
Database Developer Guide

Amazon Redshift

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Redshift Database Developer Guide

Amazon Redshift: Database Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Redshift Database Developer Guide

Table of Contents

Introduction ... 1
Prerequisites .. 1
Are you a database developer? ... 2
System and architecture overview .. 3

Data warehouse system architecture .. 4
Performance ... 7
Columnar storage ... 10
Workload management ... 12
Using Amazon Redshift with other services .. 13

Sample database .. 14
CATEGORY table ... 16
DATE table .. 17
EVENT table ... 17
VENUE table ... 18
USERS table ... 18
LISTING table ... 19
SALES table .. 20

Best practices ... 22
Conduct a proof of concept ... 22

Step 1: Scope your POC .. 23
Step 2: Launch Amazon Redshift .. 24
Step 3: Load your data .. 25
Step 4: Analyze your data .. 27
Step 5: Optimize ... 29

Best practices for designing tables .. 30
Choose the best sort key .. 30
Choose the best distribution style .. 31
Use automatic compression .. 32
Define constraints ... 33
Use the smallest possible column size ... 33
Use date/time data types for date columns ... 33

Best practices for loading data ... 34
Take the loading data tutorial ... 34
Use a COPY command to load data ... 34

iii

Amazon Redshift Database Developer Guide

Use a single COPY command ... 35
Loading data files ... 35
Compressing your data files ... 36
Verify data files before and after a load ... 36
Use a multi-row insert ... 36
Use a bulk insert ... 37
Load data in sort key order .. 37
Load data in sequential blocks .. 38
Use time-series tables .. 38
Schedule around maintenance windows ... 39

Best practices for designing queries .. 39
Working with Advisor .. 41

Amazon Redshift Regions ... 42
Viewing Advisor recommendations ... 43
Advisor recommendations ... 44

Tutorials ... 59
Working with automatic table optimization ... 60

Enabling automatic table optimization ... 61
Removing automatic table optimization ... 61
Monitoring actions of automatic table optimization .. 62
Working with column compression .. 62

Compression encodings ... 64
Testing compression encodings ... 74
Example: Choosing compression encodings for the CUSTOMER table 77

Working with data distribution styles ... 80
Data distribution concepts .. 81
Distribution styles ... 82
Viewing distribution styles ... 84
Evaluating query patterns .. 85
Designating distribution styles .. 86
Evaluating the query plan .. 87
Query plan example ... 90
Distribution examples .. 94

Working with sort keys ... 97
Multidimensional data layout sorting (preview) .. 98
Compound sort key .. 99

iv

Amazon Redshift Database Developer Guide

Interleaved sort key ... 100
Defining table constraints .. 101

Loading data .. 103
Using COPY to load data ... 104

Credentials and access permissions .. 105
Preparing your input data .. 107
Loading data from Amazon S3 ... 108
Loading data from Amazon EMR .. 121
Loading data from remote hosts .. 127
Loading from Amazon DynamoDB ... 135
Verifying that the data loaded correctly ... 139
Validating input data ... 139
Automatic compression ... 140
Optimizing for narrow tables .. 143
Default values ... 143
Troubleshooting .. 144

Continuous file ingestion (preview) ... 151
Updating with DML ... 153
Updating and inserting ... 153

Merge method 1: Replacing existing rows .. 154
Merge method 2: Specifying a column list without using MERGE ... 154
Creating a temporary staging table ... 155
Performing a merge operation by replacing existing rows .. 155
Performing a merge operation by specifying a column list without using the MERGE
command .. 156
Merge examples .. 158

Performing a deep copy ... 161
Analyzing tables ... 166

Automatic analyze .. 166
Analysis of new table data ... 166
ANALYZE command history .. 171

Vacuuming tables .. 173
Automatic table sort .. 173
Automatic vacuum delete ... 174
VACUUM frequency .. 175
Sort stage and merge stage .. 175

v

Amazon Redshift Database Developer Guide

Vacuum threshold .. 176
Vacuum types .. 176
Managing vacuum times ... 176

Managing concurrent write operations ... 185
Serializable isolation .. 186
Write and read/write operations ... 191
Concurrent write examples .. 192

Tutorial: Loading data from Amazon S3 ... 194
Prerequisites .. 195
Overview ... 195
Steps .. 196
Step 1: Create a cluster .. 196
Step 2: Download the data files ... 197
Step 3: Upload the files to an Amazon S3 bucket .. 198
Step 4: Create the sample tables .. 200
Step 5: Run the COPY commands .. 203
Step 6: Vacuum and analyze the database ... 221
Step 7: Clean up your resources ... 221
Summary .. 222

Unloading data .. 223
Unloading data to Amazon S3 ... 223
Unloading encrypted data files .. 227
Unloading data in delimited or fixed-width format ... 228
Reloading unloaded data ... 230

Creating user-defined functions ... 231
UDF security and privileges ... 231
Creating a scalar SQL UDF ... 232

Scalar SQL function example ... 233
Naming UDFs .. 233

Overloading function names .. 233
Preventing UDF naming conflicts ... 234

Creating a scalar Python UDF ... 234
Scalar Python UDF example ... 235
Python UDF data types ... 236
ANYELEMENT data type .. 237
Python language support ... 237

vi

Amazon Redshift Database Developer Guide

UDF constraints ... 242
Logging errors and warnings ... 242

Creating a scalar Lambda UDF ... 244
Registering a Lambda UDF ... 244
Managing Lambda UDF security and privileges ... 245
Configuring the authorization parameter for Lambda UDFs ... 246
Using the JSON interface between Amazon Redshift and Lambda ... 247

Example uses of UDFs .. 250
Creating stored procedures ... 252

Stored procedure overview .. 252
Naming stored procedures ... 256
Security and privileges .. 256
Returning a result set .. 258
Managing transactions .. 260
Trapping errors .. 273
Logging stored procedures ... 281
Considerations ... 281

PL/pgSQL language reference .. 283
PL/pgSQL reference conventions .. 283
Structure of PL/pgSQL .. 284
Supported PL/pgSQL statements ... 289

Creating materialized views ... 306
Querying a materialized view ... 309
Automatic query rewriting to use materialized views .. 310

Usage notes ... 310
Limitations .. 311

Refreshing a materialized view ... 312
Autorefreshing a materialized view .. 315

Automated materialized views .. 316
SQL scope and considerations for automated materialized views ... 317
Automated materialized views limitations .. 318
Billing for automated materialized views ... 318
Additional resources ... 318

Using a user-defined function (UDF) in a materialized view .. 318
Referencing a UDF in a materialized view .. 319

Streaming ingestion .. 321

vii

Amazon Redshift Database Developer Guide

Data flow .. 321
Streaming ingestion use cases .. 321
Streaming ingestion considerations ... 322
Considerations ... 324
Getting started with streaming ingestion from Amazon Kinesis Data Streams 327
Getting started with streaming ingestion from Amazon Managed Streaming for Apache
Kafka .. 332
Electric vehicle station-data streaming ingestion tutorial, using Kinesis 338

Creating views in the Data Catalog (preview) ... 343
Prerequisites .. 345
End-to-end example .. 346
Considerations .. 347

Querying spatial data ... 348
Tutorial: Using spatial SQL functions .. 351

Prerequisites .. 352
Step 1: Create tables and load test data .. 352
Step 2: Query spatial data ... 355
Step 3: Clean up your resources ... 359

Loading a shapefile ... 359
Terminology .. 361

Bounding box .. 361
Geometric validity .. 362
Geometric simplicity .. 364
H3 ... 366

Considerations .. 366
Querying data with federated queries ... 368

Getting started with using federated queries to PostgreSQL .. 369
Getting started using federated queries to PostgreSQL with CloudFormation 370

Launching a CloudFormation stack for Redshift federated queries ... 371
Querying data from the external schema ... 372

Getting started with using federated queries to MySQL ... 373
Creating a secret and an IAM role ... 374

Prerequisites .. 374
Examples of using a federated query ... 377

Example of using a federated query with PostgreSQL ... 377
Example of using a mixed-case name .. 379

viii

Amazon Redshift Database Developer Guide

Example of using a federated query with MySQL ... 381
Data type differences .. 382
Considerations .. 386

Supported versions of federated databases ... 388
Querying external data using Amazon Redshift Spectrum ... 389

Amazon Redshift Spectrum overview ... 389
Amazon Redshift Spectrum Regions .. 390
Amazon Redshift Spectrum considerations .. 391

Getting started with Amazon Redshift Spectrum ... 392
Prerequisites .. 392
CloudFormation .. 393
Getting started with Redshift Spectrum step by step .. 393
Step 1. Create an IAM role ... 393
Step 2: Associate the IAM role with your cluster ... 397
Step 3: Create an external schema and an external table ... 398
Step 4: Query your data in Amazon S3 ... 399
Launch your CloudFormation stack and then query your data ... 402

IAM policies for Amazon Redshift Spectrum ... 406
Amazon S3 permissions .. 407
Cross-account Amazon S3 permissions .. 408
Grant or restrict access using Redshift Spectrum .. 408
Minimum permissions .. 409
Chaining IAM roles ... 411
Accessing AWS Glue data ... 412

Using Redshift Spectrum with Lake Formation ... 420
Using data filters for row-level and cell-level security ... 422

Creating data files for queries in Amazon Redshift Spectrum ... 422
Data formats for Redshift Spectrum .. 423
Compression types for Redshift Spectrum ... 424
Encryption for Redshift Spectrum .. 425

Creating external schemas ... 425
Working with external catalogs ... 428

Creating external tables ... 432
Pseudocolumns ... 434
Partitioning Redshift Spectrum external tables ... 435
Mapping to ORC columns ... 441

ix

Amazon Redshift Database Developer Guide

Creating external tables for Hudi-managed data .. 444
Creating external tables for Delta Lake data ... 445

Using Apache Iceberg tables ... 447
Considerations when using Apache Iceberg tables ... 448
Supported data types .. 450

Improving Amazon Redshift Spectrum query performance ... 452
Setting data handling options .. 455
Performing correlated subqueries .. 456
Monitoring metrics .. 457
Troubleshooting queries ... 457

Retries exceeded ... 458
Access throttled .. 458
Resource limit exceeded .. 459
No rows returned for a partitioned table ... 460
Not authorized error .. 460
Incompatible data formats ... 460
Syntax error when using Hive DDL in Amazon Redshift .. 461
Permission to create temporary tables .. 461
Invalid range .. 462
Invalid Parquet version number .. 462

Tutorial: Querying nested data with Amazon Redshift Spectrum ... 462
Overview ... 462
Step 1: Create an external table that contains nested data .. 464
Step 2: Query your nested data in Amazon S3 with SQL extensions 465
Nested data use cases ... 469
Nested data limitations (preview) ... 471
Serializing complex nested JSON .. 473

Using HyperLogLog sketches in Amazon Redshift .. 476
Considerations .. 477
Limitations ... 477
Examples .. 478

Example: Return cardinality in a subquery ... 478
Example: Return an HLLSKETCH type from combined sketches in a subquery 479
Example: Return a HyperLogLog sketch from combining multiple sketches 479
Example: Generate HyperLogLog sketches over S3 data using external tables 480

Querying data across databases ... 484

x

Amazon Redshift Database Developer Guide

Considerations .. 486
Limitations .. 486

Examples of using a cross-database query .. 487
Using cross-database queries with the query editor .. 492

Sharing data in Amazon Redshift .. 494
Multi-warehouse writes in Amazon Redshift (preview) ... 494
Data sharing overview .. 494

Data sharing use cases .. 494
Sharing data at different levels ... 495
Managing data consistency .. 496
Considerations when using data sharing in Amazon Redshift .. 496
Regions where data sharing is available ... 498

What is a datashare? ... 501
Standard datashares .. 501
AWS Data Exchange datashares .. 503
AWS Lake Formation-managed datashares .. 506
Datashare producers and consumers ... 508

How data sharing works .. 509
Managing datashares at different states ... 509

Sharing datashares .. 510
Managing permissions for datashares ... 510
Granular sharing using WITH PERMISSIONS (preview) ... 512
Working with views in Amazon Redshift data sharing ... 513
Managing access to data sharing API operations with IAM policies ... 515

Querying datashares ... 517
Accessing shared data ... 517
Accessing metadata for datashares .. 517
Integrating Amazon Redshift data sharing with business intelligence tools 518

Monitoring and auditing data sharing .. 518
Integrating Amazon Redshift data sharing with AWS CloudTrail ... 520

Managing data sharing tasks .. 520
Managing data sharing using the SQL interface ... 520
Managing data sharing using the console .. 563
Managing data sharing with CloudFormation .. 577
Managing data sharing with writes using the console (preview) .. 583

Ingesting and querying semistructured data in Amazon Redshift ... 596

xi

Amazon Redshift Database Developer Guide

Use cases for the SUPER data type ... 596
Concepts for SUPER data type use .. 597
Considerations for SUPER data ... 599
SUPER sample dataset .. 600
Loading semistructured data into Amazon Redshift .. 602

Parsing JSON documents to SUPER columns ... 602
Using COPY to load JSON data in Amazon Redshift .. 603

Unloading semistructured data .. 608
Unloading semistructured data in CSV or text formats ... 608
Unloading semistructured data in the Parquet format .. 609

Querying semistructured data .. 609
Navigation .. 610
Unnesting queries ... 611
Object unpivoting ... 613
Dynamic typing ... 614
Lax semantics .. 617
Types of introspection ... 617
Order by ... 619

Operators and functions .. 620
Arithmetic operators .. 620
Arithmetic functions .. 620
Array functions .. 621

SUPER configurations ... 623
Lax and strict modes for SUPER ... 623
Accessing JSON fields with uppercase and mixedcase letters ... 623
Parsing options ... 625

Limitations ... 626
Using SUPER data type with materialized views .. 628

Accelerating PartiQL queries .. 629
Limitations for using the SUPER data type with materialized views 632

Using machine learning in Amazon Redshift .. 634
Machine learning overview .. 635

How machine learning can solve a problem .. 635
Terms and concepts for Amazon Redshift ML .. 637

Machine learning for novices and experts .. 638
Costs for using Amazon Redshift ML .. 641

xii

Amazon Redshift Database Developer Guide

Getting started with Amazon Redshift ML ... 642
Administrative setup .. 643
Using model explainability with Amazon Redshift ML ... 648
Amazon Redshift ML probability metrics .. 649
Tutorials for Amazon Redshift ML .. 651

Tuning query performance ... 735
Query processing ... 735

Query planning and execution workflow .. 736
Query plan ... 738
Reviewing query plan steps ... 746
Factors affecting query performance ... 748

Analyzing and improving queries ... 750
Query analysis workflow ... 750
Reviewing query alerts .. 751
Analyzing the query plan ... 754
Analyzing the query summary .. 754
Improving query performance ... 761
Diagnostic queries for query tuning ... 765

Troubleshooting queries ... 769
Connection fails .. 770
Query hangs .. 771
Query takes too long .. 772
Load fails .. 773
Load takes too long ... 774
Load data is incorrect .. 774
Setting the JDBC fetch size parameter .. 775

Implementing workload management ... 776
Modifying the WLM configuration ... 778

Migrating from manual WLM to automatic WLM .. 778
Automatic WLM .. 780

Priority .. 781
Concurrency scaling mode .. 781
User groups .. 782
Query groups ... 782
Wildcards .. 782
Query monitoring rules ... 782

xiii

Amazon Redshift Database Developer Guide

Checking for automatic WLM .. 783
Query priority .. 783

Manual WLM ... 788
Concurrency scaling mode .. 790
Concurrency level ... 790
User groups .. 792
Query groups ... 792
Wildcards .. 792
WLM memory percent to use .. 793
WLM timeout ... 793
Query monitoring rules ... 794
WLM query queue hopping .. 794
Tutorial: Configuring manual WLM queues ... 797

Concurrency scaling ... 813
Concurrency scaling capabilities .. 813
Limitations for concurrency scaling .. 814
Regions for concurrency scaling .. 815
Concurrency scaling candidates .. 816
Configuring concurrency scaling queues ... 785
Monitoring concurrency scaling ... 816
Concurrency scaling system views .. 817

Short query acceleration .. 818
Maximum SQA runtime ... 819
Monitoring SQA .. 819

WLM queue assignment rules ... 820
Queue assignments example ... 822

Assigning queries to queues .. 824
Assigning queries to queues based on user roles .. 824
Assigning queries to queues based on user groups .. 825
Assigning a query to a query group ... 825
Assigning queries to the superuser queue .. 826

Dynamic and static properties .. 826
WLM dynamic memory allocation .. 828
Dynamic WLM example ... 829

Query monitoring rules .. 831
Defining a query monitor rule ... 831

xiv

Amazon Redshift Database Developer Guide

Query monitoring metrics for Amazon Redshift provisioned .. 834
Query monitoring metrics for Amazon Redshift Serverless .. 837
Query monitoring rules templates ... 838
System tables and views for query monitoring rules ... 840

WLM system tables and views .. 840
WLM service class IDs .. 842

Managing database security ... 843
Amazon Redshift security overview ... 844
Default database user permissions .. 845
Superusers ... 846
Users ... 846

Creating, altering, and deleting users .. 847
Groups .. 848

Creating, altering, and deleting groups ... 848
Example for controlling user and group access ... 848

Schemas ... 850
Creating, altering, and deleting schemas .. 851
Search path .. 851
Schema-based permissions .. 852

Role-based access control .. 852
Role hierarchy .. 853
Role assignment .. 853
Amazon Redshift system-defined roles ... 854
System permissions .. 856
Database object permissions ... 862
ALTER DEFAULT PRIVILEGES for RBAC .. 862
Considerations for role usage .. 862
Managing roles .. 863
Tutorial: Creating roles and querying with RBAC .. 863

Row-level security .. 882
Using RLS policies in SQL statements ... 883
Combining multiple policies per user .. 883
RLS policy ownership and management ... 885
Policy-dependent objects and principles ... 886
Considerations using RLS policies ... 888
Best practices for RLS performance ... 891

xv

Amazon Redshift Database Developer Guide

Creating, attaching, detaching, and dropping RLS policies ... 893
Metadata security .. 897
Dynamic data masking ... 899

Overview ... 899
End-to-end example .. 899
Considerations when using dynamic data masking .. 903
Managing dynamic data masking policies .. 906
Masking policy hierarchy .. 907
Using DDM with SUPER type paths .. 909
Conditional dynamic data masking .. 914
System views for dynamic data masking .. 915

Scoped permissions ... 918
Considerations for using scoped permissions ... 918

SQL reference .. 920
Amazon Redshift SQL ... 920

SQL functions supported on the leader node .. 920
Amazon Redshift and PostgreSQL .. 923

Using SQL .. 931
SQL reference conventions ... 931
Basic elements ... 932
Expressions ... 986
Conditions .. 991

SQL commands .. 1019
ABORT ... 1023
ALTER DATABASE ... 1024
ALTER DATASHARE ... 1028
ALTER DEFAULT PRIVILEGES .. 1032
ALTER EXTERNAL VIEW (preview) .. 1036
ALTER FUNCTION ... 1038
ALTER GROUP ... 1039
ALTER IDENTITY PROVIDER ... 1041
ALTER MASKING POLICY .. 1043
ALTER MATERIALIZED VIEW ... 1043
ALTER RLS POLICY ... 1046
ALTER ROLE ... 1047
ALTER PROCEDURE .. 1049

xvi

Amazon Redshift Database Developer Guide

ALTER SCHEMA ... 1050
ALTER SYSTEM .. 1052
ALTER TABLE ... 1054
ALTER TABLE APPEND .. 1078
ALTER USER ... 1084
ANALYZE ... 1090
ANALYZE COMPRESSION .. 1093
ATTACH MASKING POLICY ... 1096
ATTACH RLS POLICY .. 1098
BEGIN .. 1099
CALL .. 1101
CANCEL ... 1104
CLOSE ... 1107
COMMENT .. 1107
COMMIT .. 1110
COPY ... 1111
CREATE DATABASE ... 1213
CREATE DATASHARE .. 1230
CREATE EXTERNAL FUNCTION .. 1231
CREATE EXTERNAL SCHEMA .. 1242
CREATE EXTERNAL TABLE .. 1252
CREATE EXTERNAL VIEW (preview) .. 1281
CREATE FUNCTION .. 1283
CREATE GROUP .. 1290
CREATE IDENTITY PROVIDER ... 1291
CREATE LIBRARY .. 1292
CREATE MASKING POLICY .. 1296
CREATE MATERIALIZED VIEW .. 1297
CREATE MODEL .. 1303
CREATE PROCEDURE ... 1333
CREATE RLS POLICY .. 1338
CREATE ROLE .. 1340
CREATE SCHEMA .. 1341
CREATE TABLE .. 1345
CREATE TABLE AS .. 1368
CREATE USER .. 1380

xvii

Amazon Redshift Database Developer Guide

CREATE VIEW .. 1387
DEALLOCATE ... 1392
DECLARE ... 1393
DELETE .. 1398
DESC DATASHARE .. 1401
DESC IDENTITY PROVIDER ... 1402
DETACH MASKING POLICY ... 1403
DETACH RLS POLICY ... 1404
DROP DATABASE .. 1405
DROP DATASHARE ... 1406
DROP EXTERNAL VIEW (preview) ... 1408
DROP FUNCTION .. 1410
DROP GROUP .. 1412
DROP IDENTITY PROVIDER .. 1413
DROP LIBRARY .. 1414
DROP MASKING POLICY ... 1414
DROP MODEL .. 1415
DROP MATERIALIZED VIEW ... 1416
DROP PROCEDURE ... 1417
DROP RLS POLICY .. 1418
DROP ROLE ... 1419
DROP SCHEMA .. 1421
DROP TABLE .. 1423
DROP USER .. 1427
DROP VIEW .. 1429
END .. 1431
EXECUTE ... 1432
EXPLAIN .. 1433
FETCH .. 1441
GRANT .. 1443
INSERT .. 1469
INSERT (external table) ... 1476
LOCK ... 1479
MERGE .. 1480
PREPARE ... 1486
REFRESH MATERIALIZED VIEW .. 1488

xviii

Amazon Redshift Database Developer Guide

RESET .. 1491
REVOKE ... 1492
ROLLBACK .. 1511
SELECT .. 1512
SELECT INTO ... 1585
SET ... 1586
SET SESSION AUTHORIZATION ... 1591
SET SESSION CHARACTERISTICS .. 1592
SHOW .. 1592
SHOW COLUMNS ... 1594
SHOW EXTERNAL TABLE .. 1596
SHOW DATABASES ... 1599
SHOW MODEL ... 1602
SHOW DATASHARES .. 1605
SHOW PROCEDURE ... 1606
SHOW SCHEMAS .. 1607
SHOW TABLE ... 1609
SHOW TABLES .. 1611
SHOW VIEW .. 1612
START TRANSACTION .. 1614
TRUNCATE .. 1614
UNLOAD ... 1616
UPDATE ... 1649
VACUUM ... 1657

SQL functions reference ... 1665
Leader node–only functions .. 1666
Compute node–only functions .. 1667
Aggregate functions .. 1668
Array functions ... 1697
Bit-wise aggregate functions ... 1702
Conditional expressions .. 1710
Data type formatting functions .. 1725
Date and time functions ... 1759
Hash functions .. 1831
HyperLogLog functions ... 1841
JSON functions ... 1846

xix

Amazon Redshift Database Developer Guide

Machine learning functions .. 1862
Math functions .. 1865
Object functions ... 1904
Spatial functions .. 1914
String functions .. 2054
SUPER type information functions ... 2133
VARBYTE functions .. 2149
Window functions .. 2158
System administration functions .. 2224
System information functions ... 2235

Reserved words .. 2265
System tables and views reference .. 2270

System tables and views .. 2270
Types of system tables and views ... 2271
Visibility of data in system tables and views .. 2272

Filtering system-generated queries .. 2273
Migrating provisioned-only queries to SYS monitoring view queries ... 2273

Migrating from provisioned clusters to Amazon Redshift Serverless 2273
Updating queries while staying on a provisioned cluster .. 2274

Improving query identifier tracking using the SYS monitoring views .. 2274
Example .. 2274

System table query, process, and sesssion ids .. 2282
SVV metadata views ... 2282

SVV_ACTIVE_CURSORS ... 2284
SVV_ALL_COLUMNS .. 2285
SVV_ALL_SCHEMAS ... 2287
SVV_ALL_TABLES .. 2289
SVV_ALTER_TABLE_RECOMMENDATIONS ... 2290
SVV_ATTACHED_MASKING_POLICY ... 2292
SVV_COLUMNS ... 2294
SVV_COLUMN_PRIVILEGES .. 2297
SVV_DATABASE_PRIVILEGES .. 2298
SVV_DATASHARE_PRIVILEGES ... 2300
SVV_DATASHARES .. 2301
SVV_DATASHARE_CONSUMERS .. 2304
SVV_DATASHARE_OBJECTS ... 2305

xx

Amazon Redshift Database Developer Guide

SVV_DEFAULT_PRIVILEGES ... 2307
SVV_DISKUSAGE ... 2308
SVV_EXTERNAL_COLUMNS .. 2312
SVV_EXTERNAL_DATABASES ... 2313
SVV_EXTERNAL_PARTITIONS ... 2313
SVV_EXTERNAL_SCHEMAS ... 2314
SVV_EXTERNAL_TABLES ... 2316
SVV_FUNCTION_PRIVILEGES ... 2317
SVV_GEOGRAPHY_COLUMNS .. 2319
SVV_GEOMETRY_COLUMNS .. 2320
SVV_IAM_PRIVILEGES .. 2321
SVV_IDENTITY_PROVIDERS .. 2323
SVV_INTEGRATION ... 2324
SVV_INTEGRATION_TABLE_STATE .. 2326
SVV_INTERLEAVED_COLUMNS .. 2327
SVV_LANGUAGE_PRIVILEGES .. 2329
SVV_MASKING_POLICY ... 2330
SVV_ML_MODEL_INFO .. 2331
SVV_ML_MODEL_PRIVILEGES .. 2332
SVV_MV_DEPENDENCY ... 2334
SVV_MV_INFO ... 2335
SVV_QUERY_INFLIGHT .. 2337
SVV_QUERY_STATE .. 2338
SVV_REDSHIFT_COLUMNS ... 2341
SVV_REDSHIFT_DATABASES .. 2344
SVV_REDSHIFT_FUNCTIONS .. 2345
SVV_REDSHIFT_SCHEMA_QUOTA ... 2347
SVV_REDSHIFT_SCHEMAS .. 2348
SVV_REDSHIFT_TABLES .. 2349
SVV_RELATION_PRIVILEGES .. 2351
SVV_RLS_APPLIED_POLICY .. 2352
SVV_RLS_ATTACHED_POLICY .. 2354
SVV_RLS_POLICY .. 2355
SVV_RLS_RELATION ... 2357
SVV_ROLE_GRANTS ... 2358
SVV_ROLES .. 2359

xxi

Amazon Redshift Database Developer Guide

SVV_SCHEMA_PRIVILEGES ... 2360
SVV_SCHEMA_QUOTA_STATE ... 2361
SVV_SYSTEM_PRIVILEGES .. 2363
SVV_TABLE_INFO ... 2364
SVV_TABLES .. 2368
SVV_TRANSACTIONS ... 2369
SVV_USER_GRANTS ... 2371
SVV_USER_INFO ... 2372
SVV_VACUUM_PROGRESS .. 2374
SVV_VACUUM_SUMMARY ... 2376

SYS monitoring views ... 2378
SYS_ANALYZE_COMPRESSION_HISTORY .. 2380
SYS_ANALYZE_HISTORY ... 2382
SYS_APPLIED_MASKING_POLICY_LOG .. 2384
SYS_AUTO_TABLE_OPTIMIZATION ... 2386
SYS_CONNECTION_LOG .. 2388
SYS_COPY_JOB (preview) ... 2392
SYS_COPY_REPLACEMENTS ... 2393
SYS_DATASHARE_CHANGE_LOG ... 2394
SYS_DATASHARE_CROSS_REGION_USAGE ... 2397
SYS_DATASHARE_USAGE_CONSUMER ... 2399
SYS_DATASHARE_USAGE_PRODUCER ... 2400
SYS_EXTERNAL_QUERY_DETAIL .. 2401
SYS_EXTERNAL_QUERY_ERROR .. 2405
SYS_INTEGRATION_ACTIVITY .. 2407
SYS_INTEGRATION_TABLE_STATE_CHANGE ... 2409
SYS_LOAD_DETAIL ... 2411
SYS_LOAD_ERROR_DETAIL ... 2413
SYS_LOAD_HISTORY .. 2416
SYS_MV_REFRESH_HISTORY .. 2420
SYS_MV_STATE ... 2422
SYS_PROCEDURE_CALL ... 2425
SYS_PROCEDURE_MESSAGES .. 2428
SYS_QUERY_DETAIL ... 2429
SYS_QUERY_HISTORY ... 2435
SYS_QUERY_TEXT .. 2442

xxii

Amazon Redshift Database Developer Guide

SYS_RESTORE_LOG .. 2445
SYS_RESTORE_STATE .. 2448
SYS_SCHEMA_QUOTA_VIOLATIONS .. 2450
SYS_SERVERLESS_USAGE ... 2451
SYS_SESSION_HISTORY .. 2454
SYS_SPATIAL_SIMPLIFY ... 2455
SYS_STREAM_SCAN_ERRORS .. 2457
SYS_STREAM_SCAN_STATES .. 2458
SYS_TRANSACTION_HISTORY ... 2460
SYS_UDF_LOG ... 2463
SYS_UNLOAD_DETAIL .. 2465
SYS_UNLOAD_HISTORY .. 2467
SYS_USERLOG ... 2469
SYS_VACUUM_HISTORY .. 2471

System view mapping for migrating to SYS monitoring views .. 2474
SYS_QUERY_HISTORY ... 2476
SYS_QUERY_DETAIL ... 2476
SYS_RESTORE_LOG .. 2478
SYS_RESTORE_STATE .. 2478
SYS_TRANSACTION_HISTORY ... 2478
SYS_QUERY_TEXT .. 2478
SYS_CONNECTION_LOG .. 2478
SYS_SESSION_HISTORY .. 2479
SYS_LOAD_DETAIL ... 2479
SYS_LOAD_HISTORY .. 2479
SYS_LOAD_ERROR_DETAIL ... 2479
SYS_UNLOAD_HISTORY .. 2479
SYS_UNLOAD_DETAIL .. 2479
SYS_COPY_REPLACEMENTS ... 2480
SYS_DATASHARE_USAGE_CONSUMER ... 2480
SYS_DATASHARE_USAGE_PRODUCER ... 2480
SYS_DATASHARE_CROSS_REGION_USAGE ... 2480
SYS_DATASHARE_CHANGE_LOG ... 2480
SYS_EXTERNAL_QUERY_DETAIL .. 2481
SYS_EXTERNAL_QUERY_ERROR .. 2481
SYS_VACUUM_HISTORY .. 2481

xxiii

Amazon Redshift Database Developer Guide

SYS_ANALYZE_HISTORY ... 2481
SYS_ANALYZE_COMPRESSION_HISTORY .. 2481
SYS_MV_REFRESH_HISTORY .. 2482
SYS_MV_STATE ... 2482
SYS_PROCEDURE_CALL ... 2482
SYS_PROCEDURE_MESSAGES .. 2482
SYS_UDF_LOG ... 2482
SYS_USERLOG ... 2482
SYS_SCHEMA_QUOTA_VIOLATIONS .. 2483
SYS_SPATIAL_SIMPLIFY ... 2483

System monitoring (provisioned only) .. 2483
STL views for logging ... 2483
STV tables for snapshot data .. 2621
SVCS views for main and concurrency scaling clusters .. 2676
SVL views for main cluster .. 2705

System catalog tables .. 2778
PG_ATTRIBUTE_INFO ... 2779
PG_CLASS_INFO ... 2779
PG_DATABASE_INFO .. 2781
PG_DEFAULT_ACL ... 2782
PG_EXTERNAL_SCHEMA ... 2785
PG_LIBRARY ... 2786
PG_PROC_INFO ... 2787
PG_STATISTIC_INDICATOR .. 2788
PG_TABLE_DEF .. 2789
PG_USER_INFO ... 2792
Querying the catalog tables .. 2793

Configuration reference .. 2800
Modifying the server configuration ... 2801
analyze_threshold_percent .. 2802

Values (default in bold) .. 2802
Description ... 2802
Examples .. 2802

cast_super_null_on_error ... 2803
Values (default in bold) .. 2803
Description ... 2803

xxiv

Amazon Redshift Database Developer Guide

datashare_break_glass_session_var ... 2803
Values (default in bold) .. 2803
Description ... 2803
Example .. 2804

datestyle .. 2804
Values (default in bold) .. 2804
Description ... 2803
Example .. 2804

default_geometry_encoding ... 2804
Values (default in bold) .. 2804
Description ... 2803

describe_field_name_in_uppercase .. 2805
Values (default in bold) .. 2805
Description ... 2803
Example .. 2804

downcase_delimited_identifier ... 2805
Values (default in bold) .. 2805
Description ... 2803
Usage Notes .. 2806

enable_case_sensitive_identifier ... 2807
Values (default in bold) .. 2807
Description ... 2807
Examples .. 2807
Usage Notes .. 2808

enable_case_sensitive_super_attribute ... 2810
Values (default in bold) .. 2810
Description ... 2810
Examples .. 2810
Usage Notes .. 2811

enable_numeric_rounding ... 2812
Values (default in bold) .. 2812
Description ... 2812
Example .. 2812

enable_result_cache_for_session .. 2814
Values (default in bold) .. 2814
Description ... 2814

xxv

Amazon Redshift Database Developer Guide

Example .. 2814
enable_vacuum_boost .. 2814

Values (default in bold) .. 2814
Description ... 2803

error_on_nondeterministic_update .. 2814
Values (default in bold) .. 2814
Description ... 2803
Example .. 2804

extra_float_digits ... 2815
Values (default in bold) .. 2815
Description ... 2815
Example .. 2815

interval_forbid_composite_literals ... 2816
Values (default in bold) .. 2816
Description ... 2803

json_serialization_enable ... 2817
Values (default in bold) .. 2817
Description ... 2803

json_serialization_parse_nested_strings ... 2817
Values (default in bold) .. 2817
Description ... 2803

max_concurrency_scaling_clusters ... 2818
Values (default in bold) .. 2818
Description ... 2818

max_cursor_result_set_size .. 2818
Values (default in bold) .. 2818
Description ... 2818

mv_enable_aqmv_for_session ... 2819
Values (default in bold) .. 2819
Description ... 2819

navigate_super_null_on_error ... 2819
Values (default in bold) .. 2819
Description ... 2803

parse_super_null_on_error .. 2819
Values (default in bold) .. 2819
Description ... 2803

xxvi

Amazon Redshift Database Developer Guide

pg_federation_repeatable_read .. 2819
Values (default in bold) .. 2819
Description ... 2803
Examples .. 2820

query_group .. 2820
Values (default in bold) .. 2820
Description ... 2821

search_path ... 2821
Values (default in bold) .. 2821
Description ... 2822
Example .. 2822

spectrum_enable_pseudo_columns ... 2823
Values (default in bold) .. 2823
Description ... 2823
Example .. 2824

enable_spectrum_oid .. 2824
Values (default in bold) .. 2824
Description ... 2824
Example .. 2824

spectrum_query_maxerror ... 2824
Values (default in bold) .. 2824
Description ... 2824
Example .. 2825

statement_timeout .. 2825
Values (default in bold) .. 2825
Description ... 2825
Example .. 2825

stored_proc_log_min_messages ... 2826
Values (default in bold) .. 2826
Description ... 2803

timezone .. 2826
Values (default in bold) .. 2826
Syntax ... 2826
Description ... 2827
Time zone formats ... 2827
Examples .. 2829

xxvii

Amazon Redshift Database Developer Guide

use_fips_ssl ... 2830
Values (default in bold) .. 2830
Description ... 2803

wlm_query_slot_count .. 2830
Values (default in bold) .. 2830
Description ... 2831
Examples .. 2831

Document history .. 2832
Earlier updates ... 2842

xxviii

Amazon Redshift Database Developer Guide

Introduction

Welcome to the Amazon Redshift Database Developer Guide. Amazon Redshift is a fully managed,
petabyte-scale data warehouse service in the cloud. Amazon Redshift Serverless lets you access
and analyze data without the usual configurations of a provisioned data warehouse. Resources
are automatically provisioned and data warehouse capacity is intelligently scaled to deliver fast
performance for even the most demanding and unpredictable workloads. You don't incur charges
when the data warehouse is idle, so you only pay for what you use. Regardless of the size of the
dataset, you can load data and start querying right away in the Amazon Redshift query editor v2 or
in your favorite business intelligence (BI) tool. Enjoy the best price performance and familiar SQL
features in an easy-to-use, zero administration environment.

This guide focuses on using Amazon Redshift to create and manage a data warehouse. If you work
with databases as a designer, software developer, or administrator, it gives you the information you
need to design, build, query, and maintain your data warehouse.

Topics

• Prerequisites

• Are you a database developer?

• System and architecture overview

• Sample database

Prerequisites

Before you use this guide, you should read Amazon Redshift Serverless, which goes over how to
complete the following tasks.

• Create a data warehouse with Amazon Redshift Serverless.

• Loading in sample data with Amazon Redshift query editor v2

• Loading in data from Amazon S3.

You should also know how to use your SQL client and should have a fundamental understanding of
the SQL language.

Prerequisites 1

https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html

Amazon Redshift Database Developer Guide

Are you a database developer?

If you are a first-time Amazon Redshift user, we recommend you read Amazon Redshift Serverless
to learn how to get started.

If you are a database user, database designer, database developer, or database administrator, the
following table will help you find what you're looking for.

If you want to... We recommend...

Learn about the
internal architect
ure of the Amazon
Redshift data
warehouse.

The System and architecture overview gives a high-level overview of
Amazon Redshift's internal architecture.

If you want a broader overview of the Amazon Redshift web service, go
to the Amazon Redshift product detail page.

Create databases
, tables, users, and
other database
objects.

Common database tasks is a quick introduction to the basics of SQL
development.

The Amazon Redshift SQL has the syntax and examples for Amazon
Redshift SQL commands and functions and other SQL elements.

Amazon Redshift best practices for designing tables provides a
summary of our recommendations for choosing sort keys, distribution
keys, and compression encodings.

Learn how to design
tables for optimum
performance.

Working with automatic table optimization details considerations
for applying compression to the data in table columns and choosing
distribution and sort keys.

Load data. Loading data explains the procedures for loading large datasets from
Amazon DynamoDB tables or from flat files stored in Amazon S3
buckets.

Amazon Redshift best practices for loading data provides for tips for
loading your data quickly and effectively.

Are you a database developer? 2

https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html
https://aws.amazon.com/redshift/
https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html

Amazon Redshift Database Developer Guide

If you want to... We recommend...

Manage users,
groups, and database
security.

Managing database security covers database security topics.

Monitor and optimize
system performance.

The System tables and views reference details system tables and views
that you can query for the status of the database and monitor queries
and processes.

Also consult the Amazon Redshift Management Guide to learn how to
use the AWS Management Console to check the system health, monitor
metrics, and back up and restore clusters.

Analyze and report
information from
very large datasets.

Many popular software vendors are certifying Amazon Redshift with
their offerings to enable you to continue to use the tools you use today.
For more information, see the Amazon Redshift partner page.

The SQL reference has all the details for the SQL expressions,
commands, and functions Amazon Redshift supports.

Interact with Amazon
Redshift resources
and tables.

See the Amazon Redshift Serverless API guide, the Amazon Redshift
API guide, and the Amazon Redshift Data API guide to learn more
about how you can programmatically interact with resources and run
operations.

Follow a tutorial
to become more
familiar with Amazon
Redshift.

Follow a tutorial in Tutorials for Amazon Redshift to learn more about
Amazon Redshift features.

System and architecture overview

An Amazon Redshift data warehouse is an enterprise-class relational database query and
management system.

Amazon Redshift supports client connections with many types of applications, including business
intelligence (BI), reporting, data, and analytics tools.

System and architecture overview 3

https://docs.aws.amazon.com/redshift/latest/mgmt/
https://aws.amazon.com/redshift/partners/
https://docs.aws.amazon.com/redshift-serverless/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift-data/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorials-redshift.html

Amazon Redshift Database Developer Guide

When you run analytic queries, you are retrieving, comparing, and evaluating large amounts of
data in multiple-stage operations to produce a final result.

Amazon Redshift achieves efficient storage and optimum query performance through a
combination of massively parallel processing, columnar data storage, and very efficient, targeted
data compression encoding schemes. This section presents an introduction to the Amazon Redshift
system architecture.

Topics

• Data warehouse system architecture

• Performance

• Columnar storage

• Workload management

• Using Amazon Redshift with other services

Data warehouse system architecture

This section introduces the elements of the Amazon Redshift data warehouse architecture as
shown in the following figure.

Client applications

Data warehouse system architecture 4

Amazon Redshift Database Developer Guide

Amazon Redshift integrates with various data loading and ETL (extract, transform, and load) tools
and business intelligence (BI) reporting, data mining, and analytics tools. Amazon Redshift is
based on open standard PostgreSQL, so most existing SQL client applications will work with only
minimal changes. For information about important differences between Amazon Redshift SQL and
PostgreSQL, see Amazon Redshift and PostgreSQL.

Clusters

The core infrastructure component of an Amazon Redshift data warehouse is a cluster.

A cluster is composed of one or more compute nodes. If a cluster is provisioned with two or more
compute nodes, an additional leader node coordinates the compute nodes and handles external
communication. Your client application interacts directly only with the leader node. The compute
nodes are transparent to external applications.

Leader node

The leader node manages communications with client programs and all communication with
compute nodes. It parses and develops execution plans to carry out database operations, in
particular, the series of steps necessary to obtain results for complex queries. Based on the
execution plan, the leader node compiles code, distributes the compiled code to the compute
nodes, and assigns a portion of the data to each compute node.

The leader node distributes SQL statements to the compute nodes only when a query references
tables that are stored on the compute nodes. All other queries run exclusively on the leader node.
Amazon Redshift is designed to implement certain SQL functions only on the leader node. A
query that uses any of these functions will return an error if it references tables that reside on the
compute nodes. For more information, see SQL functions supported on the leader node.

Compute nodes

The leader node compiles code for individual elements of the execution plan and assigns the code
to individual compute nodes. The compute nodes run the compiled code and send intermediate
results back to the leader node for final aggregation.

Each compute node has its own dedicated CPU and memory, which are determined by the node
type. As your workload grows, you can increase the compute capacity of a cluster by increasing the
number of nodes, upgrading the node type, or both.

Amazon Redshift provides several node types for your compute needs. For details of each node
type, see Amazon Redshift clusters in the Amazon Redshift Management Guide.

Data warehouse system architecture 5

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html

Amazon Redshift Database Developer Guide

Redshift Managed Storage

Data warehouse data is stored in a separate storage tier Redshift Managed Storage (RMS). RMS
provides the ability to scale your storage to petabytes using Amazon S3 storage. RMS lets you scale
and pay for computing and storage independently, so that you can size your cluster based only on
your computing needs. It automatically uses high-performance SSD-based local storage as tier-1
cache. It also takes advantage of optimizations, such as data block temperature, data block age,
and workload patterns to deliver high performance while scaling storage automatically to Amazon
S3 when needed without requiring any action.

Node slices

A compute node is partitioned into slices. Each slice is allocated a portion of the node's memory
and disk space, where it processes a portion of the workload assigned to the node. The leader
node manages distributing data to the slices and apportions the workload for any queries or other
database operations to the slices. The slices then work in parallel to complete the operation.

The number of slices per node is determined by the node size of the cluster. For more information
about the number of slices for each node size, go to About clusters and nodes in the Amazon
Redshift Management Guide.

When you create a table, you can optionally specify one column as the distribution key. When the
table is loaded with data, the rows are distributed to the node slices according to the distribution
key that is defined for a table. Choosing a good distribution key enables Amazon Redshift to use
parallel processing to load data and run queries efficiently. For information about choosing a
distribution key, see Choose the best distribution style.

Internal network

Amazon Redshift takes advantage of high-bandwidth connections, close proximity, and custom
communication protocols to provide private, very high-speed network communication between
the leader node and compute nodes. The compute nodes run on a separate, isolated network that
client applications never access directly.

Databases

A cluster contains one or more databases. User data is stored on the compute nodes. Your SQL
client communicates with the leader node, which in turn coordinates query run with the compute
nodes.

Data warehouse system architecture 6

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

Amazon Redshift is a relational database management system (RDBMS), so it is compatible with
other RDBMS applications. Although it provides the same functionality as a typical RDBMS,
including online transaction processing (OLTP) functions such as inserting and deleting data,
Amazon Redshift is optimized for high-performance analysis and reporting of very large datasets.

Amazon Redshift is based on PostgreSQL. Amazon Redshift and PostgreSQL have a number of
very important differences that you need to take into account as you design and develop your data
warehouse applications. For information about how Amazon Redshift SQL differs from PostgreSQL,
see Amazon Redshift and PostgreSQL.

Performance

Amazon Redshift achieves extremely fast query run by employing these performance features.

Topics

• Massively parallel processing

• Columnar data storage

• Data compression

• Query optimizer

• Result caching

• Compiled code

Massively parallel processing

Massively parallel processing (MPP) enables fast run of the most complex queries operating on
large amounts of data. Multiple compute nodes handle all query processing leading up to final
result aggregation, with each core of each node running the same compiled query segments on
portions of the entire data.

Amazon Redshift distributes the rows of a table to the compute nodes so that the data can be
processed in parallel. By selecting an appropriate distribution key for each table, you can optimize
the distribution of data to balance the workload and minimize movement of data from node to
node. For more information, see Choose the best distribution style.

Loading data from flat files takes advantage of parallel processing by spreading the workload
across multiple nodes while simultaneously reading from multiple files. For more information
about how to load data into tables, see Amazon Redshift best practices for loading data.

Performance 7

Amazon Redshift Database Developer Guide

Columnar data storage

Columnar storage for database tables drastically reduces the overall disk I/O requirements and is
an important factor in optimizing analytic query performance. Storing database table information
in a columnar fashion reduces the number of disk I/O requests and reduces the amount of data
you need to load from disk. Loading less data into memory enables Amazon Redshift to perform
more in-memory processing when executing queries. See Columnar storage for a more detailed
explanation.

When columns are sorted appropriately, the query processor is able to rapidly filter out a large
subset of data blocks. For more information, see Choose the best sort key.

Data compression

Data compression reduces storage requirements, thereby reducing disk I/O, which improves query
performance. When you run a query, the compressed data is read into memory, then uncompressed
during query run. Loading less data into memory enables Amazon Redshift to allocate more
memory to analyzing the data. Because columnar storage stores similar data sequentially, Amazon
Redshift is able to apply adaptive compression encodings specifically tied to columnar data types.
The best way to enable data compression on table columns is by allowing Amazon Redshift to
apply optimal compression encodings when you load the table with data. To learn more about
using automatic data compression, see Loading tables with automatic compression.

Query optimizer

The Amazon Redshift query run engine incorporates a query optimizer that is MPP-aware and also
takes advantage of the columnar-oriented data storage. The Amazon Redshift query optimizer
implements significant enhancements and extensions for processing complex analytic queries
that often include multi-table joins, subqueries, and aggregation. To learn more about optimizing
queries, see Tuning query performance.

Result caching

To reduce query runtime and improve system performance, Amazon Redshift caches the results
of certain types of queries in memory on the leader node. When a user submits a query, Amazon
Redshift checks the results cache for a valid, cached copy of the query results. If a match is found
in the result cache, Amazon Redshift uses the cached results and doesn't run the query. Result
caching is transparent to the user.

Performance 8

Amazon Redshift Database Developer Guide

Result caching is turned on by default. To turn off result caching for the current session, set the
enable_result_cache_for_session parameter to off.

Amazon Redshift uses cached results for a new query when all of the following are true:

• The user submitting the query has access permission to the objects used in the query.

• The table or views in the query haven't been modified.

• The query doesn't use a function that must be evaluated each time it's run, such as GETDATE.

• The query doesn't reference Amazon Redshift Spectrum external tables.

• Configuration parameters that might affect query results are unchanged.

• The query syntactically matches the cached query.

To maximize cache effectiveness and efficient use of resources, Amazon Redshift doesn't cache
some large query result sets. Amazon Redshift determines whether to cache query results based on
a number of factors. These factors include the number of entries in the cache and the instance type
of your Amazon Redshift cluster.

To determine whether a query used the result cache, query the SVL_QLOG system view. If a query
used the result cache, the source_query column returns the query ID of the source query. If result
caching wasn't used, the source_query column value is NULL.

The following example shows that queries submitted by userid 104 and userid 102 use the result
cache from queries run by userid 100.

select userid, query, elapsed, source_query from svl_qlog
where userid > 1
order by query desc;

userid | query | elapsed | source_query
-------+--------+----------+-------------
 104 | 629035 | 27 | 628919
 104 | 629034 | 60 | 628900
 104 | 629033 | 23 | 628891
 102 | 629017 | 1229393 |
 102 | 628942 | 28 | 628919
 102 | 628941 | 57 | 628900
 102 | 628940 | 26 | 628891
 100 | 628919 | 84295686 |
 100 | 628900 | 87015637 |

Performance 9

Amazon Redshift Database Developer Guide

 100 | 628891 | 58808694 |

Compiled code

The leader node distributes fully optimized compiled code across all of the nodes of a cluster.
Compiling the query decreases the overhead associated with an interpreter and therefore increases
the runtime speed, especially for complex queries. The compiled code is cached and shared across
sessions on the same cluster. As a result, future runs of the same query will be faster, often even
with different parameters.

The query run engine compiles different code for the JDBC and ODBC connection protocols, so two
clients using different protocols each incur the first-time cost of compiling the code. Clients that
use the same protocol, however, benefit from sharing the cached code.

Columnar storage

Columnar storage for database tables is an important factor in optimizing analytic query
performance, because it drastically reduces the overall disk I/O requirements. It reduces the
amount of data you need to load from disk.

The following series of illustrations describe how columnar data storage implements efficiencies,
and how that translates into efficiencies when retrieving data into memory.

This first illustration shows how records from database tables are typically stored into disk blocks
by row.

In a typical relational database table, each row contains field values for a single record. In row-wise
database storage, data blocks store values sequentially for each consecutive column making up the
entire row. If block size is smaller than the size of a record, storage for an entire record may take

Columnar storage 10

Amazon Redshift Database Developer Guide

more than one block. If block size is larger than the size of a record, storage for an entire record
may take less than one block, resulting in an inefficient use of disk space. In online transaction
processing (OLTP) applications, most transactions involve frequently reading and writing all of the
values for entire records, typically one record or a small number of records at a time. As a result,
row-wise storage is optimal for OLTP databases.

The next illustration shows how with columnar storage, the values for each column are stored
sequentially into disk blocks.

Using columnar storage, each data block stores values of a single column for multiple rows. As
records enter the system, Amazon Redshift transparently converts the data to columnar storage for
each of the columns.

In this simplified example, using columnar storage, each data block holds column field values
for as many as three times as many records as row-based storage. This means that reading the
same number of column field values for the same number of records requires a third of the I/O
operations compared to row-wise storage. In practice, using tables with very large numbers of
columns and very large row counts, storage efficiency is even greater.

An added advantage is that, since each block holds the same type of data, block data can use a
compression scheme selected specifically for the column data type, further reducing disk space and
I/O. For more information about compression encodings based on data types, see Compression
encodings.

The savings in space for storing data on disk also carries over to retrieving and then storing that
data in memory. Since many database operations only need to access or operate on one or a small
number of columns at a time, you can save memory space by only retrieving blocks for columns
you actually need for a query. Where OLTP transactions typically involve most or all of the columns
in a row for a small number of records, data warehouse queries commonly read only a few columns
for a very large number of rows. This means that reading the same number of column field values

Columnar storage 11

Amazon Redshift Database Developer Guide

for the same number of rows requires a fraction of the I/O operations. It uses a fraction of the
memory that would be required for processing row-wise blocks. In practice, using tables with
very large numbers of columns and very large row counts, the efficiency gains are proportionally
greater. For example, suppose a table contains 100 columns. A query that uses five columns will
only need to read about five percent of the data contained in the table. This savings is repeated for
possibly billions or even trillions of records for large databases. In contrast, a row-wise database
would read the blocks that contain the 95 unneeded columns as well.

Typical database block sizes range from 2 KB to 32 KB. Amazon Redshift uses a block size of 1 MB,
which is more efficient and further reduces the number of I/O requests needed to perform any
database loading or other operations that are part of query run.

Workload management

Amazon Redshift workload management (WLM) enables users to flexibly manage priorities within
workloads so that short, fast-running queries won't get stuck in queues behind long-running
queries.

Amazon Redshift WLM creates query queues at runtime according to service classes, which define
the configuration parameters for various types of queues, including internal system queues and
user-accessible queues. From a user perspective, a user-accessible service class and a queue are
functionally equivalent. For consistency, this documentation uses the term queue to mean a user-
accessible service class as well as a runtime queue.

When you run a query, WLM assigns the query to a queue according to the user's user group or by
matching a query group that is listed in the queue configuration with a query group label that the
user sets at runtime.

Currently, the default for clusters using the default parameter group is to use automatic WLM.
Automatic WLM manages query concurrency and memory allocation. For more information, see
Implementing automatic WLM.

With manual WLM, Amazon Redshift configures one queue with a concurrency level of five, which
enables up to five queries to run concurrently, plus one predefined Superuser queue, with a
concurrency level of one. You can define up to eight queues. Each queue can be configured with
a maximum concurrency level of 50. The maximum total concurrency level for all user-defined
queues (not including the Superuser queue) is 50.

Workload management 12

Amazon Redshift Database Developer Guide

The easiest way to modify the WLM configuration is by using the Amazon Redshift Management
Console. You can also use the Amazon Redshift command line interface (CLI) or the Amazon
Redshift API.

For more information about implementing and using workload management, see Implementing
workload management.

Using Amazon Redshift with other services

Amazon Redshift integrates with other AWS services to enable you to move, transform, and load
your data quickly and reliably, using data security features.

Moving data between Amazon Redshift and Amazon S3

Amazon Simple Storage Service (Amazon S3) is a web service that stores data in the cloud. Amazon
Redshift leverages parallel processing to read and load data from multiple data files stored in
Amazon S3 buckets. For more information, see Loading data from Amazon S3.

You can also use parallel processing to export data from your Amazon Redshift data warehouse to
multiple data files on Amazon S3. For more information, see Unloading data.

Using Amazon Redshift with Amazon DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service. You can use the COPY command
to load an Amazon Redshift table with data from a single Amazon DynamoDB table. For more
information, see Loading data from an Amazon DynamoDB table.

Importing data from remote hosts over SSH

You can use the COPY command in Amazon Redshift to load data from one or more remote hosts,
such as Amazon EMR clusters, Amazon EC2 instances, or other computers. COPY connects to
the remote hosts using SSH and runs commands on the remote hosts to generate data. Amazon
Redshift supports multiple simultaneous connections. The COPY command reads and loads the
output from multiple host sources in parallel. For more information, see Loading data from remote
hosts.

Automating data loads using AWS Data Pipeline

You can use AWS Data Pipeline to automate data movement and transformation into and out
of Amazon Redshift. By using the built-in scheduling capabilities of AWS Data Pipeline, you

Using Amazon Redshift with other services 13

Amazon Redshift Database Developer Guide

can schedule and run recurring jobs without having to write your own complex data transfer or
transformation logic. For example, you can set up a recurring job to automatically copy data from
Amazon DynamoDB into Amazon Redshift. For a tutorial that walks you through the process of
creating a pipeline that periodically moves data from Amazon S3 to Amazon Redshift, see Copy
data to Amazon Redshift using AWS Data Pipeline in the AWS Data Pipeline Developer Guide.

Migrating data using AWS Database Migration Service (AWS DMS)

You can migrate data to Amazon Redshift using AWS Database Migration Service. AWS DMS can
migrate your data to and from most widely used commercial and open-source databases such
as Oracle, PostgreSQL, Microsoft SQL Server, Amazon Redshift, Aurora DB cluster, DynamoDB,
Amazon S3, MariaDB, and MySQL. For more information, see Using an Amazon Redshift database
as a target for AWS Database Migration Service.

Sample database

Topics

• CATEGORY table

• DATE table

• EVENT table

• VENUE table

• USERS table

• LISTING table

• SALES table

Most of the examples in the Amazon Redshift documentation use a sample database called TICKIT.
This small database consists of seven tables: two fact tables and five dimensions. You can load the
TICKIT dataset by following the steps in Step 4: Load data from Amazon S3 to Amazon Redshift in
the Amazon Redshift Getting Started Guide.

Sample database 14

https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-copydata-redshift.html
https://docs.aws.amazon.com/datapipeline/latest/DeveloperGuide/dp-copydata-redshift.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Target.Redshift.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-create-sample-db.html

Amazon Redshift Database Developer Guide

This sample database application helps analysts track sales activity for the fictional TICKIT web
site, where users buy and sell tickets online for sporting events, shows, and concerts. In particular,
analysts can identify ticket movement over time, success rates for sellers, and the best-selling
events, venues, and seasons. Analysts can use this information to provide incentives to buyers and
sellers who frequent the site, to attract new users, and to drive advertising and promotions.

For example, the following query finds the top five sellers in San Diego, based on the number of
tickets sold in 2008:

select sellerid, username, (firstname ||' '|| lastname) as name,
city, sum(qtysold)
from sales, date, users
where sales.sellerid = users.userid
and sales.dateid = date.dateid
and year = 2008
and city = 'San Diego'
group by sellerid, username, name, city
order by 5 desc
limit 5;

sellerid | username | name | city | sum

Sample database 15

Amazon Redshift Database Developer Guide

----------+----------+-------------------+-----------+-----
49977 | JJK84WTE | Julie Hanson | San Diego | 22
19750 | AAS23BDR | Charity Zimmerman | San Diego | 21
29069 | SVL81MEQ | Axel Grant | San Diego | 17
43632 | VAG08HKW | Griffin Dodson | San Diego | 16
36712 | RXT40MKU | Hiram Turner | San Diego | 14
(5 rows)

The database used for the examples in this guide contains a small data set; the two fact tables each
contain less than 200,000 rows, and the dimensions range from 11 rows in the CATEGORY table up
to about 50,000 rows in the USERS table.

In particular, the database examples in this guide demonstrate the key features of Amazon Redshift
table design:

• Data distribution

• Data sort

• Columnar compression

CATEGORY table

Column name Data type Description

CATID SMALLINT Primary key, a unique ID value for each row. Each row
represents a specific type of event for which tickets are
bought and sold.

CATGROUP VARCHAR(10) Descriptive name for a group of events, such as Shows
and Sports.

CATNAME VARCHAR(10) Short descriptive name for a type of event within a group,
such as Opera and Musicals.

CATDESC VARCHAR(50) Longer descriptive name for the type of event, such as
Musical theatre.

CATEGORY table 16

Amazon Redshift Database Developer Guide

DATE table

Column name Data type Description

DATEID SMALLINT Primary key, a unique ID value for each row. Each row
represents a day in the calendar year.

CALDATE DATE Calendar date, such as 2008-06-24 .

DAY CHAR(3) Day of week (short form), such as SA.

WEEK SMALLINT Week number, such as 26.

MONTH CHAR(5) Month name (short form), such as JUN.

QTR CHAR(5) Quarter number (1 through 4).

YEAR SMALLINT Four-digit year (2008).

HOLIDAY BOOLEAN Flag that denotes whether the day is a public holiday
(U.S.).

EVENT table

Column name Data type Description

EVENTID INTEGER Primary key, a unique ID value for each row. Each
row represents a separate event that takes place at a
specific venue at a specific time.

VENUEID SMALLINT Foreign-key reference to the VENUE table.

CATID SMALLINT Foreign-key reference to the CATEGORY table.

DATEID SMALLINT Foreign-key reference to the DATE table.

EVENTNAME VARCHAR(200) Name of the event, such as Hamlet or La Traviata.

DATE table 17

Amazon Redshift Database Developer Guide

Column name Data type Description

STARTTIME TIMESTAMP Full date and start time for the event, such as
2008-10-10 19:30:00 .

VENUE table

Column name Data type Description

VENUEID SMALLINT Primary key, a unique ID value for each row. Each
row represents a specific venue where events take
place.

VENUENAME VARCHAR(100) Exact name of the venue, such as Cleveland
Browns Stadium.

VENUECITY VARCHAR(30) City name, such as Cleveland .

VENUESTATE CHAR(2) Two-letter state or province abbreviation (United
States and Canada), such as OH.

VENUESEATS INTEGER Maximum number of seats available at the venue
, if known, such as 73200. For demonstration
purposes, this column contains some null values
and zeroes.

USERS table

Column name Data type Description

USERID INTEGER Primary key, a unique ID value for each row. Each
row represents a registered user (a buyer or seller or
both) who has listed or bought tickets for at least
one event.

VENUE table 18

Amazon Redshift Database Developer Guide

Column name Data type Description

USERNAME CHAR(8) An 8-character alphanumeric username, such as
PGL08LJI.

FIRSTNAME VARCHAR(30) The user's first name, such as Victor.

LASTNAME VARCHAR(30) The user's last name, such as Hernandez .

CITY VARCHAR(30) The user's home city, such as Naperville .

STATE CHAR(2) The user's home state, such as GA.

EMAIL VARCHAR(100) The user's email address; this column contains
random Latin values, such as turpis@ac
cumsanlaoreet.org .

PHONE CHAR(14) The user's 14-character phone number, such as
(818) 765-4255.

LIKESPORTS, ... BOOLEAN A series of 10 different columns that identify the
user's likes and dislikes with true and false values.

LISTING table

Column name Data type Description

LISTID INTEGER Primary key, a unique ID value for each row. Each row
represents a listing of a batch of tickets for a specific
event.

SELLERID INTEGER Foreign-key reference to the USERS table, identifying
the user who is selling the tickets.

EVENTID INTEGER Foreign-key reference to the EVENT table.

DATEID SMALLINT Foreign-key reference to the DATE table.

LISTING table 19

Amazon Redshift Database Developer Guide

Column name Data type Description

NUMTICKETS SMALLINT The number of tickets available for sale, such as 2 or
20.

PRICEPERTICKET DECIMAL(8,2) The fixed price of an individual ticket, such as 27.00
or 206.00.

TOTALPRICE DECIMAL(8,2) The total price for this listing (NUMTICKETS*PRICEPE
RTICKET).

LISTTIME TIMESTAMP The full date and time when the listing was posted,
such as 2008-03-18 07:19:35 .

SALES table

Column name Data type Description

SALESID INTEGER Primary key, a unique ID value for each row. Each row
represents a sale of one or more tickets for a specific
event, as offered in a specific listing.

LISTID INTEGER Foreign-key reference to the LISTING table.

SELLERID INTEGER Foreign-key reference to the USERS table (the user who
sold the tickets).

BUYERID INTEGER Foreign-key reference to the USERS table (the user who
bought the tickets).

EVENTID INTEGER Foreign-key reference to the EVENT table.

DATEID SMALLINT Foreign-key reference to the DATE table.

QTYSOLD SMALLINT The number of tickets that were sold, from 1 to 8. (A
maximum of 8 tickets can be sold in a single transacti
on.)

SALES table 20

Amazon Redshift Database Developer Guide

Column name Data type Description

PRICEPAID DECIMAL(8,2) The total price paid for the tickets, such as 75.00 or
488.00. The individual price of a ticket is PRICEPAID/
QTYSOLD.

COMMISSION DECIMAL(8,2) The 15% commission that the business collects from
the sale, such as 11.25 or 73.20. The seller receives
85% of the PRICEPAID value.

SALETIME TIMESTAMP The full date and time when the sale was completed,
such as 2008-05-24 06:21:47 .

SALES table 21

Amazon Redshift Database Developer Guide

Amazon Redshift best practices

Following, you can find best practices for planning a proof of concept, designing tables, loading
data into tables, and writing queries for Amazon Redshift, and also a discussion of working with
Amazon Redshift Advisor.

Amazon Redshift is not the same as other SQL database systems. To fully realize the benefits of
the Amazon Redshift architecture, you must specifically design, build, and load your tables to use
massively parallel processing, columnar data storage, and columnar data compression. If your data
loading and query execution times are longer than you expect, or longer than you want, you might
be overlooking key information.

If you are an experienced SQL database developer, we strongly recommend that you review this
topic before you begin developing your Amazon Redshift data warehouse.

If you are new to developing SQL databases, this topic is not the best place to start. We
recommend that you begin by reading Common database tasks and trying the examples yourself.

In this topic, you can find an overview of the most important development principles, along with
specific tips, examples, and best practices for implementing those principles. No single practice
can apply to every application. Evaluate all of your options before finishing a database design. For
more information, see Working with automatic table optimization, Loading data, Tuning query
performance, and the reference chapters.

Topics

• Conduct a proof of concept (POC) for Amazon Redshift

• Amazon Redshift best practices for designing tables

• Amazon Redshift best practices for loading data

• Amazon Redshift best practices for designing queries

• Working with recommendations from Amazon Redshift Advisor

Conduct a proof of concept (POC) for Amazon Redshift

Amazon Redshift is a popular cloud data warehouse, which offers a fully managed cloud-based
service that integrates with an organization’s Amazon Simple Storage Service data lake, real-time
streams, machine learning (ML) workflows, transactional workflows, and much more. The following

Conduct a proof of concept 22

https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html

Amazon Redshift Database Developer Guide

sections guide you through the process of doing a proof of concept (POC) on Amazon Redshift. The
information here helps you set goals for your POC, and takes advantage of tools that can automate
the provisioning and configuration of services for your POC.

Note

For a copy of this information as a PDF, choose the link Run your own Redshift POC on the
Amazon Redshift resources page.

When doing a POC of Amazon Redshift, you test, prove out, and adopt features ranging from
best-in-class security capabilities, elastic scaling, easy integration and ingestion, and flexible
decentralized data architecture options.

Follow the these steps to conduct a successful POC.

Step 1: Scope your POC

When conducting a POC, you can either choose to use your own data, or you can choose to use
benchmarking datasets. When you choose your own data you run your own queries against the
data. With benchmarking data, sample queries are provided with the benchmark. See Use sample
datasets for more details if you are not ready to conduct a POC with your own data just yet.

In general, we recommend using two weeks of data for an Amazon Redshift POC.

Start by doing the following:

Step 1: Scope your POC 23

https://aws.amazon.com/redshift/resources/

Amazon Redshift Database Developer Guide

1. Identify your business and functional requirements, then work backwards. Common examples
are: faster performance, lower costs, test a new workload or feature, or comparison between
Amazon Redshift and another data warehouse.

2. Set specific targets which become the success criteria for the POC. For example, from faster
performance, come up with a list of the top five processes you wish to accelerate, and include
the current run times along with your required run time. These can be reports, queries, ETL
processes, data ingestion, or whatever your current pain points are.

3. Identify the specific scope and artifacts needed to run the tests. What datasets do you need
to migrate or continuously ingest into Amazon Redshift, and what queries and processes are
needed to run the tests to measure against the success criteria? There are two ways to do this:

Bring your own data

• To test your own data, come up with the minimum viable list of data artifacts which is
required to test for your success criteria. For example, if your current data warehouse has 200
tables, but the reports you want to test only need 20, your POC can be run faster by using
only the smaller subset of tables.

Use sample datasets

• If you don’t have your own datasets ready, you can still get started doing a POC on Amazon
Redshift by using the industry-standard benchmark datasets such as TPC-DS or TPC-H and run
sample benchmarking queries to harness the power of Amazon Redshift. These datasets can
be accessed from within your Amazon Redshift data warehouse after it is created. For detailed
instructions on how to access these datasets and sample queries, see Step 2: Launch Amazon
Redshift.

Step 2: Launch Amazon Redshift

Step 2: Launch Amazon Redshift 24

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCDS
https://github.com/awslabs/amazon-redshift-utils/tree/master/src/CloudDataWarehouseBenchmark/Cloud-DWB-Derived-from-TPCH

Amazon Redshift Database Developer Guide

Amazon Redshift accelerates your time to insights with fast, easy, and secure cloud data
warehousing at scale. You can start quickly by launching your warehouse on the Redshift Serverless
console and get from data to insights in seconds. With Redshift Serverless, you can focus on
delivering on your business outcomes without worrying about managing your data warehouse.

Set up Amazon Redshift Serverless

The first time you use Redshift Serverless, the console leads you through the steps required to
launch your warehouse. You might also be eligible for a credit towards your Redshift Serverless
usage in your account. For more information about choosing a free trial, see Amazon Redshift free
trial. Follow the steps in the Creating a data warehouse with Redshift Serverless in the Amazon
Redshift Getting Started Guide to create a data warehouse with Redshift Serverless. If you do not
have a dataset that you would like to load, the guide also contains steps on how to load a sample
data set.

If you have previously launched Redshift Serverless in your account, follow the steps in Creating
a workgroup with a namespace in the Amazon Redshift Management Guide. After your warehouse
is available, you can opt to load the sample data available in Amazon Redshift. For information
about using Amazon Redshift query editor v2 to load data, see Loading sample data in the Amazon
Redshift Management Guide.

If you are bringing your own data instead of loading the sample data set, see Step 3: Load your
data.

Step 3: Load your data

After launching Redshift Serverless, the next step is to load your data for the POC. Whether you
are uploading a simple CSV file, ingesting semi-structured data from S3, or streaming data directly,
Amazon Redshift provides the flexibility to quickly and easily move the data into Amazon Redshift
tables from the source.

Choose one of the following methods to load your data.

Step 3: Load your data 25

https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://aws.amazon.com/redshift/free-trial/
https://aws.amazon.com/redshift/free-trial/
https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html#serverless-console-resource-creation
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-console-workgroups-create-workgroup-wizard.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-console-workgroups-create-workgroup-wizard.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-sample-data

Amazon Redshift Database Developer Guide

Upload a local file

For quick ingestion and analysis, you can use Amazon Redshift query editor v2 to easily load data
files from your local desktop. It has the capability to process files in various formats such as CSV,
JSON, AVRO, PARQUET, ORC, and more. To enable your users, as an administrator, to load data
from a local desktop using query editor v2 you have to specify a common Amazon S3 bucket, and
the user account must be configured with the proper permissions. You can follow Data load made
easy and secure in Amazon Redshift using Query Editor V2 for step-by-step guidance.

Load an Amazon S3 file

To load data from an Amazon S3 bucket into Amazon Redshift, begin by using the COPY command,
specifying the source Amazon S3 location and target Amazon Redshift table. Ensure that the IAM
roles and permissions are properly configured to allow Amazon Redshift access to the designated
Amazon S3 bucket. Follow Tutorial: Loading data from Amazon S3 for step-by-step guidance. You
can also choose the Load data option in query editor v2 to directly load data from your S3 bucket.

Continuous data ingestion

Autocopy (in preview) is an extension of the COPY command and automates continuous data
loading from Amazon S3 buckets. When you create a copy job, Amazon Redshift detects when new
Amazon S3 files are created in a specified path, and then loads them automatically without your
intervention. Amazon Redshift keeps track of the loaded files to verify that they are loaded only
one time. For instructions on how to create copy jobs, see COPY JOB (preview)

Note

Autocopy is currently in preview and supported only in provisioned clusters in specific
AWS Regions. To create a preview cluster for autocopy, see Continuous file ingestion from
Amazon S3 (preview).

Load your streaming data

Streaming ingestion provides low-latency, high-speed ingestion of stream data from Amazon
Kinesis Data Streams and Amazon Managed Streaming for Apache Kafka into Amazon Redshift.
Amazon Redshift streaming ingestion uses a materialized view, which is updated directly from
the stream utilizing auto refresh. The materialized view maps to the stream data source. You can

Step 3: Load your data 26

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-loading.html#query-editor-v2-loading-data-local
https://aws.amazon.com/blogs/big-data/data-load-made-easy-and-secure-in-amazon-redshift-using-query-editor-v2/
https://aws.amazon.com/blogs/big-data/data-load-made-easy-and-secure-in-amazon-redshift-using-query-editor-v2/
https://docs.aws.amazon.com/redshift/latest/dg/t_loading-tables-from-s3.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-loading-data.html
https://docs.aws.amazon.com/redshift/latest/dg/loading-data-copy-job.html
https://docs.aws.amazon.com/redshift/latest/dg/t_loading-tables-from-s3.html
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/msk/
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh.html#materialized-view-auto-refresh

Amazon Redshift Database Developer Guide

perform filtering and aggregations on the stream data as part of the materialized view definition.
For step-by-step guidance to load data from a stream, see Getting started with Amazon Kinesis
Data Streams or an Getting started with Amazon Managed Streaming for Apache Kafka.

Step 4: Analyze your data

After creating your Redshift Serverless workgroup and namespace, and loading your data, you can
immediately run queries by opening the Query editor v2 from the navigation panel of the Redshift
Serverless console. You can use query editor v2 to test query functionality or query performance
against your own datasets.

Query using Amazon Redshift query editor v2

You can access query editor v2 from the Amazon Redshift console. See Simplify your data analysis
with Amazon Redshift query editor v2 for a complete guide on how to configure, connect, and run
queries with query editor v2.

Alternatively, if you want to run a load test as part of your POC, you can do this by the following
steps to install and run Apache JMeter.

Run a load test using Apache JMeter

To perform a load test to simulate “N” users submitting queries concurrently to Amazon Redshift,
you can use Apache JMeter, an open-source Java based tool.

To install and configure Apache JMeter to run against your Redshift Serverless workgroup, follow
the instructions in Automate Amazon Redshift load testing with the AWS Analytics Automation
Toolkit. It uses the AWS Analytics Automation toolkit (AAA), an open source utility for dynamically
deploying Redshift solutions, to automatically launch these resources. If you have loaded your own
data into Amazon Redshift, be sure to perform the Step #5 – Customize SQL option, to make sure
you supply the appropriate SQL statements you would like to test against your tables. Test each of
these SQL statements one time using query editor v2 to make sure they run without errors.

Step 4: Analyze your data 27

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion-getting-started.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion-getting-started.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion-getting-started-MSK.html
https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://console.aws.amazon.com/redshiftv2/home?#serverless-dashboard
https://aws.amazon.com/blogs/big-data/simplify-your-data-analysis-with-amazon-redshift-query-editor-v2/
https://aws.amazon.com/blogs/big-data/simplify-your-data-analysis-with-amazon-redshift-query-editor-v2/
https://jmeter.apache.org/
https://aws.amazon.com/blogs/big-data/automate-amazon-redshift-load-testing-with-the-aws-analytics-automation-toolkit/
https://aws.amazon.com/blogs/big-data/automate-amazon-redshift-load-testing-with-the-aws-analytics-automation-toolkit/
https://github.com/aws-samples/amazon-redshift-infrastructure-automation/tree/main

Amazon Redshift Database Developer Guide

After you complete customizing your SQL statements and finalizing your test plan, save and run
your test plan against your Redshift Serverless workgroup. To monitor the progress of your test,
open the Redshift Serverless console, navigate to Query and database monitoring, choose the
Query history tab and view information about your queries.

For performance metrics, choose the Database performance tab on the Redshift Serverless
console, to monitor metrics such as Database Connections and CPU utilization. Here you can
view a graph to monitor the RPU capacity used and observe how Redshift Serverless automatically
scales to meet concurrent workload demands while the load test is running on your workgroup.

Database connections is another useful metric to monitor while running the load test to see
how your workgroup is handling numerous concurrent connections at a given time to meet the
increasing workload demands.

Step 4: Analyze your data 28

https://console.aws.amazon.com/redshiftv2/home?#serverless-query-and-database-monitoring

Amazon Redshift Database Developer Guide

Step 5: Optimize

Amazon Redshift empowers tens of thousands of users to process exabytes of data every day and
power their analytics workloads by offering a variety of configurations and features to support
individual use cases. When choosing between these options, customers are looking for tools that
help them determine the most optimal data warehouse configuration to support their Amazon
Redshift workload.

Test drive

You can use Test Drive to automatically replay your existing workload on potential configurations
and analyze the corresponding outputs to evaluate the optimal target to migrate your workload to.

Step 5: Optimize 29

https://github.com/aws/redshift-test-drive/tree/main

Amazon Redshift Database Developer Guide

See Find the best Amazon Redshift configuration for your workload using Redshift Test Drive for
information about using Test Drive to evaluate different Amazon Redshift configurations.

Amazon Redshift best practices for designing tables

As you plan your database, certain key table design decisions heavily influence overall query
performance. These design choices also have a significant effect on storage requirements, which
in turn affects query performance by reducing the number of I/O operations and minimizing the
memory required to process queries.

In this section, you can find a summary of the most important design decisions and best practices
for optimizing query performance. Working with automatic table optimization provides more
detailed explanations and examples of table design options.

Topics

• Choose the best sort key

• Choose the best distribution style

• Let COPY choose compression encodings

• Define primary key and foreign key constraints

• Use the smallest possible column size

• Use date/time data types for date columns

Choose the best sort key

Amazon Redshift stores your data on disk in sorted order according to the sort key. The Amazon
Redshift query optimizer uses sort order when it determines optimal query plans.

Note

When you use automatic table optimization, you don't need to choose the sort key of your
table. For more information, see Working with automatic table optimization.

Some suggestions for the best approach follow:

• To have Amazon Redshift choose the appropriate sort order, specify AUTO for the sort key.

Best practices for designing tables 30

https://aws.amazon.com/blogs/big-data/find-the-best-amazon-redshift-configuration-for-your-workload-using-redshift-test-drive/

Amazon Redshift Database Developer Guide

• If recent data is queried most frequently, specify the timestamp column as the leading column
for the sort key.

Queries are more efficient because they can skip entire blocks that fall outside the time range.

• If you do frequent range filtering or equality filtering on one column, specify that column as the
sort key.

Amazon Redshift can skip reading entire blocks of data for that column. It can do so because it
tracks the minimum and maximum column values stored on each block and can skip blocks that
don't apply to the predicate range.

• If you frequently join a table, specify the join column as both the sort key and the distribution
key.

Doing this enables the query optimizer to choose a sort merge join instead of a slower hash join.
Because the data is already sorted on the join key, the query optimizer can bypass the sort phase
of the sort merge join.

Choose the best distribution style

When you run a query, the query optimizer redistributes the rows to the compute nodes as
needed to perform any joins and aggregations. The goal in selecting a table distribution style is to
minimize the impact of the redistribution step by locating the data where it needs to be before the
query is run.

Note

When you use automatic table optimization, you don't need to choose the distribution style
of your table. For more information, see Working with automatic table optimization.

Some suggestions for the best approach follow:

1. Distribute the fact table and one dimension table on their common columns.

Your fact table can have only one distribution key. Any tables that join on another key aren't
collocated with the fact table. Choose one dimension to collocate based on how frequently it is
joined and the size of the joining rows. Designate both the dimension table's primary key and
the fact table's corresponding foreign key as the DISTKEY.

Choose the best distribution style 31

Amazon Redshift Database Developer Guide

2. Choose the largest dimension based on the size of the filtered dataset.

Only the rows that are used in the join must be distributed, so consider the size of the dataset
after filtering, not the size of the table.

3. Choose a column with high cardinality in the filtered result set.

If you distribute a sales table on a date column, for example, you should probably get fairly
even data distribution, unless most of your sales are seasonal. However, if you commonly use a
range-restricted predicate to filter for a narrow date period, most of the filtered rows occur on a
limited set of slices and the query workload is skewed.

4. Change some dimension tables to use ALL distribution.

If a dimension table cannot be collocated with the fact table or other important joining tables,
you can improve query performance significantly by distributing the entire table to all of the
nodes. Using ALL distribution multiplies storage space requirements and increases load times
and maintenance operations, so you should weigh all factors before choosing ALL distribution.

To have Amazon Redshift choose the appropriate distribution style, specify AUTO for the
distribution style.

For more information about choosing distribution styles, see Working with data distribution styles.

Let COPY choose compression encodings

You can specify compression encodings when you create a table, but in most cases, automatic
compression produces the best results.

ENCODE AUTO is the default for tables. When a table is set to ENCODE AUTO, Amazon Redshift
automatically manages compression encoding for all columns in the table. For more information,
see CREATE TABLE and ALTER TABLE.

The COPY command analyzes your data and applies compression encodings to an empty table
automatically as part of the load operation.

Automatic compression balances overall performance when choosing compression encodings.
Range-restricted scans might perform poorly if sort key columns are compressed much more highly
than other columns in the same query. As a result, automatic compression chooses a less efficient
compression encoding to keep the sort key columns balanced with other columns.

Use automatic compression 32

Amazon Redshift Database Developer Guide

Suppose that your table's sort key is a date or timestamp and the table uses many large varchar
columns. In this case, you might get better performance by not compressing the sort key column
at all. Run the ANALYZE COMPRESSION command on the table, then use the encodings to create a
new table, but leave out the compression encoding for the sort key.

There is a performance cost for automatic compression encoding, but only if the table is empty
and does not already have compression encoding. For short-lived tables and tables that you
create frequently, such as staging tables, load the table once with automatic compression or run
the ANALYZE COMPRESSION command. Then use those encodings to create new tables. You can
add the encodings to the CREATE TABLE statement, or use CREATE TABLE LIKE to create a new
table with the same encoding.

For more information, see Loading tables with automatic compression.

Define primary key and foreign key constraints

Define primary key and foreign key constraints between tables wherever appropriate. Even though
they are informational only, the query optimizer uses those constraints to generate more efficient
query plans.

Do not define primary key and foreign key constraints unless your application enforces the
constraints. Amazon Redshift does not enforce unique, primary-key, and foreign-key constraints.

See Defining table constraints for additional information about how Amazon Redshift uses
constraints.

Use the smallest possible column size

Don't make it a practice to use the maximum column size for convenience.

Instead, consider the largest values you are likely to store in your columns and size them
accordingly. For instance, a CHAR column for storing chemical symbols from the periodic table
would only need to be CHAR(2).

Use date/time data types for date columns

Amazon Redshift stores DATE and TIMESTAMP data more efficiently than CHAR or VARCHAR, which
results in better query performance. Use the DATE or TIMESTAMP data type, depending on the
resolution you need, rather than a character type when storing date/time information. For more
information, see Datetime types.

Define constraints 33

Amazon Redshift Database Developer Guide

Amazon Redshift best practices for loading data

Topics

• Take the loading data tutorial

• Use a COPY command to load data

• Use a single COPY command to load from multiple files

• Loading data files

• Compressing your data files

• Verify data files before and after a load

• Use a multi-row insert

• Use a bulk insert

• Load data in sort key order

• Load data in sequential blocks

• Use time-series tables

• Schedule around maintenance windows

Loading very large datasets can take a long time and consume a lot of computing resources. How
your data is loaded can also affect query performance. This section presents best practices for
loading data efficiently using COPY commands, bulk inserts, and staging tables.

Take the loading data tutorial

Tutorial: Loading data from Amazon S3 walks you beginning to end through the steps to upload
data to an Amazon S3 bucket and then use the COPY command to load the data into your tables.
The tutorial includes help with troubleshooting load errors and compares the performance
difference between loading from a single file and loading from multiple files.

Use a COPY command to load data

The COPY command loads data in parallel from Amazon S3, Amazon EMR, Amazon DynamoDB, or
multiple data sources on remote hosts. COPY loads large amounts of data much more efficiently
than using INSERT statements, and stores the data more effectively as well.

For more information about using the COPY command, see Loading data from Amazon S3 and
Loading data from an Amazon DynamoDB table.

Best practices for loading data 34

Amazon Redshift Database Developer Guide

Use a single COPY command to load from multiple files

Amazon Redshift can automatically load in parallel from multiple compressed data files. You can
specify the files to be loaded by using an Amazon S3 object prefix or by using a manifest file.

However, if you use multiple concurrent COPY commands to load one table from multiple files,
Amazon Redshift is forced to perform a serialized load. This type of load is much slower and
requires a VACUUM process at the end if the table has a sort column defined. For more information
about using COPY to load data in parallel, see Loading data from Amazon S3.

Loading data files

Source-data files come in different formats and use varying compression algorithms. When loading
data with the COPY command, Amazon Redshift loads all of the files referenced by the Amazon S3
bucket prefix. (The prefix is a string of characters at the beginning of the object key name.) If the
prefix refers to multiple files or files that can be split, Amazon Redshift loads the data in parallel,
taking advantage of Amazon Redshift’s MPP architecture. This divides the workload among the
nodes in the cluster. In contrast, when you load data from a file that can't be split, Amazon Redshift
is forced to perform a serialized load, which is much slower. The following sections describe the
recommended way to load different file types into Amazon Redshift, depending on their format
and compression.

Loading data from files that can be split

The following files can be automatically split when their data is loaded:

• an uncompressed CSV file

• a CSV file compressed with BZIP

• a columnar file (Parquet/ORC)

Amazon Redshift automatically splits files 128MB or larger into chunks. Columnar files, specifically
Parquet and ORC, aren't split if they're less than 128MB. Redshift makes use of slices working in
parallel to load the data. This provides fast load performance.

Loading data from files that can't be split

File types such as JSON, or CSV, when compressed with other compression algorithms, such as
GZIP, aren't automatically split. For these we recommend manually splitting the data into multiple

Use a single COPY command 35

Amazon Redshift Database Developer Guide

smaller files that are close in size, from 1 MB to 1 GB after compression. Additionally, make the
number of files a multiple of the number of slices in your cluster. For more information about how
to split your data into multiple files and examples of loading data using COPY, see Loading data
from Amazon S3.

Compressing your data files

When you want to compress large load files, we recommend that you use gzip, lzop, bzip2, or
Zstandard to compress them and split the data into multiple smaller files.

Specify the GZIP, LZOP, BZIP2, or ZSTD option with the COPY command. This example loads the
TIME table from a pipe-delimited lzop file.

copy time
from 's3://mybucket/data/timerows.lzo'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
lzop
delimiter '|';

There are instances when you don't have to split uncompressed data files. For more information
about splitting your data and examples of using COPY to load data, see Loading data from Amazon
S3.

Verify data files before and after a load

Before you load data from Amazon S3, first verify that your Amazon S3 bucket contains all the
correct files, and only those files. For more information, see Verifying that the correct files are
present in your bucket.

After the load operation is complete, query the STL_LOAD_COMMITS system table to verify that
the expected files were loaded. For more information, see Verifying that the data loaded correctly.

Use a multi-row insert

If a COPY command is not an option and you require SQL inserts, use a multi-row insert whenever
possible. Data compression is inefficient when you add data only one row or a few rows at a time.

Multi-row inserts improve performance by batching up a series of inserts. The following example
inserts three rows into a four-column table using a single INSERT statement. This is still a small
insert, shown simply to illustrate the syntax of a multi-row insert.

Compressing your data files 36

https://docs.aws.amazon.com/redshift/latest/dg/t_Loading-data-from-S3.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Loading-data-from-S3.html

Amazon Redshift Database Developer Guide

insert into category_stage values
(default, default, default, default),
(20, default, 'Country', default),
(21, 'Concerts', 'Rock', default);

For more details and examples, see INSERT.

Use a bulk insert

Use a bulk insert operation with a SELECT clause for high-performance data insertion.

Use the INSERT and CREATE TABLE AS commands when you need to move data or a subset of data
from one table into another.

For example, the following INSERT statement selects all of the rows from the CATEGORY table and
inserts them into the CATEGORY_STAGE table.

insert into category_stage
(select * from category);

The following example creates CATEGORY_STAGE as a copy of CATEGORY and inserts all of the
rows in CATEGORY into CATEGORY_STAGE.

create table category_stage as
select * from category;

Load data in sort key order

Load your data in sort key order to avoid needing to vacuum.

If each batch of new data follows the existing rows in your table, your data is properly stored in
sort order, and you don't need to run a vacuum. You don't need to presort the rows in each load
because COPY sorts each batch of incoming data as it loads.

For example, suppose that you load data every day based on the current day's activity. If your
sort key is a timestamp column, your data is stored in sort order. This order occurs because the
current day's data is always appended at the end of the previous day's data. For more information,
see Loading your data in sort key order. For more information about vacuum operations, see
Vacuuming tables.

Use a bulk insert 37

https://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage_space202.html

Amazon Redshift Database Developer Guide

Load data in sequential blocks

If you need to add a large quantity of data, load the data in sequential blocks according to sort
order to eliminate the need to vacuum.

For example, suppose that you need to load a table with events from January 2017 to December
2017. Assuming each month is in a single file, load the rows for January, then February, and so on.
Your table is completely sorted when your load completes, and you don't need to run a vacuum.
For more information, see Use time-series tables.

When loading very large datasets, the space required to sort might exceed the total available
space. By loading data in smaller blocks, you use much less intermediate sort space during each
load. In addition, loading smaller blocks make it easier to restart if the COPY fails and is rolled
back.

Use time-series tables

If your data has a fixed retention period, you can organize your data as a sequence of time-series
tables. In such a sequence, each table is identical but contains data for different time ranges.

You can easily remove old data simply by running a DROP TABLE command on the corresponding
tables. This approach is much faster than running a large-scale DELETE process and saves you
from having to run a subsequent VACUUM process to reclaim space. To hide the fact that the data
is stored in different tables, you can create a UNION ALL view. When you delete old data, refine
your UNION ALL view to remove the dropped tables. Similarly, as you load new time periods into
new tables, add the new tables to the view. To signal the optimizer to skip the scan on tables that
don't match the query filter, your view definition filters for the date range that corresponds to each
table.

Avoid having too many tables in the UNION ALL view. Each additional table adds a small processing
time to the query. Tables don't need to use the same time frame. For example, you might have
tables for differing time periods, such as daily, monthly, and yearly.

