERIALIZED
VIEW on a materialized view that depends on an out-of-date materialized view.

create table a(a int);

create materialized view b as select * from a;

create materialized view c as select * from b;

Refreshing a materialized view 313

Amazon Redshift Database Developer Guide

insert into a values (1);

refresh materialized view c;

INFO: Materialized view c is already up to date. However, it depends on another
materialized view that is not up to date.

REFRESH MATERIALIZED VIEW b;
INFO: Materialized view b was incrementally updated successfully.

REFRESH MATERIALIZED VIEW c;
INFO: Materialized view c was incrementally updated successfully.

Amazon Redshift currently has the following limitations for incremental refresh for materialized
views.

Amazon Redshift doesn't support incremental refresh for materialized views that are defined with
a query using the following SQL elements:

e OUTER JOIN (RIGHT, LEFT, or FULL).
o The set operations UNION, INTERSECT, EXCEPT, and MINUS.

« The aggregate functions MEDIAN, PERCENTILE_CONT, LISTAGG, STDDEV_SAMP, STDDEV_POP,
APPROXIMATE COUNT, APPROXIMATE PERCENTILE, and bitwise aggregate functions.

(® Note
The COUNT, SUM, and AVG aggregate functions are supported.

« DISTINCT aggregate functions, such as DISTINCT COUNT, DISTINCT SUM, and so on.
« Window functions.

« A query that uses temporary tables for query optimization, such as optimizing common
subexpressions.

» Subqueries.

« External tables referencing the following formats in the query that defines the materialized view.
« Delta Lake
o Hudi

Refreshing a materialized view 314

Amazon Redshift Database Developer Guide

Incremental refresh is supported on the preview track for materialized views defined using
formats other than those listed above. For more information about setting up Preview clusters,
see Creating a preview cluster in the Amazon Redshift Management Guide. For information

about setting up Preview workgroups, see Creating a preview workgroup in the Amazon Redshift
Management Guide.

Autorefreshing a materialized view

Amazon Redshift can automatically refresh materialized views with up-to-date data from its base
tables when materialized views are created with or altered to have the autorefresh option. Amazon
Redshift autorefreshes materialized views as soon as possible after base tables changes.

To complete refresh of the most important materialized views with minimal impact to active
workloads in your cluster, Amazon Redshift considers multiple factors. These factors include
current system load, the resources needed for refresh, available cluster resources, and how often
the materialized views are used.

Amazon Redshift prioritizes your workloads over autorefresh and might stop autorefresh

to preserve the performance of user workload. This approach might delay refresh of some
materialized views. In some cases, you might need more deterministic refresh behavior for your
materialized views. If so, consider using manual refresh as described in REFRESH MATERIALIZED
VIEW or scheduled refresh using the Amazon Redshift scheduler APl operations or the console.

You can set autorefresh for materialized views using CREATE MATERIALIZED VIEW. You can also use
the AUTO REFRESH clause to refresh materialized views automatically. For more information about
creating materialized views, see CREATE MATERIALIZED VIEW. You can turn on autorefresh for a
current materialized view by using ALTER MATERIALIZED VIEW.

Consider the following when you refresh materialized views:

 You can still refresh a materialized view explicitly using REFRESH MATERIALIZED VIEW command
even if you haven't enabled autorefresh for the materialized view.

« Amazon Redshift doesn't autorefresh materialized views defined on external tables.

 For refresh status, you can check SVL_MV_REFRESH_STATUS, which records queries that were
user-initiated or autorefreshed.

« To run REFRESH on recompute-only materialized views, make sure that you have the CREATE
permission on schemas. For more information, see GRANT.

Autorefreshing a materialized view 315

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#cluster-preview
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html

Amazon Redshift Database Developer Guide

Automated materialized views

Materialized views are a powerful tool for improving query performance in Amazon Redshift.
They do this by storing a precomputed result set. Similar queries don't have to re-run the same
logic each time, because they can retrieve records from the existing result set. Developers and
analysts create materialized views after analyzing their workloads to determine which queries
would benefit, and whether the maintenance cost of each materialized view is worthwhile. As
workloads grow or change, these materialized views must be reviewed to ensure they continue to
provide tangible performance benefits.