If you use time-series tables with a timestamp column for the sort key, you effectively load your
data in sort key order. Doing this eliminates the need to vacuum to re-sort the data. For more
information, see Loading your data in sort key order.

Load data in sequential blocks 38

Amazon Redshift Database Developer Guide

Schedule around maintenance windows

If a scheduled maintenance occurs while a query is running, the query is terminated and rolled
back and you need to restart it. Schedule long-running operations, such as large data loads or
VACUUM operation, to avoid maintenance windows. You can also minimize the risk, and make
restarts easier when they are needed, by performing data loads in smaller increments and
managing the size of your VACUUM operations. For more information, see Load data in sequential
blocks and Vacuuming tables.

Amazon Redshift best practices for designing queries

To maximize query performance, follow these recommendations when creating queries:

• Design tables according to best practices to provide a solid foundation for query performance.
For more information, see Amazon Redshift best practices for designing tables.

• Avoid using select *. Include only the columns you specifically need.

• Use a CASE conditional expression to perform complex aggregations instead of selecting from
the same table multiple times.

• Don't use cross-joins unless absolutely necessary. These joins without a join condition result in
the Cartesian product of two tables. Cross-joins are typically run as nested-loop joins, which are
the slowest of the possible join types.

• Use subqueries in cases where one table in the query is used only for predicate conditions and
the subquery returns a small number of rows (less than about 200). The following example uses
a subquery to avoid joining the LISTING table.

select sum(sales.qtysold)
from sales
where salesid in (select listid from listing where listtime > '2008-12-26');

• Use predicates to restrict the dataset as much as possible.

• In the predicate, use the least expensive operators that you can. Comparison condition operators
are preferable to LIKE operators. LIKE operators are still preferable to SIMILAR TO or POSIX
operators.

• Avoid using functions in query predicates. Using them can drive up the cost of the query by
requiring large numbers of rows to resolve the intermediate steps of the query.

Schedule around maintenance windows 39

Amazon Redshift Database Developer Guide

• If possible, use a WHERE clause to restrict the dataset. The query planner can then use row order
to help determine which records match the criteria, so it can skip scanning large numbers of disk
blocks. Without this, the query execution engine must scan participating columns entirely.

• Add predicates to filter tables that participate in joins, even if the predicates apply the same
filters. The query returns the same result set, but Amazon Redshift is able to filter the join tables
before the scan step and can then efficiently skip scanning blocks from those tables. Redundant
filters aren't needed if you filter on a column that's used in the join condition.

For example, suppose that you want to join SALES and LISTING to find ticket sales for tickets
listed after December, grouped by seller. Both tables are sorted by date. The following query
joins the tables on their common key and filters for listing.listtime values greater than
December 1.

select listing.sellerid, sum(sales.qtysold)
from sales, listing
where sales.salesid = listing.listid
and listing.listtime > '2008-12-01'
group by 1 order by 1;

The WHERE clause doesn't include a predicate for sales.saletime, so the execution engine
is forced to scan the entire SALES table. If you know the filter would result in fewer rows
participating in the join, then add that filter as well. The following example cuts execution time
significantly.

select listing.sellerid, sum(sales.qtysold)
from sales, listing
where sales.salesid = listing.listid
and listing.listtime > '2008-12-01'
and sales.saletime > '2008-12-01'
group by 1 order by 1;

• Use sort keys in the GROUP BY clause so the query planner can use more efficient aggregation.
A query might qualify for one-phase aggregation when its GROUP BY list contains only sort key
columns, one of which is also the distribution key. The sort key columns in the GROUP BY list
must include the first sort key, then other sort keys that you want to use in sort key order. For
example, it is valid to use the first sort key, the first and second sort keys, the first, second, and
third sort keys, and so on. It is not valid to use the first and third sort keys.

Best practices for designing queries 40

Amazon Redshift Database Developer Guide

You can confirm the use of one-phase aggregation by running the EXPLAIN command and
looking for XN GroupAggregate in the aggregation step of the query.

• If you use both GROUP BY and ORDER BY clauses, make sure that you put the columns in the
same order in both. That is, use the approach just following.

group by a, b, c
order by a, b, c

Don't use the following approach.

group by b, c, a
order by a, b, c

Working with recommendations from Amazon Redshift Advisor

To help you improve the performance and decrease the operating costs for your Amazon Redshift
cluster, Amazon Redshift Advisor offers you specific recommendations about changes to make.
Advisor develops its customized recommendations by analyzing performance and usage metrics for
your cluster. These tailored recommendations relate to operations and cluster settings. To help you
prioritize your optimizations, Advisor ranks recommendations by order of impact.

Advisor bases its recommendations on observations regarding performance statistics or operations
data. Advisor develops observations by running tests on your clusters to determine if a test value is
within a specified range. If the test result is outside of that range, Advisor generates an observation
for your cluster. At the same time, Advisor creates a recommendation about how to bring the
observed value back into the best-practice range. Advisor only displays recommendations that
should have a significant impact on performance and operations. When Advisor determines that a
recommendation has been addressed, it removes it from your recommendation list.

For example, suppose that your data warehouse contains a large number of uncompressed
table columns. In this case, you can save on cluster storage costs by rebuilding tables using the
ENCODE parameter to specify column compression. In another example, suppose that Advisor
observes that your cluster contains a significant amount of data in uncompressed table data. In
this case, it provides you with the SQL code block to find the table columns that are candidates for
compression and resources that describe how to compress those columns.

Working with Advisor 41

Amazon Redshift Database Developer Guide

Amazon Redshift Regions

The Amazon Redshift Advisor feature is available only in the following AWS Regions:

• US East (N. Virginia) Region (us-east-1)

• US East (Ohio) Region (us-east-2)

• US West (N. California) Region (us-west-1)

• US West (Oregon) Region (us-west-2)

• Africa (Cape Town) Region (af-south-1)

• Asia Pacific (Hong Kong) Region (ap-east-1)

• Asia Pacific (Hyderabad) Region (ap-south-2)

• Asia Pacific (Jakarta) Region (ap-southeast-3)

• Asia Pacific (Melbourne) Region (ap-southeast-4)

• Asia Pacific (Mumbai) Region (ap-south-1)

• Asia Pacific (Osaka) Region (ap-northeast-3)

• Asia Pacific (Seoul) Region (ap-northeast-2)

• Asia Pacific (Singapore) Region (ap-southeast-1)

• Asia Pacific (Sydney) Region (ap-southeast-2)

• Asia Pacific (Tokyo) Region (ap-northeast-1)

• Canada (Central) Region (ca-central-1)

• Canada West (Calgary) Region (ca-west-1)

• China (Beijing) Region (cn-north-1)

• China (Ningxia) Region (cn-northwest-1)

• Europe (Frankfurt) Region (eu-central-1)

• Europe (Ireland) Region (eu-west-1)

• Europe (London) Region (eu-west-2)

• Europe (Milan) Region (eu-south-1)

• Europe (Paris) Region (eu-west-3)

• Europe (Spain) Region (eu-south-2)

• Europe (Stockholm) Region (eu-north-1)

Amazon Redshift Regions 42

Amazon Redshift Database Developer Guide

• Europe (Zurich) Region (eu-central-2)

• Israel (Tel Aviv) Region (il-central-1)

• Middle East (Bahrain) Region (me-south-1)

• Middle East (UAE) Region (me-central-1)

• South America (São Paulo) Region (sa-east-1)

Topics

• Viewing Amazon Redshift Advisor recommendations

• Amazon Redshift Advisor recommendations

Viewing Amazon Redshift Advisor recommendations

You can access Amazon Redshift Advisor recommendations using the Amazon Redshift console,
Amazon Redshift API, or AWS CLI. To access recommendations you must have permission
redshift:ListRecommendations attached to your IAM role or identity.

Viewing Amazon Redshift Advisor recommendations on the Amazon Redshift
provisioned console

You can view Amazon Redshift Advisor recommendations on the AWS Management Console.

To view Amazon Redshift Advisor recommendations for Amazon Redshift clusters on the
console

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Advisor.

3. Expand each recommendation to see more details. On this page, you can sort and group
recommendations.

Viewing Amazon Redshift Advisor recommendations using Amazon Redshift API
operations

You can list Amazon Redshift Advisor recommendations for Amazon Redshift clusters using the
Amazon Redshift API. Typically, you develop and application in your programming language of

Viewing Advisor recommendations 43

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

your choice to call the redshift:ListRecommendations API using an AWS SDK. For more
information, see ListRecommendations in the Amazon Redshift API Reference.

Viewing Amazon Redshift Advisor recommendations using AWS Command Line
Interface operations

You can list Amazon Redshift Advisor recommendations for Amazon Redshift clusters using the
AWS Command Line Interface. For more information, see list-recommendations in the AWS CLI
Command Reference.

Amazon Redshift Advisor recommendations

Amazon Redshift Advisor offers recommendations about how to optimize your Amazon Redshift
cluster to increase performance and save on operating costs. You can find explanations for each
recommendation in the console, as described preceding. You can find further details on these
recommendations in the following sections.

Topics

• Compress Amazon S3 file objects loaded by COPY

• Isolate multiple active databases

• Reallocate workload management (WLM) memory

• Skip compression analysis during COPY

• Split Amazon S3 objects loaded by COPY

• Update table statistics

• Enable short query acceleration

• Alter distribution keys on tables

• Alter sort keys on tables

• Alter compression encodings on columns

• Data type recommendations

Compress Amazon S3 file objects loaded by COPY

The COPY command takes advantage of the massively parallel processing (MPP) architecture in
Amazon Redshift to read and load data in parallel. It can read files from Amazon S3, DynamoDB
tables, and text output from one or more remote hosts.

Advisor recommendations 44

https://docs.aws.amazon.com/redshift/latest/APIReference/API_ListRecommendations.html
https://docs.aws.amazon.com/cli/latest/reference/redshift/list-recommendations.html

Amazon Redshift Database Developer Guide

When loading large amounts of data, we strongly recommend using the COPY command to load
compressed data files from S3. Compressing large datasets saves time uploading the files to
Amazon S3. COPY can also speed up the load process by uncompressing the files as they are read.

Analysis

Long-running COPY commands that load large uncompressed datasets often have an opportunity
for considerable performance improvement. The Advisor analysis identifies COPY commands
that load large uncompressed datasets. In such a case, Advisor generates a recommendation to
implement compression on the source files in Amazon S3.

Recommendation

Ensure that each COPY that loads a significant amount of data, or runs for a significant duration,
ingests compressed data objects from Amazon S3. You can identify the COPY commands that
load large uncompressed datasets from Amazon S3 by running the following SQL command as a
superuser.

SELECT
 wq.userid, query, exec_start_time AS starttime, COUNT(*) num_files,
 ROUND(MAX(wq.total_exec_time/1000000.0),2) execution_secs,
 ROUND(SUM(transfer_size)/(1024.0*1024.0),2) total_mb,
 SUBSTRING(querytxt,1,60) copy_sql
FROM stl_s3client s
JOIN stl_query q USING (query)
JOIN stl_wlm_query wq USING (query)
WHERE s.userid>1 AND http_method = 'GET'
 AND POSITION('COPY ANALYZE' IN querytxt) = 0
 AND aborted = 0 AND final_state='Completed'
GROUP BY 1, 2, 3, 7
HAVING SUM(transfer_size) = SUM(data_size)
AND SUM(transfer_size)/(1024*1024) >= 5
ORDER BY 6 DESC, 5 DESC;

If the staged data remains in Amazon S3 after you load it, which is common in data lake
architectures, storing this data in a compressed form can reduce your storage costs.

Implementation tips

• The ideal object size is 1–128 MB after compression.

Advisor recommendations 45

Amazon Redshift Database Developer Guide

• You can compress files with gzip, lzop, or bzip2 format.

Isolate multiple active databases

As a best practice, we recommend isolating databases in Amazon Redshift from one another.
Queries run in a specific database and can't access data from any other database on the cluster.
However, the queries that you run in all databases of a cluster share the same underlying cluster
storage space and compute resources. When a single cluster contains multiple active databases,
their workloads are usually unrelated.

Analysis

The Advisor analysis reviews all databases on the cluster for active workloads running at the same
time. If there are active workloads running at the same time, Advisor generates a recommendation
to consider migrating databases to separate Amazon Redshift clusters.

Recommendation

Consider moving each actively queried database to a separate dedicated cluster. Using a separate
cluster can reduce resource contention and improve query performance. It can do so because
it allows you to set the size for each cluster for the storage, cost, and performance needs of
each workload. Also, unrelated workloads often benefit from different workload management
configurations.

To identify which databases are actively used, you can run this SQL command as a superuser.

SELECT database,
 COUNT(*) as num_queries,
 AVG(DATEDIFF(sec,starttime,endtime)) avg_duration,
 MIN(starttime) as oldest_ts,
 MAX(endtime) as latest_ts
FROM stl_query
WHERE userid > 1
GROUP BY database;

Implementation tips

• Because a user must connect to each database specifically, and queries can only access a single
database, moving databases to separate clusters has minimal impact for users.

Advisor recommendations 46

Amazon Redshift Database Developer Guide

• One option to move a database is to take the following steps:

1. Temporarily restore a snapshot of the current cluster to a cluster of the same size.

2. Delete all databases from the new cluster except the target database to be moved.

3. Resize the cluster to an appropriate node type and count for the database's workload.

Reallocate workload management (WLM) memory

Amazon Redshift routes user queries to Implementing manual WLM for processing. Workload
management (WLM) defines how those queries are routed to the queues. Amazon Redshift
allocates each queue a portion of the cluster's available memory. A queue's memory is divided
among the queue's query slots.

When a queue is configured with more slots than the workload requires, the memory allocated to
these unused slots goes underutilized. Reducing the configured slots to match the peak workload
requirements redistributes the underutilized memory to active slots, and can result in improved
query performance.

Analysis

The Advisor analysis reviews workload concurrency requirements to identify query queues with
unused slots. Advisor generates a recommendation to reduce the number of slots in a queue when
it finds the following:

• A queue with slots that are completely inactive throughout the analysis.

• A queue with more than four slots that had at least two inactive slots throughout the analysis.

Recommendation

Reducing the configured slots to match peak workload requirements redistributes underutilized
memory to active slots. Consider reducing the configured slot count for queues where the slots
have never been fully used. To identify these queues, you can compare the peak hourly slot
requirements for each queue by running the following SQL command as a superuser.

WITH
 generate_dt_series AS (select sysdate - (n * interval '5 second') as dt from (select
 row_number() over () as n from stl_scan limit 17280)),
 apex AS (

Advisor recommendations 47

Amazon Redshift Database Developer Guide

 SELECT iq.dt, iq.service_class, iq.num_query_tasks, count(iq.slot_count) as
 service_class_queries, sum(iq.slot_count) as service_class_slots
 FROM
 (select gds.dt, wq.service_class, wscc.num_query_tasks, wq.slot_count
 FROM stl_wlm_query wq
 JOIN stv_wlm_service_class_config wscc ON (wscc.service_class =
 wq.service_class AND wscc.service_class > 5)
 JOIN generate_dt_series gds ON (wq.service_class_start_time <= gds.dt AND
 wq.service_class_end_time > gds.dt)
 WHERE wq.userid > 1 AND wq.service_class > 5) iq
 GROUP BY iq.dt, iq.service_class, iq.num_query_tasks),
 maxes as (SELECT apex.service_class, trunc(apex.dt) as d, date_part(h,apex.dt) as
 dt_h, max(service_class_slots) max_service_class_slots
 from apex group by apex.service_class, apex.dt,
 date_part(h,apex.dt))
SELECT apex.service_class - 5 AS queue, apex.service_class, apex.num_query_tasks AS
 max_wlm_concurrency, maxes.d AS day, maxes.dt_h || ':00 - ' || maxes.dt_h || ':59' as
 hour, MAX(apex.service_class_slots) as max_service_class_slots
FROM apex
JOIN maxes ON (apex.service_class = maxes.service_class AND apex.service_class_slots =
 maxes.max_service_class_slots)
GROUP BY apex.service_class, apex.num_query_tasks, maxes.d, maxes.dt_h
ORDER BY apex.service_class, maxes.d, maxes.dt_h;

The max_service_class_slots column represents the maximum number of WLM query slots
in the query queue for that hour. If underutilized queues exist, implement the slot reduction
optimization by modifying a parameter group, as described in the Amazon Redshift Management
Guide.

Implementation tips

• If your workload is highly variable in volume, make sure that the analysis captured a peak
utilization period. If it didn't, run the preceding SQL repeatedly to monitor peak concurrency
requirements.

• For more details on interpreting the query results from the preceding SQL code, see the
wlm_apex_hourly.sql script on GitHub.

Advisor recommendations 48

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html#parameter-group-modify
https://github.com/awslabs/amazon-redshift-utils/blob/master/src/AdminScripts/wlm_apex_hourly.sql

Amazon Redshift Database Developer Guide

Skip compression analysis during COPY

When you load data into an empty table with compression encoding declared with the COPY
command, Amazon Redshift applies storage compression. This optimization ensures that data in
your cluster is stored efficiently even when loaded by end users. The analysis required to apply
compression can require significant time.

Analysis

The Advisor analysis checks for COPY operations that were delayed by automatic compression
analysis. The analysis determines the compression encodings by sampling the data while it's being
loaded. This sampling is similar to that performed by the ANALYZE COMPRESSION command.

When you load data as part of a structured process, such as in an overnight extract, transform,
load (ETL) batch, you can define the compression beforehand. You can also optimize your table
definitions to skip this phase permanently without any negative impacts.

Recommendation

To improve COPY responsiveness by skipping the compression analysis phase, implement either of
the following two options:

• Use the column ENCODE parameter when creating any tables that you load using the COPY
command.

• Turn off compression altogether by supplying the COMPUPDATE OFF parameter in the COPY
command.

The best solution is generally to use column encoding during table creation, because this
approach also maintains the benefit of storing compressed data on disk. You can use the ANALYZE
COMPRESSION command to suggest compression encodings, but you must recreate the table to
apply these encodings. To automate this process, you can use the AWSColumnEncodingUtility,
found on GitHub.

To identify recent COPY operations that triggered automatic compression analysis, run the
following SQL command.

 WITH xids AS (
 SELECT xid FROM stl_query WHERE userid>1 AND aborted=0
 AND querytxt = 'analyze compression phase 1' GROUP BY xid

Advisor recommendations 49

https://github.com/awslabs/amazon-redshift-utils/tree/master/src/ColumnEncodingUtility

Amazon Redshift Database Developer Guide

 INTERSECT SELECT xid FROM stl_commit_stats WHERE node=-1)
SELECT a.userid, a.query, a.xid, a.starttime, b.complyze_sec,
 a.copy_sec, a.copy_sql
FROM (SELECT q.userid, q.query, q.xid, date_trunc('s',q.starttime)
 starttime, substring(querytxt,1,100) as copy_sql,
 ROUND(datediff(ms,starttime,endtime)::numeric / 1000.0, 2) copy_sec
 FROM stl_query q JOIN xids USING (xid)
 WHERE (querytxt ilike 'copy %from%' OR querytxt ilike '% copy %from%')
 AND querytxt not like 'COPY ANALYZE %') a
LEFT JOIN (SELECT xid,
 ROUND(sum(datediff(ms,starttime,endtime))::numeric / 1000.0,2) complyze_sec
 FROM stl_query q JOIN xids USING (xid)
 WHERE (querytxt like 'COPY ANALYZE %'
 OR querytxt like 'analyze compression phase %')
 GROUP BY xid) b ON a.xid = b.xid
WHERE b.complyze_sec IS NOT NULL ORDER BY a.copy_sql, a.starttime;

Implementation tips

• Ensure that all tables of significant size created during your ETL processes (for example, staging
tables and temporary tables) declare a compression encoding for all columns except the first sort
key.

• Estimate the expected lifetime size of the table being loaded for each of the COPY commands
identified by the SQL command preceding. If you are confident that the table will remain
extremely small, turn off compression altogether with the COMPUPDATE OFF parameter.
Otherwise, create the table with explicit compression before loading it with the COPY command.

Split Amazon S3 objects loaded by COPY

The COPY command takes advantage of the massively parallel processing (MPP) architecture in
Amazon Redshift to read and load data from files on Amazon S3. The COPY command loads the
data in parallel from multiple files, dividing the workload among the nodes in your cluster. To
achieve optimal throughput, we strongly recommend that you divide your data into multiple files
to take advantage of parallel processing.

Analysis

The Advisor analysis identifies COPY commands that load large datasets contained in a small
number of files staged in Amazon S3. Long-running COPY commands that load large datasets

Advisor recommendations 50

Amazon Redshift Database Developer Guide

from a few files often have an opportunity for considerable performance improvement. When
Advisor identifies that these COPY commands are taking a significant amount of time, it creates a
recommendation to increase parallelism by splitting the data into additional files in Amazon S3.

Recommendation

In this case, we recommend the following actions, listed in priority order:

1. Optimize COPY commands that load fewer files than the number of cluster nodes.

2. Optimize COPY commands that load fewer files than the number of cluster slices.

3. Optimize COPY commands where the number of files is not a multiple of the number of cluster
slices.

Certain COPY commands load a significant amount of data or run for a significant duration. For
these commands, we recommend that you load a number of data objects from Amazon S3 that
is equivalent to a multiple of the number of slices in the cluster. To identify how many S3 objects
each COPY command has loaded, run the following SQL code as a superuser.

SELECT
 query, COUNT(*) num_files,
 ROUND(MAX(wq.total_exec_time/1000000.0),2) execution_secs,
 ROUND(SUM(transfer_size)/(1024.0*1024.0),2) total_mb,
 SUBSTRING(querytxt,1,60) copy_sql
FROM stl_s3client s
JOIN stl_query q USING (query)
JOIN stl_wlm_query wq USING (query)
WHERE s.userid>1 AND http_method = 'GET'
 AND POSITION('COPY ANALYZE' IN querytxt) = 0
 AND aborted = 0 AND final_state='Completed'
GROUP BY query, querytxt
HAVING (SUM(transfer_size)/(1024*1024))/COUNT(*) >= 2
ORDER BY CASE
WHEN COUNT(*) < (SELECT max(node)+1 FROM stv_slices) THEN 1
WHEN COUNT(*) < (SELECT COUNT(*) FROM stv_slices WHERE node=0) THEN 2
ELSE 2+((COUNT(*) % (SELECT COUNT(*) FROM stv_slices))/(SELECT COUNT(*)::DECIMAL FROM
 stv_slices))
END, (SUM(transfer_size)/(1024.0*1024.0))/COUNT(*) DESC;

Advisor recommendations 51

Amazon Redshift Database Developer Guide

Implementation tips

• The number of slices in a node depends on the node size of the cluster. For more information
about the number of slices in the various node types, see Clusters and Nodes in Amazon Redshift
in the Amazon Redshift Management Guide.

• You can load multiple files by specifying a common prefix, or prefix key, for the set, or by
explicitly listing the files in a manifest file. For more information about loading files, see Loading
data from compressed and uncompressed files.

• Amazon Redshift doesn't take file size into account when dividing the workload. Split your load
data files so that the files are about equal size, between 1 MB and 1 GB after compression.

Update table statistics

Amazon Redshift uses a cost-based query optimizer to choose the optimum execution plan for
queries. The cost estimates are based on table statistics gathered using the ANALYZE command.
When statistics are out of date or missing, the database might choose a less efficient plan for query
execution, especially for complex queries. Maintaining current statistics helps complex queries run
in the shortest possible time.

Analysis

The Advisor analysis tracks tables whose statistics are out-of-date or missing. It reviews table
access metadata associated with complex queries. If tables that are frequently accessed with
complex patterns are missing statistics, Advisor creates a critical recommendation to run ANALYZE.
If tables that are frequently accessed with complex patterns have out-of-date statistics, Advisor
creates a suggested recommendation to run ANALYZE.

Recommendation

Whenever table content changes significantly, update statistics with ANALYZE. We recommend
running ANALYZE whenever a significant number of new data rows are loaded into an existing
table with COPY or INSERT commands. We also recommend running ANALYZE whenever a
significant number of rows are modified using UPDATE or DELETE commands. To identify tables
with missing or out-of-date statistics, run the following SQL command as a superuser. The results
are ordered from largest to smallest table.

To identify tables with missing or out-of-date statistics, run the following SQL command as a
superuser. The results are ordered from largest to smallest table.

Advisor recommendations 52

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

SELECT
 ti.schema||'.'||ti."table" tablename,
 ti.size table_size_mb,
 ti.stats_off statistics_accuracy
 FROM svv_table_info ti
 WHERE ti.stats_off > 5.00
 ORDER BY ti.size DESC;

Implementation tips

The default ANALYZE threshold is 10 percent. This default means that the ANALYZE command
skips a given table if fewer than 10 percent of the table's rows have changed since the last
ANALYZE. As a result, you might choose to issue ANALYZE commands at the end of each ETL
process. Taking this approach means that ANALYZE is often skipped but also ensures that ANALYZE
runs when needed.

ANALYZE statistics have the most impact for columns that are used in joins (for example, JOIN
tbl_a ON col_b) or as predicates (for example, WHERE col_b = 'xyz'). By default, ANALYZE
collects statistics for all columns in the table specified. If needed, you can reduce the time required
to run ANALYZE by running ANALYZE only for the columns where it has the most impact. You can
run the following SQL command to identify columns used as predicates. You can also let Amazon
Redshift choose which columns to analyze by specifying ANALYZE PREDICATE COLUMNS.

WITH predicate_column_info as (
SELECT ns.nspname AS schema_name, c.relname AS table_name, a.attnum as col_num,
 a.attname as col_name,
 CASE
 WHEN 10002 = s.stakind1 THEN array_to_string(stavalues1, '||')
 WHEN 10002 = s.stakind2 THEN array_to_string(stavalues2, '||')
 WHEN 10002 = s.stakind3 THEN array_to_string(stavalues3, '||')
 WHEN 10002 = s.stakind4 THEN array_to_string(stavalues4, '||')
 ELSE NULL::varchar
 END AS pred_ts
 FROM pg_statistic s
 JOIN pg_class c ON c.oid = s.starelid
 JOIN pg_namespace ns ON c.relnamespace = ns.oid
 JOIN pg_attribute a ON c.oid = a.attrelid AND a.attnum = s.staattnum)
SELECT schema_name, table_name, col_num, col_name,
 pred_ts NOT LIKE '2000-01-01%' AS is_predicate,

Advisor recommendations 53

Amazon Redshift Database Developer Guide

 CASE WHEN pred_ts NOT LIKE '2000-01-01%' THEN (split_part(pred_ts,
 '||',1))::timestamp ELSE NULL::timestamp END as first_predicate_use,
 CASE WHEN pred_ts NOT LIKE '%||2000-01-01%' THEN (split_part(pred_ts,
 '||',2))::timestamp ELSE NULL::timestamp END as last_analyze
FROM predicate_column_info;

For more information, see Analyzing tables.

Enable short query acceleration

Short query acceleration (SQA) prioritizes selected short-running queries ahead of longer-running
queries. SQA runs short-running queries in a dedicated space, so that SQA queries aren't forced to
wait in queues behind longer queries. SQA only prioritizes queries that are short-running and are in
a user-defined queue. With SQA, short-running queries begin running more quickly and users see
results sooner.

If you turn on SQA, you can reduce or eliminate workload management (WLM) queues that are
dedicated to running short queries. In addition, long-running queries don't need to contend with
short queries for slots in a queue, so you can configure your WLM queues to use fewer query slots.
When you use lower concurrency, query throughput is increased and overall system performance is
improved for most workloads. For more information, see Working with short query acceleration.

Analysis

Advisor checks for workload patterns and reports the number of recent queries where SQA would
reduce latency and the daily queue time for SQA-eligible queries.

Recommendation

Modify the WLM configuration to turn on SQA. Amazon Redshift uses a machine learning algorithm
to analyze each eligible query. Predictions improve as SQA learns from your query patterns. For
more information, see Configuring Workload Management.

When you turn on SQA, WLM sets the maximum runtime for short queries to dynamic by default.
We recommend keeping the dynamic setting for SQA maximum runtime.

Implementation tips

To check whether SQA is turned on, run the following query. If the query returns a row, then SQA is
turned on.

select * from stv_wlm_service_class_config

Advisor recommendations 54

https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html

Amazon Redshift Database Developer Guide

where service_class = 14;

For more information, see Monitoring SQA.

Alter distribution keys on tables

Amazon Redshift distributes table rows throughout the cluster according to the table distribution
style. Tables with KEY distribution require a column as the distribution key (DISTKEY). A table row
is assigned to a node slice of a cluster based on its DISTKEY column value.

An appropriate DISTKEY places a similar number of rows on each node slice and is frequently
referenced in join conditions. An optimized join occurs when tables are joined on their DISTKEY
columns, accelerating query performance.

Analysis

Advisor analyzes your cluster’s workload to identify the most appropriate distribution key for the
tables that can significantly benefit from a KEY distribution style.

Recommendation

Advisor provides ALTER TABLE statements that alter the DISTSTYLE and DISTKEY of a table based
on its analysis. To realize a significant performance benefit, make sure to implement all SQL
statements within a recommendation group.

Redistributing a large table with ALTER TABLE consumes cluster resources and requires temporary
table locks at various times. Implement each recommendation group when other cluster workload
is light. For more details on optimizing table distribution properties, see the Amazon Redshift
Engineering's Advanced Table Design Playbook: Distribution Styles and Distribution Keys.

For more information about ALTER DISTSYLE and DISTKEY, see ALTER TABLE.

Note

If you don't see a recommendation that doesn't necessarily mean that the current
distribution styles are the most appropriate. Advisor doesn't provide recommendations
when there isn't enough data or the expected benefit of redistribution is small.
Advisor recommendations apply to a particular table and don't necessarily apply to a table
that contains a column with the same name. Tables that share a column name can have
different characteristics for those columns unless data inside the tables is the same.

Advisor recommendations 55

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-distribution-styles-and-distribution-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-distribution-styles-and-distribution-keys/

Amazon Redshift Database Developer Guide

If you see recommendations for staging tables that are created or dropped by ETL jobs,
modify your ETL processes to use the Advisor recommended distribution keys.

Alter sort keys on tables

Amazon Redshift sorts table rows according to the table sort key. The sorting of table rows is
based on the sort key column values.

Sorting a table on an appropriate sort key can accelerate performance of queries, especially those
with range-restricted predicates, by requiring fewer table blocks to be read from disk.

Analysis

Advisor analyzes your cluster's workload over several days to identify a beneficial sort key for your
tables.

Recommendation

Advisor provides two groups of ALTER TABLE statements that alter the sort key of a table based on
its analysis:

• Statements that alter a table that currently doesn't have a sort key to add a COMPOUND sort
key.

• Statements that alter a sort key from INTERLEAVED to COMPOUND or no sort key.

Using compound sort keys significantly reduces maintenance overhead. Tables with compound
sort keys don't need the expensive VACUUM REINDEX operations that are necessary for
interleaved sorts. In practice, compound sort keys are more effective than interleaved sort
keys for the vast majority of Amazon Redshift workloads. However, if a table is small, it's more
efficient not to have a sort key to avoid sort key storage overhead.

When sorting a large table with the ALTER TABLE, cluster resources are consumed and table locks
are required at various times. Implement each recommendation when a cluster's workload is
moderate. More details on optimizing table sort key configurations can be found in the Amazon
Redshift Engineering's Advanced Table Design Playbook: Compound and Interleaved Sort Keys.

For more information about ALTER SORTKEY, see ALTER TABLE.

Advisor recommendations 56

https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/
https://aws.amazon.com/blogs/big-data/amazon-redshift-engineerings-advanced-table-design-playbook-compound-and-interleaved-sort-keys/

Amazon Redshift Database Developer Guide

Note

If you don't see a recommendation for a table, that doesn't necessarily mean that the
current configuration is the best. Advisor doesn't provide recommendations when there
isn't enough data or the expected benefit of sorting is small.
Advisor recommendations apply to a particular table and don’t necessarily apply to a table
that contains a column with the same name and data type. Tables that share column names
can have different recommendations based on the data in the tables and the workload.

Alter compression encodings on columns

Compression is a column-level operation that reduces the size of data when it's stored.
Compression is used in Amazon Redshift to conserve storage space and improve query
performance by reducing the amount of disk I/O. We recommend an optimal compression
encoding for each column based on its data type and on query patterns. With optimal
compression, queries can run more efficiently and the database can take up minimal storage space.

Analysis

Advisor performs analysis of your cluster's workload and database schema continually to identify
the optimal compression encoding for each table column.

Recommendation

Advisor provides ALTER TABLE statements that change the compression encoding of particular
columns, based on its analysis.

Changing column compression encodings with ALTER TABLE consumes cluster resources and
requires table locks at various times. It's best to implement recommendations when the cluster
workload is light.

For reference, ALTER TABLE examples shows several statements that change the encoding for a
column.

Note

Advisor doesn't provide recommendations when there isn't enough data or the expected
benefit of changing the encoding is small.

Advisor recommendations 57

Amazon Redshift Database Developer Guide

Data type recommendations

Amazon Redshift has a library of SQL data types for various use cases. These include integer types
like INT and types to store characters, like VARCHAR. Redshift stores types in an optimized way
to provide fast access and good query performance. Also, Redshift provides functions for specific
types, which you can use to format or perform calculations on query results.

Analysis

Advisor performs analysis of your cluster's workload and database schema continually to identify
columns that can benefit significantly from a data type change.

Recommendation

Advisor provides an ALTER TABLE statement that adds a new column with the suggested data
type. An accompanying UPDATE statement copies data from the existing column to the new
column. After you create the new column and load the data, change your queries and ingestion
scripts to access the new column. Then leverage features and functions specialized to the new data
type, found in SQL functions reference.

Copying existing data to the new column can take time. We recommend that you implement each
advisor recommendation when the cluster’s workload is light. Reference the list of available data
types at Data types.

Note that Advisor doesn't provide recommendations when there isn't enough data or the expected
benefit of changing the data type is small.

Advisor recommendations 58

Amazon Redshift Database Developer Guide

Tutorials for Amazon Redshift

Follow the steps in these tutorials to learn about Amazon Redshift features:

• Tutorial: Loading data from Amazon S3

• Tutorial: Querying nested data with Amazon Redshift Spectrum

• Tutorial: Configuring manual workload management (WLM) queues

• Tutorial: Using spatial SQL functions with Amazon Redshift

• Tutorials for Amazon Redshift ML

59

Amazon Redshift Database Developer Guide

Working with automatic table optimization

Automatic table optimization is a self-tuning capability that automatically optimizes the design of
tables by applying sort and distribution keys without the need for administrator intervention. By
using automation to tune the design of tables, you can get started and get the fastest performance
without investing time to manually tune and implement table optimizations.

Automatic table optimization continuously observes how queries interact with tables. It uses
advanced artificial intelligence methods to choose sort and distribution keys to optimize
performance for the cluster's workload. If Amazon Redshift determines that applying a key
improves cluster performance, tables are automatically altered within hours from the time the
cluster was created, with minimal impact to queries.

To take advantage of this automation, an Amazon Redshift administrator creates a new table,
or alters an existing table to enable it to use automatic optimization. Existing tables with a
distribution style or sort key of AUTO are already enabled for automation. When you run queries
against those tables, Amazon Redshift determines if a sort key or distribution key will improve
performance. If so, then Amazon Redshift automatically modifies the table without requiring
administrator intervention. If a minimum number of queries are run, optimizations are applied
within hours of the cluster being launched.

If Amazon Redshift determines that a distribution key improves the performance of queries, tables
where distribution style is AUTO can have their distribution style changed to KEY.

Topics

• Enabling automatic table optimization

• Removing automatic table optimization from a table

• Monitoring actions of automatic table optimization

• Working with column compression

• Working with data distribution styles

• Working with sort keys

• Defining table constraints

60

Amazon Redshift Database Developer Guide

Enabling automatic table optimization

By default, tables created without explicitly defining sort keys or distributions keys are set to AUTO.
At the time of table creation, you can also explicitly set a sort or a distribution key manually. If you
set the sort or distribution key, then the table is not automatically managed.

To enable an existing table to be automatically optimized, use the ALTER statement options
to change the table to AUTO. You might choose to define automation for sort keys, but not for
distribution keys (and vice versa). If you run an ALTER statement to convert a table to be an
automated table, existing sort keys and distribution styles are preserved.

ALTER TABLE table_name ALTER SORTKEY AUTO;

ALTER TABLE table_name ALTER DISTSTYLE AUTO;

For more information, see ALTER TABLE.

Initially, a table has no distribution key or sort key. The distribution style is set to either EVEN or
ALL depending on table size. As the table grows in size, Amazon Redshift applies the optimal
distribution keys and sort keys. Optimizations are applied within hours after a minimum number
of queries are run. When determining sort key optimizations, Amazon Redshift attempts to
optimize the data blocks read from disk during a table scan. When determining distribution style
optimizations, Amazon Redshift tries to optimize the number of bytes transferred between cluster
nodes.

Removing automatic table optimization from a table

You can remove a table from automatic optimization. Removing a table from automation involves
selecting a sort key or distribution style. To change distribution style, specify a specific distribution
style.

ALTER TABLE table_name ALTER DISTSTYLE EVEN;

ALTER TABLE table_name ALTER DISTSTYLE ALL;

ALTER TABLE table_name ALTER DISTSTYLE KEY DISTKEY c1;

Enabling automatic table optimization 61

Amazon Redshift Database Developer Guide

To change a sort key, you can define a sort key or choose none.

ALTER TABLE table_name ALTER SORTKEY(c1, c2);

ALTER TABLE table_name ALTER SORTKEY NONE;

Monitoring actions of automatic table optimization

The system view SVV_ALTER_TABLE_RECOMMENDATIONS records the current Amazon Redshift
Advisor recommendations for tables. This view shows recommendations for all tables, those that
are defined for automatic optimization and those that aren't.

To view if a table is defined for automatic optimization, query the system view SVV_TABLE_INFO.
Entries appear only for tables visible in the current session's database. Recommendations are
inserted into the view twice per day starting within hours from the time the cluster was created.
After a recommendation is available, it's started within an hour. After a recommendation has been
applied (either by Amazon Redshift or by you), it no longer appears in the view.

The system view SVL_AUTO_WORKER_ACTION shows an audit log of all actions taken by Amazon
Redshift, and the previous state of the table.

The system view SVV_TABLE_INFO lists all of the tables in the system, along with a column to
indicate whether the sort key and distribution style of the table is set to AUTO.

For more information about these system views, see System monitoring (provisioned only).

Working with column compression

Compression is a column-level operation that reduces the size of data when it is stored.
Compression conserves storage space and reduces the size of data that is read from storage, which
reduces the amount of disk I/O and therefore improves query performance.

ENCODE AUTO is the default for tables. When a table is set to ENCODE AUTO, Amazon Redshift
automatically manages compression encoding for all columns in the table. For more information,
see CREATE TABLE and ALTER TABLE.

However, if you specify compression encoding for any column in the table, the table is no longer
set to ENCODE AUTO. Amazon Redshift no longer automatically manages compression encoding
for all columns in the table.

Monitoring actions of automatic table optimization 62

Amazon Redshift Database Developer Guide

You can apply a compression type, or encoding, to the columns in a table manually when you create
the table. Or you can use the COPY command to analyze and apply compression automatically.
For more information, see Let COPY choose compression encodings. For details about applying
automatic compression, see Loading tables with automatic compression.

Note

We strongly recommend using the COPY command to apply automatic compression.

You might choose to apply compression encodings manually if the new table shares the same data
characteristics as another table. Or you might do so if you discover in testing that the compression
encodings applied during automatic compression are not the best fit for your data. If you choose
to apply compression encodings manually, you can run the ANALYZE COMPRESSION command
against an already populated table and use the results to choose compression encodings.

To apply compression manually, you specify compression encodings for individual columns as part
of the CREATE TABLE statement. The syntax is as follows.

CREATE TABLE table_name (column_name
data_type ENCODE encoding-type)[, ...]

Here, encoding-type is taken from the keyword table in the following section.

For example, the following statement creates a two-column table, PRODUCT. When data is loaded
into the table, the PRODUCT_ID column is not compressed, but the PRODUCT_NAME column is
compressed, using the byte dictionary encoding (BYTEDICT).

create table product(
product_id int encode raw,
product_name char(20) encode bytedict);

You can specify the encoding for a column when it is added to a table using the ALTER TABLE
command.

ALTER TABLE table-name ADD [COLUMN] column_name column_type ENCODE encoding-type

Topics

Working with column compression 63

Amazon Redshift Database Developer Guide

• Compression encodings

• Testing compression encodings

• Example: Choosing compression encodings for the CUSTOMER table

Compression encodings

A compression encoding specifies the type of compression that is applied to a column of data values
as rows are added to a table.

ENCODE AUTO is the default for tables. When a table is set to ENCODE AUTO, Amazon Redshift
automatically manages compression encoding for all columns in the table. For more information,
see CREATE TABLE and ALTER TABLE.

However, if you specify compression encoding for any column in the table, the table is no longer
set to ENCODE AUTO. Amazon Redshift no longer automatically manages compression encoding
for all columns in the table.

When you use CREATE TABLE, ENCODE AUTO is disabled when you specify compression encoding
for any column in the table. If ENCODE AUTO is disabled, Amazon Redshift automatically assigns
compression encoding to columns for which you don't specify an ENCODE type as follows:

• Columns that are defined as sort keys are assigned RAW compression.

• Columns that are defined as BOOLEAN, REAL, or DOUBLE PRECISION data types are assigned
RAW compression.

• Columns that are defined as SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIMESTAMP, or
TIMESTAMPTZ data types are assigned AZ64 compression.

• Columns that are defined as CHAR or VARCHAR data types are assigned LZO compression.

You can change a table's encoding after creating it by using ALTER TABLE. If you disable ENCODE
AUTO using ALTER TABLE, Amazon Redshift no longer automatically manages compression
encodings for your columns. All columns will keep the compression encoding types that they had
when you disabled ENCODE AUTO until you change them or you enable ENCODE AUTO again.

The following table identifies the supported compression encodings and the data types that
support the encoding.

Compression encodings 64

Amazon Redshift Database Developer Guide

Encoding type Keyword in CREATE TABLE
and ALTER TABLE

Data types

Raw (no compression) RAW All

AZ64 AZ64 SMALLINT, INTEGER, BIGINT,
DECIMAL, DATE, TIMESTAMP,
TIMESTAMPTZ

Byte dictionary BYTEDICT SMALLINT, INTEGER, BIGINT,
DECIMAL, REAL, DOUBLE
PRECISION, CHAR, VARCHAR,
DATE, TIMESTAMP, TIMESTAMPTZ

Delta DELTA

DELTA32K

SMALLINT, INT, BIGINT, DATE,
TIMESTAMP, DECIMAL

INT, BIGINT, DATE, TIMESTAMP,
DECIMAL

LZO LZO SMALLINT, INTEGER, BIGINT,
DECIMAL, CHAR, VARCHAR, DATE,
TIMESTAMP, TIMESTAMPTZ, SUPER

Mostlyn MOSTLY8

MOSTLY16

MOSTLY32

SMALLINT, INT, BIGINT, DECIMAL

INT, BIGINT, DECIMAL

BIGINT, DECIMAL

Run-length RUNLENGTH SMALLINT, INTEGER, BIGINT,
DECIMAL, REAL, DOUBLE
PRECISION, BOOLEAN, CHAR,
VARCHAR, DATE, TIMESTAMP,
TIMESTAMPTZ

Text TEXT255

TEXT32K

VARCHAR only

VARCHAR only

Compression encodings 65

Amazon Redshift Database Developer Guide

Encoding type Keyword in CREATE TABLE
and ALTER TABLE

Data types

Zstandard ZSTD SMALLINT, INTEGER, BIGINT,
DECIMAL, REAL, DOUBLE
PRECISION, BOOLEAN, CHAR,
VARCHAR, DATE, TIMESTAMP,
TIMESTAMPTZ, SUPER

Raw encoding

Raw encoding is the default encoding for columns that are designated as sort keys and columns
that are defined as BOOLEAN, REAL, or DOUBLE PRECISION data types. With raw encoding, data is
stored in raw, uncompressed form.

AZ64 encoding

AZ64 is a proprietary compression encoding algorithm designed by Amazon to achieve a high
compression ratio and improved query processing. At its core, the AZ64 algorithm compresses
smaller groups of data values and uses single instruction, multiple data (SIMD) instructions for
parallel processing. Use AZ64 to achieve significant storage savings and high performance for
numeric, date, and time data types.

You can use AZ64 as the compression encoding when defining columns using CREATE TABLE and
ALTER TABLE statements with the following data types:

• SMALLINT

• INTEGER

• BIGINT

• DECIMAL

• DATE

• TIMESTAMP

• TIMESTAMPTZ

Compression encodings 66

Amazon Redshift Database Developer Guide

Byte-dictionary encoding

In byte dictionary encoding, a separate dictionary of unique values is created for each block of
column values on disk. (An Amazon Redshift disk block occupies 1 MB.) The dictionary contains
up to 256 one-byte values that are stored as indexes to the original data values. If more than 256
values are stored in a single block, the extra values are written into the block in raw, uncompressed
form. The process repeats for each disk block.

This encoding is very effective on low cardinality string columns. This encoding is optimal when the
data domain of a column is fewer than 256 unique values.

For columns with the string data type (CHAR and VARCHAR) encoded with BYTEDICT, Amazon
Redshift performs vectorized scans and predicate evaluations that operate over compressed data
directly. These scans use hardware-specific single instruction and multiple data (SIMD) instructions
for parallel processing. This significantly speeds up the scanning of string columns. Byte-dictionary
encoding is especially space-efficient if a CHAR/VARCHAR column holds long character strings.

Suppose that a table has a COUNTRY column with a CHAR(30) data type. As data is loaded,
Amazon Redshift creates the dictionary and populates the COUNTRY column with the index value.
The dictionary contains the indexed unique values, and the table itself contains only the one-byte
subscripts of the corresponding values.

Note

Trailing blanks are stored for fixed-length character columns. Therefore, in a CHAR(30)
column, every compressed value saves 29 bytes of storage when you use the byte-
dictionary encoding.

The following table represents the dictionary for the COUNTRY column.

Unique data value Dictionary index Size (fixed length, 30 bytes
per value)

England 0 30

United States of America 1 30

Venezuela 2 30

Compression encodings 67

Amazon Redshift Database Developer Guide

Unique data value Dictionary index Size (fixed length, 30 bytes
per value)

Sri Lanka 3 30

Argentina 4 30

Japan 5 30

Total 180

The following table represents the values in the COUNTRY column.

Original data value Original size (fixed
length, 30 bytes per
value)

Compressed value
(index)

New size (bytes)

England 30 0 1

England 30 0 1

United States of
America

30 1 1

United States of
America

30 1 1

Venezuela 30 2 1

Sri Lanka 30 3 1

Argentina 30 4 1

Japan 30 5 1

Sri Lanka 30 3 1

Argentina 30 4 1

Total 300 10

Compression encodings 68

Amazon Redshift Database Developer Guide

The total compressed size in this example is calculated as follows: 6 different entries are stored in
the dictionary (6 * 30 = 180), and the table contains 10 1-byte compressed values, for a total of
190 bytes.

Delta encoding

Delta encodings are very useful for date time columns.

Delta encoding compresses data by recording the difference between values that follow each other
in the column. This difference is recorded in a separate dictionary for each block of column values
on disk. (An Amazon Redshift disk block occupies 1 MB.) For example, suppose that the column
contains 10 integers in sequence from 1 to 10. The first are stored as a 4-byte integer (plus a 1-
byte flag). The next nine are each stored as a byte with the value 1, indicating that it is one greater
than the previous value.

Delta encoding comes in two variations:

• DELTA records the differences as 1-byte values (8-bit integers)

• DELTA32K records differences as 2-byte values (16-bit integers)

If most of the values in the column could be compressed by using a single byte, the 1-byte
variation is very effective. However, if the deltas are larger, this encoding, in the worst case, is
somewhat less effective than storing the uncompressed data. Similar logic applies to the 16-bit
version.

If the difference between two values exceeds the 1-byte range (DELTA) or 2-byte range
(DELTA32K), the full original value is stored, with a leading 1-byte flag. The 1-byte range is from
-127 to 127, and the 2-byte range is from -32K to 32K.

The following table shows how a delta encoding works for a numeric column.

Original data
value

Original size
(bytes)

Difference
(delta)

Compressed
value

Compressed
size (bytes)

1 4 1 1+4 (flag +
actual value)

5 4 4 4 1

Compression encodings 69

Amazon Redshift Database Developer Guide

Original data
value

Original size
(bytes)

Difference
(delta)

Compressed
value

Compressed
size (bytes)

50 4 45 45 1

200 4 150 150 1+4 (flag +
actual value)

185 4 -15 -15 1

220 4 35 35 1

221 4 1 1 1

Totals 28 15

LZO encoding

LZO encoding provides a very high compression ratio with good performance. LZO encoding works
especially well for CHAR and VARCHAR columns that store very long character strings. They are
especially good for free-form text, such as product descriptions, user comments, or JSON strings.

Mostly encoding

Mostly encodings are useful when the data type for a column is larger than most of the stored
values require. By specifying a mostly encoding for this type of column, you can compress the
majority of the values in the column to a smaller standard storage size. The remaining values
that cannot be compressed are stored in their raw form. For example, you can compress a 16-bit
column, such as an INT2 column, to 8-bit storage.

In general, the mostly encodings work with the following data types:

• SMALLINT/INT2 (16-bit)

• INTEGER/INT (32-bit)

• BIGINT/INT8 (64-bit)

• DECIMAL/NUMERIC (64-bit)

Compression encodings 70

Amazon Redshift Database Developer Guide

Choose the appropriate variation of the mostly encoding to suit the size of the data type for the
column. For example, apply MOSTLY8 to a column that is defined as a 16-bit integer column.
Applying MOSTLY16 to a column with a 16-bit data type or MOSTLY32 to a column with a 32-bit
data type is disallowed.

Mostly encodings might be less effective than no compression when a relatively high number of
the values in the column can't be compressed. Before applying one of these encodings to a column,
perform a check. Most of the values that you are going to load now (and are likely to load in the
future) should fit into the ranges shown in the following table.

Encoding Compressed storage size Range of values that can be
compressed (values outside the range
are stored raw)

MOSTLY8 1 byte (8 bits) -128 to 127

MOSTLY16 2 bytes (16 bits) -32768 to 32767

MOSTLY32 4 bytes (32 bits) -2147483648 to +2147483647

Note

For decimal values, ignore the decimal point to determine whether the value fits into the
range. For example, 1,234.56 is treated as 123,456 and can be compressed in a MOSTLY32
column.

For example, the VENUEID column in the VENUE table is defined as a raw integer column, which
means that its values consume 4 bytes of storage. However, the current range of values in the
column is 0 to 309. Therefore, recreating and reloading this table with MOSTLY16 encoding for
VENUEID would reduce the storage of every value in that column to 2 bytes.

If the VENUEID values referenced in another table were mostly in the range of 0 to 127, it might
make sense to encode that foreign-key column as MOSTLY8. Before making the choice, run several
queries against the referencing table data to find out whether the values mostly fall into the 8-bit,
16-bit, or 32-bit range.

Compression encodings 71

Amazon Redshift Database Developer Guide

The following table shows compressed sizes for specific numeric values when the MOSTLY8,
MOSTLY16, and MOSTLY32 encodings are used:

Original
value

Original INT
or BIGINT size
(bytes)

MOSTLY8
compressed
size (bytes)

MOSTLY16
compressed size
(bytes)

MOSTLY32
compressed size
(bytes)

1 4 1 2 4

10 4 1 2 4

100 4 1 2 4

1000 4 2 4

10000 4 2 4

20000 4 2 4

40000 8 4

100000 8 4

2000000000 8

Same as raw
data size

Same as raw data
size

4

Run length encoding

Run length encoding replaces a value that is repeated consecutively with a token that consists of
the value and a count of the number of consecutive occurrences (the length of the run). A separate
dictionary of unique values is created for each block of column values on disk. (An Amazon
Redshift disk block occupies 1 MB.) This encoding is best suited to a table in which data values are
often repeated consecutively, for example, when the table is sorted by those values.

For example, suppose that a column in a large dimension table has a predictably small domain,
such as a COLOR column with fewer than 10 possible values. These values are likely to fall in long
sequences throughout the table, even if the data is not sorted.

We don't recommend applying run length encoding on any column that is designated as a sort key.
Range-restricted scans perform better when blocks contain similar numbers of rows. If sort key

Compression encodings 72

Amazon Redshift Database Developer Guide

columns are compressed much more highly than other columns in the same query, range-restricted
scans might perform poorly.

The following table uses the COLOR column example to show how the run length encoding works.

Original data value Original size (bytes) Compressed value
(token)

Compressed size
(bytes)

Blue 4 5

Blue 4

{2,Blue}

0

Green 5 6

Green 5 0

Green 5

{3,Green}

0

Blue 4 {1,Blue} 5

Yellow 6 7

Yellow 6 0

Yellow 6 0

Yellow 6

{4,Yellow}

0

Total 51 23

Text255 and Text32k encodings

Text255 and text32k encodings are useful for compressing VARCHAR columns in which the same
words recur often. A separate dictionary of unique words is created for each block of column
values on disk. (An Amazon Redshift disk block occupies 1 MB.) The dictionary contains the first
245 unique words in the column. Those words are replaced on disk by a one-byte index value
representing one of the 245 values, and any words that are not represented in the dictionary are
stored uncompressed. The process repeats for each 1-MB disk block. If the indexed words occur
frequently in the column, the column yields a high compression ratio.

Compression encodings 73

Amazon Redshift Database Developer Guide

For the text32k encoding, the principle is the same, but the dictionary for each block does not
capture a specific number of words. Instead, the dictionary indexes each unique word it finds until
the combined entries reach a length of 32K, minus some overhead. The index values are stored in
two bytes.

For example, consider the VENUENAME column in the VENUE table. Words such as Arena, Center,
and Theatre recur in this column and are likely to be among the first 245 words encountered in
each block if text255 compression is applied. If so, this column benefits from compression. This is
because every time those words appear, they occupy only 1 byte of storage (instead of 5, 6, or 7
bytes, respectively).

Zstandard encoding

Zstandard (ZSTD) encoding provides a high compression ratio with very good performance across
diverse datasets. ZSTD works especially well with CHAR and VARCHAR columns that store a wide
range of long and short strings, such as product descriptions, user comments, logs, and JSON
strings. Where some algorithms, such as Delta encoding or Mostly encoding, can potentially use
more storage space than no compression, ZSTD is very unlikely to increase disk usage.

ZSTD supports SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE PRECISION, BOOLEAN,
CHAR, VARCHAR, DATE, TIMESTAMP, and TIMESTAMPTZ data types.

Testing compression encodings

If you decide to manually specify column encodings, you might want to test different encodings
with your data.

Note

We recommend that you use the COPY command to load data whenever possible, and
allow the COPY command to choose the optimal encodings based on your data. Or you can
use the ANALYZE COMPRESSION command to view the suggested encodings for existing
data. For details about applying automatic compression, see Loading tables with automatic
compression.

To perform a meaningful test of data compression, you must have a large number of rows. For
this example, we create a table and insert rows by using a statement that selects from two tables;

Testing compression encodings 74

Amazon Redshift Database Developer Guide

VENUE and LISTING. We leave out the WHERE clause that would normally join the two tables. The
result is that each row in the VENUE table is joined to all of the rows in the LISTING table, for a
total of over 32 million rows. This is known as a Cartesian join and normally is not recommended.
However, for this purpose, it's a convenient method of creating many rows. If you have an existing
table with data that you want to test, you can skip this step.

After we have a table with sample data, we create a table with seven columns. Each has a different
compression encoding: raw, bytedict, lzo, run length, text255, text32k, and zstd. We populate each
column with exactly the same data by running an INSERT command that selects the data from the
first table.

To test compression encodings, do the following:

1. (Optional) First, use a Cartesian join to create a table with a large number of rows. Skip this step
if you want to test an existing table.

create table cartesian_venue(
venueid smallint not null distkey sortkey,
venuename varchar(100),
venuecity varchar(30),
venuestate char(2),
venueseats integer);

insert into cartesian_venue
select venueid, venuename, venuecity, venuestate, venueseats
from venue, listing;

2. Next, create a table with the encodings that you want to compare.

create table encodingvenue (
venueraw varchar(100) encode raw,
venuebytedict varchar(100) encode bytedict,
venuelzo varchar(100) encode lzo,
venuerunlength varchar(100) encode runlength,
venuetext255 varchar(100) encode text255,
venuetext32k varchar(100) encode text32k,
venuezstd varchar(100) encode zstd);

3. Insert the same data into all of the columns using an INSERT statement with a SELECT clause.

insert into encodingvenue

Testing compression encodings 75

Amazon Redshift Database Developer Guide

select venuename as venueraw, venuename as venuebytedict, venuename as venuelzo,
 venuename as venuerunlength, venuename as venuetext32k, venuename as venuetext255,
 venuename as venuezstd
from cartesian_venue;

4. Verify the number of rows in the new table.

select count(*) from encodingvenue

 count

 38884394
(1 row)

5. Query the STV_BLOCKLIST system table to compare the number of 1 MB disk blocks used by
each column.

The MAX aggregate function returns the highest block number for each column. The
STV_BLOCKLIST table includes details for three system-generated columns. This example uses
col < 6 in the WHERE clause to exclude the system-generated columns.

select col, max(blocknum)
from stv_blocklist b, stv_tbl_perm p
where (b.tbl=p.id) and name ='encodingvenue'
and col < 7
group by name, col
order by col;

The query returns the following results. The columns are numbered beginning with zero.
Depending on how your cluster is configured, your result might have different numbers, but
the relative sizes should be similar. You can see that BYTEDICT encoding on the second column
produced the best results for this dataset. This approach has a compression ratio of better
than 20:1. LZO and ZSTD encoding also produced excellent results. Different datasets produce
different results, of course. When a column contains longer text strings, LZO often produces the
best compression results.

 col | max
-----+-----
 0 | 203
 1 | 10
 2 | 22

Testing compression encodings 76

Amazon Redshift Database Developer Guide

 3 | 204
 4 | 56
 5 | 72
 6 | 20
(7 rows)

If you have data in an existing table, you can use the ANALYZE COMPRESSION command to
view the suggested encodings for the table. For example, the following example shows the
recommended encoding for a copy of the VENUE table, CARTESIAN_VENUE, that contains 38
million rows. Notice that ANALYZE COMPRESSION recommends LZO encoding for the VENUENAME
column. ANALYZE COMPRESSION chooses optimal compression based on multiple factors, which
include percent of reduction. In this specific case, BYTEDICT provides better compression, but LZO
also produces greater than 90 percent compression.

analyze compression cartesian_venue;

Table | Column | Encoding | Est_reduction_pct
---------------+------------+----------+------------------
reallybigvenue | venueid | lzo | 97.54
reallybigvenue | venuename | lzo | 91.71
reallybigvenue | venuecity | lzo | 96.01
reallybigvenue | venuestate | lzo | 97.68
reallybigvenue | venueseats | lzo | 98.21

Example: Choosing compression encodings for the CUSTOMER table

The following statement creates a CUSTOMER table that has columns with various data types. This
CREATE TABLE statement shows one of many possible combinations of compression encodings for
these columns.

create table customer(
custkey int encode delta,
custname varchar(30) encode raw,
gender varchar(7) encode text255,
address varchar(200) encode text255,
city varchar(30) encode text255,
state char(2) encode raw,
zipcode char(5) encode bytedict,
start_date date encode delta32k);

Example: Choosing compression encodings for the CUSTOMER table 77

Amazon Redshift Database Developer Guide

The following table shows the column encodings that were chosen for the CUSTOMER table and
gives an explanation for the choices:

Column Data type Encoding Explanation

CUSTKEY int delta CUSTKEY consists
of unique, consecuti
ve integer values.
Because the differenc
es are one byte,
DELTA is a good
choice.

CUSTNAME varchar(30) raw CUSTNAME has a
large domain with
few repeated values.
Any compression
encoding would
probably be ineffecti
ve.

GENDER varchar(7) text255 GENDER is very small
domain with many
repeated values.
Text255 works well
with VARCHAR
columns in which the
same words recur.

ADDRESS varchar(200) text255 ADDRESS is a large
domain, but contains
many repeated
words, such as
Street, Avenue,
North, South, and
so on. Text 255 and
text 32k are useful
for compressing

Example: Choosing compression encodings for the CUSTOMER table 78

Amazon Redshift Database Developer Guide

Column Data type Encoding Explanation

VARCHAR columns
in which the same
words recur. The
column length is
short, so text255 is a
good choice.

CITY varchar(30) text255 CITY is a large
domain, with some
repeated values.
Certain city names
are used much more
commonly than
others. Text255 is
a good choice for
the same reasons as
ADDRESS.

STATE char(2) raw In the United States,
STATE is a precise
domain of 50 two-
character values.
Bytedict encoding
would yield some
compression, but
because the column
size is only two
characters, compressi
on might not be
worth the overhead
of uncompressing the
data.

Example: Choosing compression encodings for the CUSTOMER table 79

Amazon Redshift Database Developer Guide

Column Data type Encoding Explanation

ZIPCODE char(5) bytedict ZIPCODE is a known
domain of fewer
than 50,000 unique
values. Certain zip
codes occur much
more commonly
than others. Bytedict
encoding is very
effective when a
column contains a
limited number of
unique values.

START_DATE date delta32k Delta encodings
are very useful for
date time columns,
especially if the rows
are loaded in date
order.

Working with data distribution styles

When you load data into a table, Amazon Redshift distributes the rows of the table to each of
the compute nodes according to the table's distribution style. When you run a query, the query
optimizer redistributes the rows to the compute nodes as needed to perform any joins and
aggregations. The goal in choosing a table distribution style is to minimize the impact of the
redistribution step by locating the data where it must be before the query is run.

Note

This section will introduce you to the principles of data distribution in an Amazon Redshift
database. We recommend that you create your tables with DISTSTYLE AUTO. If you do so,
then Amazon Redshift uses automatic table optimization to choose the data distribution

Working with data distribution styles 80

Amazon Redshift Database Developer Guide

style. For more information, see Working with automatic table optimization. The rest of this
section provides details about distribution styles.

Topics

• Data distribution concepts

• Distribution styles

• Viewing distribution styles

• Evaluating query patterns

• Designating distribution styles

• Evaluating the query plan

• Query plan example

• Distribution examples

Data distribution concepts

Some data distribution concepts for Amazon Redshift follow.

Nodes and slices

An Amazon Redshift cluster is a set of nodes. Each node in the cluster has its own operating
system, dedicated memory, and dedicated disk storage. One node is the leader node, which
manages the distribution of data and query processing tasks to the compute nodes. The compute
nodes provide resources to do those tasks.

The disk storage for a compute node is divided into a number of slices. The number of slices per
node depends on the node size of the cluster. The nodes all participate in running parallel queries,
working on data that is distributed as evenly as possible across the slices. For more information
about the number of slices that each node size has, see About clusters and nodes in the Amazon
Redshift Management Guide.

Data redistribution

When you load data into a table, Amazon Redshift distributes the rows of the table to each of
the node slices according to the table's distribution style. As part of a query plan, the optimizer
determines where blocks of data must be located to best run the query. The data is then physically

Data distribution concepts 81

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

moved, or redistributed, while the query runs. Redistribution might involve either sending specific
rows to nodes for joining or broadcasting an entire table to all of the nodes.

Data redistribution can account for a substantial portion of the cost of a query plan, and the
network traffic it generates can affect other database operations and slow overall system
performance. To the extent that you anticipate where best to locate data initially, you can minimize
the impact of data redistribution.

Data distribution goals

When you load data into a table, Amazon Redshift distributes the table's rows to the compute
nodes and slices according to the distribution style that you chose when you created the table.
Data distribution has two primary goals:

• To distribute the workload uniformly among the nodes in the cluster. Uneven distribution, or
data distribution skew, forces some nodes to do more work than others, which impairs query
performance.

• To minimize data movement as a query runs. If the rows that participate in joins or aggregates
are already collocated on the nodes with their joining rows in other tables, the optimizer doesn't
need to redistribute as much data when queries run.

The distribution strategy that you choose for your database has important consequences for
query performance, storage requirements, data loading, and maintenance. By choosing the best
distribution style for each table, you can balance your data distribution and significantly improve
overall system performance.

Distribution styles

When you create a table, you can designate one of the following distribution styles: AUTO, EVEN,
KEY, or ALL.

If you don't specify a distribution style, Amazon Redshift uses AUTO distribution.

AUTO distribution

With AUTO distribution, Amazon Redshift assigns an optimal distribution style based on the size
of the table data. For example, if AUTO distribution style is specified, Amazon Redshift initially
assigns the ALL distribution style to a small table. When the table grows larger, Amazon Redshift
might change the distribution style to KEY, choosing the primary key (or a column of the composite
primary key) as the distribution key. If the table grows larger and none of the columns are suitable

Distribution styles 82

Amazon Redshift Database Developer Guide

to be the distribution key, Amazon Redshift changes the distribution style to EVEN. The change in
distribution style occurs in the background with minimal impact to user queries.

To view actions that Amazon Redshift automatically performed to alter a table distribution key,
see SVL_AUTO_WORKER_ACTION. To view current recommendations regarding altering a table
distribution key, see SVV_ALTER_TABLE_RECOMMENDATIONS.

To view the distribution style applied to a table, query the PG_CLASS_INFO system catalog view.
For more information, see Viewing distribution styles. If you don't specify a distribution style with
the CREATE TABLE statement, Amazon Redshift applies AUTO distribution.

EVEN distribution

The leader node distributes the rows across the slices in a round-robin fashion, regardless of the
values in any particular column. EVEN distribution is appropriate when a table doesn't participate
in joins. It's also appropriate when there isn't a clear choice between KEY distribution and ALL
distribution.

KEY distribution

The rows are distributed according to the values in one column. The leader node places matching
values on the same node slice. If you distribute a pair of tables on the joining keys, the leader node
collocates the rows on the slices according to the values in the joining columns. This way, matching
values from the common columns are physically stored together.

ALL distribution

A copy of the entire table is distributed to every node. Where EVEN distribution or KEY distribution
place only a portion of a table's rows on each node, ALL distribution ensures that every row is
collocated for every join that the table participates in.

ALL distribution multiplies the storage required by the number of nodes in the cluster, and
so it takes much longer to load, update, or insert data into multiple tables. ALL distribution is
appropriate only for relatively slow moving tables; that is, tables that are not updated frequently
or extensively. Because the cost of redistributing small tables during a query is low, there isn't a
significant benefit to define small dimension tables as DISTSTYLE ALL.

Note

After you have specified a distribution style for a column, Amazon Redshift handles data
distribution at the cluster level. Amazon Redshift does not require or support the concept

Distribution styles 83

Amazon Redshift Database Developer Guide

of partitioning data within database objects. You don't need to create table spaces or
define partitioning schemes for tables.

In certain scenarios, you can change the distribution style of a table after it is created. For more
information, see ALTER TABLE. For scenarios when you can't change the distribution style of a table
after it's created, you can recreate the table and populate the new table with a deep copy. For more
information, see Performing a deep copy

Viewing distribution styles

To view the distribution style of a table, query the PG_CLASS_INFO view or the SVV_TABLE_INFO
view.

The RELEFFECTIVEDISTSTYLE column in PG_CLASS_INFO indicates the current distribution style
for the table. If the table uses automatic distribution, RELEFFECTIVEDISTSTYLE is 10, 11, or 12,
which indicates whether the effective distribution style is AUTO (ALL), AUTO (EVEN), or AUTO
(KEY). If the table uses automatic distribution, the distribution style might initially show AUTO
(ALL), then change to AUTO (EVEN) or AUTO (KEY) when the table grows.

The following table gives the distribution style for each value in RELEFFECTIVEDISTSTYLE column:

RELEFFECTIVEDISTSTYLE Current distribution style

0 EVEN

1 KEY

8 ALL

10 AUTO (ALL)

11 AUTO (EVEN)

12 AUTO (KEY)

The DISTSTYLE column in SVV_TABLE_INFO indicates the current distribution style for the table. If
the table uses automatic distribution, DISTSTYLE is AUTO (ALL), AUTO (EVEN), or AUTO (KEY).

Viewing distribution styles 84

Amazon Redshift Database Developer Guide

The following example creates four tables using the three distribution styles and automatic
distribution, then queries SVV_TABLE_INFO to view the distribution styles.

create table public.dist_key (col1 int)
diststyle key distkey (col1);

insert into public.dist_key values (1);

create table public.dist_even (col1 int)
diststyle even;

insert into public.dist_even values (1);

create table public.dist_all (col1 int)
diststyle all;

insert into public.dist_all values (1);

create table public.dist_auto (col1 int);

insert into public.dist_auto values (1);

select "schema", "table", diststyle from SVV_TABLE_INFO
where "table" like 'dist%';

 schema | table | diststyle
 ------------+-----------------+------------
 public | dist_key | KEY(col1)
 public | dist_even | EVEN
 public | dist_all | ALL
 public | dist_auto | AUTO(ALL)

Evaluating query patterns

Choosing distribution styles is only one aspect of database design. Consider distribution styles
within the context of the entire system, balancing distribution with other important factors such as
cluster size, compression encoding methods, sort keys, and table constraints.

Test your system with data that is as close to real data as possible.

Evaluating query patterns 85

Amazon Redshift Database Developer Guide

To make good choices for distribution styles, you must understand the query patterns for your
Amazon Redshift application. Identify the most costly queries in your system and base your initial
database design on the demands of those queries. Factors that determine the total cost of a query
include how long the query takes to run and how much computing resources it consumes. Other
factors that determine query cost are how often it is run, and how disruptive it is to other queries
and database operations.

Identify the tables that are used by the most costly queries, and evaluate their role in query
runtime. Consider how the tables are joined and aggregated.

Use the guidelines in this section to choose a distribution style for each table. When you have done
so, create the tables and load them with data that is as close as possible to real data. Then test the
tables for the types of queries that you expect to use. You can evaluate the query explain plans to
identify tuning opportunities. Compare load times, storage space, and query runtimes to balance
your system's overall requirements.

Designating distribution styles

The considerations and recommendations for designating distribution styles in this section use a
star schema as an example. Your database design might be based on a star schema, some variant
of a star schema, or an entirely different schema. Amazon Redshift is designed to work effectively
with whatever schema design you choose. The principles in this section can be applied to any
design schema.

1. Specify the primary key and foreign keys for all your tables.

Amazon Redshift does not enforce primary key and foreign key constraints, but the query
optimizer uses them when it generates query plans. If you set primary keys and foreign keys,
your application must maintain the validity of the keys.

2. Distribute the fact table and its largest dimension table on their common columns.

Choose the largest dimension based on the size of dataset that participates in the most common
join, not only the size of the table. If a table is commonly filtered, using a WHERE clause, only
a portion of its rows participate in the join. Such a table has less impact on redistribution than
a smaller table that contributes more data. Designate both the dimension table's primary key
and the fact table's corresponding foreign key as DISTKEY. If multiple tables use the same
distribution key, they are also collocated with the fact table. Your fact table can have only one
distribution key. Any tables that join on another key isn't collocated with the fact table.

3. Designate distribution keys for the other dimension tables.

Designating distribution styles 86

Amazon Redshift Database Developer Guide

Distribute the tables on their primary keys or their foreign keys, depending on how they most
commonly join with other tables.

4. Evaluate whether to change some of the dimension tables to use ALL distribution.

If a dimension table cannot be collocated with the fact table or other important joining tables,
you can improve query performance significantly by distributing the entire table to all of the
nodes. Using ALL distribution multiplies storage space requirements and increases load times
and maintenance operations, so you should weigh all factors before choosing ALL distribution.
The following section explains how to identify candidates for ALL distribution by evaluating the
EXPLAIN plan.

5. Use AUTO distribution for the remaining tables.

If a table is largely denormalized and does not participate in joins, or if you don't have a clear
choice for another distribution style, use AUTO distribution.

To let Amazon Redshift choose the appropriate distribution style, don't explicitly specify a
distribution style.

Evaluating the query plan

You can use query plans to identify candidates for optimizing the distribution style.

After making your initial design decisions, create your tables, load them with data, and test them.
Use a test dataset that is as close as possible to the real data. Measure load times to use as a
baseline for comparisons.

Evaluate queries that are representative of the most costly queries you expect to run, specifically
queries that use joins and aggregations. Compare runtimes for various design options. When you
compare runtimes, don't count the first time the query is run, because the first runtime includes
the compilation time.

DS_DIST_NONE

No redistribution is required, because corresponding slices are collocated on the compute
nodes. You typically have only one DS_DIST_NONE step, the join between the fact table and
one dimension table.

Evaluating the query plan 87

Amazon Redshift Database Developer Guide

DS_DIST_ALL_NONE

No redistribution is required, because the inner join table used DISTSTYLE ALL. The entire table
is located on every node.

DS_DIST_INNER

The inner table is redistributed.

DS_DIST_OUTER

The outer table is redistributed.

DS_BCAST_INNER

A copy of the entire inner table is broadcast to all the compute nodes.

DS_DIST_ALL_INNER

The entire inner table is redistributed to a single slice because the outer table uses DISTSTYLE
ALL.

DS_DIST_BOTH

Both tables are redistributed.

DS_DIST_NONE and DS_DIST_ALL_NONE are good. They indicate that no distribution was required
for that step because all of the joins are collocated.

DS_DIST_INNER means that the step probably has a relatively high cost because the inner table is
being redistributed to the nodes. DS_DIST_INNER indicates that the outer table is already properly
distributed on the join key. Set the inner table's distribution key to the join key to convert this to
DS_DIST_NONE. In some cases, distributing the inner table on the join key isn't possible because
the outer table isn't distributed on the join key. If this is the case, evaluate whether to use ALL
distribution for the inner table. If the table isn't updated frequently or extensively, and it's large
enough to carry a high redistribution cost, change the distribution style to ALL and test again.
ALL distribution causes increased load times, so when you retest, include the load time in your
evaluation factors.

DS_DIST_ALL_INNER is not good. It means that the entire inner table is redistributed to a single
slice because the outer table uses DISTSTYLE ALL, so that a copy of the entire outer table is located
on each node. This results in inefficient serial runtime of the join on a single node, instead taking

Evaluating the query plan 88

Amazon Redshift Database Developer Guide

advantage of parallel runtime using all of the nodes. DISTSTYLE ALL is meant to be used only for
the inner join table. Instead, specify a distribution key or use even distribution for the outer table.

DS_BCAST_INNER and DS_DIST_BOTH are not good. Usually these redistributions occur because
the tables are not joined on their distribution keys. If the fact table does not already have a
distribution key, specify the joining column as the distribution key for both tables. If the fact table
already has a distribution key on another column, evaluate whether changing the distribution key
to collocate this join improve overall performance. If changing the distribution key of the outer
table isn't an optimal choice, you can achieve collocation by specifying DISTSTYLE ALL for the inner
table.

The following example shows a portion of a query plan with DS_BCAST_INNER and DS_DIST_NONE
labels.

-> XN Hash Join DS_BCAST_INNER (cost=112.50..3272334142.59 rows=170771 width=84)
 Hash Cond: ("outer".venueid = "inner".venueid)
 -> XN Hash Join DS_BCAST_INNER (cost=109.98..3167290276.71 rows=172456
 width=47)
 Hash Cond: ("outer".eventid = "inner".eventid)
 -> XN Merge Join DS_DIST_NONE (cost=0.00..6286.47 rows=172456 width=30)
 Merge Cond: ("outer".listid = "inner".listid)
 -> XN Seq Scan on listing (cost=0.00..1924.97 rows=192497
 width=14)
 -> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=24)

After changing the dimension tables to use DISTSTYLE ALL, the query plan for the same query
shows DS_DIST_ALL_NONE in place of DS_BCAST_INNER. Also, there is a dramatic change in the
relative cost for the join steps. The total cost is 14142.59 compared to 3272334142.59 in the
previous query.

-> XN Hash Join DS_DIST_ALL_NONE (cost=112.50..14142.59 rows=170771 width=84)
 Hash Cond: ("outer".venueid = "inner".venueid)
 -> XN Hash Join DS_DIST_ALL_NONE (cost=109.98..10276.71 rows=172456 width=47)
 Hash Cond: ("outer".eventid = "inner".eventid)
 -> XN Merge Join DS_DIST_NONE (cost=0.00..6286.47 rows=172456 width=30)
 Merge Cond: ("outer".listid = "inner".listid)
 -> XN Seq Scan on listing (cost=0.00..1924.97 rows=192497
 width=14)
 -> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=24)

Evaluating the query plan 89

Amazon Redshift Database Developer Guide

Query plan example

This example shows how to evaluate a query plan to find opportunities to optimize the
distribution.

Run the following query with an EXPLAIN command to produce a query plan.

explain
select lastname, catname, venuename, venuecity, venuestate, eventname,
month, sum(pricepaid) as buyercost, max(totalprice) as maxtotalprice
from category join event on category.catid = event.catid
join venue on venue.venueid = event.venueid
join sales on sales.eventid = event.eventid
join listing on sales.listid = listing.listid
join date on sales.dateid = date.dateid
join users on users.userid = sales.buyerid
group by lastname, catname, venuename, venuecity, venuestate, eventname, month
having sum(pricepaid)>9999
order by catname, buyercost desc;

In the TICKIT database, SALES is a fact table and LISTING is its largest dimension. In order to
collocate the tables, SALES is distributed on the LISTID, which is the foreign key for LISTING, and
LISTING is distributed on its primary key, LISTID. The following example shows the CREATE TABLE
commands for SALES and LISTING.

create table sales(
 salesid integer not null,
 listid integer not null distkey,
 sellerid integer not null,
 buyerid integer not null,
 eventid integer not null encode mostly16,
 dateid smallint not null,
 qtysold smallint not null encode mostly8,
 pricepaid decimal(8,2) encode delta32k,
 commission decimal(8,2) encode delta32k,
 saletime timestamp,
 primary key(salesid),
 foreign key(listid) references listing(listid),
 foreign key(sellerid) references users(userid),
 foreign key(buyerid) references users(userid),
 foreign key(dateid) references date(dateid))
 sortkey(listid,sellerid);

Query plan example 90

Amazon Redshift Database Developer Guide

create table listing(
 listid integer not null distkey sortkey,
 sellerid integer not null,
 eventid integer not null encode mostly16,
 dateid smallint not null,
 numtickets smallint not null encode mostly8,
 priceperticket decimal(8,2) encode bytedict,
 totalprice decimal(8,2) encode mostly32,
 listtime timestamp,
 primary key(listid),
 foreign key(sellerid) references users(userid),
 foreign key(eventid) references event(eventid),
 foreign key(dateid) references date(dateid));

In the following query plan, the Merge Join step for the join on SALES and LISTING shows
DS_DIST_NONE, which indicates that no redistribution is required for the step. However, moving up
the query plan, the other inner joins show DS_BCAST_INNER, which indicates that the inner table
is broadcast as part of the query execution. Because only one pair of tables can be collocated using
key distribution, five tables must be rebroadcast.

QUERY PLAN
XN Merge (cost=1015345167117.54..1015345167544.46 rows=1000 width=103)
 Merge Key: category.catname, sum(sales.pricepaid)
 -> XN Network (cost=1015345167117.54..1015345167544.46 rows=170771 width=103)
 Send to leader
 -> XN Sort (cost=1015345167117.54..1015345167544.46 rows=170771 width=103)
 Sort Key: category.catname, sum(sales.pricepaid)
 -> XN HashAggregate (cost=15345150568.37..15345152276.08 rows=170771
 width=103)
 Filter: (sum(pricepaid) > 9999.00)
 -> XN Hash Join DS_BCAST_INNER (cost=742.08..15345146299.10
 rows=170771 width=103)
 Hash Cond: ("outer".catid = "inner".catid)
 -> XN Hash Join DS_BCAST_INNER
 (cost=741.94..15342942456.61 rows=170771 width=97)
 Hash Cond: ("outer".dateid = "inner".dateid)
 -> XN Hash Join DS_BCAST_INNER
 (cost=737.38..15269938609.81 rows=170766 width=90)
 Hash Cond: ("outer".buyerid = "inner".userid)
 -> XN Hash Join DS_BCAST_INNER
 (cost=112.50..3272334142.59 rows=170771 width=84)

Query plan example 91

Amazon Redshift Database Developer Guide

 Hash Cond: ("outer".venueid =
 "inner".venueid)
 -> XN Hash Join DS_BCAST_INNER
 (cost=109.98..3167290276.71 rows=172456 width=47)
 Hash Cond: ("outer".eventid =
 "inner".eventid)
 -> XN Merge Join DS_DIST_NONE
 (cost=0.00..6286.47 rows=172456 width=30)
 Merge Cond: ("outer".listid =
 "inner".listid)
 -> XN Seq Scan on listing
 (cost=0.00..1924.97 rows=192497 width=14)
 -> XN Seq Scan on sales
 (cost=0.00..1724.56 rows=172456 width=24)
 -> XN Hash (cost=87.98..87.98
 rows=8798 width=25)
 -> XN Seq Scan on event
 (cost=0.00..87.98 rows=8798 width=25)
 -> XN Hash (cost=2.02..2.02 rows=202
 width=41)
 -> XN Seq Scan on venue
 (cost=0.00..2.02 rows=202 width=41)
 -> XN Hash (cost=499.90..499.90 rows=49990
 width=14)
 -> XN Seq Scan on users
 (cost=0.00..499.90 rows=49990 width=14)
 -> XN Hash (cost=3.65..3.65 rows=365 width=11)
 -> XN Seq Scan on date (cost=0.00..3.65
 rows=365 width=11)
 -> XN Hash (cost=0.11..0.11 rows=11 width=10)
 -> XN Seq Scan on category (cost=0.00..0.11 rows=11
 width=10)

One solution is to alter the tables to have DISTSTYLE ALL.

ALTER TABLE users ALTER DISTSTYLE ALL;
ALTER TABLE venue ALTER DISTSTYLE ALL;
ALTER TABLE category ALTER DISTSTYLE ALL;
ALTER TABLE date ALTER DISTSTYLE ALL;
ALTER TABLE event ALTER DISTSTYLE ALL;

Query plan example 92

Amazon Redshift Database Developer Guide

Run the same query with EXPLAIN again, and examine the new query plan. The joins now show
DS_DIST_ALL_NONE, indicating that no redistribution is required because the data was distributed
to every node using DISTSTYLE ALL.

QUERY PLAN
XN Merge (cost=1000000047117.54..1000000047544.46 rows=1000 width=103)
 Merge Key: category.catname, sum(sales.pricepaid)
 -> XN Network (cost=1000000047117.54..1000000047544.46 rows=170771 width=103)
 Send to leader
 -> XN Sort (cost=1000000047117.54..1000000047544.46 rows=170771 width=103)
 Sort Key: category.catname, sum(sales.pricepaid)
 -> XN HashAggregate (cost=30568.37..32276.08 rows=170771 width=103)
 Filter: (sum(pricepaid) > 9999.00)
 -> XN Hash Join DS_DIST_ALL_NONE (cost=742.08..26299.10
 rows=170771 width=103)
 Hash Cond: ("outer".buyerid = "inner".userid)
 -> XN Hash Join DS_DIST_ALL_NONE (cost=117.20..21831.99
 rows=170766 width=97)
 Hash Cond: ("outer".dateid = "inner".dateid)
 -> XN Hash Join DS_DIST_ALL_NONE
 (cost=112.64..17985.08 rows=170771 width=90)
 Hash Cond: ("outer".catid = "inner".catid)
 -> XN Hash Join DS_DIST_ALL_NONE
 (cost=112.50..14142.59 rows=170771 width=84)
 Hash Cond: ("outer".venueid =
 "inner".venueid)
 -> XN Hash Join DS_DIST_ALL_NONE
 (cost=109.98..10276.71 rows=172456 width=47)
 Hash Cond: ("outer".eventid =
 "inner".eventid)
 -> XN Merge Join DS_DIST_NONE
 (cost=0.00..6286.47 rows=172456 width=30)
 Merge Cond: ("outer".listid =
 "inner".listid)
 -> XN Seq Scan on listing
 (cost=0.00..1924.97 rows=192497 width=14)
 -> XN Seq Scan on sales
 (cost=0.00..1724.56 rows=172456 width=24)
 -> XN Hash (cost=87.98..87.98
 rows=8798 width=25)
 -> XN Seq Scan on event
 (cost=0.00..87.98 rows=8798 width=25)

Query plan example 93

Amazon Redshift Database Developer Guide

 -> XN Hash (cost=2.02..2.02 rows=202
 width=41)
 -> XN Seq Scan on venue
 (cost=0.00..2.02 rows=202 width=41)
 -> XN Hash (cost=0.11..0.11 rows=11 width=10)
 -> XN Seq Scan on category
 (cost=0.00..0.11 rows=11 width=10)
 -> XN Hash (cost=3.65..3.65 rows=365 width=11)
 -> XN Seq Scan on date (cost=0.00..3.65
 rows=365 width=11)
 -> XN Hash (cost=499.90..499.90 rows=49990 width=14)
 -> XN Seq Scan on users (cost=0.00..499.90 rows=49990
 width=14)

Distribution examples

The following examples show how data is distributed according to the options that you define in
the CREATE TABLE statement.

DISTKEY examples

Look at the schema of the USERS table in the TICKIT database. USERID is defined as the SORTKEY
column and the DISTKEY column:

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'users';

 column | type | encoding | distkey | sortkey
---------------+------------------------+----------+---------+---------
 userid | integer | none | t | 1
 username | character(8) | none | f | 0
 firstname | character varying(30) | text32k | f | 0

...

USERID is a good choice for the distribution column on this table. If you query the SVV_DISKUSAGE
system view, you can see that the table is very evenly distributed. Column numbers are zero-based,
so USERID is column 0.

select slice, col, num_values as rows, minvalue, maxvalue
from svv_diskusage

Distribution examples 94

Amazon Redshift Database Developer Guide

where name='users' and col=0 and rows>0
order by slice, col;

slice| col | rows | minvalue | maxvalue
-----+-----+-------+----------+----------
0 | 0 | 12496 | 4 | 49987
1 | 0 | 12498 | 1 | 49988
2 | 0 | 12497 | 2 | 49989
3 | 0 | 12499 | 3 | 49990
(4 rows)

The table contains 49,990 rows. The rows (num_values) column shows that each slice contains
about the same number of rows. The minvalue and maxvalue columns show the range of values on
each slice. Each slice includes nearly the entire range of values, so there's a good chance that every
slice participates in running a query that filters for a range of user IDs.

This example demonstrates distribution on a small test system. The total number of slices is
typically much higher.

If you commonly join or group using the STATE column, you might choose to distribute on the
STATE column. The following example shows a case where you create a new table with the same
data as the USERS table but set the DISTKEY to the STATE column. In this case, the distribution
isn't as even. Slice 0 (13,587 rows) holds approximately 30 percent more rows than slice 3 (10,150
rows). In a much larger table, this amount of distribution skew can have an adverse impact on
query processing.

create table userskey distkey(state) as select * from users;

select slice, col, num_values as rows, minvalue, maxvalue from svv_diskusage
where name = 'userskey' and col=0 and rows>0
order by slice, col;

slice | col | rows | minvalue | maxvalue
------+-----+-------+----------+----------
 0 | 0 | 13587 | 5 | 49989
 1 | 0 | 11245 | 2 | 49990
 2 | 0 | 15008 | 1 | 49976
 3 | 0 | 10150 | 4 | 49986
(4 rows)

Distribution examples 95

Amazon Redshift Database Developer Guide

DISTSTYLE EVEN example

If you create a new table with the same data as the USERS table but set the DISTSTYLE to EVEN,
rows are always evenly distributed across slices.

create table userseven diststyle even as
select * from users;

select slice, col, num_values as rows, minvalue, maxvalue from svv_diskusage
where name = 'userseven' and col=0 and rows>0
order by slice, col;

slice | col | rows | minvalue | maxvalue
------+-----+-------+----------+----------
 0 | 0 | 12497 | 4 | 49990
 1 | 0 | 12498 | 8 | 49984
 2 | 0 | 12498 | 2 | 49988
 3 | 0 | 12497 | 1 | 49989
(4 rows)

However, because distribution is not based on a specific column, query processing can be degraded,
especially if the table is joined to other tables. The lack of distribution on a joining column often
influences the type of join operation that can be performed efficiently. Joins, aggregations, and
grouping operations are optimized when both tables are distributed and sorted on their respective
joining columns.

DISTSTYLE ALL example

If you create a new table with the same data as the USERS table but set the DISTSTYLE to ALL, all
the rows are distributed to the first slice of each node.

select slice, col, num_values as rows, minvalue, maxvalue from svv_diskusage
where name = 'usersall' and col=0 and rows > 0
order by slice, col;

slice | col | rows | minvalue | maxvalue
------+-----+-------+----------+----------
 0 | 0 | 49990 | 4 | 49990
 2 | 0 | 49990 | 2 | 49990

(4 rows)

Distribution examples 96

Amazon Redshift Database Developer Guide

Working with sort keys

Note

We recommend that you create your tables with SORTKEY AUTO. If you do so, then
Amazon Redshift uses automatic table optimization to choose the sort key. For more
information, see Working with automatic table optimization. The rest of this section
provides details about the sort order.

When you create a table, you can alternatively define one or more of its columns as sort keys.
When data is initially loaded into the empty table, the rows are stored on disk in sorted order.
Information about sort key columns is passed to the query planner, and the planner uses this
information to construct plans that exploit the way that the data is sorted. For more information,
see CREATE TABLE. For information on best practices when creating a sort key, see Choose the best
sort key.

Sorting enables efficient handling of range-restricted predicates. Amazon Redshift stores
columnar data in 1 MB disk blocks. The min and max values for each block are stored as part of the
metadata. If a query uses a range-restricted predicate, the query processor can use the min and
max values to rapidly skip over large numbers of blocks during table scans. For example, suppose
that a table stores five years of data sorted by date and a query specifies a date range of one
month. In this case, you can remove up to 98 percent of the disk blocks from the scan. If the data is
not sorted, more of the disk blocks (possibly all of them) have to be scanned.

You can specify either a compound or interleaved sort key. A compound sort key is more efficient
when query predicates use a prefix, which is a subset of the sort key columns in order. An
interleaved sort key gives equal weight to each column in the sort key, so query predicates can use
any subset of the columns that make up the sort key, in any order.

To understand the impact of the chosen sort key on query performance, use the EXPLAIN
command. For more information, see Query planning and execution workflow.

To define a sort type, use either the INTERLEAVED or COMPOUND keyword with your CREATE
TABLE or CREATE TABLE AS statement. The default is COMPOUND. COMPOUND is recommended
when you update your tables regularly with INSERT, UPDATE, or DELETE operations. An
INTERLEAVED sort key can use a maximum of eight columns. Depending on your data and
cluster size, VACUUM REINDEX takes significantly longer than VACUUM FULL because it makes

Working with sort keys 97

Amazon Redshift Database Developer Guide

an additional pass to analyze the interleaved sort keys. The sort and merge operation can take
longer for interleaved tables because the interleaved sort might have to rearrange more rows than
a compound sort.

To view the sort keys for a table, query the SVV_TABLE_INFO system view.

Topics

• Multidimensional data layout sorting (preview)

• Compound sort key

• Interleaved sort key

Multidimensional data layout sorting (preview)

The following is prerelease documentation for the multidimensional data layout sorting of
tables, which is in preview release. The documentation and the feature are both subject to
change. We recommend that you use this feature only with test clusters, and not in production
environments. For preview terms and conditions, see Beta Service Participation in AWS Service
Terms.

Note

This feature is only available using a preview cluster or preview workgroup. To create a
preview cluster, see Creating a preview cluster in the Amazon Redshift Management Guide.
To create a preview workgroup, see Creating a preview workgroup in the Amazon Redshift
Management Guide.

A multidimensional data layout sort key is a type of AUTO sort key that is based on repetitive
predicates found in a workload. If your workload has repetitive predicates, then Amazon Redshift
can improve table scan performance by colocating data rows that satisfy the repetitive predicates.
Instead of storing data of a table in strict column order, a multidimensional data layout sort key
stores data by analyzing repetitive predicates that appear in a workload. More than one repetitive
predicate can be found in a workload. Depending on your workload, this kind of sort key can
improve performance of many predicates. Amazon Redshift automatically determines if this sort
key method should be used for tables that are defined with an AUTO sort key.

Multidimensional data layout sorting (preview) 98

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#cluster-preview
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html

Amazon Redshift Database Developer Guide

For example, suppose you have a table that has data sorted in column order. Many data blocks
might need to be examined to determine if they satisfy the predicates in your workload. But, if
the data is stored on disk in a predicate order, then fewer blocks need to be scanned to satisfy the
query. Using a multidimensional data layout sort key is beneficial in this case.

To view whether a query is using a multidimensional data layout key, see the step_attribute
column of the SYS_QUERY_DETAIL view. When the value is multi-dimensional then
multidimensional data layout was used for the query. To view whether a table defined
with the AUTO sort key is using a multidimensional data layout, see the sortkey1 column
of the SVV_TABLE_INFO view. When the value is padb_internal_mddl_key_col then
multidimensional data layout was used for the table sort key.

To prevent Amazon Redshift from using a multidimensional data layout sort key, choose a different
table sort key option other than SORTKEY AUTO. For more information on SORTKEY options, see
CREATE TABLE.

Compound sort key

A compound key is made up of all of the columns listed in the sort key definition, in the order they
are listed. A compound sort key is most useful when a query's filter applies conditions, such as
filters and joins, that use a prefix of the sort keys. The performance benefits of compound sorting
decrease when queries depend only on secondary sort columns, without referencing the primary
columns. COMPOUND is the default sort type.

Compound sort keys might speed up joins, GROUP BY and ORDER BY operations, and window
functions that use PARTITION BY and ORDER BY. For example, a merge join, which is often faster
than a hash join, is feasible when the data is distributed and presorted on the joining columns.
Compound sort keys also help improve compression.

As you add rows to a sorted table that already contains data, the unsorted region grows, which
has a significant effect on performance. The effect is greater when the table uses interleaved
sorting, especially when the sort columns include data that increases monotonically, such as date
or timestamp columns. Run a VACUUM operation regularly, especially after large data loads, to re-
sort and re-analyze the data. For more information, see Managing the size of the unsorted region.
After vacuuming to resort the data, it's a good practice to run an ANALYZE command to update the
statistical metadata for the query planner. For more information, see Analyzing tables.

Compound sort key 99

Amazon Redshift Database Developer Guide

Interleaved sort key

An interleaved sort gives equal weight to each column, or subset of columns, in the sort key.
If multiple queries use different columns for filters, then you can often improve performance
for those queries by using an interleaved sort style. When a query uses restrictive predicates on
secondary sort columns, interleaved sorting significantly improves query performance as compared
to compound sorting.

Important

Don't use an interleaved sort key on columns with monotonically increasing attributes, such
as identity columns, dates, or timestamps.

The performance improvements you gain by implementing an interleaved sort key should be
weighed against increased load and vacuum times.

Interleaved sorts are most effective with highly selective queries that filter on one or more of the
sort key columns in the WHERE clause, for example select c_name from customer where
c_region = 'ASIA'. The benefits of interleaved sorting increase with the number of sorted
columns that are restricted.

An interleaved sort is more effective with large tables. Sorting is applied on each slice. Thus, an
interleaved sort is most effective when a table is large enough to require multiple 1 MB blocks
per slice. Here, the query processor can skip a significant proportion of the blocks using restrictive
predicates. To view the number of blocks a table uses, query the STV_BLOCKLIST system view.

When sorting on a single column, an interleaved sort might give better performance than a
compound sort if the column values have a long common prefix. For example, URLs commonly
begin with "http://www". Compound sort keys use a limited number of characters from the prefix,
which results in a lot of duplication of keys. Interleaved sorts use an internal compression scheme
for zone map values that enables them to better discriminate among column values that have a
long common prefix.

When migrating Amazon Redshift provisioned clusters to Amazon Redshift Serverless, Redshift
converts tables with interleaved sort keys and DISTSTYLE KEY to compound sort keys. The
DISTSTYLE doesn't change. For more information on distribution styles, see Working with data
distribution styles.

Interleaved sort key 100

https://docs.aws.amazon.com/redshift/latest/dg/t_Distributing_data.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Distributing_data.html

Amazon Redshift Database Developer Guide

VACUUM REINDEX

As you add rows to a sorted table that already contains data, performance might deteriorate over
time. This deterioration occurs for both compound and interleaved sorts, but it has a greater effect
on interleaved tables. A VACUUM restores the sort order, but the operation can take longer for
interleaved tables because merging new interleaved data might involve modifying every data
block.

When tables are initially loaded, Amazon Redshift analyzes the distribution of the values in the sort
key columns and uses that information for optimal interleaving of the sort key columns. As a table
grows, the distribution of the values in the sort key columns can change, or skew, especially with
date or timestamp columns. If the skew becomes too large, performance might be affected. To re-
analyze the sort keys and restore performance, run the VACUUM command with the REINDEX key
word. Because it must take an extra analysis pass over the data, VACUUM REINDEX can take longer
than a standard VACUUM for interleaved tables. To view information about key distribution skew
and last reindex time, query the SVV_INTERLEAVED_COLUMNS system view.

For more information about how to determine how often to run VACUUM and when to run a
VACUUM REINDEX, see Deciding whether to reindex.

Defining table constraints

Uniqueness, primary key, and foreign key constraints are informational only; they are not enforced
by Amazon Redshift when you populate a table. For example, if you insert data into a table with
dependencies, the insert can succeed even if it violates the constraint. Nonetheless, primary keys
and foreign keys are used as planning hints and they should be declared if your ETL process or
some other process in your application enforces their integrity.

For example, the query planner uses primary and foreign keys in certain statistical computations.
It does this to infer uniqueness and referential relationships that affect subquery decorrelation
techniques. By doing this, it can order large numbers of joins and remove redundant joins.

The planner leverages these key relationships, but it assumes that all keys in Amazon Redshift
tables are valid as loaded. If your application allows invalid foreign keys or primary keys, some
queries could return incorrect results. For example, a SELECT DISTINCT query might return
duplicate rows if the primary key is not unique. Do not define key constraints for your tables if you
doubt their validity. However, always declare primary and foreign keys and uniqueness constraints
when you know that they are valid.

Defining table constraints 101

Amazon Redshift Database Developer Guide

Amazon Redshift does enforce NOT NULL column constraints.

For more information about table constraints, see CREATE TABLE. For information about how to
drop a table with dependencies, see DROP TABLE.

Defining table constraints 102

Amazon Redshift Database Developer Guide

Loading data

Topics

• Using a COPY command to load data

• Continuous file ingestion from Amazon S3 (preview)

• Updating tables with DML commands

• Updating and inserting new data

• Performing a deep copy

• Analyzing tables

• Vacuuming tables

• Managing concurrent write operations

• Tutorial: Loading data from Amazon S3

A COPY command is the most efficient way to load a table. You can also add data to your tables
using INSERT commands, though it is much less efficient than using COPY. The COPY command
is able to read from multiple data files or multiple data streams simultaneously. Amazon Redshift
allocates the workload to the cluster nodes and performs the load operations in parallel, including
sorting the rows and distributing data across node slices.

Note

Amazon Redshift Spectrum external tables are read-only. You can't COPY or INSERT to an
external table.

To access data on other AWS resources, your cluster must have permission to access those
resources and to perform the necessary actions to access the data. You can use AWS Identity and
Access Management (IAM) to limit the access users have to your cluster resources and data.

After your initial data load, if you add, modify, or delete a significant amount of data, you should
follow up by running a VACUUM command to reorganize your data and reclaim space after deletes.
You should also run an ANALYZE command to update table statistics.

This section explains how to load data and troubleshoot data loads and presents best practices for
loading data.

103

Amazon Redshift Database Developer Guide

Using a COPY command to load data

Topics

• Credentials and access permissions

• Preparing your input data

• Loading data from Amazon S3

• Loading data from Amazon EMR

• Loading data from remote hosts

• Loading data from an Amazon DynamoDB table

• Verifying that the data loaded correctly

• Validating input data

• Loading tables with automatic compression

• Optimizing storage for narrow tables

• Loading default column values

• Troubleshooting data loads

The COPY command leverages the Amazon Redshift massively parallel processing (MPP)
architecture to read and load data in parallel from files on Amazon S3, from a DynamoDB table, or
from text output from one or more remote hosts.

Note

We strongly recommend using the COPY command to load large amounts of data. Using
individual INSERT statements to populate a table might be prohibitively slow. Alternatively,
if your data already exists in other Amazon Redshift database tables, use INSERT INTO ...
SELECT or CREATE TABLE AS to improve performance. For information, see INSERT or
CREATE TABLE AS.

To load data from another AWS resource, your cluster must have permission to access the resource
and perform the necessary actions.

To grant or revoke privilege to load data into a table using a COPY command, grant or revoke the
INSERT privilege.

Using COPY to load data 104

Amazon Redshift Database Developer Guide

Your data needs to be in the proper format for loading into your Amazon Redshift table. This
section presents guidelines for preparing and verifying your data before the load and for validating
a COPY statement before you run it.

To protect the information in your files, you can encrypt the data files before you upload them
to your Amazon S3 bucket; COPY will decrypt the data as it performs the load. You can also limit
access to your load data by providing temporary security credentials to users. Temporary security
credentials provide enhanced security because they have short life spans and cannot be reused
after they expire.

Amazon Redshift has features built in to COPY to load uncompressed, delimited data quickly. But
you can compress your files using gzip, lzop, or bzip2 to save time uploading the files.

If the following keywords are in the COPY query, automatic splitting of uncompressed data is not
supported: ESCAPE, REMOVEQUOTES, and FIXEDWIDTH. But the CSV keyword is supported.

To help keep your data secure in transit within the AWS Cloud, Amazon Redshift uses hardware
accelerated SSL to communicate with Amazon S3 or Amazon DynamoDB for COPY, UNLOAD,
backup, and restore operations.

When you load your table directly from an Amazon DynamoDB table, you have the option to
control the amount of Amazon DynamoDB provisioned throughput you consume.

You can optionally let COPY analyze your input data and automatically apply optimal compression
encodings to your table as part of the load process.

Credentials and access permissions

To load or unload data using another AWS resource, such as Amazon S3, Amazon DynamoDB,
Amazon EMR, or Amazon EC2, your cluster must have permission to access the resource and
perform the necessary actions to access the data. For example, to load data from Amazon S3, COPY
must have LIST access to the bucket and GET access for the bucket objects.

To obtain authorization to access a resource, your cluster must be authenticated. You can choose
either role-based access control or key-based access control. This section presents an overview
of the two methods. For complete details and examples, see Permissions to access other AWS
Resources.

Credentials and access permissions 105

Amazon Redshift Database Developer Guide

Role-based access control

With role-based access control, your cluster temporarily assumes an AWS Identity and Access
Management (IAM) role on your behalf. Then, based on the authorizations granted to the role, your
cluster can access the required AWS resources.

We recommend using role-based access control because it is provides more secure, fine-grained
control of access to AWS resources and sensitive user data, in addition to safeguarding your AWS
credentials.

To use role-based access control, you must first create an IAM role using the Amazon Redshift
service role type, and then attach the role to your cluster. The role must have, at a minimum, the
permissions listed in IAM permissions for COPY, UNLOAD, and CREATE LIBRARY. For steps to create
an IAM role and attach it to your cluster, see Creating an IAM Role to Allow Your Amazon Redshift
Cluster to Access AWS Services in the Amazon Redshift Management Guide.

You can add a role to a cluster or view the roles associated with a cluster by using the Amazon
Redshift Management Console, CLI, or API. For more information, see Authorizing COPY and
UNLOAD Operations Using IAM Roles in the Amazon Redshift Management Guide.

When you create an IAM role, IAM returns an Amazon Resource Name (ARN) for the role. To run
a COPY command using an IAM role, provide the role ARN using the IAM_ROLE parameter or the
CREDENTIALS parameter.

The following COPY command example uses IAM_ROLE parameter with the role MyRedshiftRole
for authentication.

copy customer from 's3://mybucket/mydata'
iam_role 'arn:aws:iam::12345678901:role/MyRedshiftRole';

The AWS user must have, at a minimum, the permissions listed in IAM permissions for COPY,
UNLOAD, and CREATE LIBRARY.

Key-based access control

With key-based access control, you provide the access key ID and secret access key for a user that is
authorized to access the AWS resources that contain the data.

Credentials and access permissions 106

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-creating-an-iam-role
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-creating-an-iam-role
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html

Amazon Redshift Database Developer Guide

Note

We strongly recommend using an IAM role for authentication instead of supplying a plain-
text access key ID and secret access key. If you choose key-based access control, never use
your AWS account (root) credentials. Always create an IAM user and provide that user's
access key ID and secret access key. For steps to create an IAM user, see Creating an IAM
User in Your AWS Account.

Preparing your input data

If your input data is not compatible with the table columns that will receive it, the COPY command
will fail.

Use the following guidelines to help ensure that your input data is valid:

• Your data can only contain UTF-8 characters up to four bytes long.

• Verify that CHAR and VARCHAR strings are no longer than the lengths of the corresponding
columns. VARCHAR strings are measured in bytes, not characters, so, for example, a four-
character string of Chinese characters that occupy four bytes each requires a VARCHAR(16)
column.

• Multibyte characters can only be used with VARCHAR columns. Verify that multibyte characters
are no more than four bytes long.

• Verify that data for CHAR columns only contains single-byte characters.

• Do not include any special characters or syntax to indicate the last field in a record. This field can
be a delimiter.

• If your data includes null terminators, also referred to as NUL (UTF-8 0000) or binary zero
(0x000), you can load these characters as NULLS into CHAR or VARCHAR columns by using the
NULL AS option in the COPY command: null as '\0' or null as '\000' . If you do not use
NULL AS, null terminators will cause your COPY to fail.

• If your strings contain special characters, such as delimiters and embedded newlines, use the
ESCAPE option with the COPY command.

• Verify that all single and double quotation marks are appropriately matched.

• Verify that floating-point strings are in either standard floating-point format, such as 12.123, or
an exponential format, such as 1.0E4.

Preparing your input data 107

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

Amazon Redshift Database Developer Guide

• Verify that all timestamp and date strings follow the specifications for DATEFORMAT and
TIMEFORMAT strings. The default timestamp format is YYYY-MM-DD hh:mm:ss, and the default
date format is YYYY-MM-DD.

• For more information about boundaries and limitations on individual data types, see Data types.
For information about multibyte character errors, see Multibyte character load errors

Loading data from Amazon S3

Topics

• Loading data from compressed and uncompressed files

• Uploading files to Amazon S3

• Using the COPY command to load from Amazon S3

The COPY command leverages the Amazon Redshift massively parallel processing (MPP)
architecture to read and load data in parallel from a file or multiple files in an Amazon S3 bucket.
You can take maximum advantage of parallel processing by splitting your data into multiple files,
in cases where the files are compressed. (There are exceptions to this rule. These are detailed
in Loading data files.) You can also take maximum advantage of parallel processing by setting
distribution keys on your tables. For more information about distribution keys, see Working with
data distribution styles.

Data is loaded into the target table, one line per row. The fields in the data file are matched
to table columns in order, left to right. Fields in the data files can be fixed-width or character
delimited; the default delimiter is a pipe (|). By default, all the table columns are loaded, but you
can optionally define a comma-separated list of columns. If a table column is not included in the
column list specified in the COPY command, it is loaded with a default value. For more information,
see Loading default column values.

Loading data from compressed and uncompressed files

When you load compressed data, we recommend that you split the data for each table into
multiple files. When you load uncompressed, delimited data, the COPY command uses massively
parallel processing (MPP) and scan ranges to load data from large files in an Amazon S3 bucket.

Loading data from Amazon S3 108

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-use-multiple-files.html

Amazon Redshift Database Developer Guide

Loading data from multiple compressed files

In cases where you have compressed data, we recommend that you split the data for each table
into multiple files. The COPY command can load data from multiple files in parallel. You can load
multiple files by specifying a common prefix, or prefix key, for the set, or by explicitly listing the
files in a manifest file.

Split your data into files so that the number of files is a multiple of the number of slices in your
cluster. That way, Amazon Redshift can divide the data evenly among the slices. The number of
slices per node depends on the node size of the cluster. For example, each dc2.large compute node
has two slices, and each dc2.8xlarge compute node has 16 slices. For more information about the
number of slices that each node size has, see About clusters and nodes in the Amazon Redshift
Management Guide.

The nodes all participate in running parallel queries, working on data that is distributed as evenly
as possible across the slices. If you have a cluster with two dc2.large nodes, you might split your
data into four files or some multiple of four. Amazon Redshift doesn't take file size into account
when dividing the workload. Thus, you need to ensure that the files are roughly the same size, from
1 MB to 1 GB after compression.

To use object prefixes to identify the load files, name each file with a common prefix. For example,
you might split the venue.txt file might be split into four files, as follows.

venue.txt.1
venue.txt.2
venue.txt.3
venue.txt.4

If you put multiple files in a folder in your bucket and specify the folder name as the prefix, COPY
loads all of the files in the folder. If you explicitly list the files to be loaded by using a manifest file,
the files can reside in different buckets or folders.

For more information about manifest files, see Example: COPY from Amazon S3 using a manifest.

Loading data from uncompressed, delimited files

When you load uncompressed, delimited data, the COPY command uses the massively parallel
processing (MPP) architecture in Amazon Redshift. Amazon Redshift automatically uses slices
working in parallel to load ranges of data from a large file in an Amazon S3 bucket. The file must
be delimited for parallel loading to occur. For example, pipe delimited. Automatic, parallel data

Loading data from Amazon S3 109

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

loading with the COPY command is also available for CSV files. You can also take advantage
of parallel processing by setting distribution keys on your tables. For more information about
distribution keys, see Working with data distribution styles.

Automatic, parallel data loading isn't supported when the COPY query includes any of the
following keywords: ESCAPE, REMOVEQUOTES, and FIXEDWIDTH.

Data from the file or files is loaded into the target table, one line per row. The fields in the data
file are matched to table columns in order, left to right. Fields in the data files can be fixed-width
or character delimited; the default delimiter is a pipe (|). By default, all the table columns are
loaded, but you can optionally define a comma-separated list of columns. If a table column isn't
included in the column list specified in the COPY command, it's loaded with a default value. For
more information, see Loading default column values.

Follow this general process to load data from Amazon S3, when your data is uncompressed and
delimited:

1. Upload your files to Amazon S3.

2. Run a COPY command to load the table.

3. Verify that the data was loaded correctly.

For examples of COPY commands, see COPY examples. For information about data loaded into
Amazon Redshift, check the STL_LOAD_COMMITS and STL_LOAD_ERRORS system tables.

For more information about nodes and the slices contained in each, see About clusters and nodes
in the Amazon Redshift Management Guide.

Uploading files to Amazon S3

Topics

• Managing data consistency

• Uploading encrypted data to Amazon S3

• Verifying that the correct files are present in your bucket

There are a couple approaches to take when uploading text files to Amazon S3:

• If you have compressed files, we recommend that you split large files to take advantage of
parallel processing in Amazon Redshift.

Loading data from Amazon S3 110

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

• On the other hand, COPY automatically splits large, uncompressed, text-delimited file data to
facilitate parallelism and effectively distribute the data from large files.

Create an Amazon S3 bucket to hold your data files, and then upload the data files to the bucket.
For information about creating buckets and uploading files, see Working with Amazon S3 Buckets
in the Amazon Simple Storage Service User Guide.

Important

The Amazon S3 bucket that holds the data files must be created in the same AWS Region as
your cluster unless you use the REGION option to specify the Region in which the Amazon
S3 bucket is located.

Ensure that the S3 IP ranges are added to your allowlist. To learn more about the required S3 IP
ranges, see Network isolation.

You can create an Amazon S3 bucket in a specific Region either by selecting the Region when you
create the bucket by using the Amazon S3 console, or by specifying an endpoint when you create
the bucket using the Amazon S3 API or CLI.

Following the data load, verify that the correct files are present on Amazon S3.

Managing data consistency

Amazon S3 provides strong read-after-write consistency for COPY, UNLOAD, INSERT (external
table), CREATE EXTERNAL TABLE AS, and Amazon Redshift Spectrum operations on Amazon S3
buckets in all AWS Regions. In addition, read operations on Amazon S3 Select, Amazon S3 Access
Control Lists, Amazon S3 Object Tags, and object metadata (for example, HEAD object) are strongly
consistent. For more information about data consistency, see Amazon S3 Data Consistency Model
in the Amazon Simple Storage Service User Guide.

Uploading encrypted data to Amazon S3

Amazon S3 supports both server-side encryption and client-side encryption. This topic discusses
the differences between the server-side and client-side encryption and describes the steps to use
client-side encryption with Amazon Redshift. Server-side encryption is transparent to Amazon
Redshift.

Loading data from Amazon S3 111

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://docs.aws.amazon.com/redshift/latest/mgmt/security-network-isolation.html#network-isolation
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel

Amazon Redshift Database Developer Guide

Server-side encryption

Server-side encryption is data encryption at rest—that is, Amazon S3 encrypts your data as
it uploads it and decrypts it for you when you access it. When you load tables using a COPY
command, there is no difference in the way you load from server-side encrypted or unencrypted
objects on Amazon S3. For more information about server-side encryption, see Using Server-Side
Encryption in the Amazon Simple Storage Service User Guide.

Client-side encryption

In client-side encryption, your client application manages encryption of your data, the encryption
keys, and related tools. You can upload data to an Amazon S3 bucket using client-side encryption,
and then load the data using the COPY command with the ENCRYPTED option and a private
encryption key to provide greater security.

You encrypt your data using envelope encryption. With envelope encryption, your application
handles all encryption exclusively. Your private encryption keys and your unencrypted data are
never sent to AWS, so it's very important that you safely manage your encryption keys. If you
lose your encryption keys, you won't be able to unencrypt your data, and you can't recover your
encryption keys from AWS. Envelope encryption combines the performance of fast symmetric
encryption while maintaining the greater security that key management with asymmetric keys
provides. A one-time-use symmetric key (the envelope symmetric key) is generated by your
Amazon S3 encryption client to encrypt your data, then that key is encrypted by your root key
and stored alongside your data in Amazon S3. When Amazon Redshift accesses your data during a
load, the encrypted symmetric key is retrieved and decrypted with your real key, then the data is
decrypted.

To work with Amazon S3 client-side encrypted data in Amazon Redshift, follow the steps outlined
in Protecting Data Using Client-Side Encryption in the Amazon Simple Storage Service User Guide,
with the additional requirements that you use:

• Symmetric encryption – The AWS SDK for Java AmazonS3EncryptionClient class uses
envelope encryption, described preceding, which is based on symmetric key encryption. Use this
class to create an Amazon S3 client to upload client-side encrypted data.

• A 256-bit AES root symmetric key – A root key encrypts the envelope key. You pass the root
key to your instance of the AmazonS3EncryptionClient class. Save this key, because you will
need it to copy data into Amazon Redshift.

Loading data from Amazon S3 112

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

Amazon Redshift Database Developer Guide

• Object metadata to store encrypted envelope key – By default, Amazon S3 stores the envelope
key as object metadata for the AmazonS3EncryptionClient class. The encrypted envelope
key that is stored as object metadata is used during the decryption process.

Note

If you get a cipher encryption error message when you use the encryption API for
the first time, your version of the JDK may have a Java Cryptography Extension (JCE)
jurisdiction policy file that limits the maximum key length for encryption and decryption
transformations to 128 bits. For information about addressing this issue, go to Specifying
Client-Side Encryption Using the AWS SDK for Java in the Amazon Simple Storage Service
User Guide.

For information about loading client-side encrypted files into your Amazon Redshift tables using
the COPY command, see Loading encrypted data files from Amazon S3.

Example: Uploading client-side encrypted data

For an example of how to use the AWS SDK for Java to upload client-side encrypted data, go to
Protecting data using client-side encryption in the Amazon Simple Storage Service User Guide.

The second option shows the choices you must make during client-side encryption so that the data
can be loaded in Amazon Redshift. Specifically, the example shows using object metadata to store
the encrypted envelope key and the use of a 256-bit AES root symmetric key.

This example provides example code using the AWS SDK for Java to create a 256-bit AES
symmetric root key and save it to a file. Then the example upload an object to Amazon S3 using an
S3 encryption client that first encrypts sample data on the client-side. The example also downloads
the object and verifies that the data is the same.

Verifying that the correct files are present in your bucket

After you upload your files to your Amazon S3 bucket, we recommend listing the contents of the
bucket to verify that all of the correct files are present and that no unwanted files are present. For
example, if the bucket mybucket holds a file named venue.txt.back, that file will be loaded,
perhaps unintentionally, by the following command:

copy venue from 's3://mybucket/venue' … ;

Loading data from Amazon S3 113

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryptionUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryptionUpload.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/encrypt-client-side-symmetric-master-key.html

Amazon Redshift Database Developer Guide

If you want to control specifically which files are loaded, you can use a manifest file to
explicitly list the data files. For more information about using a manifest file, see the
copy_from_s3_manifest_file option for the COPY command and Example: COPY from Amazon S3
using a manifest in the COPY examples.

For more information about listing the contents of the bucket, see Listing Object Keys in the
Amazon S3 Developer Guide.

Using the COPY command to load from Amazon S3

Topics

• Using a manifest to specify data files

• Loading compressed data files from Amazon S3

• Loading fixed-width data from Amazon S3

• Loading multibyte data from Amazon S3

• Loading encrypted data files from Amazon S3

Use the COPY command to load a table in parallel from data files on Amazon S3. You can specify
the files to be loaded by using an Amazon S3 object prefix or by using a manifest file.

The syntax to specify the files to be loaded by using a prefix is as follows:

copy <table_name> from 's3://<bucket_name>/<object_prefix>'
authorization;

The manifest file is a JSON-formatted file that lists the data files to be loaded. The syntax to
specify the files to be loaded by using a manifest file is as follows:

copy <table_name> from 's3://<bucket_name>/<manifest_file>'
authorization
manifest;

The table to be loaded must already exist in the database. For information about creating a table,
see CREATE TABLE in the SQL Reference.

The values for authorization provide the AWS authorization your cluster needs to access the
Amazon S3 objects. For information about required permissions, see IAM permissions for COPY,
UNLOAD, and CREATE LIBRARY. The preferred method for authentication is to specify the

Loading data from Amazon S3 114

https://docs.aws.amazon.com/AmazonS3/latest/dev/ListingKeysUsingAPIs.html

Amazon Redshift Database Developer Guide

IAM_ROLE parameter and provide the Amazon Resource Name (ARN) for an IAM role with the
necessary permissions. For more information, see Role-based access control .

To authenticate using the IAM_ROLE parameter, replace <aws-account-id> and <role-name>
as shown in the following syntax.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-name>'

The following example shows authentication using an IAM role.

copy customer
from 's3://mybucket/mydata'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

For more information about other authorization options, see Authorization parameters

If you want to validate your data without actually loading the table, use the NOLOAD option with
the COPY command.

The following example shows the first few rows of a pipe-delimited data in a file named
venue.txt.

1|Toyota Park|Bridgeview|IL|0
2|Columbus Crew Stadium|Columbus|OH|0
3|RFK Stadium|Washington|DC|0

Before uploading the file to Amazon S3, split the file into multiple files so that the COPY command
can load it using parallel processing. The number of files should be a multiple of the number of
slices in your cluster. Split your load data files so that the files are about equal size, between 1
MB and 1 GB after compression. For more information, see Loading data from compressed and
uncompressed files.

For example, the venue.txt file might be split into four files, as follows:

venue.txt.1
venue.txt.2
venue.txt.3
venue.txt.4

The following COPY command loads the VENUE table using the pipe-delimited data in the data
files with the prefix 'venue' in the Amazon S3 bucket mybucket.

Loading data from Amazon S3 115

Amazon Redshift Database Developer Guide

Note

The Amazon S3 bucket mybucket in the following examples does not exist. For sample
COPY commands that use real data in an existing Amazon S3 bucket, see Load sample data.

copy venue from 's3://mybucket/venue'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '|';

If no Amazon S3 objects with the key prefix 'venue' exist, the load fails.

Using a manifest to specify data files

You can use a manifest to make sure that the COPY command loads all of the required files,
and only the required files, for a data load. You can use a manifest to load files from different
buckets or files that do not share the same prefix. Instead of supplying an object path for the COPY
command, you supply the name of a JSON-formatted text file that explicitly lists the files to be
loaded. The URL in the manifest must specify the bucket name and full object path for the file, not
just a prefix.

For more information about manifest files, see the COPY example Using a manifest to specify data
files.

The following example shows the JSON to load files from different buckets and with file names
that begin with date stamps.

{
 "entries": [
 {"url":"s3://mybucket-alpha/2013-10-04-custdata", "mandatory":true},
 {"url":"s3://mybucket-alpha/2013-10-05-custdata", "mandatory":true},
 {"url":"s3://mybucket-beta/2013-10-04-custdata", "mandatory":true},
 {"url":"s3://mybucket-beta/2013-10-05-custdata", "mandatory":true}
]
}

The optional mandatory flag specifies whether COPY should return an error if the file is not found.
The default of mandatory is false. Regardless of any mandatory settings, COPY will terminate if
no files are found.

Loading data from Amazon S3 116

https://docs.aws.amazon.com/redshift/latest/gsg/cm-dev-t-load-sample-data.html

Amazon Redshift Database Developer Guide

The following example runs the COPY command with the manifest in the previous example, which
is named cust.manifest.

copy customer
from 's3://mybucket/cust.manifest'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
manifest;

Using a manifest created by UNLOAD

A manifest created by an UNLOAD operation using the MANIFEST parameter might have keys that
are not required for the COPY operation. For example, the following UNLOAD manifest includes a
meta key that is required for an Amazon Redshift Spectrum external table and for loading data
files in an ORC or Parquet file format. The meta key contains a content_length key with a value
that is the actual size of the file in bytes. The COPY operation requires only the url key and an
optional mandatory key.

{
 "entries": [
 {"url":"s3://mybucket/unload/manifest_0000_part_00", "meta": { "content_length":
 5956875 }},
 {"url":"s3://mybucket/unload/unload/manifest_0001_part_00", "meta":
 { "content_length": 5997091 }}
]
}

For more information about manifest files, see Example: COPY from Amazon S3 using a manifest.

Loading compressed data files from Amazon S3

To load data files that are compressed using gzip, lzop, or bzip2, include the corresponding option:
GZIP, LZOP, or BZIP2.

For example, the following command loads from files that were compressing using lzop.

copy customer from 's3://mybucket/customer.lzo'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '|' lzop;

Loading data from Amazon S3 117

Amazon Redshift Database Developer Guide

Note

If you compress a data file with lzop compression and use the --filter option, the COPY
command doesn't support it.

Loading fixed-width data from Amazon S3

Fixed-width data files have uniform lengths for each column of data. Each field in a fixed-width
data file has exactly the same length and position. For character data (CHAR and VARCHAR) in a
fixed-width data file, you must include leading or trailing spaces as placeholders in order to keep
the width uniform. For integers, you must use leading zeros as placeholders. A fixed-width data file
has no delimiter to separate columns.

To load a fixed-width data file into an existing table, USE the FIXEDWIDTH parameter in the COPY
command. Your table specifications must match the value of fixedwidth_spec in order for the data
to load correctly.

To load fixed-width data from a file to a table, issue the following command:

copy table_name from 's3://mybucket/prefix'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
fixedwidth 'fixedwidth_spec';

The fixedwidth_spec parameter is a string that contains an identifier for each column and the width
of each column, separated by a colon. The column:width pairs are delimited by commas. The
identifier can be anything that you choose: numbers, letters, or a combination of the two. The
identifier has no relation to the table itself, so the specification must contain the columns in the
same order as the table.

The following two examples show the same specification, with the first using numeric identifiers
and the second using string identifiers:

'0:3,1:25,2:12,3:2,4:6'

'venueid:3,venuename:25,venuecity:12,venuestate:2,venueseats:6'

The following example shows fixed-width sample data that could be loaded into the VENUE table
using the preceding specifications:

Loading data from Amazon S3 118

Amazon Redshift Database Developer Guide

1 Toyota Park Bridgeview IL0
2 Columbus Crew Stadium Columbus OH0
3 RFK Stadium Washington DC0
4 CommunityAmerica Ballpark Kansas City KS0
5 Gillette Stadium Foxborough MA68756

The following COPY command loads this data set into the VENUE table:

copy venue
from 's3://mybucket/data/venue_fw.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
fixedwidth 'venueid:3,venuename:25,venuecity:12,venuestate:2,venueseats:6';

Loading multibyte data from Amazon S3

If your data includes non-ASCII multibyte characters (such as Chinese or Cyrillic characters), you
must load the data to VARCHAR columns. The VARCHAR data type supports four-byte UTF-8
characters, but the CHAR data type only accepts single-byte ASCII characters. You cannot load
five-byte or longer characters into Amazon Redshift tables. For more information about CHAR and
VARCHAR, see Data types.

To check which encoding an input file uses, use the Linux file command:

$ file ordersdata.txt
ordersdata.txt: ASCII English text
$ file uni_ordersdata.dat
uni_ordersdata.dat: UTF-8 Unicode text

Loading encrypted data files from Amazon S3

You can use the COPY command to load data files that were uploaded to Amazon S3 using server-
side encryption, client-side encryption, or both.

The COPY command supports the following types of Amazon S3 encryption:

• Server-side encryption with Amazon S3-managed keys (SSE-S3)

• Server-side encryption with AWS KMS keys (SSE-KMS)

• Client-side encryption using a client-side symmetric root key

Loading data from Amazon S3 119

Amazon Redshift Database Developer Guide

The COPY command doesn't support the following types of Amazon S3 encryption:

• Server-side encryption with customer-provided keys (SSE-C)

• Client-side encryption using an AWS KMS key

• Client-side encryption using a customer-provided asymmetric root key

For more information about Amazon S3 encryption, see Protecting Data Using Server-Side
Encryption and Protecting Data Using Client-Side Encryption in the Amazon Simple Storage
Service User Guide.

The UNLOAD command automatically encrypts files using SSE-S3. You can also unload using SSE-
KMS or client-side encryption with a customer managed symmetric key. For more information, see
Unloading encrypted data files

The COPY command automatically recognizes and loads files encrypted using SSE-S3 and SSE-
KMS. You can load files encrypted using a client-side symmetric root key by specifying the
ENCRYPTED option and providing the key value. For more information, see Uploading encrypted
data to Amazon S3.

To load client-side encrypted data files, provide the root key value using the
MASTER_SYMMETRIC_KEY parameter and include the ENCRYPTED option.

copy customer from 's3://mybucket/encrypted/customer'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
master_symmetric_key '<root_key>'
encrypted
delimiter '|';

To load encrypted data files that are gzip, lzop, or bzip2 compressed, include the GZIP, LZOP, or
BZIP2 option along with the root key value and the ENCRYPTED option.

copy customer from 's3://mybucket/encrypted/customer'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
master_symmetric_key '<root_key>'
encrypted
delimiter '|'
gzip;

Loading data from Amazon S3 120

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingClientSideEncryption.html

Amazon Redshift Database Developer Guide

Loading data from Amazon EMR

You can use the COPY command to load data in parallel from an Amazon EMR cluster configured
to write text files to the cluster's Hadoop Distributed File System (HDFS) as fixed-width files,
character-delimited files, CSV files, or JSON-formatted files.

Process for loading data from Amazon EMR

This section walks you through the process of loading data from an Amazon EMR cluster. The
following sections provide the details that you must accomplish each step.

• Step 1: Configure IAM permissions

The users that create the Amazon EMR cluster and run the Amazon Redshift COPY command
must have the necessary permissions.

• Step 2: Create an Amazon EMR cluster

Configure the cluster to output text files to the Hadoop Distributed File System (HDFS). You will
need the Amazon EMR cluster ID and the cluster's main public DNS (the endpoint for the Amazon
EC2 instance that hosts the cluster).

• Step 3: Retrieve the Amazon Redshift cluster public key and cluster node IP addresses

The public key enables the Amazon Redshift cluster nodes to establish SSH connections to the
hosts. You will use the IP address for each cluster node to configure the host security groups to
permit access from your Amazon Redshift cluster using these IP addresses.

• Step 4: Add the Amazon Redshift cluster public key to each Amazon EC2 host's authorized
keys file

You add the Amazon Redshift cluster public key to the host's authorized keys file so that the host
will recognize the Amazon Redshift cluster and accept the SSH connection.

• Step 5: Configure the hosts to accept all of the Amazon Redshift cluster's IP addresses

Modify the Amazon EMR instance's security groups to add input rules to accept the Amazon
Redshift IP addresses.

• Step 6: Run the COPY command to load the data

From an Amazon Redshift database, run the COPY command to load the data into an Amazon
Redshift table.

Loading data from Amazon EMR 121

Amazon Redshift Database Developer Guide

Step 1: Configure IAM permissions

The users that create the Amazon EMR cluster and run the Amazon Redshift COPY command must
have the necessary permissions.

To configure IAM permissions

1. Add the following permissions for the user that will create the Amazon EMR cluster.

ec2:DescribeSecurityGroups
ec2:RevokeSecurityGroupIngress
ec2:AuthorizeSecurityGroupIngress
redshift:DescribeClusters

2. Add the following permission for the IAM role or user that will run the COPY command.

elasticmapreduce:ListInstances

3. Add the following permission to the Amazon EMR cluster's IAM role.

redshift:DescribeClusters

Step 2: Create an Amazon EMR cluster

The COPY command loads data from files on the Amazon EMR Hadoop Distributed File System
(HDFS). When you create the Amazon EMR cluster, configure the cluster to output data files to the
cluster's HDFS.

To create an Amazon EMR cluster

1. Create an Amazon EMR cluster in the same AWS Region as the Amazon Redshift cluster.

If the Amazon Redshift cluster is in a VPC, the Amazon EMR cluster must be in the same VPC
group. If the Amazon Redshift cluster uses EC2-Classic mode (that is, it is not in a VPC), the
Amazon EMR cluster must also use EC2-Classic mode. For more information, see Managing
Clusters in Virtual Private Cloud (VPC) in the Amazon Redshift Management Guide.

2. Configure the cluster to output data files to the cluster's HDFS. The HDFS file names must not
include asterisks (*) or question marks (?).

Loading data from Amazon EMR 122

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html

Amazon Redshift Database Developer Guide

Important

The file names must not include asterisks (*) or question marks (?).

3. Specify No for the Auto-terminate option in the Amazon EMR cluster configuration so that the
cluster remains available while the COPY command runs.

Important

If any of the data files are changed or deleted before the COPY completes, you might
have unexpected results, or the COPY operation might fail.

4. Note the cluster ID and the main public DNS (the endpoint for the Amazon EC2 instance that
hosts the cluster). You will use that information in later steps.

Step 3: Retrieve the Amazon Redshift cluster public key and cluster node IP
addresses

To retrieve the Amazon Redshift cluster public key and cluster node IP addresses for your
cluster using the console

1. Access the Amazon Redshift Management Console.

2. Choose the Clusters link in the navigation pane.

3. Select your cluster from the list.

4. Locate the SSH Ingestion Settings group.

Note the Cluster Public Key and Node IP addresses. You will use them in later steps.

Loading data from Amazon EMR 123

Amazon Redshift Database Developer Guide

You will use the private IP addresses in Step 3 to configure the Amazon EC2 host to accept the
connection from Amazon Redshift.

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift CLI, run the describe-clusters command. For example:

aws redshift describe-clusters --cluster-identifier <cluster-identifier>

The response will include a ClusterPublicKey value and the list of private and public IP addresses,
similar to the following:

{
 "Clusters": [
 {
 "VpcSecurityGroups": [],
 "ClusterStatus": "available",
 "ClusterNodes": [
 {
 "PrivateIPAddress": "10.nnn.nnn.nnn",

Loading data from Amazon EMR 124

Amazon Redshift Database Developer Guide

 "NodeRole": "LEADER",
 "PublicIPAddress": "10.nnn.nnn.nnn"
 },
 {
 "PrivateIPAddress": "10.nnn.nnn.nnn",
 "NodeRole": "COMPUTE-0",
 "PublicIPAddress": "10.nnn.nnn.nnn"
 },
 {
 "PrivateIPAddress": "10.nnn.nnn.nnn",
 "NodeRole": "COMPUTE-1",
 "PublicIPAddress": "10.nnn.nnn.nnn"
 }
],
 "AutomatedSnapshotRetentionPeriod": 1,
 "PreferredMaintenanceWindow": "wed:05:30-wed:06:00",
 "AvailabilityZone": "us-east-1a",
 "NodeType": "dc2.large",
 "ClusterPublicKey": "ssh-rsa AAAABexamplepublickey...Y3TAl Amazon-
Redshift",
 ...
 ...
}

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift API, use the DescribeClusters action. For more information, see describe-clusters in
the Amazon Redshift CLI Guide or DescribeClusters in the Amazon Redshift API Guide.

Step 4: Add the Amazon Redshift cluster public key to each Amazon EC2 host's
authorized keys file

You add the cluster public key to each host's authorized keys file for all of the Amazon EMR cluster
nodes so that the hosts will recognize Amazon Redshift and accept the SSH connection.

To add the Amazon Redshift cluster public key to the host's authorized keys file

1. Access the host using an SSH connection.

For information about connecting to an instance using SSH, see Connect to Your Instance in
the Amazon EC2 User Guide.

2. Copy the Amazon Redshift public key from the console or from the CLI response text.

Loading data from Amazon EMR 125

https://docs.aws.amazon.com/cli/latest/reference/redshift/describe-clusters.html
https://docs.aws.amazon.com/redshift/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html

Amazon Redshift Database Developer Guide

3. Copy and paste the contents of the public key into the /home/<ssh_username>/.ssh/
authorized_keys file on the host. Include the complete string, including the prefix "ssh-
rsa " and suffix "Amazon-Redshift". For example:

ssh-rsa AAAACTP3isxgGzVWoIWpbVvRCOzYdVifMrh… uA70BnMHCaMiRdmvsDOedZDOedZ Amazon-
Redshift

Step 5: Configure the hosts to accept all of the Amazon Redshift cluster's IP
addresses

To allow inbound traffic to the host instances, edit the security group and add one Inbound rule for
each Amazon Redshift cluster node. For Type, select SSH with TCP protocol on Port 22. For Source,
enter the Amazon Redshift cluster node private IP addresses you retrieved in Step 3: Retrieve the
Amazon Redshift cluster public key and cluster node IP addresses. For information about adding
rules to an Amazon EC2 security group, see Authorizing Inbound Traffic for Your Instances in the
Amazon EC2 User Guide.

Step 6: Run the COPY command to load the data

Run a COPY command to connect to the Amazon EMR cluster and load the data into an Amazon
Redshift table. The Amazon EMR cluster must continue running until the COPY command
completes. For example, do not configure the cluster to auto-terminate.

Important

If any of the data files are changed or deleted before the COPY completes, you might have
unexpected results, or the COPY operation might fail.

In the COPY command, specify the Amazon EMR cluster ID and the HDFS file path and file name.

copy sales
from 'emr://myemrclusterid/myoutput/part*' credentials
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

You can use the wildcard characters asterisk (*) and question mark (?) as part of the file name
argument. For example, part* loads the files part-0000, part-0001, and so on. If you specify
only a folder name, COPY attempts to load all files in the folder.

Loading data from Amazon EMR 126

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html

Amazon Redshift Database Developer Guide

Important

If you use wildcard characters or use only the folder name, verify that no unwanted files
will be loaded or the COPY command will fail. For example, some processes might write a
log file to the output folder.

Loading data from remote hosts

You can use the COPY command to load data in parallel from one or more remote hosts, such as
Amazon EC2 instances or other computers. COPY connects to the remote hosts using SSH and runs
commands on the remote hosts to generate text output.

The remote host can be an Amazon EC2 Linux instance or another Unix or Linux computer
configured to accept SSH connections. This guide assumes your remote host is an Amazon EC2
instance. Where the procedure is different for another computer, the guide will point out the
difference.

Amazon Redshift can connect to multiple hosts, and can open multiple SSH connections to each
host. Amazon Redshifts sends a unique command through each connection to generate text output
to the host's standard output, which Amazon Redshift then reads as it would a text file.

Before you begin

Before you begin, you should have the following in place:

• One or more host machines, such as Amazon EC2 instances, that you can connect to using SSH.

• Data sources on the hosts.

You will provide commands that the Amazon Redshift cluster will run on the hosts to generate
the text output. After the cluster connects to a host, the COPY command runs the commands,
reads the text from the hosts' standard output, and loads the data in parallel into an Amazon
Redshift table. The text output must be in a form that the COPY command can ingest. For more
information, see Preparing your input data

• Access to the hosts from your computer.

For an Amazon EC2 instance, you will use an SSH connection to access the host. You must access
the host to add the Amazon Redshift cluster's public key to the host's authorized keys file.

Loading data from remote hosts 127

Amazon Redshift Database Developer Guide

• A running Amazon Redshift cluster.

For information about how to launch a cluster, see Amazon Redshift Getting Started Guide.

Loading data process

This section walks you through the process of loading data from remote hosts. The following
sections provide the details that that you must accomplish in each step.

• Step 1: Retrieve the cluster public key and cluster node IP addresses

The public key enables the Amazon Redshift cluster nodes to establish SSH connections to the
remote hosts. You will use the IP address for each cluster node to configure the host security
groups or firewall to permit access from your Amazon Redshift cluster using these IP addresses.

• Step 2: Add the Amazon Redshift cluster public key to the host's authorized keys file

You add the Amazon Redshift cluster public key to the host's authorized keys file so that the host
will recognize the Amazon Redshift cluster and accept the SSH connection.

• Step 3: Configure the host to accept all of the Amazon Redshift cluster's IP addresses

For Amazon EC2, modify the instance's security groups to add input rules to accept the Amazon
Redshift IP addresses. For other hosts, modify the firewall so that your Amazon Redshift nodes
are able to establish SSH connections to the remote host.

• Step 4: Get the public key for the host

You can optionally specify that Amazon Redshift should use the public key to identify the host.
You must locate the public key and copy the text into your manifest file.

• Step 5: Create a manifest file

The manifest is a JSON-formatted text file with the details Amazon Redshift needs to connect to
the hosts and fetch the data.

• Step 6: Upload the manifest file to an Amazon S3 bucket

Amazon Redshift reads the manifest and uses that information to connect to the remote host. If
the Amazon S3 bucket does not reside in the same Region as your Amazon Redshift cluster, you
must use the REGION option to specify the Region in which the data is located.

• Step 7: Run the COPY command to load the data

Loading data from remote hosts 128

https://docs.aws.amazon.com/redshift/latest/gsg/

Amazon Redshift Database Developer Guide

From an Amazon Redshift database, run the COPY command to load the data into an Amazon
Redshift table.

Step 1: Retrieve the cluster public key and cluster node IP addresses

To retrieve the cluster public key and cluster node IP addresses for your cluster using the
console

1. Access the Amazon Redshift Management Console.

2. Choose the Clusters link in the navigation pane.

3. Select your cluster from the list.

4. Locate the SSH Ingestion Settings group.

Note the Cluster Public Key and Node IP addresses. You will use them in later steps.

You will use the IP addresses in Step 3 to configure the host to accept the connection from
Amazon Redshift. Depending on what type of host you connect to and whether it is in a VPC,
you will use either the public IP addresses or the private IP addresses.

Loading data from remote hosts 129

Amazon Redshift Database Developer Guide

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift CLI, run the describe-clusters command.

For example:

aws redshift describe-clusters --cluster-identifier <cluster-identifier>

The response will include the ClusterPublicKey and the list of private and public IP addresses,
similar to the following:

{
 "Clusters": [
 {
 "VpcSecurityGroups": [],
 "ClusterStatus": "available",
 "ClusterNodes": [
 {
 "PrivateIPAddress": "10.nnn.nnn.nnn",
 "NodeRole": "LEADER",
 "PublicIPAddress": "10.nnn.nnn.nnn"
 },
 {
 "PrivateIPAddress": "10.nnn.nnn.nnn",
 "NodeRole": "COMPUTE-0",
 "PublicIPAddress": "10.nnn.nnn.nnn"
 },
 {
 "PrivateIPAddress": "10.nnn.nnn.nnn",
 "NodeRole": "COMPUTE-1",
 "PublicIPAddress": "10.nnn.nnn.nnn"
 }
],
 "AutomatedSnapshotRetentionPeriod": 1,
 "PreferredMaintenanceWindow": "wed:05:30-wed:06:00",
 "AvailabilityZone": "us-east-1a",
 "NodeType": "dc2.large",
 "ClusterPublicKey": "ssh-rsa AAAABexamplepublickey...Y3TAl Amazon-
Redshift",
 ...
 ...
}

Loading data from remote hosts 130

Amazon Redshift Database Developer Guide

To retrieve the cluster public key and cluster node IP addresses for your cluster using the Amazon
Redshift API, use the DescribeClusters action. For more information, see describe-clusters in the
Amazon Redshift CLI Guide or DescribeClusters in the Amazon Redshift API Guide.

Step 2: Add the Amazon Redshift cluster public key to the host's authorized keys
file

You add the cluster public key to each host's authorized keys file so that the host will recognize
Amazon Redshift and accept the SSH connection.

To add the Amazon Redshift cluster public key to the host's authorized keys file

1. Access the host using an SSH connection.

For information about connecting to an instance using SSH, see Connect to Your Instance in
the Amazon EC2 User Guide.

2. Copy the Amazon Redshift public key from the console or from the CLI response text.

3. Copy and paste the contents of the public key into the /home/<ssh_username>/.ssh/
authorized_keys file on the remote host. The <ssh_username> must match the value
for the "username" field in the manifest file. Include the complete string, including the prefix
"ssh-rsa " and suffix "Amazon-Redshift". For example:

ssh-rsa AAAACTP3isxgGzVWoIWpbVvRCOzYdVifMrh… uA70BnMHCaMiRdmvsDOedZDOedZ Amazon-
Redshift

Step 3: Configure the host to accept all of the Amazon Redshift cluster's IP
addresses

If you are working with an Amazon EC2 instance or an Amazon EMR cluster, add Inbound rules
to the host's security group to allow traffic from each Amazon Redshift cluster node. For Type,
select SSH with TCP protocol on Port 22. For Source, enter the Amazon Redshift cluster node IP
addresses you retrieved in Step 1: Retrieve the cluster public key and cluster node IP addresses. For
information about adding rules to an Amazon EC2 security group, see Authorizing Inbound Traffic
for Your Instances in the Amazon EC2 User Guide.

Use the private IP addresses when:

Loading data from remote hosts 131

https://docs.aws.amazon.com/cli/latest/reference/redshift/describe-clusters.html
https://docs.aws.amazon.com/redshift/latest/APIReference/API_DescribeClusters.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-connect-to-instance-linux.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/authorizing-access-to-an-instance.html

Amazon Redshift Database Developer Guide

• You have an Amazon Redshift cluster that is not in a Virtual Private Cloud (VPC), and an Amazon
EC2 -Classic instance, both of which are in the same AWS Region.

• You have an Amazon Redshift cluster that is in a VPC, and an Amazon EC2 -VPC instance, both of
which are in the same AWS Region and in the same VPC.

Otherwise, use the public IP addresses.

For more information about using Amazon Redshift in a VPC, see Managing Clusters in Virtual
Private Cloud (VPC) in the Amazon Redshift Management Guide.

Step 4: Get the public key for the host

You can optionally provide the host's public key in the manifest file so that Amazon Redshift
can identify the host. The COPY command does not require the host public key but, for security
reasons, we strongly recommend using a public key to help prevent 'man-in-the-middle' attacks.

You can find the host's public key in the following location, where <ssh_host_rsa_key_name> is
the unique name for the host's public key:

: /etc/ssh/<ssh_host_rsa_key_name>.pub

Note

Amazon Redshift only supports RSA keys. We do not support DSA keys.

When you create your manifest file in Step 5, you will paste the text of the public key into the
"Public Key" field in the manifest file entry.

Step 5: Create a manifest file

The COPY command can connect to multiple hosts using SSH, and can create multiple SSH
connections to each host. COPY runs a command through each host connection, and then loads
the output from the commands in parallel into the table. The manifest file is a text file in JSON
format that Amazon Redshift uses to connect to the host. The manifest file specifies the SSH
host endpoints and the commands that are run on the hosts to return data to Amazon Redshift.
Optionally, you can include the host public key, the login user name, and a mandatory flag for each
entry.

Loading data from remote hosts 132

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html

Amazon Redshift Database Developer Guide

Create the manifest file on your local computer. In a later step, you upload the file to Amazon S3.

The manifest file is in the following format:

{
 "entries": [
 {"endpoint":"<ssh_endpoint_or_IP>",
 "command": "<remote_command>",
 "mandatory":true,
 "publickey": "<public_key>",
 "username": "<host_user_name>"},
 {"endpoint":"<ssh_endpoint_or_IP>",
 "command": "<remote_command>",
 "mandatory":true,
 "publickey": "<public_key>",
 "username": "host_user_name"}
]
}

The manifest file contains one "entries" construct for each SSH connection. Each entry represents a
single SSH connection. You can have multiple connections to a single host or multiple connections
to multiple hosts. The double quotation marks are required as shown, both for the field names and
the values. The only value that does not need double quotation marks is the Boolean value true or
false for the mandatory field.

The following describes the fields in the manifest file.

endpoint

The URL address or IP address of the host. For example,
"ec2-111-222-333.compute-1.amazonaws.com" or "22.33.44.56"

command

The command that will be run by the host to generate text or binary (gzip, lzop, or bzip2)
output. The command can be any command that the user "host_user_name" has permission to
run. The command can be as simple as printing a file, or it could query a database or launch
a script. The output (text file, gzip binary file, lzop binary file, or bzip2 binary file) must be in
a form the Amazon Redshift COPY command can ingest. For more information, see Preparing
your input data.

Loading data from remote hosts 133

Amazon Redshift Database Developer Guide

publickey

(Optional) The public key of the host. If provided, Amazon Redshift will use the public key
to identify the host. If the public key is not provided, Amazon Redshift will not attempt host
identification. For example, if the remote host's public key is: ssh-rsa AbcCbaxxx…xxxDHKJ
root@amazon.com, enter the following text in the public key field: AbcCbaxxx…xxxDHKJ.

mandatory

(Optional) Indicates whether the COPY command should fail if the connection fails. The default
is false. If Amazon Redshift does not successfully make at least one connection, the COPY
command fails.

username

(Optional) The username that will be used to log on to the host system and run the remote
command. The user login name must be the same as the login that was used to add the public
key to the host's authorized keys file in Step 2. The default username is "redshift".

The following example shows a completed manifest to open four connections to the same host and
run a different command through each connection:

{
 "entries": [
 {"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
 "command": "cat loaddata1.txt",
 "mandatory":true,
 "publickey": "ec2publickeyportionoftheec2keypair",
 "username": "ec2-user"},
 {"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
 "command": "cat loaddata2.txt",
 "mandatory":true,
 "publickey": "ec2publickeyportionoftheec2keypair",
 "username": "ec2-user"},
 {"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
 "command": "cat loaddata3.txt",
 "mandatory":true,
 "publickey": "ec2publickeyportionoftheec2keypair",
 "username": "ec2-user"},
 {"endpoint":"ec2-184-72-204-112.compute-1.amazonaws.com",
 "command": "cat loaddata4.txt",
 "mandatory":true,

Loading data from remote hosts 134

Amazon Redshift Database Developer Guide

 "publickey": "ec2publickeyportionoftheec2keypair",
 "username": "ec2-user"}
]
}

Step 6: Upload the manifest file to an Amazon S3 bucket

Upload the manifest file to an Amazon S3 bucket. If the Amazon S3 bucket does not reside in the
same AWS Region as your Amazon Redshift cluster, you must use the REGION option to specify the
AWS Region in which the manifest is located. For information about creating an Amazon S3 bucket
and uploading a file, see Amazon Simple Storage Service User Guide.

Step 7: Run the COPY command to load the data

Run a COPY command to connect to the host and load the data into an Amazon Redshift table. In
the COPY command, specify the explicit Amazon S3 object path for the manifest file and include
the SSH option. For example,

copy sales
from 's3://mybucket/ssh_manifest'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '|'
ssh;

Note

If you use automatic compression, the COPY command performs two data reads, which
means it runs the remote command twice. The first read is to provide a sample for
compression analysis, then the second read actually loads the data. If running the remote
command twice might cause a problem because of potential side effects, you should turn
off automatic compression. To turn off automatic compression, run the COPY command
with the COMPUPDATE option set to OFF. For more information, see Loading tables with
automatic compression.

Loading data from an Amazon DynamoDB table

You can use the COPY command to load a table with data from a single Amazon DynamoDB table.

Loading from Amazon DynamoDB 135

https://docs.aws.amazon.com/AmazonS3/latest/gsg/

Amazon Redshift Database Developer Guide

Important

The Amazon DynamoDB table that provides the data must be created in the same AWS
Region as your cluster unless you use the REGION option to specify the AWS Region in
which the Amazon DynamoDB table is located.

The COPY command uses the Amazon Redshift massively parallel processing (MPP) architecture
to read and load data in parallel from an Amazon DynamoDB table. You can take maximum
advantage of parallel processing by setting distribution styles on your Amazon Redshift tables. For
more information, see Working with data distribution styles.

Important

When the COPY command reads data from the Amazon DynamoDB table, the resulting
data transfer is part of that table's provisioned throughput.

To avoid consuming excessive amounts of provisioned read throughput, we recommend that you
not load data from Amazon DynamoDB tables that are in production environments. If you do load
data from production tables, we recommend that you set the READRATIO option much lower than
the average percentage of unused provisioned throughput. A low READRATIO setting will help
minimize throttling issues. To use the entire provisioned throughput of an Amazon DynamoDB
table, set READRATIO to 100.

The COPY command matches attribute names in the items retrieved from the DynamoDB table to
column names in an existing Amazon Redshift table by using the following rules:

• Amazon Redshift table columns are case-insensitively matched to Amazon DynamoDB item
attributes. If an item in the DynamoDB table contains multiple attributes that differ only in case,
such as Price and PRICE, the COPY command will fail.

• Amazon Redshift table columns that do not match an attribute in the Amazon DynamoDB table
are loaded as either NULL or empty, depending on the value specified with the EMPTYASNULL
option in the COPY command.

• Amazon DynamoDB attributes that do not match a column in the Amazon Redshift table
are discarded. Attributes are read before they are matched, and so even discarded attributes
consume part of that table's provisioned throughput.

Loading from Amazon DynamoDB 136

Amazon Redshift Database Developer Guide

• Only Amazon DynamoDB attributes with scalar STRING and NUMBER data types are supported.
The Amazon DynamoDB BINARY and SET data types are not supported. If a COPY command tries
to load an attribute with an unsupported data type, the command will fail. If the attribute does
not match an Amazon Redshift table column, COPY does not attempt to load it, and it does not
raise an error.

The COPY command uses the following syntax to load data from an Amazon DynamoDB table:

copy <redshift_tablename> from 'dynamodb://<dynamodb_table_name>'
authorization
readratio '<integer>';

The values for authorization are the AWS credentials needed to access the Amazon DynamoDB
table. If these credentials correspond to a user, that user must have permission to SCAN and
DESCRIBE the Amazon DynamoDB table that is being loaded.

The values for authorization provide the AWS authorization your cluster needs to access the
Amazon DynamoDB table. The permission must include SCAN and DESCRIBE for the Amazon
DynamoDB table that is being loaded. For more information about required permissions, see IAM
permissions for COPY, UNLOAD, and CREATE LIBRARY. The preferred method for authentication is
to specify the IAM_ROLE parameter and provide the Amazon Resource Name (ARN) for an IAM role
with the necessary permissions. For more information, see Role-based access control.

To authenticate using the IAM_ROLE parameter, <aws-account-id> and <role-name> as shown
in the following syntax.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-name>'

The following example shows authentication using an IAM role.

copy favoritemovies
from 'dynamodb://ProductCatalog'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

For more information about other authorization options, see Authorization parameters

If you want to validate your data without actually loading the table, use the NOLOAD option with
the COPY command.

Loading from Amazon DynamoDB 137

Amazon Redshift Database Developer Guide

The following example loads the FAVORITEMOVIES table with data from the DynamoDB table my-
favorite-movies-table. The read activity can consume up to 50% of the provisioned throughput.

copy favoritemovies from 'dynamodb://my-favorite-movies-table'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
readratio 50;

To maximize throughput, the COPY command loads data from an Amazon DynamoDB table in
parallel across the compute nodes in the cluster.

Provisioned throughput with automatic compression

By default, the COPY command applies automatic compression whenever you specify an empty
target table with no compression encoding. The automatic compression analysis initially samples a
large number of rows from the Amazon DynamoDB table. The sample size is based on the value of
the COMPROWS parameter. The default is 100,000 rows per slice.

After sampling, the sample rows are discarded and the entire table is loaded. As a result, many
rows are read twice. For more information about how automatic compression works, see Loading
tables with automatic compression.

Important

When the COPY command reads data from the Amazon DynamoDB table, including the
rows used for sampling, the resulting data transfer is part of that table's provisioned
throughput.

Loading multibyte data from Amazon DynamoDB

If your data includes non-ASCII multibyte characters (such as Chinese or Cyrillic characters), you
must load the data to VARCHAR columns. The VARCHAR data type supports four-byte UTF-8
characters, but the CHAR data type only accepts single-byte ASCII characters. You cannot load
five-byte or longer characters into Amazon Redshift tables. For more information about CHAR and
VARCHAR, see Data types.

Loading from Amazon DynamoDB 138

Amazon Redshift Database Developer Guide

Verifying that the data loaded correctly

After the load operation is complete, query the STL_LOAD_COMMITS system table to verify that
the expected files were loaded. Run the COPY command and load verification within the same
transaction so that if there is problem with the load you can roll back the entire transaction.

The following query returns entries for loading the tables in the TICKIT database:

select query, trim(filename) as filename, curtime, status
from stl_load_commits
where filename like '%tickit%' order by query;

 query | filename | curtime | status
-------+---------------------------+----------------------------+--------
 22475 | tickit/allusers_pipe.txt | 2013-02-08 20:58:23.274186 | 1
 22478 | tickit/venue_pipe.txt | 2013-02-08 20:58:25.070604 | 1
 22480 | tickit/category_pipe.txt | 2013-02-08 20:58:27.333472 | 1
 22482 | tickit/date2008_pipe.txt | 2013-02-08 20:58:28.608305 | 1
 22485 | tickit/allevents_pipe.txt | 2013-02-08 20:58:29.99489 | 1
 22487 | tickit/listings_pipe.txt | 2013-02-08 20:58:37.632939 | 1
 22489 | tickit/sales_tab.txt | 2013-02-08 20:58:37.632939 | 1
(6 rows)

Validating input data

To validate the data in the Amazon S3 input files or Amazon DynamoDB table before you actually
load the data, use the NOLOAD option with the COPY command. Use NOLOAD with the same
COPY commands and options you would use to load the data. NOLOAD checks the integrity of all
of the data without loading it into the database. The NOLOAD option displays any errors that occur
if you attempt to load the data.

For example, if you specified the incorrect Amazon S3 path for the input file, Amazon Redshift
would display the following error.

ERROR: No such file or directory
DETAIL:

Amazon Redshift error: The specified key does not exist
code: 2
context: S3 key being read :
location: step_scan.cpp:1883

Verifying that the data loaded correctly 139

Amazon Redshift Database Developer Guide

process: xenmaster [pid=22199]

To troubleshoot error messages, see the Load error reference.

For an example using the NOLOAD option, see COPY command with the NOLOAD option.

Loading tables with automatic compression

Topics

• How automatic compression works

• Automatic compression example

You can apply compression encodings to columns in tables manually, based on your own
evaluation of the data. Or you can use the COPY command with COMPUPDATE set to ON to
analyze and apply compression automatically based on sample data.

You can use automatic compression when you create and load a brand new table. The COPY
command performs a compression analysis. You can also perform a compression analysis without
loading data or changing the compression on a table by running the ANALYZE COMPRESSION
command on an already populated table. For example, you can run ANALYZE COMPRESSION when
you want to analyze compression on a table for future use, while preserving the existing data
definition language (DDL) statements.

Automatic compression balances overall performance when choosing compression encodings.
Range-restricted scans might perform poorly if sort key columns are compressed much more highly
than other columns in the same query. As a result, automatic compression skips the data analyzing
phase on the sort key columns and keeps the user-defined encoding types.

Automatic compression chooses RAW encoding if you haven't explicitly defined a type of encoding.
ANALYZE COMPRESSION behaves the same. For optimal query performance, consider using RAW
for sort keys.

How automatic compression works

When the COMPUPDATE parameter is ON, the COPY command applies automatic compression
whenever you run the COPY command with an empty target table and all of the table columns
either have RAW encoding or no encoding.

Automatic compression 140

Amazon Redshift Database Developer Guide

To apply automatic compression to an empty table, regardless of its current compression
encodings, run the COPY command with the COMPUPDATE option set to ON. To turn off automatic
compression, run the COPY command with the COMPUPDATE option set to OFF.

You cannot apply automatic compression to a table that already contains data.

Note

Automatic compression analysis requires enough rows in the load data (at least 100,000
rows per slice) to generate a meaningful sample.

Automatic compression performs these operations in the background as part of the load
transaction:

1. An initial sample of rows is loaded from the input file. Sample size is based on the value of the
COMPROWS parameter. The default is 100,000.

2. Compression options are chosen for each column.

3. The sample rows are removed from the table.

4. The table is recreated with the chosen compression encodings.

5. The entire input file is loaded and compressed using the new encodings.

After you run the COPY command, the table is fully loaded, compressed, and ready for use. If you
load more data later, appended rows are compressed according to the existing encoding.

If you only want to perform a compression analysis, run ANALYZE COMPRESSION, which is more
efficient than running a full COPY. Then you can evaluate the results to decide whether to use
automatic compression or recreate the table manually.

Automatic compression is supported only for the COPY command. Alternatively, you can
manually apply compression encoding when you create the table. For information about manual
compression encoding, see Working with column compression.

Automatic compression example

In this example, assume that the TICKIT database contains a copy of the LISTING table called
BIGLIST, and you want to apply automatic compression to this table when it is loaded with
approximately 3 million rows.

Automatic compression 141

Amazon Redshift Database Developer Guide

To load and automatically compress the table

1. Make sure that the table is empty. You can apply automatic compression only to an empty
table:

truncate biglist;

2. Load the table with a single COPY command. Although the table is empty, some earlier
encoding might have been specified. To facilitate that Amazon Redshift performs a
compression analysis, set the COMPUPDATE parameter to ON.

copy biglist from 's3://mybucket/biglist.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '|' COMPUPDATE ON;

Because no COMPROWS option is specified, the default and recommended sample size of
100,000 rows per slice is used.

3. Look at the new schema for the BIGLIST table in order to review the automatically chosen
encoding schemes.

select "column", type, encoding
from pg_table_def where tablename = 'biglist';

 Column | Type | Encoding
----------------+-----------------------------+----------
 listid | integer | az64
 sellerid | integer | az64
 eventid | integer | az64
 dateid | smallint | none
 numtickets | smallint | az64
 priceperticket | numeric(8,2) | az64
 totalprice | numeric(8,2) | az64
 listtime | timestamp without time zone | az64

4. Verify that the expected number of rows were loaded:

select count(*) from biglist;

count

3079952

Automatic compression 142

Amazon Redshift Database Developer Guide

(1 row)

When rows are later appended to this table using COPY or INSERT statements, the same
compression encodings are applied.

Optimizing storage for narrow tables

If you have a table with very few columns but a very large number of rows, the three hidden
metadata identity columns (INSERT_XID, DELETE_XID, ROW_ID) will consume a disproportionate
amount of the disk space for the table.

In order to optimize compression of the hidden columns, load the table in a single COPY
transaction where possible. If you load the table with multiple separate COPY commands, the
INSERT_XID column will not compress well. You must perform a vacuum operation if you use
multiple COPY commands, but it will not improve compression of INSERT_XID.

Loading default column values

You can optionally define a column list in your COPY command. If a column in the table is omitted
from the column list, COPY will load the column with either the value supplied by the DEFAULT
option that was specified in the CREATE TABLE command, or with NULL if the DEFAULT option was
not specified.

If COPY attempts to assign NULL to a column that is defined as NOT NULL, the COPY command
fails. For information about assigning the DEFAULT option, see CREATE TABLE.

When loading from data files on Amazon S3, the columns in the column list must be in the same
order as the fields in the data file. If a field in the data file does not have a corresponding column in
the column list, the COPY command fails.

When loading from Amazon DynamoDB table, order does not matter. Any fields in the Amazon
DynamoDB attributes that do not match a column in the Amazon Redshift table are discarded.

The following restrictions apply when using the COPY command to load DEFAULT values into a
table:

• If an IDENTITY column is included in the column list, the EXPLICIT_IDS option must also be
specified in the COPY command, or the COPY command will fail. Similarly, if an IDENTITY column
is omitted from the column list, and the EXPLICIT_IDS option is specified, the COPY operation
will fail.

Optimizing for narrow tables 143

Amazon Redshift Database Developer Guide

• Because the evaluated DEFAULT expression for a given column is the same for all loaded rows, a
DEFAULT expression that uses a RANDOM() function will assign to same value to all the rows.

• DEFAULT expressions that contain CURRENT_DATE or SYSDATE are set to the timestamp of the
current transaction.

For an example, see "Load data from a file with default values" in COPY examples.

Troubleshooting data loads

Topics

• S3ServiceException errors

• System tables for troubleshooting data loads

• Multibyte character load errors

• Load error reference

This section provides information about identifying and resolving data loading errors.

S3ServiceException errors

The most common s3ServiceException errors are caused by an improperly formatted or incorrect
credentials string, having your cluster and your bucket in different AWS Regions, and insufficient
Amazon S3 permissions.

The section provides troubleshooting information for each type of error.

Invalid credentials string

If your credentials string was improperly formatted, you will receive the following error message:

ERROR: Invalid credentials. Must be of the format: credentials
'aws_access_key_id=<access-key-id>;aws_secret_access_key=<secret-access-key>
[;token=<temporary-session-token>]'

Verify that the credentials string does not contain any spaces or line breaks, and is enclosed in
single quotation marks.

Invalid access key ID

If your access key ID does not exist, you will receive the following error message:

Troubleshooting 144

Amazon Redshift Database Developer Guide

[Amazon](500310) Invalid operation: S3ServiceException:The AWS Access Key Id you
 provided does not exist in our records.

This is often a copy and paste error. Verify that the access key ID was entered correctly. Also, if you
are using temporary session keys, check that the value for token is set.

Invalid secret access key

If your secret access key is incorrect, you will receive the following error message:

[Amazon](500310) Invalid operation: S3ServiceException:The request signature we
 calculated does not match the signature you provided.
Check your key and signing method.,Status 403,Error SignatureDoesNotMatch

This is often a copy and paste error. Verify that the secret access key was entered correctly and that
it is the correct key for the access key ID.

Bucket is in a different Region

The Amazon S3 bucket specified in the COPY command must be in the same AWS Region as the
cluster. If your Amazon S3 bucket and your cluster are in different Regions, you will receive an error
similar to the following:

ERROR: S3ServiceException:The bucket you are attempting to access must be addressed
 using the specified endpoint.

You can create an Amazon S3 bucket in a specific Region either by selecting the Region when you
create the bucket by using the Amazon S3 Management Console, or by specifying an endpoint
when you create the bucket using the Amazon S3 API or CLI. For more information, see Uploading
files to Amazon S3.

For more information about Amazon S3 regions, see Accessing a Bucket in the Amazon Simple
Storage Service User Guide.

Alternatively, you can specify the Region using the REGION option with the COPY command.

Access denied

If the user does not have sufficient permissions, you will receive the following error message:

Troubleshooting 145

https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html#access-bucket-intro

Amazon Redshift Database Developer Guide

ERROR: S3ServiceException:Access Denied,Status 403,Error AccessDenied

One possible cause is the user identified by the credentials does not have LIST and GET access to
the Amazon S3 bucket. For other causes, see Troubleshoot Access Denied (403 Forbidden) errors in
Amazon S3 in the Amazon Simple Storage Service User Guide.

For information about managing user access to buckets, see Identity and access management in
Amazon S3 in the Amazon Simple Storage Service User Guide.

System tables for troubleshooting data loads

The following Amazon Redshift system tables can be helpful in troubleshooting data load issues:

• Query STL_LOAD_ERRORS to discover the errors that occurred during specific loads.

• Query STL_FILE_SCAN to view load times for specific files or to see if a specific file was even
read.

• Query STL_S3CLIENT_ERROR to find details for errors encountered while transferring data from
Amazon S3.

To find and diagnose load errors

1. Create a view or define a query that returns details about load errors. The following example
joins the STL_LOAD_ERRORS table to the STV_TBL_PERM table to match table IDs with actual
table names.

create view loadview as
(select distinct tbl, trim(name) as table_name, query, starttime,
trim(filename) as input, line_number, colname, err_code,
trim(err_reason) as reason
from stl_load_errors sl, stv_tbl_perm sp
where sl.tbl = sp.id);

2. Set the MAXERRORS option in your COPY command to a large enough value to enable COPY
to return useful information about your data. If the COPY encounters errors, an error message
directs you to consult the STL_LOAD_ERRORS table for details.

3. Query the LOADVIEW view to see error details. For example:

select * from loadview where table_name='venue';

Troubleshooting 146

https://docs.aws.amazon.com/AmazonS3/latest/userguide/troubleshoot-403-errors.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/troubleshoot-403-errors.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/s3-access-control.html

Amazon Redshift Database Developer Guide

 tbl | table_name | query | starttime
--------+------------+-------+----------------------------
 100551 | venue | 20974 | 2013-01-29 19:05:58.365391

| input | line_number | colname | err_code | reason
+----------------+-------------+-------+----------+---------------------
| venue_pipe.txt | 1 | 0 | 1214 | Delimiter not found

4. Fix the problem in the input file or the load script, based on the information that the view
returns. Some typical load errors to watch for include:

• Mismatch between data types in table and values in input data fields.

• Mismatch between number of columns in table and number of fields in input data.

• Mismatched quotation marks. Amazon Redshift supports both single and double quotation
marks; however, these quotation marks must be balanced appropriately.

• Incorrect format for date/time data in input files.

• Out-of-range values in input files (for numeric columns).

• Number of distinct values for a column exceeds the limitation for its compression encoding.

Multibyte character load errors

Columns with a CHAR data type only accept single-byte UTF-8 characters, up to byte value 127, or
7F hex, which is also the ASCII character set. VARCHAR columns accept multibyte UTF-8 characters,
to a maximum of four bytes. For more information, see Character types.

If a line in your load data contains a character that is not valid for the column data type, COPY
returns an error and logs a row in the STL_LOAD_ERRORS system log table with error number
1220. The ERR_REASON field includes the byte sequence, in hex, for the invalid character.

An alternative to fixing not valid characters in your load data is to replace the not valid characters
during the load process. To replace not valid UTF-8 characters, specify the ACCEPTINVCHARS
option with the COPY command. If the ACCEPTINVCHARS option is set, the character you specify
replaces the code point. If the ACCEPTINVCHARS option isn't set, Amazon Redshift accepts the
characters as valid UTF-8. For more information, see ACCEPTINVCHARS.

The following list of code points are valid UTF-8, COPY operations don't return an error if the
ACCEPTINVCHARS option is not set. However, these code points are not valid characters. You can

Troubleshooting 147

Amazon Redshift Database Developer Guide

use the ACCEPTINVCHARS option to replace a code point with a character that you specify. These
code points include the range of values from 0xFDD0 to 0xFDEF and values up to 0x10FFFF,
ending with FFFE or FFFF:

• 0xFFFE, 0x1FFFE, 0x2FFFE, …, 0xFFFFE, 0x10FFFE

• 0xFFFF, 0x1FFFF, 0x2FFFF, …, 0xFFFFF, 0x10FFFF

The following example shows the error reason when COPY attempts to load UTF-8 character e0
a1 c7a4 into a CHAR column.

Multibyte character not supported for CHAR
(Hint: Try using VARCHAR). Invalid char: e0 a1 c7a4

If the error is related to a VARCHAR data type, the error reason includes an error code as well as the
not valid UTF-8 hex sequence. The following example shows the error reason when COPY attempts
to load UTF-8 a4 into a VARCHAR field.

String contains invalid or unsupported UTF-8 codepoints.
Bad UTF-8 hex sequence: a4 (error 3)

The following table lists the descriptions and suggested workarounds for VARCHAR load errors. If
one of these errors occurs, replace the character with a valid UTF-8 code sequence or remove the
character.

Error code Description

1 The UTF-8 byte sequence exceeds the four-byte maximum supported by
VARCHAR.

2 The UTF-8 byte sequence is incomplete. COPY did not find the expected number
of continuation bytes for a multibyte character before the end of the string.

3 The UTF-8 single-byte character is out of range. The starting byte must not be
254, 255 or any character between 128 and 191 (inclusive).

4 The value of the trailing byte in the byte sequence is out of range. The continuat
ion byte must be between 128 and 191 (inclusive).

Troubleshooting 148

Amazon Redshift Database Developer Guide

Error code Description

5 The UTF-8 character is reserved as a surrogate. Surrogate code points (U+D800
through U+DFFF) are not valid.

8 The byte sequence exceeds the maximum UTF-8 code point.

9 The UTF-8 byte sequence does not have a matching code point.

Load error reference

If any errors occur while loading data from a file, query the STL_LOAD_ERRORS table to identify
the error and determine the possible explanation. The following table lists all error codes that
might occur during data loads:

Load error codes

Error code Description

1200 Unknown parse error. Contact support.

1201 Field delimiter was not found in the input file.

1202 Input data had more columns than were defined in the DDL.

1203 Input data had fewer columns than were defined in the DDL.

1204 Input data exceeded the acceptable range for the data type.

1205 Date format is not valid. See DATEFORMAT and TIMEFORMAT strings for valid
formats.

1206 Timestamp format is not valid. See DATEFORMAT and TIMEFORMAT strings for
valid formats.

1207 Data contained a value outside of the expected range of 0-9.

1208 FLOAT data type format error.

1209 DECIMAL data type format error.

Troubleshooting 149

Amazon Redshift Database Developer Guide

Error code Description

1210 BOOLEAN data type format error.

1211 Input line contained no data.

1212 Load file was not found.

1213 A field specified as NOT NULL contained no data.

1214 Delimiter not found.

1215 CHAR field error.

1216 Input line is not valid.

1217 Identity column value is not valid.

1218 When using NULL AS '\0', a field containing a null terminator (NUL, or UTF-8
0000) contained more than one byte.

1219 UTF-8 hexadecimal contains an invalid digit.

1220 String contains invalid or unsupported UTF-8 code points.

1221 Encoding of the file is not the same as that specified in the COPY command.

1222 Integer value overflow error.

1223 Data type not valid.

1224 Input data not well formed JSON format or super data type.

8001 COPY with MANIFEST parameter requires full path of an Amazon S3 object.

9005 Invalid end key specified.

Troubleshooting 150

Amazon Redshift Database Developer Guide

Continuous file ingestion from Amazon S3 (preview)

This is prerelease documentation for autocopy (SQL COPY JOB), which is in preview release.
The documentation and the feature are both subject to change. We recommend that you use
this feature only in test environments, and not in production environments. Public preview
will end on June 30, 2024. Preview clusters will be removed automatically two weeks after the
end of the preview. For preview terms and conditions, see Betas and Previews in AWS Service
Terms.

Note

You can create an Amazon Redshift cluster in Preview to test new features of Amazon
Redshift. You can't use those features in production or move your Preview cluster to a
production cluster or a cluster on another track. For preview terms and conditions, see Beta
and Previews in AWS Service Terms.

To create a cluster in Preview

1. Sign in to the AWS Management Console and open the Amazon Redshift console at
https://console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Provisioned clusters dashboard, and choose
Clusters. The clusters for your account in the current AWS Region are listed. A subset
of properties of each cluster is displayed in columns in the list.

3. A banner displays on the Clusters list page that introduces preview. Choose the button
Create preview cluster to open the create cluster page.

4. Enter properties for your cluster. Choose the Preview track that contains the features
you want to test. We recommend entering a name for the cluster that indicates that
it is on a preview track. Choose options for your cluster, including options labeled as
-preview, for the features you want to test. For general information about creating
clusters, see Creating a cluster in the Amazon Redshift Management Guide.

5. Choose Create cluster to create a cluster in preview.

6. When your preview cluster is available, use your SQL client to load and query data.

Continuous file ingestion (preview) 151

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster

Amazon Redshift Database Developer Guide

Your cluster must be created with the preview track named: preview_2023. Use a new
cluster for testing, restoring a cluster into this track is not supported. The autocopy feature
is not available with Amazon Redshift Serverless workgroup.
This preview is available in the following AWS Regions:

• US East (Ohio) Region (us-east-2)

• US East (N. Virginia) Region (us-east-1)

• US West (Oregon) Region (us-west-2)

• Asia Pacific (Tokyo) Region (ap-northeast-1)

• Europe (Stockholm) Region (eu-north-1)

• Europe (Ireland) Region (eu-west-1)

You can use a COPY JOB to load data into your Amazon Redshift tables from files that are stored
in Amazon S3. Amazon Redshift detects when new Amazon S3 files are added to the path specified
in your COPY command. A COPY command is then automatically run without you having to create
an external data ingestion pipeline. Amazon Redshift keeps track of which files have been loaded.
Amazon Redshift determines the number of files batched together per COPY command. You can
see the resulting COPY commands in system views.

You define a COPY JOB one time. The same parameters are used for future runs.

You manage the load operations using options to CREATE, LIST, SHOW, DROP, ALTER, and RUN
jobs. For more information, see COPY JOB (preview).

You can query system views to see the COPY JOB status and progress. Views are provided as
follows:

• SYS_COPY_JOB (preview) – contains a row for each currently defined COPY JOB.

• STL_LOAD_ERRORS – contains errors from COPY commands.

• STL_LOAD_COMMITS – contains information used to troubleshoot a COPY command data load.

• SYS_LOAD_HISTORY – contains details of COPY commands.

• SYS_LOAD_ERROR_DETAIL – contains details of COPY command errors.

To get the list of files loaded by a COPY JOB, run the following example replacing <job_id>:

Continuous file ingestion (preview) 152

Amazon Redshift Database Developer Guide

SELECT job_id, job_name, data_source, copy_query,filename,status, curtime
FROM sys_copy_job copyjob
JOIN stl_load_commits loadcommit
ON copyjob.job_id = loadcommit.copy_job_id
WHERE job_id = <job_id>;

Updating tables with DML commands

Amazon Redshift supports standard data manipulation language (DML) commands (INSERT,
UPDATE, and DELETE) that you can use to modify rows in tables. You can also use the TRUNCATE
command to do fast bulk deletes.

Note

We strongly encourage you to use the COPY command to load large amounts of data.
Using individual INSERT statements to populate a table might be prohibitively slow.
Alternatively, if your data already exists in other Amazon Redshift database tables,
use INSERT INTO ... SELECT FROM or CREATE TABLE AS to improve performance. For
information, see INSERT or CREATE TABLE AS.

If you insert, update, or delete a significant number of rows in a table, relative to the number
of rows before the changes, run the ANALYZE and VACUUM commands against the table when
you are done. If a number of small changes accumulate over time in your application, you might
want to schedule the ANALYZE and VACUUM commands to run at regular intervals. For more
information, see Analyzing tables and Vacuuming tables.

Updating and inserting new data

You can efficiently add new data to an existing table by using the MERGE command. Perform a
merge operation by creating a staging table and then using one of the methods described in this
section to update the target table from the staging table. For more information on the MERGE
command, see MERGE.

Topics

• Merge method 1: Replacing existing rows

• Merge method 2: Specifying a column list without using MERGE

Updating with DML 153

Amazon Redshift Database Developer Guide

• Creating a temporary staging table

• Performing a merge operation by replacing existing rows

• Performing a merge operation by specifying a column list without using the MERGE command

• Merge examples

The Merge examples use a sample dataset for Amazon Redshift, called the TICKIT data set. As a
prerequisite, you can set up the TICKIT tables and data by following the instructions available in
Getting started with common database tasks. More detailed information about the sample data set
is found at Sample database.

Merge method 1: Replacing existing rows

If you are overwriting all of the columns in the target table, the fastest method to perform a merge
is to replace the existing rows. This scans the target table only once, by using an inner join to delete
rows that will be updated. After the rows are deleted, they are replaced with new rows by a single
insert operation from the staging table.

Use this method if all of the following are true:

• Your target table and your staging table contain the same columns.

• You intend to replace all of the data in the target table columns with all of the staging table
columns.

• You will use all of the rows in the staging table in the merge.

If any of these criteria do not apply, use Merge method 2: Specifying a column list without using
MERGE, described in the following section.

If you will not use all of the rows in the staging table, filter the DELETE and INSERT statements
by using a WHERE clause to leave out rows that are not changing. However, if most of the rows in
the staging table will not participate in the merge, we recommend performing an UPDATE and an
INSERT in separate steps, as described later in this section.

Merge method 2: Specifying a column list without using MERGE

Use this method to update specific columns in the target table instead of overwriting entire rows.
This method takes longer than the previous method because it requires an extra update step and
doesn't use the MERGE command. Use this method if any of the following are true:

Merge method 1: Replacing existing rows 154

https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html
https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

Amazon Redshift Database Developer Guide

• Not all of the columns in the target table are to be updated.

• Most rows in the staging table will not be used in the updates.

Creating a temporary staging table

The staging table is a temporary table that holds all of the data that will be used to make changes
to the target table, including both updates and inserts.

A merge operation requires a join between the staging table and the target table. To collocate
the joining rows, set the staging table's distribution key to the same column as the target table's
distribution key. For example, if the target table uses a foreign key column as its distribution key,
use the same column for the staging table's distribution key. If you create the staging table by
using a CREATE TABLE LIKE statement, the staging table will inherit the distribution key from
the parent table. If you use a CREATE TABLE AS statement, the new table does not inherit the
distribution key. For more information, see Working with data distribution styles

If the distribution key is not the same as the primary key and the distribution key is not updated
as part of the merge operation, add a redundant join predicate on the distribution key columns to
enable a collocated join. For example:

where target.primarykey = stage.primarykey
and target.distkey = stage.distkey

To verify that the query will use a collocated join, run the query with EXPLAIN and check for
DS_DIST_NONE on all of the joins. For more information, see Evaluating the query plan

Performing a merge operation by replacing existing rows

When you run the merge operation detailed in the procedure, put all of the steps except for
creating and dropping the temporary staging table in a single transaction. The transaction rolls
back if any step fails. Using a single transaction also reduces the number of commits, which saves
time and resources.

To perform a merge operation by replacing existing rows

1. Create a staging table, and then populate it with data to be merged, as shown in the following
pseudocode.

create temp table stage (like target);

Creating a temporary staging table 155

Amazon Redshift Database Developer Guide

insert into stage
select * from source
where source.filter = 'filter_expression';

2. Use MERGE to perform an inner join with the staging table to update the rows from the target
table that match the staging table, then insert all the remaining rows into the target table that
don't match the staging table.