The Automated Materialized Views (AutoMV) feature in Redshift provides the same performance
benefits of user-created materialized views. Amazon Redshift continually monitors the workload
using machine learning and creates new materialized views when they are beneficial. AutoMV
balances the costs of creating and keeping materialized views up to date against expected benefits
to query latency. The system also monitors previously created AutoMVs and drops them when they
are no longer beneficial.

AutoMV behavior and capabilities are the same as user-created materialized views. They are
refreshed automatically and incrementally, using the same criteria and restrictions. Just like
materialized views created by users, Automatic query rewriting to use materialized views identifies

queries that can benefit from system-created AutoMVs. It automatically rewrites those queries to
use the AutoMVs, improving query performance. Developers don't need to revise queries to take
advantage of AutoMV.

® Note

Automated materialized views are refreshed intermittently. Queries rewritten to use
AutoMV always return the latest results. When Redshift detects that data isn't up to date,
queries aren't rewritten to read from automated materialized views. Instead, queries select
the latest data from base tables.

Any workload with queries that are used repeatedly can benefit from AutoMV. Common use cases
include:

» Dashboards - Dashboards are widely used to provide quick views of key business indicators (KPIs),
events, trends, and other metrics. They often have a common layout with charts and tables,
but show different views for filtering, or for dimension-selection operations, like drill down.

Automated materialized views 316

Amazon Redshift Database Developer Guide

Dashboards often have a common set of queries used repeatedly with different parameters.
Dashboard queries can benefit greatly from automated materialized views.

» Reports - Reporting queries may be scheduled at various frequencies, based on business
requirements and the type of report. Additionally, they can be automated or on-demand. A
common characteristic of reporting queries is that they can be long running and resource-
intensive. With AutoMV, these queries don't need to be recomputed each time they run, which
reduces runtime for each query and resource utilization in Redshift.

To turn off automated materialized views, you update the auto_mv parameter group to false.
For more information, see Amazon Redshift parameter groups in the Amazon Redshift Cluster

Management Guide.

SQL scope and considerations for automated materialized views

« An automated materialized view can be initiated and created by a query or subquery, provided
it contains a GROUP BY clause or one of the following aggregate functions: SUM, COUNT, MIN,
MAX or AVG. But it cannot contain any of the following:

« Left, right, or full outer joins

» Aggregate functions other than SUM, COUNT, MIN, MAX, and AVG. (These particular functions
work with automatic query rewriting.)

« Any aggregate function that includes DISTINCT
« Any window functions
o SELECT DISTINCT or HAVING clauses

o Other materialized views

It isn't guaranteed that a query that meets the criteria will initiate the creation of an automated
materialized view. The system determines from which candidates to create a view, based on its
expected benefit to the workload and cost in resources to maintain, which includes the cost to
the system to refresh. Each resulting materialized view is usable by automatic query rewriting.

« Even though AutoMV might be initiated by a subquery or individual legs of set operators, the
resulting materialized view won't contain subqueries or set operators.

o

« To determine if AutoMV was used for queries, view the EXPLAIN plan and look for %_auto_mv_%
in the output. For more information, see EXPLAIN.

« Automated materialized views aren't supported on external tables, such as datashares and
federated tables.

SQL scope and considerations for automated materialized views 317

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html
https://docs.aws.amazon.com/redshift/latest/dg/r_EXPLAIN.html

Amazon Redshift Database Developer Guide

Automated materialized views limitations

Following are limitations for working with automated materialized views:

o Maximum number of AutoMVs - The limit of automated materialized views is 200 per database in
the cluster.

» Storage space and capacity - An important characteristic of AutoMV is that it is performed
using spare background cycles to help achieve that user workloads are not impacted. If the
cluster is busy or running out of storage space, AutoMV ceases its activity. Specifically, at
80% of total cluster capacity, no new automated materialized views are created. At 90%
of total capacity, they may be dropped to facilitate that user workloads continue without
performance degradation. For more information about determining cluster capacity, see
STV_NODE_STORAGE_CAPACITY.

Billing for automated materialized views

Amazon Redshift's automatic optimization capability creates and refreshes automated materialized
views. There is no charge for compute resources for this process. Storage of automated
materialized views is charged at the regular rate for storage. For more information, see Amazon
Redshift pricing.

Additional resources

The following blog post provides further explanation regarding automated materialized views. It
details how they're created, maintained, and dropped. It also explains the underlying algorithms
that drive these decisions: Optimize your Amazon Redshift query performance with automated

materialized views.

This video begins with an explanation of materialized views and shows how they improve
performance and conserve resources. It then provides an in-depth explanation of automated
materialized views with a process-flow animation and a live demonstration.

Using a user-defined function (UDF) in a materialized view

You can use a scalar UDF in an Amazon Redshift materialized view. Define these either in python or
SQL and reference them in the materialized view definition.

Automated materialized views limitations 318

https://aws.amazon.com/redshift/pricing/
https://aws.amazon.com/redshift/pricing/
https://aws.amazon.com/blogs//big-data/optimize-your-amazon-redshift-query-performance-with-automated-materialized-views/
https://aws.amazon.com/blogs//big-data/optimize-your-amazon-redshift-query-performance-with-automated-materialized-views/

Amazon Redshift Database Developer Guide

Referencing a UDF in a materialized view

The following procedure shows how to use UDFs that perform simple arithmetic comparisons, in a
materialized-view definition.

1. Create a table to use in the materialized-view definition.

CREATE TABLE base_table (a int, b int);

2. Create a scalar user-defined function in python that returns a boolean value indicating
whether an integer is larger than a comparison integer.

CREATE OR REPLACE FUNCTION udf_python_bool(x1 int, x2 int) RETURNS bool IMMUTABLE
AS $$

return x1 > x2
$$ LANGUAGE plpythonu;

Optionally, create a functionally similar UDF with SQL, which you can use to compare results
with the first.

CREATE OR REPLACE FUNCTION udf_sql_bool(int, int) RETURNS bool IMMUTABLE

AS $%
select $1 > $2;
$$ LANGUAGE SQL;

3. Create a materialized view that selects from the table you created and references the UDF.

CREATE MATERIALIZED VIEW mv_python_udf AS SELECT udf_python_bool(a, b) AS a FROM
base_table;

Optionally, you can create a materialized view that references the SQL UDF.

CREATE MATERIALIZED VIEW mv_sql_udf AS SELECT udf_sql_bool(a, b) AS a FROM
base_table;

4. Add data to the table and refresh the materialized view.

INSERT INTO base_table VALUES (1,2), (1,3), (4,2);

Referencing a UDF in a materialized view 319

Amazon Redshift Database Developer Guide

REFRESH MATERIALIZED VIEW mv_python_udf;

Optionally, you can refresh the materialized view that references the SQL UDF.

REFRESH MATERIALIZED VIEW mv_sql_udf;

5. Query data from your materialized view.

SELECT * FROM mv_python_udf ORDER BY a;

The results of the query are the following:

This returns true for the last set of values because the value for column a (4) is greater than
the value for column b (2).

6. Optionally, you can query the materialized view that references the SQL UDF. The results for
the SQL function match the results from the Python version.

SELECT * FROM mv_sql_udf ORDER BY a;

The results of the query are the following:

This returns true for the last set of values to compare.

7. Use a DROP statement with CASCADE to drop the user-defined function and the materialized
view that references it.

Referencing a UDF in a materialized view 320

Amazon Redshift Database Developer Guide

DROP FUNCTION udf_python_bool(int, int) CASCADE;

DROP FUNCTION udf_sql_bool(int, int) CASCADE;

Streaming ingestion

Streaming ingestion provides low-latency, high-speed ingestion of stream data from Amazon
Kinesis Data Streams and Amazon Managed Streaming for Apache Kafka into an Amazon Redshift

provisioned or Amazon Redshift Serverless materialized view. It lowers the time it takes to access
data and it reduces storage cost. You can configure streaming ingestion for your Amazon Redshift
cluster or for Amazon Redshift Serverless and create a materialized view, using SQL statements, as
described in Creating materialized views in Amazon Redshift. After that, using materialized-view

refresh, you can ingest hundreds of megabytes of data per second. This results in fast access to
external data that is quickly refreshed.