We recommend you run the update and insert operations in a single MERGE command.

MERGE INTO target
USING stage [optional alias] on (target.primary_key = stage.primary_key)
WHEN MATCHED THEN
UPDATE SET col_name1 = stage.col_name1 , col_name2= stage.col_name2, col_name3 =
 {expr}
WHEN NOT MATCHED THEN
INSERT (col_name1 , col_name2, col_name3) VALUES (stage.col_name1, stage.col_name2,
 {expr});

3. Drop the staging table.

drop table stage;

Performing a merge operation by specifying a column list without
using the MERGE command

When you run the merge operation detailed in the procedure, put all of the steps in a single
transaction. The transaction rolls back if any step fails. Using a single transaction also reduces the
number of commits, which saves time and resources.

To perform a merge operation by specifying a column list

1. Put the entire operation in a single transaction block.

begin transaction;
…
end transaction;

Performing a merge operation by specifying a column list without using the MERGE command 156

Amazon Redshift Database Developer Guide

2. Create a staging table, and then populate it with data to be merged, as shown in the following
pseudocode.

create temp table stage (like target);
insert into stage
select * from source
where source.filter = 'filter_expression';

3. Update the target table by using an inner join with the staging table.

• In the UPDATE clause, explicitly list the columns to be updated.

• Perform an inner join with the staging table.

• If the distribution key is different from the primary key and the distribution key is not being
updated, add a redundant join on the distribution key. To verify that the query will use a
collocated join, run the query with EXPLAIN and check for DS_DIST_NONE on all of the joins.
For more information, see Evaluating the query plan

• If your target table is sorted by timestamp, add a predicate to take advantage of range-
restricted scans on the target table. For more information, see Amazon Redshift best
practices for designing queries.

• If you will not use all of the rows in the merge, add a clause to filter the rows that you want
to change. For example, add an inequality filter on one or more columns to exclude rows
that have not changed.

• Put the update, delete, and insert operations in a single transaction block so that if there is a
problem, everything will be rolled back.

For example:

begin transaction;

update target
set col1 = stage.col1,
col2 = stage.col2,
col3 = 'expression'
from stage
where target.primarykey = stage.primarykey
and target.distkey = stage.distkey
and target.col3 > 'last_update_time'
and (target.col1 != stage.col1

Performing a merge operation by specifying a column list without using the MERGE command 157

Amazon Redshift Database Developer Guide

or target.col2 != stage.col2
or target.col3 = 'filter_expression');

4. Delete unneeded rows from the staging table by using an inner join with the target table.
Some rows in the target table already match the corresponding rows in the staging table, and
others were updated in the previous step. In either case, they are not needed for the insert.

delete from stage
using target
where stage.primarykey = target.primarykey;

5. Insert the remaining rows from the staging table. Use the same column list in the VALUES
clause that you used in the UPDATE statement in step two.

insert into target
(select col1, col2, 'expression'
from stage);

end transaction;

6. Drop the staging table.

drop table stage;

Merge examples

The following examples perform a merge to update the SALES table. The first example uses the
simpler method of deleting from the target table and then inserting all of the rows from the
staging table. The second example requires updating on select columns in the target table, so it
includes an extra update step.

The Merge examples use a sample dataset for Amazon Redshift, called the TICKIT data set. As
a prerequisite, you can set up the TICKIT tables and data by following the instructions available
in the guide Getting started with common database tasks. More detailed information about the
sample data set is found at Sample database.

Sample merge data source

The examples in this section need a sample data source that includes both updates and inserts.
For the examples, we will create a sample table named SALES_UPDATE that uses data from the

Merge examples 158

https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html
https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

Amazon Redshift Database Developer Guide

SALES table. We'll populate the new table with random data that represents new sales activity for
December. We will use the SALES_UPDATE sample table to create the staging table in the examples
that follow.

-- Create a sample table as a copy of the SALES table.

create table tickit.sales_update as
select * from tickit.sales;

-- Change every fifth row to have updates.

update tickit.sales_update
set qtysold = qtysold*2,
pricepaid = pricepaid*0.8,
commission = commission*1.1
where saletime > '2008-11-30'
and mod(sellerid, 5) = 0;

-- Add some new rows to have inserts.
-- This example creates a duplicate of every fourth row.

insert into tickit.sales_update
select (salesid + 172456) as salesid, listid, sellerid, buyerid, eventid, dateid,
 qtysold, pricepaid, commission, getdate() as saletime
from tickit.sales_update
where saletime > '2008-11-30'
and mod(sellerid, 4) = 0;

Example of a merge that replaces existing rows based on matching keys

The following script uses the SALES_UPDATE table to perform a merge operation on the SALES
table with new data for December sales activity. This example replaces rows in the SALES table
that have updates. For this example, we will update the qtysold and pricepaid columns, but leave
commission and saletime unchanged.

MERGE into tickit.sales
USING tickit.sales_update sales_update
on (sales.salesid = sales_update.salesid
and sales.listid = sales_update.listid
and sales_update.saletime > '2008-11-30'
and (sales.qtysold != sales_update.qtysold
or sales.pricepaid != sales_update.pricepaid))

Merge examples 159

Amazon Redshift Database Developer Guide

WHEN MATCHED THEN
update SET qtysold = sales_update.qtysold,
pricepaid = sales_update.pricepaid
WHEN NOT MATCHED THEN
INSERT (salesid, listid, sellerid, buyerid, eventid, dateid, qtysold , pricepaid,
 commission, saletime)
values (sales_update.salesid, sales_update.listid, sales_update.sellerid,
 sales_update.buyerid, sales_update.eventid,
sales_update.dateid, sales_update.qtysold , sales_update.pricepaid,
 sales_update.commission, sales_update.saletime);

-- Drop the staging table.
drop table tickit.sales_update;

-- Test to see that commission and salestime were not impacted.
SELECT sales.salesid, sales.commission, sales.salestime, sales_update.commission,
 sales_update.salestime
FROM tickit.sales
INNER JOIN tickit.sales_update sales_update
ON
sales.salesid = sales_update.salesid
AND sales.listid = sales_update.listid
AND sales_update.saletime > '2008-11-30'
AND (sales.commission != sales_update.commission
OR sales.salestime != sales_update.salestime);

Example of a merge that specifies a column list without using MERGE

The following example performs a merge operation to update SALES with new data for December
sales activity. We need sample data that includes both updates and inserts, along with rows that
have not changed. For this example, we want to update the QTYSOLD and PRICEPAID columns but
leave COMMISSION and SALETIME unchanged. The following script uses the SALES_UPDATE table
to perform a merge operation on the SALES table.

-- Create a staging table and populate it with rows from SALES_UPDATE for Dec
create temp table stagesales as select * from sales_update
where saletime > '2008-11-30';

-- Start a new transaction
begin transaction;

-- Update the target table using an inner join with the staging table

Merge examples 160

Amazon Redshift Database Developer Guide

-- The join includes a redundant predicate to collocate on the distribution key –- A
 filter on saletime enables a range-restricted scan on SALES

update sales
set qtysold = stagesales.qtysold,
pricepaid = stagesales.pricepaid
from stagesales
where sales.salesid = stagesales.salesid
and sales.listid = stagesales.listid
and stagesales.saletime > '2008-11-30'
and (sales.qtysold != stagesales.qtysold
or sales.pricepaid != stagesales.pricepaid);

-- Delete matching rows from the staging table
-- using an inner join with the target table

delete from stagesales
using sales
where sales.salesid = stagesales.salesid
and sales.listid = stagesales.listid;

-- Insert the remaining rows from the staging table into the target table
insert into sales
select * from stagesales;

-- End transaction and commit
end transaction;

-- Drop the staging table
drop table stagesales;

Performing a deep copy

A deep copy recreates and repopulates a table by using a bulk insert, which automatically sorts
the table. If a table has a large unsorted Region, a deep copy is much faster than a vacuum. We
recommend that you only make concurrent updates during a deep copy operation if you can track
them. After the process has completed, move the delta updates into the new table. A VACUUM
operation supports concurrent updates automatically.

You can choose one of the following methods to create a copy of the original table:

• Use the original table DDL.

Performing a deep copy 161

Amazon Redshift Database Developer Guide

If the CREATE TABLE DDL is available, this is the fastest and preferred method. If you create a
new table, you can specify all table and column attributes, including primary key and foreign
keys. You can find the original DDL by using the SHOW TABLE function.

• Use CREATE TABLE LIKE.

If the original DDL is not available, you can use CREATE TABLE LIKE to recreate the original table.
The new table inherits the encoding, distribution key, sort key, and not-null attributes of the
parent table. The new table doesn't inherit the primary key and foreign key attributes of the
parent table, but you can add them using ALTER TABLE.

• Create a temporary table and truncate the original table.

If you must retain the primary key and foreign key attributes of the parent table. If the parent
table has dependencies, you can use CREATE TABLE ... AS (CTAS) to create a temporary table.
Then truncate the original table and populate it from the temporary table.

Using a temporary table improves performance significantly compared to using a permanent
table, but there is a risk of losing data. A temporary table is automatically dropped at the
end of the session in which it is created. TRUNCATE commits immediately, even if it is inside a
transaction block. If the TRUNCATE succeeds but the session shuts down before the following
INSERT completes, the data is lost. If data loss is unacceptable, use a permanent table.

After you create a copy of a table, you might have to grant access to the new table. You can use
GRANT to define access privileges. To view and grant all of a table's access privileges, you must be
one of the following:

• A superuser.

• The owner of the table you want to copy.

• A user with the ACCESS SYSTEM TABLE privilege to see the table's privileges, and with the grant
privilege for all relevant permissions.

Additionally, you might have to grant usage permission for the schema your deep copy is in.
Granting usage permission is necessary if your deep copy's schema is different from the original
table's schema, and also isn't the public schema. To view and grant usage privileges you must be
one of the following:

• A superuser.

Performing a deep copy 162

Amazon Redshift Database Developer Guide

• A user who can grant the USAGE permission for the deep copy's schema.

To perform a deep copy using the original table DDL

1. (Optional) Recreate the table DDL by running a script called v_generate_tbl_ddl.

2. Create a copy of the table using the original CREATE TABLE DDL.

3. Use an INSERT INTO … SELECT statement to populate the copy with data from the original
table.

4. Check for permissions granted on the old table. You can see these permissions in the
SVV_RELATION_PRIVILEGES system view.

5. If necessary, grant the permissions of the old table to the new table.

6. Grant usage permission to every group and user that has privileges in the original table. This
step isn't necessary if your deep copy table is in the public schema, or is in the same schema
as the original table.

7. Drop the original table.

8. Use an ALTER TABLE statement to rename the copy to the original table name.

The following example performs a deep copy on the SAMPLE table using a duplicate of SAMPLE
named sample_copy.

--Create a copy of the original table in the sample_namespace namespace using the
 original CREATE TABLE DDL.
create table sample_namespace.sample_copy (…);

--Populate the copy with data from the original table in the public namespace.
insert into sample_namespace.sample_copy (select * from public.sample);

--Check SVV_RELATION_PRIVILEGES for the original table's privileges.
select * from svv_relation_privileges where namespace_name = 'public' and relation_name
 = 'sample' order by identity_type, identity_id, privilege_type;

--Grant the original table's privileges to the copy table.
grant DELETE on table sample_namespace.sample_copy to group group1;
grant INSERT, UPDATE on table sample_namespace.sample_copy to group group2;
grant SELECT on table sample_namespace.sample_copy to user1;
grant INSERT, SELECT, UPDATE on table sample_namespace.sample_copy to user2;

Performing a deep copy 163

Amazon Redshift Database Developer Guide

--Grant usage permission to every group and user that has privileges in the original
 table.
grant USAGE on schema sample_namespace to group group1, group group2, user1, user2;

--Drop the original table.
drop table public.sample;

--Rename the copy table to match the original table's name.
alter table sample_namespace.sample_copy rename to sample;

To perform a deep copy using CREATE TABLE LIKE

1. Create a new table using CREATE TABLE LIKE.

2. Use an INSERT INTO … SELECT statement to copy the rows from the current table to the new
table.

3. Check for permissions granted on the old table. You can see these permissions in the
SVV_RELATION_PRIVILEGES system view.

4. If necessary, grant the permissions of the old table to the new table.

5. Grant usage permission to every group and user that has privileges in the original table. This
step isn't necessary if your deep copy table is in the public schema, or is in the same schema
as the original table.

6. Drop the current table.

7. Use an ALTER TABLE statement to rename the new table to the original table name.

The following example performs a deep copy on the SAMPLE table using CREATE TABLE LIKE.

--Create a copy of the original table in the sample_namespace namespace using CREATE
 TABLE LIKE.
create table sameple_namespace.sample_copy (like public.sample);

--Populate the copy with data from the original table.
insert into sample_namespace.sample_copy (select * from public.sample);

--Check SVV_RELATION_PRIVILEGES for the original table's privileges.
select * from svv_relation_privileges where namespace_name = 'public' and relation_name
 = 'sample' order by identity_type, identity_id, privilege_type;

--Grant the original table's privileges to the copy table.
grant DELETE on table sample_namespace.sample_copy to group group1;

Performing a deep copy 164

Amazon Redshift Database Developer Guide

grant INSERT, UPDATE on table sample_namespace.sample_copy to group group2;
grant SELECT on table sample_namespace.sample_copy to user1;
grant INSERT, SELECT, UPDATE on table sample_namespace.sample_copy to user2;

--Grant usage permission to every group and user that has privileges in the original
 table.
grant USAGE on schema sample_namespace to group group1, group group2, user1, user2;

--Drop the original table.
drop table public.sample;

--Rename the copy table to match the original table's name.
alter table sample_namespace.sample_copy rename to sample;

To perform a deep copy by creating a temporary table and truncating the original table

1. Use CREATE TABLE AS to create a temporary table with the rows from the original table.

2. Truncate the current table.

3. Use an INSERT INTO … SELECT statement to copy the rows from the temporary table to the
original table.

4. Drop the temporary table.

The following example performs a deep copy on the SALES table by creating a temporary table
and truncating the original table. Since the original table remains, you don't need to grant
permissions to the copy table.

--Create a temp table copy using CREATE TABLE AS.
create temp table salestemp as select * from sales;

--Truncate the original table.
truncate sales;

--Copy the rows from the temporary table to the original table.
insert into sales (select * from salestemp);

--Drop the temporary table.
drop table salestemp;

Performing a deep copy 165

Amazon Redshift Database Developer Guide

Analyzing tables

The ANALYZE operation updates the statistical metadata that the query planner uses to choose
optimal plans.

In most cases, you don't need to explicitly run the ANALYZE command. Amazon Redshift monitors
changes to your workload and automatically updates statistics in the background. In addition, the
COPY command performs an analysis automatically when it loads data into an empty table.

To explicitly analyze a table or the entire database, run the ANALYZE command.

Topics

• Automatic analyze

• Analysis of new table data

• ANALYZE command history

Automatic analyze

Amazon Redshift continuously monitors your database and automatically performs analyze
operations in the background. To minimize impact to your system performance, automatic analyze
runs during periods when workloads are light.

Automatic analyze is enabled by default. To turn off automatic analyze, set the auto_analyze
parameter to false by modifying your cluster's parameter group.

To reduce processing time and improve overall system performance, Amazon Redshift skips
automatic analyze for any table where the extent of modifications is small.

An analyze operation skips tables that have up-to-date statistics. If you run ANALYZE as part of
your extract, transform, and load (ETL) workflow, automatic analyze skips tables that have current
statistics. Similarly, an explicit ANALYZE skips tables when automatic analyze has updated the
table's statistics.

Analysis of new table data

By default, the COPY command performs an ANALYZE after it loads data into an empty table. You
can force an ANALYZE regardless of whether a table is empty by setting STATUPDATE ON. If you

Analyzing tables 166

Amazon Redshift Database Developer Guide

specify STATUPDATE OFF, an ANALYZE is not performed. Only the table owner or a superuser can
run the ANALYZE command or run the COPY command with STATUPDATE set to ON.

Amazon Redshift also analyzes new tables that you create with the following commands:

• CREATE TABLE AS (CTAS)

• CREATE TEMP TABLE AS

• SELECT INTO

Amazon Redshift returns a warning message when you run a query against a new table that was
not analyzed after its data was initially loaded. No warning occurs when you query a table after
a subsequent update or load. The same warning message is returned when you run the EXPLAIN
command on a query that references tables that have not been analyzed.

Whenever adding data to a nonempty table significantly changes the size of the table, you can
explicitly update statistics. You do so either by running an ANALYZE command or by using the
STATUPDATE ON option with the COPY command. To view details about the number of rows that
have been inserted or deleted since the last ANALYZE, query the PG_STATISTIC_INDICATOR system
catalog table.

You can specify the scope of the ANALYZE command to one of the following:

• The entire current database

• A single table

• One or more specific columns in a single table

• Columns that are likely to be used as predicates in queries

The ANALYZE command gets a sample of rows from the table, does some calculations, and saves
resulting column statistics. By default, Amazon Redshift runs a sample pass for the DISTKEY
column and another sample pass for all of the other columns in the table. If you want to generate
statistics for a subset of columns, you can specify a comma-separated column list. You can run
ANALYZE with the PREDICATE COLUMNS clause to skip columns that aren’t used as predicates.

ANALYZE operations are resource intensive, so run them only on tables and columns that actually
require statistics updates. You don't need to analyze all columns in all tables regularly or on the
same schedule. If the data changes substantially, analyze the columns that are frequently used in
the following:

Analysis of new table data 167

Amazon Redshift Database Developer Guide

• Sorting and grouping operations

• Joins

• Query predicates

To reduce processing time and improve overall system performance, Amazon Redshift skips
ANALYZE for any table that has a low percentage of changed rows, as determined by the
analyze_threshold_percent parameter. By default, the analyze threshold is set to 10 percent. You
can change the analyze threshold for the current session by running a SET command.

Columns that are less likely to require frequent analysis are those that represent facts and
measures and any related attributes that are never actually queried, such as large VARCHAR
columns. For example, consider the LISTING table in the TICKIT database.

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'listing';

column | type | encoding | distkey | sortkey
---------------+--------------------+----------+---------+---------
listid | integer | none | t | 1
sellerid | integer | none | f | 0
eventid | integer | mostly16 | f | 0
dateid | smallint | none | f | 0
numtickets | smallint | mostly8 | f | 0
priceperticket | numeric(8,2) | bytedict | f | 0
totalprice | numeric(8,2) | mostly32 | f | 0
listtime | timestamp with... | none | f | 0

If this table is loaded every day with a large number of new records, the LISTID column, which is
frequently used in queries as a join key, must be analyzed regularly. If TOTALPRICE and LISTTIME
are the frequently used constraints in queries, you can analyze those columns and the distribution
key on every weekday.

analyze listing(listid, totalprice, listtime);

Suppose that the sellers and events in the application are much more static, and the date IDs refer
to a fixed set of days covering only two or three years. In this case,the unique values for these
columns don't change significantly. However, the number of instances of each unique value will
increase steadily.

Analysis of new table data 168

Amazon Redshift Database Developer Guide

In addition, consider the case where the NUMTICKETS and PRICEPERTICKET measures are queried
infrequently compared to the TOTALPRICE column. In this case, you can run the ANALYZE
command on the whole table once every weekend to update statistics for the five columns that are
not analyzed daily:

Predicate columns

As a convenient alternative to specifying a column list, you can choose to analyze only the columns
that are likely to be used as predicates. When you run a query, any columns that are used in a
join, filter condition, or group by clause are marked as predicate columns in the system catalog.
When you run ANALYZE with the PREDICATE COLUMNS clause, the analyze operation includes only
columns that meet the following criteria:

• The column is marked as a predicate column.

• The column is a distribution key.

• The column is part of a sort key.

If none of a table's columns are marked as predicates, ANALYZE includes all of the columns, even
when PREDICATE COLUMNS is specified. If no columns are marked as predicate columns, it might
be because the table has not yet been queried.

You might choose to use PREDICATE COLUMNS when your workload's query pattern is relatively
stable. When the query pattern is variable, with different columns frequently being used as
predicates, using PREDICATE COLUMNS might temporarily result in stale statistics. Stale statistics
can lead to suboptimal query runtime plans and long runtimes. However, the next time you run
ANALYZE using PREDICATE COLUMNS, the new predicate columns are included.

To view details for predicate columns, use the following SQL to create a view named
PREDICATE_COLUMNS.

CREATE VIEW predicate_columns AS
WITH predicate_column_info as (
SELECT ns.nspname AS schema_name, c.relname AS table_name, a.attnum as col_num,
 a.attname as col_name,
 CASE
 WHEN 10002 = s.stakind1 THEN array_to_string(stavalues1, '||')
 WHEN 10002 = s.stakind2 THEN array_to_string(stavalues2, '||')
 WHEN 10002 = s.stakind3 THEN array_to_string(stavalues3, '||')
 WHEN 10002 = s.stakind4 THEN array_to_string(stavalues4, '||')

Analysis of new table data 169

Amazon Redshift Database Developer Guide

 ELSE NULL::varchar
 END AS pred_ts
 FROM pg_statistic s
 JOIN pg_class c ON c.oid = s.starelid
 JOIN pg_namespace ns ON c.relnamespace = ns.oid
 JOIN pg_attribute a ON c.oid = a.attrelid AND a.attnum = s.staattnum)
SELECT schema_name, table_name, col_num, col_name,
 pred_ts NOT LIKE '2000-01-01%' AS is_predicate,
 CASE WHEN pred_ts NOT LIKE '2000-01-01%' THEN (split_part(pred_ts,
 '||',1))::timestamp ELSE NULL::timestamp END as first_predicate_use,
 CASE WHEN pred_ts NOT LIKE '%||2000-01-01%' THEN (split_part(pred_ts,
 '||',2))::timestamp ELSE NULL::timestamp END as last_analyze
FROM predicate_column_info;

Suppose that you run the following query against the LISTING table. Note that LISTID, LISTTIME,
and EVENTID are used in the join, filter, and group by clauses.

select s.buyerid,l.eventid, sum(l.totalprice)
from listing l
join sales s on l.listid = s.listid
where l.listtime > '2008-12-01'
group by l.eventid, s.buyerid;

When you query the PREDICATE_COLUMNS view, as shown in the following example, you see that
LISTID, EVENTID, and LISTTIME are marked as predicate columns.

select * from predicate_columns
where table_name = 'listing';

schema_name | table_name | col_num | col_name | is_predicate |
 first_predicate_use | last_analyze
------------+------------+---------+----------------+--------------
+---------------------+--------------------
public | listing | 1 | listid | true | 2017-05-05
 19:27:59 | 2017-05-03 18:27:41
public | listing | 2 | sellerid | false |
 | 2017-05-03 18:27:41
public | listing | 3 | eventid | true | 2017-05-16
 20:54:32 | 2017-05-03 18:27:41
public | listing | 4 | dateid | false |
 | 2017-05-03 18:27:41

Analysis of new table data 170

Amazon Redshift Database Developer Guide

public | listing | 5 | numtickets | false |
 | 2017-05-03 18:27:41
public | listing | 6 | priceperticket | false |
 | 2017-05-03 18:27:41
public | listing | 7 | totalprice | false |
 | 2017-05-03 18:27:41
public | listing | 8 | listtime | true | 2017-05-16
 20:54:32 | 2017-05-03 18:27:41

Keeping statistics current improves query performance by enabling the query planner to choose
optimal plans. Amazon Redshift refreshes statistics automatically in the background, and you
can also explicitly run the ANALYZE command. If you choose to explicitly run ANALYZE, do the
following:

• Run the ANALYZE command before running queries.

• Run the ANALYZE command on the database routinely at the end of every regular load or update
cycle.

• Run the ANALYZE command on any new tables that you create and any existing tables or
columns that undergo significant change.

• Consider running ANALYZE operations on different schedules for different types of tables and
columns, depending on their use in queries and their propensity to change.

• To save time and cluster resources, use the PREDICATE COLUMNS clause when you run ANALYZE.

You don't have to explicitly run the ANALYZE command after restoring a snapshot to a provisioned
cluster or serverless namespace, nor after resuming a paused provisioned cluster. Amazon
Redshift preserves system table information in these cases, making manual ANALYZE commands
unnecessary. Amazon Redshift will continue to run automatic analyze operations as needed.

An analyze operation skips tables that have up-to-date statistics. If you run ANALYZE as part of
your extract, transform, and load (ETL) workflow, automatic analyze skips tables that have current
statistics. Similarly, an explicit ANALYZE skips tables when automatic analyze has updated the
table's statistics.

ANALYZE command history

It's useful to know when the last ANALYZE command was run on a table or database. When an
ANALYZE command is run, Amazon Redshift runs multiple queries that look like this:

ANALYZE command history 171

Amazon Redshift Database Developer Guide

padb_fetch_sample: select * from table_name

Query STL_ANALYZE to view the history of analyze operations. If Amazon Redshift analyzes a table
using automatic analyze, the is_background column is set to t (true). Otherwise, it is set to f
(false). The following example joins STV_TBL_PERM to show the table name and runtime details.

select distinct a.xid, trim(t.name) as name, a.status, a.rows, a.modified_rows,
 a.starttime, a.endtime
from stl_analyze a
join stv_tbl_perm t on t.id=a.table_id
where name = 'users'
order by starttime;

xid | name | status | rows | modified_rows | starttime |
 endtime
-------+-------+-----------------+-------+---------------+---------------------
+--------------------
 1582 | users | Full | 49990 | 49990 | 2016-09-22 22:02:23 |
 2016-09-22 22:02:28
244287 | users | Full | 24992 | 74988 | 2016-10-04 22:50:58 |
 2016-10-04 22:51:01
244712 | users | Full | 49984 | 24992 | 2016-10-04 22:56:07 |
 2016-10-04 22:56:07
245071 | users | Skipped | 49984 | 0 | 2016-10-04 22:58:17 |
 2016-10-04 22:58:17
245439 | users | Skipped | 49984 | 1982 | 2016-10-04 23:00:13 |
 2016-10-04 23:00:13
(5 rows)

Alternatively, you can run a more complex query that returns all the statements that ran in every
completed transaction that included an ANALYZE command:

select xid, to_char(starttime, 'HH24:MM:SS.MS') as starttime,
datediff(sec,starttime,endtime) as secs, substring(text, 1, 40)
from svl_statementtext
where sequence = 0
and xid in (select xid from svl_statementtext s where s.text like 'padb_fetch_sample
%')
order by xid desc, starttime;

xid | starttime | secs | substring

ANALYZE command history 172

Amazon Redshift Database Developer Guide

-----+--------------+------+--
1338 | 12:04:28.511 | 4 | Analyze date
1338 | 12:04:28.511 | 1 | padb_fetch_sample: select count(*) from
1338 | 12:04:29.443 | 2 | padb_fetch_sample: select * from date
1338 | 12:04:31.456 | 1 | padb_fetch_sample: select * from date
1337 | 12:04:24.388 | 1 | padb_fetch_sample: select count(*) from
1337 | 12:04:24.388 | 4 | Analyze sales
1337 | 12:04:25.322 | 2 | padb_fetch_sample: select * from sales
1337 | 12:04:27.363 | 1 | padb_fetch_sample: select * from sales
...

Vacuuming tables

Amazon Redshift can automatically sort and perform a VACUUM DELETE operation on tables in the
background. To clean up tables after a load or a series of incremental updates, you can also run the
VACUUM command, either against the entire database or against individual tables.

Note

Only users with the necessary table permissions can effectively vacuum a table. If VACUUM
is run without the necessary table permissions, the operation completes successfully but
has no effect. For a list of valid table permissions to effectively run VACUUM, see VACUUM.
For this reason, we recommend vacuuming individual tables as needed. We also
recommend this approach because vacuuming the entire database is potentially an
expensive operation.

Automatic table sort

Amazon Redshift automatically sorts data in the background to maintain table data in the order of
its sort key. Amazon Redshift keeps track of your scan queries to determine which sections of the
table will benefit from sorting.

Depending on the load on the system, Amazon Redshift automatically initiates the sort. This
automatic sort lessens the need to run the VACUUM command to keep data in sort key order. If
you need data fully sorted in sort key order, for example after a large data load, then you can still
manually run the VACUUM command. To determine whether your table will benefit by running
VACUUM SORT, monitor the vacuum_sort_benefit column in SVV_TABLE_INFO.

Vacuuming tables 173

Amazon Redshift Database Developer Guide

Amazon Redshift tracks scan queries that use the sort key on each table. Amazon Redshift
estimates the maximum percentage of improvement in scanning and filtering of data for each
table (if the table was fully sorted). This estimate is visible in the vacuum_sort_benefit column
in SVV_TABLE_INFO. You can use this column, along with the unsorted column, to determine
when queries can benefit from manually running VACUUM SORT on a table. The unsorted column
reflects the physical sort order of a table. The vacuum_sort_benefit column specifies the
impact of sorting a table by manually running VACUUM SORT.

For example, consider the following query:

select "table", unsorted,vacuum_sort_benefit from svv_table_info order by 1;

 table | unsorted | vacuum_sort_benefit
-------+----------+---------------------
 sales | 85.71 | 5.00
 event | 45.24 | 67.00

For the table “sales”, even though the table is ~86% physically unsorted, the query performance
impact from the table being 86% unsorted is only 5%. This might be either because only a
small portion of the table is accessed by queries, or very few queries accessed the table. For the
table “event”, the table is ~45% physically unsorted. But the query performance impact of 67%
indicates that either a larger portion of the table was accessed by queries, or the number of queries
accessing the table was large. The table "event" can potentially benefit from running VACUUM
SORT.

Automatic vacuum delete

When you perform a delete, the rows are marked for deletion, but not removed. Amazon Redshift
automatically runs a VACUUM DELETE operation in the background based on the number of
deleted rows in database tables. Amazon Redshift schedules the VACUUM DELETE to run during
periods of reduced load and pauses the operation during periods of high load.

Topics

• VACUUM frequency

• Sort stage and merge stage

• Vacuum threshold

• Vacuum types

Automatic vacuum delete 174

Amazon Redshift Database Developer Guide

• Managing vacuum times

VACUUM frequency

You should vacuum as often as necessary to maintain consistent query performance. Consider
these factors when determining how often to run your VACUUM command:

• Run VACUUM during time periods when you expect minimal activity on the cluster, such as
evenings or during designated database administration windows.

• Run VACUUM commands outside of maintenance windows. For more information, see Schedule
around maintenance windows.

• A large unsorted region results in longer vacuum times. If you delay vacuuming, the vacuum will
take longer because more data has to be reorganized.

• VACUUM is an I/O intensive operation, so the longer it takes for your vacuum to complete, the
more impact it will have on concurrent queries and other database operations running on your
cluster.

• VACUUM takes longer for tables that use interleaved sorting. To evaluate whether interleaved
tables must be re-sorted, query the SVV_INTERLEAVED_COLUMNS view.

Sort stage and merge stage

Amazon Redshift performs a vacuum operation in two stages: first, it sorts the rows in the unsorted
region, then, if necessary, it merges the newly sorted rows at the end of the table with the existing
rows. When vacuuming a large table, the vacuum operation proceeds in a series of steps consisting
of incremental sorts followed by merges. If the operation fails or if Amazon Redshift goes offline
during the vacuum, the partially vacuumed table or database will be in a consistent state, but you
must manually restart the vacuum operation. Incremental sorts are lost, but merged rows that
were committed before the failure do not need to be vacuumed again. If the unsorted region is
large, the lost time might be significant. For more information about the sort and merge stages,
see Managing the volume of merged rows.

Users can access tables while they are being vacuumed. You can perform queries and write
operations while a table is being vacuumed, but when DML and a vacuum run concurrently,
both might take longer. If you run UPDATE and DELETE statements during a vacuum, system
performance might be reduced. Incremental merges temporarily block concurrent UPDATE and
DELETE operations, and UPDATE and DELETE operations in turn temporarily block incremental

VACUUM frequency 175

https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-avoid-maintenance.html
https://docs.aws.amazon.com/redshift/latest/dg/c_best-practices-avoid-maintenance.html

Amazon Redshift Database Developer Guide

merge steps on the affected tables. DDL operations, such as ALTER TABLE, are blocked until the
vacuum operation finishes with the table.

Note

Various modifiers to VACUUM control the way that it works. You can use them to tailor the
vacuum operation for the current need. For example, using VACUUM RECLUSTER shortens
the vacuum operation by not performing a full merge operation. For more information, see
VACUUM.

Vacuum threshold

By default, VACUUM skips the sort phase for any table where more than 95 percent of the table's
rows are already sorted. Skipping the sort phase can significantly improve VACUUM performance.
To change the default sort threshold for a single table, include the table name and the TO
threshold PERCENT parameter when you run the VACUUM command.

Vacuum types

For information about different vacuum types, see VACUUM.

Managing vacuum times

Depending on the nature of your data, we recommend following the practices in this section to
minimize vacuum times.

Topics

• Deciding whether to reindex

• Managing the size of the unsorted region

• Managing the volume of merged rows

• Loading your data in sort key order

• Using time series tables

Deciding whether to reindex

You can often significantly improve query performance by using an interleaved sort style, but over
time performance might degrade if the distribution of the values in the sort key columns changes.

Vacuum threshold 176

Amazon Redshift Database Developer Guide

When you initially load an empty interleaved table using COPY or CREATE TABLE AS, Amazon
Redshift automatically builds the interleaved index. If you initially load an interleaved table using
INSERT, you need to run VACUUM REINDEX afterwards to initialize the interleaved index.

Over time, as you add rows with new sort key values, performance might degrade if the
distribution of the values in the sort key columns changes. If your new rows fall primarily within
the range of existing sort key values, you don’t need to reindex. Run VACUUM SORT ONLY or
VACUUM FULL to restore the sort order.

The query engine is able to use sort order to efficiently select which data blocks need to be
scanned to process a query. For an interleaved sort, Amazon Redshift analyzes the sort key column
values to determine the optimal sort order. If the distribution of key values changes, or skews, as
rows are added, the sort strategy will no longer be optimal, and the performance benefit of sorting
will degrade. To reanalyze the sort key distribution you can run a VACUUM REINDEX. The reindex
operation is time consuming, so to decide whether a table will benefit from a reindex, query the
SVV_INTERLEAVED_COLUMNS view.

For example, the following query shows details for tables that use interleaved sort keys.

select tbl as tbl_id, stv_tbl_perm.name as table_name,
col, interleaved_skew, last_reindex
from svv_interleaved_columns, stv_tbl_perm
where svv_interleaved_columns.tbl = stv_tbl_perm.id
and interleaved_skew is not null;

 tbl_id | table_name | col | interleaved_skew | last_reindex
--------+------------+-----+------------------+--------------------
 100048 | customer | 0 | 3.65 | 2015-04-22 22:05:45
 100068 | lineorder | 1 | 2.65 | 2015-04-22 22:05:45
 100072 | part | 0 | 1.65 | 2015-04-22 22:05:45
 100077 | supplier | 1 | 1.00 | 2015-04-22 22:05:45
(4 rows)

The value for interleaved_skew is a ratio that indicates the amount of skew. A value of 1 means
that there is no skew. If the skew is greater than 1.4, a VACUUM REINDEX will usually improve
performance unless the skew is inherent in the underlying set.

You can use the date value in last_reindex to determine how long it has been since the last
reindex.

Managing vacuum times 177

Amazon Redshift Database Developer Guide

Managing the size of the unsorted region

The unsorted region grows when you load large amounts of new data into tables that already
contain data or when you do not vacuum tables as part of your routine maintenance operations. To
avoid long-running vacuum operations, use the following practices:

• Run vacuum operations on a regular schedule.

If you load your tables in small increments (such as daily updates that represent a small
percentage of the total number of rows in the table), running VACUUM regularly will help ensure
that individual vacuum operations go quickly.

• Run the largest load first.

If you need to load a new table with multiple COPY operations, run the largest load first. When
you run an initial load into a new or truncated table, all of the data is loaded directly into the
sorted region, so no vacuum is required.

• Truncate a table instead of deleting all of the rows.

Deleting rows from a table does not reclaim the space that the rows occupied until you perform
a vacuum operation; however, truncating a table empties the table and reclaims the disk space,
so no vacuum is required. Alternatively, drop the table and re-create it.

• Truncate or drop test tables.

If you are loading a small number of rows into a table for test purposes, don't delete the rows
when you are done. Instead, truncate the table and reload those rows as part of the subsequent
production load operation.

• Perform a deep copy.

If a table that uses a compound sort key table has a large unsorted region, a deep copy is much
faster than a vacuum. A deep copy recreates and repopulates a table by using a bulk insert,
which automatically re-sorts the table. If a table has a large unsorted region, a deep copy is
much faster than a vacuum. The trade off is that you cannot make concurrent updates during
a deep copy operation, which you can do during a vacuum. For more information, see Amazon
Redshift best practices for designing queries.

Managing vacuum times 178

Amazon Redshift Database Developer Guide

Managing the volume of merged rows

If a vacuum operation needs to merge new rows into a table's sorted region, the time required for a
vacuum will increase as the table grows larger. You can improve vacuum performance by reducing
the number of rows that must be merged.

Before a vacuum, a table consists of a sorted region at the head of the table, followed by an
unsorted region, which grows whenever rows are added or updated. When a set of rows is added
by a COPY operation, the new set of rows is sorted on the sort key as it is added to the unsorted
region at the end of the table. The new rows are ordered within their own set, but not within the
unsorted region.

The following diagram illustrates the unsorted region after two successive COPY operations, where
the sort key is CUSTID. For simplicity, this example shows a compound sort key, but the same
principles apply to interleaved sort keys, except that the impact of the unsorted region is greater
for interleaved tables.

Managing vacuum times 179

Amazon Redshift Database Developer Guide

A vacuum restores the table's sort order in two stages:

1. Sort the unsorted region into a newly-sorted region.

The first stage is relatively cheap, because only the unsorted region is rewritten. If the range of
sort key values of the newly sorted region is higher than the existing range, only the new rows
need to be rewritten, and the vacuum is complete. For example, if the sorted region contains ID
values 1 to 500 and subsequent copy operations add key values greater than 500, then only the
unsorted region needs to be rewritten.

2. Merge the newly-sorted region with the previously-sorted region.

If the keys in the newly sorted region overlap the keys in the sorted region, then VACUUM needs
to merge the rows. Starting at the beginning of the newly-sorted region (at the lowest sort key),

Managing vacuum times 180

Amazon Redshift Database Developer Guide

the vacuum writes the merged rows from the previously sorted region and the newly sorted
region into a new set of blocks.

The extent to which the new sort key range overlaps the existing sort keys determines the extent
to which the previously-sorted region will need to be rewritten. If the unsorted keys are scattered
throughout the existing sort range, a vacuum might need to rewrite existing portions of the table.

The following diagram shows how a vacuum would sort and merge rows that are added to a table
where CUSTID is the sort key. Because each copy operation adds a new set of rows with key values
that overlap the existing keys, almost the entire table needs to be rewritten. The diagram shows
single sort and merge, but in practice, a large vacuum consists of a series of incremental sort and
merge steps.

If the range of sort keys in a set of new rows overlaps the range of existing keys, the cost of the
merge stage continues to grow in proportion to the table size as the table grows while the cost of
the sort stage remains proportional to the size of the unsorted region. In such a case, the cost of
the merge stage overshadows the cost of the sort stage, as the following diagram shows.

Managing vacuum times 181

Amazon Redshift Database Developer Guide

To determine what proportion of a table was remerged, query SVV_VACUUM_SUMMARY after the
vacuum operation completes. The following query shows the effect of six successive vacuums as
CUSTSALES grew larger over time.

select * from svv_vacuum_summary
where table_name = 'custsales';

 table_name | xid | sort_ | merge_ | elapsed_ | row_ | sortedrow_ | block_
 | max_merge_
 | | partitions | increments | time | delta | delta | delta
 | partitions
 -----------+------+------------+------------+------------+-------+------------
+---------+---------------
 custsales | 7072 | 3 | 2 | 143918314 | 0 | 88297472 | 1524
 | 47
 custsales | 7122 | 3 | 3 | 164157882 | 0 | 88297472 | 772
 | 47
 custsales | 7212 | 3 | 4 | 187433171 | 0 | 88297472 | 767
 | 47
 custsales | 7289 | 3 | 4 | 255482945 | 0 | 88297472 | 770
 | 47
 custsales | 7420 | 3 | 5 | 316583833 | 0 | 88297472 | 769
 | 47

Managing vacuum times 182

Amazon Redshift Database Developer Guide

 custsales | 9007 | 3 | 6 | 306685472 | 0 | 88297472 | 772
 | 47
 (6 rows)

The merge_increments column gives an indication of the amount of data that was merged for
each vacuum operation. If the number of merge increments over consecutive vacuums increases
in proportion to the growth in table size, it indicates that each vacuum operation is remerging an
increasing number of rows in the table because the existing and newly sorted regions overlap.

Loading your data in sort key order

If you load your data in sort key order using a COPY command, you might reduce or even remove
the need to vacuum.

COPY automatically adds new rows to the table's sorted region when all of the following are true:

• The table uses a compound sort key with only one sort column.

• The sort column is NOT NULL.

• The table is 100 percent sorted or empty.

• All the new rows are higher in sort order than the existing rows, including rows marked for
deletion. In this instance, Amazon Redshift uses the first eight bytes of the sort key to determine
sort order.

For example, suppose you have a table that records customer events using a customer ID and time.
If you sort on customer ID, it’s likely that the sort key range of new rows added by incremental
loads will overlap the existing range, as shown in the previous example, leading to an expensive
vacuum operation.

If you set your sort key to a timestamp column, your new rows will be appended in sort order
at the end of the table, as the following diagram shows, reducing or even removing the need to
vacuum.

Managing vacuum times 183

Amazon Redshift Database Developer Guide

Using time series tables

If you maintain data for a rolling time period, use a series of tables, as the following diagram
illustrates.

Managing vacuum times 184

Amazon Redshift Database Developer Guide

Create a new table each time you add a set of data, then delete the oldest table in the series. You
gain a double benefit:

• You avoid the added cost of deleting rows, because a DROP TABLE operation is much more
efficient than a mass DELETE.

• If the tables are sorted by timestamp, no vacuum is needed. If each table contains data for one
month, a vacuum will at most have to rewrite one month’s worth of data, even if the tables are
not sorted by timestamp.

You can create a UNION ALL view for use by reporting queries that hides the fact that the data is
stored in multiple tables. If a query filters on the sort key, the query planner can efficiently skip
all the tables that aren't used. A UNION ALL can be less efficient for other types of queries, so you
should evaluate query performance in the context of all queries that use the tables.

Managing concurrent write operations

Topics

• Serializable isolation

• Write and read/write operations

• Concurrent write examples

Amazon Redshift allows tables to be read while they are being incrementally loaded or modified.

Managing concurrent write operations 185

Amazon Redshift Database Developer Guide

In some traditional data warehousing and business intelligence applications, the database is
available to users only when the nightly load is complete. In such cases, no updates are allowed
during regular work hours, when analytic queries are run and reports are generated; however, an
increasing number of applications remain live for long periods of the day or even all day, making
the notion of a load window obsolete.

Amazon Redshift supports these types of applications by allowing tables to be read while they
are being incrementally loaded or modified. Queries simply see the latest committed version,
or snapshot, of the data, rather than waiting for the next version to be committed. If you want
a particular query to wait for a commit from another write operation, you have to schedule it
accordingly.

The following topics describe some of the key concepts and use cases that involve transactions,
database snapshots, updates, and concurrent behavior.

Serializable isolation

Some applications require not only concurrent querying and loading, but also the ability to write to
multiple tables or the same table concurrently. In this context, concurrently means overlapping, not
scheduled to run at precisely the same time. Two transactions are considered to be concurrent if
the second one starts before the first commits. Concurrent operations can originate from different
sessions that are controlled either by the same user or by different users.

Note

Amazon Redshift supports a default automatic commit behavior in which each separately
run SQL command commits individually. If you enclose a set of commands in a transaction
block (defined by BEGIN and END statements), the block commits as one transaction,
so you can roll it back if necessary. Exceptions to this behavior are the TRUNCATE and
VACUUM commands, which automatically commit all outstanding changes made in the
current transaction.
Some SQL clients issue BEGIN and COMMIT commands automatically, so the client controls
whether a group of statements are run as a transaction or each individual statement is
run as its own transaction. Check the documentation for the interface you are using. For
example, when using the Amazon Redshift JDBC driver, a JDBC PreparedStatement
with a query string that contains multiple (semicolon separated) SQL commands runs all
the statements as a single transaction. In contrast, if you use SQL Workbench/J and set

Serializable isolation 186

Amazon Redshift Database Developer Guide

AUTO COMMIT ON, then if you run multiple statements, each statement runs as its own
transaction.

Concurrent write operations are supported in Amazon Redshift in a protective way, using write
locks on tables and the principle of serializable isolation. Serializable isolation preserves the illusion
that a transaction running against a table is the only transaction that is running against that table.
For example, two concurrently running transactions, T1 and T2, must produce the same results as
at least one of the following:

• T1 and T2 run serially in that order.

• T2 and T1 run serially in that order.

Concurrent transactions are invisible to each other; they cannot detect each other's changes. Each
concurrent transaction will create a snapshot of the database at the beginning of the transaction.
A database snapshot is created within a transaction on the first occurrence of most SELECT
statements, DML commands such as COPY, DELETE, INSERT, UPDATE, and TRUNCATE, and the
following DDL commands:

• ALTER TABLE (to add or drop columns)

• CREATE TABLE

• DROP TABLE

• TRUNCATE TABLE

If any serial execution of the concurrent transactions produces the same results as their concurrent
execution, those transactions are deemed "serializable" and can be run safely. If no serial execution
of those transactions can produce the same results, the transaction that runs a statement that
might break the ability to serialize is stopped and rolled back.

System catalog tables (PG) and other Amazon Redshift system tables (STL and STV) are not locked
in a transaction. Therefore, changes to database objects that arise from DDL and TRUNCATE
operations are visible on commit to any concurrent transactions.

For example, suppose that table A exists in the database when two concurrent transactions, T1
and T2, start. Suppose that T2 returns a list of tables by selecting from the PG_TABLES catalog
table. Then T1 drops table A and commits, and then T2 lists the tables again. Table A is now no

Serializable isolation 187

Amazon Redshift Database Developer Guide

longer listed. If T2 tries to query the dropped table, Amazon Redshift returns a "relation does not
exist" error. The catalog query that returns the list of tables to T2 or checks that table A exists isn't
subject to the same isolation rules as operations performed on user tables.

Transactions for updates to these tables run in a read committed isolation mode. PG-prefix catalog
tables don't support snapshot isolation.

Serializable isolation for system tables and catalog tables

A database snapshot is also created in a transaction for any SELECT query that references a
user-created table or Amazon Redshift system table (STL or STV). SELECT queries that don't
reference any table don't create a new transaction database snapshot. INSERT, DELETE, and
UPDATE statements that operate solely on system catalog tables (PG) also don't create a new
transaction database snapshot.

How to fix serializable isolation errors

ERROR:1023 DETAIL: Serializable isolation violation on a table in Redshift

When Amazon Redshift detects a serializable isolation error, you see an error message such as the
following.

ERROR:1023 DETAIL: Serializable isolation violation on table in Redshift

To address a serializable isolation error, you can try the following methods:

• Retry the canceled transaction.

Amazon Redshift detected that a concurrent workload is not serializable. It suggests gaps in
the application logic, which can usually be worked around by retrying the transaction that
encountered the error. If the issue persists, try one of the other methods.

• Move any operations that don't have to be in the same atomic transaction outside of the
transaction.

This method applies when individual operations inside two transactions cross-reference each
other in a way that can affect the outcome of the other transaction. For example, the following
two sessions each start a transaction.

Session1_Redshift=# begin;

Serializable isolation 188

Amazon Redshift Database Developer Guide

Session2_Redshift=# begin;

The result of a SELECT statement in each transaction might be affected by an INSERT statement
in the other. In other words, suppose that you run the following statements serially, in any order.
In every case, the result is one of the SELECT statements returning one more row than if the
transactions were run concurrently. There is no order in which the operations can run serially that
produces the same result as when run concurrently. Thus, the last operation that is run results in
a serializable isolation error.

Session1_Redshift=# select * from tab1;
Session1_Redshift=# insert into tab2 values (1);

Session2_Redshift=# insert into tab1 values (1);
Session2_Redshift=# select * from tab2;

In many cases, the result of the SELECT statements isn't important. In other words, the atomicity
of the operations in the transactions isn't important. In these cases, move the SELECT statements
outside of their transactions, as shown in the following examples.

Session1_Redshift=# begin;
Session1_Redshift=# insert into tab1 values (1)
Session1_Redshift=# end;
Session1_Redshift=# select * from tab2;

Session2_Redshift # select * from tab1;
Session2_Redshift=# begin;
Session2_Redshift=# insert into tab2 values (1)
Session2_Redshift=# end;

In these examples, there are no cross-references in the transactions. The two INSERT statements
don't affect each other. In these examples, there is at least one order in which the transactions
can run serially and produce the same result as if run concurrently. This means that the
transactions are serializable.

• Force serialization by locking all tables in each session.

Serializable isolation 189

Amazon Redshift Database Developer Guide

The LOCK command blocks operations that can result in serializable isolation errors. When you
use the LOCK command, be sure to do the following:

• Lock all tables affected by the transaction, including those affected by read-only SELECT
statements inside the transaction.

• Lock tables in the same order, regardless of the order that operations are performed in.

• Lock all tables at the beginning of the transaction, before performing any operations.

• Use snapshot isolation for concurrent transactions

Use an ALTER DATABASE command with snapshot isolation. For more information about the
SNAPSHOT parameter for ALTER DATABASE, see Parameters.

ERROR:1018 DETAIL: Relation does not exist

When you run concurrent Amazon Redshift operations in different sessions, you see an error
message such as the following.

ERROR: 1018 DETAIL: Relation does not exist.

Transactions in Amazon Redshift follow snapshot isolation. After a transaction begins, Amazon
Redshift takes a snapshot of the database. For the entire lifecycle of the transaction, the
transaction operates on the state of the database as reflected in the snapshot. If the transaction
reads from a table that doesn't exist in the snapshot, it throws the 1018 error message shown
previously. Even when another concurrent transaction creates a table after the transaction has
taken the snapshot, the transaction can't read from the newly created table.

To address this serialization isolation error, you can try to move the start of the transaction to a
point where you know the table exists.

If the table is created by another transaction, this point is at least after that transaction has been
committed. Also, ensure that no concurrent transaction has been committed that might have
dropped the table.

session1 = # BEGIN;
session1 = # DROP TABLE A;
session1 = # COMMIT;

session2 = # BEGIN;

Serializable isolation 190

Amazon Redshift Database Developer Guide

session3 = # BEGIN;
session3 = # CREATE TABLE A (id INT);
session3 = # COMMIT;

session2 = # SELECT * FROM A;

The last operation that is run as the read operation by session2 results in a serializable isolation
error. This error happens when session2 takes a snapshot and the table has already been dropped
by a committed session1. In other words, even though a concurrent session3 has created the table,
session2 doesn't see the table because it's not in the snapshot.

To resolve this error, you can reorder the sessions as follows.

session1 = # BEGIN;
session1 = # DROP TABLE A;
session1 = # COMMIT;

session3 = # BEGIN;
session3 = # CREATE TABLE A (id INT);
session3 = # COMMIT;

session2 = # BEGIN;
session2 = # SELECT * FROM A;

Now when session2 takes its snapshot, session3 has already been committed, and the table is in
the database. Session2 can read from the table without any error.

Write and read/write operations

You can manage the specific behavior of concurrent write operations by deciding when and how to
run different types of commands. The following commands are relevant to this discussion:

• COPY commands, which perform loads (initial or incremental)

• INSERT commands that append one or more rows at a time

• UPDATE commands, which modify existing rows

• DELETE commands, which remove rows

Write and read/write operations 191

Amazon Redshift Database Developer Guide

COPY and INSERT operations are pure write operations, but DELETE and UPDATE operations are
read/write operations. (For rows to be deleted or updated, they have to be read first.) The results
of concurrent write operations depend on the specific commands that are being run concurrently.
COPY and INSERT operations against the same table are held in a wait state until the lock is
released, then they proceed as normal.

UPDATE and DELETE operations behave differently because they rely on an initial table read before
they do any writes. Given that concurrent transactions are invisible to each other, both UPDATEs
and DELETEs have to read a snapshot of the data from the last commit. When the first UPDATE or
DELETE releases its lock, the second UPDATE or DELETE needs to determine whether the data that
it is going to work with is potentially stale. It will not be stale, because the second transaction does
not obtain its snapshot of data until after the first transaction has released its lock.

Potential deadlock situation for concurrent write transactions

Whenever transactions involve updates of more than one table, there is always the possibility of
concurrently running transactions becoming deadlocked when they both try to write to the same
set of tables. A transaction releases all of its table locks at once when it either commits or rolls
back; it does not relinquish locks one at a time.

For example, suppose that transactions T1 and T2 start at roughly the same time. If T1 starts
writing to table A and T2 starts writing to table B, both transactions can proceed without conflict;
however, if T1 finishes writing to table A and needs to start writing to table B, it will not be able to
proceed because T2 still holds the lock on B. Conversely, if T2 finishes writing to table B and needs
to start writing to table A, it will not be able to proceed either because T1 still holds the lock on
A. Because neither transaction can release its locks until all its write operations are committed,
neither transaction can proceed.

In order to avoid this kind of deadlock, you need to schedule concurrent write operations carefully.
For example, you should always update tables in the same order in transactions and, if specifying
locks, lock tables in the same order before you perform any DML operations.

Concurrent write examples

The following pseudo-code examples demonstrate how transactions either proceed or wait when
they are run concurrently.

Concurrent COPY operations into the same table

Transaction 1 copies rows into the LISTING table:

Concurrent write examples 192

Amazon Redshift Database Developer Guide

begin;
copy listing from ...;
end;

Transaction 2 starts concurrently in a separate session and attempts to copy more rows into the
LISTING table. Transaction 2 must wait until transaction 1 releases the write lock on the LISTING
table, then it can proceed.

begin;
[waits]
copy listing from ;
end;

The same behavior would occur if one or both transactions contained an INSERT command instead
of a COPY command.

Concurrent DELETE operations from the same table

Transaction 1 deletes rows from a table:

begin;
delete from listing where ...;
end;

Transaction 2 starts concurrently and attempts to delete rows from the same table. It will succeed
because it waits for transaction 1 to complete before attempting to delete rows.

begin
[waits]
delete from listing where ;
end;

The same behavior would occur if one or both transactions contained an UPDATE command to the
same table instead of a DELETE command.

Concurrent transactions with a mixture of read and write operations

In this example, transaction 1 deletes rows from the USERS table, reloads the table, runs a
COUNT(*) query, and then ANALYZE, before committing:

Concurrent write examples 193

Amazon Redshift Database Developer Guide

begin;
delete one row from USERS table;
copy ;
select count(*) from users;
analyze ;
end;

Meanwhile, transaction 2 starts. This transaction attempts to copy additional rows into the USERS
table, analyze the table, and then run the same COUNT(*) query as the first transaction:

begin;
[waits]
copy users from ...;
select count(*) from users;
analyze;
end;

The second transaction will succeed because it must wait for the first to complete. Its COUNT query
will return the count based on the load it has completed.

Tutorial: Loading data from Amazon S3

In this tutorial, you walk through the process of loading data into your Amazon Redshift database
tables from data files in an Amazon S3 bucket from beginning to end.

In this tutorial, you do the following:

• Download data files that use comma-separated value (CSV), character-delimited, and fixed width
formats.

• Create an Amazon S3 bucket and then upload the data files to the bucket.

• Launch an Amazon Redshift cluster and create database tables.

• Use COPY commands to load the tables from the data files on Amazon S3.

• Troubleshoot load errors and modify your COPY commands to correct the errors.

Estimated time: 60 minutes

Estimated cost: $1.00 per hour for the cluster

Tutorial: Loading data from Amazon S3 194

Amazon Redshift Database Developer Guide

Prerequisites

You need the following prerequisites:

• An AWS account to launch an Amazon Redshift cluster and to create a bucket in Amazon S3.

• Your AWS credentials (IAM role) to load test data from Amazon S3. If you need a new IAM role,
go to Creating IAM roles.

• An SQL client such as the Amazon Redshift console query editor.

This tutorial is designed so that it can be taken by itself. In addition to this tutorial, we recommend
completing the following tutorials to gain a more complete understanding of how to design and
use Amazon Redshift databases:

• Amazon Redshift Getting Started Guide walks you through the process of creating an Amazon
Redshift cluster and loading sample data.

Overview

You can add data to your Amazon Redshift tables either by using an INSERT command or by using
a COPY command. At the scale and speed of an Amazon Redshift data warehouse, the COPY
command is many times faster and more efficient than INSERT commands.

The COPY command uses the Amazon Redshift massively parallel processing (MPP) architecture to
read and load data in parallel from multiple data sources. You can load from data files on Amazon
S3, Amazon EMR, or any remote host accessible through a Secure Shell (SSH) connection. Or you
can load directly from an Amazon DynamoDB table.

In this tutorial, you use the COPY command to load data from Amazon S3. Many of the principles
presented here apply to loading from other data sources as well.

To learn more about using the COPY command, see these resources:

• Amazon Redshift best practices for loading data

• Loading data from Amazon EMR

• Loading data from remote hosts

• Loading data from an Amazon DynamoDB table

Prerequisites 195

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/redshift/latest/gsg/

Amazon Redshift Database Developer Guide

Steps

• Step 1: Create a cluster

• Step 2: Download the data files

• Step 3: Upload the files to an Amazon S3 bucket

• Step 4: Create the sample tables

• Step 5: Run the COPY commands

• Step 6: Vacuum and analyze the database

• Step 7: Clean up your resources

Step 1: Create a cluster

If you already have a cluster that you want to use, you can skip this step.

For the exercises in this tutorial, use a four-node cluster.

To create a cluster

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

Using the navigation menu, choose the Provisioned clusters dashboard.

Important

Make sure that you have the necessary permissions to perform the cluster operations.
For information on granting the necessary permissions, see Authorizing Amazon
Redshift to access AWS services.

2. At top right, choose the AWS Region in which you want to create the cluster. For the purposes
of this tutorial, choose US West (Oregon).

3. On the navigation menu, choose Clusters, then choose Create cluster. The Create cluster page
appears.

4. On the Create cluster page enter parameters for your cluster. Choose your own values for the
parameters, except change the following values:

• Choose dc2.large for the node type.

Steps 196

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html

Amazon Redshift Database Developer Guide

• Choose 4 for the Number of nodes.

• In the Cluster permissions section, choose an IAM role from Available IAM roles. This role
should be one that you previously created and that has access to Amazon S3. Then choose
Associate IAM role to add it to the list of Associated IAM roles for the cluster.

5. Choose Create cluster.

Follow the Amazon Redshift Getting Started Guide steps to connect to your cluster from a SQL
client and test a connection. You don't need to complete the remaining Getting Started steps to
create tables, upload data, and try example queries.

Next step

Step 2: Download the data files

Step 2: Download the data files

In this step, you download a set of sample data files to your computer. In the next step, you upload
the files to an Amazon S3 bucket.

To download the data files

1. Download the zipped file: LoadingDataSampleFiles.zip.

2. Extract the files to a folder on your computer.

3. Verify that your folder contains the following files.

customer-fw-manifest
customer-fw.tbl-000
customer-fw.tbl-000.bak
customer-fw.tbl-001
customer-fw.tbl-002
customer-fw.tbl-003
customer-fw.tbl-004
customer-fw.tbl-005
customer-fw.tbl-006
customer-fw.tbl-007
customer-fw.tbl.log
dwdate-tab.tbl-000
dwdate-tab.tbl-001
dwdate-tab.tbl-002

Step 2: Download the data files 197

https://docs.aws.amazon.com/redshift/latest/gsg/
samples/LoadingDataSampleFiles.zip

Amazon Redshift Database Developer Guide

dwdate-tab.tbl-003
dwdate-tab.tbl-004
dwdate-tab.tbl-005
dwdate-tab.tbl-006
dwdate-tab.tbl-007
part-csv.tbl-000
part-csv.tbl-001
part-csv.tbl-002
part-csv.tbl-003
part-csv.tbl-004
part-csv.tbl-005
part-csv.tbl-006
part-csv.tbl-007

Next step

Step 3: Upload the files to an Amazon S3 bucket

Step 3: Upload the files to an Amazon S3 bucket

In this step, you create an Amazon S3 bucket and upload the data files to the bucket.

To upload the files to an Amazon S3 bucket

1. Create a bucket in Amazon S3.

For more information about creating a bucket, see Creating a bucket in the Amazon Simple
Storage Service User Guide.

a. Sign in to the AWS Management Console and open the Amazon S3 console at https://
console.aws.amazon.com/s3/.

b. Choose Create bucket.

c. Choose an AWS Region.

Create the bucket in the same Region as your cluster. If your cluster is in the US West
(Oregon) Region, choose US West (Oregon) Region (us-west-2).

d. In the Bucket Name box of the Create bucket dialog box, enter a bucket name.

The bucket name you choose must be unique among all existing bucket names in Amazon
S3. One way to help ensure uniqueness is to prefix your bucket names with the name of

Step 3: Upload the files to an Amazon S3 bucket 198

https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

Amazon Redshift Database Developer Guide

your organization. Bucket names must comply with certain rules. For more information, go
to Bucket restrictions and limitations in the Amazon Simple Storage Service User Guide.

e. Choose the recommended defaults for the rest of the options.

f. Choose Create bucket.

When Amazon S3 successfully creates your bucket, the console displays your empty
bucket in the Buckets panel.

2. Create a folder.

a. Choose the name of the new bucket.

b. Choose the Create Folder button.

c. Name the new folder load.

Note

The bucket that you created is not in a sandbox. In this exercise, you add objects
to a real bucket. You're charged a nominal amount for the time that you store the
objects in the bucket. For more information about Amazon S3 pricing, go to the
Amazon S3 pricing page.

3. Upload the data files to the new Amazon S3 bucket.

a. Choose the name of the data folder.

b. In the Upload wizard, choose Add files.

Follow the Amazon S3 console instructions to upload all of the files you downloaded and
extracted,

c. Choose Upload.

User Credentials

The Amazon Redshift COPY command must have access to read the file objects in the Amazon
S3 bucket. If you use the same user credentials to create the Amazon S3 bucket and to run the
Amazon Redshift COPY command, the COPY command has all necessary permissions. If you want
to use different user credentials, you can grant access by using the Amazon S3 access controls. The
Amazon Redshift COPY command requires at least ListBucket and GetObject permissions to access

Step 3: Upload the files to an Amazon S3 bucket 199

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html
https://aws.amazon.com/s3/pricing/

Amazon Redshift Database Developer Guide

the file objects in the Amazon S3 bucket. For more information about controlling access to Amazon
S3 resources, go to Managing access permissions to your Amazon S3 resources.

Next step

Step 4: Create the sample tables

Step 4: Create the sample tables

For this tutorial, you use a set of five tables based on the Star Schema Benchmark (SSB) schema.
The following diagram shows the SSB data model.

The SSB tables might already exist in the current database. If so, drop the tables to remove them
from the database before you create them using the CREATE TABLE commands in the next step.
The tables used in this tutorial might have different attributes than the existing tables.

To create the sample tables

1. To drop the SSB tables, run the following commands in your SQL client.

Step 4: Create the sample tables 200

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Redshift Database Developer Guide

drop table part cascade;
drop table supplier;
drop table customer;
drop table dwdate;
drop table lineorder;

2. Run the following CREATE TABLE commands in your SQL client.

CREATE TABLE part
(
 p_partkey INTEGER NOT NULL,
 p_name VARCHAR(22) NOT NULL,
 p_mfgr VARCHAR(6),
 p_category VARCHAR(7) NOT NULL,
 p_brand1 VARCHAR(9) NOT NULL,
 p_color VARCHAR(11) NOT NULL,
 p_type VARCHAR(25) NOT NULL,
 p_size INTEGER NOT NULL,
 p_container VARCHAR(10) NOT NULL
);

CREATE TABLE supplier
(
 s_suppkey INTEGER NOT NULL,
 s_name VARCHAR(25) NOT NULL,
 s_address VARCHAR(25) NOT NULL,
 s_city VARCHAR(10) NOT NULL,
 s_nation VARCHAR(15) NOT NULL,
 s_region VARCHAR(12) NOT NULL,
 s_phone VARCHAR(15) NOT NULL
);

CREATE TABLE customer
(
 c_custkey INTEGER NOT NULL,
 c_name VARCHAR(25) NOT NULL,
 c_address VARCHAR(25) NOT NULL,
 c_city VARCHAR(10) NOT NULL,
 c_nation VARCHAR(15) NOT NULL,
 c_region VARCHAR(12) NOT NULL,
 c_phone VARCHAR(15) NOT NULL,
 c_mktsegment VARCHAR(10) NOT NULL

Step 4: Create the sample tables 201

Amazon Redshift Database Developer Guide

);

CREATE TABLE dwdate
(
 d_datekey INTEGER NOT NULL,
 d_date VARCHAR(19) NOT NULL,
 d_dayofweek VARCHAR(10) NOT NULL,
 d_month VARCHAR(10) NOT NULL,
 d_year INTEGER NOT NULL,
 d_yearmonthnum INTEGER NOT NULL,
 d_yearmonth VARCHAR(8) NOT NULL,
 d_daynuminweek INTEGER NOT NULL,
 d_daynuminmonth INTEGER NOT NULL,
 d_daynuminyear INTEGER NOT NULL,
 d_monthnuminyear INTEGER NOT NULL,
 d_weeknuminyear INTEGER NOT NULL,
 d_sellingseason VARCHAR(13) NOT NULL,
 d_lastdayinweekfl VARCHAR(1) NOT NULL,
 d_lastdayinmonthfl VARCHAR(1) NOT NULL,
 d_holidayfl VARCHAR(1) NOT NULL,
 d_weekdayfl VARCHAR(1) NOT NULL
);
CREATE TABLE lineorder
(
 lo_orderkey INTEGER NOT NULL,
 lo_linenumber INTEGER NOT NULL,
 lo_custkey INTEGER NOT NULL,
 lo_partkey INTEGER NOT NULL,
 lo_suppkey INTEGER NOT NULL,
 lo_orderdate INTEGER NOT NULL,
 lo_orderpriority VARCHAR(15) NOT NULL,
 lo_shippriority VARCHAR(1) NOT NULL,
 lo_quantity INTEGER NOT NULL,
 lo_extendedprice INTEGER NOT NULL,
 lo_ordertotalprice INTEGER NOT NULL,
 lo_discount INTEGER NOT NULL,
 lo_revenue INTEGER NOT NULL,
 lo_supplycost INTEGER NOT NULL,
 lo_tax INTEGER NOT NULL,
 lo_commitdate INTEGER NOT NULL,
 lo_shipmode VARCHAR(10) NOT NULL
);

Step 4: Create the sample tables 202

Amazon Redshift Database Developer Guide

Next step

Step 5: Run the COPY commands

Step 5: Run the COPY commands

You run COPY commands to load each of the tables in the SSB schema. The COPY command
examples demonstrate loading from different file formats, using several COPY command options,
and troubleshooting load errors.

Topics

• COPY command syntax

• Loading the SSB tables

COPY command syntax

The basic COPY command syntax is as follows.

COPY table_name [column_list] FROM data_source CREDENTIALS access_credentials
 [options]

To run a COPY command, you provide the following values.

Table name

The target table for the COPY command. The table must already exist in the database. The table
can be temporary or persistent. The COPY command appends the new input data to any existing
rows in the table.

Column list

By default, COPY loads fields from the source data to the table columns in order. You can
optionally specify a column list, that is a comma-separated list of column names, to map data
fields to specific columns. You don't use column lists in this tutorial. For more information, see
Column List in the COPY command reference.

Data source

You can use the COPY command to load data from an Amazon S3 bucket, an Amazon EMR cluster,
a remote host using an SSH connection, or an Amazon DynamoDB table. For this tutorial, you load

Step 5: Run the COPY commands 203

Amazon Redshift Database Developer Guide

from data files in an Amazon S3 bucket. When loading from Amazon S3, you must provide the
name of the bucket and the location of the data files. To do this, provide either an object path for
the data files or the location of a manifest file that explicitly lists each data file and its location.

• Key prefix

An object stored in Amazon S3 is uniquely identified by an object key, which includes the bucket
name, folder names, if any, and the object name. A key prefix refers to a set of objects with the
same prefix. The object path is a key prefix that the COPY command uses to load all objects that
share the key prefix. For example, the key prefix custdata.txt can refer to a single file or to a
set of files, including custdata.txt.001, custdata.txt.002, and so on.

• Manifest file

In some cases, you might need to load files with different prefixes, for example from multiple
buckets or folders. In others, you might need to exclude files that share a prefix. In these cases,
you can use a manifest file. A manifest file explicitly lists each load file and its unique object key.
You use a manifest file to load the PART table later in this tutorial.

Credentials

To access the AWS resources that contain the data to load, you must provide AWS access
credentials for a user with sufficient privileges. These credentials include an IAM role Amazon
Resource Name (ARN). To load data from Amazon S3, the credentials must include ListBucket and
GetObject permissions. Additional credentials are required if your data is encrypted. For more
information, see Authorization parameters in the COPY command reference. For more information
about managing access, go to Managing access permissions to your Amazon S3 resources.

Options

You can specify a number of parameters with the COPY command to specify file formats, manage
data formats, manage errors, and control other features. In this tutorial, you use the following
COPY command options and features:

• Key prefix

For information on how to load from multiple files by specifying a key prefix, see Load the PART
table using NULL AS.

• CSV format

Step 5: Run the COPY commands 204

https://docs.aws.amazon.com/AmazonS3/latest/dev/s3-access-control.html

Amazon Redshift Database Developer Guide

For information on how to load data that is in CSV format, see Load the PART table using NULL
AS.

• NULL AS

For information on how to load PART using the NULL AS option, see Load the PART table using
NULL AS.

• Character-delimited format

For information on how to use the DELIMITER option, see Load the SUPPLIER table using
REGION.

• REGION

For information on how to use the REGION option, see Load the SUPPLIER table using REGION.

• Fixed-format width

For information on how to load the CUSTOMER table from fixed-width data, see Load the
CUSTOMER table using MANIFEST.

• MAXERROR

For information on how to use the MAXERROR option, see Load the CUSTOMER table using
MANIFEST.

• ACCEPTINVCHARS

For information on how to use the ACCEPTINVCHARS option, see Load the CUSTOMER table
using MANIFEST.

• MANIFEST

For information on how to use the MANIFEST option, see Load the CUSTOMER table using
MANIFEST.

• DATEFORMAT

For information on how to use the DATEFORMAT option, see Load the DWDATE table using
DATEFORMAT.

• GZIP, LZOP and BZIP2

For information on how to compress your files, see Load the LINEORDER table using multiple
files.

Step 5: Run the COPY commands 205

Amazon Redshift Database Developer Guide

• COMPUPDATE

For information on how to use the COMPUPDATE option, see Load the LINEORDER table using
multiple files.

• Multiple files

For information on how to load multiple files, see Load the LINEORDER table using multiple files.

Loading the SSB tables

You use the following COPY commands to load each of the tables in the SSB schema. The
command to each table demonstrates different COPY options and troubleshooting techniques.

To load the SSB tables, follow these steps:

1. Replace the bucket name and AWS credentials

2. Load the PART table using NULL AS

3. Load the SUPPLIER table using REGION

4. Load the CUSTOMER table using MANIFEST

5. Load the DWDATE table using DATEFORMAT

6. Load the LINEORDER table using multiple files

Replace the bucket name and AWS credentials

The COPY commands in this tutorial are presented in the following format.

copy table from 's3://<your-bucket-name>/load/key_prefix'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
options;

For each COPY command, do the following:

1. Replace <your-bucket-name> with the name of a bucket in the same region as your cluster.

This step assumes the bucket and the cluster are in the same region. Alternatively, you can
specify the region using the REGION option with the COPY command.

2. Replace <aws-account-id> and <role-name> with your own AWS account and IAM role. The
segment of the credentials string that is enclosed in single quotation marks must not contain

Step 5: Run the COPY commands 206

Amazon Redshift Database Developer Guide

any spaces or line breaks. Note that the ARN might differ slightly in format than the sample. It's
best to copy the ARN for the role from the IAM console, to ensure that it's accurate, when you
run the COPY commands.

Load the PART table using NULL AS

In this step, you use the CSV and NULL AS options to load the PART table.

The COPY command can load data from multiple files in parallel, which is much faster than loading
from a single file. To demonstrate this principle, the data for each table in this tutorial is split into
eight files, even though the files are very small. In a later step, you compare the time difference
between loading from a single file and loading from multiple files. For more information, see
Loading data files.

Key prefix

You can load from multiple files by specifying a key prefix for the file set, or by explicitly listing the
files in a manifest file. In this step, you use a key prefix. In a later step, you use a manifest file. The
key prefix 's3://mybucket/load/part-csv.tbl' loads the following set of the files in the
load folder.

part-csv.tbl-000
part-csv.tbl-001
part-csv.tbl-002
part-csv.tbl-003
part-csv.tbl-004
part-csv.tbl-005
part-csv.tbl-006
part-csv.tbl-007

CSV format

CSV, which stands for comma separated values, is a common format used for importing and
exporting spreadsheet data. CSV is more flexible than comma-delimited format because it enables
you to include quoted strings within fields. The default quotation mark character for COPY from
CSV format is a double quotation mark ("), but you can specify another quotation mark character
by using the QUOTE AS option. When you use the quotation mark character within the field,
escape the character with an additional quotation mark character.

Step 5: Run the COPY commands 207

Amazon Redshift Database Developer Guide

The following excerpt from a CSV-formatted data file for the PART table shows strings enclosed
in double quotation marks ("LARGE ANODIZED BRASS"). It also shows a string enclosed in two
double quotation marks within a quoted string ("MEDIUM ""BURNISHED"" TIN").

15,dark sky,MFGR#3,MFGR#47,MFGR#3438,indigo,"LARGE ANODIZED BRASS",45,LG CASE
22,floral beige,MFGR#4,MFGR#44,MFGR#4421,medium,"PROMO, POLISHED BRASS",19,LG DRUM
23,bisque slate,MFGR#4,MFGR#41,MFGR#4137,firebrick,"MEDIUM ""BURNISHED"" TIN",42,JUMBO
 JAR

The data for the PART table contains characters that cause COPY to fail. In this exercise, you
troubleshoot the errors and correct them.

To load data that is in CSV format, add csv to your COPY command. Run the following command
to load the PART table.

copy part from 's3://<your-bucket-name>/load/part-csv.tbl'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
csv;

You might get an error message similar to the following.

An error occurred when executing the SQL command:
copy part from 's3://mybucket/load/part-csv.tbl'
credentials' ...

ERROR: Load into table 'part' failed. Check 'stl_load_errors' system table for
 details. [SQL State=XX000]

Execution time: 1.46s

1 statement(s) failed.
1 statement(s) failed.

To get more information about the error, query the STL_LOAD_ERRORS table. The following query
uses the SUBSTRING function to shorten columns for readability and uses LIMIT 10 to reduce the
number of rows returned. You can adjust the values in substring(filename,22,25) to allow
for the length of your bucket name.

select query, substring(filename,22,25) as filename,line_number as line,
substring(colname,0,12) as column, type, position as pos, substring(raw_line,0,30) as
 line_text,

Step 5: Run the COPY commands 208

Amazon Redshift Database Developer Guide

substring(raw_field_value,0,15) as field_text,
substring(err_reason,0,45) as reason
from stl_load_errors
order by query desc
limit 10;

 query | filename | line | column | type | pos |
--------+-------------------------+-----------+------------+------------+-----+----
 333765 | part-csv.tbl-000 | 1 | | | 0 |

 line_text | field_text | reason
------------------+------------+--
 15,NUL next, | | Missing newline: Unexpected character 0x2c f

NULL AS

The part-csv.tbl data files use the NUL terminator character (\x000 or \x0) to indicate NULL
values.

Note

Despite very similar spelling, NUL and NULL are not the same. NUL is a UTF-8 character
with codepoint x000 that is often used to indicate end of record (EOR). NULL is a SQL value
that represents an absence of data.

By default, COPY treats a NUL terminator character as an EOR character and terminates the
record, which often results in unexpected results or an error. There is no single standard method
of indicating NULL in text data. Thus, the NULL AS COPY command option enables you to specify
which character to substitute with NULL when loading the table. In this example, you want COPY
to treat the NUL terminator character as a NULL value.

Note

The table column that receives the NULL value must be configured as nullable. That is, it
must not include the NOT NULL constraint in the CREATE TABLE specification.

To load PART using the NULL AS option, run the following COPY command.

Step 5: Run the COPY commands 209

Amazon Redshift Database Developer Guide

copy part from 's3://<your-bucket-name>/load/part-csv.tbl'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
csv
null as '\000';

To verify that COPY loaded NULL values, run the following command to select only the rows that
contain NULL.

select p_partkey, p_name, p_mfgr, p_category from part where p_mfgr is null;

 p_partkey | p_name | p_mfgr | p_category
-----------+----------+--------+------------
 15 | NUL next | | MFGR#47
 81 | NUL next | | MFGR#23
 133 | NUL next | | MFGR#44
(2 rows)

Load the SUPPLIER table using REGION

In this step, you use the DELIMITER and REGION options to load the SUPPLIER table.

Note

The files for loading the SUPPLIER table are provided in an AWS sample bucket. You don't
need to upload files for this step.

Character-Delimited Format

The fields in a character-delimited file are separated by a specific character, such as a pipe
character (|), a comma (,) or a tab (\t). Character-delimited files can use any single ASCII
character, including one of the nonprinting ASCII characters, as the delimiter. You specify the
delimiter character by using the DELIMITER option. The default delimiter is a pipe character (|).

The following excerpt from the data for the SUPPLIER table uses pipe-delimited format.

1|1|257368|465569|41365|19950218|2-HIGH|0|17|2608718|9783671|4|2504369|92072|2|
19950331|TRUCK
1|2|257368|201928|8146|19950218|2-HIGH|0|36|6587676|9783671|9|5994785|109794|6|
19950416|MAIL

Step 5: Run the COPY commands 210

Amazon Redshift Database Developer Guide

REGION

Whenever possible, you should locate your load data in the same AWS region as your Amazon
Redshift cluster. If your data and your cluster are in the same region, you reduce latency and avoid
cross-region data transfer costs. For more information, see Amazon Redshift best practices for
loading data

If you must load data from a different AWS region, use the REGION option to specify the AWS
region in which the load data is located. If you specify a region, all of the load data, including
manifest files, must be in the named region. For more information, see REGION.

If your cluster is in the US East (N. Virginia) Region, run the following command to load the
SUPPLIER table from pipe-delimited data in an Amazon S3 bucket located in the US West (Oregon)
Region. For this example, do not change the bucket name.

copy supplier from 's3://awssampledbuswest2/ssbgz/supplier.tbl'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
delimiter '|'
gzip
region 'us-west-2';

If your cluster is not in the US East (N. Virginia) region, run the following command to load the
SUPPLIER table from pipe-delimited data in an Amazon S3 bucket located in the US East (N.
Virginia) region. For this example, do not change the bucket name.

copy supplier from 's3://awssampledb/ssbgz/supplier.tbl'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
delimiter '|'
gzip
region 'us-east-1';

Load the CUSTOMER table using MANIFEST

In this step, you use the FIXEDWIDTH, MAXERROR, ACCEPTINVCHARS, and MANIFEST options to
load the CUSTOMER table.

The sample data for this exercise contains characters that cause errors when COPY attempts
to load them. You use the MAXERRORS option and the STL_LOAD_ERRORS system table to
troubleshoot the load errors and then use the ACCEPTINVCHARS and MANIFEST options to
eliminate the errors.

Step 5: Run the COPY commands 211

Amazon Redshift Database Developer Guide

Fixed-Width Format

Fixed-width format defines each field as a fixed number of characters, rather than separating fields
with a delimiter. The following excerpt from the data for the CUSTOMER table uses fixed-width
format.

1 Customer#000000001 IVhzIApeRb MOROCCO 0MOROCCO AFRICA 25-705
2 Customer#000000002 XSTf4,NCwDVaWNe6tE JORDAN 6JORDAN MIDDLE EAST 23-453
3 Customer#000000003 MG9kdTD ARGENTINA5ARGENTINAAMERICA 11-783

The order of the label/width pairs must match the order of the table columns exactly. For more
information, see FIXEDWIDTH.

The fixed-width specification string for the CUSTOMER table data is as follows.

fixedwidth 'c_custkey:10, c_name:25, c_address:25, c_city:10, c_nation:15,
c_region :12, c_phone:15,c_mktsegment:10'

To load the CUSTOMER table from fixed-width data, run the following command.

copy customer
from 's3://<your-bucket-name>/load/customer-fw.tbl'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
fixedwidth 'c_custkey:10, c_name:25, c_address:25, c_city:10, c_nation:15,
 c_region :12, c_phone:15,c_mktsegment:10';

You should get an error message, similar to the following.

An error occurred when executing the SQL command:
copy customer
from 's3://mybucket/load/customer-fw.tbl'
credentials'...

ERROR: Load into table 'customer' failed. Check 'stl_load_errors' system table for
 details. [SQL State=XX000]

Execution time: 2.95s

1 statement(s) failed.

MAXERROR

Step 5: Run the COPY commands 212

Amazon Redshift Database Developer Guide

By default, the first time COPY encounters an error, the command fails and returns an error
message. To save time during testing, you can use the MAXERROR option to instruct COPY to skip
a specified number of errors before it fails. Because we expect errors the first time we test loading
the CUSTOMER table data, add maxerror 10 to the COPY command.

To test using the FIXEDWIDTH and MAXERROR options, run the following command.

copy customer
from 's3://<your-bucket-name>/load/customer-fw.tbl'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
fixedwidth 'c_custkey:10, c_name:25, c_address:25, c_city:10, c_nation:15,
 c_region :12, c_phone:15,c_mktsegment:10'
maxerror 10;

This time, instead of an error message, you get a warning message similar to the following.

Warnings:
Load into table 'customer' completed, 112497 record(s) loaded successfully.
Load into table 'customer' completed, 7 record(s) could not be loaded. Check
 'stl_load_errors' system table for details.

The warning indicates that COPY encountered seven errors. To check the errors, query the
STL_LOAD_ERRORS table, as shown in the following example.

select query, substring(filename,22,25) as filename,line_number as line,
substring(colname,0,12) as column, type, position as pos, substring(raw_line,0,30) as
 line_text,
substring(raw_field_value,0,15) as field_text,
substring(err_reason,0,45) as error_reason
from stl_load_errors
order by query desc, filename
limit 7;

The results of the STL_LOAD_ERRORS query should look similar to the following.

 query | filename | line | column | type | pos |
 line_text | field_text | error_reason
--------+---------------------------+------+-----------
+------------+-----+-------------------------------+------------
+--

Step 5: Run the COPY commands 213

Amazon Redshift Database Developer Guide

 334489 | customer-fw.tbl.log | 2 | c_custkey | int4 | -1 | customer-
fw.tbl | customer-f | Invalid digit, Value 'c', Pos 0, Type: Integ
 334489 | customer-fw.tbl.log | 6 | c_custkey | int4 | -1 | Complete
 | Complete | Invalid digit, Value 'C', Pos 0, Type: Integ
 334489 | customer-fw.tbl.log | 3 | c_custkey | int4 | -1 | #Total rows
 | #Total row | Invalid digit, Value '#', Pos 0, Type: Integ
 334489 | customer-fw.tbl.log | 5 | c_custkey | int4 | -1 | #Status
 | #Status | Invalid digit, Value '#', Pos 0, Type: Integ
 334489 | customer-fw.tbl.log | 1 | c_custkey | int4 | -1 | #Load file
 | #Load file | Invalid digit, Value '#', Pos 0, Type: Integ
 334489 | customer-fw.tbl000 | 1 | c_address | varchar | 34 | 1
 Customer#000000001 | .Mayag.ezR | String contains invalid or unsupported UTF8
 334489 | customer-fw.tbl000 | 1 | c_address | varchar | 34 | 1
 Customer#000000001 | .Mayag.ezR | String contains invalid or unsupported UTF8
(7 rows)

By examining the results, you can see that there are two messages in the error_reasons column:

• Invalid digit, Value '#', Pos 0, Type: Integ

These errors are caused by the customer-fw.tbl.log file. The problem is that it is a log file,
not a data file, and should not be loaded. You can use a manifest file to avoid loading the wrong
file.

• String contains invalid or unsupported UTF8

The VARCHAR data type supports multibyte UTF-8 characters up to three bytes. If the load data
contains unsupported or invalid characters, you can use the ACCEPTINVCHARS option to replace
each invalid character with a specified alternative character.

Another problem with the load is more difficult to detect—the load produced unexpected results.
To investigate this problem, run the following command to query the CUSTOMER table.

select c_custkey, c_name, c_address
from customer
order by c_custkey
limit 10;

 c_custkey | c_name | c_address
-----------+---------------------------+---------------------------

Step 5: Run the COPY commands 214

Amazon Redshift Database Developer Guide

 2 | Customer#000000002 | XSTf4,NCwDVaWNe6tE
 2 | Customer#000000002 | XSTf4,NCwDVaWNe6tE
 3 | Customer#000000003 | MG9kdTD
 3 | Customer#000000003 | MG9kdTD
 4 | Customer#000000004 | XxVSJsL
 4 | Customer#000000004 | XxVSJsL
 5 | Customer#000000005 | KvpyuHCplrB84WgAi
 5 | Customer#000000005 | KvpyuHCplrB84WgAi
 6 | Customer#000000006 | sKZz0CsnMD7mp4Xd0YrBvx
 6 | Customer#000000006 | sKZz0CsnMD7mp4Xd0YrBvx
(10 rows)

The rows should be unique, but there are duplicates.

Another way to check for unexpected results is to verify the number of rows that were loaded. In
our case, 100000 rows should have been loaded, but the load message reported loading 112497
records. The extra rows were loaded because the COPY loaded an extraneous file, customer-
fw.tbl0000.bak.

In this exercise, you use a manifest file to avoid loading the wrong files.

ACCEPTINVCHARS

By default, when COPY encounters a character that is not supported by the column's data type, it
skips the row and returns an error. For information about invalid UTF-8 characters, see Multibyte
character load errors.

You could use the MAXERRORS option to ignore errors and continue loading, then query
STL_LOAD_ERRORS to locate the invalid characters, and then fix the data files. However,
MAXERRORS is best used for troubleshooting load problems and should generally not be used in a
production environment.

The ACCEPTINVCHARS option is usually a better choice for managing invalid characters.
ACCEPTINVCHARS instructs COPY to replace each invalid character with a specified valid character
and continue with the load operation. You can specify any valid ASCII character, except NULL,
as the replacement character. The default replacement character is a question mark (?). COPY
replaces multibyte characters with a replacement string of equal length. For example, a 4-byte
character would be replaced with '????'.

COPY returns the number of rows that contained invalid UTF-8 characters. It also adds an entry
to the STL_REPLACEMENTS system table for each affected row, up to a maximum of 100 rows per

Step 5: Run the COPY commands 215

Amazon Redshift Database Developer Guide

node slice. Additional invalid UTF-8 characters are also replaced, but those replacement events are
not recorded.

ACCEPTINVCHARS is valid only for VARCHAR columns.

For this step, you add the ACCEPTINVCHARS with the replacement character '^'.

MANIFEST

When you COPY from Amazon S3 using a key prefix, there is a risk that you might load unwanted
tables. For example, the 's3://mybucket/load/ folder contains eight data files that share
the key prefix customer-fw.tbl: customer-fw.tbl0000, customer-fw.tbl0001, and so
on. However, the same folder also contains the extraneous files customer-fw.tbl.log and
customer-fw.tbl-0001.bak.

To ensure that you load all of the correct files, and only the correct files, use a manifest file. The
manifest is a text file in JSON format that explicitly lists the unique object key for each source file
to be loaded. The file objects can be in different folders or different buckets, but they must be in
the same region. For more information, see MANIFEST.

The following shows the customer-fw-manifest text.

{
 "entries": [
 {"url":"s3://<your-bucket-name>/load/customer-fw.tbl-000"},
 {"url":"s3://<your-bucket-name>/load/customer-fw.tbl-001"},
 {"url":"s3://<your-bucket-name>/load/customer-fw.tbl-002"},
 {"url":"s3://<your-bucket-name>/load/customer-fw.tbl-003"},
 {"url":"s3://<your-bucket-name>/load/customer-fw.tbl-004"},
 {"url":"s3://<your-bucket-name>/load/customer-fw.tbl-005"},
 {"url":"s3://<your-bucket-name>/load/customer-fw.tbl-006"},
 {"url":"s3://<your-bucket-name>/load/customer-fw.tbl-007"}
]
}

To load the data for the CUSTOMER table using the manifest file

1. Open the file customer-fw-manifest in a text editor.

2. Replace <your-bucket-name> with the name of your bucket.

3. Save the file.

Step 5: Run the COPY commands 216

Amazon Redshift Database Developer Guide

4. Upload the file to the load folder on your bucket.

5. Run the following COPY command.

copy customer from 's3://<your-bucket-name>/load/customer-fw-manifest'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
fixedwidth 'c_custkey:10, c_name:25, c_address:25, c_city:10, c_nation:15,
 c_region :12, c_phone:15,c_mktsegment:10'
maxerror 10
acceptinvchars as '^'
manifest;

Load the DWDATE table using DATEFORMAT

In this step, you use the DELIMITER and DATEFORMAT options to load the DWDATE table.