Data flow

An Amazon Redshift provisioned cluster or an Amazon Redshift Serverless workgroup is the stream
consumer. A materialized view is the landing area for data read from the stream, which is processed
as it arrives. For instance, JSON values can be consumed and mapped to the materialized view's
data columns, using familiar SQL. When the materialized view is refreshed, Redshift consumes

data from allocated Kinesis data shards or Kafka partitions until the view reaches parity with

the SEQUENCE_NUMBER for the Kinesis stream or last 0f fset for the Kafka topic. Subsequent
materialized view refreshes read data from the last SEQUENCE_NUMBER of the previous refresh
until it reaches parity with the stream or topic data.

Streaming ingestion use cases

Use cases for Amazon Redshift streaming ingestion involve working with data that's generated
continually (streamed) and must be processed within a short period (latency) of its generation.
This is called near real-time analytics. Sources of data can vary, and include loT devices, system
telemetry data, or clickstream data from a busy website or application.

Streaming ingestion 321

https://aws.amazon.com//kinesis/data-streams/
https://aws.amazon.com//kinesis/data-streams/
https://aws.amazon.com//msk/

Amazon Redshift Database Developer Guide

Streaming ingestion considerations

The following are important considerations and best practices for performance and billing as you
set up your streaming ingestion environment.

« Auto refresh usage and activation - Auto refresh queries for a materialized view or views are
treated as any other user workload. Auto refresh loads data from the stream as it arrives.

Auto refresh can be turned on explicitly for a materialized view created for streaming ingestion.
To do this, specify AUTO REFRESH in the materialized view definition. Manual refresh is the
default. To specify auto refresh for an existing materialized view for streaming ingestion,

you can run ALTER MATERIALIZED VIEW to turn it on. For more information, see CREATE
MATERIALIZED VIEW or ALTER MATERIALIZED VIEW.

» Streaming ingestion and Amazon Redshift Serverless - The same setup and configuration
instructions that apply to Amazon Redshift streaming ingestion on a provisioned cluster also
apply to streaming ingestion on Amazon Redshift Serverless. It's important to size Amazon
Redshift Serverless with the necessary level of RPUs to support streaming ingestion with auto
refresh and other workloads. For more information, see Billing for Amazon Redshift Serverless.

« Amazon Redshift nodes in a different availability zone than the Amazon MSK cluster - When
you configure streaming ingestion, Amazon Redshift attempts to connect to an Amazon MSK
cluster in the same Availability Zone, if rack awareness is enabled for Amazon MSK. If all of your
nodes are in different Availability Zones than your Amazon Redshift cluster, you can incur cross
Availability Zone data-transfer cost. To avoid this, keep at least one Amazon MSK broker cluster
node in the same AZ as your Redshift provisioned cluster or workgroup.

» Refresh start location - After creating a materialized view, its initial refresh starts from the
TRIM_HORIZON of a Kinesis stream, or from offset O of an Amazon MSK topic.

» Data formats - Supported data formats are limited to those that can be converted from
VARBYTE. For more information, see VARBYTE type and VARBYTE operators.

» Appending records to a table - You can run ALTER TABLE APPEND to append rows to a target
table from an existing source materialized view. This works only if the materialized view is
configured for streaming ingestion. For more information, see ALTER TABLE APPEND.

e Running TRUNCATE or DELETE - You can remove records from a materialized view that's used for
streaming ingestion, using a couple methods:

« TRUNCATE - This command deletes all of the rows from a materialized view that's configured
for streaming ingestion. It doesn't do a table scan. For more information, see TRUNCATE.

Streaming ingestion considerations 322

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-create-sql-command.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-create-sql-command.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_MATERIALIZED_VIEW.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-billing.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE_APPEND.html
https://docs.aws.amazon.com/redshift/latest/dg/r_TRUNCATE.html

Amazon Redshift Database Developer Guide

e DELETE - This command deletes all of the rows from a materialized view that's configured for
streaming ingestion. For more information, see DELETE.

Streaming ingestion best practices and recommendations

There are cases when you're presented with options in how you configure streaming ingestion. We
recommend the following best practices. These are based on our own tests and through helping
customers avoid issues leading to data loss.