When loading DATE and TIMESTAMP columns, COPY expects the default format, which is YYYY-
MM-DD for dates and YYYY-MM-DD HH:MI:SS for timestamps. If the load data does not use a
default format, you can use DATEFORMAT and TIMEFORMAT to specify the format.

The following excerpt shows date formats in the DWDATE table. Notice that the date formats in
column two are inconsistent.

19920104 1992-01-04 Sunday January 1992 199201 Jan1992 1 4 4 1...
19920112 January 12, 1992 Monday January 1992 199201 Jan1992 2 12 12 1...
19920120 January 20, 1992 Tuesday January 1992 199201 Jan1992 3 20 20 1...

DATEFORMAT

You can specify only one date format. If the load data contains inconsistent formats, possibly
in different columns, or if the format is not known at load time, you use DATEFORMAT with the
'auto' argument. When 'auto' is specified, COPY recognizes any valid date or time format
and convert it to the default format. The 'auto' option recognizes several formats that are not
supported when using a DATEFORMAT and TIMEFORMAT string. For more information, see Using
automatic recognition with DATEFORMAT and TIMEFORMAT.

To load the DWDATE table, run the following COPY command.

copy dwdate from 's3://<your-bucket-name>/load/dwdate-tab.tbl'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
delimiter '\t'

Step 5: Run the COPY commands 217

Amazon Redshift Database Developer Guide

dateformat 'auto';

Load the LINEORDER table using multiple files

This step uses the GZIP and COMPUPDATE options to load the LINEORDER table.

In this exercise, you load the LINEORDER table from a single data file and then load it again from
multiple files. Doing this enables you to compare the load times for the two methods.

Note

The files for loading the LINEORDER table are provided in an AWS sample bucket. You don't
need to upload files for this step.

GZIP, LZOP and BZIP2

You can compress your files using either gzip, lzop, or bzip2 compression formats. When loading
from compressed files, COPY uncompresses the files during the load process. Compressing your
files saves storage space and shortens upload times.

COMPUPDATE

When COPY loads an empty table with no compression encodings, it analyzes the load data to
determine the optimal encodings. It then alters the table to use those encodings before beginning
the load. This analysis process takes time, but it occurs, at most, once per table. To save time, you
can skip this step by turning COMPUPDATE off. To enable an accurate evaluation of COPY times,
you turn COMPUPDATE off for this step.

Multiple Files

The COPY command can load data very efficiently when it loads from multiple files in parallel
instead of from a single file. You can split your data into files so that the number of files is a
multiple of the number of slices in your cluster. If you do, Amazon Redshift divides the workload
and distributes the data evenly among the slices. The number of slices per node depends on the
node size of the cluster. For more information about the number of slices that each node size has,
go to About clusters and nodes in the Amazon Redshift Management Guide.

For example, the dc2.large compute nodes used in this tutorial have two slices each, so the four-
node cluster has eight slices. In previous steps, the load data was contained in eight files, even

Step 5: Run the COPY commands 218

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-about-clusters-and-nodes

Amazon Redshift Database Developer Guide

though the files are very small. In this step, you compare the time difference between loading from
a single large file and loading from multiple files.

The files you use for this tutorial contain about 15 million records and occupy about 1.2 GB. These
files are very small in Amazon Redshift scale, but sufficient to demonstrate the performance
advantage of loading from multiple files. The files are large enough that the time required to
download them and then upload them to Amazon S3 is excessive for this tutorial. Thus, you load
the files directly from an AWS sample bucket.

The following screenshot shows the data files for LINEORDER.

To evaluate the performance of COPY with multiple files

1. Run the following command to COPY from a single file. Do not change the bucket name.

copy lineorder from 's3://awssampledb/load/lo/lineorder-single.tbl'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
gzip
compupdate off
region 'us-east-1';

2. Your results should be similar to the following. Note the execution time.

Warnings:

Step 5: Run the COPY commands 219

Amazon Redshift Database Developer Guide

Load into table 'lineorder' completed, 14996734 record(s) loaded successfully.

0 row(s) affected.
copy executed successfully

Execution time: 51.56s

3. Run the following command to COPY from multiple files. Do not change the bucket name.

copy lineorder from 's3://awssampledb/load/lo/lineorder-multi.tbl'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'
gzip
compupdate off
region 'us-east-1';

4. Your results should be similar to the following. Note the execution time.

Warnings:
Load into table 'lineorder' completed, 14996734 record(s) loaded successfully.

0 row(s) affected.
copy executed successfully

Execution time: 17.7s

5. Compare execution times.

In our example, the time to load 15 million records decreased from 51.56 seconds to 17.7
seconds, a reduction of 65.7 percent.

These results are based on using a four-node cluster. If your cluster has more nodes, the time
savings is multiplied. For typical Amazon Redshift clusters, with tens to hundreds of nodes,
the difference is even more dramatic. If you have a single node cluster, there is little difference
between the execution times.

Next step

Step 6: Vacuum and analyze the database

Step 5: Run the COPY commands 220

Amazon Redshift Database Developer Guide

Step 6: Vacuum and analyze the database

Whenever you add, delete, or modify a significant number of rows, you should run a VACUUM
command and then an ANALYZE command. A vacuum recovers the space from deleted rows and
restores the sort order. The ANALYZE command updates the statistics metadata, which enables
the query optimizer to generate more accurate query plans. For more information, see Vacuuming
tables.

If you load the data in sort key order, a vacuum is fast. In this tutorial, you added a significant
number of rows, but you added them to empty tables. That being the case, there is no need to
resort, and you didn't delete any rows. COPY automatically updates statistics after loading an
empty table, so your statistics should be up-to-date. However, as a matter of good housekeeping,
you complete this tutorial by vacuuming and analyzing your database.

To vacuum and analyze the database, run the following commands.

vacuum;
analyze;

Next step

Step 7: Clean up your resources

Step 7: Clean up your resources

Your cluster continues to accrue charges as long as it is running. When you have completed this
tutorial, you should return your environment to the previous state by following the steps in Step 5:
Revoke access and delete your sample cluster in the Amazon Redshift Getting Started Guide.

If you want to keep the cluster, but recover the storage used by the SSB tables, run the following
commands.

drop table part;
drop table supplier;
drop table customer;
drop table dwdate;
drop table lineorder;

Next

Summary

Step 6: Vacuum and analyze the database 221

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-clean-up-tasks.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-clean-up-tasks.html

Amazon Redshift Database Developer Guide

Summary

In this tutorial, you uploaded data files to Amazon S3 and then used COPY commands to load the
data from the files into Amazon Redshift tables.

You loaded data using the following formats:

• Character-delimited

• CSV

• Fixed-width

You used the STL_LOAD_ERRORS system table to troubleshoot load errors, and then used the
REGION, MANIFEST, MAXERROR, ACCEPTINVCHARS, DATEFORMAT, and NULL AS options to resolve
the errors.

You applied the following best practices for loading data:

• Use a COPY command to load data

• Loading data files

• Use a single COPY command to load from multiple files

• Compressing your data files

• Verify data files before and after a load

For more information about Amazon Redshift best practices, see the following links:

• Amazon Redshift best practices for loading data

• Amazon Redshift best practices for designing tables

• Amazon Redshift best practices for designing queries

Summary 222

Amazon Redshift Database Developer Guide

Unloading data

Topics

• Unloading data to Amazon S3

• Unloading encrypted data files

• Unloading data in delimited or fixed-width format

• Reloading unloaded data

To unload data from database tables to a set of files in an Amazon S3 bucket, you can use the
UNLOAD command with a SELECT statement. You can unload text data in either delimited format
or fixed-width format, regardless of the data format that was used to load it. You can also specify
whether to create compressed GZIP files.

You can limit the access users have to your Amazon S3 bucket by using temporary security
credentials.

Unloading data to Amazon S3

Amazon Redshift splits the results of a select statement across a set of files, one or more files per
node slice, to simplify parallel reloading of the data. Alternatively, you can specify that UNLOAD
should write the results serially to one or more files by adding the PARALLEL OFF option. You
can limit the size of the files in Amazon S3 by specifying the MAXFILESIZE parameter. UNLOAD
automatically encrypts data files using Amazon S3 server-side encryption (SSE-S3).

You can use any select statement in the UNLOAD command that Amazon Redshift supports, except
for a select that uses a LIMIT clause in the outer select. For example, you can use a select statement
that includes specific columns or that uses a where clause to join multiple tables. If your query
contains quotation marks (enclosing literal values, for example), you need to escape them in the
query text (\'). For more information, see the SELECT command reference. For more information
about using a LIMIT clause, see the Usage notes for the UNLOAD command.

For example, the following UNLOAD command sends the contents of the VENUE table to the
Amazon S3 bucket s3://mybucket/tickit/unload/.

unload ('select * from venue')

Unloading data to Amazon S3 223

Amazon Redshift Database Developer Guide

to 's3://mybucket/tickit/unload/venue_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

The file names created by the previous example include the prefix 'venue_'.

venue_0000_part_00
venue_0001_part_00
venue_0002_part_00
venue_0003_part_00

By default, UNLOAD writes data in parallel to multiple files, according to the number of slices in
the cluster. To write data to a single file, specify PARALLEL OFF. UNLOAD writes the data serially,
sorted absolutely according to the ORDER BY clause, if one is used. The maximum size for a data
file is 6.2 GB. If the data size is greater than the maximum, UNLOAD creates additional files, up to
6.2 GB each.

The following example writes the contents VENUE to a single file. Only one file is required because
the file size is less than 6.2 GB.

unload ('select * from venue')
to 's3://mybucket/tickit/unload/venue_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
parallel off;

Note

The UNLOAD command is designed to use parallel processing. We recommend leaving
PARALLEL enabled for most cases, especially if the files will be used to load tables using a
COPY command.

Assuming the total data size for VENUE is 5 GB, the following example writes the contents of
VENUE to 50 files, each 100 MB in size.

unload ('select * from venue')
to 's3://mybucket/tickit/unload/venue_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
parallel off
maxfilesize 100 mb;

Unloading data to Amazon S3 224

Amazon Redshift Database Developer Guide

If you include a prefix in the Amazon S3 path string, UNLOAD will use that prefix for the file names.

unload ('select * from venue')
to 's3://mybucket/tickit/unload/venue_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

You can create a manifest file that lists the unload files by specifying the MANIFEST option in the
UNLOAD command. The manifest is a text file in JSON format that explicitly lists the URL of each
file that was written to Amazon S3.

The following example includes the manifest option.

unload ('select * from venue')
to 's3://mybucket/tickit/venue_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
manifest;

The following example shows a manifest for four unload files.

{
 "entries": [
 {"url":"s3://mybucket/tickit/venue_0000_part_00"},
 {"url":"s3://mybucket/tickit/venue_0001_part_00"},
 {"url":"s3://mybucket/tickit/venue_0002_part_00"},
 {"url":"s3://mybucket/tickit/venue_0003_part_00"}
]
}

The manifest file can be used to load the same files by using a COPY with the MANIFEST option.
For more information, see Using a manifest to specify data files.

After you complete an UNLOAD operation, confirm that the data was unloaded correctly by
navigating to the Amazon S3 bucket where UNLOAD wrote the files. You will see one or more
numbered files per slice, starting with the number zero. If you specified the MANIFEST option, you
will also see a file ending with 'manifest'. For example:

mybucket/tickit/venue_0000_part_00
mybucket/tickit/venue_0001_part_00
mybucket/tickit/venue_0002_part_00
mybucket/tickit/venue_0003_part_00

Unloading data to Amazon S3 225

Amazon Redshift Database Developer Guide

mybucket/tickit/venue_manifest

You can programmatically get a list of the files that were written to Amazon S3 by calling an
Amazon S3 list operation after the UNLOAD completes. You can also query STL_UNLOAD_LOG.

The following query returns the pathname for files that were created by an UNLOAD. The
PG_LAST_QUERY_ID function returns the most recent query.

select query, substring(path,0,40) as path
from stl_unload_log
where query=2320
order by path;

query | path
-------+--------------------------------------
 2320 | s3://my-bucket/venue0000_part_00
 2320 | s3://my-bucket/venue0001_part_00
 2320 | s3://my-bucket/venue0002_part_00
 2320 | s3://my-bucket/venue0003_part_00
(4 rows)

If the amount of data is very large, Amazon Redshift might split the files into multiple parts per
slice. For example:

venue_0000_part_00
venue_0000_part_01
venue_0000_part_02
venue_0001_part_00
venue_0001_part_01
venue_0001_part_02
...

The following UNLOAD command includes a quoted string in the select statement, so the
quotation marks are escaped (=\'OH\' ').

unload ('select venuename, venuecity from venue where venuestate=\'OH\' ')
to 's3://mybucket/tickit/venue/ '
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

By default, UNLOAD will fail rather than overwrite existing files in the destination bucket. To
overwrite the existing files, including the manifest file, specify the ALLOWOVERWRITE option.

Unloading data to Amazon S3 226

Amazon Redshift Database Developer Guide

unload ('select * from venue')
to 's3://mybucket/venue_pipe_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
manifest
allowoverwrite;

Unloading encrypted data files

UNLOAD automatically creates files using Amazon S3 server-side encryption with AWS-
managed encryption keys (SSE-S3). You can also specify server-side encryption with an AWS
Key Management Service key (SSE-KMS) or client-side encryption with a customer managed key.
UNLOAD doesn't support Amazon S3 server-side encryption using a customer managed key. For
more information, see Protecting data using server-side encryption.

To unload to Amazon S3 using server-side encryption with an AWS KMS key, use the KMS_KEY_ID
parameter to provide the key ID as shown in the following example.

unload ('select venuename, venuecity from venue')
to 's3://mybucket/encrypted/venue_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
KMS_KEY_ID '1234abcd-12ab-34cd-56ef-1234567890ab'
encrypted;

If you want to provide your own encryption key, you can create client-side encrypted data files in
Amazon S3 by using the UNLOAD command with the ENCRYPTED option. UNLOAD uses the same
envelope encryption process that Amazon S3 client-side encryption uses. You can then use the
COPY command with the ENCRYPTED option to load the encrypted files.

The process works like this:

1. You create a base64 encoded 256-bit AES key that you will use as your private encryption key, or
root symmetric key.

2. You issue an UNLOAD command that includes your root symmetric key and the ENCRYPTED
option.

3. UNLOAD generates a one-time-use symmetric key (called the envelope symmetric key) and an
initialization vector (IV), which it uses to encrypt your data.

4. UNLOAD encrypts the envelope symmetric key using your root symmetric key.

Unloading encrypted data files 227

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

Amazon Redshift Database Developer Guide

5. UNLOAD then stores the encrypted data files in Amazon S3 and stores the encrypted envelope
key and IV as object metadata with each file. The encrypted envelope key is stored as object
metadata x-amz-meta-x-amz-key and the IV is stored as object metadata x-amz-meta-x-
amz-iv.

For more information about the envelope encryption process, see the Client-side data encryption
with the AWS SDK for Java and Amazon S3 article.

To unload encrypted data files, add the root key value to the credentials string and include the
ENCRYPTED option. If you use the MANIFEST option, the manifest file is also encrypted.

unload ('select venuename, venuecity from venue')
to 's3://mybucket/encrypted/venue_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
master_symmetric_key '<root_key>'
manifest
encrypted;

To unload encrypted data files that are GZIP compressed, include the GZIP option along with the
root key value and the ENCRYPTED option.

unload ('select venuename, venuecity from venue')
to 's3://mybucket/encrypted/venue_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
master_symmetric_key '<root_key>'
encrypted gzip;

To load the encrypted data files, add the MASTER_SYMMETRIC_KEY parameter with the same root
key value and include the ENCRYPTED option.

copy venue from 's3://mybucket/encrypted/venue_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
master_symmetric_key '<root_key>'
encrypted;

Unloading data in delimited or fixed-width format

You can unload data in delimited format or fixed-width format. The default output is pipe-
delimited (using the '|' character).

Unloading data in delimited or fixed-width format 228

https://aws.amazon.com/articles/2850096021478074
https://aws.amazon.com/articles/2850096021478074

Amazon Redshift Database Developer Guide

The following example specifies a comma as the delimiter:

unload ('select * from venue')
to 's3://mybucket/tickit/venue/comma'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter ',';

The resulting output files look like this:

20,Air Canada Centre,Toronto,ON,0
60,Rexall Place,Edmonton,AB,0
100,U.S. Cellular Field,Chicago,IL,40615
200,Al Hirschfeld Theatre,New York City,NY,0
240,San Jose Repertory Theatre,San Jose,CA,0
300,Kennedy Center Opera House,Washington,DC,0
...

To unload the same result set to a tab-delimited file, issue the following command:

unload ('select * from venue')
to 's3://mybucket/tickit/venue/tab'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter as '\t';

Alternatively, you can use a FIXEDWIDTH specification. This specification consists of an identifier
for each table column and the width of the column (number of characters). The UNLOAD command
will fail rather than truncate data, so specify a width that is at least as long as the longest entry for
that column. Unloading fixed-width data works similarly to unloading delimited data, except that
the resulting output contains no delimiting characters. For example:

unload ('select * from venue')
to 's3://mybucket/tickit/venue/fw'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
fixedwidth '0:3,1:100,2:30,3:2,4:6';

The fixed-width output looks like this:

20 Air Canada Centre Toronto ON0
60 Rexall Place Edmonton AB0

Unloading data in delimited or fixed-width format 229

Amazon Redshift Database Developer Guide

100U.S. Cellular Field Chicago IL40615
200Al Hirschfeld Theatre New York CityNY0
240San Jose Repertory TheatreSan Jose CA0
300Kennedy Center Opera HouseWashington DC0

For more details about FIXEDWIDTH specifications, see the UNLOAD command.

Reloading unloaded data

To reload the results of an unload operation, you can use a COPY command.

The following example shows a simple case in which the VENUE table is unloaded using a manifest
file, truncated, and reloaded.

unload ('select * from venue order by venueid')
to 's3://mybucket/tickit/venue/reload_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
manifest
delimiter '|';

truncate venue;

copy venue
from 's3://mybucket/tickit/venue/reload_manifest'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
manifest
delimiter '|';

After it is reloaded, the VENUE table looks like this:

select * from venue order by venueid limit 5;

 venueid | venuename | venuecity | venuestate | venueseats
---------+---------------------------+-------------+------------+-----------
 1 | Toyota Park | Bridgeview | IL | 0
 2 | Columbus Crew Stadium | Columbus | OH | 0
 3 | RFK Stadium | Washington | DC | 0
 4 | CommunityAmerica Ballpark | Kansas City | KS | 0
 5 | Gillette Stadium | Foxborough | MA | 68756
(5 rows)

Reloading unloaded data 230

Amazon Redshift Database Developer Guide

Creating user-defined functions

You can create a custom scalar user-defined function (UDF) using either a SQL SELECT clause or
a Python program. The new function is stored in the database and is available for any user with
sufficient privileges to run. You run a custom scalar UDF in much the same way as you run existing
Amazon Redshift functions.

For Python UDFs, in addition to using the standard Python functionality, you can import your own
custom Python modules. For more information, see Python language support for UDFs. Note that
Python 3 isn't available for Python UDFs. To get Python 3 support for Amazon Redshift UDFs, use
Creating a scalar Lambda UDF instead.

You can also create AWS Lambda UDFs that use custom functions defined in Lambda as part of
your SQL queries. Lambda UDFs enable you to write complex UDFs and integrate with third-party
components. They also can help you overcome some of the limitations of current Python and
SQL UDFs. For example, they can help you access network and storage resources and write more
full-fledged SQL statements. You can create Lambda UDFs in any of the programming languages
supported by Lambda, such as Java, Go, PowerShell, Node.js, C#, Python, and Ruby. Or you can use
a custom runtime.

By default, all users can run UDFs. For more information about privileges, see UDF security and
privileges.

Topics

• UDF security and privileges

• Creating a scalar SQL UDF

• Naming UDFs

• Creating a scalar Python UDF

• Creating a scalar Lambda UDF

• Example uses of user-defined functions (UDFs)

UDF security and privileges

To create a UDF, you must have permission for usage on language for SQL or plpythonu (Python).
By default, USAGE ON LANGUAGE SQL is granted to PUBLIC, but you must explicitly grant USAGE
ON LANGUAGE PLPYTHONU to specific users or groups.

UDF security and privileges 231

Amazon Redshift Database Developer Guide

To revoke usage for SQL, first revoke usage from PUBLIC. Then grant usage on SQL only to the
specific users or groups permitted to create SQL UDFs. The following example revokes usage on
SQL from PUBLIC. Then it grants usage to the user group udf_devs.

revoke usage on language sql from PUBLIC;
grant usage on language sql to group udf_devs;

To run a UDF, you must have permission to do so for each function. By default, permission to run
new UDFs is granted to PUBLIC. To restrict usage, revoke this permission from PUBLIC for the
function. Then grant the privilege to specific individuals or groups.

The following example revokes execution on function f_py_greater from PUBLIC. Then it grants
usage to the user group udf_devs.

revoke execute on function f_py_greater(a float, b float) from PUBLIC;
grant execute on function f_py_greater(a float, b float) to group udf_devs;

Superusers have all privileges by default.

For more information, see GRANT and REVOKE.

Creating a scalar SQL UDF

A scalar SQL UDF incorporates a SQL SELECT clause that runs when the function is called and
returns a single value. The CREATE FUNCTION command defines the following parameters:

• (Optional) Input arguments. Each argument must have a data type.

• One return data type.

• One SQL SELECT clause. In the SELECT clause, refer to the input arguments using $1, $2, and so
on, according to the order of the arguments in the function definition.

The input and return data types can be any standard Amazon Redshift data type.

Don't include a FROM clause in your SELECT clause. Instead, include the FROM clause in the SQL
statement that calls the SQL UDF.

The SELECT clause can't include any of the following types of clauses:

• FROM

Creating a scalar SQL UDF 232

Amazon Redshift Database Developer Guide

• INTO

• WHERE

• GROUP BY

• ORDER BY

• LIMIT

Scalar SQL function example

The following example creates a function that compares two numbers and returns the larger value.
For more information, see CREATE FUNCTION.

create function f_sql_greater (float, float)
 returns float
stable
as $$
 select case when $1 > $2 then $1
 else $2
 end
$$ language sql;

The following query calls the new f_sql_greater function to query the SALES table and return
either COMMISSION or 20 percent of PRICEPAID, whichever is greater.

select f_sql_greater(commission, pricepaid*0.20) from sales;

Naming UDFs

You can avoid potential conflicts and unexpected results considering your UDF naming conventions
before implementation. Because function names can be overloaded, they can collide with existing
and future Amazon Redshift function names. This topic discusses overloading and presents a
strategy for avoiding conflict.

Overloading function names

A function is identified by its name and signature, which is the number of input arguments and the
data types of the arguments. Two functions in the same schema can have the same name if they
have different signatures. In other words, the function names can be overloaded.

Scalar SQL function example 233

Amazon Redshift Database Developer Guide

When you run a query, the query engine determines which function to call based on the number of
arguments you provide and the data types of the arguments. You can use overloading to simulate
functions with a variable number of arguments, up to the limit allowed by the CREATE FUNCTION
command.

Preventing UDF naming conflicts

We recommend that you name all UDFs using the prefix f_. Amazon Redshift reserves the f_
prefix exclusively for UDFs and by prefixing your UDF names with f_, you ensure that your UDF
name won't conflict with any existing or future Amazon Redshift built-in SQL function names. For
example, by naming a new UDF f_sum, you avoid conflict with the Amazon Redshift SUM function.
Similarly, if you name a new function f_fibonacci, you avoid conflict if Amazon Redshift adds a
function named FIBONACCI in a future release.

You can create a UDF with the same name and signature as an existing Amazon Redshift built-in
SQL function without the function name being overloaded if the UDF and the built-in function
exist in different schemas. Because built-in functions exist in the system catalog schema,
pg_catalog, you can create a UDF with the same name in another schema, such as public or a user-
defined schema. In some cases, you might call a function that is not explicitly qualified with a
schema name. If so, Amazon Redshift searches the pg_catalog schema first by default. Thus, a
built-in function runs before a new UDF with the same name.

You can change this behavior by setting the search path to place pg_catalog at the end. If you
do so, your UDFs take precedence over built-in functions, but the practice can cause unexpected
results. Adopting a unique naming strategy, such as using the reserved prefix f_, is a more reliable
practice. For more information, see SET and search_path.

Creating a scalar Python UDF

A scalar Python UDF incorporates a Python program that runs when the function is called and
returns a single value. The CREATE FUNCTION command defines the following parameters:

• (Optional) Input arguments. Each argument must have a name and a data type.

• One return data type.

• One executable Python program.

The input and return data types can be SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE
PRECISION, BOOLEAN, CHAR, VARCHAR, DATE, or TIMESTAMP. In addition, Python UDFs can use

Preventing UDF naming conflicts 234

Amazon Redshift Database Developer Guide

the data type ANYELEMENT, which Amazon Redshift automatically converts to a standard data
type based on the arguments supplied at runtime. For more information, see ANYELEMENT data
type

When an Amazon Redshift query calls a scalar UDF, the following steps occur at runtime:

1. The function converts the input arguments to Python data types.

For a mapping of Amazon Redshift data types to Python data types, see Python UDF data types.

2. The function runs the Python program, passing the converted input arguments.

3. The Python code returns a single value. The data type of the return value must correspond to
the RETURNS data type specified by the function definition.

4. The function converts the Python return value to the specified Amazon Redshift data type, then
returns that value to the query.

Note

Python 3 isn’t available for Python UDFs. To get Python 3 support for Amazon Redshift
UDFs, use Creating a scalar Lambda UDF instead.

Scalar Python UDF example

The following example creates a function that compares two numbers and returns the larger
value. Note that the indentation of the code between the double dollar signs ($$) is a Python
requirement. For more information, see CREATE FUNCTION.

create function f_py_greater (a float, b float)
 returns float
stable
as $$
 if a > b:
 return a
 return b
$$ language plpythonu;

The following query calls the new f_greater function to query the SALES table and return either
COMMISSION or 20 percent of PRICEPAID, whichever is greater.

Scalar Python UDF example 235

Amazon Redshift Database Developer Guide

select f_py_greater (commission, pricepaid*0.20) from sales;

Python UDF data types

Python UDFs can use any standard Amazon Redshift data type for the input arguments and
the function's return value. In addition to the standard data types, UDFs support the data type
ANYELEMENT, which Amazon Redshift automatically converts to a standard data type based on
the arguments supplied at runtime. Scalar UDFs can return a data type of ANYELEMENT. For more
information, see ANYELEMENT data type.

During execution, Amazon Redshift converts the arguments from Amazon Redshift data types to
Python data types for processing. It then converts the return value from the Python data type to
the corresponding Amazon Redshift data type. For more information about Amazon Redshift data
types, see Data types.

The following table maps Amazon Redshift data types to Python data types.

Amazon Redshift data type Python data type

smallint

integer

bigint

short

long

int

decimal or numeric decimal

double

real

float

boolean bool

char

varchar

string

Python UDF data types 236

Amazon Redshift Database Developer Guide

Amazon Redshift data type Python data type

timestamp datetime

ANYELEMENT data type

ANYELEMENT is a polymorphic data type. This means that if a function is declared using
ANYELEMENT for an argument's data type, the function can accept any standard Amazon Redshift
data type as input for that argument when the function is called. The ANYELEMENT argument is
set to the data type actually passed to it when the function is called.

If a function uses multiple ANYELEMENT data types, they must all resolve to the same actual
data type when the function is called. All ANYELEMENT argument data types are set to the actual
data type of the first argument passed to an ANYELEMENT. For example, a function declared as
f_equal(anyelement, anyelement) will take any two input values, so long as they are of the
same data type.

If the return value of a function is declared as ANYELEMENT, at least one input argument must
be ANYELEMENT. The actual data type for the return value is the same as the actual data type
supplied for the ANYELEMENT input argument.

Python language support for UDFs

You can create a custom UDF based on the Python programming language. The Python 2.7
standard library is available for use in UDFs, with the exception of the following modules:

• ScrolledText

• Tix

• Tkinter

• tk

• turtle

• smtpd

In addition to the Python Standard Library, the following modules are part of the Amazon Redshift
implementation:

• numpy 1.8.2

ANYELEMENT data type 237

https://docs.python.org/2/library/index.html
https://docs.python.org/2/library/index.html
http://www.numpy.org/

Amazon Redshift Database Developer Guide

• pandas 0.14.1

• python-dateutil 2.2

• pytz 2014.7

• scipy 0.12.1

• six 1.3.0

• wsgiref 0.1.2

You can also import your own custom Python modules and make them available for use in UDFs
by executing a CREATE LIBRARY command. For more information, see Importing custom Python
library modules.

Important

Amazon Redshift blocks all network access and write access to the file system through
UDFs.

Note

Python 3 isn’t available for Python UDFs. To get Python 3 support for Amazon Redshift
UDFs, use Creating a scalar Lambda UDF instead.

Importing custom Python library modules

You define scalar functions using Python language syntax. You can use the Python Standard
Library modules and Amazon Redshift preinstalled modules. You can also create your own custom
Python library modules and import the libraries into your clusters, or use existing libraries from
Python or third parties.

You cannot create a library that contains a module with the same name as a Python Standard
Library module or an Amazon Redshift preinstalled Python module. If an existing user-installed
library uses the same Python package as a library you create, you must drop the existing library
before installing the new library.

You must be a superuser or have USAGE ON LANGUAGE plpythonu privilege to install custom
libraries; however, any user with sufficient privileges to create functions can use the installed

Python language support 238

https://pandas.pydata.org/
https://dateutil.readthedocs.org/en/latest/
https://pypi.org/project/pytz/2014.7/
https://www.scipy.org/
https://pypi.org/project/six/1.3.0/
https://pypi.python.org/pypi/wsgiref

Amazon Redshift Database Developer Guide

libraries. You can query the PG_LIBRARY system catalog to view information about the libraries
installed on your cluster.

To import a custom Python module into your cluster

This section provides an example of importing a custom Python module into your cluster. To
perform the steps in this section, you must have an Amazon S3 bucket, where you upload the
library package. You then install the package in your cluster. For more information about creating
buckets, go to Creating a bucket in the Amazon Simple Storage Service User Guide.

In this example, let's suppose that you create UDFs to work with positions and distances in your
data. Connect to your Amazon Redshift cluster from a SQL client tool, and run the following
commands to create the functions.

CREATE FUNCTION f_distance (x1 float, y1 float, x2 float, y2 float) RETURNS float
 IMMUTABLE as $$
 def distance(x1, y1, x2, y2):
 import math
 return math.sqrt((y2 - y1) ** 2 + (x2 - x1) ** 2)

 return distance(x1, y1, x2, y2)
$$ LANGUAGE plpythonu;

CREATE FUNCTION f_within_range (x1 float, y1 float, x2 float, y2 float) RETURNS bool
 IMMUTABLE as $$
 def distance(x1, y1, x2, y2):
 import math
 return math.sqrt((y2 - y1) ** 2 + (x2 - x1) ** 2)

 return distance(x1, y1, x2, y2) < 20
$$ LANGUAGE plpythonu;

Note that a few lines of code are duplicated in the previous functions. This duplication is necessary
because a UDF cannot reference the contents of another UDF, and both functions require the same
functionality. However, instead of duplicating code in multiple functions, you can create a custom
library and configure your functions to use it.

To do so, first create the library package by following these steps:

1. Create a folder named geometry. This folder is the top level package of the library.

Python language support 239

https://docs.aws.amazon.com/AmazonS3/latest/user-guide/CreatingaBucket.html

Amazon Redshift Database Developer Guide

2. In the geometry folder, create a file named __init__.py. Note that the file name contains two
double underscore characters. This file indicates to Python that the package can be initialized.

3. Also in the geometry folder, create a folder named trig. This folder is the subpackage of the
library.

4. In the trig folder, create another file named __init__.py and a file named line.py. In this
folder, __init__.py indicates to Python that the subpackage can be initialized and that
line.py is the file that contains library code.

Your folder and file structure should be the same as the following:

geometry/
 __init__.py
 trig/
 __init__.py
 line.py

For more information about package structure, go to Modules in the Python tutorial on the
Python website.

5. The following code contains a class and member functions for the library. Copy and paste it into
line.py.

class LineSegment:
 def __init__(self, x1, y1, x2, y2):
 self.x1 = x1
 self.y1 = y1
 self.x2 = x2
 self.y2 = y2
 def angle(self):
 import math
 return math.atan2(self.y2 - self.y1, self.x2 - self.x1)
 def distance(self):
 import math
 return math.sqrt((self.y2 - self.y1) ** 2 + (self.x2 - self.x1) ** 2)

After you have created the package, do the following to prepare the package and upload it to
Amazon S3.

Python language support 240

https://docs.python.org/2/tutorial/modules.html

Amazon Redshift Database Developer Guide

1. Compress the contents of the geometry folder into a .zip file named geometry.zip. Do not
include the geometry folder itself; only include the contents of the folder as shown following:

geometry.zip
 __init__.py
 trig/
 __init__.py
 line.py

2. Upload geometry.zip to your Amazon S3 bucket.

Important

If the Amazon S3 bucket does not reside in the same region as your Amazon Redshift
cluster, you must use the REGION option to specify the region in which the data is
located. For more information, see CREATE LIBRARY.

3. From your SQL client tool, run the following command to install the library. Replace
<bucket_name> with the name of your bucket, and replace <access key id> and <secret
key> with an access key and secret access key from your AWS Identity and Access Management
(IAM) user credentials.

CREATE LIBRARY geometry LANGUAGE plpythonu FROM 's3://<bucket_name>/geometry.zip'
 CREDENTIALS 'aws_access_key_id=<access key id>;aws_secret_access_key=<secret key>';

After you install the library in your cluster, you need to configure your functions to use the library.
To do this, run the following commands.

CREATE OR REPLACE FUNCTION f_distance (x1 float, y1 float, x2 float, y2 float) RETURNS
 float IMMUTABLE as $$
 from trig.line import LineSegment

 return LineSegment(x1, y1, x2, y2).distance()
$$ LANGUAGE plpythonu;

CREATE OR REPLACE FUNCTION f_within_range (x1 float, y1 float, x2 float, y2 float)
 RETURNS bool IMMUTABLE as $$
 from trig.line import LineSegment

 return LineSegment(x1, y1, x2, y2).distance() < 20

Python language support 241

Amazon Redshift Database Developer Guide

$$ LANGUAGE plpythonu;

In the preceding commands, import trig/line eliminates the duplicated code from the original
functions in this section. You can reuse the functionality provided by this library in multiple UDFs.
Note that to import the module, you only need to specify the path to the subpackage and module
name (trig/line).

UDF constraints

Within the constraints listed in this topic, you can use UDFs anywhere you use the Amazon Redshift
built-in scalar functions. For more information, see SQL functions reference.

Amazon Redshift Python UDFs have the following constraints:

• Python UDFs cannot access the network or read or write to the file system.

• The total size of user-installed Python libraries cannot exceed 100 MB.

• The number of Python UDFs that can run concurrently per cluster is limited to one-fourth
of the total concurrency level for the cluster. For example, if the cluster is configured with a
concurrency of 15, a maximum of three UDFs can run concurrently. After the limit is reached,
UDFs are queued for execution within workload management queues. SQL UDFs don't have a
concurrency limit. For more information, see Implementing workload management.

• When using Python UDFs, Amazon Redshift doesn't support the SUPER and HLLSKETCH data
types.

Logging errors and warnings in UDFs

You can use the Python logging module to create user-defined error and warning messages in your
UDFs. Following query execution, you can query the SVL_UDF_LOG system view to retrieve logged
messages.

Note

UDF logging consumes cluster resources and might affect system performance. We
recommend implementing logging only for development and troubleshooting.

During query execution, the log handler writes messages to the SVL_UDF_LOG system view, along
with the corresponding function name, node, and slice. The log handler writes one row to the

UDF constraints 242

Amazon Redshift Database Developer Guide

SVL_UDF_LOG per message, per slice. Messages are truncated to 4096 bytes. The UDF log is limited
to 500 rows per slice. When the log is full, the log handler discards older messages and adds a
warning message to SVL_UDF_LOG.

Note

The Amazon Redshift UDF log handler escapes newlines (\n), pipe (|) characters, and
backslash (\) characters with a backslash (\) character.

By default, the UDF log level is set to WARNING. Messages with a log level of WARNING, ERROR,
and CRITICAL are logged. Messages with lower severity INFO, DEBUG, and NOTSET are ignored. To
set the UDF log level, use the Python logger method. For example, the following sets the log level
to INFO.

logger.setLevel(logging.INFO)

For more information about using the Python logging module, see Logging facility for Python in
the Python documentation.

The following example creates a function named f_pyerror that imports the Python logging
module, instantiates the logger, and logs an error.

CREATE OR REPLACE FUNCTION f_pyerror()
RETURNS INTEGER
VOLATILE AS
$$
import logging

logger = logging.getLogger()
logger.setLevel(logging.INFO)
logger.info('Your info message here')
return 0
$$ language plpythonu;

The following example queries SVL_UDF_LOG to view the message logged in the previous example.

select funcname, node, slice, trim(message) as message
from svl_udf_log;

Logging errors and warnings 243

https://docs.python.org/2.7/library/logging.html

Amazon Redshift Database Developer Guide

 funcname | query | node | slice | message
------------+-------+------+-------+------------------
 f_pyerror | 12345 | 1| 1 | Your info message here

Creating a scalar Lambda UDF

Amazon Redshift can use custom functions defined in AWS Lambda as part of SQL queries. You can
write scalar Lambda UDFs in any programming languages supported by Lambda, such as Java, Go,
PowerShell, Node.js, C#, Python, and Ruby. Or you can use a custom runtime.

Lambda UDFs are defined and managed in Lambda, and you can control the access privileges to
invoke these UDFs in Amazon Redshift. You can invoke multiple Lambda functions in the same
query or invoke the same function multiple times.

Use Lambda UDFs in any clauses of the SQL statements where scalar functions are supported. You
can also use Lambda UDFs in any SQL statement such as SELECT, UPDATE, INSERT, or DELETE.

Note

Using Lambda UDFs can incur additional charges from the Lambda service. Whether it does
so depends on factors such as the numbers of Lambda requests (UDF invocations) and the
total duration of the Lambda program execution. However, there is no additional charge
to use Lambda UDFs in Amazon Redshift. For information about AWS Lambda pricing, see
AWS Lambda Pricing.
The number of Lambda requests varies depending on the specific SQL statement clause
where the Lambda UDF is used. For example, suppose the function is used in a WHERE
clause such as the following.
SELECT a, b FROM t1 WHERE lambda_multiply(a, b) = 64; SELECT a, b
FROM t1 WHERE a*b = lambda_multiply(2, 32)
In this case, Amazon Redshift calls the first SELECT statement for each and calls the second
SELECT statement only once.
However, using a UDF in the projection part of the query might only invoke the Lambda
function once for every qualified or aggregated row in the result set.

Registering a Lambda UDF

The CREATE EXTERNAL FUNCTION command creates the following parameters:

Creating a scalar Lambda UDF 244

https://aws.amazon.com/lambda/pricing

Amazon Redshift Database Developer Guide

• (Optional) A list of arguments with data type.

• One return data type.

• One function name of the external function that is called by Amazon Redshift.

• One IAM role that the Amazon Redshift cluster is authorized to assume and call to Lambda.

• One Lambda function name that the Lambda UDF invokes.

For information about CREATE EXTERNAL FUNCTION, see CREATE EXTERNAL FUNCTION.

The input and return data types for this function can be any standard Amazon Redshift data type.

Amazon Redshift ensures that the external function can send and receive batched arguments and
results.

Managing Lambda UDF security and privileges

To create a Lambda UDF, make sure that you have permissions for usage on the LANGUAGE
EXFUNC. You must explicitly grant USAGE ON LANGUAGE EXFUNC or revoke USAGE ON
LANGUAGE EXFUNC to specific users, groups, or public.

The following example grants usage on EXFUNC to PUBLIC.

grant usage on language exfunc to PUBLIC;

The following example revokes usage on exfunc from PUBLIC and then grants usage to the user
group lambda_udf_devs.

revoke usage on language exfunc from PUBLIC;
grant usage on language exfunc to group lambda_udf_devs;

To run a Lambda UDF, make sure that you have permission for each function called. By default,
permission to run new Lambda UDFs is granted to PUBLIC. To restrict usage, revoke this permission
from PUBLIC for the function. Then, grant the privilege to specific users or groups.

The following example revokes execution on the function exfunc_sum from PUBLIC. Then, it grants
usage to the user group lambda_udf_devs.

revoke execute on function exfunc_sum(int, int) from PUBLIC;
grant execute on function exfunc_sum(int, int) to group lambda_udf_devs;

Managing Lambda UDF security and privileges 245

Amazon Redshift Database Developer Guide

Superusers have all privileges by default.

For more information about granting and revoking privileges, see GRANT and REVOKE.

Configuring the authorization parameter for Lambda UDFs

The CREATE EXTERNAL FUNCTION command requires authorization to invoke Lambda functions in
AWS Lambda. To start authorization, specify an AWS Identity and Access Management (IAM) role
when you run the CREATE EXTERNAL FUNCTION command. For more information about IAM roles,
see IAM roles in the IAM User Guide.

If there is an existing IAM role with permissions to invoke Lambda functions attached to your
cluster, then you can substitute your role Amazon Resource Name (ARN) in the IAM_ROLE
parameter for the command. Following sections describe the steps for using an IAM role in the
CREATE EXTERNAL FUNCTION command.

Creating an IAM role for Lambda

The IAM role requires permission to invoke Lambda functions. While creating the IAM role, provide
the permission in one of the following ways:

• Attach the AWSLambdaRole policy on the Attach permissions policy page while creating an IAM
role. The AWSLambdaRole policy grants permissions to invoke Lambda functions which is the
minimal requirement. For more information and other policies, see Identity-based IAM policies
for AWS Lambda in the AWS Lambda Developer Guide.

• Create your own custom policy to attach to your IAM role with the lambda:InvokeFunction
permission of either all resources or a particular Lambda function with the ARN of that function.
For more information on how to create a policy, see Creating IAM policies in the IAM User Guide.

The following example policy enables invoking Lambda on a particular Lambda function.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Invoke",
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],

Configuring the authorization parameter for Lambda UDFs 246

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-identity-based.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-identity-based.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Redshift Database Developer Guide

 "Resource": "arn:aws:lambda:us-west-2:123456789012:function:my-function"
 }
]
}

For more information on resources for Lambda functions, see Resources and conditions for
Lambda actions in the IAM API Reference.

After creating your custom policy with the required permissions, you can attach your policy to
the IAM role on the Attach permissions policy page while creating an IAM role.

For steps to create an IAM role, see Authorizing Amazon Redshift to access other AWS services on
your behalf in the Amazon Redshift Management Guide.

If you don't want to create a new IAM role, you can add the permissions mentioned previously to
your existing IAM role.

Associating an IAM role with the cluster

Attach the IAM role to your cluster. You can add a role to a cluster or view the roles associated with
a cluster by using the Amazon Redshift Management Console, CLI, or API. For more information,
see Associating an IAM Role With a Cluster in the Amazon Redshift Management Guide.

Including the IAM role in the command

Include the IAM role ARN in the CREATE EXTERNAL FUNCTION command. When you create an IAM
role, IAM returns an Amazon Resource Name (ARN) for the role. To specify an IAM role, provide
the role ARN with the IAM_ROLE parameter. The following shows the syntax for the IAM_ROLE
parameter.

IAM_ROLE 'arn:aws:iam::aws-account-id:role/role-name'

To invoke Lambda functions which reside in other accounts within the same Region, see Chaining
IAM roles in Amazon Redshift.

Using the JSON interface between Amazon Redshift and AWS Lambda

Amazon Redshift uses a common interface for all Lambda functions that Amazon Redshift
communicates to.

Using the JSON interface between Amazon Redshift and Lambda 247

https://docs.aws.amazon.com/lambda/latest/dg/lambda-api-permissions-ref.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-api-permissions-ref.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-chaining-roles.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-chaining-roles.html

Amazon Redshift Database Developer Guide

The following table shows the list of input fields that the designated Lambda functions that you
can expect for the JSON payload.

Field name Description Value range

request_id A universally unique
identifier (UUID) that
uniquely identifies
each invoke request.

A valid UUID.

cluster The full Amazon
Resource Name (ARN)
of the cluster.

A valid cluster ARN.

user The name of the user
that makes the call.

A valid user name.

database The name of the
database that the
query is running on.

A valid database name.

external_
function

The fully qualified
name of the external
function that makes
the call.

A valid fully qualified function name.

query_id The query ID of the
query that is making
the call.

A valid query ID.

num_recor
ds

The number of
arguments in the
payload.

A value of 1 - 2^64.

arguments The data payload in
the specified format.

The data in array format must be a JSON array. Each
element is a record that is an array if the number of
arguments is larger than 1. By using an array, Amazon

Using the JSON interface between Amazon Redshift and Lambda 248

Amazon Redshift Database Developer Guide

Field name Description Value range

Redshift preserves the order of the records in the
payload.

The order of the JSON array determines the order of batch processing. The Lambda function must
process the arguments iteratively and produce the exact number of records. The following is an
example of a payload.

{
 "request_id" : "23FF1F97-F28A-44AA-AB67-266ED976BF40",
 "cluster" : "arn:aws:redshift:xxxx",
 "user" : "adminuser",
 "database" : "db1",
 "external_function": "public.foo",
 "query_id" : 5678234,
 "num_records" : 4,
 "arguments" : [
 [1, 2],
 [3, null],
 null,
 [4, 6]
]
 }

The return output of the Lambda function contains the following fields.

Field name Description Value range

success The indication of
success or failure for
the function.

A value of "true" or "false".

error_msg The error message
if the success value
is "false" (if the
function fails);
otherwise, this field is
ignored.

A valid message.

Using the JSON interface between Amazon Redshift and Lambda 249

Amazon Redshift Database Developer Guide

Field name Description Value range

num_recor
ds

The number of records
in the payload.

A value of 1 - 2^64.

results The results of the call
in the specified format.

N/A

The following is an example of the Lambda function output.

{
 "success": true, // true indicates the call succeeded
 "error_msg" : "my function isn't working", // shall only exist when success != true
 "num_records": 4, // number of records in this payload
 "results" : [
 1,
 4,
 null,
 7
]
}

When you call Lambda functions from SQL queries, Amazon Redshift ensures the security of the
connection with the following considerations:

• GRANT and REVOKE permissions. For more information about UDF security and privileges, see
UDF security and privileges.

• Amazon Redshift only submits the minimum set of data to the designated Lambda function.

• Amazon Redshift only calls the designated Lambda function with the designated IAM role.

Example uses of user-defined functions (UDFs)

You can use user-defined functions to solve business problems by integrating Amazon Redshift
with other components. Following are some examples of how others have used UDFs for their use
cases:

• Accessing external components using Amazon Redshift Lambda UDFs – describes how Amazon
Redshift Lambda UDFs work and walks through creating a Lambda UDF.

Example uses of UDFs 250

https://aws.amazon.com/blogs/big-data/accessing-external-components-using-amazon-redshift-lambda-udfs/

Amazon Redshift Database Developer Guide

• Translate and analyze text using SQL functions with Amazon Redshift, Amazon Translate, and
Amazon Comprehend – provides prebuilt Amazon Redshift Lambda UDFs that you can install
with a few clicks to translate, redact, and analyze text fields.

• Access Amazon Location Service from Amazon Redshift – describes how to use Amazon Redshift
Lambda UDFs to integrate with Amazon Location Service.

• Data Tokenization with Amazon Redshift and Protegrity – describes how to integrate Amazon
Redshift Lambda UDFs with the Protegrity Serverless product.

• Amazon Redshift UDFs – a collection of Amazon Redshift SQL, Lambda, and Python UDFs.

Example uses of UDFs 251

https://aws.amazon.com/blogs/machine-learning/translate-and-analyze-text-using-sql-functions-with-amazon-redshift-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/machine-learning/translate-and-analyze-text-using-sql-functions-with-amazon-redshift-amazon-translate-and-amazon-comprehend/
https://aws.amazon.com/blogs/big-data/access-amazon-location-service-from-amazon-redshift/
https://aws.amazon.com/blogs/apn/data-tokenization-with-amazon-redshift-and-protegrity/
https://github.com/aws-samples/amazon-redshift-udfs

Amazon Redshift Database Developer Guide

Creating stored procedures in Amazon Redshift

You can define an Amazon Redshift stored procedure using the PostgreSQL procedural language
PL/pgSQL to perform a set of SQL queries and logical operations. The procedure is stored in the
database and available for any user with sufficient database privileges.

Unlike a user-defined function (UDF), a stored procedure can incorporate data definition language
(DDL) and data manipulation language (DML) in addition to SELECT queries. A stored procedure
doesn't need to return a value. You can use procedural language, including looping and conditional
expressions, to control logical flow.

For details about SQL commands to create and manage stored procedures, see the following
command topics:

• CREATE PROCEDURE

• ALTER PROCEDURE

• DROP PROCEDURE

• SHOW PROCEDURE

• CALL

• GRANT

• REVOKE

• ALTER DEFAULT PRIVILEGES

Topics

• Overview of stored procedures in Amazon Redshift

• PL/pgSQL language reference

Overview of stored procedures in Amazon Redshift

Stored procedures are commonly used to encapsulate logic for data transformation, data
validation, and business-specific logic. By combining multiple SQL steps into a stored procedure,
you can reduce round trips between your applications and the database.

For fine-grained access control, you can create stored procedures to perform functions without
giving a user access to the underlying tables. For example, only the owner or a superuser can

Stored procedure overview 252

Amazon Redshift Database Developer Guide

truncate a table, and a user needs write privileges to insert data into a table. Instead of granting a
user privileges on the underlying tables, you can create a stored procedure that performs the task.
You then give the user privileges to run the stored procedure.

A stored procedure with the DEFINER security attribute runs with the privileges of the stored
procedure's owner. By default, a stored procedure has INVOKER security, which means the
procedure uses the privileges of the user that calls the procedure.

To create a stored procedure, use the CREATE PROCEDURE command. To run a procedure, use the
CALL command. Examples follow later in this section.

Note

Some clients might display the following error when creating an Amazon Redshift stored
procedure.

ERROR: 42601: [Amazon](500310) unterminated dollar-quoted string at or near "$$

This error occurs due to the inability of the client to correctly parse the CREATE
PROCEDURE statement with semicolons delimiting statements and with dollar sign ($)
quoting. This results in only a part of the statement sent to the Amazon Redshift server.
You can often work around this error by using the Run as batch or Execute selected
option of the client.
For example, when using an Aginity client, use the Run entire script as batch
option. When you use SQL Workbench/J, we recommend version 124. When you use SQL
Workbench/J version 125, consider specifying an alternate delimiter as a workaround.
CREATE PROCEDURE contains SQL statements delimited with a semicolon (;). Defining an
alternate delimiter such as a slash (/) and placing it at the end of the CREATE PROCEDURE
statement sends the statement to the Amazon Redshift server for processing. Following is
an example.

CREATE OR REPLACE PROCEDURE test()
AS $$
BEGIN
 SELECT 1 a;
END;
$$
LANGUAGE plpgsql
;

Stored procedure overview 253

Amazon Redshift Database Developer Guide

/

For more information, see Alternate delimiter in the SQL Workbench/J documentation. Or
use a client with better support for parsing CREATE PROCEDURE statements, such as the
query editor in the Amazon Redshift console or TablePlus.

Topics

• Naming stored procedures

• Security and privileges for stored procedures

• Returning a result set

• Managing transactions

• Trapping errors

• Logging stored procedures

• Considerations for stored procedure support

The following example shows a procedure with no output arguments. By default, arguments are
input (IN) arguments.

CREATE OR REPLACE PROCEDURE test_sp1(f1 int, f2 varchar)
AS $$
BEGIN
 RAISE INFO 'f1 = %, f2 = %', f1, f2;
END;
$$ LANGUAGE plpgsql;

call test_sp1(5, 'abc');
INFO: f1 = 5, f2 = abc
CALL

Note

When you write stored procedures, we recommend a best practice for securing sensitive
values:
Don't hardcode any sensitive information in stored procedure logic. For example, don't
assign a user password in a CREATE USER statement in the body of a stored procedure. This

Stored procedure overview 254

http://www.sql-workbench.net/manual/profiles.html#profile-alternate-delimiter
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor.html

Amazon Redshift Database Developer Guide

poses a security risk, because hardcoded values can be recorded as schema metadata in
catalog tables. Instead, pass sensitive values, such as passwords, as arguments to the stored
procedure, by means of parameters.
For more information about stored procedures, see CREATE PROCEDURE and Creating
stored procedures in Amazon Redshift. For more information about catalog tables, see
System catalog tables.

The following example shows a procedure with output arguments. Arguments are input (IN), input
and output (INOUT), and output (OUT).

CREATE OR REPLACE PROCEDURE test_sp2(f1 IN int, f2 INOUT varchar(256), out_var OUT
 varchar(256))
AS $$
DECLARE
 loop_var int;
BEGIN
 IF f1 is null OR f2 is null THEN
 RAISE EXCEPTION 'input cannot be null';
 END IF;
 DROP TABLE if exists my_etl;
 CREATE TEMP TABLE my_etl(a int, b varchar);
 FOR loop_var IN 1..f1 LOOP
 insert into my_etl values (loop_var, f2);
 f2 := f2 || '+' || f2;
 END LOOP;
 SELECT INTO out_var count(*) from my_etl;
END;
$$ LANGUAGE plpgsql;

call test_sp2(2,'2019');

 f2 | column2
---------------------+---------
 2019+2019+2019+2019 | 2
(1 row)

Stored procedure overview 255

Amazon Redshift Database Developer Guide

Naming stored procedures

If you define a procedure with the same name and different input argument data types or
signature, you create a new procedure. As a result, the procedure name is overloaded. For more
information, see Overloading procedure names. Amazon Redshift doesn't enable procedure
overloading based on output arguments. You can't have two procedures with the same name and
input argument data types but different output argument types.

The owner or a superuser can replace the body of a stored procedure with a new one with the same
signature. To change the signature or return types of a stored procedure, drop the stored procedure
and recreate it. For more information, see DROP PROCEDURE and CREATE PROCEDURE.

You can avoid potential conflicts and unexpected results by considering your naming conventions
for stored procedures before implementing them. Because you can overload procedure names, they
can collide with existing and future Amazon Redshift procedure names.

Overloading procedure names

A procedure is identified by its name and signature, which is the number of input arguments and
the data types of the arguments. Two procedures in the same schema can have the same name if
they have different signatures. In other words, you can overload procedure names.

When you run a procedure, the query engine determines which procedure to call based on
the number of arguments that you provide and the data types of the arguments. You can use
overloading to simulate procedures with a variable number of arguments, up to the limit allowed
by the CREATE PROCEDURE command. For more information, see CREATE PROCEDURE.

Preventing naming conflicts

We recommend that you name all procedures using the prefix sp_. Amazon Redshift reserves the
sp_ prefix exclusively for stored procedures. By prefixing your procedure names with sp_, you
make sure that your procedure name won't conflict with any existing or future Amazon Redshift
procedure name.

Security and privileges for stored procedures

By default, all users have privileges to create a procedure. To create a procedure, you must
have USAGE privilege on the language PL/pgSQL, which is granted to PUBLIC by default. Only
superusers and owners have the privilege to call a procedure by default. Superusers can run

Naming stored procedures 256

Amazon Redshift Database Developer Guide

REVOKE USAGE on PL/pgSQL from a user if they want to prevent the user from creating a stored
procedure.

To call a procedure, you must be granted EXECUTE privilege on the procedure. By default,
EXECUTE privilege for new procedures is granted to the procedure owner and superusers. For more
information, see GRANT.

The user creating a procedure is the owner by default. The owner has CREATE, DROP, and EXECUTE
privileges on the procedure by default. Superusers have all privileges.

The SECURITY attribute controls a procedure's privileges to access database objects. When you
create a stored procedure, you can set the SECURITY attribute to either DEFINER or INVOKER.
If you specify SECURITY INVOKER, the procedure uses the privileges of the user invoking the
procedure. If you specify SECURITY DEFINER, the procedure uses the privileges of the owner of the
procedure. INVOKER is the default.

Because a SECURITY DEFINER procedure runs with the privileges of the user that owns it, you must
make sure that the procedure can't be misused. To make sure that SECURITY DEFINER procedures
can't be misused, do the following:

• Grant EXECUTE on SECURITY DEFINER procedures to specific users, and not to PUBLIC.

• Qualify all database objects that the procedure must access with the schema names. For
example, use myschema.mytable instead of just mytable.

• If you can't qualify an object name by its schema, set search_path when creating the
procedure by using the SET option. Set search_path to exclude any schemas that are writable
by untrusted users. This approach prevents any callers of this procedure from creating objects
(for example, tables or views) that mask objects intended to be used by the procedure. For more
information about the SET option, see CREATE PROCEDURE.

The following example sets search_path to admin to ensure that the user_creds table
is accessed from the admin schema and not from public or any other schema in the caller's
search_path.

CREATE OR REPLACE PROCEDURE sp_get_credentials(userid int, o_creds OUT varchar)
AS $$
BEGIN
 SELECT creds INTO o_creds
 FROM user_creds
 WHERE user_id = $1;

Security and privileges 257

Amazon Redshift Database Developer Guide

END;
$$ LANGUAGE plpgsql
SECURITY DEFINER
-- Set a secure search_path
SET search_path = admin;

Returning a result set

You can return a result set using a cursor or a temp table.

Returning a cursor

To return a cursor, create a procedure with an INOUT argument defined with a refcursor data
type. When you call the procedure, give the cursor a name. Then you can fetch the results from the
cursor by name.

The following example creates a procedure named get_result_set with an INOUT argument
named rs_out using the refcursor data type. The procedure opens the cursor using a SELECT
statement.

CREATE OR REPLACE PROCEDURE get_result_set (param IN integer, rs_out INOUT refcursor)
AS $$
BEGIN
 OPEN rs_out FOR SELECT * FROM fact_tbl where id >= param;
END;
$$ LANGUAGE plpgsql;

The following CALL command opens the cursor with the name mycursor. Use cursors only within
transactions.

BEGIN;
CALL get_result_set(1, 'mycursor');

After the cursor is opened, you can fetch from the cursor, as the following example shows.

FETCH ALL FROM mycursor;

 id | secondary_id | name
-------+--------------+---------
 1 | 1 | Joe
 1 | 2 | Ed

Returning a result set 258

Amazon Redshift Database Developer Guide

 2 | 1 | Mary
 1 | 3 | Mike
(4 rows)

In the end, the transaction is either committed or rolled back.

COMMIT;

A cursor returned by a stored procedure is subject to the same constraints and performance
considerations as described in DECLARE CURSOR. For more information, see Cursor constraints.

The following example shows the calling of the get_result_set stored procedure using a
refcursor data type from JDBC. The literal 'mycursor' (the name of the cursor) is passed to the
prepareStatement. Then the results are fetched from the ResultSet.

static void refcursor_example(Connection conn) throws SQLException {
 conn.setAutoCommit(false);
 PreparedStatement proc = conn.prepareStatement("CALL get_result_set(1,
 'mycursor')");
 proc.execute();
 ResultSet rs = statement.executeQuery("fetch all from mycursor");
 while (rs.next()) {
 int n = rs.getInt(1);
 System.out.println("n " + n);
 }

Using a temp table

To return results, you can return a handle to a temp table containing result rows. The client can
supply a name as a parameter to the stored procedure. Inside the stored procedure, dynamic SQL
can be used to operate on the temp table. The following shows an example.

CREATE PROCEDURE get_result_set(param IN integer, tmp_name INOUT varchar(256)) as $$
DECLARE
 row record;
BEGIN
 EXECUTE 'drop table if exists ' || tmp_name;
 EXECUTE 'create temp table ' || tmp_name || ' as select * from fact_tbl where id <= '
 || param;
END;
$$ LANGUAGE plpgsql;

Returning a result set 259

Amazon Redshift Database Developer Guide

CALL get_result_set(2, 'myresult');
 tmp_name

 myresult
(1 row)

SELECT * from myresult;
 id | secondary_id | name
----+--------------+------
 1 | 1 | Joe
 2 | 1 | Mary
 1 | 2 | Ed
 1 | 3 | Mike
(4 rows)

Managing transactions

You can create a stored procedure with default transaction management behavior or nonatomic
behavior.

Default mode stored procedure transaction management

The default transaction mode automatic commit behavior causes each SQL command that runs
separately to commit individually. A call to a stored procedure is treated as a single SQL command.
The SQL statements inside a procedure behave as if they are in a transaction block that implicitly
begins when the call starts and ends when the call finishes. A nested call to another procedure is
treated like any other SQL statement and operates within the context of the same transaction as
the caller. For more information about automatic commit behavior, see Serializable isolation.

However, suppose that you call a stored procedure from within a user specified transaction block
(defined by BEGIN...COMMIT). In this case, all statements in the stored procedure run in the context
of the user-specified transaction. The procedure doesn't commit implicitly on exit. The caller
controls the procedure commit or rollback.

If any error is encountered while running a stored procedure, all changes made in the current
transaction are rolled back.

You can use the following transaction control statements in a stored procedure:

• COMMIT – commits all work done in the current transaction and implicitly begins a new
transaction. For more information, see COMMIT.

Managing transactions 260

Amazon Redshift Database Developer Guide

• ROLLBACK – rolls back the work done in the current transaction and implicitly begins a new
transaction. For more information, see ROLLBACK.

TRUNCATE is another statement that you can issue from within a stored procedure and influences
transaction management. In Amazon Redshift, TRUNCATE issues a commit implicitly. This behavior
stays the same in the context of stored procedures. When a TRUNCATE statement is issued from
within a stored procedure, it commits the current transaction and begins a new one. For more
information, see TRUNCATE.

All statements that follow a COMMIT, ROLLBACK, or TRUNCATE statement run in the context of a
new transaction. They do so until a COMMIT, ROLLBACK, or TRUNCATE statement is encountered or
the stored procedure exits.

When you use a COMMIT, ROLLBACK, or TRUNCATE statement from within a stored procedure, the
following constraints apply:

• If the stored procedure is called from within a transaction block, it can't issue a COMMIT,
ROLLBACK, or TRUNCATE statement. This restriction applies within the stored procedure's own
body and within any nested procedure call.

• If the stored procedure is created with SET config options, it can't issue a COMMIT, ROLLBACK,
or TRUNCATE statement. This restriction applies within the stored procedure's own body and
within any nested procedure call.

• Any cursor that is open (explicitly or implicitly) is closed automatically when a COMMIT,
ROLLBACK, or TRUNCATE statement is processed. For constraints on explicit and implicit cursors,
see Considerations for stored procedure support.

Additionally, you can't run COMMIT or ROLLBACK using dynamic SQL. However, you can run
TRUNCATE using dynamic SQL. For more information, see Dynamic SQL.

When working with stored procedures, consider that the BEGIN and END statements in PL/pgSQL
are only for grouping. They don't start or end a transaction. For more information, see Block.

The following example demonstrates transaction behavior when calling a stored procedure from
within an explicit transaction block. The two insert statements issued from outside the stored
procedure and the one from within it are all part of the same transaction (3382). The transaction is
committed when the user issues the explicit commit.

CREATE OR REPLACE PROCEDURE sp_insert_table_a(a int) LANGUAGE plpgsql

Managing transactions 261

Amazon Redshift Database Developer Guide

AS $$
BEGIN
 INSERT INTO test_table_a values (a);
END;
$$;

Begin;
 insert into test_table_a values (1);
 Call sp_insert_table_a(2);
 insert into test_table_a values (3);
Commit;

select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
 sequence;

 userid | xid | pid | type | stmt_text
--------+------+-----+---------+--
 103 | 3382 | 599 | UTILITY | Begin;
 103 | 3382 | 599 | QUERY | insert into test_table_a values (1);
 103 | 3382 | 599 | UTILITY | Call sp_insert_table_a(2);
 103 | 3382 | 599 | QUERY | INSERT INTO test_table_a values ($1)
 103 | 3382 | 599 | QUERY | insert into test_table_a values (3);
 103 | 3382 | 599 | UTILITY | COMMIT

In contrast, take an example when the same statements are issued from outside of an explicit
transaction block and the session has autocommit set to ON. In this case, each statement runs in its
own transaction.

insert into test_table_a values (1);
Call sp_insert_table_a(2);
insert into test_table_a values (3);

select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
 sequence;

 userid | xid | pid | type |
 stmt_text
--------+------+-----+---------
+---
 103 | 3388 | 599 | QUERY | insert into test_table_a values (1);
 103 | 3388 | 599 | UTILITY | COMMIT

Managing transactions 262

Amazon Redshift Database Developer Guide

 103 | 3389 | 599 | UTILITY | Call sp_insert_table_a(2);
 103 | 3389 | 599 | QUERY | INSERT INTO test_table_a values ($1)
 103 | 3389 | 599 | UTILITY | COMMIT
 103 | 3390 | 599 | QUERY | insert into test_table_a values (3);
 103 | 3390 | 599 | UTILITY | COMMIT

The following example issues a TRUNCATE statement after inserting into test_table_a. The
TRUNCATE statement issues an implicit commit that commits the current transaction (3335) and
starts a new one (3336). The new transaction is committed when the procedure exits.

CREATE OR REPLACE PROCEDURE sp_truncate_proc(a int, b int) LANGUAGE plpgsql
AS $$
BEGIN
 INSERT INTO test_table_a values (a);
 TRUNCATE test_table_b;
 INSERT INTO test_table_b values (b);
END;
$$;

Call sp_truncate_proc(1,2);

select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
 sequence;

 userid | xid | pid | type |
 stmt_text
--------+------+-------+---------
+---
 103 | 3335 | 23636 | UTILITY | Call sp_truncate_proc(1,2);
 103 | 3335 | 23636 | QUERY | INSERT INTO test_table_a values ($1)
 103 | 3335 | 23636 | UTILITY | TRUNCATE test_table_b
 103 | 3335 | 23636 | UTILITY | COMMIT
 103 | 3336 | 23636 | QUERY | INSERT INTO test_table_b values ($1)
 103 | 3336 | 23636 | UTILITY | COMMIT

The following example issues a TRUNCATE from a nested call. The TRUNCATE commits all work
done so far in the outer and inner procedures in a transaction (3344). It starts a new transaction
(3345). The new transaction is committed when the outer procedure exits.

CREATE OR REPLACE PROCEDURE sp_inner(c int, d int) LANGUAGE plpgsql
AS $$

Managing transactions 263

Amazon Redshift Database Developer Guide

BEGIN
 INSERT INTO inner_table values (c);
 TRUNCATE outer_table;
 INSERT INTO inner_table values (d);
END;
$$;

CREATE OR REPLACE PROCEDURE sp_outer(a int, b int, c int, d int) LANGUAGE plpgsql
AS $$
BEGIN
 INSERT INTO outer_table values (a);
 Call sp_inner(c, d);
 INSERT INTO outer_table values (b);
END;
$$;

Call sp_outer(1, 2, 3, 4);

select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
 sequence;

 userid | xid | pid | type |
 stmt_text
--------+------+-------+---------
+---
 103 | 3344 | 23636 | UTILITY | Call sp_outer(1, 2, 3, 4);
 103 | 3344 | 23636 | QUERY | INSERT INTO outer_table values ($1)
 103 | 3344 | 23636 | UTILITY | CALL sp_inner($1 , $2)
 103 | 3344 | 23636 | QUERY | INSERT INTO inner_table values ($1)
 103 | 3344 | 23636 | UTILITY | TRUNCATE outer_table
 103 | 3344 | 23636 | UTILITY | COMMIT
 103 | 3345 | 23636 | QUERY | INSERT INTO inner_table values ($1)
 103 | 3345 | 23636 | QUERY | INSERT INTO outer_table values ($1)
 103 | 3345 | 23636 | UTILITY | COMMIT

The following example shows that cursor cur1 was closed when the TRUNCATE statement
committed.

CREATE OR REPLACE PROCEDURE sp_open_cursor_truncate()
LANGUAGE plpgsql
AS $$
DECLARE

Managing transactions 264

Amazon Redshift Database Developer Guide

 rec RECORD;
 cur1 cursor for select * from test_table_a order by 1;
BEGIN
 open cur1;
 TRUNCATE table test_table_b;
 Loop
 fetch cur1 into rec;
 raise info '%', rec.c1;
 exit when not found;
 End Loop;
END
$$;

call sp_open_cursor_truncate();
ERROR: cursor "cur1" does not exist
CONTEXT: PL/pgSQL function "sp_open_cursor_truncate" line 8 at fetch

The following example issues a TRUNCATE statement and can't be called from within an explicit
transaction block.

CREATE OR REPLACE PROCEDURE sp_truncate_atomic() LANGUAGE plpgsql
AS $$
BEGIN
 TRUNCATE test_table_b;
END;
$$;

Begin;
 Call sp_truncate_atomic();
ERROR: TRUNCATE cannot be invoked from a procedure that is executing in an atomic
 context.
HINT: Try calling the procedure as a top-level call i.e. not from within an explicit
 transaction block.
Or, if this procedure (or one of its ancestors in the call chain) was created with SET
 config options, recreate the procedure without them.
CONTEXT: SQL statement "TRUNCATE test_table_b"
PL/pgSQL function "sp_truncate_atomic" line 2 at SQL statement

The following example shows that a user who is not a superuser or the owner of a table can issue
a TRUNCATE statement on the table. The user does this using a Security Definer stored
procedure. The example shows the following actions:

Managing transactions 265

Amazon Redshift Database Developer Guide

• The user1 creates table test_tbl.

• The user1 creates stored procedure sp_truncate_test_tbl.

• The user1 grants EXECUTE privilege on the stored procedure to user2.

• The user2 runs the stored procedure to truncate table test_tbl. The example shows the row
count before and after the TRUNCATE command.

set session_authorization to user1;
create table test_tbl(id int, name varchar(20));
insert into test_tbl values (1,'john'), (2, 'mary');
CREATE OR REPLACE PROCEDURE sp_truncate_test_tbl() LANGUAGE plpgsql
AS $$
DECLARE
 tbl_rows int;
BEGIN
 select count(*) into tbl_rows from test_tbl;
 RAISE INFO 'RowCount before Truncate: %', tbl_rows;
 TRUNCATE test_tbl;
 select count(*) into tbl_rows from test_tbl;
 RAISE INFO 'RowCount after Truncate: %', tbl_rows;
END;
$$ SECURITY DEFINER;
grant execute on procedure sp_truncate_test_tbl() to user2;
reset session_authorization;

set session_authorization to user2;
call sp_truncate_test_tbl();
INFO: RowCount before Truncate: 2
INFO: RowCount after Truncate: 0
CALL
reset session_authorization;

The following example issues COMMIT twice. The first COMMIT commits all work done in
transaction 10363 and implicitly starts transaction 10364. Transaction 10364 is committed by the
second COMMIT statement.

CREATE OR REPLACE PROCEDURE sp_commit(a int, b int) LANGUAGE plpgsql
AS $$
BEGIN
 INSERT INTO test_table values (a);

Managing transactions 266

Amazon Redshift Database Developer Guide

 COMMIT;
 INSERT INTO test_table values (b);
 COMMIT;
END;
$$;

call sp_commit(1,2);

select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
 sequence;
 userid | xid | pid | type |
 stmt_text
--------+-------+------+---------
+---
 100 | 10363 | 3089 | UTILITY | call sp_commit(1,2);
 100 | 10363 | 3089 | QUERY | INSERT INTO test_table values ($1)
 100 | 10363 | 3089 | UTILITY | COMMIT
 100 | 10364 | 3089 | QUERY | INSERT INTO test_table values ($1)
 100 | 10364 | 3089 | UTILITY | COMMIT

The following example issues a ROLLBACK statement if sum_vals is greater than 2. The
first ROLLBACK statement rolls back all the work done in transaction 10377 and starts a new
transaction 10378. Transaction 10378 is committed when the procedure exits.

CREATE OR REPLACE PROCEDURE sp_rollback(a int, b int) LANGUAGE plpgsql
AS $$
DECLARE
 sum_vals int;
BEGIN
 INSERT INTO test_table values (a);
 SELECT sum(c1) into sum_vals from test_table;
 IF sum_vals > 2 THEN
 ROLLBACK;
 END IF;

 INSERT INTO test_table values (b);
END;
$$;

call sp_rollback(1, 2);

select userid, xid, pid, type, trim(text) as stmt_text

Managing transactions 267

Amazon Redshift Database Developer Guide

from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
 sequence;

userid | xid | pid | type |
 stmt_text
--------+-------+------+---------
+---
 100 | 10377 | 3089 | UTILITY | call sp_rollback(1, 2);
 100 | 10377 | 3089 | QUERY | INSERT INTO test_table values ($1)
 100 | 10377 | 3089 | QUERY | SELECT sum(c1) from test_table
 100 | 10377 | 3089 | QUERY | Undoing 1 transactions on table 133646 with current
 xid 10377 : 10377
 100 | 10378 | 3089 | QUERY | INSERT INTO test_table values ($1)
 100 | 10378 | 3089 | UTILITY | COMMIT

Nonatomic mode stored procedure transaction management

A stored procedure created in NONATOMIC mode has different transaction control behavior from
a procedure created in default mode. Similar to the automatic commit behavior of SQL commands
outside stored procedures, each SQL statement inside a NONATOMIC procedure runs in its own
transaction and commits automatically. If a user begins an explicit transaction block within a
NONATOMIC stored procedure, then the SQL statements within the block do not automatically
commit. The transaction block controls commit or rollback of statements within it.

In NONATOMIC stored procedures, you can open an explicit transaction block inside the procedure
using the START TRANSACTION statement. However, if there is already an open transaction block,
this statement will do nothing because Amazon Redshift does not support sub transactions. The
previous transaction continues.

When you work with cursor FOR loops inside a NONATOMIC procedure, make sure you open an
explicit transaction block before iterating through the results of a query. Otherwise, the cursor is
closed when the SQL statement inside the loop is automatically committed.

Some of the considerations when using NONATOMIC mode behavior are as follows:

• Each SQL statement inside the stored procedure is automatically committed if there is no open
transaction block, and the session has autocommit set to ON.

• You can issue a COMMIT/ROLLBACK/TRUNCATE statement to end the transaction if the stored
procedure is called from within a transaction block. This is not possible in default mode.

Managing transactions 268

Amazon Redshift Database Developer Guide

• You can issue a START TRANSACTION statement to begin a transaction block inside the stored
procedure.

The following examples demonstrate transaction behavior when working with NONATOMIC stored
procedures. The session for all the following examples has autocommit set to ON.

In the following example, a NONATOMIC stored procedure has two INSERT statements. When the
procedure is called outside of a transaction block, every INSERT statement within the procedure
automatically commits.

CREATE TABLE test_table_a(v int);
CREATE TABLE test_table_b(v int);

CREATE OR REPLACE PROCEDURE sp_nonatomic_insert_table_a(a int, b int) NONATOMIC AS
$$
BEGIN
 INSERT INTO test_table_a values (a);
 INSERT INTO test_table_b values (b);
END;
$$
LANGUAGE plpgsql;

Call sp_nonatomic_insert_table_a(1,2);

Select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
 sequence;

 userid | xid | pid | type | stmt_text
--------+------+------------+---------+--
 1 | 1792 | 1073807554 | UTILITY | Call sp_nonatomic_insert_table_a(1,2);
 1 | 1792 | 1073807554 | QUERY | INSERT INTO test_table_a values ($1)
 1 | 1792 | 1073807554 | UTILITY | COMMIT
 1 | 1793 | 1073807554 | QUERY | INSERT INTO test_table_b values ($1)
 1 | 1793 | 1073807554 | UTILITY | COMMIT
(5 rows)

However, when the procedure is called from within a BEGIN..COMMIT block, all the statements are
part of the same transaction (xid=1799).

Begin;

Managing transactions 269

Amazon Redshift Database Developer Guide

 INSERT INTO test_table_a values (10);
 Call sp_nonatomic_insert_table_a(20,30);
 INSERT INTO test_table_b values (40);
Commit;

Select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
 sequence;

 userid | xid | pid | type | stmt_text
--------+------+------------+---------+--
 1 | 1799 | 1073914035 | UTILITY | Begin;
 1 | 1799 | 1073914035 | QUERY | INSERT INTO test_table_a values (10);
 1 | 1799 | 1073914035 | UTILITY | Call sp_nonatomic_insert_table_a(20,30);
 1 | 1799 | 1073914035 | QUERY | INSERT INTO test_table_a values ($1)
 1 | 1799 | 1073914035 | QUERY | INSERT INTO test_table_b values ($1)
 1 | 1799 | 1073914035 | QUERY | INSERT INTO test_table_b values (40);
 1 | 1799 | 1073914035 | UTILITY | COMMIT
(7 rows)

In this example, two INSERT statements are between START TRANSACTION...COMMIT. When the
procedure is called outside of a transaction block, the two INSERT statements are in the same
transaction (xid=1866).

CREATE OR REPLACE PROCEDURE sp_nonatomic_txn_block(a int, b int) NONATOMIC AS
$$
BEGIN
 START TRANSACTION;
 INSERT INTO test_table_a values (a);
 INSERT INTO test_table_b values (b);
 COMMIT;
END;
$$
LANGUAGE plpgsql;

Call sp_nonatomic_txn_block(1,2);

Select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
 sequence;

 userid | xid | pid | type | stmt_text
--------+------+------------+---------+--

Managing transactions 270

Amazon Redshift Database Developer Guide

 1 | 1865 | 1073823998 | UTILITY | Call sp_nonatomic_txn_block(1,2);
 1 | 1866 | 1073823998 | QUERY | INSERT INTO test_table_a values ($1)
 1 | 1866 | 1073823998 | QUERY | INSERT INTO test_table_b values ($1)
 1 | 1866 | 1073823998 | UTILITY | COMMIT
(4 rows)

When the procedure is called from within a BEGIN...COMMIT block, the START TRANSACTION inside
the procedure does nothing because there is already an open transaction. The COMMIT inside the
procedure commits the current transaction (xid=1876) and starts a new one.

Begin;
 INSERT INTO test_table_a values (10);
 Call sp_nonatomic_txn_block(20,30);
 INSERT INTO test_table_b values (40);
Commit;

Select userid, xid, pid, type, trim(text) as stmt_text
from svl_statementtext where pid = pg_backend_pid() order by xid , starttime ,
 sequence;

 userid | xid | pid | type | stmt_text
--------+------+------------+---------+--
 1 | 1876 | 1073832133 | UTILITY | Begin;
 1 | 1876 | 1073832133 | QUERY | INSERT INTO test_table_a values (10);
 1 | 1876 | 1073832133 | UTILITY | Call sp_nonatomic_txn_block(20,30);
 1 | 1876 | 1073832133 | QUERY | INSERT INTO test_table_a values ($1)
 1 | 1876 | 1073832133 | QUERY | INSERT INTO test_table_b values ($1)
 1 | 1876 | 1073832133 | UTILITY | COMMIT
 1 | 1878 | 1073832133 | QUERY | INSERT INTO test_table_b values (40);
 1 | 1878 | 1073832133 | UTILITY | COMMIT
(8 rows)

This example shows how to work with cursor loops. Table test_table_a has three values. The
objective is to iterate through the three values and insert them into table test_table_b. If a
NONATOMIC stored procedure is created in the following way, it will throw the error cursor "cur1"
does not exist after executing INSERT statement in the first loop. This is because the auto commit
of the INSERT closes the open cursor.

insert into test_table_a values (1), (2), (3);

CREATE OR REPLACE PROCEDURE sp_nonatomic_cursor() NONATOMIC
LANGUAGE plpgsql

Managing transactions 271

Amazon Redshift Database Developer Guide

AS $$
DECLARE
 rec RECORD;
 cur1 cursor for select * from test_table_a order by 1;
BEGIN
 open cur1;
 Loop
 fetch cur1 into rec;
 exit when not found;
 raise info '%', rec.v;
 insert into test_table_b values (rec.v);
 End Loop;
END
$$;

CALL sp_nonatomic_cursor();

INFO: 1
ERROR: cursor "cur1" does not exist
CONTEXT: PL/pgSQL function "sp_nonatomic_cursor" line 7 at fetch

To make the cursor loop work, put it between START TRANSACTION...COMMIT.

insert into test_table_a values (1), (2), (3);

CREATE OR REPLACE PROCEDURE sp_nonatomic_cursor() NONATOMIC
LANGUAGE plpgsql
AS $$
DECLARE
 rec RECORD;
 cur1 cursor for select * from test_table_a order by 1;
BEGIN
 START TRANSACTION;
 open cur1;
 Loop
 fetch cur1 into rec;
 exit when not found;
 raise info '%', rec.v;
 insert into test_table_b values (rec.v);
 End Loop;
 COMMIT;
END
$$;

Managing transactions 272

Amazon Redshift Database Developer Guide

CALL sp_nonatomic_cursor();

INFO: 1
INFO: 2
INFO: 3
CALL

Trapping errors

When a query or command in a stored procedure causes an error, subsequent queries don't run and
the transaction is rolled back. But you can handle errors using an EXCEPTION block.

Note

The default behavior is that an error will cause subsequent queries not to run, even when
there are no additional error-generating conditions in the stored procedure.

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
EXCEPTION
 WHEN OTHERS THEN
 statements
END;

When an exception occurs, and you add an exception-handling block, you can write RAISE
statements and most other PL/pgSQL statements. For example, you can raise an exception with a
custom message or insert a record into a logging table.

When entering the exception-handling block, the current transaction is rolled back and a new
transaction is created to run the statements in the block. If the statements in the block run without
error, the transaction is committed and the exception is re-thrown. Lastly, the stored procedure
exits.

Trapping errors 273

Amazon Redshift Database Developer Guide

The only supported condition in an exception block is OTHERS, which matches every error type
except query cancellation. Also, if an error occurs in an exception-handling block, it can be caught
by an outer exception-handling block.

When an error occurs inside the NONATOMIC procedure, the error is not re-thrown if it is handled
by an exception block. See the PL/pgSQL statement RAISE to throw an exception caught by the
exception handling block. This statement is only valid in exception handling blocks. For more
information see RAISE.

Controlling what happens after an error in a stored procedure, with the CONTINUE handler

The CONTINUE handler is a type of exception handler that controls the flow of execution within a
NONATOMIC stored procedure. By using it, you can catch and handle exceptions without ending
the existing statement block. Normally, when an error occurs in a stored procedure, the flow is
interrupted and the error is returned to the caller. However, in some use cases, the error condition
isn't severe enough to warrant interrupting the flow. You might want to handle the error gracefully,
using error-handling logic of your choosing in a seperate transaction, and then continue running
statements that follow the error. The following shows the syntax.

[DECLARE
 declarations]
BEGIN
 statements
EXCEPTION
 [CONTINUE_HANDLER | EXIT_HANDLER] WHEN OTHERS THEN
 handler_statements
END;

There are several system tables available to help you gather information about various
types of errors. For more information, see STL_LOAD_ERRORS, STL_ERROR, and
SYS_STREAM_SCAN_ERRORS. There are also additional system tables you can use to troubleshoot
errors. More information about these can be found at System tables and views reference.

Example

The following example shows how to write statements in the exception-handling block. The stored
procedure is using default transaction management behavior.

CREATE TABLE employee (firstname varchar, lastname varchar);
INSERT INTO employee VALUES ('Tomas','Smith');
CREATE TABLE employee_error_log (message varchar);

Trapping errors 274

Amazon Redshift Database Developer Guide

CREATE OR REPLACE PROCEDURE update_employee_sp() AS
$$
BEGIN
 UPDATE employee SET firstname = 'Adam' WHERE lastname = 'Smith';
 EXECUTE 'select invalid';
EXCEPTION WHEN OTHERS THEN
 RAISE INFO 'An exception occurred.';
 INSERT INTO employee_error_log VALUES ('Error message: ' || SQLERRM);
END;
$$
LANGUAGE plpgsql;

CALL update_employee_sp();

INFO: An exception occurred.
ERROR: column "invalid" does not exist
CONTEXT: SQL statement "select invalid"
PL/pgSQL function "update_employee_sp" line 3 at execute statement

In this example, if we call update_employee_sp, the informational message An exception
occurred. is raised and the error message is inserted in the logging table's employee_error_log
log. The original exception is thrown again before the stored procedure exits. The following queries
show records that result from running the example.

SELECT * from employee;

firstname | lastname
-----------+----------
 Tomas | Smith

SELECT * from employee_error_log;

 message
--
 Error message: column "invalid" does not exist

For more information about RAISE, including formatting help and a list of additional levels, see
Supported PL/pgSQL statements.

The following example shows how to write statements in the exception-handling block. The stored
procedure is using NONATOMIC transaction management behavior. In this example, there is no

Trapping errors 275

Amazon Redshift Database Developer Guide

error thrown back to caller after the procedure call completes. The UPDATE statement is not rolled
back due to the error in the next statement. The informational message is raised and the error
message is inserted in the logging table.

CREATE TABLE employee (firstname varchar, lastname varchar);
INSERT INTO employee VALUES ('Tomas','Smith');
CREATE TABLE employee_error_log (message varchar);

-- Create the SP in NONATOMIC mode
CREATE OR REPLACE PROCEDURE update_employee_sp_2() NONATOMIC AS
$$
BEGIN
 UPDATE employee SET firstname = 'Adam' WHERE lastname = 'Smith';
 EXECUTE 'select invalid';
EXCEPTION WHEN OTHERS THEN
 RAISE INFO 'An exception occurred.';
 INSERT INTO employee_error_log VALUES ('Error message: ' || SQLERRM);
END;
$$
LANGUAGE plpgsql;

CALL update_employee_sp_2();
INFO: An exception occurred.
CALL

SELECT * from employee;

 firstname | lastname
-----------+----------
 Adam | Smith
(1 row)

SELECT * from employee_error_log;

 message
--
 Error message: column "invalid" does not exist
(1 row)

This example shows how to create a procedure with two sub blocks. When the stored procedure is
called, the error from the first sub block is handled by its exception handling block. After the first
sub block completes, the procedure continues to execute the second sub block. You can see from

Trapping errors 276

Amazon Redshift Database Developer Guide

the result that no error is thrown when the procedure call completes. The UPDATE and INSERT
operations on table employee are committed. Error messages from both exception blocks are
inserted in the logging table.

CREATE TABLE employee (firstname varchar, lastname varchar);
INSERT INTO employee VALUES ('Tomas','Smith');
CREATE TABLE employee_error_log (message varchar);

CREATE OR REPLACE PROCEDURE update_employee_sp_3() NONATOMIC AS
$$
BEGIN
 BEGIN
 UPDATE employee SET firstname = 'Adam' WHERE lastname = 'Smith';
 EXECUTE 'select invalid1';
 EXCEPTION WHEN OTHERS THEN
 RAISE INFO 'An exception occurred in the first block.';
 INSERT INTO employee_error_log VALUES ('Error message: ' || SQLERRM);
 END;
 BEGIN
 INSERT INTO employee VALUES ('Edie','Robertson');
 EXECUTE 'select invalid2';
 EXCEPTION WHEN OTHERS THEN
 RAISE INFO 'An exception occurred in the second block.';
 INSERT INTO employee_error_log VALUES ('Error message: ' || SQLERRM);
 END;
END;
$$
LANGUAGE plpgsql;

CALL update_employee_sp_3();
INFO: An exception occurred in the first block.
INFO: An exception occurred in the second block.
CALL

SELECT * from employee;

 firstname | lastname
-----------+-----------
 Adam | Smith
 Edie | Robertson
(2 rows)

SELECT * from employee_error_log;

Trapping errors 277

Amazon Redshift Database Developer Guide

 message

 Error message: column "invalid1" does not exist
 Error message: column "invalid2" does not exist
(2 rows)

The following example shows how to use the CONTINUE exception handler. This sample creates
two tables and uses them in a stored procedure. The CONTINUE handler controls the flow of
execution in a stored procedure with NONATOMIC transaction-management behavior.

CREATE TABLE tbl_1 (a int);
CREATE TABLE tbl_error_logging(info varchar, err_state varchar, err_msg varchar);

CREATE OR REPLACE PROCEDURE sp_exc_handling_1() NONATOMIC AS
$$
BEGIN
 INSERT INTO tbl_1 VALUES (1);
 -- Expect an error for the insert statement following, because of the invalid value
 INSERT INTO tbl_1 VALUES ("val");
 INSERT INTO tbl_1 VALUES (2);
EXCEPTION CONTINUE_HANDLER WHEN OTHERS THEN
 INSERT INTO tbl_error_logging VALUES ('Encountered error', SQLSTATE, SQLERRM);
END;
$$ LANGUAGE plpgsql;

Call the stored procedure:

CALL sp_exc_handling_1();

Flow proceeds like so:

1. An error occurs because an attempt is made to insert an incompatible data type in a column.
Control passes to the EXCEPTION block. When the exception-handling block is entered, the
current transaction is rolled back and a new implicit transaction is created to run the statements
in it.

2. If the statements in CONTINUE_HANDLER run without error, control passes to the
statement immediately following the statement causing the exception. (If a statement in
CONTINUE_HANDLER raises a new exception, you can handle it with an exception handler within
the EXCEPTION block.)

Trapping errors 278

Amazon Redshift Database Developer Guide

After you call the sample stored procedure, the tables contain the following records:

• If you run SELECT * FROM tbl_1;, it returns two records. These contain the values 1 and 2.

• If you run SELECT * FROM tbl_error_logging;, it returns one record with these values:
Encountered error, 42703, and column "val" does not exist in tbl_1.