« Extracting values from streamed data - If you use the JSON_EXTRACT_PATH_TEXT
function in your materialized view definition to shred incoming streaming JSON, it can

significantly impact performance and latency. To explain, for each column extracted using
JSON_EXTRACT_PATH_TEXT, the incoming JSON is re-parsed. After that, any data-type
conversion, filtering, and business logic occurs. This means, for example, that if you extract

10 columns from your JSON data, each JSON record is parsed 10 times, which includes type
conversions and additional logic. This results in higher ingestion latency. An alternative approach
we recommend is to use the JSON_PARSE function to convert JSON records to Redshift's

SUPER data type. After the streamed data lands in the materialized view, use PartiQL to extract
individual strings from SUPER's representation of the JSON data. For more information, see
Querying semistructured data.

It's also important to note that JSON_EXTRACT_PATH_TEXT has a 64KB data-size maximum.
Thus, if any JSON record is larger than 64KB, processing it with JSSON_EXTRACT_PATH_TEXT
results in an error.

« Mapping an Amazon Kinesis Data Streams stream or Amazon MSK topic to an Amazon
Redshift streaming-ingestion materialized view — We don't recommend creating multiple
streaming-ingestion materialized views to ingest data from a single Amazon Kinesis Data
Streams stream or Amazon MSK topic. This is because each materialized view creates a consumer
for each shard in the Kinesis Data Streams stream or partition in the Kafka topic. This can result
in throttling or exceeding the throughput of the stream or topic. It also can result in higher
cost, since you're ingesting the same data multiple times. We recommend that you create one
streaming materialized view for each stream or topic.

If your use case requires that you land the data from one KDS stream or MSK topic into multiple
materialized views, consult the AWS Big Data blog, specifically Best practices to implement near-

real-time analytics using Amazon Redshift Streaming Ingestion with Amazon MSK, before you do
So.

Streaming ingestion considerations 323

https://docs.aws.amazon.com/redshift/latest/dg/r_DELETE.html
https://docs.aws.amazon.com/redshift/latest/dg/JSON_EXTRACT_PATH_TEXT.html
https://docs.aws.amazon.com/redshift/latest/dg/JSON_PARSE.html
https://docs.aws.amazon.com/redshift/latest/dg/query-super.html
https://aws.amazon.com/blogs/big-data/
https://aws.amazon.com/blogs/big-data/best-practices-to-implement-near-real-time-analytics-using-amazon-redshift-streaming-ingestion-with-amazon-msk/
https://aws.amazon.com/blogs/big-data/best-practices-to-implement-near-real-time-analytics-using-amazon-redshift-streaming-ingestion-with-amazon-msk/

Amazon Redshift Database Developer Guide

Using streaming ingestion compared with staging data in Amazon S3

There are several options for streaming data to Amazon Redshift or to Amazon Redshift Serverless.
Two well-known options are streaming ingestion, as described in this topic, or setting up a delivery
stream to Amazon S3 with Firehose. The following list describes each method:

1. Streaming ingestion from Kinesis Data Streams or Amazon Managed Streaming for Apache
Kafka to Amazon Redshift or Amazon Redshift Serverless involves configuring a materialized
view to receive the data.

2. Delivering data into Amazon Redshift using Kinesis Data Streams and streaming through
Firehose involves connecting the source stream to Amazon Data Firehose and waiting for
Firehose to stage the data in Amazon S3. This process makes use of various-sized batches
at varying-length buffer intervals. After streaming to Amazon S3, Firehose initiates a COPY
command to load the data.

With streaming ingestion, you bypass several steps that are required for the second process:

« You don't have to send data to an Amazon Data Firehose delivery stream, because with
streaming ingestion, data can be sent directly from Kinesis Data Streams to a materialized view
in a Redshift database.

» You don't have to land streamed data in Amazon S3, because streaming ingestion data goes
directly to the Redshift materialized view.

» You don't have to write and run COPY commands because the data in the materialized view is
refreshed directly from the stream. Loading data from Amazon S3 to Redshift isn't part of the
process.

Note that streaming ingestion is limited to streams from Amazon Kinesis Data Streams and
topics from Amazon MSK. For streaming from Kinesis Data Streams to targets other than Amazon
Redshift, it's likely that you need a Firehose delivery stream. For more information, see Sending
Data to an Amazon Data Firehose Delivery Stream.

Considerations

The following are considerations for streaming ingestion into Amazon Redshift.