The following additional error-handling example uses both an EXIT handler and a CONTINUE
handler. It creates two tables: a data table and a logging table. It also creates a stored procedure
that demonstrates error handling:

CREATE TABLE tbl_1 (a int);
CREATE TABLE tbl_error_logging(info varchar, err_state varchar, err_msg varchar);

CREATE OR REPLACE PROCEDURE sp_exc_handling_2() NONATOMIC AS
$$
BEGIN
 INSERT INTO tbl_1 VALUES (1);
 BEGIN
 INSERT INTO tbl_1 VALUES (100);
 -- Expect an error for the insert statement following, because of the invalid
 value
 INSERT INTO tbl_1 VALUES ("val");
 INSERT INTO tbl_1 VALUES (101);
 EXCEPTION EXIT_HANDLER WHEN OTHERS THEN
 INSERT INTO tbl_error_logging VALUES ('Encountered error', SQLSTATE, SQLERRM);
 END;
 INSERT INTO tbl_1 VALUES (2);
 -- Expect an error for the insert statement following, because of the invalid value
 INSERT INTO tbl_1 VALUES ("val");
 INSERT INTO tbl_1 VALUES (3);
EXCEPTION CONTINUE_HANDLER WHEN OTHERS THEN
 INSERT INTO tbl_error_logging VALUES ('Encountered error', SQLSTATE, SQLERRM);
END;
$$ LANGUAGE plpgsql;

After you create the stored procedure, call it with the following:

CALL sp_exc_handling_2();

Trapping errors 279

Amazon Redshift Database Developer Guide

When an error occurs in the inner exception block, which is bracketed by the inner set of BEGIN and
END, it's handled by the EXIT handler. Any errors that occur in the outer block are handled by the
CONTINUE handler.

After you call the sample stored procedure, the tables contain the following records:

• If you run SELECT * FROM tbl_1;, it returns four records, with the values 1, 2, 3, and 100.

• If you run SELECT * FROM tbl_error_logging;, it returns two records. They have these
values: Encountered error, 42703, and column "val" does not exist in tbl_1.

If the table tbl_error_logging doesn't exist, it raises an exception.

The following example shows how to use the CONTINUE exception handler with the FOR loop. This
sample creates three tables and uses them in a FOR loop within a stored procedure. The FOR loop
is result set variant, meaning that it iterates over the results of a query:

CREATE TABLE tbl_1 (a int);
INSERT INTO tbl_1 VALUES (1), (2), (3);
CREATE TABLE tbl_2 (a int);
CREATE TABLE tbl_error_logging(info varchar, err_state varchar, err_msg varchar);

CREATE OR REPLACE PROCEDURE sp_exc_handling_loop() NONATOMIC AS
$$
DECLARE
 rec RECORD;
BEGIN
 FOR rec IN SELECT a FROM tbl_1
 LOOP
 IF rec.a = 2 THEN
 -- Expect an error for the insert statement following, because of the
 invalid value
 INSERT INTO tbl_2 VALUES("val");
 ELSE
 INSERT INTO tbl_2 VALUES (rec.a);
 END IF;
 END LOOP;
EXCEPTION CONTINUE_HANDLER WHEN OTHERS THEN
 INSERT INTO tbl_error_logging VALUES ('Encountered error', SQLSTATE, SQLERRM);
END;
$$ LANGUAGE plpgsql;

Trapping errors 280

Amazon Redshift Database Developer Guide

Call the stored procedure:

CALL sp_exc_handling_loop();

After you call the sample stored procedure, the tables contain the following records:

• If you run SELECT * FROM tbl_2;, it returns two records. These contain the values 1 and 3.

• If you run SELECT * FROM tbl_error_logging;, it returns one record with these values:
Encountered error, 42703, and column "val" does not exist in tbl_2.

Usage notes regarding the CONTINUE handler:

• CONTINUE_HANDLER and EXIT_HANDLER keywords can be used only in NONATOMIC stored
procedures.

• CONTINUE_HANDLER and EXIT_HANDLER keywords are optional. EXIT_HANDLER is the default.

Logging stored procedures

Details about stored procedures are logged in the following system tables and views:

• SVL_STORED_PROC_CALL – details are logged about the stored procedure call's start time
and end time, and whether the call is ended before completion. For more information, see
SVL_STORED_PROC_CALL.

• SVL_STORED_PROC_MESSAGES – messages in stored procedures emitted by the RAISE
query are logged with the corresponding logging level. For more information, see
SVL_STORED_PROC_MESSAGES.

• SVL_QLOG – the query ID of the procedure call is logged for each query called from a stored
procedure. For more information, see SVL_QLOG.

• STL_UTILITYTEXT – stored procedure calls are logged after they are completed. For more
information, see STL_UTILITYTEXT.

• PG_PROC_INFO – this system catalog view shows information about stored procedures. For more
information, see PG_PROC_INFO.

Considerations for stored procedure support

The following considerations apply when you use Amazon Redshift stored procedures.

Logging stored procedures 281

Amazon Redshift Database Developer Guide

Differences between Amazon Redshift and PostgreSQL for stored procedure
support

The following are differences between stored procedure support in Amazon Redshift and
PostgreSQL:

• Amazon Redshift doesn't support subtransactions, and hence has limited support for exception
handling blocks.

Considerations and limits

The following are considerations on stored procedures in Amazon Redshift:

• The maximum number of stored procedures for a database is 10,000.

• The maximum size of the source code for a procedure is 2 MB.

• The maximum number of explicit and implicit cursors that you can open concurrently in a
user session is one. FOR loops that iterate over the result set of a SQL statement open implicit
cursors. Nested cursors aren't supported.

• Explicit and implicit cursors have the same restrictions on the result set size as standard Amazon
Redshift cursors. For more information, see Cursor constraints.

• The maximum number of levels for nested calls is 16.

• The maximum number of procedure parameters is 32 for input arguments and 32 for output
arguments.

• The maximum number of variables in a stored procedure is 1,024.

• Any SQL command that requires its own transaction context isn't supported inside a stored
procedure. Examples include:

• PREPARE

• CREATE/DROP DATABASE

• CREATE EXTERNAL TABLE

• VACUUM

• SET LOCAL

• ALTER TABLE APPEND

Considerations 282

Amazon Redshift Database Developer Guide

• The registerOutParameter method call through the Java Database Connectivity (JDBC)
driver isn't supported for the refcursor data type. For an example of using the refcursor
data type, see Returning a result set.

PL/pgSQL language reference

Stored procedures in Amazon Redshift are based on the PostgreSQL PL/pgSQL procedural
language, with some important differences. In this reference, you can find details of PL/pgSQL
syntax as implemented by Amazon Redshift. For more information about PL/pgSQL, see PL/pgSQL
- SQL procedural language in the PostgreSQL documentation.

Topics

• PL/pgSQL reference conventions

• Structure of PL/pgSQL

• Supported PL/pgSQL statements

PL/pgSQL reference conventions

In this section, you can find the conventions that are used to write the syntax for the PL/pgSQL
stored procedure language.

Character Description

CAPS Words in capital letters are keywords.

[] Brackets denote optional arguments. Multiple arguments in brackets
indicate that you can choose any number of the arguments. In addition,
 arguments in brackets on separate lines indicate that the Amazon Redshift
parser expects the arguments to be in the order that they are listed in the
syntax.

{ } Braces indicate that you are required to choose one of the arguments inside
the braces.

| Pipes indicate that you can choose between the arguments.

PL/pgSQL language reference 283

https://www.postgresql.org/docs/8.0/plpgsql.html
https://www.postgresql.org/docs/8.0/plpgsql.html

Amazon Redshift Database Developer Guide

Character Description

red italics Words in red italics indicate placeholders. Insert the appropriate value in
place of the word in red italics.

. . . An ellipsis indicates that you can repeat the preceding element.

' Words in single quotation marks indicate that you must type the quotes.

Structure of PL/pgSQL

PL/pgSQL is a procedural language with many of the same constructs as other procedural
languages.

Topics

• Block

• Variable declaration

• Alias declaration

• Built-in variables

• Record types

Block

PL/pgSQL is a block-structured language. The complete body of a procedure is defined in a block,
which contains variable declarations and PL/pgSQL statements. A statement can also be a nested
block, or subblock.

End declarations and statements with a semicolon. Follow the END keyword in a block or subblock
with a semicolon. Don't use semicolons after the keywords DECLARE and BEGIN.

You can write all keywords and identifiers in mixed uppercase and lowercase. Identifiers are
implicitly converted to lowercase unless enclosed in double quotation marks.

A double hyphen (--) starts a comment that extends to the end of the line. A /* starts a block
comment that extends to the next occurrence of */. You can't nest block comments. However, you
can enclose double-hyphen comments in a block comment, and a double hyphen can hide the
block comment delimiters /* and */.

Structure of PL/pgSQL 284

Amazon Redshift Database Developer Guide

Any statement in the statement section of a block can be a subblock. You can use subblocks for
logical grouping or to localize variables to a small group of statements.

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
END [label];

The variables declared in the declarations section preceding a block are initialized to their default
values every time the block is entered. In other words, they're not initialized only once per function
call.

The following shows an example.

CREATE PROCEDURE update_value() AS $$
DECLARE
 value integer := 20;
BEGIN
 RAISE NOTICE 'Value here is %', value; -- Value here is 20
 value := 50;
 --
 -- Create a subblock
 --
 DECLARE
 value integer := 80;
 BEGIN
 RAISE NOTICE 'Value here is %', value; -- Value here is 80
 END;

 RAISE NOTICE 'Value here is %', value; -- Value here is 50
END;
$$ LANGUAGE plpgsql;

Use a label to identify the block to use in an EXIT statement or to qualify the names of the
variables declared in the block.

Don't confuse the use of BEGIN/END for grouping statements in PL/pgSQL with the database
commands for transaction control. The BEGIN and END in PL/pgSQL are only for grouping. They
don't start or end a transaction.

Structure of PL/pgSQL 285

Amazon Redshift Database Developer Guide

Variable declaration

Declare all variables in a block, except for loop variables, in the block's DECLARE section. Variables
can use any valid Amazon Redshift data type. For supported data types, see Data types.

PL/pgSQL variables can be any Amazon Redshift supported data type, plus RECORD and
refcursor. For more information about RECORD, see Record types. For more information about
refcursor, see Cursors.

DECLARE
name [CONSTANT] type [NOT NULL] [{ DEFAULT | := } expression];

Following, you can find example variable declarations.

customerID integer;
numberofitems numeric(6);
link varchar;
onerow RECORD;

The loop variable of a FOR loop iterating over a range of integers is automatically declared as an
integer variable.

The DEFAULT clause, if given, specifies the initial value assigned to the variable when the block is
entered. If the DEFAULT clause is not given, then the variable is initialized to the SQL NULL value.
The CONSTANT option prevents the variable from being assigned to, so that its value remains
constant for the duration of the block. If NOT NULL is specified, an assignment of a null value
results in a runtime error. All variables declared as NOT NULL must have a non-null default value
specified.

The default value is evaluated every time the block is entered. For example, assigning now() to a
variable of type timestamp causes the variable to have the time of the current function call, not
the time when the function was precompiled.

quantity INTEGER DEFAULT 32;
url VARCHAR := 'http://mysite.com';
user_id CONSTANT INTEGER := 10;

The refcursor data type is the data type of cursor variables within stored procedures. A
refcursor value can be returned from within a stored procedure. For more information, see
Returning a result set.

Structure of PL/pgSQL 286

Amazon Redshift Database Developer Guide

Alias declaration

If stored procedure's signature omits the argument name, you can declare an alias for the
argument.

name ALIAS FOR $n;

Built-in variables

The following built-in variables are supported:

• FOUND

• SQLSTATE

• SQLERRM

• GET DIAGNOSTICS integer_var := ROW_COUNT;

FOUND is a special variable of type Boolean. FOUND starts out false within each procedure call.
FOUND is set by the following types of statements:

• SELECT INTO

Sets FOUND to true if it returns a row, false if no row is returned.

• UPDATE, INSERT, and DELETE

Sets FOUND to true if at least one row is affected, false if no row is affected.

• FETCH

Sets FOUND to true if it returns a row, false if no row is returned.

• FOR statement

Sets FOUND to true if the FOR statement iterates one or more times, and otherwise false. This
applies to all three variants of the FOR statement: integer FOR loops, record-set FOR loops, and
dynamic record-set FOR loops.

FOUND is set when the FOR loop exits. Inside the runtime of the loop, FOUND isn't modified by
the FOR statement. However, it can be changed by running other statements within the loop
body.

Structure of PL/pgSQL 287

Amazon Redshift Database Developer Guide

The following shows an example.

CREATE TABLE employee(empname varchar);
CREATE OR REPLACE PROCEDURE show_found()
AS $$
DECLARE
 myrec record;
BEGIN
 SELECT INTO myrec * FROM employee WHERE empname = 'John';
 IF NOT FOUND THEN
 RAISE EXCEPTION 'employee John not found';
 END IF;
END;
$$ LANGUAGE plpgsql;

Within an exception handler, the special variable SQLSTATE contains the error code that
corresponds to the exception that was raised. The special variable SQLERRM contains the error
message associated with the exception. These variables are undefined outside exception handlers
and display an error if used.

The following shows an example.

CREATE OR REPLACE PROCEDURE sqlstate_sqlerrm() AS
$$
BEGIN
 UPDATE employee SET firstname = 'Adam' WHERE lastname = 'Smith';
 EXECUTE 'select invalid';
 EXCEPTION WHEN OTHERS THEN
 RAISE INFO 'error message SQLERRM %', SQLERRM;
 RAISE INFO 'error message SQLSTATE %', SQLSTATE;
END;
$$ LANGUAGE plpgsql;

ROW_COUNT is used with the GET DIAGNOSTICS command. It shows the number of rows
processed by the last SQL command sent down to the SQL engine.

The following shows an example.

CREATE OR REPLACE PROCEDURE sp_row_count() AS
$$
DECLARE
 integer_var int;

Structure of PL/pgSQL 288

Amazon Redshift Database Developer Guide

BEGIN
 INSERT INTO tbl_row_count VALUES(1);
 GET DIAGNOSTICS integer_var := ROW_COUNT;
 RAISE INFO 'rows inserted = %', integer_var;
END;
$$ LANGUAGE plpgsql;

Record types

A RECORD type is not a true data type, only a placeholder. Record type variables assume the
actual row structure of the row that they are assigned during a SELECT or FOR command. The
substructure of a record variable can change each time it is assigned a value. Until a record variable
is first assigned to, it has no substructure. Any attempt to access a field in it throws a runtime error.

name RECORD;

The following shows an example.

CREATE TABLE tbl_record(a int, b int);
INSERT INTO tbl_record VALUES(1, 2);
CREATE OR REPLACE PROCEDURE record_example()
LANGUAGE plpgsql
AS $$
DECLARE
 rec RECORD;
BEGIN
 FOR rec IN SELECT a FROM tbl_record
 LOOP
 RAISE INFO 'a = %', rec.a;
 END LOOP;
END;
$$;

Supported PL/pgSQL statements

PL/pgSQL statements augment SQL commands with procedural constructs, including looping and
conditional expressions, to control logical flow. Most SQL commands can be used, including data
manipulation language (DML) such as COPY, UNLOAD, and INSERT, and data definition language
(DDL) such as CREATE TABLE. For a list of comprehensive SQL commands, see SQL commands. In
addition, the following PL/pgSQL statements are supported by Amazon Redshift.

Supported PL/pgSQL statements 289

Amazon Redshift Database Developer Guide

Topics

• Assignment

• SELECT INTO

• No-op

• Dynamic SQL

• Return

• Conditionals: IF

• Conditionals: CASE

• Loops

• Cursors

• RAISE

• Transaction control

Assignment

The assignment statement assigns a value to a variable. The expression must return a single value.

identifier := expression;

Using the nonstandard = for assignment, instead of :=, is also accepted.

If the data type of the expression doesn't match the variable's data type or the variable has a size
or precision, the result value is implicitly converted.

The following shows examples.

customer_number := 20;
tip := subtotal * 0.15;

SELECT INTO

The SELECT INTO statement assigns the result of multiple columns (but only one row) into a record
variable or list of scalar variables.

SELECT INTO target select_expressions FROM ...;

Supported PL/pgSQL statements 290

Amazon Redshift Database Developer Guide

In the preceding syntax, target can be a record variable or a comma-separated list of simple
variables and record fields. The select_expressions list and the remainder of the command are
the same as in regular SQL.

If a variable list is used as target, the selected values must exactly match the structure of the
target, or a runtime error occurs. When a record variable is the target, it automatically configures
itself to the row type of the query result columns.

The INTO clause can appear almost anywhere in the SELECT statement. It usually appears just
after the SELECT clause, or just before FROM clause. That is, it appears just before or just after the
select_expressions list.

If the query returns zero rows, NULL values are assigned to target. If the query returns multiple
rows, the first row is assigned to target and the rest are discarded. Unless the statement contains
an ORDER BY, the first row is not deterministic.

To determine whether the assignment returned at least one row, use the special FOUND variable.

SELECT INTO customer_rec * FROM cust WHERE custname = lname;
IF NOT FOUND THEN
 RAISE EXCEPTION 'employee % not found', lname;
END IF;

To test whether a record result is null, you can use the IS NULL conditional. There is no way to
determine whether any additional rows might have been discarded. The following example handles
the case where no rows have been returned.

CREATE OR REPLACE PROCEDURE select_into_null(return_webpage OUT varchar(256))
AS $$
DECLARE
 customer_rec RECORD;
BEGIN
 SELECT INTO customer_rec * FROM users WHERE user_id=3;
 IF customer_rec.webpage IS NULL THEN
 -- user entered no webpage, return "http://"
 return_webpage = 'http://';
 END IF;
END;
$$ LANGUAGE plpgsql;

Supported PL/pgSQL statements 291

Amazon Redshift Database Developer Guide

No-op

The no-op statement (NULL;) is a placeholder statement that does nothing. A no-op statement can
indicate that one branch of an IF-THEN-ELSE chain is empty.

NULL;

Dynamic SQL

To generate dynamic commands that can involve different tables or different data types each time
they are run from a PL/pgSQL stored procedure, use the EXECUTE statement.

EXECUTE command-string [INTO target];

In the preceding, command-string is an expression yielding a string (of type text) that contains
the command to be run. This command-string value is sent to the SQL engine. No substitution of
PL/pgSQL variables is done on the command string. The values of variables must be inserted in the
command string as it is constructed.

Note

You can't use COMMIT and ROLLBACK statements from within dynamic SQL. For
information about using COMMIT and ROLLBACK statements within a stored procedure, see
Managing transactions.

When working with dynamic commands, you often have to handle escaping of single quotation
marks. We recommend enclosing fixed text in quotation marks in your function body using dollar
quoting. Dynamic values to insert into a constructed query require special handling because they
might themselves contain quotation marks. The following example assumes dollar quoting for the
function as a whole, so the quotation marks don't need to be doubled.

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = '
 || quote_literal(newvalue)
 || ' WHERE key = '
 || quote_literal(keyvalue);

Supported PL/pgSQL statements 292

Amazon Redshift Database Developer Guide

The preceding example shows the functions quote_ident(text) and quote_literal(text).
This example passes variables that contain column and table identifiers to the quote_ident
function. It also passes variables that contain literal strings in the constructed command to the
quote_literal function. Both functions take the appropriate steps to return the input text
enclosed in double or single quotation marks respectively, with any embedded special characters
properly escaped.

Dollar quoting is only useful for quoting fixed text. Don't write the preceding example in the
following format.

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = $$'
 || newvalue
 || '$$ WHERE key = '
 || quote_literal(keyvalue);

You don't do this because the example breaks if the contents of newvalue happen to contain $$.
The same problem applies to any other dollar-quoting delimiter that you might choose. To safely
quote text that is not known in advance, use the quote_literal function.

Return

The RETURN statement returns back to the caller from a stored procedure.

RETURN;

The following shows an example.

CREATE OR REPLACE PROCEDURE return_example(a int)
AS $$
BEGIN
 FOR b in 1..10 LOOP
 IF b < a THEN
 RAISE INFO 'b = %', b;
 ELSE
 RETURN;
 END IF;
 END LOOP;
END;

Supported PL/pgSQL statements 293

Amazon Redshift Database Developer Guide

$$ LANGUAGE plpgsql;

Conditionals: IF

The IF conditional statement can take the following forms in the PL/pgSQL language that Amazon
Redshift uses:

• IF ... THEN

IF boolean-expression THEN
 statements
END IF;

The following shows an example.

IF v_user_id <> 0 THEN
 UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

• IF ... THEN ... ELSE

IF boolean-expression THEN
 statements
ELSE
 statements
END IF;

The following shows an example.

IF parentid IS NULL OR parentid = ''
THEN
 return_name = fullname;
 RETURN;
ELSE
 return_name = hp_true_filename(parentid) || '/' || fullname;
 RETURN;
END IF;

• IF ... THEN ... ELSIF ... THEN ... ELSE

The key word ELSIF can also be spelled ELSEIF.

Supported PL/pgSQL statements 294

Amazon Redshift Database Developer Guide

IF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
 ...]]
[ELSE
 statements]
END IF;

The following shows an example.

IF number = 0 THEN
 result := 'zero';
ELSIF number > 0 THEN
 result := 'positive';
ELSIF number < 0 THEN
 result := 'negative';
ELSE
 -- the only other possibility is that number is null
 result := 'NULL';
END IF;

Conditionals: CASE

The CASE conditional statement can take the following forms in the PL/pgSQL language that
Amazon Redshift uses:

• Simple CASE

CASE search-expression
WHEN expression [, expression [...]] THEN
 statements
[WHEN expression [, expression [...]] THEN
 statements
 ...]
[ELSE
 statements]
END CASE;

Supported PL/pgSQL statements 295

Amazon Redshift Database Developer Guide

A simple CASE statement provides conditional execution based on equality of operands.

The search-expression value is evaluated one time and successively compared to each
expression in the WHEN clauses. If a match is found, then the corresponding statements run,
and then control passes to the next statement after END CASE. Subsequent WHEN expressions
aren't evaluated. If no match is found, the ELSE statements run. However, if ELSE isn't present,
then a CASE_NOT_FOUND exception is raised.

The following shows an example.

CASE x
WHEN 1, 2 THEN
 msg := 'one or two';
ELSE
 msg := 'other value than one or two';
END CASE;

• Searched CASE

CASE
WHEN boolean-expression THEN
 statements
[WHEN boolean-expression THEN
 statements
 ...]
[ELSE
 statements]
END CASE;

The searched form of CASE provides conditional execution based on truth of Boolean
expressions.

Each WHEN clause's boolean-expression is evaluated in turn, until one is found that yields
true. Then the corresponding statements run, and then control passes to the next statement
after END CASE. Subsequent WHEN expressions aren't evaluated. If no true result is found,
the ELSE statements are run. However, if ELSE isn't present, then a CASE_NOT_FOUND
exception is raised.

The following shows an example.

Supported PL/pgSQL statements 296

Amazon Redshift Database Developer Guide

CASE
WHEN x BETWEEN 0 AND 10 THEN
 msg := 'value is between zero and ten';
WHEN x BETWEEN 11 AND 20 THEN
 msg := 'value is between eleven and twenty';
END CASE;

Loops

Loop statements can take the following forms in the PL/pgSQL language that Amazon Redshift
uses:

• Simple loop

[<<label>>]
LOOP
 statements
END LOOP [label];

A simple loop defines an unconditional loop that is repeated indefinitely until terminated by an
EXIT or RETURN statement. The optional label can be used by EXIT and CONTINUE statements
within nested loops to specify which loop the EXIT and CONTINUE statements refer to.

The following shows an example.

CREATE OR REPLACE PROCEDURE simple_loop()
LANGUAGE plpgsql
AS $$
BEGIN
 <<simple_while>>
 LOOP
 RAISE INFO 'I am raised once';
 EXIT simple_while;
 RAISE INFO 'I am not raised';
 END LOOP;
 RAISE INFO 'I am raised once as well';
END;
$$;

• Exit loop

Supported PL/pgSQL statements 297

Amazon Redshift Database Developer Guide

EXIT [label] [WHEN expression];

If label isn't present, the innermost loop is terminated and the statement following the END
LOOP runs next. If label is present, it must be the label of the current or some outer level of
nested loop or block. Then, the named loop or block is terminated and control continues with
the statement after the loop or block corresponding END.

If WHEN is specified, the loop exit occurs only if expression is true. Otherwise, control passes
to the statement after EXIT.

You can use EXIT with all types of loops; it isn't limited to use with unconditional loops.

When used with a BEGIN block, EXIT passes control to the next statement after the end of the
block. A label must be used for this purpose. An unlabeled EXIT is never considered to match a
BEGIN block.

The following shows an example.

CREATE OR REPLACE PROCEDURE simple_loop_when(x int)
LANGUAGE plpgsql
AS $$
DECLARE i INTEGER := 0;
BEGIN
 <<simple_loop_when>>
 LOOP
 RAISE INFO 'i %', i;
 i := i + 1;
 EXIT simple_loop_when WHEN (i >= x);
 END LOOP;
END;
$$;

• Continue loop

CONTINUE [label] [WHEN expression];

If label is not given, the execution jumps to the next iteration of the innermost loop. That is,
all statements remaining in the loop body are skipped. Control then returns to the loop control

Supported PL/pgSQL statements 298

Amazon Redshift Database Developer Guide

expression (if any) to determine whether another loop iteration is needed. If label is present, it
specifies the label of the loop whose execution is continued.

If WHEN is specified, the next iteration of the loop is begun only if expression is true.
Otherwise, control passes to the statement after CONTINUE.

You can use CONTINUE with all types of loops; it isn't limited to use with unconditional loops.

CONTINUE mylabel;

• WHILE loop

[<<label>>]
WHILE expression LOOP
 statements
END LOOP [label];

The WHILE statement repeats a sequence of statements so long as the boolean-expression
evaluates to true. The expression is checked just before each entry to the loop body.

The following shows an example.

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
 -- some computations here
END LOOP;

WHILE NOT done LOOP
 -- some computations here
END LOOP;

• FOR loop (integer variant)

[<<label>>]
FOR name IN [REVERSE] expression .. expression LOOP
 statements
END LOOP [label];

The FOR loop (integer variant) creates a loop that iterates over a range of integer values. The
variable name is automatically defined as type integer and exists only inside the loop. Any
existing definition of the variable name is ignored within the loop. The two expressions giving

Supported PL/pgSQL statements 299

Amazon Redshift Database Developer Guide

the lower and upper bound of the range are evaluated one time when entering the loop. If you
specify REVERSE, then the step value is subtracted, rather than added, after each iteration.

If the lower bound is greater than the upper bound (or less than, in the REVERSE case), the loop
body doesn't run. No error is raised.

If a label is attached to the FOR loop, then you can reference the integer loop variable with a
qualified name, using that label.

The following shows an example.

FOR i IN 1..10 LOOP
 -- i will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop
END LOOP;

FOR i IN REVERSE 10..1 LOOP
 -- i will take on the values 10,9,8,7,6,5,4,3,2,1 within the loop
END LOOP;

• FOR loop (result set variant)

[<<label>>]
FOR target IN query LOOP
 statements
END LOOP [label];

The target is a record variable or comma-separated list of scalar variables. The target is
successively assigned each row resulting from the query, and the loop body is run for each row.

The FOR loop (result set variant) enables a stored procedure to iterate through the results of a
query and manipulate that data accordingly.

The following shows an example.

CREATE PROCEDURE cs_refresh_reports() AS $$
DECLARE
 reports RECORD;
BEGIN
 FOR reports IN SELECT * FROM cs_reports ORDER BY sort_key LOOP
 -- Now "reports" has one record from cs_reports

Supported PL/pgSQL statements 300

Amazon Redshift Database Developer Guide

 EXECUTE 'INSERT INTO ' || quote_ident(reports.report_name) || ' ' ||
 reports.report_query;
 END LOOP;
 RETURN;
END;
$$ LANGUAGE plpgsql;

• FOR loop with dynamic SQL

[<<label>>]
FOR record_or_row IN EXECUTE text_expression LOOP
 statements
END LOOP;

A FOR loop with dynamic SQL enables a stored procedure to iterate through the results of a
dynamic query and manipulate that data accordingly.

The following shows an example.

CREATE OR REPLACE PROCEDURE for_loop_dynamic_sql(x int)
LANGUAGE plpgsql
AS $$
DECLARE
 rec RECORD;
 query text;
BEGIN
 query := 'SELECT * FROM tbl_dynamic_sql LIMIT ' || x;
 FOR rec IN EXECUTE query
 LOOP
 RAISE INFO 'a %', rec.a;
 END LOOP;
END;
$$;

Cursors

Rather than running a whole query at once, you can set up a cursor. A cursor encapsulates a query
and reads the query result a few rows at a time. One reason for doing this is to avoid memory
overrun when the result contains a large number of rows. Another reason is to return a reference

Supported PL/pgSQL statements 301

Amazon Redshift Database Developer Guide

to a cursor that a stored procedure has created, which allows the caller to read the rows. This
approach provides an efficient way to return large row sets from stored procedures.

To use cursors in a NONATOMIC stored procedure, place the cursor loop between START
TRANSACTION...COMMIT.

To set up a cursor, first you declare a cursor variable. All access to cursors in PL/pgSQL goes
through cursor variables, which are always of the special data type refcursor. A refcursor data
type simply holds a reference to a cursor.

You can create a cursor variable by declaring it as a variable of type refcursor. Or, you can use
the cursor declaration syntax following.

name CURSOR [(arguments)] FOR query ;

In the preceding, arguments (if specified) is a comma-separated list of name datatype pairs that
each define names to be replaced by parameter values in query. The actual values to substitute for
these names are specified later, when the cursor is opened.

The following shows examples.

DECLARE
 curs1 refcursor;
 curs2 CURSOR FOR SELECT * FROM tenk1;
 curs3 CURSOR (key integer) IS SELECT * FROM tenk1 WHERE unique1 = key;

All three of these variables have the data type refcursor, but the first can be used with any
query. In contrast, the second has a fully specified query already bound to it, and the last has a
parameterized query bound to it. The key value is replaced by an integer parameter value when
the cursor is opened. The variable curs1 is said to be unbound because it is not bound to any
particular query.

Before you can use a cursor to retrieve rows, it must be opened. PL/pgSQL has three forms of the
OPEN statement, of which two use unbound cursor variables and the third uses a bound cursor
variable:

• Open for select: The cursor variable is opened and given the specified query to run. The cursor
can't be open already. Also, it must have been declared as an unbound cursor (that is, as a simple

Supported PL/pgSQL statements 302

Amazon Redshift Database Developer Guide

refcursor variable). The SELECT query is treated in the same way as other SELECT statements
in PL/pgSQL.

OPEN cursor_name FOR SELECT ...;

The following shows an example.

OPEN curs1 FOR SELECT * FROM foo WHERE key = mykey;

• Open for execute: The cursor variable is opened and given the specified query to run. The cursor
can't be open already. Also, it must have been declared as an unbound cursor (that is, as a simple
refcursor variable). The query is specified as a string expression in the same way as in the
EXECUTE command. This approach gives flexibility so the query can vary from one run to the
next.

OPEN cursor_name FOR EXECUTE query_string;

The following shows an example.

OPEN curs1 FOR EXECUTE 'SELECT * FROM ' || quote_ident($1);

• Open a bound cursor: This form of OPEN is used to open a cursor variable whose query was
bound to it when it was declared. The cursor can't be open already. A list of actual argument
value expressions must appear if and only if the cursor was declared to take arguments. These
values are substituted in the query.

OPEN bound_cursor_name [(argument_values)];

The following shows an example.

OPEN curs2;
OPEN curs3(42);

After a cursor has been opened, you can work with it by using the statements described following.
These statements don't have to occur in the same stored procedure that opened the cursor. You
can return a refcursor value out of a stored procedure and let the caller operate on the cursor.

Supported PL/pgSQL statements 303

Amazon Redshift Database Developer Guide

All portals are implicitly closed at transaction end. Thus, you can use a refcursor value to
reference an open cursor only until the end of the transaction.

• FETCH retrieves the next row from the cursor into a target. This target can be a row variable, a
record variable, or a comma-separated list of simple variables, just as with SELECT INTO. As with
SELECT INTO, you can check the special variable FOUND to see whether a row was obtained.

FETCH cursor INTO target;

The following shows an example.

FETCH curs1 INTO rowvar;

• CLOSE closes the portal underlying an open cursor. You can use this statement to release
resources earlier than end of the transaction. You can also use this statement to free the cursor
variable to be opened again.

CLOSE cursor;

The following shows an example.

CLOSE curs1;

RAISE

Use the RAISE level statement to report messages and raise errors.

RAISE level 'format' [, variable [, ...]];

Possible levels are NOTICE, INFO, LOG, WARNING, and EXCEPTION. EXCEPTION raises an error,
which normally cancels the current transaction. The other levels generate only messages of
different priority levels.

Inside the format string, % is replaced by the next optional argument's string representation. Write
%% to emit a literal %. Currently, optional arguments must be simple variables, not expressions,
and the format must be a simple string literal.

In the following example, the value of v_job_id replaces the % in the string.

Supported PL/pgSQL statements 304

Amazon Redshift Database Developer Guide

RAISE NOTICE 'Calling cs_create_job(%)', v_job_id;

Use the RAISE statement to re-throw the exception caught by an exception handling block. This
statement is only valid in exception handling blocks of NONATOMIC mode stored procedures.

RAISE;

Transaction control

You can work with transaction control statements in the PL/pgSQL language that Amazon Redshift
uses. For information about using the statements COMMIT, ROLLBACK, and TRUNCATE within a
stored procedure, see Managing transactions.

In NONATOMIC mode stored procedures, use START TRANSACTION to start a transaction block.

START TRANSACTION;

Note

The PL/pgSQL statement START TRANSACTION is different from the SQL command START
TRANSACTION in the following ways:

• Within stored procedures, START TRANSACTION is not synonymous with BEGIN.

• The PL/pgSQL statement does not support optional isolation level and access permission
keywords.

Supported PL/pgSQL statements 305

Amazon Redshift Database Developer Guide

Creating materialized views in Amazon Redshift

In a data warehouse environment, applications often must perform complex queries on large
tables. An example is SELECT statements that perform multi-table joins and aggregations on
tables that contain billions of rows. Processing these queries can be expensive, in terms of system
resources and the time it takes to compute the results.

Materialized views in Amazon Redshift provide a way to address these issues. A materialized view
contains a precomputed result set, based on an SQL query over one or more base tables. You
can issue SELECT statements to query a materialized view, in the same way that you can query
other tables or views in the database. Amazon Redshift returns the precomputed results from the
materialized view, without having to access the base tables at all. From the user standpoint, the
query results are returned much faster compared to when retrieving the same data from the base
tables.

Materialized views are especially useful for speeding up queries that are predictable and repeated.
Instead of performing resource-intensive queries against large tables (such as aggregates or
multiple joins), applications can query a materialized view and retrieve a precomputed result
set. For example, consider the scenario where a set of queries is used to populate dashboards,
such as Amazon QuickSight. This use case is ideal for a materialized view, because the queries are
predictable and repeated over and over again.

You can define a materialized view in terms of other materialized views. Use materialized views
on materialized views to expand the capability of materialized views. In this approach, an existing
materialized view plays the same role as a base table for the query to retrieve data.

This approach is especially useful for reusing precomputed joins for different aggregate or GROUP
BY options. For example, take a materialized view that joins customer information (containing
millions of rows) with item order detail information (containing billions of rows). This is an
expensive query to compute on demand repeatedly. You can use different GROUP BY options for
the materialized views created on top of this materialized view and join with other tables. Doing
this saves compute time otherwise used to run the expensive underlying join every time. The
STV_MV_DEPS table shows the dependencies of a materialized view on other materialized views.

When you create a materialized view, Amazon Redshift runs the user-specified SQL statement to
gather the data from the base table or tables and stores the result set. The following illustration
provides an overview of the materialized view tickets_mv that an SQL query defines by using
two base tables, events and sales.

306

Amazon Redshift Database Developer Guide

You can then use these materialized views in queries to speed them up. In addition, Amazon
Redshift can automatically rewrite these queries to use materialized views, even when the query
doesn't explicitly reference a materialized view. Automatic rewrite of queries is especially powerful
in enhancing performance when you can't change your queries to use materialized views.

To update the data in the materialized view, you can use the REFRESH MATERIALIZED VIEW
statement at any time to manually refresh materialized views. Amazon Redshift identifies
changes that have taken place in the base table or tables, and then applies those changes to the
materialized view. Because automatic rewriting of queries requires materialized views to be up to
date, as a materialized view owner, make sure to refresh materialized views whenever a base table
changes.

Amazon Redshift provides a few ways to keep materialized views up to date for automatic
rewriting. You can configure materialized views with the automatic refresh option to refresh
materialized views when base tables of materialized views are updated. This autorefresh operation

307

Amazon Redshift Database Developer Guide

runs at a time when cluster resources are available to minimize disruptions to other workloads.
Because the scheduling of autorefresh is workload-dependent, you can have more control over
when Amazon Redshift refreshes your materialized views. You can schedule a materialized view
refresh job by using Amazon Redshift scheduler API and console integration. For more information
about query scheduling, see Scheduling a query on the Amazon Redshift console.

Doing this is especially useful when there is a service level agreement (SLA) requirement for up-to-
date data from a materialized view. You can also manually refresh any materialized views that you
can autorefresh. For information on how to create materialized views, see CREATE MATERIALIZED
VIEW.

You can issue SELECT statements to query a materialized view. For information on how to query
materialized views, see Querying a materialized view. The result set eventually becomes stale when
data is inserted, updated, and deleted in the base tables. You can refresh the materialized view
at any time to update it with the latest changes from the base tables. For information on how to
refresh materialized views, see REFRESH MATERIALIZED VIEW.

For details about SQL commands used to create and manage materialized views, see the following
command topics:

• CREATE MATERIALIZED VIEW

• ALTER MATERIALIZED VIEW

• REFRESH MATERIALIZED VIEW

• DROP MATERIALIZED VIEW

For information about system tables and views to monitor materialized views, see the following
topics:

• STV_MV_INFO

• STL_MV_STATE

• SVL_MV_REFRESH_STATUS

• STV_MV_DEPS

Topics

• Querying a materialized view

• Automatic query rewriting to use materialized views

308

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-schedule-query.html

Amazon Redshift Database Developer Guide

• Refreshing a materialized view

• Automated materialized views

• Using a user-defined function (UDF) in a materialized view

• Streaming ingestion

Querying a materialized view

You can use a materialized view in any SQL query by referencing the materialized view name as the
data source, like a table or standard view.

When a query accesses a materialized view, it sees only the data that is stored in the materialized
view as of its most recent refresh. Thus, the query might not see all the latest changes from
corresponding base tables of the materialized view.

If other users want to query the materialized view, the owner of the materialized view grants the
SELECT permission to those users. The other users don't need to have the SELECT permission
on the underlying base tables. The owner of the materialized view can also revoke the SELECT
permission from other users to prevent them from querying the materialized view.

If the owner of the materialized view no longer has the SELECT permission on the underlying base
tables:

• The owner can no longer query the materialized view.

• Other users who have the SELECT permission on the materialized view can no longer query the
materialized view.

The following example queries the tickets_mv materialized view. For more information on the
SQL command used to create a materialized view, see CREATE MATERIALIZED VIEW.

SELECT sold
FROM tickets_mv
WHERE catgroup = 'Concerts';

Because the query results are precomputed, there's no need to access the underlying tables
(category, event, and sales). Amazon Redshift can return the results directly from
tickets_mv.

Querying a materialized view 309

Amazon Redshift Database Developer Guide

Automatic query rewriting to use materialized views

You can use automatic query rewriting of materialized views in Amazon Redshift to have Amazon
Redshift rewrite queries to use materialized views. Doing this accelerates query workloads even for
queries that don't explicitly reference a materialized view. When Amazon Redshift rewrites queries,
it only uses materialized views that are up to date.

Usage notes

To check if automatic rewriting of queries is used for a query, you can inspect the query plan or
STL_EXPLAIN. The following shows a SELECT statement and the EXPLAIN output of the original
query plan.

SELECT catgroup, SUM(qtysold) AS sold
FROM category c, event e, sales s
WHERE c.catid = e.catid AND e.eventid = s.eventid
GROUP BY 1;

EXPLAIN
 XN HashAggregate (cost=920021.24..920021.24 rows=1 width=35)
 -> XN Hash Join DS_BCAST_INNER (cost=440004.53..920021.22 rows=4 width=35)
 Hash Cond: ("outer".eventid = "inner".eventid)
 -> XN Seq Scan on sales s (cost=0.00..7.40 rows=740 width=6)
 -> XN Hash (cost=440004.52..440004.52 rows=1 width=37)
 -> XN Hash Join DS_BCAST_INNER (cost=0.01..440004.52 rows=1 width=37)
 Hash Cond: ("outer".catid = "inner".catid)
 -> XN Seq Scan on event e (cost=0.00..2.00 rows=200 width=6)
 -> XN Hash (cost=0.01..0.01 rows=1 width=35)
 -> XN Seq Scan on category c (cost=0.00..0.01 rows=1
 width=35)

The following shows the EXPLAIN output after a successful automatic rewriting. This output
includes a scan on the materialized view in the query plan that replaces parts of the original query
plan.

* EXPLAIN
 XN HashAggregate (cost=11.85..12.35 rows=200 width=41)
 -> XN Seq Scan on mv_tbl__tickets_mv__0 derived_table1 (cost=0.00..7.90
 rows=790 width=41)

Automatic query rewriting to use materialized views 310

Amazon Redshift Database Developer Guide

Only up-to-date (fresh) materialized views are considered for automatic rewriting of queries,
irrespective of the refresh strategy, such as auto, scheduled, or manual. Hence, the original query
returns up-to-date results. When a materialized view is explicitly referenced in queries, Amazon
Redshift accesses currently stored data in the materialized view. This data might not reflect the
latest changes from the base tables of the materialized view.

You can use automatic query rewriting of materialized views that are created on cluster version
1.0.20949 or later.

You can stop automatic query rewriting at the session level by using SET
mv_enable_aqmv_for_session to FALSE.

Limitations

Following are limitations for using automatic query rewriting of materialized views:

• Automatic query rewriting works with materialized views that don't reference or include any of
the following:

• Subqueries

• Left, right, or full outer joins

• Set operations

• Any aggregate functions, except SUM, COUNT, MIN, MAX, and AVG. (These are the only
aggregate functions that work with automatic query rewriting.)

• Any aggregate functions with DISTINCT

• Any window functions

• SELECT DISTINCT or HAVING clauses

• External tables

• Other materialized views

• Automatic query rewriting rewrites SELECT queries that refer to user-defined Amazon Redshift
tables. Amazon Redshift doesn't rewrite the following queries:

• CREATE TABLE AS statements

• SELECT INTO statements

• Queries on catalogs or system tables

• Queries with outer joins or a SELECT DISTINCT clause
Limitations 311

Amazon Redshift Database Developer Guide

• If a query isn't automatically rewritten, check whether you have the SELECT permission on the
specified materialized view and the mv_enable_aqmv_for_session option is set to TRUE.

You can also check if your materialized views are eligible for automatic rewriting of queries by
inspecting STV_MV_INFO. For more information, see STV_MV_INFO.

Refreshing a materialized view

When you create a materialized view, its contents reflect the state of the underlying database
table or tables at that time. The data in the materialized view remains unchanged, even when
applications change the data in the underlying tables. To update the data in the materialized
view, you can use the REFRESH MATERIALIZED VIEW statement at any time to manually refresh
materialized views. When you use this statement, Amazon Redshift identifies changes that have
taken place in the base table or tables and applies those changes to the materialized view.

Amazon Redshift has two strategies for refreshing a materialized view:

• In many cases, Amazon Redshift can perform an incremental refresh. In an incremental refresh,
Amazon Redshift quickly identifies the changes to the data in the base tables since the last
refresh and updates the data in the materialized view. Incremental refresh is supported on the
following SQL constructs used in the query when defining the materialized view:

• Constructs that contain the clauses SELECT, FROM, [INNER] JOIN, WHERE, GROUP BY, or
HAVING.

• Constructs that contain aggregations, such as SUM, MIN, MAX, AVG, and COUNT.

• Most built-in SQL functions, specifically the ones that are immutable, given that these have
the same input arguments and always produce the same output.

Incremental refresh is also supported for a materialized view that's based on a datashare table.

• If an incremental refresh isn't possible, then Amazon Redshift performs a full refresh. A full
refresh reruns the underlying SQL statement, replacing all of the data in the materialized view.

• Amazon Redshift automatically chooses the refresh method for a materialized view depending
on the SELECT query used to define the materialized view.

Refreshing a materialized view on a materialized view isn't a cascading process. In other words,
suppose that you have a materialized view A that depends on materialized view B. In this case,
when the REFRESH MATERIALIZED VIEW A is invoked, A is refreshed using the current version of

Refreshing a materialized view 312

Amazon Redshift Database Developer Guide

B, even when B is out-of-date. To bring A fully up to date, before refreshing A, first refresh B in a
separate transaction.

The following example shows how you can create a full refresh plan for a materialized view
programmatically. To refresh the materialized view v, first refresh materialized view u. To refresh
materialized view w, first refresh materialized view u and then materialized view v.

CREATE TABLE t(a INT);
CREATE MATERIALIZED VIEW u AS SELECT * FROM t;
CREATE MATERIALIZED VIEW v AS SELECT * FROM u;
CREATE MATERIALIZED VIEW w AS SELECT * FROM v;

WITH RECURSIVE recursive_deps (mv_tgt, lvl, mv_dep) AS
(SELECT trim(name) as mv_tgt, 0 as lvl, trim(ref_name) as mv_dep
 FROM stv_mv_deps
 UNION ALL
 SELECT R.mv_tgt, R.lvl+1 as lvl, trim(S.ref_name) as mv_dep
 FROM stv_mv_deps S, recursive_deps R
 WHERE R.mv_dep = S.name
)

SELECT mv_tgt, mv_dep from recursive_deps
ORDER BY mv_tgt, lvl DESC;

 mv_tgt | mv_dep
--------+--------
 v | u
 w | u
 w | v
(3 rows)

The following example shows an informative message when you run REFRESH MATERIALIZED
VIEW on a materialized view that depends on an out-of-date materialized view.

create table a(a int);

create materialized view b as select * from a;

create materialized view c as select * from b;

Refreshing a materialized view 313

Amazon Redshift Database Developer Guide

insert into a values (1);

refresh materialized view c;

INFO: Materialized view c is already up to date. However, it depends on another
 materialized view that is not up to date.

REFRESH MATERIALIZED VIEW b;
INFO: Materialized view b was incrementally updated successfully.

REFRESH MATERIALIZED VIEW c;
INFO: Materialized view c was incrementally updated successfully.

Amazon Redshift currently has the following limitations for incremental refresh for materialized
views.

Amazon Redshift doesn't support incremental refresh for materialized views that are defined with
a query using the following SQL elements:

• OUTER JOIN (RIGHT, LEFT, or FULL).

• The set operations UNION, INTERSECT, EXCEPT, and MINUS.

• The aggregate functions MEDIAN, PERCENTILE_CONT, LISTAGG, STDDEV_SAMP, STDDEV_POP,
APPROXIMATE COUNT, APPROXIMATE PERCENTILE, and bitwise aggregate functions.

Note

The COUNT, SUM, and AVG aggregate functions are supported.

• DISTINCT aggregate functions, such as DISTINCT COUNT, DISTINCT SUM, and so on.

• Window functions.

• A query that uses temporary tables for query optimization, such as optimizing common
subexpressions.

• Subqueries.

• External tables referencing the following formats in the query that defines the materialized view.

• Delta Lake

• Hudi

Refreshing a materialized view 314

Amazon Redshift Database Developer Guide

Incremental refresh is supported on the preview track for materialized views defined using
formats other than those listed above. For more information about setting up Preview clusters,
see Creating a preview cluster in the Amazon Redshift Management Guide. For information
about setting up Preview workgroups, see Creating a preview workgroup in the Amazon Redshift
Management Guide.

Autorefreshing a materialized view

Amazon Redshift can automatically refresh materialized views with up-to-date data from its base
tables when materialized views are created with or altered to have the autorefresh option. Amazon
Redshift autorefreshes materialized views as soon as possible after base tables changes.

To complete refresh of the most important materialized views with minimal impact to active
workloads in your cluster, Amazon Redshift considers multiple factors. These factors include
current system load, the resources needed for refresh, available cluster resources, and how often
the materialized views are used.

Amazon Redshift prioritizes your workloads over autorefresh and might stop autorefresh
to preserve the performance of user workload. This approach might delay refresh of some
materialized views. In some cases, you might need more deterministic refresh behavior for your
materialized views. If so, consider using manual refresh as described in REFRESH MATERIALIZED
VIEW or scheduled refresh using the Amazon Redshift scheduler API operations or the console.

You can set autorefresh for materialized views using CREATE MATERIALIZED VIEW. You can also use
the AUTO REFRESH clause to refresh materialized views automatically. For more information about
creating materialized views, see CREATE MATERIALIZED VIEW. You can turn on autorefresh for a
current materialized view by using ALTER MATERIALIZED VIEW.

Consider the following when you refresh materialized views:

• You can still refresh a materialized view explicitly using REFRESH MATERIALIZED VIEW command
even if you haven't enabled autorefresh for the materialized view.

• Amazon Redshift doesn't autorefresh materialized views defined on external tables.

• For refresh status, you can check SVL_MV_REFRESH_STATUS, which records queries that were
user-initiated or autorefreshed.

• To run REFRESH on recompute-only materialized views, make sure that you have the CREATE
permission on schemas. For more information, see GRANT.

Autorefreshing a materialized view 315

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#cluster-preview
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html

Amazon Redshift Database Developer Guide

Automated materialized views

Materialized views are a powerful tool for improving query performance in Amazon Redshift.
They do this by storing a precomputed result set. Similar queries don't have to re-run the same
logic each time, because they can retrieve records from the existing result set. Developers and
analysts create materialized views after analyzing their workloads to determine which queries
would benefit, and whether the maintenance cost of each materialized view is worthwhile. As
workloads grow or change, these materialized views must be reviewed to ensure they continue to
provide tangible performance benefits.

The Automated Materialized Views (AutoMV) feature in Redshift provides the same performance
benefits of user-created materialized views. Amazon Redshift continually monitors the workload
using machine learning and creates new materialized views when they are beneficial. AutoMV
balances the costs of creating and keeping materialized views up to date against expected benefits
to query latency. The system also monitors previously created AutoMVs and drops them when they
are no longer beneficial.

AutoMV behavior and capabilities are the same as user-created materialized views. They are
refreshed automatically and incrementally, using the same criteria and restrictions. Just like
materialized views created by users, Automatic query rewriting to use materialized views identifies
queries that can benefit from system-created AutoMVs. It automatically rewrites those queries to
use the AutoMVs, improving query performance. Developers don't need to revise queries to take
advantage of AutoMV.

Note

Automated materialized views are refreshed intermittently. Queries rewritten to use
AutoMV always return the latest results. When Redshift detects that data isn't up to date,
queries aren't rewritten to read from automated materialized views. Instead, queries select
the latest data from base tables.

Any workload with queries that are used repeatedly can benefit from AutoMV. Common use cases
include:

• Dashboards - Dashboards are widely used to provide quick views of key business indicators (KPIs),
events, trends, and other metrics. They often have a common layout with charts and tables,
but show different views for filtering, or for dimension-selection operations, like drill down.

Automated materialized views 316

Amazon Redshift Database Developer Guide

Dashboards often have a common set of queries used repeatedly with different parameters.
Dashboard queries can benefit greatly from automated materialized views.

• Reports - Reporting queries may be scheduled at various frequencies, based on business
requirements and the type of report. Additionally, they can be automated or on-demand. A
common characteristic of reporting queries is that they can be long running and resource-
intensive. With AutoMV, these queries don't need to be recomputed each time they run, which
reduces runtime for each query and resource utilization in Redshift.

To turn off automated materialized views, you update the auto_mv parameter group to false.
For more information, see Amazon Redshift parameter groups in the Amazon Redshift Cluster
Management Guide.

SQL scope and considerations for automated materialized views

• An automated materialized view can be initiated and created by a query or subquery, provided
it contains a GROUP BY clause or one of the following aggregate functions: SUM, COUNT, MIN,
MAX or AVG. But it cannot contain any of the following:

• Left, right, or full outer joins

• Aggregate functions other than SUM, COUNT, MIN, MAX, and AVG. (These particular functions
work with automatic query rewriting.)

• Any aggregate function that includes DISTINCT

• Any window functions

• SELECT DISTINCT or HAVING clauses

• Other materialized views

It isn't guaranteed that a query that meets the criteria will initiate the creation of an automated
materialized view. The system determines from which candidates to create a view, based on its
expected benefit to the workload and cost in resources to maintain, which includes the cost to
the system to refresh. Each resulting materialized view is usable by automatic query rewriting.

• Even though AutoMV might be initiated by a subquery or individual legs of set operators, the
resulting materialized view won't contain subqueries or set operators.

• To determine if AutoMV was used for queries, view the EXPLAIN plan and look for %_auto_mv_%
in the output. For more information, see EXPLAIN.

• Automated materialized views aren't supported on external tables, such as datashares and
federated tables.

SQL scope and considerations for automated materialized views 317

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html
https://docs.aws.amazon.com/redshift/latest/dg/r_EXPLAIN.html

Amazon Redshift Database Developer Guide

Automated materialized views limitations

Following are limitations for working with automated materialized views:

• Maximum number of AutoMVs - The limit of automated materialized views is 200 per database in
the cluster.

• Storage space and capacity - An important characteristic of AutoMV is that it is performed
using spare background cycles to help achieve that user workloads are not impacted. If the
cluster is busy or running out of storage space, AutoMV ceases its activity. Specifically, at
80% of total cluster capacity, no new automated materialized views are created. At 90%
of total capacity, they may be dropped to facilitate that user workloads continue without
performance degradation. For more information about determining cluster capacity, see
STV_NODE_STORAGE_CAPACITY.

Billing for automated materialized views

Amazon Redshift's automatic optimization capability creates and refreshes automated materialized
views. There is no charge for compute resources for this process. Storage of automated
materialized views is charged at the regular rate for storage. For more information, see Amazon
Redshift pricing.

Additional resources

The following blog post provides further explanation regarding automated materialized views. It
details how they’re created, maintained, and dropped. It also explains the underlying algorithms
that drive these decisions: Optimize your Amazon Redshift query performance with automated
materialized views.

This video begins with an explanation of materialized views and shows how they improve
performance and conserve resources. It then provides an in-depth explanation of automated
materialized views with a process-flow animation and a live demonstration.

Using a user-defined function (UDF) in a materialized view

You can use a scalar UDF in an Amazon Redshift materialized view. Define these either in python or
SQL and reference them in the materialized view definition.

Automated materialized views limitations 318

https://aws.amazon.com/redshift/pricing/
https://aws.amazon.com/redshift/pricing/
https://aws.amazon.com/blogs//big-data/optimize-your-amazon-redshift-query-performance-with-automated-materialized-views/
https://aws.amazon.com/blogs//big-data/optimize-your-amazon-redshift-query-performance-with-automated-materialized-views/

Amazon Redshift Database Developer Guide

Referencing a UDF in a materialized view

The following procedure shows how to use UDFs that perform simple arithmetic comparisons, in a
materialized-view definition.

1. Create a table to use in the materialized-view definition.

CREATE TABLE base_table (a int, b int);

2. Create a scalar user-defined function in python that returns a boolean value indicating
whether an integer is larger than a comparison integer.

CREATE OR REPLACE FUNCTION udf_python_bool(x1 int, x2 int) RETURNS bool IMMUTABLE
AS $$
 return x1 > x2
$$ LANGUAGE plpythonu;

Optionally, create a functionally similar UDF with SQL, which you can use to compare results
with the first.

CREATE OR REPLACE FUNCTION udf_sql_bool(int, int) RETURNS bool IMMUTABLE
AS $$
 select $1 > $2;
$$ LANGUAGE SQL;

3. Create a materialized view that selects from the table you created and references the UDF.

CREATE MATERIALIZED VIEW mv_python_udf AS SELECT udf_python_bool(a, b) AS a FROM
 base_table;

Optionally, you can create a materialized view that references the SQL UDF.

CREATE MATERIALIZED VIEW mv_sql_udf AS SELECT udf_sql_bool(a, b) AS a FROM
 base_table;

4. Add data to the table and refresh the materialized view.

INSERT INTO base_table VALUES (1,2), (1,3), (4,2);

Referencing a UDF in a materialized view 319

Amazon Redshift Database Developer Guide

REFRESH MATERIALIZED VIEW mv_python_udf;

Optionally, you can refresh the materialized view that references the SQL UDF.

REFRESH MATERIALIZED VIEW mv_sql_udf;

5. Query data from your materialized view.

SELECT * FROM mv_python_udf ORDER BY a;

The results of the query are the following:

a

false
false
true

This returns true for the last set of values because the value for column a (4) is greater than
the value for column b (2).

6. Optionally, you can query the materialized view that references the SQL UDF. The results for
the SQL function match the results from the Python version.

SELECT * FROM mv_sql_udf ORDER BY a;

The results of the query are the following:

a

false
false
true

This returns true for the last set of values to compare.

7. Use a DROP statement with CASCADE to drop the user-defined function and the materialized
view that references it.

Referencing a UDF in a materialized view 320

Amazon Redshift Database Developer Guide

DROP FUNCTION udf_python_bool(int, int) CASCADE;

DROP FUNCTION udf_sql_bool(int, int) CASCADE;

Streaming ingestion

Streaming ingestion provides low-latency, high-speed ingestion of stream data from Amazon
Kinesis Data Streams and Amazon Managed Streaming for Apache Kafka into an Amazon Redshift
provisioned or Amazon Redshift Serverless materialized view. It lowers the time it takes to access
data and it reduces storage cost. You can configure streaming ingestion for your Amazon Redshift
cluster or for Amazon Redshift Serverless and create a materialized view, using SQL statements, as
described in Creating materialized views in Amazon Redshift. After that, using materialized-view
refresh, you can ingest hundreds of megabytes of data per second. This results in fast access to
external data that is quickly refreshed.

Data flow

An Amazon Redshift provisioned cluster or an Amazon Redshift Serverless workgroup is the stream
consumer. A materialized view is the landing area for data read from the stream, which is processed
as it arrives. For instance, JSON values can be consumed and mapped to the materialized view's
data columns, using familiar SQL. When the materialized view is refreshed, Redshift consumes
data from allocated Kinesis data shards or Kafka partitions until the view reaches parity with
the SEQUENCE_NUMBER for the Kinesis stream or last Offset for the Kafka topic. Subsequent
materialized view refreshes read data from the last SEQUENCE_NUMBER of the previous refresh
until it reaches parity with the stream or topic data.

Streaming ingestion use cases

Use cases for Amazon Redshift streaming ingestion involve working with data that's generated
continually (streamed) and must be processed within a short period (latency) of its generation.
This is called near real-time analytics. Sources of data can vary, and include IoT devices, system
telemetry data, or clickstream data from a busy website or application.

Streaming ingestion 321

https://aws.amazon.com//kinesis/data-streams/
https://aws.amazon.com//kinesis/data-streams/
https://aws.amazon.com//msk/

Amazon Redshift Database Developer Guide

Streaming ingestion considerations

The following are important considerations and best practices for performance and billing as you
set up your streaming ingestion environment.

• Auto refresh usage and activation - Auto refresh queries for a materialized view or views are
treated as any other user workload. Auto refresh loads data from the stream as it arrives.

Auto refresh can be turned on explicitly for a materialized view created for streaming ingestion.
To do this, specify AUTO REFRESH in the materialized view definition. Manual refresh is the
default. To specify auto refresh for an existing materialized view for streaming ingestion,
you can run ALTER MATERIALIZED VIEW to turn it on. For more information, see CREATE
MATERIALIZED VIEW or ALTER MATERIALIZED VIEW.

• Streaming ingestion and Amazon Redshift Serverless - The same setup and configuration
instructions that apply to Amazon Redshift streaming ingestion on a provisioned cluster also
apply to streaming ingestion on Amazon Redshift Serverless. It's important to size Amazon
Redshift Serverless with the necessary level of RPUs to support streaming ingestion with auto
refresh and other workloads. For more information, see Billing for Amazon Redshift Serverless.

• Amazon Redshift nodes in a different availability zone than the Amazon MSK cluster - When
you configure streaming ingestion, Amazon Redshift attempts to connect to an Amazon MSK
cluster in the same Availability Zone, if rack awareness is enabled for Amazon MSK. If all of your
nodes are in different Availability Zones than your Amazon Redshift cluster, you can incur cross
Availability Zone data-transfer cost. To avoid this, keep at least one Amazon MSK broker cluster
node in the same AZ as your Redshift provisioned cluster or workgroup.

• Refresh start location - After creating a materialized view, its initial refresh starts from the
TRIM_HORIZON of a Kinesis stream, or from offset 0 of an Amazon MSK topic.

• Data formats - Supported data formats are limited to those that can be converted from
VARBYTE. For more information, see VARBYTE type and VARBYTE operators.

• Appending records to a table - You can run ALTER TABLE APPEND to append rows to a target
table from an existing source materialized view. This works only if the materialized view is
configured for streaming ingestion. For more information, see ALTER TABLE APPEND.

• Running TRUNCATE or DELETE - You can remove records from a materialized view that's used for
streaming ingestion, using a couple methods:

• TRUNCATE – This command deletes all of the rows from a materialized view that's configured
for streaming ingestion. It doesn't do a table scan. For more information, see TRUNCATE.

Streaming ingestion considerations 322

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-create-sql-command.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-create-sql-command.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_MATERIALIZED_VIEW.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-billing.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE_APPEND.html
https://docs.aws.amazon.com/redshift/latest/dg/r_TRUNCATE.html

Amazon Redshift Database Developer Guide

• DELETE – This command deletes all of the rows from a materialized view that's configured for
streaming ingestion. For more information, see DELETE.

Streaming ingestion best practices and recommendations

There are cases when you're presented with options in how you configure streaming ingestion. We
recommend the following best practices. These are based on our own tests and through helping
customers avoid issues leading to data loss.

• Extracting values from streamed data – If you use the JSON_EXTRACT_PATH_TEXT
function in your materialized view definition to shred incoming streaming JSON, it can
significantly impact performance and latency. To explain, for each column extracted using
JSON_EXTRACT_PATH_TEXT, the incoming JSON is re-parsed. After that, any data-type
conversion, filtering, and business logic occurs. This means, for example, that if you extract
10 columns from your JSON data, each JSON record is parsed 10 times, which includes type
conversions and additional logic. This results in higher ingestion latency. An alternative approach
we recommend is to use the JSON_PARSE function to convert JSON records to Redshift's
SUPER data type. After the streamed data lands in the materialized view, use PartiQL to extract
individual strings from SUPER's representation of the JSON data. For more information, see
Querying semistructured data.

It's also important to note that JSON_EXTRACT_PATH_TEXT has a 64KB data-size maximum.
Thus, if any JSON record is larger than 64KB, processing it with JSON_EXTRACT_PATH_TEXT
results in an error.

• Mapping an Amazon Kinesis Data Streams stream or Amazon MSK topic to an Amazon
Redshift streaming-ingestion materialized view – We don't recommend creating multiple
streaming-ingestion materialized views to ingest data from a single Amazon Kinesis Data
Streams stream or Amazon MSK topic. This is because each materialized view creates a consumer
for each shard in the Kinesis Data Streams stream or partition in the Kafka topic. This can result
in throttling or exceeding the throughput of the stream or topic. It also can result in higher
cost, since you're ingesting the same data multiple times. We recommend that you create one
streaming materialized view for each stream or topic.

If your use case requires that you land the data from one KDS stream or MSK topic into multiple
materialized views, consult the AWS Big Data blog, specifically Best practices to implement near-
real-time analytics using Amazon Redshift Streaming Ingestion with Amazon MSK, before you do
so.

Streaming ingestion considerations 323

https://docs.aws.amazon.com/redshift/latest/dg/r_DELETE.html
https://docs.aws.amazon.com/redshift/latest/dg/JSON_EXTRACT_PATH_TEXT.html
https://docs.aws.amazon.com/redshift/latest/dg/JSON_PARSE.html
https://docs.aws.amazon.com/redshift/latest/dg/query-super.html
https://aws.amazon.com/blogs/big-data/
https://aws.amazon.com/blogs/big-data/best-practices-to-implement-near-real-time-analytics-using-amazon-redshift-streaming-ingestion-with-amazon-msk/
https://aws.amazon.com/blogs/big-data/best-practices-to-implement-near-real-time-analytics-using-amazon-redshift-streaming-ingestion-with-amazon-msk/

Amazon Redshift Database Developer Guide

Using streaming ingestion compared with staging data in Amazon S3

There are several options for streaming data to Amazon Redshift or to Amazon Redshift Serverless.
Two well-known options are streaming ingestion, as described in this topic, or setting up a delivery
stream to Amazon S3 with Firehose. The following list describes each method:

1. Streaming ingestion from Kinesis Data Streams or Amazon Managed Streaming for Apache
Kafka to Amazon Redshift or Amazon Redshift Serverless involves configuring a materialized
view to receive the data.

2. Delivering data into Amazon Redshift using Kinesis Data Streams and streaming through
Firehose involves connecting the source stream to Amazon Data Firehose and waiting for
Firehose to stage the data in Amazon S3. This process makes use of various-sized batches
at varying-length buffer intervals. After streaming to Amazon S3, Firehose initiates a COPY
command to load the data.

With streaming ingestion, you bypass several steps that are required for the second process:

• You don't have to send data to an Amazon Data Firehose delivery stream, because with
streaming ingestion, data can be sent directly from Kinesis Data Streams to a materialized view
in a Redshift database.

• You don't have to land streamed data in Amazon S3, because streaming ingestion data goes
directly to the Redshift materialized view.

• You don't have to write and run COPY commands because the data in the materialized view is
refreshed directly from the stream. Loading data from Amazon S3 to Redshift isn't part of the
process.

Note that streaming ingestion is limited to streams from Amazon Kinesis Data Streams and
topics from Amazon MSK. For streaming from Kinesis Data Streams to targets other than Amazon
Redshift, it's likely that you need a Firehose delivery stream. For more information, see Sending
Data to an Amazon Data Firehose Delivery Stream.

Considerations

The following are considerations for streaming ingestion into Amazon Redshift.

Considerations 324

https://docs.aws.amazon.com/firehose/latest/dev/basic-write.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-write.html

Amazon Redshift Database Developer Guide

Feature or behavior Description

Kafka topic length limit It isn't possible to use a Kafka topic with a name longer than
128 characters (not including quotation marks). For more
information, see Names and identifiers.

Incremental refreshes and
JOINs on a materialized view

The materialized view must be incrementally maintainable. Full
recompute is not possible for Kinesis or Amazon MSK because
they don't preserve stream or topic history past 24 hours or
7 days, by default. You can set longer data retention periods
in Kinesis or Amazon MSK. However, this can result in more
maintenance and cost. Additionally, JOINs are not currently
supported on materialized views created on a Kinesis stream,
or on an Amazon MSK topic. After creating a materialized view
on your stream or topic, you can create another materialized
view in order to join your streaming materialized view to other
materialized views, tables, or views.

For more information, see REFRESH MATERIALIZED VIEW.

Record parsing Amazon Redshift streaming ingestion doesn't support parsing
records that have been aggregated by the Kinesis Producer
Library (KPL Key Concepts - Aggregation). The aggregated
records are ingested, but are stored as binary protocol buffer
data. (See Protocol buffers for more information.) Depending
 on how you push data to Kinesis, you may need to turn off this
feature.

Decompression VARBYTE does not currently support any decompression
methods. Because of this, records containing compressed data
can't be queried in Redshift. Decompress your data before
pushing it into the Kinesis stream or Amazon MSK topic.

Maximum record size The maximum size of any record field Amazon Redshift can
ingest from Kinesis or Amazon MSK is slightly less than 1MB.
The following points detail the behavior:

Considerations 325

https://docs.aws.amazon.com/redshift/latest/dg/r_names.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-refresh-sql-command.html
https://docs.aws.amazon.com/kinesis/latest/dev/kinesis-kpl-concepts.html#kinesis-kpl-concepts-aggretation
https://developers.google.com/protocol-buffers

Amazon Redshift Database Developer Guide

Feature or behavior Description

• Maximum VARBYTE length – For streaming ingestion,
the VARBYTE type supports data to a maximum length of
1,024,000 bytes. Kinesis limits payloads to 1 MB.

• Message limits – Default Amazon MSK configuration limits
messages to 1 MB. Additionally, if a message includes
headers, the amount of data is limited to 1,048,470 bytes.
With default settings, there are no problems with ingestion
. However, you can change the maximum message size for
Kafka, and therefore Amazon MSK, to a larger value. In this
case, it may be possible for the key/value field of a Kafka
record, or the header, to exceed the size limit. These records
can cause an error and are not ingested.

Note

Amazon Redshift supports a maximum size of
1,024,000 bytes for streaming ingestion from Kinesis
or Amazon MSK, even though Amazon Redshift
supports a maximum size of 16 MB for the VARBYTE
data type.

Error records In each case where a record can't be ingested to Redshift
because the size of the data exceeds the maximum size, that
record is skipped. Materialized view refresh still succeeds, in
this case, and a segment of each error record is written to the
SYS_STREAM_SCAN_ERRORS system table. Errors that result
from business logic, such as an error in a calculation or an error
resulting from a type conversion, are not skipped. Test the
logic carefully, before you add logic to your materialized view
definition, to avoid these.

Considerations 326

Amazon Redshift Database Developer Guide

Feature or behavior Description

Amazon MSK Multi-VPC
private connectivity

Amazon MSK multi-VPC private connectivity isn't currently
supported for Redshift streaming ingestion. Alternatively, you
can use VPC peering to connect VPCs or AWS Transit Gateway
to connect VPCs and on-premises networks through a central
hub. Either of these can enable Redshift to communicate with
an Amazon MSK cluster or with Amazon MSK Serverless in
another VPC.

Getting started with streaming ingestion from Amazon Kinesis Data
Streams

Setting up Amazon Redshift streaming ingestion involves creating an external schema that maps
to the streaming data source and creating a materialized view that references the external schema.
Amazon Redshift streaming ingestion supports Kinesis Data Streams as a source. As such, you must
have a Kinesis Data Streams source available before configuring streaming ingestion. If you don't
have a source, follow the instructions in the Kinesis documentation at Getting Started with Amazon
Kinesis Data Streams or create one on the console using the instructions at Creating a Stream via
the AWS Management Console.

Amazon Redshift streaming ingestion uses a materialized view, which is updated directly from
the stream when REFRESH is run. The materialized view maps to the stream data source. You can
perform filtering and aggregations on the stream data as part of the materialized-view definition.
Your streaming ingestion materialized view (the base materialized view) can reference only one
stream, but you can create additional materialized views that join with the base materialized view
and with other materialized views or tables.

Note

Streaming ingestion and Amazon Redshift Serverless - The configuration steps in this topic
apply both to provisioned Amazon Redshift clusters and to Amazon Redshift Serverless. For
more information, see Streaming ingestion considerations.

Assuming you have a Kinesis Data Streams stream available, the first step is to define a schema
in Amazon Redshift with CREATE EXTERNAL SCHEMA and to reference a Kinesis Data Streams

Getting started with streaming ingestion from Amazon Kinesis Data Streams 327

https://docs.aws.amazon.com/msk/latest/developerguide/aws-access-mult-vpc.html
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/streams/latest/dev/getting-started.html
https://docs.aws.amazon.com/streams/latest/dev/getting-started.html
https://docs.aws.amazon.com/streams/latest/dev/how-do-i-create-a-stream.html
https://docs.aws.amazon.com/streams/latest/dev/how-do-i-create-a-stream.html

Amazon Redshift Database Developer Guide

resource. Following that, to access data in the stream, define the STREAM in a materialized view.
You can store stream records in the semi-structured SUPER format, or define a schema that results
in data converted to Redshift data types. When you query the materialized view, the returned
records are a point-in-time view of the stream.

1. Create an IAM role with a trust policy that allows your Amazon Redshift cluster or Amazon
Redshift Serverless workgroup to assume the role. For information about how to configure the
trust policy for the IAM role, see Authorizing Amazon Redshift to access other AWS services on
your behalf. After it is created, the role should have the following IAM policy, which provides
permission for communication with the Amazon Kinesis data stream.

IAM policy for an unencrypted stream from Kinesis Data Streams

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ReadStream",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStreamSummary",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:DescribeStream"
],
 "Resource": "arn:aws:kinesis:*:0123456789:stream/*"
 },
 {
 "Sid": "ListStream",
 "Effect": "Allow",
 "Action": [
 "kinesis:ListStreams",
 "kinesis:ListShards"
],
 "Resource": "*"
 }
]
}

IAM policy for an encrypted stream from Kinesis Data Streams

Getting started with streaming ingestion from Amazon Kinesis Data Streams 328

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html

Amazon Redshift Database Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [{
 "Sid": "ReadStream",
 "Effect": "Allow",
 "Action": [
 "kinesis:DescribeStreamSummary",
 "kinesis:GetShardIterator",
 "kinesis:GetRecords",
 "kinesis:DescribeStream"
],
 "Resource": "arn:aws:kinesis:*:0123456789:stream/*"
 },
 {
 "Sid": "DecryptStream",
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt"
],
 "Resource": "arn:aws:kms:us-
east-1:0123456789:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 },
 {
 "Sid": "ListStream",
 "Effect": "Allow",
 "Action": [
 "kinesis:ListStreams",
 "kinesis:ListShards"
],
 "Resource": "*"
 }
]
}

2. Check your VPC and verify that your Amazon Redshift cluster or Amazon Redshift Serverless
has a route to get to the Kinesis Data Streams endpoints over the internet using a NAT
gateway or internet gateway. If you want traffic between Redshift and Kinesis Data Streams
to remain within the AWS network, consider using a Kinesis Interface VPC Endpoint. For more
information, see Using Amazon Kinesis Data Streams Kinesis Data Streams with Interface VPC
Endpoints.

3. In Amazon Redshift, create an external schema to map the data from Kinesis to a schema.

Getting started with streaming ingestion from Amazon Kinesis Data Streams 329

https://docs.aws.amazon.com/streams/latest/dev/vpc.html
https://docs.aws.amazon.com/streams/latest/dev/vpc.html

Amazon Redshift Database Developer Guide

CREATE EXTERNAL SCHEMA kds
FROM KINESIS
IAM_ROLE { default | 'iam-role-arn' };

Streaming ingestion for Kinesis Data Streams doesn't require an authentication type. It uses
the IAM role defined in the CREATE EXTERNAL SCHEMA statement for making Kinesis Data
Streams requests.

Optional: Use the REGION keyword to specify the region where the Amazon Kinesis Data
Streams or Amazon MSK stream resides.

CREATE EXTERNAL SCHEMA kds
FROM KINESIS
REGION 'us-west-2'
IAM_ROLE { default | 'iam-role-arn' };

In this sample, the region specifies the location of the source stream. The IAM_ROLE is a
sample.

4. Create a materialized view to consume the stream data. With a statement like the following,
if a record can't be parsed, it causes an error. Use a command like this if you don't want error
records to be skipped.

CREATE MATERIALIZED VIEW my_view AUTO REFRESH YES AS
SELECT *
FROM kds.my_stream_name;

The following example defines a materialized view for source data in JSON format. The view
validates that incoming data is properly formatted JSON. Kinesis stream names are case
sensitive and can contain both uppercase and lowercase letters. To ingest from streams with
uppercase names, you can set the configuration enable_case_sensitive_identifier
to true at the database level. For more information, see Names and identifiers and
enable_case_sensitive_identifier.

CREATE MATERIALIZED VIEW my_view AUTO REFRESH YES AS
SELECT approximate_arrival_timestamp,
partition_key,
shard_id,
sequence_number,

Getting started with streaming ingestion from Amazon Kinesis Data Streams 330

https://docs.aws.amazon.com/redshift/latest/dg/r_names.html
https://docs.aws.amazon.com/redshift/latest/dg/r_enable_case_sensitive_identifier.html

Amazon Redshift Database Developer Guide

refresh_time,
JSON_PARSE(kinesis_data) as kinesis_data
FROM kds.my_stream_name
WHERE CAN_JSON_PARSE(kinesis_data);

To turn on auto refresh, use AUTO REFRESH YES. The default behavior is manual refresh.
Note when you use CAN_JSON_PARSE, it's possible that records that can't be parsed are
skipped.

Metadata columns include the following:

Metadata column Data type Description

approximate_arrival_timesta
mp

timestamp without time
zone

The approximate time that
the record was inserted into
the Kinesis stream

partition_key varchar(256) The key used by Kinesis to
assign the record to a shard

shard_id char(20) The unique identifier of the
shard within the stream
from which the record was
retrieved

sequence_number varchar(128) The unique identifier of
the record from the Kinesis
shard

refresh_time timestamp without time
zone

The time the refresh started

kinesis_data varbyte The record from the Kinesis
stream

It's important to note if you have business logic in your materialized view definition that
business-logic errors can cause streaming ingestion to be blocked in some cases. This might
lead to you having to drop and re-create the materialized view. To avoid this, we recommend

Getting started with streaming ingestion from Amazon Kinesis Data Streams 331

Amazon Redshift Database Developer Guide

that you keep your logic as simple as possible and perform most of your business-logic checks
on the data after it's ingested.

5. Refresh the view, which invokes Redshift to read from the stream and load data into the
materialized view.

REFRESH MATERIALIZED VIEW my_view;

6. Query data in the materialized view.

select * from my_view;

Getting started with streaming ingestion from Amazon Managed
Streaming for Apache Kafka

The purpose of Amazon Redshift streaming ingestion is to simplify the process for directly
ingesting stream data from a streaming service into Amazon Redshift or Amazon Redshift
Serverless. This works with Amazon MSK and Amazon MSK Serverless, and with Kinesis. Amazon
Redshift streaming ingestion removes the need to stage a Kinesis Data Streams stream or an
Amazon MSK topic in Amazon S3 before ingesting the stream data into Redshift.

On a technical level, streaming ingestion, both from Amazon Kinesis Data Streams and Amazon
Managed Streaming for Apache Kafka, provides low-latency, high-speed ingestion of stream or
topic data into an Amazon Redshift materialized view. Following setup, using materialized view
refresh, you can take in large data volumes.

Set up Amazon Redshift streaming ingestion for Amazon MSK by performing the following steps:

1. Create an external schema that maps to the streaming data source.

2. Create a materialized view that references the external schema.

You must have an Amazon MSK source available, before configuring Amazon Redshift streaming
ingestion. If you do not have a source, follow the instructions at Getting Started Using Amazon
MSK.

Getting started with streaming ingestion from Amazon Managed Streaming for Apache Kafka 332

https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html
https://docs.aws.amazon.com/msk/latest/developerguide/getting-started.html

Amazon Redshift Database Developer Guide

Note

Streaming ingestion and Amazon Redshift Serverless - The configuration steps in this topic
apply both to provisioned Amazon Redshift clusters and to Amazon Redshift Serverless. For
more information, see Streaming ingestion considerations.

Setting up IAM and performing streaming ingestion from Kafka

Assuming you have an Amazon MSK cluster available, the first step is to define a schema in
Redshift with CREATE EXTERNAL SCHEMA and to reference the Kafka topic as the data source.
Following that, to access data in the topic, define the STREAM in a materialized view. You can store
records from your topic in the semi-structured SUPER format, or define a schema that results
in data converted to Amazon Redshift data types. When you query the materialized view, the
returned records are a point-in-time view of the topic.

1. Create an IAM role with a trust policy that allows your Amazon Redshift cluster or Amazon
Redshift Serverless to assume the role. For information about how to configure the trust
policy for the IAM role, see Authorizing Amazon Redshift to access other AWS services on
your behalf. After it's created, the role should have the following IAM policy, which provides
permission for communication with the Amazon MSK cluster. The policy you need depends on
the authentication method used on your cluster, if you use Amazon MSK. See Authentication
and Authorization for Apache Kafka APIs for authentication methods available in Amazon
MSK.

An IAM policy for Amazon MSK using unauthenticated access:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "kafka:GetBootstrapBrokers"
],
 "Resource": "*"
 }
]

Getting started with streaming ingestion from Amazon Managed Streaming for Apache Kafka 333

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/msk/latest/developerguide/kafka_apis_iam.html
https://docs.aws.amazon.com/msk/latest/developerguide/kafka_apis_iam.html

Amazon Redshift Database Developer Guide

}

An IAM policy for Amazon MSK when using IAM authentication:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "MSKIAMpolicy",
 "Effect": "Allow",
 "Action": [
 "kafka-cluster:ReadData",
 "kafka-cluster:DescribeTopic",
 "kafka-cluster:Connect"
],
 "Resource": [
 "arn:aws:kafka:*:0123456789:cluster/*/*",
 "arn:aws:kafka:*:0123456789:topic/*/*/*"
]
 },
 {
 "Sid": "MSKPolicy",
 "Effect": "Allow",
 "Action": [
 "kafka:GetBootstrapBrokers"
],
 "Resource": "*"
 }
]
}

2. Check your VPC and verify that your Amazon Redshift cluster or Amazon Redshift Serverless
has a route to get to your Amazon MSK cluster. The inbound security group rules for your
Amazon MSK cluster should allow your Amazon Redshift cluster's or your Amazon Redshift
Serverless workgroup's security group. The ports you specify depend on the authentication
method used for your cluster, when you use Amazon MSK. For more information, see Port
information and Access from within AWS but outside the VPC.

Note that client authentication with mTLS isn't supported for streaming ingestion. For more
information, see Limitations.

Getting started with streaming ingestion from Amazon Managed Streaming for Apache Kafka 334

https://docs.aws.amazon.com/msk/latest/developerguide/port-info.html
https://docs.aws.amazon.com/msk/latest/developerguide/port-info.html
https://docs.aws.amazon.com/msk/latest/developerguide/aws-access.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion.html#materialized-view-streaming-ingestion-limitations

Amazon Redshift Database Developer Guide

The following table shows complimentary configuration options to set for streaming ingestion
from Amazon MSK:

Amazon Redshift configura
tion

Amazon MSK configuration Port to open between
Redshift and Amazon MSK

AUTHENTICATION NONE TLS transport disabled 9092

AUTHENTICATION NONE TLS transport enabled 9094

AUTHENTICATION IAM IAM 9098/9198

Amazon Redshift authentication is set in the CREATE EXTERNAL SCHEMA statement.

In a case where the Amazon MSK cluster has Mutual Transport Layer Security (mTLS)
authentication enabled, configuring Amazon Redshift to use AUTHENTICATION NONE directs
it to use port 9094 for unauthenticated access. However, this will fail because the port is
being used by mTLS authentication. Because of this, we recommend that you switch to
AUTHENTICATION IAM when you use mTLS.

3. Enable enhanced VPC routing on your Amazon Redshift cluster or Amazon Redshift Serverless
workgroup. For more information, see Enabling enhanced VPC routing.

Note

In order to retrieve the Amazon MSK bootstrap brokers URL, Amazon Redshift makes
a GetBootstrapBrokers API call, using permissions provided by the attached IAM
role. Note that in order for this request to succeed when enhanced VPC routing is
enabled, the subnet for your Amazon Redshift provisioned cluster or Amazon Redshift
Serverless workgroup must have a NAT gateway or internet gateway. Your network
ACLs and security-group outbound rules for the aforementioned subnet must also
allow access to the Amazon MSK API service endpoints. For more information, see
Amazon Managed Streaming for Apache Kafka endpoints and quotas.

4. In Amazon Redshift, create an external schema to map to the Amazon MSK cluster.

CREATE EXTERNAL SCHEMA MySchema
FROM MSK

Getting started with streaming ingestion from Amazon Managed Streaming for Apache Kafka 335

https://docs.aws.amazon.com/redshift/latest/mgmt/enhanced-vpc-enabling-cluster.html
https://docs.aws.amazon.com/msk/1.0/apireference/clusters-clusterarn-bootstrap-brokers.html#GetBootstrapBrokers
https://docs.aws.amazon.com/general/latest/gr/msk.html

Amazon Redshift Database Developer Guide

IAM_ROLE { default | 'iam-role-arn' }
AUTHENTICATION { none | iam }
CLUSTER_ARN 'msk-cluster-arn';

In the FROM clause, Amazon MSK denotes that the schema maps data from Managed Kafka
Services.

Streaming ingestion for Amazon MSK provides the following authentication types, when you
create the external schema:

• none – Specifies that there is no authentication step.

• iam – Specifies IAM authentication. When you choose this, make sure that the IAM role has
permissions for IAM authentication.

Additional Amazon MSK authentication methods, such as TLS authentication or a username
and password, aren't supported for streaming ingestion.

CLUSTER_ARN specifies the Amazon MSK cluster that you’re streaming from.

5. Create a materialized view to consume the data from the topic. Use a SQL command like this
sample if you don't want error records to be skipped.

CREATE MATERIALIZED VIEW MyView AUTO REFRESH YES AS
SELECT *
FROM MySchema."mytopic";

The following example defines a materialized view with JSON source data. Note that the
following view validates that the data is valid JSON and utf8. Kafka topic names are case
sensitive and can contain both uppercase and lowercase letters. To ingest from topics with
uppercase names, you can set the configuration enable_case_sensitive_identifier
to true at the database level. For more information, see Names and identifiers and
enable_case_sensitive_identifier.

CREATE MATERIALIZED VIEW MyView AUTO REFRESH YES AS
SELECT kafka_partition,
 kafka_offset,
 kafka_timestamp_type,
 kafka_timestamp,
 kafka_key,
 JSON_PARSE(kafka_value) as kafka_data,

Getting started with streaming ingestion from Amazon Managed Streaming for Apache Kafka 336

https://docs.aws.amazon.com/redshift/latest/dg/r_names.html
https://docs.aws.amazon.com/redshift/latest/dg/r_enable_case_sensitive_identifier.html

Amazon Redshift Database Developer Guide

 kafka_headers,
 refresh_time
FROM MySchema."mytopic"
WHERE CAN_JSON_PARSE(kafka_value);

To turn on auto refresh, use AUTO REFRESH YES. The default behavior is manual refresh.

Metadata columns include the following:

Metadata column Data type Description

kafka_partition bigint Partition id of the record
from the Kafka topic

kafka_offset bigint Offset of the record in the
Kafka topic for a given
partition

kafka_timestamp_type char(1) Type of timestamp used in
the Kafka record:

• C – Record creation time
(CREATE_TIME) on the
client side

• L – Record append time
(LOG_APPEND_TIME) on
the Kafka server side

• U – Record creation
time is not available
(NO_TIMESTAMP_TYPE)

kafka_timestamp timestamp without time
zone

The timestamp value for the
record

kafka_key varbyte The key of the Kafka record

kafka_value varbyte The record received from
Kafka

Getting started with streaming ingestion from Amazon Managed Streaming for Apache Kafka 337

Amazon Redshift Database Developer Guide

Metadata column Data type Description

kafka_headers super The header of the record
received from Kafka

refresh_time timestamp without time
zone

The time the refresh started

It's important to note if you have business logic in your materialized view definition that
business-logic errors can cause a block in streaming ingestion in some cases. This might lead to
you having to drop and re-create the materialized view. To avoid this, we recommend that you
keep your business logic simple and run additional logic on the data after you ingest it.

6. Refresh the view, which invokes Amazon Redshift to read from the topic and load data into the
materialized view.

REFRESH MATERIALIZED VIEW MyView;

7. Query data in the materialized view.

select * from MyView;

The materialized view is updated directly from the topic when REFRESH is run. You create a
materialized view that maps to the Kafka topic data source. You can perform filtering and
aggregations on the data as part of the materialized view definition. Your streaming ingestion
materialized view (base materialized view) can reference only one Kafka topic, but you can
create additional materialized views that join with the base materialized view and with other
materialized views or tables.

For more information about limitations for streaming ingestion, see Considerations.

Electric vehicle station-data streaming ingestion tutorial, using Kinesis

This procedure demonstrates how to ingest data from a Kinesis stream named ev_station_data,
which contains consumption data from different EV charging stations, in JSON format. The schema
is well defined. The example shows how to store the data as raw JSON and also how to convert the
JSON data to Amazon Redshift data types as it's ingested.

Electric vehicle station-data streaming ingestion tutorial, using Kinesis 338

Amazon Redshift Database Developer Guide

Producer setup

1. Using Amazon Kinesis Data Streams, follow the steps to create a stream named
ev_station_data. Choose On-demand for the Capacity mode. For more information, see
Creating a Stream via the AWS Management Console.

2. The Amazon Kinesis Data Generator can help you generate test data for use with your stream.
Follow the steps detailed in the tool to get started, and use the following data template for
generating your data:

{

 "_id" : "{{random.uuid}}",
 "clusterID": "{{random.number(
 { "min":1,
 "max":50
 }
)}}",
 "connectionTime": "{{date.now("YYYY-MM-DD HH:mm:ss")}}",
 "kWhDelivered": "{{commerce.price}}",
 "stationID": "{{random.number(
 { "min":1,
 "max":467
 }
)}}",
 "spaceID": "{{random.word}}-{{random.number(
 { "min":1,
 "max":20
 }
)}}",

 "timezone": "America/Los_Angeles",
 "userID": "{{random.number(
 { "min":1000,
 "max":500000
 }
)}}"
}

Each JSON object in the stream data has the following properties:

{

Electric vehicle station-data streaming ingestion tutorial, using Kinesis 339

https://docs.aws.amazon.com/streams/latest/dev/how-do-i-create-a-stream.html
https://awslabs.github.io/amazon-kinesis-data-generator/web/producer.html?