Considerations 324

https://docs.aws.amazon.com/firehose/latest/dev/basic-write.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-write.html

Amazon Redshift

Database Developer Guide

Feature or behavior

Kafka topic length limit

Incremental refreshes and
JOINs on a materialized view

Record parsing

Decompression

Maximum record size

Description

It isn't possible to use a Kafka topic with a name longer than
128 characters (not including quotation marks). For more
information, see Names and identifiers.

The materialized view must be incrementally maintainable. Full
recompute is not possible for Kinesis or Amazon MSK because
they don't preserve stream or topic history past 24 hours or

7 days, by default. You can set longer data retention periods

in Kinesis or Amazon MSK. However, this can result in more
maintenance and cost. Additionally, JOINs are not currently
supported on materialized views created on a Kinesis stream,
or on an Amazon MSK topic. After creating a materialized view
on your stream or topic, you can create another materialized
view in order to join your streaming materialized view to other
materialized views, tables, or views.

For more information, see REFRESH MATERIALIZED VIEW.

Amazon Redshift streaming ingestion doesn't support parsing
records that have been aggregated by the Kinesis Producer
Library (KPL Key Concepts - Aggregation). The aggregated

records are ingested, but are stored as binary protocol buffer
data. (See Protocol buffers for more information.) Depending

on how you push data to Kinesis, you may need to turn off this
feature.

VARBYTE does not currently support any decompression
methods. Because of this, records containing compressed data
can't be queried in Redshift. Decompress your data before
pushing it into the Kinesis stream or Amazon MSK topic.

The maximum size of any record field Amazon Redshift can
ingest from Kinesis or Amazon MSK is slightly less than TMB.
The following points detail the behavior:

Considerations

325

https://docs.aws.amazon.com/redshift/latest/dg/r_names.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh-sql-command.html
https://docs.aws.amazon.com/kinesis/latest/dev/kinesis-kpl-concepts.html#kinesis-kpl-concepts-aggretation
https://developers.google.com/protocol-buffers

Amazon Redshift

Database Developer Guide

Feature or behavior

Error records

Description

« Maximum VARBYTE length - For streaming ingestion,
the VARBYTE type supports data to a maximum length of
1,024,000 bytes. Kinesis limits payloads to 1 MB.

» Message limits — Default Amazon MSK configuration limits
messages to 1 MB. Additionally, if a message includes
headers, the amount of data is limited to 1,048,470 bytes.
With default settings, there are no problems with ingestion
. However, you can change the maximum message size for
Kafka, and therefore Amazon MSK, to a larger value. In this
case, it may be possible for the key/value field of a Kafka
record, or the header, to exceed the size limit. These records
can cause an error and are not ingested.

(® Note

Amazon Redshift supports a maximum size of
1,024,000 bytes for streaming ingestion from Kinesis
or Amazon MSK, even though Amazon Redshift
supports a maximum size of 16 MB for the VARBYTE
data type.

In each case where a record can't be ingested to Redshift
because the size of the data exceeds the maximum size, that
record is skipped. Materialized view refresh still succeeds, in
this case, and a segment of each error record is written to the
SYS_STREAM_SCAN_ERRORS system table. Errors that result
from business logic, such as an error in a calculation or an error
resulting from a type conversion, are not skipped. Test the
logic carefully, before you add logic to your materialized view
definition, to avoid these.

Considerations

326

Amazon Redshift Database Developer Guide

Feature or behavior Description
Amazon MSK Multi-VPC Amazon MSK multi-VPC private connectivity isn't currently
private connectivity supported for Redshift streaming ingestion. Alternatively, you

can use VPC peering to connect VPCs or AWS Transit Gateway

to connect VPCs and on-premises networks through a central
hub. Either of these can enable Redshift to communicate with
an Amazon MSK cluster or with Amazon MSK Serverless in
another VPC.

Getting started with streaming ingestion from Amazon Kinesis Data
Streams

Setting up Amazon Redshift streaming ingestion involves creating an external schema that maps
to the streaming data source and creating a materialized view that references the external schema.
Amazon Redshift streaming ingestion supports Kinesis Data Streams as a source. As such, you must
have a Kinesis Data Streams source available before configuring streaming ingestion. If you don't
have a source, follow the instructions in the Kinesis documentation at Getting Started with Amazon

Kinesis Data Streams or create one on the console using the instructions at Creating a Stream via

the AWS Management Console.

Amazon Redshift streaming ingestion uses a materialized view, which is updated directly from
the stream when REFRESH is run. The materialized view maps to the stream data source. You can
perform filtering and aggregations on the stream data as part of the materialized-view definition.
Your streaming ingestion materialized view (the base materialized view) can reference only one
stream, but you can create additional materialized views that join with the base materialized view
and with other materialized views or tables.

(@ Note

Streaming ingestion and Amazon Redshift Serverless - The configuration steps in this topic
apply both to provisioned Amazon Redshift clusters and to Amazon Redshift Serverless. For
more information, see Streaming ingestion considerations.

Assuming you have a Kinesis Data Streams stream available, the first step is to define a schema
in Amazon Redshift with CREATE EXTERNAL SCHEMA and to reference a Kinesis Data Streams

Getting started with streaming ingestion from Amazon Kinesis Data Streams 327

https://docs.aws.amazon.com/msk/latest/developerguide/aws-access-mult-vpc.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/streams/latest/dev/getting-started.html
https://docs.aws.amazon.com/streams/latest/dev/getting-started.html
https://docs.aws.amazon.com/streams/latest/dev/how-do-i-create-a-stream.html
https://docs.aws.amazon.com/streams/latest/dev/how-do-i-create-a-stream.html

Amazon Redshift Database Developer Guide

resource. Following that, to access data in the stream, define the STREAM in a materialized view.
You can store stream records in the semi-structured SUPER format, or define a schema that results
in data converted to Redshift data types. When you query the materialized view, the returned
records are a point-in-time view of the stream.

1. Create an IAM role with a trust policy that allows your Amazon Redshift cluster or Amazon
Redshift Serverless workgroup to assume the role. For information about how to configure the
trust policy for the IAM role, see Authorizing Amazon Redshift to access other AWS services on
your behalf. After it is created, the role should have the following IAM policy, which provides
permission for communication with the Amazon Kinesis data stream.

IAM policy for an unencrypted stream from Kinesis Data Streams

"Version": "2012-10-17",
"Statement": [
{

"Sid": "ReadStream",

"Effect": "Allow",

"Action": [
"kinesis:DescribeStreamSummary",
"kinesis:GetShardIterator",
"kinesis:GetRecords",
"kinesis:DescribeStream"

1,

"Resource": "arn:aws:kinesis:*:0123456789:stream/*"

"Sid": "ListStream",
"Effect": "Allow",
"Action": [
"kinesis:ListStreams",
"kinesis:ListShards"
1,

"Resource": "*"

IAM policy for an encrypted stream from Kinesis Data Streams

Getting started with streaming ingestion from Amazon Kinesis Data Streams 328

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html

Amazon Redshift Database Developer Guide

{
"Version": "2012-10-17",

"Statement": [{

"Sid": "ReadStream",

"Effect": "Allow",

"Action": [
"kinesis:DescribeStreamSummary",
"kinesis:GetShardIterator",
"kinesis:GetRecords",
"kinesis:DescribeStream"

1,

"Resource": "arn:aws:kinesis:*:0123456789:stream/*"

.

{
"Sid": "DecryptStream",

"Effect": "Allow",
"Action": [
"kms:Decrypt"

15

"Resource": "arn:aws:kms:us-
east-1:0123456789:key/1234abcd-12ab-34cd-56ef-1234567890ab"

o

{
"Sid": "ListStream",
"Effect": "Allow",
"Action": [
"kinesis:ListStreams",
"kinesis:ListShards"

1,

"Resource": "*"

}
]
}

2. Check your VPC and verify that your Amazon Redshift cluster or Amazon Redshift Serverless
has a route to get to the Kinesis Data Streams endpoints over the internet using a NAT
gateway or internet gateway. If you want traffic between Redshift and Kinesis Data Streams
to remain within the AWS network, consider using a Kinesis Interface VPC Endpoint. For more
information, see Using Amazon Kinesis Data Streams Kinesis Data Streams with Interface VPC

Endpoints.
3. In Amazon Redshift, create an external schema to map the data from Kinesis to a schema.