Amazon Redshift Database Developer Guide

 "_id": "12084f2f-fc41-41fb-a218-8cc1ac6146eb",
 "clusterID": "49",
 "connectionTime": "2022-01-31 13:17:15",
 "kWhDelivered": "74.00",
 "stationID": "421",
 "spaceID": "technologies-2",
 "timezone": "America/Los_Angeles",
 "userID": "482329"
}

Amazon Redshift setup

These steps show you how to configure the materialized view to ingest data.

1. Create an external schema to map the data from Kinesis to a Redshift object.

CREATE EXTERNAL SCHEMA evdata FROM KINESIS
IAM_ROLE 'arn:aws:iam::0123456789:role/redshift-streaming-role';

For information about how to configure the IAM role, see Getting started with streaming
ingestion from Amazon Kinesis Data Streams.

2. Create a materialized view to consume the stream data. The following examples show both
methods of defining materialized views to ingest the JSON source data.

First, store stream records in semi-structured SUPER format. In this example, the JSON source
is stored in Redshift without converting to Redshift types.

CREATE MATERIALIZED VIEW ev_station_data AS
 SELECT approximate_arrival_timestamp,
 partition_key,
 shard_id,
 sequence_number,
 json_parse(kinesis_data) as payload
 FROM evdata."ev_station_data" WHERE can_json_parse(kinesis_data);

In contrast, in the following materialized view definition, the materialized view has a defined
schema in Redshift. The materialized view is distributed on the UUID value from the stream
and is sorted by the approximatearrivaltimestamp value.

Electric vehicle station-data streaming ingestion tutorial, using Kinesis 340

Amazon Redshift Database Developer Guide

CREATE MATERIALIZED VIEW ev_station_data_extract DISTKEY(6) sortkey(1) AUTO REFRESH
 YES AS
 SELECT refresh_time,
 approximate_arrival_timestamp,
 partition_key,
 shard_id,
 sequence_number,

 json_extract_path_text(from_varbyte(kinesis_data,'utf-8'),'_id',true)::character(36)
 as ID,

 json_extract_path_text(from_varbyte(kinesis_data,'utf-8'),'clusterID',true)::varchar(30)
 as clusterID,

 json_extract_path_text(from_varbyte(kinesis_data,'utf-8'),'connectionTime',true)::varchar(20)
 as connectionTime,

 json_extract_path_text(from_varbyte(kinesis_data,'utf-8'),'kWhDelivered',true)::DECIMAL(10,2)
 as kWhDelivered,

 json_extract_path_text(from_varbyte(kinesis_data,'utf-8'),'stationID',true)::DECIMAL(10,2)
 as stationID,

 json_extract_path_text(from_varbyte(kinesis_data,'utf-8'),'spaceID',true)::varchar(100)
 as spaceID,
 json_extract_path_text(from_varbyte(kinesis_data,
 'utf-8'),'timezone',true)::varchar(30)as timezone,

 json_extract_path_text(from_varbyte(kinesis_data,'utf-8'),'userID',true)::varchar(30)
 as userID
 FROM evdata."ev_station_data"
 WHERE LENGTH(kinesis_data) < 65355;

Query the stream

1. Query the refreshed materialized view to get usage statistics.

SELECT to_timestamp(connectionTime, 'YYYY-MM-DD HH24:MI:SS') as connectiontime
,SUM(kWhDelivered) AS Energy_Consumed
,count(distinct userID) AS #Users
from ev_station_data_extract

Electric vehicle station-data streaming ingestion tutorial, using Kinesis 341

Amazon Redshift Database Developer Guide

group by to_timestamp(connectionTime, 'YYYY-MM-DD HH24:MI:SS')
order by 1 desc;

2. View results.

connectiontime energy_consumed #users
2022-02-08 16:07:21+00 4139 10
2022-02-08 16:07:20+00 5571 10
2022-02-08 16:07:19+00 8697 20
2022-02-08 16:07:18+00 4408 10
2022-02-08 16:07:17+00 4257 10
2022-02-08 16:07:16+00 6861 10
2022-02-08 16:07:15+00 5643 10
2022-02-08 16:07:14+00 3677 10
2022-02-08 16:07:13+00 4673 10
2022-02-08 16:07:11+00 9689 20

Electric vehicle station-data streaming ingestion tutorial, using Kinesis 342

Amazon Redshift Database Developer Guide

Creating views in the AWS Glue Data Catalog (preview)

This is prerelease documentation views in Data Catalog for Amazon Redshift, which is
in preview release. The documentation and the feature are both subject to change. We
recommend that you use this feature only with test clusters, and not in production environme
nts. For preview terms and conditions, see Beta and Previews in AWS Service Terms.

You can create an Amazon Redshift cluster in Preview to test new features of Amazon Redshift.
You can't use those features in production or move your Preview cluster to a production cluster or
a cluster on another track. For preview terms and conditions, see Beta and Previews in AWS Service
Terms.

To create a cluster in Preview

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Provisioned clusters dashboard, and choose Clusters. The
clusters for your account in the current AWS Region are listed. A subset of properties of each
cluster is displayed in columns in the list.

3. A banner displays on the Clusters list page that introduces preview. Choose the button Create
preview cluster to open the create cluster page.

4. Enter properties for your cluster. Choose the Preview track that contains the features you
want to test. We recommend entering a name for the cluster that indicates that it is on a
preview track. Choose options for your cluster, including options labeled as -preview, for the
features you want to test. For general information about creating clusters, see Creating a
cluster in the Amazon Redshift Management Guide.

5. Choose Create cluster to create a cluster in preview.

Note

The preview_2023 track is the most recent preview track available. This track
supports creating clusters with RA3 node types only. Node type DC2 and any older
node type is not supported.

6. When your preview cluster is available, use your SQL client to load and query data.

343

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster

Amazon Redshift Database Developer Guide

The preview feature Data Catalog views is available only in the following Regions.

• US East (Ohio) (us-east-2)

• US East (N. Virginia) (us-east-1)

• US West (N. California) (us-west-1)

• Asia Pacific (Tokyo) (ap-northeast-1)

• Europe (Ireland) (eu-west-1)

• Europe (Stockholm) (eu-north-1)

You can also create a preview workgroup to test Data Catalog views. You can't use those features in
production or move your workgroup to another workgroup. For preview terms and conditions, see
Beta and Previews in AWS Service Terms. For instructions on how to create a preview workgroup,
see Creating a preview workgroup.

By creating views in the AWS Glue Data Catalog, you can create a single common view schema
and metadata object to use across engines such as Amazon Athena and Amazon EMR Spark. Doing
so lets you use the same views across your data lakes and data warehouses to fit your use cases.
Views in the Data Catalog are special in that they are categorized as definer views, where access
permissions are defined by the user who created the view instead of the user querying the view.
The following are some use cases and benefits of creating views in the Data Catalog:

• Create a view that restricts data access based on the permissions the user needs. For example,
you can use views in the Data Catalog to prevent employees who don’t work in the HR
department from seeing personally identifiable information (PII).

• Make sure that users can’t access incomplete records. By applying certain filters onto your view
in the Data Catalog, you make sure that data records inside a view in the Data Catalog are always
complete.

• Data Catalog views have an included security benefit of making sure that the query definition
used to create the view must complete to create the view. This security benefit means that views
in the Data Catalog are not susceptible to SQL commands from malicious players.

• Views in the Data Catalog support the same advantages as normal views, such as letting users
access a view without making the underlying table available to users.

To create a view in the Data Catalog, you must have a Spectrum external table, an object that’s
contained within a Lake Formation-managed datashare, or an Apache Iceberg table.

344

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/what_is_datashare.html#lf_datashare_overview
https://docs.aws.amazon.com/redshift/latest/dg/what_is_datashare.html#lf_datashare_overview

Amazon Redshift Database Developer Guide

Definitions of Data Catalog views are stored in the AWS Glue Data Catalog. Use AWS Lake
Formation to grant access through resource grants, column grants, or tag-based access controls.
For more information about granting and revoking access in Lake Formation, see Granting and
revoking permissions on Data Catalog resources.

Prerequisites

Before you can create a view in the Data Catalog, make sure that you have the following
prerequisites completed:

• Make sure that your IAM role has the following trust policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "glue.amazonaws.com",
 "lakeformation.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

• You also need the following pass role policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Stmt1",
 "Action": [
 "iam:PassRole"
],
 "Effect": "Allow",
 "Resource": "*",
 "Condition": {
 "StringEquals": {

Prerequisites 345

https://docs.aws.amazon.com/lake-formation/latest/dg/granting-catalog-permissions.html
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-catalog-permissions.html

Amazon Redshift Database Developer Guide

 "iam:PassedToService": [
 "glue.amazonaws.com",
 "lakeformation.amazonaws.com"
]
 }
 }
 }
]
}

• Finally, you also need the following permissions.

• Glue:GetDatabase

• Glue:GetDatabases

• Glue:CreateTable

• Glue:GetTable

• Glue:UpdateTable

• Glue:DeleteTable

• Glue:GetTables

• Glue:SearchTables

• Glue:BatchGetPartition

• Glue:GetPartitions

• Glue:GetPartition

• Glue:GetTableVersion

• Glue:GetTableVersions

End-to-end example

Start by creating an external schema based on your Data Catalog database.

CREATE EXTERNAL SCHEMA IF NOT EXISTS external_schema FROM DATA CATALOG DATABASE
 'external_data_catalog_db'
IAM_ROLE 'arn:aws:iam::123456789012:role/sample-role';

You can now create a Data Catalog view.

CREATE EXTERNAL PROTECTED VIEW external_schema.remote_view

End-to-end example 346

Amazon Redshift Database Developer Guide

AS SELECT * FROM external_schema.remote_table;

You can then start querying your view.

SELECT * FROM external_schema.remote_view;

For more information about the SQL commands related to views in the Data Catalog, see CREATE
EXTERNAL VIEW, ALTER EXTERNAL VIEW, and DROP EXTERNAL VIEW.

Considerations and limitations

The following are considerations and limitations that apply to views created in the Data Catalog.

• You can’t create a Data Catalog view that is based off of another view.

• You can only have 10 base tables in a Data Catalog view.

• The definer of the view must have full SELECT GRANTABLE permissions on the base tables.

• Views can only contain Lake Formation objects and built-ins. The following objects are not
permitted inside of a view.

• System tables

• User-defined functions (UDFs)

• Redshift tables, views, materialized views, and late binding views that aren’t in a Lake
Formation managed data share.

• Views can’t contain nested Redshift Spectrum tables.

• You can only query views by using two-dot notation. Querying Lake Formationviews from an
externally mounted database is not supported.

• The ARN of a Lake Formation table referenced in a Redshift view must be fewer than 127
characters long.

• AWS Glue representations of the base objects of a view must be in the same AWS account and
Region as the view.

Considerations 347

https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_VIEW.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_VIEW.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_EXTERNAL_VIEW.html
https://docs.aws.amazon.com/redshift/latest/dg/r_DROP_EXTERNAL_VIEW.html

Amazon Redshift Database Developer Guide

Querying spatial data in Amazon Redshift

Spatial data describes the position and shape of a geometry in a defined space (a spatial reference
system). Amazon Redshift supports spatial data with the GEOMETRY and GEOGRAPHY data types,
which contain spatial data and optionally the data's spatial reference system identifier (SRID).

Spatial data contains geometric data that you can use to represent geographic features. Examples
of this type of data include weather reports, map directions, tweets with geographic positions,
store locations, and airline routes. Spatial data plays an important role in business analytics,
reporting, and forecasting.

You can query spatial data with Amazon Redshift SQL functions. Spatial data contains geometric
values for an object.

The GEOMETRY data type operations work on the Cartesian plane. Although the spatial reference
system identifier (SRID) is stored inside the object, this SRID is merely an identifier of the
coordinate system and plays no role in the algorithms used to process the GEOMETRY objects.
Conversely, the operations on the GEOGRAPHY data type treat the coordinates inside objects as
spherical coordinates on a spheroid. This spheroid is defined by the SRID, which references a
geographic spatial reference system. By default, GEOGRAPHY data types are created with spatial
reference (SRID) 4326, referencing the World Geodetic System (WGS) 84. For more information
about SRIDs, see Spatial reference system in Wikipedia.

You can use the ST_Transform function to transform the coordinates from various spatial reference
systems. After the transformation of the coordinates is done, you can also use a simple cast
between the two, as long as the input GEOMETRY is encoded with the geographic SRID. This cast
simply copies coordinates without any further transformation. For example:

SELECT ST_AsEWKT(ST_GeomFromEWKT('SRID=4326;POINT(10 20)')::geography);

st_asewkt

 SRID=4326;POINT(10 20)

To better understand the difference between GEOMETRY and GEOGRAPHY data types, consider
calculating the distance between the Berlin airport (BER) and the San Francisco airport (SFO) using
the World Geodetic System (WGS) 84. Using the GEOGRAPHY data type, the result is in meters.

348

https://en.wikipedia.org/wiki/Spatial_reference_system

Amazon Redshift Database Developer Guide

When using GEOMETRY data type with SRID 4326, the result is in degrees, which can’t convert to
meters because the distance of one degree depends on where on the globe geometries are located.

Calculations on the GEOGRAPHY data type are mostly used for realistic round earth calculations
such as the precise area of a country without distortion. But they are far more expensive to
compute. Therefore, ST_Transform can transform your coordinates to an appropriate local
projected coordinate system and do the calculation on the GEOMETRY data type faster.

Using spatial data, you can run queries to do the following:

• Find the distance between two points.

• Check whether one area (polygon) contains another.

• Check whether one linestring intersects another linestring or polygon.

You can use the GEOMETRY data type to hold the values of spatial data. A GEOMETRY value in
Amazon Redshift can define two-dimensional (2D), three-dimensional (3DZ), two-dimensional with
a measure (3DM), and four-dimensional (4D) geometry primitive data types:

• A two-dimensional (2D) geometry is specified by two Cartesian coordinates (x, y) in a plane.

• A three-dimensional (3DZ) geometry is specified by three Cartesian coordinates (x, y, z) in space.

• A two-dimensional with measure (3DM) geometry is specified by three coordinates (x, y, m),
where the first two are Cartesian coordinates in a plane and the third is a measurement.

• A four-dimensional (4D) geometry is specified by four coordinates (x, y, z, m), where the first
three are Cartesian coordinates in a space and the fourth is a measurement.

For more information about geometry primitive data types, see Well-known text representation of
geometry in Wikipedia.

You can use the GEOGRAPHY data type to hold the values of spatial data. A GEOGRAPHY value in
Amazon Redshift can define two-dimensional (2D), three-dimensional (3DZ), two-dimensional with
a measure (3DM), and four-dimensional (4D) geometry primitive data types:

• A two-dimensional (2D) geometry is specified by longitude and latitude coordinates on a
spheroid.

• A three-dimensional (3DZ) geometry is specified by longitude, latitude, and altitude coordinates
on a spheroid.

349

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry

Amazon Redshift Database Developer Guide

• A two-dimensional with measure (3DM) geometry is specified by three coordinates (longitude,
latitude, measure), where the first two are angular coordinates on a sphere and the third is a
measurement.

• A four-dimensional (4D) geometry is specified by four coordinates (longitude, latitude,
altitude, measure), where the first three are longitude, latitude and altitude, and the fourth is a
measurement.

For more information about geographic coordinate systems, see Geographic coordinate system and
Spherical coordinate system in Wikipedia.

The GEOMETRY and GEOGRAPHY data types have the following subtypes:

• POINT

• LINESTRING

• POLYGON

• MULTIPOINT

• MULTILINESTRING

• MULTIPOLYGON

• GEOMETRYCOLLECTION

There are Amazon Redshift SQL functions that support the following representations of geometric
data:

• GeoJSON

• Well-known text (WKT)

• Extended well-known text (EWKT)

• Well-known binary (WKB) representation

• Extended well-known binary (EWKB)

You can cast between GEOMETRY and GEOGRAPHY data types.

The following SQL casts a linestring from a GEOMETRY to a GEOGRAPHY.

SELECT ST_AsEWKT(ST_GeomFromText('LINESTRING(110 40, 2 3, -10 80, -7 9)')::geography);

350

https://en.wikipedia.org/wiki/Geographic_coordinate_system
https://en.wikipedia.org/wiki/Spherical_coordinate_system

Amazon Redshift Database Developer Guide

 st_asewkt
--
 SRID=4326;LINESTRING(110 40,2 3,-10 80,-7 9)

The following SQL casts a linestring from a GEOGRAPHY to a GEOMETRY.

SELECT ST_AsEWKT(ST_GeogFromText('LINESTRING(110 40, 2 3, -10 80, -7 9)')::geometry);

 st_asewkt
--
 SRID=4326;LINESTRING(110 40,2 3,-10 80,-7 9)

Amazon Redshift provides many SQL functions to query spatial data. Except for the ST_IsValid
function, spatial functions that accept a GEOMETRY object as an argument expect this GEOMETRY
object to be a valid geometry. If the GEOMETRY or GEOGRAPHY object isn't valid, then the behavior
of the spatial function is undefined. For more information about validity, see Geometric validity.

For details about SQL functions to query spatial data, see Spatial functions.

For details about loading spatial data, see Loading a column of the GEOMETRY or GEOGRAPHY
data type.

Topics

• Tutorial: Using spatial SQL functions with Amazon Redshift

• Loading a shapefile into Amazon Redshift

• Terminology for Amazon Redshift spatial data

• Considerations when using spatial data with Amazon Redshift

Tutorial: Using spatial SQL functions with Amazon Redshift

This tutorial demonstrates how to use some of the spatial SQL functions with Amazon Redshift.

To do this, you query two tables using spatial SQL functions. The tutorial uses data from public
datasets that correlate location data of rental accommodations with postal codes in Berlin,
Germany.

Tutorial: Using spatial SQL functions 351

Amazon Redshift Database Developer Guide

Topics

• Prerequisites

• Step 1: Create tables and load test data

• Step 2: Query spatial data

• Step 3: Clean up your resources

Prerequisites

For this tutorial, you need the following resources:

• An existing Amazon Redshift cluster and database that you can access and update. In the
existing cluster, you create tables, load sample data, and run SQL queries to demonstrate spatial
functions. Your cluster should have at least two nodes. To learn how to create a cluster, follow
the steps in Amazon Redshift Getting Started Guide.

• To use the Amazon Redshift query editor, make sure that your cluster is in an AWS Region that
supports the query editor. For more information, see Querying a database using the query editor
in the Amazon Redshift Management Guide.

• AWS credentials for your Amazon Redshift cluster that allow it to load test data from Amazon
S3. For information about how to access other AWS services like Amazon S3, see Authorizing
Amazon Redshift to access AWS services.

• The AWS Identity and Access Management (IAM) role named mySpatialDemoRole, which has
the managed policy AmazonS3ReadOnlyAccess attached to read Amazon S3 data. To create a
role with permission to load data from an Amazon S3 bucket, see Authorizing COPY, UNLOAD,
and CREATE EXTERNAL SCHEMA operations using IAM roles in the Amazon Redshift Management
Guide.

• After you create the IAM role mySpatialDemoRole, that role needs an association with
your Amazon Redshift cluster. For more information on how to create that association, see
Authorizing COPY, UNLOAD, and CREATE EXTERNAL SCHEMA operations using IAM roles in the
Amazon Redshift Management Guide.

Step 1: Create tables and load test data

The source data used by this tutorial is in files named accommodations.csv and zipcodes.csv.

Prerequisites 352

https://docs.aws.amazon.com/redshift/latest/gsg/
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html

Amazon Redshift Database Developer Guide

The accommodations.csv file is open-source data from insideairbnb.com. The zipcodes.csv
file provides postal codes that are open-source data from the national statistics institute of Berlin-
Brandenburg in Germany (Amt für Statistik Berlin-Brandenburg). Both data sources are provided
under a Creative Commons license. The data is limited to the Berlin, Germany, region. These files
are located in an Amazon S3 public bucket to use with this tutorial.

You can optionally download the source data from the following Amazon S3 links:

• Source data for the accommodations table.

• Source data for the zipcode table.

Use the following procedure to create tables and load test data.

To create tables and load test data

1. Open the Amazon Redshift query editor. For more information on working with the query
editor, see Querying a database using the query editor in the Amazon Redshift Management
Guide.

2. Drop any tables used by this tutorial if they already exist in your database. For more
information, see Step 3: Clean up your resources.

3. Create the accommodations table to store each accommodation's geographical location
(longitude and latitude), the name of the listing, and other business data.

This tutorial explores room rentals in Berlin, Germany. The shape column stores geographic
points of the location of accommodations. The other columns contain information about the
rental.

To create the accommodations table, run the following SQL statement in the Amazon
Redshift query editor.

CREATE TABLE public.accommodations (
 id INTEGER PRIMARY KEY,
 shape GEOMETRY,
 name VARCHAR(100),
 host_name VARCHAR(100),
 neighbourhood_group VARCHAR(100),
 neighbourhood VARCHAR(100),
 room_type VARCHAR(100),
 price SMALLINT,

Step 1: Create tables and load test data 353

https://s3.amazonaws.com/redshift-downloads/spatial-data/accommodations.csv
https://s3.amazonaws.com/redshift-downloads/spatial-data/zipcode.csv
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor.html

Amazon Redshift Database Developer Guide

 minimum_nights SMALLINT,
 number_of_reviews SMALLINT,
 last_review DATE,
 reviews_per_month NUMERIC(8,2),
 calculated_host_listings_count SMALLINT,
 availability_365 SMALLINT
);

4. Create the zipcode table in the query editor to store Berlin postal codes.

A postal code is defined as a polygon in the wkb_geometry column. The rest of the columns
describe additional spatial metadata about the postal code.

To create the zipcode table, run the following SQL statement in the Amazon Redshift query
editor.

CREATE TABLE public.zipcode (
 ogc_field INTEGER PRIMARY KEY NOT NULL,
 wkb_geometry GEOMETRY,
 gml_id VARCHAR(256),
 spatial_name VARCHAR(256),
 spatial_alias VARCHAR(256),
 spatial_type VARCHAR(256)
);

5. Load the tables using sample data.

The sample data for this tutorial is provided in an Amazon S3 bucket that allows read access
to all authenticated AWS users. Make sure that you provide valid AWS credentials that permit
access to Amazon S3.

To load test data to your tables, run the following COPY commands. Replace account-
number with your own AWS account number. The segment of the credentials string that is
enclosed in single quotation marks can't contain any spaces or line breaks.

COPY public.accommodations
FROM 's3://redshift-downloads/spatial-data/accommodations.csv'
DELIMITER ';'
IGNOREHEADER 1 REGION 'us-east-1'
CREDENTIALS 'aws_iam_role=arn:aws:iam::account-number:role/mySpatialDemoRole';

Step 1: Create tables and load test data 354

Amazon Redshift Database Developer Guide

COPY public.zipcode
FROM 's3://redshift-downloads/spatial-data/zipcode.csv'
DELIMITER ';'
IGNOREHEADER 1 REGION 'us-east-1'
CREDENTIALS 'aws_iam_role=arn:aws:iam::account-number:role/mySpatialDemoRole';

6. Verify that each table loaded correctly by running the following commands.

select count(*) from accommodations;

select count(*) from zipcode;

The following results show the number of rows in each table of test data.

Table name Rows

accommodations 22,248

zipcode 190

Step 2: Query spatial data

After your tables are created and loaded, you can query them using SQL SELECT statements. The
following queries demonstrate some of the information that you can retrieve. You can write many
other queries that use spatial functions to satisfy your needs.

To query spatial data

1. Query to get the count of the total number of listings stored in the accommodations table, as
shown following. The spatial reference system is World Geodetic System (WGS) 84, which has
the unique spatial reference identifier 4326.

SELECT count(*) FROM public.accommodations WHERE ST_SRID(shape) = 4326;

 count

Step 2: Query spatial data 355

Amazon Redshift Database Developer Guide

 22248

2. Fetch the geometry objects in well-known text (WKT) format with some additional attributes.
Additionally, you can validate if this postal code data is also stored in World Geodetic System
(WGS) 84, which uses the spatial reference ID (SRID) 4326. Spatial data must be stored in the
same spatial reference system to be interoperable.

SELECT ogc_field, spatial_name, spatial_type, ST_SRID(wkb_geometry),
 ST_AsText(wkb_geometry)
FROM public.zipcode
ORDER BY spatial_name;

ogc_field spatial_name spatial_type st_srid st_astext

0 10115 Polygon 4326 POLYGON((...))
4 10117 Polygon 4326 POLYGON((...))
8 10119 Polygon 4326 POLYGON((...))
...
(190 rows returned)

3. Select the polygon of Berlin Mitte (10117), a borough of Berlin, in GeoJSON format, its
dimension, and the number of points in this polygon.

SELECT ogc_field, spatial_name, ST_AsGeoJSON(wkb_geometry),
 ST_Dimension(wkb_geometry), ST_NPoints(wkb_geometry)
FROM public.zipcode
WHERE spatial_name='10117';

ogc_field spatial_name spatial_type
 st_dimension st_npoint

4 10117 {"type":"Polygon", "coordinates":[[[...]]]} 2
 331

4. Run the following SQL command to view how many accommodations are within 500 meters of
the Brandenburg Gate.

SELECT count(*)
FROM public.accommodations

Step 2: Query spatial data 356

Amazon Redshift Database Developer Guide

WHERE ST_DistanceSphere(shape, ST_GeomFromText('POINT(13.377704 52.516431)', 4326))
 < 500;

count

 29

5. Get the rough location of the Brandenburg Gate from data stored in the accommodations that
are listed as nearby by running the following query.

This query requires a subselect. It leads to a different count because the requested location is
not the same as the previous query because it is closer to the accommodations.

WITH poi(loc) as (
 SELECT st_astext(shape) FROM accommodations WHERE name LIKE '%brandenburg gate%'
)
SELECT count(*)
FROM accommodations a, poi p
WHERE ST_DistanceSphere(a.shape, ST_GeomFromText(p.loc, 4326)) < 500;

count

 60

6. Run the following query to show the details of all accommodations around the Brandenburg
Gate, ordered by price in descending order.

SELECT name, price, ST_AsText(shape)
FROM public.accommodations
WHERE ST_DistanceSphere(shape, ST_GeomFromText('POINT(13.377704 52.516431)', 4326))
 < 500
ORDER BY price DESC;

name price st_astext

DUPLEX APARTMENT/PENTHOUSE in 5* LOCATION! 7583 300
 POINT(13.3826510209548 52.5159819722552)

Step 2: Query spatial data 357

Amazon Redshift Database Developer Guide

DUPLEX-PENTHOUSE IN FIRST LOCATION! 7582 300
 POINT(13.3799997083855 52.5135918444834)
...
(29 rows returned)

7. Run the following query to retrieve the most expensive accommodation with its postal code.

SELECT
 a.price, a.name, ST_AsText(a.shape),
 z.spatial_name, ST_AsText(z.wkb_geometry)
FROM accommodations a, zipcode z
WHERE price = 9000 AND ST_Within(a.shape, z.wkb_geometry);

price name st_astext
 spatial_name st_astext

9000 Ueber den Dächern Berlins Zentrum POINT(13.334436985013
 52.4979779501538) 10777 POLYGON((13.3318284987227
 52.4956021172799,...

8. Calculate the maximum, minimum, or median price of accommodations by using a subquery.

The following query lists the median price of accommodations by postal code.

SELECT
 a.price, a.name, ST_AsText(a.shape),
 z.spatial_name, ST_AsText(z.wkb_geometry)
FROM accommodations a, zipcode z
WHERE
 ST_Within(a.shape, z.wkb_geometry) AND
 price = (SELECT median(price) FROM accommodations)
ORDER BY a.price;

price name st_astext
 spatial_name st_astext

45 "Cozy room Berlin-Mitte" POINT(13.3864349535358 52.5292016386514)
 10115 POLYGON((13.3658598465795 52.535659581048,...
...

Step 2: Query spatial data 358

Amazon Redshift Database Developer Guide

(723 rows returned)

9. Run the following query to retrieve the number of accommodations listed in Berlin. To find the
hot spots, these are grouped by postal code and sorted by the amount of supply.

SELECT z.spatial_name as zip, count(*) as numAccommodations
FROM public.accommodations a, public.zipcode z
WHERE ST_Within(a.shape, z.wkb_geometry)
GROUP BY zip
ORDER BY numAccommodations DESC;

zip numaccommodations

10245 872
10247 832
10437 733
10115 664
...
(187 rows returned)

Step 3: Clean up your resources

Your cluster continues to accrue charges as long as it's running. When you have completed this
tutorial, you can delete your sample cluster.

If you want to keep the cluster but recover the storage used by the test data tables, run the
following commands to delete the tables.

drop table public.accommodations cascade;

drop table public.zipcode cascade;

Loading a shapefile into Amazon Redshift

You can use the COPY command to ingest Esri shapefiles stored in Amazon S3 into Amazon
Redshift tables. A shapefile stores the geometric location and attribute information of geographic

Step 3: Clean up your resources 359

Amazon Redshift Database Developer Guide

features in a vector format. The shapefile format can spatially describe spatial objects such as
points, lines, and polygons. For more information about a shapefile, see Shapefile in Wikipedia.

The COPY command supports the data format parameter SHAPEFILE. By default, the first column
of the shapefile is either a GEOMETRY or IDENTITY column. All subsequent columns follow the
order specified in the shapefile. However, the target table doesn't need to be in this exact layout
because you can use COPY column mapping to define the order. For information about the COPY
command shapefile support, see SHAPEFILE.

In some cases, the resulting geometry size might be greater than the maximum for storing a
geometry in Amazon Redshift. If so, you can use the COPY option SIMPLIFY or SIMPLIFY AUTO
to simplify the geometries during ingestion as follows:

• Specify SIMPLIFY tolerance to simplify all geometries during ingestion using the Ramer-
Douglas-Peucker algorithm and the given tolerance.

• Specify SIMPLIFY AUTO without tolerance to simplify only geometries that are larger than
the maximum size using the Ramer-Douglas-Peucker algorithm. This approach calculates the
minimum tolerance that is large enough to store the object within the maximum size limit.

• Specify SIMPLIFY AUTO max_tolerance to simplify only geometries that are larger than the
maximum size using the Ramer-Douglas-Peucker algorithm and the automatically calculated
tolerance. This approach makes sure that the tolerance doesn't exceed the maximum tolerance.

For information about the maximum size of a GEOMETRY data value, see Considerations when using
spatial data with Amazon Redshift.

In some cases, the tolerance is low enough that the record can't shrink below the maximum size of
a GEOMETRY data value. In these cases, you can use the MAXERROR option of the COPY command to
ignore all or up to a certain number of ingestion errors.

The COPY command also supports loading GZIP shapefiles. To do this, specify the COPY GZIP
parameter. With this option, all shapefile components must be independently compressed and
share the same compression suffix.

If a projection description file (.prj) exists with the shapefile, Redshift uses it to determine the
spatial reference system id (SRID). If the SRID is valid, the resulting geometry has this SRID
assigned. If the SRID value associated with the input geometry does not exist, the resulting
geometry has the SRID value zero. You can disable automatic detection of the spatial reference
system id at the session level by using SET read_srid_on_shapefile_ingestion to OFF.

Loading a shapefile 360

https://en.wikipedia.org/wiki/Shapefile

Amazon Redshift Database Developer Guide

Query the SYS_SPATIAL_SIMPLIFY or SVL_SPATIAL_SIMPLIFY system views to view which
records have been simplified, along with the calculated tolerance. When you specify SIMPLIFY
tolerance, this view contains a record for each COPY operation. Otherwise, it contains a
record for each simplified geometry. For more information, see SYS_SPATIAL_SIMPLIFY or
SVL_SPATIAL_SIMPLIFY.

For examples of loading a shapefile, see Loading a shapefile into Amazon Redshift.

Terminology for Amazon Redshift spatial data

The following terms are used to describe some Amazon Redshift spatial functions.

Bounding box

A bounding box of a geometry or geography is defined as the cross product (across dimensions)
of the extents of the coordinates of all points in the geometry or geography. For two-dimensional
geometries, the bounding box is a rectangle that completely includes all points in the geometry.
For example, a bounding box of the polygon POLYGON((0 0,1 0,0 2,0 0)) is the rectangle
that is defined by the points (0, 0) and (1, 2) as its bottom-left and top-right corners. Amazon
Redshift precomputes and stores a bounding box inside a geometry to speed up geometric
predicates and spatial joins. For example if the bounding boxes of two geometries don't intersect,
then these two geometries can't intersect, and they can't be in the result set of a spatial join using
the ST_Intersects predicate.

You can use spatial functions to add (AddBBox), drop (DropBBox), and determine support
(SupportsBBox) for a bounding box. Amazon Redshift supports the precomputaton of bounding
boxes for all geometry subtypes.

The following example shows how to update existing geometries in a table to store them with a
bounding box. If your cluster is at cluster version 1.0.26809 or later, then all new geometries are
created with a precomputed bounding box by default.

UPDATE my_table SET geom = AddBBox(geom) WHERE SupportsBBox(geom) = false;

After you update existing geometries, we recommend you run the VACUUM command on the
updated table. For more information, see VACUUM.

To set whether geometries are encoded with a bounding box during a session, see
default_geometry_encoding.

Terminology 361

Amazon Redshift Database Developer Guide

Geometric validity

Geometric algorithms used by Amazon Redshift assume that the input geometry is a valid
geometry. If an input to an algorithm is not valid, then the result is undefined. The following
section describes the geometric validity definitions used by Amazon Redshift for each geometry
subtype.

Point

A point is considered to be valid if one of the following conditions is true:

• The point is the empty point.

• All point coordinates are finite floating point numbers.

A point can be the empty point.

Linestring

A linestring is considered to be valid if any of the following conditions are true:

• The linestring is empty; that is, it contains no points.

• All points in a nonempty linestring have coordinates that are finite floating point numbers.

• The linestring, if not empty, must be one-dimensional; that is, it can't degenerate to a point.

A linestring can't contain empty points.

A linestring can have duplicate consecutive points.

A linestring can have self-intersections.

Polygon

A polygon is considered to be valid if any of the following conditions are true:

• The polygon is empty; that is, it contains no rings.

• If not empty, a polygon is valid if all of the following conditions are true:

• All rings of the polygon are valid. A ring is considered to be valid if all the following
conditions are true:

• All points of the ring have coordinates that are finite floating point numbers.

• The ring is closed; that is, its first point and its last point coincide.

• The ring doesn't have any self-intersections.

• The ring is two-dimensional.

Geometric validity 362

Amazon Redshift Database Developer Guide

• The rings of the polygon have consistent orientations. That is, if you traverse any ring, the
interior of the polygon is either to your right or to your left. This means that if a polygon's
exterior ring is oriented clockwise or counterclockwise, all the polygon's interior rings must
have the same counterclockwise or clockwise orientation.

• All interior rings must be within the exterior ring of the polygon.

• Interior rings can't be nested; that is, an interior ring can't be within another interior ring.

• Interior and exterior rings can only intersect at a finite number of points.

• The interior of the polygon must be simply connected.

A polygon can't contain empty points.

Multipoint

A multipoint is considered to be valid if any of the following conditions are true:

• The multipoint is empty; that is, it contains no points.

• A multipoint is not empty, and all points are valid according to the point validity definition.

A multipoint can contain one or more empty points.

A multipoint can have duplicate points.

Multiinestring

A multilinestring is considered to be valid if any of the following conditions are true:

• The multilinestring is empty; that is, it contains no linestrings.

• All linestrings in a nonempty multilinestring are valid according to the linestring validity
definition.

A nonempty multilinestring that consists of only empty linestrings is considered to be valid.

An empty linestring in a multilinestring doesn't affect its validity.

A multilinestring can have linestrings with duplicate consecutive points.

A multilinestring can have self-intersections.

A multilinestring can't contain empty points.

Multipolygon

A multipolygon is considered to be valid if any of the following conditions are true:

Geometric validity 363

Amazon Redshift Database Developer Guide

• The multipolygon doesn't contain any polygons (it is empty).

• The multipolygon is not empty and all of the following are true:

• All polygons in the multipolygon are valid.

• No two polygons in the multipolygon can intersect at an infinite number of points. In
particular, this implies that the interior of any two polygons can't intersect and that they
can only touch at a finite number of points.

An empty polygon in a multipolygon doesn't invalidate a multipolygon.

A multipolygon can't contain empty points.

Geometry collection

A geometry collection is considered to be valid if any of the following conditions are true:

• The geometry collection is empty; that is, it doesn't contain any geometries.

• All geometries in a nonempty geometry collection are valid.

This definition still applies, although in a recursive manner, for nested geometry collections.

A geometry collection can contain empty points and multipoints with empty points.

Geometric simplicity

Geometric algorithms used by Amazon Redshift assume that the input geometry is a valid
geometry. If an input to an algorithm is not valid, then the simplicity check is undefined. The
following section describes the geometric simplicity definitions used by Amazon Redshift for each
geometry subtype.

Point

A valid point is considered to be simple if any of the following conditions are true:

• A valid point is always considered to be simple.

• An empty point is considered to be simple.

Linestring

A valid linestring is considered to be simple if any of the following conditions are true:

• The linestring is empty.

• The linestring is not empty and all of the following conditions are true:

Geometric simplicity 364

Amazon Redshift Database Developer Guide

• It has no duplicate consecutive points.

• It has no self-intersections, except possibly for its first point and last point, which can
coincide. In other words, the linestring can't have self-intersections except at boundary
points.

Polygon

A valid polygon is considered to be simple if it doesn't contain any duplicate consecutive points.

Multipoint

A valid multipoint is considered to be simple if any of the following conditions are true:

• The multipoint is empty; that is, it contains no points.

• No two nonempty points of the multipoint coincide.

Multilinestring

A valid multilinestring is considered to be simple if any of the following conditions are true:

• The multilinestring is empty.

• The multilinestring is nonempty and all of the following conditions are true:

• All its linestrings are simple.

• Any two linestrings of the multilinestring don't intersect, except at points that are
boundary points of the two linestrings.

A nonempty multilinestring that consists of empty linestrings only is considered to be empty.

An empty linestring in a multilinestring doesn't affect its simplicity.

A closed linestring in a multilinestring can't intersect with any other linestring in the
multilinestring.

A multilinestring can't have linestrings with duplicate consecutive points.

Multipolygon

A valid multipolygon is considered to be simple if it doesn't contain any duplicate consecutive
points.

Geometry collection

A valid geometry collection is considered to be simple if any of the following conditions are
true:

Geometric simplicity 365

Amazon Redshift Database Developer Guide

• The geometry collection is empty; that is, it doesn't contain any geometries.

• All geometries in a nonempty geometry collection are simple.

This definition still applies, although in a recursive manner, for nested geometry collections.

H3

H3 is a hierarchical geospatial indexing grid system, which offers a way to index spatial coordinates
down to square meter resolution. Indexed data can be joined across disparate datasets and
aggregated at different levels of precision. H3 enables a range of algorithms and optimizations
based on the grid, including nearest neighbors, shortest path, gradient smoothing, and more.
H3 indexes refer to cells that can be either hexagons or pentagons. The space is subdivided
hierarchically given a resolution. H3 supports 16 resolutions from 0–15, inclusive. With 0 being the
coarsest and 15 being the finest.

Amazon Redshift provides the following H3 spatial functions:

• H3_FromLongLat

• H3_FromPoint

• H3_Polyfill

Considerations when using spatial data with Amazon Redshift

The following are considerations when using spatial data with Amazon Redshift:

• The maximum size of a GEOMETRY or GEOGRAPHY object is 1,048,447 bytes.

• Amazon Redshift Spectrum doesn't natively support spatial data. Therefore, you can't create or
alter an external table with a GEOMETRY or GEOGRAPHY column.

• Data types for Python user-defined functions (UDFs) don't support the GEOMETRY or GEOGRAPHY
data type.

• You can't use a GEOMETRY or GEOGRAPHY column as a sort key or a distribution key for an
Amazon Redshift table.

• You can't use GEOMETRY or GEOGRAPHY columns in SQL ORDER BY, GROUP BY, or DISTINCT
clauses.

• You can't use GEOMETRY or GEOGRAPHY columns in many SQL functions.

H3 366

Amazon Redshift Database Developer Guide

• You can't perform an UNLOAD operation on GEOMETRY or GEOGRAPHY columns into every
format. You can UNLOAD GEOMETRY or GEOGRAPHY columns to text or comma-separated value
(CSV) files. Doing this writes GEOMETRY or GEOGRAPHY data in hexadecimal EWKB format. If the
size of the EWKB data is more than 4 MB, then a warning occurs because the data can't later be
loaded into a table.

• The supported compression encoding of GEOMETRY or GEOGRAPHY data is RAW.

• When using JDBC or ODBC drivers, use customized type mappings. In this case, the client
application must have information on which parameters of a ResultSet object are GEOMETRY
or GEOGRAPHY objects. The ResultSetMetadata operation returns type VARCHAR.

• To copy geographic date from a SHAPEFILE, first ingest into a GEOMETRY column, and then cast
the objects to GEOGRAPHY objects. .

The following nonspatial functions can accept an input of type GEOMETRY or GEOGRAPHY, or
columns of type GEOMETRY or GEOGRAPHY:

• The aggregate function COUNT

• The conditional expressions COALESCE and NVL

• CASE expressions

• The default encoding for GEOMETRY and GEOGRAPHY is RAW. For more information, see
Compression encodings.

Considerations 367

Amazon Redshift Database Developer Guide

Querying data with federated queries in Amazon
Redshift

By using federated queries in Amazon Redshift, you can query and analyze data across operational
databases, data warehouses, and data lakes. With the Federated Query feature, you can integrate
queries from Amazon Redshift on live data in external databases with queries across your Amazon
Redshift and Amazon S3 environments. Federated queries can work with external databases in
Amazon RDS for PostgreSQL, Amazon Aurora PostgreSQL-Compatible Edition, Amazon RDS for
MySQL, and Amazon Aurora MySQL-Compatible Edition.

You can use federated queries to incorporate live data as part of your business intelligence (BI) and
reporting applications. For example, to make data ingestion to Amazon Redshift easier you can use
federated queries to do the following:

• Query operational databases directly.

• Apply transformations quickly.

• Load data into the target tables without the need for complex extract, transform, load (ETL)
pipelines.

To reduce data movement over the network and improve performance, Amazon Redshift
distributes part of the computation for federated queries directly into the remote operational
databases. Amazon Redshift also uses its parallel processing capacity to support running these
queries, as needed.

When running federated queries, Amazon Redshift first makes a client connection to the RDS or
Aurora DB cluster DB instance from the leader node to retrieve table metadata. From a compute
node, Amazon Redshift issues subqueries with a predicate pushed down and retrieves the result
rows. Amazon Redshift then distributes the result rows among the compute nodes for further
processing.

Details about queries sent to the Amazon Aurora PostgreSQL database or Amazon RDS for
PostgreSQL database are logged in the system view SVL_FEDERATED_QUERY.

Topics

• Getting started with using federated queries to PostgreSQL

• Getting started using federated queries to PostgreSQL with AWS CloudFormation

368

Amazon Redshift Database Developer Guide

• Getting started with using federated queries to MySQL

• Creating a secret and an IAM role to use federated queries

• Examples of using a federated query

• Data type differences between Amazon Redshift and supported PostgreSQL and MySQL
databases

• Considerations when accessing federated data with Amazon Redshift

Getting started with using federated queries to PostgreSQL

To create a federated query, you follow this general approach:

1. Set up connectivity from your Amazon Redshift cluster to your Amazon RDS or Aurora
PostgreSQL DB instance.

To do this, make sure that your RDS PostgreSQL or Aurora PostgreSQL DB instance can accept
connections from your Amazon Redshift cluster. We recommend that your Amazon Redshift
cluster and Amazon RDS or Aurora PostgreSQL instance be in the same virtual private cloud
(VPC) and subnet group. This way, you can add the security group for the Amazon Redshift
cluster to the inbound rules of the security group for your RDS or Aurora PostgreSQL DB
instance.

You can also set up VPC peering or other networking that allows Amazon Redshift to make
connections to your RDS or Aurora PostgreSQL instance. For more information about VPC
networking, see the following.

• What is VPC peering? in the Amazon VPC Peering Guide

• Working with a DB instance in a VPC in the Amazon RDS User Guide

Note

There are cases where you must enable enhanced VPC routing: For example, if your
Amazon Redshift cluster is in a different VPC than your RDS or Aurora PostgreSQL
instance, or if they're in the same VPC and your routes require it. Otherwise, you might
receive timeout errors when you run a federated query.

2. Set up secrets in AWS Secrets Manager for your RDS PostgreSQL and Aurora PostgreSQL
databases. Then reference the secrets in AWS Identity and Access Management (IAM) access

Getting started with using federated queries to PostgreSQL 369

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html

Amazon Redshift Database Developer Guide

policies and roles. For more information, see Creating a secret and an IAM role to use federated
queries.

Note

If your cluster uses enhanced VPC routing, you might need to configure an interface VPC
endpoint for AWS Secrets Manager. This is necessary when the VPC and subnet of your
Amazon Redshift cluster don’t have access to the public AWS Secrets Manager endpoint.
When you use a VPC interface endpoint, communication between the Amazon Redshift
cluster in your VPC and AWS Secrets Manager is routed privately from your VPC to the
endpoint interface. For more information, see Creating an interface endpoint in the
Amazon VPC User Guide.

3. Apply the IAM role that you previously created to the Amazon Redshift cluster. For more
information, see Creating a secret and an IAM role to use federated queries.

4. Connect to your RDS PostgreSQL and Aurora PostgreSQL databases with an external schema.
For more information, see CREATE EXTERNAL SCHEMA. For examples on how to use federated
query, see Examples of using a federated query.

5. Run your SQL queries referencing the external schema that references your RDS PostgreSQL and
Aurora PostgreSQL databases.

Getting started using federated queries to PostgreSQL with
AWS CloudFormation

You can use federated queries to query across operational databases. In this getting-started guide,
you can automate setup by using a sample AWS CloudFormation stack to enable a federated query
from an Amazon Redshift cluster to an Aurora PostgreSQL serverless database. You can get up and
running quickly without having to run SQL statements to provision your resources.

The stack creates an external schema, referencing your Aurora PostgreSQL instance, which includes
tables with sample data. You can query tables in the external schema from your Redshift cluster.

If instead you want to get started with federated queries by running SQL statements to set up an
external schema, without using CloudFormation, see Getting started with using federated queries
to PostgreSQL.

Getting started using federated queries to PostgreSQL with CloudFormation 370

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

Amazon Redshift Database Developer Guide

Before running the CloudFormation stack for federated queries, make sure that you have an
Amazon Aurora PostgreSQL-Compatible Edition serverless database with the Data API turned on.
You can turn on the Data API in the database properties. If you can't find the setting, double-check
that you are running a serverless instance of Aurora PostgreSQL. Also make sure that you have
a Amazon Redshift cluster that uses RA3 nodes. We recommend that both the Redshift cluster
and serverless Aurora PostgreSQL instance are in the same virtual private cloud (VPC) and subnet
group. This way, you can add the security group for the Amazon Redshift cluster to the inbound
rules of the security group for your Aurora PostgreSQL database instance.

For more information about getting started setting up an Amazon Redshift cluster, see
Amazon Redshift provisioned clusters. For more information about setting up resources with
CloudFormation, see What is AWS CloudFormation?. For more information about setting up an
Aurora DB cluster database, see Creating an Aurora DB cluster Serverless v1 DB cluster.

Launching a CloudFormation stack for Redshift federated queries

Use the following procedure to launch your CloudFormation stack for Amazon Redshift to enable
federated queries. Before doing so, make sure you have your Amazon Redshift cluster and your
serverless Aurora PostgreSQL instance set up.

To launch your CloudFormation stack for federated queries

1. Click Launch CFN stack here to launch the CloudFormation service in the AWS Management
Console.

If you are prompted, sign in.

The stack creation process starts, referencing a CloudFormation template file, which is stored
in Amazon S3. A CloudFormation template is a text file in JSON format that declares AWS
resources that make up a stack.

2. Choose Next to enter the stack details.

3. Under Parameters, for the cluster, enter the following:

• The Amazon Redshift cluster name, for example ra3-consumer-cluster

• A specific database name, for example dev

• The name of a database user, for example consumeruser

Launching a CloudFormation stack for Redshift federated queries 371

https://docs.aws.amazon.com/redshift/latest/gsg/new-user.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/aurora-serverless.create.html
https://console.aws.amazon.com/cloudformation/home?#/stacks/new?stackName=FederatedQuery&templateURL=https://s3.amazonaws.com/redshift-downloads/docs-downloads/FederatedQuery.yml

Amazon Redshift Database Developer Guide

Also enter the parameters for the Aurora DB cluster database, including the user, database
name, port, and endpoint. We recommend using a test cluster and test serverless database,
because the stack creates several database objects.

Choose Next.

The stack options appear.

4. Choose Next to accept the default settings.

5. Under Capabilities, choose I acknowledge that AWS CloudFormation might create IAM
resources.

6. Choose Create stack.

Choose Create stack. CloudFormation provisions the template resources, which takes about 10
minutes, and creates an external schema.

If an error occurs while the stack is created, do the following:

• View the CloudFormation Events tab for information that can help you resolve the error.

• Make sure that you entered the correct name, database name, and database user name for the
Redshift cluster. Also check the parameters for the Aurora PostgreSQL instance.

• Make sure that your cluster has RA3 nodes.

• Make sure that your database and Redshift cluster are in the same subnet and security group.

Querying data from the external schema

To use the following procedure, make sure that you have the required permissions for running
queries on the cluster and the database described.

To query an external database with federated query

1. Connect to the Redshift database that you entered when you created the stack, using a client
tool such as the Redshift query editor.

2. Query for the external schema created by the stack.

select * from svv_external_schemas;

Querying data from the external schema 372

Amazon Redshift Database Developer Guide

The SVV_EXTERNAL_SCHEMAS view returns information about available external schemas. In
this case, the external schema created by the stack is returned, myfederated_schema. You
might also have other external schemas returned, if you have any set up. The view also returns
the schema's associated database. The database is the Aurora DB cluster database that you
entered when you created the stack. The stack adds a table to the Aurora DB cluster database,
called category, and another table called sales.

3. Run SQL queries on tables in the external schema that references your Aurora PostgreSQL
database. The following example shows a query.

SELECT count(*) FROM myfederated_schema.category;

The category table returns several records. You can also return records from the sales table.

SELECT count(*) FROM myfederated_schema.sales;

For more examples, see Examples of using a federated query.

Getting started with using federated queries to MySQL

To create a federated query to MySQL databases, you follow this general approach:

1. Set up connectivity from your Amazon Redshift cluster to your Amazon RDS or Aurora MySQL
DB instance.

To do this, make sure that your RDS MySQL or Aurora MySQL DB instance can accept
connections from your Amazon Redshift cluster. We recommend that your Amazon Redshift
cluster and Amazon RDS or Aurora MySQL instance be in the same virtual private cloud (VPC)
and subnet group. This way, you can add the security group for the Amazon Redshift cluster to
the inbound rules of the security group for your RDS or Aurora MySQL DB instance.

You can also set up VPC peering or other networking that allows Amazon Redshift to make
connections to your RDS or Aurora MySQL instance. For more information about VPC
networking, see the following.

• What is VPC peering? in the Amazon VPC Peering Guide

• Working with a DB instance in a VPC in the Amazon RDS User Guide

Getting started with using federated queries to MySQL 373

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_VPC.WorkingWithRDSInstanceinaVPC.html

Amazon Redshift Database Developer Guide

Note

If your Amazon Redshift cluster is in a different VPC than your RDS or Aurora MySQL
instance, then enable enhanced VPC routing. Otherwise, you might receive timeout
errors when you run a federated query.

2. Set up secrets in AWS Secrets Manager for your RDS MySQL and Aurora MySQL databases. Then
reference the secrets in AWS Identity and Access Management (IAM) access policies and roles.
For more information, see Creating a secret and an IAM role to use federated queries.

Note

If your cluster uses enhanced VPC routing, you might need to configure an interface VPC
endpoint for AWS Secrets Manager. This is necessary when the VPC and subnet of your
Amazon Redshift cluster don't have access to the public AWS Secrets Manager endpoint.
When you use a VPC interface endpoint, communication between the Amazon Redshift
cluster in your VPC and AWS Secrets Manager is routed privately from your VPC to the
endpoint interface. For more information, see Creating an interface endpoint in the
Amazon VPC User Guide.

3. Apply the IAM role that you previously created to the Amazon Redshift cluster. For more
information, see Creating a secret and an IAM role to use federated queries.

4. Connect to your RDS MySQL and Aurora MySQL databases with an external schema. For more
information, see CREATE EXTERNAL SCHEMA. For examples on how to use federated queries, see
Example of using a federated query with MySQL.

5. Run your SQL queries referencing the external schema that references your RDS MySQL and
Aurora MySQL databases.

Creating a secret and an IAM role to use federated queries

The following steps show how to create a secret and an IAM role to use with federated queries.

Prerequisites

Make sure that you have the following prerequisites to create a secret and an IAM role to use with
federated queries:

Creating a secret and an IAM role 374

https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

Amazon Redshift Database Developer Guide

• An RDS PostgreSQL, Aurora PostgreSQL DB instance, RDS MySQL, or Aurora MySQL DB instance
with user name and password authentication.

• An Amazon Redshift cluster with a cluster maintenance version that supports federated queries.

To create a secret (user name and password) with AWS Secrets Manager

1. Sign in to the Secrets Manager console with the account that owns your RDS or Aurora DB
cluster instance.

2. Choose Store a new secret.

3. Choose the Credentials for RDS database tile. For User name and Password, enter values for
your instance. Confirm or choose a value for Encryption key. Then choose the RDS database
that your secret will access.

Note

We recommend using the default encryption key (DefaultEncryptionKey). If you
use a custom encryption key, the IAM role that is used to access the secret must be
added as a key user.

4. Enter a name for the secret, continue with the creation steps with the default choices, and
then choose Store.

5. View your secret and note the Secret ARN value that you created to identify the secret.

To create a security policy using the secret

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Create a policy with JSON similar to the following.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",

Prerequisites 375

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

Amazon Redshift Database Developer Guide

 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource": "arn:aws:secretsmanager:us-west-2:123456789012:secret:my-
rds-secret-VNenFy"
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 }
]
}

To retrieve the secret, you need list and read actions. We recommend that you restrict the
resource to the specific secret that you created. To do this, use the Amazon Resource Name
(ARN) of the secret to limit the resource. You can also specify the permissions and resources
using the visual editor on the IAM console.

3. Give the policy a name and finish creating it.

4. Navigate to IAM roles.

5. Create an IAM role for Redshift - Customizable.

6. Either attach the IAM policy you just created to an existing IAM role, or create a new IAM role
and attach the policy.

7. On the Trust relationships tab of your IAM role, confirm that the role contains the trust entity
redshift.amazonaws.com.

8. Note the Role ARN you created. This ARN has access to the secret.

To attach the IAM role to your Amazon Redshift cluster

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters. The clusters for your account in the current AWS
Region are listed.

Prerequisites 376

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

3. Choose the cluster name in the list to view more details about a cluster.

4. For Actions, choose Manage IAM roles. The Manage IAM roles page appears.

5. Add your IAM role to the cluster.

Examples of using a federated query

The following examples show how to run a federated query. Run the SQL using your SQL client
connected to the Amazon Redshift database.

Example of using a federated query with PostgreSQL

The following example shows how to set up a federated query that references an Amazon
Redshift database, an Aurora PostgreSQL database, and Amazon S3. This example illustrates how
federated queries work. To run it on your own environment, change it to fit your environment. For
prerequisites for doing this, see Getting started with using federated queries to PostgreSQL.

Create an external schema that references an Aurora PostgreSQL database.

CREATE EXTERNAL SCHEMA apg
FROM POSTGRES
DATABASE 'database-1' SCHEMA 'myschema'
URI 'endpoint to aurora hostname'
IAM_ROLE 'arn:aws:iam::123456789012:role/Redshift-SecretsManager-RO'
SECRET_ARN 'arn:aws:secretsmanager:us-west-2:123456789012:secret:federation/test/
dataplane-apg-creds-YbVKQw';

Create another external schema that references Amazon S3, which uses Amazon Redshift
Spectrum. Also, grant permission to use the schema to public.

CREATE EXTERNAL SCHEMA s3
FROM DATA CATALOG
DATABASE 'default' REGION 'us-west-2'
IAM_ROLE 'arn:aws:iam::123456789012:role/Redshift-S3';

GRANT USAGE ON SCHEMA s3 TO public;

Show the count of rows in the Amazon Redshift table.

SELECT count(*) FROM public.lineitem;

Examples of using a federated query 377

Amazon Redshift Database Developer Guide

 count

25075099

Show the count of rows in the Aurora PostgreSQL table.

SELECT count(*) FROM apg.lineitem;

count

11760

Show the count of rows in Amazon S3.

SELECT count(*) FROM s3.lineitem_1t_part;

 count

6144008876

Create a view of the tables from Amazon Redshift, Aurora PostgreSQL, and Amazon S3. This view is
used to run your federated query.

CREATE VIEW lineitem_all AS
 SELECT
 l_orderkey,l_partkey,l_suppkey,l_linenumber,l_quantity,l_extendedprice,l_discount,l_tax,l_returnflag,l_linestatus,
 l_shipdate::date,l_commitdate::date,l_receiptdate::date,
 l_shipinstruct ,l_shipmode,l_comment
 FROM s3.lineitem_1t_part
 UNION ALL SELECT * FROM public.lineitem
 UNION ALL SELECT * FROM apg.lineitem
 with no schema binding;

Show the count of rows in the view lineitem_all with a predicate to limit the results.

SELECT count(*) from lineitem_all WHERE l_quantity = 10;

 count

123373836

Example of using a federated query with PostgreSQL 378

Amazon Redshift Database Developer Guide

Find out how many sales of one item there were in January of each year.

SELECT extract(year from l_shipdate) as year,
 extract(month from l_shipdate) as month,
 count(*) as orders
FROM lineitem_all
WHERE extract(month from l_shipdate) = 1
AND l_quantity < 2
GROUP BY 1,2
ORDER BY 1,2;

 year | month | orders
------+-------+---------
 1992 | 1 | 196019
 1993 | 1 | 1582034
 1994 | 1 | 1583181
 1995 | 1 | 1583919
 1996 | 1 | 1583622
 1997 | 1 | 1586541
 1998 | 1 | 1583198
 2016 | 1 | 15542
 2017 | 1 | 15414
 2018 | 1 | 15527
 2019 | 1 | 151

Example of using a mixed-case name

To query a supported PostgreSQL remote database that has a mixed-case name of a database,
schema, table, or column, then set enable_case_sensitive_identifier to true. For more
information about this session parameter, see enable_case_sensitive_identifier.

SET enable_case_sensitive_identifier TO TRUE;

Typically, the database and schema names are in lowercase. The following example shows how you
can connect to a supported PostgreSQL remote database that has lowercase names for database
and schema and mixed-case names for table and column.

Create an external schema that references an Aurora PostgreSQL database that has a lowercase
database name (dblower) and lowercase schema name (schemalower).

CREATE EXTERNAL SCHEMA apg_lower

Example of using a mixed-case name 379

Amazon Redshift Database Developer Guide

FROM POSTGRES
DATABASE 'dblower' SCHEMA 'schemalower'
URI 'endpoint to aurora hostname'
IAM_ROLE 'arn:aws:iam::123456789012:role/Redshift-SecretsManager-RO'
SECRET_ARN 'arn:aws:secretsmanager:us-west-2:123456789012:secret:federation/test/
dataplane-apg-creds-YbVKQw';

In the session where the query runs, set enable_case_sensitive_identifier to true.

SET enable_case_sensitive_identifier TO TRUE;

Run a federated query to select all data from the PostgreSQL database. The table (MixedCaseTab)
and column (MixedCaseName) have mixed-case names. The result is one row (Harry).

select * from apg_lower."MixedCaseTab";

 MixedCaseName

 Harry

The following example shows how you can connect to a supported PostgreSQL remote database
that has a mixed-case name for the database, schema, table, and column.

Set enable_case_sensitive_identifier to true before you create the external schema. If
enable_case_sensitive_identifier is not set to true before creating the external schema,
then a database does not exist error occurs.

Create an external schema that references an Aurora PostgreSQL database that has a mixed-case
database (UpperDB) and schema (UpperSchema) name.

CREATE EXTERNAL SCHEMA apg_upper
FROM POSTGRES
DATABASE 'UpperDB' SCHEMA 'UpperSchema'
URI 'endpoint to aurora hostname'
IAM_ROLE 'arn:aws:iam::123456789012:role/Redshift-SecretsManager-RO'
SECRET_ARN 'arn:aws:secretsmanager:us-west-2:123456789012:secret:federation/test/
dataplane-apg-creds-YbVKQw';

Example of using a mixed-case name 380

Amazon Redshift Database Developer Guide

Run a federated query to select all data from the PostgreSQL database. The table (MixedCaseTab)
and column (MixedCaseName) have mixed-case names. The result is one row (Harry).

select * from apg_upper."MixedCaseTab";

 MixedCaseName

 Harry

Example of using a federated query with MySQL

The following example shows how to set up a federated query that references an Aurora
MySQL database. This example illustrates how federated queries works. To run it on your own
environment, change it to fit your environment. For prerequisites for doing this, see Getting started
with using federated queries to MySQL.

This example depends on the following prerequisites:

• A secret that was set up in Secrets Manager for the Aurora MySQL database. This secret is
referenced in IAM access policies and roles. For more information, see Creating a secret and an
IAM role to use federated queries.

• A security group that is set up linking Amazon Redshift and Aurora MySQL.

Create an external schema that references an Aurora MySQL database.

CREATE EXTERNAL SCHEMA amysql
FROM MYSQL
DATABASE 'functional'
URI 'endpoint to remote hostname'
IAM_ROLE 'arn:aws:iam::123456789012:role/Redshift-SecretsManager-RO'
SECRET_ARN 'arn:aws:secretsmanager:us-west-2:123456789012:secret:federation/test/
dataplane-apg-creds-YbVKQw';

Run an example SQL select of the Aurora MySQL table to display one row from the employees
table in Aurora MySQL.

SELECT level FROM amysql.employees LIMIT 1;

Example of using a federated query with MySQL 381

Amazon Redshift Database Developer Guide

 level

 8

Data type differences between Amazon Redshift and supported
PostgreSQL and MySQL databases

The following table shows the mapping of an Amazon Redshift data type to a corresponding
Amazon RDS PostgreSQL or Aurora PostgreSQL data type.

Amazon Redshift data type RDS PostgreSQL or Aurora
PostgreSQL data type

Description

SMALLINT SMALLINT Signed two-byte
integer

INTEGER INTEGER Signed four-byte
integer

BIGINT BIGINT Signed eight-byte
integer

DECIMAL DECIMAL Exact numeric of
selectable precision

REAL REAL Single precision
floating-point
number

DOUBLE PRECISION DOUBLE PRECISION Double precision
floating-point
number

BOOLEAN BOOLEAN Logical Boolean
(true/false)

CHAR CHAR Fixed-length
character string

Data type differences 382

Amazon Redshift Database Developer Guide

Amazon Redshift data type RDS PostgreSQL or Aurora
PostgreSQL data type

Description

VARCHAR VARCHAR Variable-length
character string with
a user-defined limit

DATE DATE Calendar date (year,
month, day)

TIMESTAMP TIMESTAMP Date and time
(without time zone)

TIMESTAMPTZ TIMESTAMPTZ Date and time (with
time zone)

GEOMETRY PostGIS GEOMETRY Spatial data

The following RDS PostgreSQL and Aurora PostgreSQL data types are converted to VARCHAR(64K)
in Amazon Redshift:

• JSON, JSONB

• Arrays

• BIT, BIT VARYING

• BYTEA

• Composite types

• Date and time types INTERVAL, TIME, TIME WITH TIMEZONE

• Enumerated types

• Monetary types

• Network address types

• Numeric types SERIAL, BIGSERIAL, SMALLSERIAL, and MONEY

• Object identifier types

• pg_lsn type

• Pseudotypes

• Range types

Data type differences 383

Amazon Redshift Database Developer Guide

• Text search types

• TXID_SNAPSHOT

• UUID

• XML type

The following table shows the mapping of an Amazon Redshift data type to a corresponding
Amazon RDS MySQL or Aurora MySQL data type.

Amazon Redshift data type RDS MySQL or Aurora
MySQL data type

Description

BOOLEAN TINYINT(1) Logical Boolean (true
or false)

SMALLINT TINYINT(UNSIGNED) Signed two-byte
integer

SMALLINT SMALLINT Signed two-byte
integer

INTEGER SMALLINT UNSIGNED Signed four-byte
integer

INTEGER MEDIUMINT (UNSIGNED) Signed four-byte
integer

INTEGER INT Signed four-byte
integer

BIGINT INT UNSIGNED Signed eight-byte
integer

BIGINT BIGINT Signed eight-byte
integer

DECIMAL BIGINT UNSIGNED Exact numeric of
selectable precision

Data type differences 384

Amazon Redshift Database Developer Guide

Amazon Redshift data type RDS MySQL or Aurora
MySQL data type

Description

DECIMAL DECIMAL(M,D) Exact numeric of
selectable precision

REAL FLOAT Single precision
floating-point
number

DOUBLE PRECISION DOUBLE Double precision
floating-point
number

CHAR CHAR Fixed-length
character string

VARCHAR VARCHAR Variable-length
character string with
a user-defined limit

DATE DATE Calendar date (year,
month, day)

TIME TIME Time (without time
zone)

TIMESTAMP TIMESTAMP Date and time
(without time zone)

TIMESTAMP DATETIME Time (without time
zone)

VARCHAR(4) YEAR Variable length
character represent
ing year

An error results when TIME data is out of range (00:00:00 – 24:00:00).

Data type differences 385

Amazon Redshift Database Developer Guide

The following RDS MySQL and Aurora MySQL data types are converted to VARCHAR(64K) in
Amazon Redshift:

• BIT

• BINARY

• VARBINARY

• TINYBLOB, BLOB, MEDIUMBLOB, LONGBLOB

• TINYTEXT, TEXT, MEDIUMTEXT, LONGTEXT

• ENUM

• SET

• SPATIAL

Considerations when accessing federated data with Amazon
Redshift

Some Amazon Redshift features don't support access to federated data. You can find related
limitations and considerations following.

The following are limitations and considerations when using federated queries with Amazon
Redshift:

• Federated queries support read access to external data sources. You can't write or create
database objects in the external data source.

• In some cases, you might access an Amazon RDS or Aurora DB cluster database in a different
AWS Region than Amazon Redshift. In these cases, you typically incur network latency and
billing charges for transferring data across AWS Regions. We recommend using an Aurora global
database with a local endpoint in the same AWS Region as your Amazon Redshift cluster. Aurora
global databases use dedicated infrastructure for storage-based replication across any two AWS
Regions with typical latency of less than 1 second.

• Consider the cost of accessing Amazon RDS or Aurora DB cluster. For example, when using this
feature to access Aurora DB cluster, Aurora DB cluster charges are based on IOPS.

• Federated queries don't enable access to Amazon Redshift from RDS or Aurora DB cluster.

• Federated queries are only available in AWS Regions where both Amazon Redshift and Amazon
RDS or Aurora DB cluster are available.

Considerations 386

Amazon Redshift Database Developer Guide

• Federated queries currently don't support ALTER SCHEMA. To change a schema, use DROP and
then CREATE EXTERNAL SCHEMA.

• Federated queries don't work with concurrency scaling.

• Federated queries currently don't support access through a PostgreSQL foreign data wrapper.

• Federated queries to RDS MySQL or Aurora MySQL support transaction isolation at the READ
COMMITTED level.

• If not specified, Amazon Redshift connects to RDS for MySQL or Aurora MySQL on port 3306.
Confirm the MySQL port number before creating an external schema for MySQL.

• If not specified, Amazon Redshift connects to RDS PostgreSQL or Aurora PostgreSQL on port
5432. Confirm the PostgreSQL port number before creating an external schema for PostgreSQL.

• When fetching TIMESTAMP and DATE data types from MySQL, zero values are treated as NULL.

• If an Aurora DB cluster database reader endpoint is used, an "invalid snapshot" error can occur.
This can be avoided by one of the following methods:

• Use a specific Aurora DB cluster instance endpoint (instead of using the Aurora DB cluster
cluster endpoint). This method uses REPEATABLE READ transaction isolation for the results
from the PostgreSQL database.

• Use an Aurora DB cluster reader endpoint and set pg_federation_repeatable_read
to false for the session. This method uses READ COMMITTED transaction isolation for the
results from the PostgreSQL database. For more information about Aurora DB cluster reader
endpoints, see Types of Aurora DB cluster endpoints in the Amazon Aurora User Guide. For
information about pg_federation_repeatable_read, see pg_federation_repeatable_read.

The following are considerations for transactions when working with federated queries to
PostgreSQL databases:

• If a query consists of federated tables, the leader node starts a READ ONLY REPEATABLE READ
transaction on the remote database. This transaction remains for the duration of the Amazon
Redshift transaction.

• The leader node creates a snapshot of the remote database by calling pg_export_snapshot
and makes a read lock on the affected tables.

• A compute node starts a transaction and uses the snapshot created at the leader node to issue
queries to the remote database.

Considerations 387

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html#Aurora.Overview.Endpoints.Types

Amazon Redshift Database Developer Guide

Supported versions of federated databases

An Amazon Redshift external schema can reference a database in an external RDS PostgreSQL or
Aurora PostgreSQL. When it does, these limitations apply:

• When creating an external schema referencing Aurora DB cluster, the Aurora PostgreSQL
database must be at version 9.6, or later.

• When creating an external schema referencing Amazon RDS, the Amazon RDS PostgreSQL
database must be at version 9.6, or later.

An Amazon Redshift external schema can reference a database in an external RDS MySQL or Aurora
MySQL. When it does, these limitations apply:

• When creating an external schema referencing Aurora DB cluster, the Aurora MySQL database
must be at version 5.6 or later.

• When creating an external schema referencing Amazon RDS, the RDS MySQL database must be
at version 5.6 or later.

Supported versions of federated databases 388

Amazon Redshift Database Developer Guide

Querying external data using Amazon Redshift Spectrum

Using Amazon Redshift Spectrum, you can efficiently query and retrieve structured and
semistructured data from files in Amazon S3 without having to load the data into Amazon Redshift
tables. Redshift Spectrum queries employ massive parallelism to run very fast against large
datasets. Much of the processing occurs in the Redshift Spectrum layer, and most of the data
remains in Amazon S3. Multiple clusters can concurrently query the same dataset in Amazon S3
without the need to make copies of the data for each cluster.

Topics

• Amazon Redshift Spectrum overview

• Getting started with Amazon Redshift Spectrum

• IAM policies for Amazon Redshift Spectrum

• Using Redshift Spectrum with AWS Lake Formation

• Creating data files for queries in Amazon Redshift Spectrum

• Creating external schemas for Amazon Redshift Spectrum

• Creating external tables for Redshift Spectrum

• Using Apache Iceberg tables with Amazon Redshift

• Improving Amazon Redshift Spectrum query performance

• Setting data handling options

• Example: Performing correlated subqueries in Redshift Spectrum

• Monitoring metrics in Amazon Redshift Spectrum

• Troubleshooting queries in Amazon Redshift Spectrum

• Tutorial: Querying nested data with Amazon Redshift Spectrum

Amazon Redshift Spectrum overview

Amazon Redshift Spectrum resides on dedicated Amazon Redshift servers that are independent
of your cluster. Amazon Redshift pushes many compute-intensive tasks, such as predicate filtering
and aggregation, down to the Redshift Spectrum layer. Thus, Redshift Spectrum queries use
much less of your cluster's processing capacity than other queries. Redshift Spectrum also scales
intelligently. Based on the demands of your queries, Redshift Spectrum can potentially use
thousands of instances to take advantage of massively parallel processing.

Amazon Redshift Spectrum overview 389

Amazon Redshift Database Developer Guide

You create Redshift Spectrum tables by defining the structure for your files and registering them
as tables in an external data catalog. The external data catalog can be AWS Glue, the data catalog
that comes with Amazon Athena, or your own Apache Hive metastore. You can create and manage
external tables either from Amazon Redshift using data definition language (DDL) commands
or using any other tool that connects to the external data catalog. Changes to the external data
catalog are immediately available to any of your Amazon Redshift clusters.

Optionally, you can partition the external tables on one or more columns. Defining partitions as
part of the external table can improve performance. The improvement occurs because the Amazon
Redshift query optimizer eliminates partitions that don't contain data for the query.

After your Redshift Spectrum tables have been defined, you can query and join the tables just as
you do any other Amazon Redshift table. Redshift Spectrum doesn't support update operations
on external tables. You can add Redshift Spectrum tables to multiple Amazon Redshift clusters
and query the same data on Amazon S3 from any cluster in the same AWS Region. When you
update Amazon S3 data files, the data is immediately available for query from any of your Amazon
Redshift clusters.

The AWS Glue Data Catalog that you access might be encrypted to increase security. If the AWS
Glue catalog is encrypted, you need the AWS Key Management Service (AWS KMS) key for AWS
Glue to access the AWS Glue catalog. AWS Glue catalog encryption is not available in all AWS
Regions. For a list of supported AWS Regions, see Encryption and Secure Access for AWS Glue in
the AWS Glue Developer Guide. For more information about AWS Glue Data Catalog encryption, see
Encrypting Your AWS Glue Data Catalog in the AWS Glue Developer Guide.

Note

You can't view details for Redshift Spectrum tables using the same resources that you
use for standard Amazon Redshift tables, such as PG_TABLE_DEF, STV_TBL_PERM,
PG_CLASS, or information_schema. If your business intelligence or analytics tool doesn't
recognize Redshift Spectrum external tables, configure your application to query
SVV_EXTERNAL_TABLES and SVV_EXTERNAL_COLUMNS.

Amazon Redshift Spectrum Regions

Redshift Spectrum is available in AWS Regions where Amazon Redshift is available, unless
otherwise specified in Region specific documentation. For AWS Region availability in commercial
Regions, see Service endpoints for the Redshift API in the Amazon Web Services General Reference.

Amazon Redshift Spectrum Regions 390

https://docs.aws.amazon.com/glue/latest/dg/encryption-glue-resources.html
https://docs.aws.amazon.com/glue/latest/dg/
https://docs.aws.amazon.com/glue/latest/dg/encrypt-glue-data-catalog.html
https://docs.aws.amazon.com/glue/latest/dg/
https://docs.aws.amazon.com/general/latest/gr/redshift-service.html#redshift_region

Amazon Redshift Database Developer Guide

Amazon Redshift Spectrum considerations

Note the following considerations when you use Amazon Redshift Spectrum:

• The Amazon Redshift cluster and the Amazon S3 bucket must be in the same AWS Region.

• Redshift Spectrum doesn't support enhanced VPC routing with provisioned clusters. To
access your Amazon S3 data, you might need to perform additional configuration steps. For
more information, see Redshift Spectrum and enhanced VPC routing in the Amazon Redshift
Management Guide.

• Redshift Spectrum supports Amazon S3 access point aliases. For more information, see Using
a bucket–style alias for your access point in the Amazon Simple Storage Service User Guide.
However, Redshift Spectrum doesn't support VPC with Amazon S3 access point aliases. For
more information, see Redshift Spectrum and enhanced VPC routing in the Amazon Redshift
Management Guide.

• You can't perform update or delete operations on external tables. To create a new external table
in the specified schema, you can use CREATE EXTERNAL TABLE. For more information about
CREATE EXTERNAL TABLE, see CREATE EXTERNAL TABLE. To insert the results of a SELECT query
into existing external tables on external catalogs, you can use INSERT (external table). For more
information about INSERT (external table), see INSERT (external table).

• Unless you are using an AWS Glue Data Catalog that is enabled for AWS Lake Formation,
you can't control user permissions on an external table. Instead, you can grant and revoke
permissions on the external schema. For more information about working with AWS Lake
Formation, see Using Redshift Spectrum with AWS Lake Formation.

• To run Redshift Spectrum queries, the database user must have permission to create temporary
tables in the database. The following example grants temporary permission on the database
spectrumdb to the spectrumusers user group.

grant temp on database spectrumdb to group spectrumusers;

For more information, see GRANT.

• When using the Athena Data Catalog or AWS Glue Data Catalog as a metadata store, see Quotas
and Limits in the Amazon Redshift Management Guide.

• Redshift Spectrum doesn't support Amazon EMR with Kerberos.

Amazon Redshift Spectrum considerations 391

https://docs.aws.amazon.com/redshift/latest/mgmt/spectrum-enhanced-vpc.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-points-alias.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-points-alias.html
https://docs.aws.amazon.com/redshift/latest/mgmt/spectrum-enhanced-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html
https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Redshift Database Developer Guide

Getting started with Amazon Redshift Spectrum

In this tutorial, you learn how to use Amazon Redshift Spectrum to query data directly from files
on Amazon S3. If you already have a cluster and a SQL client, you can complete this tutorial with
minimal setup.

Note

Redshift Spectrum queries incur additional charges. The cost of running the sample queries
in this tutorial is nominal. For more information about pricing, see Amazon Redshift
Spectrum pricing.

Prerequisites

To use Redshift Spectrum, you need an Amazon Redshift cluster and a SQL client that's connected
to your cluster so that you can run SQL commands. The cluster and the data files in Amazon S3
must be in the same AWS Region.

For information about how to create an Amazon Redshift cluster, see Amazon Redshift provisioned
clusters in the Amazon Redshift Getting Started Guide. For information about ways to connect to
a cluster, see Connecting to Amazon Redshift data warehouses in the Amazon Redshift Getting
Started Guide.

In some of the examples that follow, the sample data is in the US East (N. Virginia) Region (us-
east-1), so you need a cluster that is also in us-east-1. Or, you can use Amazon S3 to copy
data objects from the following buckets and folders to your bucket in the AWS Region where your
cluster is located:

• s3://redshift-downloads/tickit/spectrum/customers/*

• s3://redshift-downloads/tickit/spectrum/sales_partition/*

• s3://redshift-downloads/tickit/spectrum/sales/*

• s3://redshift-downloads/tickit/spectrum/salesevent/*

Run an Amazon S3 command similar to the following to copy sample data that is located in the
US East (N. Virginia) to your AWS Region. Before running the command create your bucket and

Getting started with Amazon Redshift Spectrum 392

https://aws.amazon.com/redshift/pricing/#redshift-spectrum-pricing
https://aws.amazon.com/redshift/pricing/#redshift-spectrum-pricing
https://docs.aws.amazon.com/redshift/latest/gsg/new-user.html
https://docs.aws.amazon.com/redshift/latest/gsg/new-user.html
https://docs.aws.amazon.com/redshift/latest/gsg/database-tasks.html

Amazon Redshift Database Developer Guide

folders in your bucket to match your Amazon S3 copy command. The output of the Amazon S3
copy command confirms that the files are copied to the bucket-name in your desired AWS Region.

aws s3 cp s3://redshift-downloads/tickit/spectrum/ s3://bucket-name/tickit/spectrum/ --
copy-props none --recursive

Getting started with Redshift Spectrum using AWS CloudFormation

As an alternative to the following steps, you can access the Redshift Spectrum DataLake AWS
CloudFormation template to create a stack with an Amazon S3 bucket that you can query. For
more information, see Launch your AWS CloudFormation stack and then query your data in
Amazon S3.

Getting started with Redshift Spectrum step by step

To get started using Amazon Redshift Spectrum, follow these steps:

• Step 1. Create an IAM role for Amazon Redshift

• Step 2: Associate the IAM role with your cluster

• Step 3: Create an external schema and an external table

• Step 4: Query your data in Amazon S3

Step 1. Create an IAM role for Amazon Redshift

Your cluster needs authorization to access your external Data Catalog in AWS Glue or Amazon
Athena and your data files in Amazon S3. To provide that authorization, you reference an AWS
Identity and Access Management (IAM) role that is attached to your cluster. For more information
about using roles with Amazon Redshift, see Authorizing COPY and UNLOAD Operations Using IAM
Roles.

Note

In certain cases, you can migrate your Athena Data Catalog to an AWS Glue Data Catalog.
You can do this if your cluster is in an AWS Region where AWS Glue is supported and you
have Redshift Spectrum external tables in the Athena Data Catalog. To use the AWS Glue
Data Catalog with Redshift Spectrum, you might need to change your IAM policies. For
more information, see Upgrading to the AWS Glue Data Catalog in the Athena User Guide.

CloudFormation 393

https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/athena/latest/ug/glue-athena.html#glue-upgrade

Amazon Redshift Database Developer Guide

When you create a role for Amazon Redshift, choose one of the following approaches:

• If you are using Redshift Spectrum with either an Athena Data Catalog or AWS Glue Data
Catalog, follow the steps outlined in To create an IAM role for Amazon Redshift.

• If you are using Redshift Spectrum with an AWS Glue Data Catalog that is enabled for AWS Lake
Formation, follow the steps outlined in these procedures:

• To create an IAM role for Amazon Redshift using an AWS Glue Data Catalog enabled for AWS
Lake Formation

• To grant SELECT permissions on the table to query in the Lake Formation database

To create an IAM role for Amazon Redshift

1. Open the IAM console.

2. In the navigation pane, choose Roles.

3. Choose Create role.

4. Choose AWS service as the trusted entity, and then choose Redshift as the use case.

5. Under Use case for other AWS services, choose Redshift - Customizable and then choose
Next.

6. The Add permissions policy page appears. Choose AmazonS3ReadOnlyAccess and
AWSGlueConsoleFullAccess, if you're using the AWS Glue Data Catalog. Or choose
AmazonAthenaFullAccess if you're using the Athena Data Catalog. Choose Next.

Note

The AmazonS3ReadOnlyAccess policy gives your cluster read-only access to all
Amazon S3 buckets. To grant access to only the AWS sample data bucket, create a new
policy and add the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:Get*",
 "s3:List*"
],

Step 1. Create an IAM role 394

https://console.aws.amazon.com/iam/home?#home

Amazon Redshift Database Developer Guide

 "Resource": "arn:aws:s3:::redshift-downloads/*"
 }
]
}

7. For Role name, enter a name for your role, for example myspectrum_role.

8. Review the information, and then choose Create role.

9. In the navigation pane, choose Roles. Choose the name of your new role to view the summary,
and then copy the Role ARN to your clipboard. This value is the Amazon Resource Name
(ARN) for the role that you just created. You use that value when you create external tables to
reference your data files on Amazon S3.

To create an IAM role for Amazon Redshift using an AWS Glue Data Catalog enabled for AWS
Lake Formation

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. In the navigation pane, choose Policies.

If this is your first time choosing Policies, the Welcome to Managed Policies page appears.
Choose Get Started.

3. Choose Create policy.

4. Choose to create the policy on the JSON tab.

5. Paste in the following JSON policy document, which grants access to the Data Catalog but
denies the administrator permissions for Lake Formation.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RedshiftPolicyForLF",
 "Effect": "Allow",
 "Action": [
 "glue:*",
 "lakeformation:GetDataAccess"
],
 "Resource": "*"
 }
]

Step 1. Create an IAM role 395

https://console.aws.amazon.com/iam/

Amazon Redshift Database Developer Guide

}

6. When you are finished, choose Review to review the policy. The policy validator reports any
syntax errors.

7. On the Review policy page, for Name enter myspectrum_policy to name the policy that
you are creating. Enter a Description (optional). Review the policy Summary to see the
permissions that are granted by your policy. Then choose Create policy to save your work.

After you create a policy, you can provide access to your users.

To provide access, add permissions to your users, groups, or roles:

• Users and groups in AWS IAM Identity Center:

Create a permission set. Follow the instructions in Create a permission set in the AWS IAM
Identity Center User Guide.

• Users managed in IAM through an identity provider:

Create a role for identity federation. Follow the instructions in Creating a role for a third-party
identity provider (federation) in the IAM User Guide.

• IAM users:

• Create a role that your user can assume. Follow the instructions in Creating a role for an IAM
user in the IAM User Guide.

• (Not recommended) Attach a policy directly to a user or add a user to a user group. Follow the
instructions in Adding permissions to a user (console) in the IAM User Guide.

To grant SELECT permissions on the table to query in the Lake Formation database

1. Open the Lake Formation console at https://console.aws.amazon.com/lakeformation/.

2. In the navigation pane, choose Data lake permissions, and then choose Grant.

3. Follow the instructions in Granting table permissions using the named resource method in the
AWS Lake Formation Developer Guide. Provide the following information:

• For IAM role, choose the IAM role you created, myspectrum_role. When you run the
Amazon Redshift Query Editor, it uses this IAM role for permission to the data.

Step 1. Create an IAM role 396

https://docs.aws.amazon.com/singlesignon/latest/userguide/howtocreatepermissionset.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://console.aws.amazon.com/lakeformation/
https://docs.aws.amazon.com/lake-formation/latest/dg/granting-table-permissions.html

Amazon Redshift Database Developer Guide

Note

To grant SELECT permission on the table in a Lake Formation–enabled Data Catalog
to query, do the following:

• Register the path for the data in Lake Formation.

• Grant users permission to that path in Lake Formation.

• Created tables can be found in the path registered in Lake Formation.

4. Choose Grant.

Important

As a best practice, allow access only to the underlying Amazon S3 objects through
Lake Formation permissions. To prevent unapproved access, remove any permission
granted to Amazon S3 objects outside of Lake Formation. If you previously accessed
Amazon S3 objects before setting up Lake Formation, remove any IAM policies or bucket
permissions that previously were set up. For more information, see Upgrading AWS Glue
Data Permissions to the AWS Lake Formation Model and Lake Formation Permissions.

Step 2: Associate the IAM role with your cluster

Now you have an IAM role that authorizes Amazon Redshift to access the external Data Catalog
and Amazon S3 for you. At this point, you must associate that role with your Amazon Redshift
cluster.

To associate an IAM role with a cluster

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose the name of the cluster that you want
to update.

3. For Actions, choose Manage IAM roles. The IAM roles page appears.

4. Either choose Enter ARN and then enter an ARN or an IAM role, or choose an IAM role from the
list. Then choose Add IAM role to add it to the list of Attached IAM roles.

Step 2: Associate the IAM role with your cluster 397

https://docs.aws.amazon.com/lake-formation/latest/dg/upgrade-glue-lake-formation.html
https://docs.aws.amazon.com/lake-formation/latest/dg/upgrade-glue-lake-formation.html
https://docs.aws.amazon.com/lake-formation/latest/dg/lake-formation-permissions.html
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

5. Choose Done to associate the IAM role with the cluster. The cluster is modified to complete the
change.

Step 3: Create an external schema and an external table

Create external tables in an external schema. The external schema references a database in the
external data catalog and provides the IAM role ARN that authorizes your cluster to access Amazon
S3 on your behalf. You can create an external database in an Amazon Athena Data Catalog, AWS
Glue Data Catalog, or an Apache Hive metastore, such as Amazon EMR. For this example, you
create the external database in an Amazon Athena Data Catalog when you create the external
schema Amazon Redshift. For more information, see Creating external schemas for Amazon
Redshift Spectrum.

To create an external schema and an external table

1. To create an external schema, replace the IAM role ARN in the following command with the
role ARN you created in step 1. Then run the command in your SQL client.

create external schema myspectrum_schema
from data catalog
database 'myspectrum_db'
iam_role 'arn:aws:iam::123456789012:role/myspectrum_role'
create external database if not exists;

2. To create an external table, run the following CREATE EXTERNAL TABLE command.

Note

Your cluster and the Amazon S3 bucket must be in the same AWS Region. For this
example CREATE EXTERNAL TABLE command, the Amazon S3 bucket with the sample
data is located in the US East (N. Virginia) AWS Region. To see the source data,
download the sales_ts.000 file.
You can modify this example to run in a different AWS Region. Create an Amazon
S3 bucket in your desired AWS Region. Copy the sales data with an Amazon S3 copy
command. Then update the location option in the example CREATE EXTERNAL
TABLE command to your bucket.

Step 3: Create an external schema and an external table 398

https://s3.amazonaws.com/redshift-downloads/tickit/spectrum/sales/sales_ts.000

Amazon Redshift Database Developer Guide

aws s3 cp s3://redshift-downloads/tickit/spectrum/sales/ s3://bucket-name/
tickit/spectrum/sales/ --copy-props none --recursive

The output of the Amazon S3 copy command confirms that the file was copied to the
bucket-name in your desired AWS Region.

copy: s3://redshift-downloads/tickit/spectrum/sales/sales_ts.000 to
 s3://bucket-name/tickit/spectrum/sales/sales_ts.000

create external table myspectrum_schema.sales(
salesid integer,
listid integer,
sellerid integer,
buyerid integer,
eventid integer,
dateid smallint,
qtysold smallint,
pricepaid decimal(8,2),
commission decimal(8,2),
saletime timestamp)
row format delimited
fields terminated by '\t'
stored as textfile
location 's3://redshift-downloads/tickit/spectrum/sales/'
table properties ('numRows'='172000');

Step 4: Query your data in Amazon S3

After your external tables are created, you can query them using the same SELECT statements that
you use to query other Amazon Redshift tables. These SELECT statement queries include joining
tables, aggregating data, and filtering on predicates.