Getting started with streaming ingestion from Amazon Kinesis Data Streams 329

https://docs.aws.amazon.com/streams/latest/dev/vpc.html
https://docs.aws.amazon.com/streams/latest/dev/vpc.html

Amazon Redshift Database Developer Guide

CREATE EXTERNAL SCHEMA kds
FROM KINESIS
IAM_ROLE { default | 'iam-role-arn' };

Streaming ingestion for Kinesis Data Streams doesn't require an authentication type. It uses
the IAM role defined in the CREATE EXTERNAL SCHEMA statement for making Kinesis Data
Streams requests.

Optional: Use the REGION keyword to specify the region where the Amazon Kinesis Data
Streams or Amazon MSK stream resides.

CREATE EXTERNAL SCHEMA kds

FROM KINESIS

REGION 'us-west-2'

IAM_ROLE { default | 'iam-role-arn' };

In this sample, the region specifies the location of the source stream. The IAM_ROLE is a
sample.

4. Create a materialized view to consume the stream data. With a statement like the following,
if a record can't be parsed, it causes an error. Use a command like this if you don't want error
records to be skipped.

CREATE MATERIALIZED VIEW my_view AUTO REFRESH YES AS
SELECT *
FROM kds.my_stream_name;

The following example defines a materialized view for source data in JSON format. The view
validates that incoming data is properly formatted JSON. Kinesis stream names are case
sensitive and can contain both uppercase and lowercase letters. To ingest from streams with
uppercase names, you can set the configuration enable_case_sensitive_identifier
to true at the database level. For more information, see Names and identifiers and

enable_case_sensitive_identifier.

CREATE MATERIALIZED VIEW my_view AUTO REFRESH YES AS
SELECT approximate_arrival_timestamp,

partition_key,

shard_id,

sequence_number,

Getting started with streaming ingestion from Amazon Kinesis Data Streams 330

https://docs.aws.amazon.com/redshift/latest/dg/r_names.html
https://docs.aws.amazon.com/redshift/latest/dg/r_enable_case_sensitive_identifier.html

Amazon Redshift Database Developer Guide

refresh_time,

JSON_PARSE(kinesis_data) as kinesis_data
FROM kds.my_stream_name

WHERE CAN_JSON_PARSE(kinesis_data);

To turn on auto refresh, use AUTO REFRESH YES. The default behavior is manual refresh.
Note when you use CAN_JSON_PARSE, it's possible that records that can't be parsed are
skipped.

Metadata columns include the following:

Metadata column Data type Description
approximate_arrival_timesta timestamp without time The approximate time that
mp zone the record was inserted into

the Kinesis stream

partition_key varchar(256) The key used by Kinesis to
assign the record to a shard

shard_id char(20) The unique identifier of the
shard within the stream
from which the record was

retrieved

sequence_number varchar(128) The unique identifier of
the record from the Kinesis
shard

refresh_time timestamp without time The time the refresh started

zone

kinesis_data varbyte The record from the Kinesis

stream

It's important to note if you have business logic in your materialized view definition that
business-logic errors can cause streaming ingestion to be blocked in some cases. This might
lead to you having to drop and re-create the materialized view. To avoid this, we recommend

Getting started with streaming ingestion from Amazon Kinesis Data Streams 331

Amazon Redshift Database Developer Guide

that you keep your logic as simple as possible and perform most of your business-logic checks
on the data after it's ingested.

5. Refresh the view, which invokes Redshift to read from the stream and load data into the
materialized view.

REFRESH MATERIALIZED VIEW my_view;

6. Query data in the materialized view.

select * from my_view;

Getting started with streaming ingestion from Amazon Managed
Streaming for Apache Kafka

The purpose of Amazon Redshift streaming ingestion is to simplify the process for directly
ingesting stream data from a streaming service into Amazon Redshift or Amazon Redshift
Serverless. This works with Amazon MSK and Amazon MSK Serverless, and with Kinesis. Amazon
Redshift streaming ingestion removes the need to stage a Kinesis Data Streams stream or an
Amazon MSK topic in Amazon S3 before ingesting the stream data into Redshift.

On a technical level, streaming ingestion, both from Amazon Kinesis Data Streams and Amazon
Managed Streaming for Apache Kafka, provides low-latency, high-speed ingestion of stream or
topic data into an Amazon Redshift materialized view. Following setup, using materialized view
refresh, you can take in large data volumes.

Set up Amazon Red