To query your data in Amazon S3

1. Get the number of rows in the MYSPECTRUM_SCHEMA.SALES table.

Step 4: Query your data in Amazon S3 399

Amazon Redshift Database Developer Guide

select count(*) from myspectrum_schema.sales;

count

172462

2. Keep your larger fact tables in Amazon S3 and your smaller dimension tables in Amazon
Redshift, as a best practice. If you loaded the sample data in Load data, you have a table
named EVENT in your database. If not, create the EVENT table by using the following
command.

create table event(
eventid integer not null distkey,
venueid smallint not null,
catid smallint not null,
dateid smallint not null sortkey,
eventname varchar(200),
starttime timestamp);

3. Load the EVENT table by replacing the IAM role ARN in the following COPY command with the
role ARN you created in Step 1. Create an IAM role for Amazon Redshift. You can optionally
download and view the source data for the allevents_pipe.txt from an Amazon S3
bucket in AWS Region us-east-1.

copy event from 's3://redshift-downloads/tickit/allevents_pipe.txt'
iam_role 'arn:aws:iam::123456789012:role/myspectrum_role'
delimiter '|' timeformat 'YYYY-MM-DD HH:MI:SS' region 'us-east-1';

The following example joins the external Amazon S3 table MYSPECTRUM_SCHEMA.SALES with
the local Amazon Redshift table EVENT to find the total sales for the top 10 events.

select top 10 myspectrum_schema.sales.eventid,
 sum(myspectrum_schema.sales.pricepaid) from myspectrum_schema.sales, event
where myspectrum_schema.sales.eventid = event.eventid
and myspectrum_schema.sales.pricepaid > 30
group by myspectrum_schema.sales.eventid
order by 2 desc;

eventid | sum

Step 4: Query your data in Amazon S3 400

https://docs.aws.amazon.com/redshift/latest/gsg/cm-dev-t-load-sample-data.html
https://s3.amazonaws.com/redshift-downloads/tickit/allevents_pipe.txt

Amazon Redshift Database Developer Guide

--------+---------
 289 | 51846.00
 7895 | 51049.00
 1602 | 50301.00
 851 | 49956.00
 7315 | 49823.00
 6471 | 47997.00
 2118 | 47863.00
 984 | 46780.00
 7851 | 46661.00
 5638 | 46280.00

4. View the query plan for the previous query. Notice the S3 Seq Scan, S3 HashAggregate,
and S3 Query Scan steps that were run against the data on Amazon S3.

explain
select top 10 myspectrum_schema.sales.eventid,
 sum(myspectrum_schema.sales.pricepaid)
from myspectrum_schema.sales, event
where myspectrum_schema.sales.eventid = event.eventid
and myspectrum_schema.sales.pricepaid > 30
group by myspectrum_schema.sales.eventid
order by 2 desc;

QUERY PLAN

XN Limit (cost=1001055770628.63..1001055770628.65 rows=10 width=31)

 -> XN Merge (cost=1001055770628.63..1001055770629.13 rows=200 width=31)

 Merge Key: sum(sales.derived_col2)

 -> XN Network (cost=1001055770628.63..1001055770629.13 rows=200 width=31)

Step 4: Query your data in Amazon S3 401

Amazon Redshift Database Developer Guide

 Send to leader

 -> XN Sort (cost=1001055770628.63..1001055770629.13 rows=200
 width=31)

 Sort Key: sum(sales.derived_col2)

 -> XN HashAggregate (cost=1055770620.49..1055770620.99
 rows=200 width=31)

 -> XN Hash Join DS_BCAST_INNER
 (cost=3119.97..1055769620.49 rows=200000 width=31)

 Hash Cond: ("outer".derived_col1 = "inner".eventid)

 -> XN S3 Query Scan sales (cost=3010.00..5010.50
 rows=200000 width=31)

 -> S3 HashAggregate (cost=3010.00..3010.50
 rows=200000 width=16)

 -> S3 Seq Scan myspectrum_schema.sales
 location:"s3://redshift-downloads/tickit/spectrum/sales" format:TEXT
 (cost=0.00..2150.00 rows=172000 width=16)
 Filter: (pricepaid > 30.00)

 -> XN Hash (cost=87.98..87.98 rows=8798 width=4)

 -> XN Seq Scan on event (cost=0.00..87.98
 rows=8798 width=4)

Launch your AWS CloudFormation stack and then query your data in
Amazon S3

After you create an Amazon Redshift cluster and connect to the cluster, you can install your
Redshift Spectrum DataLake AWS CloudFormation template and then query your data.

Launch your CloudFormation stack and then query your data 402

Amazon Redshift Database Developer Guide

CloudFormation installs the Redshift Spectrum Getting Started DataLake template and creates a
stack that includes the following:

• A role named myspectrum_role associated with your Redshift cluster

• An external schema named myspectrum_schema

• An external table named sales in an Amazon S3 bucket

• A Redshift table named event loaded with data

To launch your Redshift Spectrum Getting Started DataLake CloudFormation stack

1. Choose Launch CFN stack. The CloudFormation console opens with the DataLake.yml
template selected.

You can also download and customize the Redshift Spectrum Getting Started
DataLake CloudFormation CFN template, then open CloudFormation console (https://
console.aws.amazon.com/cloudformation) and create a stack with the customized template.

2. Choose Next.

3. Under Parameters, enter the Amazon Redshift cluster name, database name, and your
database user name.

4. Choose Next.

The stack options appear.

5. Choose Next to accept the default settings.

6. Review the information and under Capabilities, and choose I acknowledge that AWS
CloudFormation might create IAM resources.

7. Choose Create stack.

If an error occurs while the stack is being created, see the following information:

• View the CloudFormation Events tab for information that can help you resolve the error.

• Delete the DataLake CloudFormation stack before trying the operation again.

• Make sure that you are connected to your Amazon Redshift database.

• Make sure that you entered the correct information for the Amazon Redshift cluster name,
database name, and database user name.

Launch your CloudFormation stack and then query your data 403

https://console.aws.amazon.com/cloudformation/home?#/stacks/new?stackName=DataLake&templateURL=https://s3.amazonaws.com/redshift-downloads/docs-downloads/DataLake.yml
https://s3.amazonaws.com/redshift-downloads/docs-downloads/DataLake.yml
https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

Amazon Redshift Database Developer Guide

Querying your data in Amazon S3

You query external tables using the same SELECT statements that you use to query other Amazon
Redshift tables. These SELECT statement queries include joining tables, aggregating data, and
filtering on predicates.

The following query returns the number of rows in the myspectrum_schema.sales external
table.

select count(*) from myspectrum_schema.sales;

count

172462

Joining an external table with a local table

The following example joins the external table myspectrum_schema.sales with the local table
event to find the total sales for the top 10 events.

select top 10 myspectrum_schema.sales.eventid, sum(myspectrum_schema.sales.pricepaid)
 from myspectrum_schema.sales, event
where myspectrum_schema.sales.eventid = event.eventid
and myspectrum_schema.sales.pricepaid > 30
group by myspectrum_schema.sales.eventid
order by 2 desc;

eventid | sum
--------+---------
 289 | 51846.00
 7895 | 51049.00
 1602 | 50301.00
 851 | 49956.00
 7315 | 49823.00
 6471 | 47997.00
 2118 | 47863.00
 984 | 46780.00
 7851 | 46661.00
 5638 | 46280.00

Launch your CloudFormation stack and then query your data 404

Amazon Redshift Database Developer Guide

Viewing the query plan

View the query plan for the previous query. Note the S3 Seq Scan, S3 HashAggregate, and S3
Query Scan steps that were run on the data on Amazon S3.

explain
select top 10 myspectrum_schema.sales.eventid, sum(myspectrum_schema.sales.pricepaid)
from myspectrum_schema.sales, event
where myspectrum_schema.sales.eventid = event.eventid
and myspectrum_schema.sales.pricepaid > 30
group by myspectrum_schema.sales.eventid
order by 2 desc;

QUERY PLAN

XN Limit (cost=1001055770628.63..1001055770628.65 rows=10 width=31)

 -> XN Merge (cost=1001055770628.63..1001055770629.13 rows=200 width=31)

 Merge Key: sum(sales.derived_col2)

 -> XN Network (cost=1001055770628.63..1001055770629.13 rows=200 width=31)

 Send to leader

 -> XN Sort (cost=1001055770628.63..1001055770629.13 rows=200 width=31)

 Sort Key: sum(sales.derived_col2)

 -> XN HashAggregate (cost=1055770620.49..1055770620.99 rows=200
 width=31)

Launch your CloudFormation stack and then query your data 405

Amazon Redshift Database Developer Guide

 -> XN Hash Join DS_BCAST_INNER (cost=3119.97..1055769620.49
 rows=200000 width=31)

 Hash Cond: ("outer".derived_col1 = "inner".eventid)

 -> XN S3 Query Scan sales (cost=3010.00..5010.50
 rows=200000 width=31)

 -> S3 HashAggregate (cost=3010.00..3010.50
 rows=200000 width=16)

 -> S3 Seq Scan spectrum.sales
 location:"s3://redshift-downloads/tickit/spectrum/sales" format:TEXT
 (cost=0.00..2150.00 rows=172000 width=16)
 Filter: (pricepaid > 30.00)

 -> XN Hash (cost=87.98..87.98 rows=8798 width=4)

 -> XN Seq Scan on event (cost=0.00..87.98
 rows=8798 width=4)

IAM policies for Amazon Redshift Spectrum

By default, Amazon Redshift Spectrum uses the AWS Glue Data Catalog in AWS Regions that
support AWS Glue. In other AWS Regions, Redshift Spectrum uses the Athena Data Catalog. Your
cluster needs authorization to access your external data catalog in AWS Glue or Athena and your
data files in Amazon S3. You provide that authorization by referencing an AWS Identity and Access
Management (IAM) role that is attached to your cluster. If you use an Apache Hive metastore to
manage your data catalog, you don't need to provide access to Athena.

You can chain roles so that your cluster can assume other roles not attached to the cluster. For
more information, see Chaining IAM roles in Amazon Redshift Spectrum.

The AWS Glue catalog that you access might be encrypted to increase security. If the AWS Glue
catalog is encrypted, you need the AWS KMS key for AWS Glue to access the AWS Glue Data
Catalog. For more information, see Encrypting Your AWS Glue Data Catalog in the AWS Glue
Developer Guide.

IAM policies for Amazon Redshift Spectrum 406

https://docs.aws.amazon.com/glue/latest/dg/encrypt-glue-data-catalog.html
https://docs.aws.amazon.com/glue/latest/dg/
https://docs.aws.amazon.com/glue/latest/dg/

Amazon Redshift Database Developer Guide

Topics

• Amazon S3 permissions

• Cross-account Amazon S3 permissions

• Policies to grant or restrict access using Redshift Spectrum

• Policies to grant minimum permissions

• Chaining IAM roles in Amazon Redshift Spectrum

• Controlling access to the AWS Glue Data Catalog

Amazon S3 permissions

At a minimum, your cluster needs GET and LIST access to your Amazon S3 bucket. If your bucket is
not in the same AWS account as your cluster, your bucket must also authorize your cluster to access
the data. For more information, see Authorizing Amazon Redshift to Access Other AWS Services on
Your Behalf.

Note

The Amazon S3 bucket can't use a bucket policy that restricts access only from specific VPC
endpoints.

The following policy grants GET and LIST access to any Amazon S3 bucket. The policy allows access
to Amazon S3 buckets for Redshift Spectrum as well as COPY operations.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["s3:Get*", "s3:List*"],
 "Resource": "*"
 }]
}

The following policy grants GET and LIST access to your Amazon S3 bucket named myBucket.

{
 "Version": "2012-10-17",

Amazon S3 permissions 407

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html

Amazon Redshift Database Developer Guide

 "Statement": [{
 "Effect": "Allow",
 "Action": ["s3:Get*", "s3:List*"],
 "Resource": "arn:aws:s3:::myBucket/*"
 }]
}

Cross-account Amazon S3 permissions

To grant Redshift Spectrum permission to access data in an Amazon S3 bucket that belongs to
another AWS account, add the following policy to the Amazon S3 bucket. For more information,
see Granting Cross-Account Bucket Permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Example permissions",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::redshift-account:role/spectrumrole"
 },
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListMultipartUploadParts",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads"
],
 "Resource": [
 "arn:aws:s3:::bucketname",
 "arn:aws:s3:::bucketname/*"
]
 }
]
}

Policies to grant or restrict access using Redshift Spectrum

To grant access to an Amazon S3 bucket only using Redshift Spectrum, include a condition that
allows access for the user agent AWS Redshift/Spectrum. The following policy allows access to
Amazon S3 buckets only for Redshift Spectrum. It excludes other access, such as COPY operations.

Cross-account Amazon S3 permissions 408

https://docs.aws.amazon.com/AmazonS3/latest/dev/example-walkthroughs-managing-access-example2.html

Amazon Redshift Database Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["s3:Get*", "s3:List*"],
 "Resource": "arn:aws:s3:::myBucket/*",
 "Condition": {"StringEquals": {"aws:UserAgent": "AWS Redshift/
Spectrum"}}
 }]
}

Similarly, you might want to create an IAM role that allows access for COPY operations, but
excludes Redshift Spectrum access. To do so, include a condition that denies access for the user
agent AWS Redshift/Spectrum. The following policy allows access to an Amazon S3 bucket with
the exception of Redshift Spectrum.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["s3:Get*", "s3:List*"],
 "Resource": "arn:aws:s3:::myBucket/*",
 "Condition": {"StringNotEquals": {"aws:UserAgent": "AWS Redshift/
Spectrum"}}
 }]
}

Policies to grant minimum permissions

The following policy grants the minimum permissions required to use Redshift Spectrum with
Amazon S3, AWS Glue, and Athena.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListMultipartUploadParts",

Minimum permissions 409

Amazon Redshift Database Developer Guide

 "s3:ListBucket",
 "s3:ListBucketMultipartUploads"
],
 "Resource": [
 "arn:aws:s3:::bucketname",
 "arn:aws:s3:::bucketname/folder1/folder2/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateDatabase",
 "glue:DeleteDatabase",
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:UpdateDatabase",
 "glue:CreateTable",
 "glue:DeleteTable",
 "glue:BatchDeleteTable",
 "glue:UpdateTable",
 "glue:GetTable",
 "glue:GetTables",
 "glue:BatchCreatePartition",
 "glue:CreatePartition",
 "glue:DeletePartition",
 "glue:BatchDeletePartition",
 "glue:UpdatePartition",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:BatchGetPartition"
],
 "Resource": [
 "*"
]
 }
]
}

If you use Athena for your data catalog instead of AWS Glue, the policy requires full Athena access.
The following policy grants access to Athena resources. If your external database is in a Hive
metastore, you don't need Athena access.

{

Minimum permissions 410

Amazon Redshift Database Developer Guide

 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["athena:*"],
 "Resource": ["*"]
 }]
}

Chaining IAM roles in Amazon Redshift Spectrum

When you attach a role to your cluster, your cluster can assume that role to access Amazon S3,
Athena, and AWS Glue on your behalf. If a role attached to your cluster doesn't have access to
the necessary resources, you can chain another role, possibly belonging to another account. Your
cluster then temporarily assumes the chained role to access the data. You can also grant cross-
account access by chaining roles. You can chain a maximum of 10 roles. Each role in the chain
assumes the next role in the chain, until the cluster assumes the role at the end of chain.

To chain roles, you establish a trust relationship between the roles. A role that assumes another
role must have a permissions policy that allows it to assume the specified role. In turn, the role that
passes permissions must have a trust policy that allows it to pass its permissions to another role.
For more information, see Chaining IAM Roles in Amazon Redshift.

When you run the CREATE EXTERNAL SCHEMA command, you can chain roles by including a
comma-separated list of role ARNs.

Note

The list of chained roles must not include spaces.

In the following example, MyRedshiftRole is attached to the cluster. MyRedshiftRole assumes
the role AcmeData, which belongs to account 111122223333.

create external schema acme from data catalog
database 'acmedb' region 'us-west-2'
iam_role 'arn:aws:iam::123456789012:role/MyRedshiftRole,arn:aws:iam::111122223333:role/
AcmeData';

Chaining IAM roles 411

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-chaining-roles

Amazon Redshift Database Developer Guide

Controlling access to the AWS Glue Data Catalog

If you use AWS Glue for your data catalog, you can apply fine-grained access control to the AWS
Glue Data Catalog with your IAM policy. For example, you might want to expose only a few
databases and tables to a specific IAM role.

The following sections describe the IAM policies for various levels of access to data stored in the
AWS Glue Data Catalog.

Topics

• Policy for database operations

• Policy for table operations

• Policy for partition operations

Policy for database operations

If you want to give users permissions to view and create a database, they need access rights to both
the database and the AWS Glue Data Catalog.

The following example query creates a database.

CREATE EXTERNAL SCHEMA example_db
FROM DATA CATALOG DATABASE 'example_db' region 'us-west-2'
IAM_ROLE 'arn:aws:iam::redshift-account:role/spectrumrole'
CREATE EXTERNAL DATABASE IF NOT EXISTS

The following IAM policy gives the minimum permissions required for creating a database.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabase",
 "glue:CreateDatabase"

Accessing AWS Glue data 412

Amazon Redshift Database Developer Guide

],
 "Resource": [
 "arn:aws:glue:us-west-2:redshift-account:database/example_db",
 "arn:aws:glue:us-west-2:redshift-account:catalog"
]
 }
]
}

The following example query lists the current databases.

SELECT * FROM SVV_EXTERNAL_DATABASES WHERE
databasename = 'example_db1' or databasename = 'example_db2';

The following IAM policy gives the minimum permissions required to list the current databases.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetDatabases"
],
 "Resource": [
 "arn:aws:glue:us-west-2:redshift-account:database/example_db1",
 "arn:aws:glue:us-west-2:redshift-account:database/example_db2",
 "arn:aws:glue:us-west-2:redshift-account:catalog"

]
 }
]
}

Accessing AWS Glue data 413

Amazon Redshift Database Developer Guide

Policy for table operations

If you want to give users permissions to view, create, drop, alter, or take other actions on tables,
they need several types of access. They need access to the tables themselves, the databases they
belong to, and the catalog.

The following example query creates an external table.

CREATE EXTERNAL TABLE example_db.example_tbl0(
 col0 INT,
 col1 VARCHAR(255)
) PARTITIONED BY (part INT) STORED AS TEXTFILE
LOCATION 's3://test/s3/location/';

The following IAM policy gives the minimum permissions required to create an external table.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateTable"
],
 "Resource": [
 "arn:aws:glue:us-west-2:redshift-account:catalog",
 "arn:aws:glue:us-west-2:redshift-account:database/example_db",
 "arn:aws:glue:us-west-2:redshift-account:table/example_db/example_tbl0"
]
 }
]
}

The following example queries each list the current external tables.

SELECT * FROM svv_external_tables
WHERE tablename = 'example_tbl0' OR

Accessing AWS Glue data 414

Amazon Redshift Database Developer Guide

tablename = 'example_tbl1';

SELECT * FROM svv_external_columns
WHERE tablename = 'example_tbl0' OR
tablename = 'example_tbl1';

SELECT parameters FROM svv_external_tables
WHERE tablename = 'example_tbl0' OR
tablename = 'example_tbl1';

The following IAM policy gives the minimum permissions required to list the current external
tables.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetTables"
],
 "Resource": [
 "arn:aws:glue:us-west-2:redshift-account:catalog",
 "arn:aws:glue:us-west-2:redshift-account:database/example_db",
 "arn:aws:glue:us-west-2:redshift-account:table/example_db/
example_tbl0",
 "arn:aws:glue:us-west-2:redshift-account:table/example_db/example_tbl1"

]
 }
]
}

The following example query alters an existing table.

Accessing AWS Glue data 415

Amazon Redshift Database Developer Guide

ALTER TABLE example_db.example_tbl0
SET TABLE PROPERTIES ('numRows' = '100');

The following IAM policy gives the minimum permissions required to alter an existing table.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetTable",
 "glue:UpdateTable"
],
 "Resource": [
 "arn:aws:glue:us-west-2:redshift-account:catalog",
 "arn:aws:glue:us-west-2:redshift-account:database/example_db",
 "arn:aws:glue:us-west-2:redshift-account:table/example_db/example_tbl0"

]
 }
]
}

The following example query drops an existing table.

DROP TABLE example_db.example_tbl0;

The following IAM policy gives the minimum permissions required to drop an existing table.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

Accessing AWS Glue data 416

Amazon Redshift Database Developer Guide

 "glue:DeleteTable"
],
 "Resource": [
 "arn:aws:glue:us-west-2:redshift-account:catalog",
 "arn:aws:glue:us-west-2:redshift-account:database/example_db",
 "arn:aws:glue:us-west-2:redshift-account:table/example_db/example_tbl0"
]
 }
]
}

Policy for partition operations

If you want to give users permissions to perform partition-level operations (view, create, drop,
alter, and so on), they need permissions to the tables that the partitions belong to. They also need
permissions to the related databases and the AWS Glue Data Catalog.

The following example query creates a partition.

ALTER TABLE example_db.example_tbl0
ADD PARTITION (part=0) LOCATION 's3://test/s3/location/part=0/';
ALTER TABLE example_db.example_t
ADD PARTITION (part=1) LOCATION 's3://test/s3/location/part=1/';

The following IAM policy gives the minimum permissions required to create a partition.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetTable",
 "glue:BatchCreatePartition"
],
 "Resource": [
 "arn:aws:glue:us-west-2:redshift-account:catalog",
 "arn:aws:glue:us-west-2:redshift-account:database/example_db",
 "arn:aws:glue:us-west-2:redshift-account:table/example_db/example_tbl0"

Accessing AWS Glue data 417

Amazon Redshift Database Developer Guide

]
 }
]
}

The following example query lists the current partitions.

SELECT * FROM svv_external_partitions
WHERE schemname = 'example_db' AND
tablename = 'example_tbl0'

The following IAM policy gives the minimum permissions required to list the current partitions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetPartitions",
 "glue:GetTables",
 "glue:GetTable"
],
 "Resource": [
 "arn:aws:glue:us-west-2:redshift-account:catalog",
 "arn:aws:glue:us-west-2:redshift-account:database/example_db",
 "arn:aws:glue:us-west-2:redshift-account:table/example_db/example_tbl0"
]
 }
]
}

The following example query alters an existing partition.

Accessing AWS Glue data 418

Amazon Redshift Database Developer Guide

ALTER TABLE example_db.example_tbl0 PARTITION(part='0')
SET LOCATION 's3://test/s3/new/location/part=0/';

The following IAM policy gives the minimum permissions required to alter an existing partition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:GetPartition",
 "glue:UpdatePartition"
],
 "Resource": [
 "arn:aws:glue:us-west-2:redshift-account:catalog",
 "arn:aws:glue:us-west-2:redshift-account:database/example_db",
 "arn:aws:glue:us-west-2:redshift-account:table/example_db/example_tbl0"
]
 }
]
}

The following example query drops an existing partition.

ALTER TABLE example_db.example_tbl0 DROP PARTITION(part='0');

The following IAM policy gives the minimum permissions required to drop an existing partition.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Accessing AWS Glue data 419

Amazon Redshift Database Developer Guide

 "Action": [
 "glue:DeletePartition"
],
 "Resource": [
 "arn:aws:glue:us-west-2:redshift-account:catalog",
 "arn:aws:glue:us-west-2:redshift-account:database/example_db",
 "arn:aws:glue:us-west-2:redshift-account:table/example_db/example_tbl0"
]
 }
]
}

Using Redshift Spectrum with AWS Lake Formation

You can use AWS Lake Formation to centrally define and enforce database, table, and column-level
access policies to data stored in Amazon S3. After your data is registered with an AWS Glue Data
Catalog enabled with Lake Formation, you can query it by using several services, including Redshift
Spectrum.

Lake Formation provides the security and governance of the Data Catalog. Within Lake Formation,
you can grant and revoke permissions to the Data Catalog objects, such as databases, tables,
columns, and underlying Amazon S3 storage.

Important

You can only use Redshift Spectrum with a Lake Formation enabled Data Catalog in AWS
Regions where Lake Formation is available. For a list of available Regions, see AWS Lake
Formation endpoints and quotas in the AWS General Reference.

By using Redshift Spectrum with Lake Formation, you can do the following:

• Use Lake Formation as a centralized place where you grant and revoke permissions and access
control policies on all of your data in the data lake. Lake Formation provides a hierarchy of
permissions to control access to databases and tables in a Data Catalog. For more information,
see Overview of Lake Formation permissions in the AWS Lake Formation Developer Guide.

• Create external tables and run queries on data in the data lake. Before users in your account
can run queries, a data lake account administrator registers your existing Amazon S3 paths

Using Redshift Spectrum with Lake Formation 420

https://docs.aws.amazon.com/general/latest/gr/lake-formation.html
https://docs.aws.amazon.com/general/latest/gr/lake-formation.html
https://docs.aws.amazon.com/lake-formation/latest/dg/lake-formation-permissions.html

Amazon Redshift Database Developer Guide

containing source data with Lake Formation. The administrator also creates tables and grants
permissions to your users. Access can be granted on databases, tables, or columns. The
administrator can use data filters in Lake Formation to grant granular access control over your
sensitive data stored in Amazon S3. For more information, see Using data filters for row-level
and cell-level security.

After the data is registered in the Data Catalog, each time users try to run queries, Lake
Formation verifies access to the table for that specific principal. Lake Formation vends temporary
credentials to Redshift Spectrum, and the query runs.

• Run Redshift Spectrum queries against an automounted AWS Glue Data Catalog using IAM
credentials obtained with GetCredentials or GetClusterCredentials, and manage Lake
Formation permissions by database user (IAMR:username or IAM:username).

When you use Redshift Spectrum with a Data Catalog enabled for Lake Formation, one of the
following must be in place:

• An IAM role associated with the cluster that has permission to the Data Catalog.

• A federated IAM identity configured to manage access to external resources. For more
information, see Using a federated identity to manage Amazon Redshift access to local resources
and Amazon Redshift external tables.

Important

You can't chain IAM roles when using Redshift Spectrum with a Data Catalog enabled for
Lake Formation.

To learn more about the steps required to set up AWS Lake Formation to use with Redshift
Spectrum, see Tutorial: Creating a data lake from a JDBC source in Lake Formation in the AWS Lake
Formation Developer Guide. Specifically, see Query the data in the data lake using Amazon Redshift
Spectrum for details about integration with Redshift Spectrum. The data and AWS resources used
in this topic depend on previous steps in the tutorial.

Using Redshift Spectrum with Lake Formation 421

https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/lake-formation/latest/dg/getting-started-tutorial-jdbc.html
https://docs.aws.amazon.com/lake-formation/latest/dg/tut-query-redshift.html
https://docs.aws.amazon.com/lake-formation/latest/dg/tut-query-redshift.html

Amazon Redshift Database Developer Guide

Using data filters for row-level and cell-level security

You can define data filters in AWS Lake Formation to control your Redshift Spectrum queries' row-
level and cell-level access to data defined in your Data Catalog. To set this up, you perform the
following tasks:

• Create a data filter in Lake Formation with the following information:

• A column specification with a list of columns to include or exclude from query results.

• A row filter expression that specifies the rows to include in the query results.

For more information about how to create a data filter, see Data filters in Lake Formation in the
AWS Lake Formation Developer Guide.

• Create an external table in Amazon Redshift that references a table in your Lake Formation
enabled Data Catalog. For details on how to query a Lake Formation table using Redshift
Spectrum, see Query the data in the data lake using Amazon Redshift Spectrum in the AWS Lake
Formation Developer Guide.

After the table is defined in Amazon Redshift, you can query the Lake Formation table and access
only the rows and columns that are allowed by the data filter.

For a detailed guide on how to set up row-level and cell-level security in Lake Formation, and then
query using Redshift Spectrum, see Use Amazon Redshift Spectrum with row-level and cell-level
security policies defined in AWS Lake Formation.

Creating data files for queries in Amazon Redshift Spectrum

The data files that you use for queries in Amazon Redshift Spectrum are commonly the same
types of files that you use for other applications. For example, the same types of files are used
with Amazon Athena, Amazon EMR, and Amazon QuickSight. You can query the data in its original
format directly from Amazon S3. To do this, the data files must be in a format that Redshift
Spectrum supports and be located in an Amazon S3 bucket that your cluster can access.

The Amazon S3 bucket with the data files and the Amazon Redshift cluster must be in the same
AWS Region. For information about supported AWS Regions, see Amazon Redshift Spectrum
Regions.

Using data filters for row-level and cell-level security 422

https://docs.aws.amazon.com/lake-formation/latest/dg/data-filters-about.html
https://docs.aws.amazon.com/lake-formation/latest/dg/tut-query-redshift.html
https://aws.amazon.com/blogs/big-data/use-amazon-redshift-spectrum-with-row-level-and-cell-level-security-policies-defined-in-aws-lake-formation/
https://aws.amazon.com/blogs/big-data/use-amazon-redshift-spectrum-with-row-level-and-cell-level-security-policies-defined-in-aws-lake-formation/

Amazon Redshift Database Developer Guide

Data formats for Redshift Spectrum

Redshift Spectrum supports the following structured and semistructured data formats.

File format Columnar Supports parallel
reads

Split unit

Parquet Yes Yes Row group

ORC Yes Yes Stripe

RCFile Yes Yes Row group

TextFile No Yes Row

SequenceFile No Yes Row or block

RegexSerde No Yes Row

OpenCSV No Yes Row

AVRO No Yes Block

Ion No No N/A

JSON No No N/A

In the preceding table, the headings indicate the following:

• Columnar – Whether the file format physically stores data in a column-oriented structure as
opposed to a row-oriented one.

• Supports parallel reads – Whether the file format supports reading individual blocks within
the file. Reading individual blocks enables the distributed processing of a file across multiple
independent Redshift Spectrum requests instead of having to read the full file in a single
request.

• Split unit – For file formats that can be read in parallel, the split unit is the smallest chunk of
data that a single Redshift Spectrum request can process.

Data formats for Redshift Spectrum 423

Amazon Redshift Database Developer Guide

Note

Timestamp values in text files must be in the format yyyy-MM-dd HH:mm:ss.SSSSSS,
as the following timestamp value shows: 2017-05-01 11:30:59.000000.

We recommend using a columnar storage file format, such as Apache Parquet. With a columnar
storage file format, you can minimize data transfer out of Amazon S3 by selecting only the
columns that you need.

Compression types for Redshift Spectrum

To reduce storage space, improve performance, and minimize costs, we strongly recommend that
you compress your data files. Redshift Spectrum recognizes file compression types based on the
file extension.

Redshift Spectrum supports the following compression types and extensions.

Compression Algorithm File Extension Supports Parallel Reads

Gzip .gz No

Bzip2 .bz2 Yes

Snappy .snappy No

You can apply compression at different levels. Most commonly, you compress a whole file or
compress individual blocks within a file. Compressing columnar formats at the file level doesn't
yield performance benefits.

For Redshift Spectrum to be able to read a file in parallel, the following must be true:

• The file format supports parallel reads.

• The file-level compression, if any, supports parallel reads.

Compression types for Redshift Spectrum 424

Amazon Redshift Database Developer Guide

It doesn't matter whether the individual split units within a file are compressed using a
compression algorithm that can be read in parallel, because each split unit is processed by a single
Redshift Spectrum request. An example of this is Snappy-compressed Parquet files. Individual row
groups within the Parquet file are compressed using Snappy, but the top-level structure of the file
remains uncompressed. In this case, the file can be read in parallel because each Redshift Spectrum
request can read and process individual row groups from Amazon S3.

Encryption for Redshift Spectrum

Redshift Spectrum transparently decrypts data files that are encrypted using the following
encryption options:

• Server-side encryption (SSE-S3) using an AES-256 encryption key managed by Amazon S3.

• Server-side encryption with keys managed by AWS Key Management Service (SSE-KMS).

Redshift Spectrum doesn't support Amazon S3 client-side encryption. For more information on
server-side encryption, see Protecting Data Using Server-Side Encryption in the Amazon Simple
Storage Service User Guide.

Amazon Redshift uses massively parallel processing (MPP) to achieve fast execution of complex
queries operating on large amounts of data. Redshift Spectrum extends the same principle to
query external data, using multiple Redshift Spectrum instances as needed to scan files. Place the
files in a separate folder for each table.

You can optimize your data for parallel processing by doing the following:

• If your file format or compression doesn't support reading in parallel, break large files into many
smaller files. We recommend using file sizes between 64 MB and 1 GB.

• Keep all the files about the same size. If some files are much larger than others, Redshift
Spectrum can't distribute the workload evenly.

Creating external schemas for Amazon Redshift Spectrum

All external tables must be created in an external schema, which you create using a CREATE
EXTERNAL SCHEMA statement.

Encryption for Redshift Spectrum 425

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

Amazon Redshift Database Developer Guide

Note

Some applications use the term database and schema interchangeably. In Amazon Redshift,
we use the term schema.

An Amazon Redshift external schema references an external database in an external data catalog.
You can create the external database in Amazon Redshift, in Amazon Athena, in AWS Glue Data
Catalog, or in an Apache Hive metastore, such as Amazon EMR. If you create an external database
in Amazon Redshift, the database resides in the Athena Data Catalog. To create a database in a
Hive metastore, you need to create the database in your Hive application.

Amazon Redshift needs authorization to access the Data Catalog in Athena and the data files in
Amazon S3 on your behalf. To provide that authorization, you first create an AWS Identity and
Access Management (IAM) role. Then you attach the role to your cluster and provide Amazon
Resource Name (ARN) for the role in the Amazon Redshift CREATE EXTERNAL SCHEMA statement.
For more information about authorization, see IAM policies for Amazon Redshift Spectrum.

Note

If you currently have Redshift Spectrum external tables in the Athena Data Catalog, you
can migrate your Athena Data Catalog to an AWS Glue Data Catalog. To use an AWS Glue
Data Catalog with Redshift Spectrum, you might need to change your IAM policies. For
more information, see Upgrading to the AWS Glue Data Catalog in the Amazon Athena User
Guide.

To create an external database at the same time you create an external schema, specify FROM
DATA CATALOG and include the CREATE EXTERNAL DATABASE clause in your CREATE EXTERNAL
SCHEMA statement.

The following example creates an external schema named spectrum_schema using the external
database spectrum_db.

create external schema spectrum_schema from data catalog
database 'spectrum_db'
iam_role 'arn:aws:iam::123456789012:role/MySpectrumRole'
create external database if not exists;

Creating external schemas 426

https://docs.aws.amazon.com/athena/latest/ug/catalog.html
https://docs.aws.amazon.com/glue/latest/dg/components-overview.html#data-catalog-intro
https://docs.aws.amazon.com/glue/latest/dg/components-overview.html#data-catalog-intro
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-what-is-emr.html
https://docs.aws.amazon.com/athena/latest/ug/glue-athena.html#glue-upgrade

Amazon Redshift Database Developer Guide

If you manage your data catalog using Athena, specify the Athena database name and the AWS
Region in which the Athena Data Catalog is located.

The following example creates an external schema using the default sampledb database in the
Athena Data Catalog.

create external schema athena_schema from data catalog
database 'sampledb'
iam_role 'arn:aws:iam::123456789012:role/MySpectrumRole'
region 'us-east-2';

Note

The region parameter references the AWS Region in which the Athena Data Catalog is
located, not the location of the data files in Amazon S3.

If you manage your data catalog using a Hive metastore, such as Amazon EMR, your security
groups must be configured to allow traffic between the clusters.

In the CREATE EXTERNAL SCHEMA statement, specify FROM HIVE METASTORE and include the
metastore's URI and port number. The following example creates an external schema using a Hive
metastore database named hive_db.

create external schema hive_schema
from hive metastore
database 'hive_db'
uri '172.10.10.10' port 99
iam_role 'arn:aws:iam::123456789012:role/MySpectrumRole'

To view external schemas for your cluster, query the PG_EXTERNAL_SCHEMA catalog table or the
SVV_EXTERNAL_SCHEMAS view. The following example queries SVV_EXTERNAL_SCHEMAS, which
joins PG_EXTERNAL_SCHEMA and PG_NAMESPACE.

select * from svv_external_schemas

For the full command syntax and examples, see CREATE EXTERNAL SCHEMA.

Creating external schemas 427

Amazon Redshift Database Developer Guide

Working with external catalogs in Amazon Redshift Spectrum

The metadata for Amazon Redshift Spectrum external databases and external tables is stored in an
external data catalog. By default, Redshift Spectrum metadata is stored in an Athena Data Catalog.
You can view and manage Redshift Spectrum databases and tables in your Athena console.

You can also create and manage external databases and external tables using Hive data definition
language (DDL) using Athena or a Hive metastore, such as Amazon EMR.

Note

We recommend using Amazon Redshift to create and manage external databases and
external tables in Redshift Spectrum.

Viewing Redshift Spectrum databases in Athena and AWS Glue

You can create an external database by including the CREATE EXTERNAL DATABASE IF NOT EXISTS
clause as part of your CREATE EXTERNAL SCHEMA statement. In such cases, the external database
metadata is stored in your Data Catalog. The metadata for external tables that you create qualified
by the external schema is also stored in your Data Catalog.

Athena and AWS Glue maintain a Data Catalog for each supported AWS Region. To view table
metadata, log on to the Athena or AWS Glue console. In Athena, choose Data sources, your AWS
Glue, then view the details of your database. In AWS Glue, choose Databases, your external
database, then view the details of your database.

If you create and manage your external tables using Athena, register the database using CREATE
EXTERNAL SCHEMA. For example, the following command registers the Athena database named
sampledb.

create external schema athena_sample
from data catalog
database 'sampledb'
iam_role 'arn:aws:iam::123456789012:role/mySpectrumRole'
region 'us-east-1';

When you query the SVV_EXTERNAL_TABLES system view, you see tables in the Athena sampledb
database and also tables that you created in Amazon Redshift.

Working with external catalogs 428

Amazon Redshift Database Developer Guide

select * from svv_external_tables;

schemaname | tablename | location

--------------+------------------
+--
athena_sample | elb_logs | s3://athena-examples/elb/plaintext
athena_sample | lineitem_1t_csv | s3://myspectrum/tpch/1000/lineitem_csv

athena_sample | lineitem_1t_part | s3://myspectrum/tpch/1000/lineitem_partition

spectrum | sales | s3://redshift-downloads/tickit/spectrum/sales

spectrum | sales_part | s3://redshift-downloads/tickit/spectrum/sales_part

Registering an Apache Hive metastore database

If you create external tables in an Apache Hive metastore, you can use CREATE EXTERNAL SCHEMA
to register those tables in Redshift Spectrum.

In the CREATE EXTERNAL SCHEMA statement, specify the FROM HIVE METASTORE clause and
provide the Hive metastore URI and port number. The IAM role must include permission to access
Amazon S3 but doesn't need any Athena permissions. The following example registers a Hive
metastore.

create external schema if not exists hive_schema
from hive metastore
database 'hive_database'
uri 'ip-10-0-111-111.us-west-2.compute.internal' port 9083
iam_role 'arn:aws:iam::123456789012:role/mySpectrumRole';

Enabling your Amazon Redshift cluster to access your Amazon EMR cluster

If your Hive metastore is in Amazon EMR, you must give your Amazon Redshift cluster access to
your Amazon EMR cluster. To do so, you create an Amazon EC2 security group. You then allow all
inbound traffic to the EC2 security group from your Amazon Redshift cluster's security group and
your Amazon EMR cluster's security group. Then you add the EC2 security to both your Amazon
Redshift cluster and your Amazon EMR cluster.

Working with external catalogs 429

Amazon Redshift Database Developer Guide

View your Amazon Redshift cluster's security group name

To display the security group, do the following:

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose the cluster from the list to open its
details.

3. Choose Properties and view the Network and security settings section.

4. Find your security group in VPC security group and take note of it.

View the Amazon EMR master node security group name

1. Open your Amazon EMR cluster. For more information, see Use security configurations to set
up cluster security in the Amazon EMR Management Guide.

2. Under Security and access, make a note of the Amazon EMR master node security group
name.

To create or modify an Amazon EC2 security group to allow connection between Amazon
Redshift and Amazon EMR

1. In the Amazon EC2 dashboard, choose Security groups. For more information, see Security
group rules in the Amazon EC2 User Guide

Working with external catalogs 430

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security-configurations.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security-configurations.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/security-group-rules.html

Amazon Redshift Database Developer Guide

2. Choose Create security group.

3. If you are using VPC, choose the VPC that your Amazon Redshift and Amazon EMR clusters are
in.

4. Add an inbound rule.

1. For Type, choose Custom TCP.

2. For Source, choose Custom.

3. Enter the name of your Amazon Redshift security group.

5. Add another inbound rule.

1. For Type, choose TCP.

2. For Port Range, enter 9083.

Note

The default port for an EMR HMS is 9083. If your HMS uses a different port, specify
that port in the inbound rule and in the external schema definition.

3. For Source, choose Custom.

6. Enter a security group name and description.

7. Choose Create security group.

To add the Amazon EC2 security group you created in the previous procedure to your Amazon
Redshift cluster

1. In Amazon Redshift, choose your cluster.

2. Choose Properties.

3. View the Network and security settings and choose Edit.

4. In VPC security group, choose the new security group name.

5. Choose Save changes.

To add the Amazon EC2 security group to your Amazon EMR cluster

1. In Amazon EMR, choose your cluster. For more information, see Use security configurations to
set up cluster security in the Amazon EMR Management Guide.

Working with external catalogs 431

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security-configurations.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-security-configurations.html

Amazon Redshift Database Developer Guide

2. Under Hardware, choose the link for the Master node.

3. Choose the link in the EC2 instance ID column.

4. For Actions, choose Security, Change security groups.

5. In Associated sercurity groups, choose the new security group, and choose Add security
group.

6. Choose Save.

Creating external tables for Redshift Spectrum

You create an external table in an external schema. To create external tables, you must be the
owner of the external schema or a superuser. To transfer ownership of an external schema,
use ALTER SCHEMA to change the owner. The following example changes the owner of the
spectrum_schema schema to newowner.

alter schema spectrum_schema owner to newowner;

To run a Redshift Spectrum query, you need the following permissions:

• Usage permission on the schema

• Permission to create temporary tables in the current database

The following example grants usage permission on the schema spectrum_schema to the
spectrumusers user group.

grant usage on schema spectrum_schema to group spectrumusers;

Creating external tables 432

Amazon Redshift Database Developer Guide

The following example grants temporary permission on the database spectrumdb to the
spectrumusers user group.

grant temp on database spectrumdb to group spectrumusers;

You can create an external table in Amazon Redshift, AWS Glue, Amazon Athena, or an Apache Hive
metastore. For more information, see Getting Started Using AWS Glue in the AWS Glue Developer
Guide, Getting Started in the Amazon Athena User Guide, or Apache Hive in the Amazon EMR
Developer Guide.

If your external table is defined in AWS Glue, Athena, or a Hive metastore, you first create an
external schema that references the external database. Then you can reference the external table
in your SELECT statement by prefixing the table name with the schema name, without needing
to create the table in Amazon Redshift. For more information, see Creating external schemas for
Amazon Redshift Spectrum.

To allow Amazon Redshift to view tables in the AWS Glue Data Catalog, add glue:GetTable to
the Amazon Redshift IAM role. Otherwise you might get an error similar to the following.

RedshiftIamRoleSession is not authorized to perform: glue:GetTable on resource: *;

For example, suppose that you have an external table named lineitem_athena defined in an
Athena external catalog. In this case, you can define an external schema named athena_schema,
then query the table using the following SELECT statement.

select count(*) from athena_schema.lineitem_athena;

To define an external table in Amazon Redshift, use the CREATE EXTERNAL TABLE command. The
external table statement defines the table columns, the format of your data files, and the location
of your data in Amazon S3. Redshift Spectrum scans the files in the specified folder and any
subfolders. Redshift Spectrum ignores hidden files and files that begin with a period, underscore,
or hash mark (. , _, or #) or end with a tilde (~).

The following example creates a table named SALES in the Amazon Redshift external schema
named spectrum. The data is in tab-delimited text files.

create external table spectrum.sales(

Creating external tables 433

https://docs.aws.amazon.com/glue/latest/dg/getting-started.html
https://docs.aws.amazon.com/athena/latest/ug/getting-started.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-hive.html

Amazon Redshift Database Developer Guide

salesid integer,
listid integer,
sellerid integer,
buyerid integer,
eventid integer,
dateid smallint,
qtysold smallint,
pricepaid decimal(8,2),
commission decimal(8,2),
saletime timestamp)
row format delimited
fields terminated by '\t'
stored as textfile
location 's3://redshift-downloads/tickit/spectrum/sales/'
table properties ('numRows'='172000');

To view external tables, query the SVV_EXTERNAL_TABLES system view.

Pseudocolumns

By default, Amazon Redshift creates external tables with the pseudocolumns $path, $size, and
$spectrum_oid. Select the $path column to view the path to the data files on Amazon S3,
and select the $size column to view the size of the data files for each row returned by a query.
The $spectrum_oid column provides the ability to perform correlated queries with Redshift
Spectrum. For an example, see Example: Performing correlated subqueries in Redshift Spectrum.
You must delimit the $path, $size, and $spectrum_oid column names with double quotation
marks. A SELECT * clause doesn't return the pseudocolumns. You must explicitly include the $path,
$size, and $spectrum_oid column names in your query, as the following example shows.

select "$path", "$size", "$spectrum_oid"
from spectrum.sales_part where saledate = '2008-12-01';

You can disable the creation of pseudocolumns for a session by setting the
spectrum_enable_pseudo_columns configuration parameter to false. For more information,
see spectrum_enable_pseudo_columns. You can also disable only the $spectrum_oid
pseudocolumn by setting the enable_spectrum_oid to false. For more information, see
enable_spectrum_oid. However, disabling the $spectrum_oid pseudocolumn also disables
support for correlated queries with Redshift Spectrum.

Pseudocolumns 434

Amazon Redshift Database Developer Guide

Important

Selecting $size, $path, or $spectrum_oid incurs charges because Redshift Spectrum
scans the data files on Amazon S3 to determine the size of the result set. For more
information, see Amazon Redshift Pricing.

Pseudocolumns example

The following example returns the total size of related data files for an external table.

select distinct "$path", "$size"
from spectrum.sales_part;

 $path | $size
--+-------
s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01/ | 1616
s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/ | 1444
s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-03/ | 1644

Partitioning Redshift Spectrum external tables

When you partition your data, you can restrict the amount of data that Redshift Spectrum scans by
filtering on the partition key. You can partition your data by any key.

A common practice is to partition the data based on time. For example, you might choose to
partition by year, month, date, and hour. If you have data coming from multiple sources, you might
partition by a data source identifier and date.

The following procedure describes how to partition your data.

To partition your data

1. Store your data in folders in Amazon S3 according to your partition key.

Create one folder for each partition value and name the folder with the partition
key and value. For example, if you partition by date, you might have folders named
saledate=2017-04-01, saledate=2017-04-02, and so on. Redshift Spectrum scans the
files in the partition folder and any subfolders. Redshift Spectrum ignores hidden files and files
that begin with a period, underscore, or hash mark (. , _, or #) or end with a tilde (~).

Partitioning Redshift Spectrum external tables 435

https://aws.amazon.com/redshift/pricing/

Amazon Redshift Database Developer Guide

2. Create an external table and specify the partition key in the PARTITIONED BY clause.

The partition key can't be the name of a table column. The data type can be SMALLINT,
INTEGER, BIGINT, DECIMAL, REAL, DOUBLE PRECISION, BOOLEAN, CHAR, VARCHAR, DATE, or
TIMESTAMP data type.

3. Add the partitions.

Using ALTER TABLE … ADD PARTITION, add each partition, specifying the partition column
and key value, and the location of the partition folder in Amazon S3. You can add multiple
partitions in a single ALTER TABLE … ADD statement. The following example adds partitions
for '2008-01' and '2008-03'.

alter table spectrum.sales_part add
partition(saledate='2008-01-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/
saledate=2008-01/'
partition(saledate='2008-03-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/
saledate=2008-03/';

Note

If you use the AWS Glue catalog, you can add up to 100 partitions using a single ALTER
TABLE statement.

Partitioning data examples

In this example, you create an external table that is partitioned by a single partition key and an
external table that is partitioned by two partition keys.

The sample data for this example is located in an Amazon S3 bucket that gives read access to
all authenticated AWS users. Your cluster and your external data files must be in the same AWS
Region. The sample data bucket is in the US East (N. Virginia) Region (us-east-1). To access the data
using Redshift Spectrum, your cluster must also be in us-east-1. To list the folders in Amazon S3,
run the following command.

aws s3 ls s3://redshift-downloads/tickit/spectrum/sales_partition/

Partitioning Redshift Spectrum external tables 436

Amazon Redshift Database Developer Guide

PRE saledate=2008-01/
PRE saledate=2008-03/
PRE saledate=2008-04/
PRE saledate=2008-05/
PRE saledate=2008-06/
PRE saledate=2008-12/

If you don't already have an external schema, run the following command. Substitute the Amazon
Resource Name (ARN) for your AWS Identity and Access Management (IAM) role.

create external schema spectrum
from data catalog
database 'spectrumdb'
iam_role 'arn:aws:iam::123456789012:role/myspectrumrole'
create external database if not exists;

Example 1: Partitioning with a single partition key

In the following example, you create an external table that is partitioned by month.

To create an external table partitioned by month, run the following command.

create external table spectrum.sales_part(
salesid integer,
listid integer,
sellerid integer,
buyerid integer,
eventid integer,
dateid smallint,
qtysold smallint,
pricepaid decimal(8,2),
commission decimal(8,2),
saletime timestamp)
partitioned by (saledate char(10))
row format delimited
fields terminated by '|'
stored as textfile
location 's3://redshift-downloads/tickit/spectrum/sales_partition/'
table properties ('numRows'='172000');

To add the partitions, run the following ALTER TABLE command.

Partitioning Redshift Spectrum external tables 437

Amazon Redshift Database Developer Guide

alter table spectrum.sales_part add
partition(saledate='2008-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01/'

partition(saledate='2008-03')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-03/'

partition(saledate='2008-04')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-04/';

To select data from the partitioned table, run the following query.

select top 5 spectrum.sales_part.eventid, sum(spectrum.sales_part.pricepaid)
from spectrum.sales_part, event
where spectrum.sales_part.eventid = event.eventid
 and spectrum.sales_part.pricepaid > 30
 and saledate = '2008-01'
group by spectrum.sales_part.eventid
order by 2 desc;

eventid | sum
--------+---------
 4124 | 21179.00
 1924 | 20569.00
 2294 | 18830.00
 2260 | 17669.00
 6032 | 17265.00

To view external table partitions, query the SVV_EXTERNAL_PARTITIONS system view.

select schemaname, tablename, values, location from svv_external_partitions
where tablename = 'sales_part';

schemaname | tablename | values | location

-----------+------------+-------------
+---
spectrum | sales_part | ["2008-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-01
spectrum | sales_part | ["2008-03"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-03

Partitioning Redshift Spectrum external tables 438

Amazon Redshift Database Developer Guide

spectrum | sales_part | ["2008-04"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-04

Example 2: Partitioning with a multiple partition key

To create an external table partitioned by date and eventid, run the following command.

create external table spectrum.sales_event(
salesid integer,
listid integer,
sellerid integer,
buyerid integer,
eventid integer,
dateid smallint,
qtysold smallint,
pricepaid decimal(8,2),
commission decimal(8,2),
saletime timestamp)
partitioned by (salesmonth char(10), event integer)
row format delimited
fields terminated by '|'
stored as textfile
location 's3://redshift-downloads/tickit/spectrum/salesevent/'
table properties ('numRows'='172000');

To add the partitions, run the following ALTER TABLE command.

alter table spectrum.sales_event add
partition(salesmonth='2008-01', event='101')
location 's3://redshift-downloads/tickit/spectrum/salesevent/salesmonth=2008-01/
event=101/'

partition(salesmonth='2008-01', event='102')
location 's3://redshift-downloads/tickit/spectrum/salesevent/salesmonth=2008-01/
event=102/'

partition(salesmonth='2008-01', event='103')
location 's3://redshift-downloads/tickit/spectrum/salesevent/salesmonth=2008-01/
event=103/'

partition(salesmonth='2008-02', event='101')
location 's3://redshift-downloads/tickit/spectrum/salesevent/salesmonth=2008-02/
event=101/'

Partitioning Redshift Spectrum external tables 439

Amazon Redshift Database Developer Guide

partition(salesmonth='2008-02', event='102')
location 's3://redshift-downloads/tickit/spectrum/salesevent/salesmonth=2008-02/
event=102/'

partition(salesmonth='2008-02', event='103')
location 's3://redshift-downloads/tickit/spectrum/salesevent/salesmonth=2008-02/
event=103/'

partition(salesmonth='2008-03', event='101')
location 's3://redshift-downloads/tickit/spectrum/salesevent/salesmonth=2008-03/
event=101/'

partition(salesmonth='2008-03', event='102')
location 's3://redshift-downloads/tickit/spectrum/salesevent/salesmonth=2008-03/
event=102/'

partition(salesmonth='2008-03', event='103')
location 's3://redshift-downloads/tickit/spectrum/salesevent/salesmonth=2008-03/
event=103/';

Run the following query to select data from the partitioned table.

select spectrum.sales_event.salesmonth, event.eventname,
 sum(spectrum.sales_event.pricepaid)
from spectrum.sales_event, event
where spectrum.sales_event.eventid = event.eventid
 and salesmonth = '2008-02'
 and (event = '101'
 or event = '102'
 or event = '103')
group by event.eventname, spectrum.sales_event.salesmonth
order by 3 desc;

salesmonth | eventname | sum
-----------+-----------------+--------
2008-02 | The Magic Flute | 5062.00
2008-02 | La Sonnambula | 3498.00
2008-02 | Die Walkure | 534.00

Partitioning Redshift Spectrum external tables 440

Amazon Redshift Database Developer Guide

Mapping external table columns to ORC columns

You use Amazon Redshift Spectrum external tables to query data from files in ORC format.
Optimized row columnar (ORC) format is a columnar storage file format that supports nested
data structures. For more information about querying nested data, see Querying Nested Data with
Amazon Redshift Spectrum.

When you create an external table that references data in an ORC file, you map each column in the
external table to a column in the ORC data. To do so, you use one of the following methods:

• Mapping by position

• Mapping by column name

Mapping by column name is the default.

Mapping by position

With position mapping, the first column defined in the external table maps to the first column in
the ORC data file, the second to the second, and so on. Mapping by position requires that the order
of columns in the external table and in the ORC file match. If the order of the columns doesn't
match, then you can map the columns by name.

Important

In earlier releases, Redshift Spectrum used position mapping by default. If you
need to continue using position mapping for existing tables, set the table property
orc.schema.resolution to position, as the following example shows.

alter table spectrum.orc_example
set table properties('orc.schema.resolution'='position');

For example, the table SPECTRUM.ORC_EXAMPLE is defined as follows.

create external table spectrum.orc_example(
int_col int,
float_col float,
nested_col struct<

Mapping to ORC columns 441

Amazon Redshift Database Developer Guide

 "int_col" : int,
 "map_col" : map<int, array<float >>
 >
) stored as orc
location 's3://example/orc/files/';

The table structure can be abstracted as follows.

• 'int_col' : int
• 'float_col' : float
• 'nested_col' : struct
 o 'int_col' : int
 o 'map_col' : map
 - key : int
 - value : array
 - value : float

The underlying ORC file has the following file structure.

• ORC file root(id = 0)
 o 'int_col' : int (id = 1)
 o 'float_col' : float (id = 2)
 o 'nested_col' : struct (id = 3)
 - 'int_col' : int (id = 4)
 - 'map_col' : map (id = 5)
 - key : int (id = 6)
 - value : array (id = 7)
 - value : float (id = 8)

In this example, you can map each column in the external table to a column in ORC file strictly by
position. The following shows the mapping.

External table column name ORC column ID ORC column name

int_col 1 int_col

float_col 2 float_col

nested_col 3 nested_col

nested_col.int_col 4 int_col

Mapping to ORC columns 442

Amazon Redshift Database Developer Guide

External table column name ORC column ID ORC column name

nested_col.map_col 5 map_col

nested_col.map_col.key 6 NA

nested_col.map_col.value 7 NA

nested_col.map_col.value.it
em

8 NA

Mapping by column name

Using name mapping, you map columns in an external table to named columns in ORC files on the
same level, with the same name.

For example, suppose that you want to map the table from the previous example,
SPECTRUM.ORC_EXAMPLE, with an ORC file that uses the following file structure.

• ORC file root(id = 0)
 o 'nested_col' : struct (id = 1)
 - 'map_col' : map (id = 2)
 - key : int (id = 3)
 - value : array (id = 4)
 - value : float (id = 5)
 - 'int_col' : int (id = 6)
 o 'int_col' : int (id = 7)
 o 'float_col' : float (id = 8)

Using position mapping, Redshift Spectrum attempts the following mapping.

External table column name ORC column ID ORC column name

int_col 1 struct

float_col 7 int_col

nested_col 8 float_col

Mapping to ORC columns 443

Amazon Redshift Database Developer Guide

When you query a table with the preceding position mapping, the SELECT command fails on type
validation because the structures are different.

You can map the same external table to both file structures shown in the previous examples by
using column name mapping. The table columns int_col, float_col, and nested_col map by
column name to columns with the same names in the ORC file. The column named nested_col
in the external table is a struct column with subcolumns named map_col and int_col. The
subcolumns also map correctly to the corresponding columns in the ORC file by column name.

Creating external tables for data managed in Apache Hudi

To query data in Apache Hudi Copy On Write (CoW) format, you can use Amazon Redshift
Spectrum external tables. A Hudi Copy On Write table is a collection of Apache Parquet files stored
in Amazon S3. You can read Copy On Write (CoW) tables in Apache Hudi versions 0.5.2, 0.6.0, 0.7.0,
0.8.0, 0.9.0, 0.10.0, 0.10.1, 0.11.0, and 0.11.1 that are created and modified with insert, delete, and
upsert write operations. For example, bootstrap tables are not supported. For more information,
see Copy On Write Table in the open source Apache Hudi documentation.

When you create an external table that references data in Hudi CoW format, you map each column
in the external table to a column in the Hudi data. Mapping is done by column.

The data definition language (DDL) statements for partitioned and unpartitioned Hudi tables are
similar to those for other Apache Parquet file formats. For Hudi tables, you define INPUTFORMAT
as org.apache.hudi.hadoop.HoodieParquetInputFormat. The LOCATION parameter must
point to the Hudi table base folder that contains the .hoodie folder, which is required to establish
the Hudi commit timeline. In some cases, a SELECT operation on a Hudi table might fail with the
message No valid Hudi commit timeline found. If so, check if the .hoodie folder is in the correct
location and contains a valid Hudi commit timeline.

Note

Apache Hudi format is only supported when you use an AWS Glue Data Catalog. It's not
supported when you use an Apache Hive metastore as the external catalog.

The DDL to define an unpartitioned table has the following format.

CREATE EXTERNAL TABLE tbl_name (columns)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'

Creating external tables for Hudi-managed data 444

https://hudi.apache.org/docs/next/table_types#copy-on-write-table

Amazon Redshift Database Developer Guide

STORED AS
INPUTFORMAT 'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 's3://s3-bucket/prefix'

The DDL to define a partitioned table has the following format.

CREATE EXTERNAL TABLE tbl_name (columns)
PARTITIONED BY(pcolumn1 pcolumn1-type[,...])
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS
INPUTFORMAT 'org.apache.hudi.hadoop.HoodieParquetInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 's3://s3-bucket/prefix'

To add partitions to a partitioned Hudi table, run an ALTER TABLE ADD PARTITION command
where the LOCATION parameter points to the Amazon S3 subfolder with the files that belong to
the partition.

The DDL to add partitions has the following format.

ALTER TABLE tbl_name
ADD IF NOT EXISTS PARTITION(pcolumn1=pvalue1[,...])
LOCATION 's3://s3-bucket/prefix/partition-path'

Creating external tables for data managed in Delta Lake

To query data in Delta Lake tables, you can use Amazon Redshift Spectrum external tables.

To access a Delta Lake table from Redshift Spectrum, generate a manifest before the query. A
Delta Lake manifest contains a listing of files that make up a consistent snapshot of the Delta Lake
table. In a partitioned table, there is one manifest per partition. A Delta Lake table is a collection of
Apache Parquet files stored in Amazon S3. For more information, see Delta Lake in the open source
Delta Lake documentation.

When you create an external table that references data in Delta Lake tables, you map each column
in the external table to a column in the Delta Lake table. Mapping is done by column name.

The DDL for partitioned and unpartitioned Delta Lake tables is similar to that for
other Apache Parquet file formats. For Delta Lake tables, you define INPUTFORMAT as
org.apache.hadoop.hive.ql.io.SymlinkTextInputFormat and OUTPUTFORMAT as

Creating external tables for Delta Lake data 445

https://delta.io

Amazon Redshift Database Developer Guide

org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat. The LOCATION
parameter must point to the manifest folder in the table base folder. If a SELECT operation on
a Delta Lake table fails, for possible reasons see Limitations and troubleshooting for Delta Lake
tables.

The DDL to define an unpartitioned table has the following format.

CREATE EXTERNAL TABLE tbl_name (columns)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS
INPUTFORMAT 'org.apache.hadoop.hive.ql.io.SymlinkTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 's3://s3-bucket/prefix/_symlink_format_manifest'

The DDL to define a partitioned table has the following format.

CREATE EXTERNAL TABLE tbl_name (columns)
PARTITIONED BY(pcolumn1 pcolumn1-type[,...])
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS
INPUTFORMAT 'org.apache.hadoop.hive.ql.io.SymlinkTextInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.HiveIgnoreKeyTextOutputFormat'
LOCATION 's3://s3-bucket>/prefix/_symlink_format_manifest'

To add partitions to a partitioned Delta Lake table, run an ALTER TABLE ADD PARTITION command
where the LOCATION parameter points to the Amazon S3 subfolder that contains the manifest for
the partition.

The DDL to add partitions has the following format.

ALTER TABLE tbl_name
ADD IF NOT EXISTS PARTITION(pcolumn1=pvalue1[,...])
LOCATION
's3://s3-bucket/prefix/_symlink_format_manifest/partition-path'

Or run DDL that points directly to the Delta Lake manifest file.

ALTER TABLE tbl_name
ADD IF NOT EXISTS PARTITION(pcolumn1=pvalue1[,...])
LOCATION
's3://s3-bucket/prefix/_symlink_format_manifest/partition-path/manifest'

Creating external tables for Delta Lake data 446

Amazon Redshift Database Developer Guide

Limitations and troubleshooting for Delta Lake tables

Consider the following when querying Delta Lake tables from Redshift Spectrum:

• If a manifest points to a snapshot or partition that no longer exists, queries fail until a new valid
manifest has been generated. For example, this might result from a VACUUM operation on the
underlying table,

• Delta Lake manifests only provide partition-level consistency.

The following table explains some potential reasons for certain errors when you query a Delta Lake
table.

Error message Possible reason

Delta Lake manifest in bucket s3-bucket-1
cannot contain entries in bucket s3-bucket-2.

The manifest entries point to files in a
different Amazon S3 bucket than the specified
one.

Delta Lake files are expected to be in the same
folder.

The manifest entries point to files that have a
different Amazon S3 prefix than the specified
 one.

File filename listed in Delta Lake manifest
manifest-path was not found.

A file listed in the manifest wasn't found in
Amazon S3.

Error fetching Delta Lake manifest. The manifest wasn't found in Amazon S3.

Invalid S3 Path. An entry in the manifest file isn't a valid
Amazon S3 path, or the manifest file has been
corrupted.

Using Apache Iceberg tables with Amazon Redshift

You can use Redshift Spectrum or Redshift Serverless to query Apache Iceberg tables cataloged in
the AWS Glue Data Catalog. Apache Iceberg is an open-source table format for data lakes. For more
information, see Apache Iceberg in the Apache Iceberg documentation.

Using Apache Iceberg tables 447

https://iceberg.apache.org/

Amazon Redshift Database Developer Guide

Amazon Redshift provides transactional consistency for querying Apache Iceberg tables. You
can manipulate the data in your tables using ACID (atomicity, consistency, isolation, durability)
compliant services such as Amazon Athena and Amazon EMR while running queries using Amazon
Redshift. Amazon Redshift can use the table statistics stored in Apache Iceberg metadata to
optimize query plans and reduce file scans during query processing. With Amazon Redshift SQL,
you can join Redshift tables with data lake tables.

To get started using Iceberg tables with Amazon Redshift:

1. Create an Apache Iceberg table on an AWS Glue Data Catalog database using a compatible
service such as Amazon Athena or Amazon EMR. To create an Iceberg table using Athena, see
Using Apache Iceberg tables in the Amazon Athena User Guide.

2. Create an Amazon Redshift cluster or Redshift Serverless workgroup with an associated IAM role
that allows access to your data lake. For information on how to create clusters or workgroups,
see Amazon Redshift provisioned clusters and Redshift Serverless in the Amazon Redshift
Getting Started Guide.

3. Connect to your cluster or workgroup using query editor v2 or a third-party SQL client. For
information about how to connect using query editor v2, see Connecting to an Amazon Redshift
data warehouse using SQL client tools in the Amazon Redshift Management Guide.

4. Create an external schema in your Amazon Redshift database for a specific Data Catalog
database that includes your Iceberg tables. For information about creating an external schema,
see Creating external schemas for Amazon Redshift Spectrum.

5. Run SQL queries to access the Iceberg tables in the external schema you created.

Considerations when using Apache Iceberg tables with Amazon
Redshift

Consider the following when using Amazon Redshift with Iceberg tables:

• Iceberg version support – Amazon Redshift supports running queries against the following
versions of Iceberg tables:

• Version 1 defines how large analytic tables are managed using immutable data files.

• Version 2 adds the ability to support row-level updates and deletes while keeping the existing
data files unchanged, and handling table data changes using delete files.

Considerations when using Apache Iceberg tables 448

https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg.html
https://docs.aws.amazon.com/redshift/latest/gsg/new-user.html
https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-to-cluster.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-to-cluster.html

Amazon Redshift Database Developer Guide

For the difference between version 1 and version 2 tables, see Format version changes in the
Apache Iceberg documentation.

• Queries only – Amazon Redshift supports read-only access to Apache Iceberg tables. It supports
transactional consistent select queries. You can use a service like Amazon Athena to define and
update the schema of Iceberg tables in the AWS Glue Data Catalog.

• Adding partitions – You don't need to manually add partitions for your Apache Iceberg tables.
New partitions in Apache Iceberg tables are automatically detected by Amazon Redshift and no
manual operation is needed to update partitions in the table definition. Any changes in partition
specification are also automatically applied to your queries without any user intervention.

• Ingesting Iceberg data into Amazon Redshift – You can use INSERT INTO or CREATE TABLE
AS commands to import data from your Iceberg table into a local Amazon Redshift table. You
currently cannot use the COPY command to ingest the contents of an Apache Iceberg table into
a local Amazon Redshift table.

• Materialized views – You can create materialized views on Apache Iceberg tables like any other
external table in Amazon Redshift. The same considerations for other data lake table formats
apply to Apache Iceberg tables. Incremental updates, automatic refreshes, automatic query
rewriting, and automatic MVs on data lake tables are currently not supported.

• AWS Lake Formation fine-grained access control – Amazon Redshift supports AWS Lake
Formation fine-grained access control on Apache Iceberg tables.

• User-defined data handling parameters – Amazon Redshift supports user-defined data
handling parameters on Apache Iceberg tables. You use user-defined data handling parameters
on existing files to tailor the data being queried in external tables to avoid scan errors. These
parameters provide capabilities to handle mismatches between the table schema and the actual
data on files. You can use user-defined data handling parameters on Apache Iceberg tables as
well.

• Data sharing – Amazon Redshift data sharing currently doesn’t support data lake tables,
including Apache Iceberg tables.

• Time travel queries – Time travel queries are currently not supported with Apache Iceberg
tables.

• Pricing – When you access Iceberg tables from a cluster, you are charged Redshift Spectrum
pricing. When you access Iceberg tables from a workgroup, you are charged Redshift Serverless
pricing. For information about Redshift Spectrum and Redshift Serverless pricing, see Amazon
Redshift pricing.

Considerations when using Apache Iceberg tables 449

https://iceberg.apache.org/spec/#appendix-e-format-version-changes
https://aws.amazon.com/redshift/pricing/
https://aws.amazon.com/redshift/pricing/

Amazon Redshift Database Developer Guide

Topics

• Supported data types with Apache Iceberg tables

Supported data types with Apache Iceberg tables

Amazon Redshift can query Iceberg tables that contain the following data types:

binary
boolean
date
decimal
double
float
int
list
long
map
string
struct
timestamp without time zone

For more information about Iceberg data types, see the Schemas for Iceberg in the Apache Iceberg
documentation.

The following table shows the relationship between Amazon Redshift data types and Iceberg table
data types.

Iceberg type Amazon
Redshift
type

Notes

boolean boolean

- tinyint Not supported for Iceberg tables in Amazon Redshift.

- smallint Not supported for Iceberg tables in Amazon Redshift.

int int In Amazon Redshift SQL statements, this type is INTEGER.

long bigint

Supported data types 450

https://iceberg.apache.org/docs/latest/schemas/

Amazon Redshift Database Developer Guide

Iceberg type Amazon
Redshift
type

Notes

double double

float float

decimal(P
, S)

decimal(P
, S)

P is precision, S is scale.

- char Not supported for Iceberg tables in Redshift Spectrum.

string string In Amazon Redshift SQL statements, this type is VARCHAR.

binary binary

date date

time -

timestamp timestamp

timestamp
tz

- The timestamptz type is not currently supported in Redshift
Spectrum.

list<E> array

map<K,V> map

struct<..
.>

struct

fixed(L) - The fixed(L) type is not currently supported in Redshift
Spectrum.

For more information about data types in Amazon Redshift, see Data types.

Supported data types 451

Amazon Redshift Database Developer Guide

Improving Amazon Redshift Spectrum query performance

Look at the query plan to find what steps have been pushed to the Amazon Redshift Spectrum
layer.

The following steps are related to the Redshift Spectrum query:

• S3 Seq Scan

• S3 HashAggregate

• S3 Query Scan

• Seq Scan PartitionInfo

• Partition Loop

The following example shows the query plan for a query that joins an external table with a local
table. Note the S3 Seq Scan and S3 HashAggregate steps that were run against the data on
Amazon S3.

explain
select top 10 spectrum.sales.eventid, sum(spectrum.sales.pricepaid)
from spectrum.sales, event
where spectrum.sales.eventid = event.eventid
and spectrum.sales.pricepaid > 30
group by spectrum.sales.eventid
order by 2 desc;

QUERY PLAN

XN Limit (cost=1001055770628.63..1001055770628.65 rows=10 width=31)

 -> XN Merge (cost=1001055770628.63..1001055770629.13 rows=200 width=31)

 Merge Key: sum(sales.derived_col2)

Improving Amazon Redshift Spectrum query performance 452

Amazon Redshift Database Developer Guide

 -> XN Network (cost=1001055770628.63..1001055770629.13 rows=200 width=31)

 Send to leader

 -> XN Sort (cost=1001055770628.63..1001055770629.13 rows=200 width=31)

 Sort Key: sum(sales.derived_col2)

 -> XN HashAggregate (cost=1055770620.49..1055770620.99 rows=200
 width=31)

 -> XN Hash Join DS_BCAST_INNER (cost=3119.97..1055769620.49
 rows=200000 width=31)

 Hash Cond: ("outer".derived_col1 = "inner".eventid)

 -> XN S3 Query Scan sales (cost=3010.00..5010.50
 rows=200000 width=31)

 -> S3 HashAggregate (cost=3010.00..3010.50
 rows=200000 width=16)

 -> S3 Seq Scan spectrum.sales
 location:"s3://redshift-downloads/tickit/spectrum/sales" format:TEXT
 (cost=0.00..2150.00 rows=172000 width=16)
 Filter: (pricepaid > 30.00)

 -> XN Hash (cost=87.98..87.98 rows=8798 width=4)

 -> XN Seq Scan on event (cost=0.00..87.98
 rows=8798 width=4)

Note the following elements in the query plan:

• The S3 Seq Scan node shows the filter pricepaid > 30.00 was processed in the Redshift
Spectrum layer.

Improving Amazon Redshift Spectrum query performance 453

Amazon Redshift Database Developer Guide

A filter node under the XN S3 Query Scan node indicates predicate processing in Amazon
Redshift on top of the data returned from the Redshift Spectrum layer.

• The S3 HashAggregate node indicates aggregation in the Redshift Spectrum layer for the
group by clause (group by spectrum.sales.eventid).

Following are ways to improve Redshift Spectrum performance:

• Use Apache Parquet formatted data files. Parquet stores data in a columnar format, so Redshift
Spectrum can eliminate unneeded columns from the scan. When data is in text-file format,
Redshift Spectrum needs to scan the entire file.

• Use multiple files to optimize for parallel processing. Keep your file sizes larger than 64 MB.
Avoid data size skew by keeping files about the same size. For information about Apache Parquet
files and configuration recommendations, see File Format: Configurations in the Apache Parquet
Documentation.

• Use the fewest columns possible in your queries.

• Put your large fact tables in Amazon S3 and keep your frequently used, smaller dimension tables
in your local Amazon Redshift database.

• Update external table statistics by setting the TABLE PROPERTIES numRows parameter. Use
CREATE EXTERNAL TABLE or ALTER TABLE to set the TABLE PROPERTIES numRows parameter
to reflect the number of rows in the table. Amazon Redshift doesn't analyze external tables to
generate the table statistics that the query optimizer uses to generate a query plan. If table
statistics aren't set for an external table, Amazon Redshift generates a query execution plan.
Amazon Redshift generates this plan based on the assumption that external tables are the larger
tables and local tables are the smaller tables.

• The Amazon Redshift query planner pushes predicates and aggregations to the Redshift
Spectrum query layer whenever possible. When large amounts of data are returned from
Amazon S3, the processing is limited by your cluster's resources. Redshift Spectrum scales
automatically to process large requests. Thus, your overall performance improves whenever you
can push processing to the Redshift Spectrum layer.

• Write your queries to use filters and aggregations that are eligible to be pushed to the Redshift
Spectrum layer.

The following are examples of some operations that can be pushed to the Redshift Spectrum
layer:

Improving Amazon Redshift Spectrum query performance 454

https://parquet.apache.org/docs/file-format/configurations/

Amazon Redshift Database Developer Guide

• GROUP BY clauses

• Comparison conditions and pattern-matching conditions, such as LIKE.

• Aggregate functions, such as COUNT, SUM, AVG, MIN, and MAX.

• String functions.

Operations that can't be pushed to the Redshift Spectrum layer include DISTINCT and ORDER BY.

• Use partitions to limit the data that is scanned. Partition your data based on your most common
query predicates, then prune partitions by filtering on partition columns. For more information,
see Partitioning Redshift Spectrum external tables.

Query SVL_S3PARTITION to view total partitions and qualified partitions.

• Use AWS Glue's statistics generator to compute column-level statistics for AWS Glue Data
Catalog tables. Once AWS Glue generates statistics for tables in the Data Catalog, Amazon
Redshift Spectrum automatically uses those statistics to optimize the query plan. For more
information about computing column-level statistics using AWS Glue, see Working with column
statistics in the AWS Glue Developer Guide.

Setting data handling options

You can set table parameters when you create external tables to tailor the data being queried in
external tables. Otherwise, scan errors can occur. For more information, see TABLE PROPERTIES
in CREATE EXTERNAL TABLE. For examples, see Data handling examples. For a list of errors, see
SVL_SPECTRUM_SCAN_ERROR.

You can set the following TABLE PROPERTIES when you create external tables to specify input
handling for data being queried in external tables.

• column_count_mismatch_handling to identify if the file contains less or more values for a
row than the number of columns specified in the external table definition.

• invalid_char_handling to specify input handling for invalid characters in
columns containing VARCHAR, CHAR, and string data. When you specify REPLACE for
invalid_char_handling, you can specify the replacement character to use.

• numeric_overflow_handling to specify cast overflow handling in columns containing integer
and decimal data.

• surplus_bytes_handling to specify input handling for surplus bytes in columns containing
VARBYTE data.

Setting data handling options 455

https://docs.aws.amazon.com/glue/latest/dg/column-statistics.html
https://docs.aws.amazon.com/glue/latest/dg/column-statistics.html

Amazon Redshift Database Developer Guide

• surplus_char_handling to specify input handling for surplus characters in columns
containing VARCHAR, CHAR, and string data.

You can set a configuration option to cancel queries that exceed a maximum number of errors. For
more information, see spectrum_query_maxerror.

Example: Performing correlated subqueries in Redshift
Spectrum

You can perform correlated subqueries in Redshift Spectrum. The $spectrum_oid pseudocolumn
provides the ability to perform correlated queries with Redshift Spectrum. To perform a correlated
subquery, the pseudocolumn $spectrum_oid must be enabled but doesn't appear in the SQL
statement. For more information, see Pseudocolumns.

To create the external schema and external tables for this example, see Getting started with
Amazon Redshift Spectrum.

Following is an example of a correlated subquery in Redshift Spectrum.

select *
from myspectrum_schema.sales s
where exists
(select *
from myspectrum_schema.listing l
where l.listid = s.listid)
order by salesid
limit 5;

salesid listid sellerid buyerid eventid dateid qtysold pricepaid
 commission saletime
1 1 36861 21191 7872 1875 4 728 109.2
 2008-02-18 02:36:48
2 4 8117 11498 4337 1983 2 76 11.4
 2008-06-06 05:00:16
3 5 1616 17433 8647 1983 2 350 52.5
 2008-06-06 08:26:17
4 5 1616 19715 8647 1986 1 175 26.25
 2008-06-09 08:38:52

Performing correlated subqueries 456

Amazon Redshift Database Developer Guide

5 6 47402 14115 8240 2069 2 154 23.1
 2008-08-31 09:17:02

Monitoring metrics in Amazon Redshift Spectrum

You can monitor Amazon Redshift Spectrum queries using the following system views:

• SVL_S3QUERY

Use the SVL_S3QUERY view to get details about Redshift Spectrum queries (S3 queries) at the
segment and node slice level.

• SVL_S3QUERY_SUMMARY

Use the SVL_S3QUERY_SUMMARY view to get a summary of all Amazon Redshift Spectrum
queries (S3 queries) that have been run on the system.

The following are some things to look for in SVL_S3QUERY_SUMMARY:

• The number of files that were processed by the Redshift Spectrum query.

• The number of bytes scanned from Amazon S3. The cost of a Redshift Spectrum query is
reflected in the amount of data scanned from Amazon S3.

• The number of bytes returned from the Redshift Spectrum layer to the cluster. A large amount of
data returned might affect system performance.

• The maximum duration and average duration of Redshift Spectrum requests. Long-running
requests might indicate a bottleneck.

Troubleshooting queries in Amazon Redshift Spectrum

Following, you can find a quick reference that identifies and addresses some common issues you
might encounter with Amazon Redshift Spectrum queries. To view errors generated by Redshift
Spectrum queries, query the SVL_S3LOG system table.

Topics

• Retries exceeded

• Access throttled

Monitoring metrics 457

Amazon Redshift Database Developer Guide

• Resource limit exceeded

• No rows returned for a partitioned table

• Not authorized error

• Incompatible data formats

• Syntax error when using Hive DDL in Amazon Redshift

• Permission to create temporary tables

• Invalid range

• Invalid Parquet version number

Retries exceeded

If an Amazon Redshift Spectrum request times out, the request is canceled and resubmitted. After
five failed retries, the query fails with the following error.

error: Spectrum Scan Error: Retries exceeded

Possible causes include the following:

• Large file sizes (greater than 1 GB). Check your file sizes in Amazon S3 and look for large files
and file size skew. Break up large files into smaller files, between 100 MB and 1 GB. Try to make
files about the same size.

• Slow network throughput. Try your query later.

Access throttled

Amazon Redshift Spectrum is subject to the service quotas of other AWS services. Under high
usage, Redshift Spectrum requests might be required to slow down, resulting in the following error.

error: Spectrum Scan Error: Access throttled

Two types of throttling can happen:

• Access throttled by Amazon S3.

• Access throttled by AWS KMS.

Retries exceeded 458

Amazon Redshift Database Developer Guide

The error context provides more details about the type of throttling. Following, you can find causes
and possible resolutions for this throttling.

Access throttled by Amazon S3

Amazon S3 might throttle a Redshift Spectrum request if the read request rate on a prefix is too
high. For information about a GET/HEAD request rate that you can achieve in Amazon S3, see
Optimizing Amazon S3 Performance in Amazon Simple Storage Service User Guide. The Amazon
S3 GET/HEAD request rate takes into account all GET/HEAD requests on a prefix so different
applications accessing the same prefix share the total requests rate.

If your Redshift Spectrum requests frequently get throttled by Amazon S3, reduce the number
of Amazon S3 GET/HEAD requests that Redshift Spectrum makes to Amazon S3. To do this, try
merging small files into larger files. We recommend using file sizes of 64 MB or larger.

Also consider partitioning your Redshift Spectrum tables to benefit from early filtering and to
reduce the number of files accessed in Amazon S3. For more information, see Partitioning Redshift
Spectrum external tables.

Access throttled by AWS KMS

If you store your data in Amazon S3 using server-side encryption (SSE-S3 or SSE-KMS), Amazon S3
calls an API operation to AWS KMS for each file that Redshift Spectrum accesses. These requests
count toward your cryptographic operations quota; for more information, see AWS KMS Request
Quotas. For more information on SSE-S3 and SSE-KMS, see Protecting Data Using Server-Side
Encryption and Protecting Data Using Server-Side Encryption with KMS keys Stored in AWS KMS in
Amazon Simple Storage Service User Guide.

A first step to reduce the number of requests that Redshift Spectrum makes to AWS KMS is
to reduce the number of files accessed. To do this, try merging small files into larger files. We
recommend using file sizes of 64 MB or larger.

If your Redshift Spectrum requests frequently get throttled by AWS KMS, consider requesting a
quota increase for your AWS KMS request rate for cryptographic operations. To request a quota
increase, see AWS Service Limits in the Amazon Web Services General Reference.

Resource limit exceeded

Redshift Spectrum enforces an upper bound on the amount of memory a request can use. A
Redshift Spectrum request that requires more memory fails, resulting in the following error.

Resource limit exceeded 459

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html#keyprefix
https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance.html
https://docs.aws.amazon.com/kms/latest/developerguide/requests-per-second.html
https://docs.aws.amazon.com/kms/latest/developerguide/requests-per-second.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingServerSideEncryption.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingKMSEncryption.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Amazon Redshift Database Developer Guide

error: Spectrum Scan Error: Resource limit exceeded

There are two common reasons that can cause a Redshift Spectrum request to overrun its memory
allowance:

• Redshift Spectrum processes a large chunk of data that can't be split in smaller chunks.

• A large aggregation step is processed by Redshift Spectrum.

We recommend using a file format that supports parallel reads with split sizes of 128 MB or less.
See Creating data files for queries in Amazon Redshift Spectrum for supported file formats and
generic guidelines for data file creation. When using file formats or compression algorithms that
don't support parallel reads, we recommend keeping file sizes between 64 MB and 128 MB.

No rows returned for a partitioned table

If your query returns zero rows from a partitioned external table, check whether a partition
has been added for this external table. Redshift Spectrum only scans files in an Amazon S3
location that has been explicitly added using ALTER TABLE … ADD PARTITION. Query the
SVV_EXTERNAL_PARTITIONS view to find existing partitions. Run ALTER TABLE … ADD
PARTITION for each missing partition.

Not authorized error

Verify that the IAM role for the cluster allows access to the Amazon S3 file objects. If your external
database is on Amazon Athena, verify that the IAM role allows access to Athena resources. For
more information, see IAM policies for Amazon Redshift Spectrum.

Incompatible data formats

For a columnar file format, such as Apache Parquet, the column type is embedded with the data.
The column type in the CREATE EXTERNAL TABLE definition must match the column type of the
data file. If there is a mismatch, you receive an error similar to the following:

File 'https://s3bucket/location/file has an incompatible Parquet schema
for column ‘s3://s3bucket/location.col1'. Column type: VARCHAR, Par

No rows returned for a partitioned table 460

Amazon Redshift Database Developer Guide

The error message might be truncated due to the limit on message length. To retrieve the
complete error message, including column name and column type, query the SVL_S3LOG system
view.

The following example queries SVL_S3LOG for the last query completed.

select message
from svl_s3log
where query = pg_last_query_id()
order by query,segment,slice;

The following is an example of a result that shows the full error message.

 message
–––-
Spectrum Scan Error. File 'https://s3bucket/location/file has an incompatible
Parquet schema for column ' s3bucket/location.col1'.
Column type: VARCHAR, Parquet schema:\noptional int64 l_orderkey [i:0 d:1 r:0]\n

To correct the error, alter the external table to match the column type of the Parquet file.

Syntax error when using Hive DDL in Amazon Redshift

Amazon Redshift supports data definition language (DDL) for CREATE EXTERNAL TABLE that is
similar to Hive DDL. However, the two types of DDL aren't always exactly the same. If you copy Hive
DDL to create or alter Amazon Redshift external tables, you might encounter syntax errors. The
following are examples of differences between Amazon Redshift and Hive DDL:

• Amazon Redshift requires single quotation marks (') where Hive DDL supports double quotation
marks (").

• Amazon Redshift doesn't support the STRING data type. Use VARCHAR instead.

Permission to create temporary tables

To run Redshift Spectrum queries, the database user must have permission to create temporary
tables in the database. The following example grants temporary permission on the database
spectrumdb to the spectrumusers user group.

grant temp on database spectrumdb to group spectrumusers;

Syntax error when using Hive DDL in Amazon Redshift 461

Amazon Redshift Database Developer Guide

For more information, see GRANT.

Invalid range

Redshift Spectrum expects that files in Amazon S3 that belong to an external table are not
overwritten during a query. If this happens, it can result in the following error.

Error: HTTP response error code: 416 Message: InvalidRange The requested range is not
 satisfiable

To avoid the error, make sure Amazon S3 files are not overwritten while they are queried with
Redshift Spectrum.

Invalid Parquet version number

Redshift Spectrum checks the metadata of each Apache Parquet file it accesses. If the check fails, it
can result in an error similar to the following:

File 'https://s3.region.amazonaws.com/s3bucket/location/file has an invalid version
 number

There are two common reasons that can cause the check to fail:

• The Parquet file has been overwritten during the query (see Invalid range).

• The Parquet file is corrupt.

Tutorial: Querying nested data with Amazon Redshift Spectrum

Overview

Amazon Redshift Spectrum supports querying nested data in Parquet, ORC, JSON, and Ion file
formats. Redshift Spectrum accesses the data using external tables. You can create external tables
that use the complex data types struct, array, and map.

For example, suppose that your data file contains the following data in Amazon S3 in a folder
named customers. Although there isn't a single root element, each JSON object in this sample
data represents a row in a table.

Invalid range 462

Amazon Redshift Database Developer Guide

{"id": 1,
 "name": {"given": "John", "family": "Smith"},
 "phones": ["123-457789"],
 "orders": [{"shipdate": "2018-03-01T11:59:59.000Z", "price": 100.50},
 {"shipdate": "2018-03-01T09:10:00.000Z", "price": 99.12}]
}
{"id": 2,
 "name": {"given": "Jenny", "family": "Doe"},
 "phones": ["858-8675309", "415-9876543"],
 "orders": []
}
{"id": 3,
 "name": {"given": "Andy", "family": "Jones"},
 "phones": [],
 "orders": [{"shipdate": "2018-03-02T08:02:15.000Z", "price": 13.50}]
}

You can use Amazon Redshift Spectrum to query nested data in files. The following tutorial shows
you how to do so with Apache Parquet data.

For tutorial prerequisites, steps, and nested data use cases, see the following topics:

• Prerequisites

• Step 1: Create an external table that contains nested data

• Step 2: Query your nested data in Amazon S3 with SQL extensions

• Nested data use cases

• Nested data limitations (preview)

• Serializing complex nested JSON

Prerequisites

If you are not using Redshift Spectrum yet, follow the steps in the Getting started with Amazon
Redshift Spectrum before continuing.

To create an external schema, replace the IAM role ARN in the following command with the role
ARN you created in Create an IAM role. Then run the command in your SQL client.

create external schema spectrum
from data catalog

Overview 463

Amazon Redshift Database Developer Guide

database 'myspectrum_db'
iam_role 'arn:aws:iam::123456789012:role/myspectrum_role'
create external database if not exists;

Step 1: Create an external table that contains nested data

You can view the source data by downloading it from Amazon S3.

To create the external table for this tutorial, run the following command.

CREATE EXTERNAL TABLE spectrum.customers (
 id int,
 name struct<given:varchar(20), family:varchar(20)>,
 phones array<varchar(20)>,
 orders array<struct<shipdate:timestamp, price:double precision>>
)
STORED AS PARQUET
LOCATION 's3://redshift-downloads/tickit/spectrum/customers/';

In the example preceding, the external table spectrum.customers uses the struct and array
data types to define columns with nested data. Amazon Redshift Spectrum supports querying
nested data in Parquet, ORC, JSON, and Ion file formats. The STORED AS parameter is PARQUET
for Apache Parquet files. The LOCATION parameter has to refer to the Amazon S3 folder that
contains the nested data or files. For more information, see CREATE EXTERNAL TABLE.

You can nest array and struct types at any level. For example, you can define a column named
toparray as shown in the following example.

toparray array<struct<nestedarray:
 array<struct<morenestedarray:
 array<string>>>>>

You can also nest struct types as shown for column x in the following example.

x struct<a: string,
 b: struct<c: integer,
 d: struct<e: string>
 >
 >

Step 1: Create an external table that contains nested data 464

https://s3.amazonaws.com/redshift-downloads/tickit/spectrum/customers/customer_file1

Amazon Redshift Database Developer Guide

Step 2: Query your nested data in Amazon S3 with SQL extensions

Redshift Spectrum supports querying array, map, and struct complex types through extensions
to the Amazon Redshift SQL syntax.

Extension 1: Access to columns of structs

You can extract data from struct columns using a dot notation that concatenates field names
into paths. For example, the following query returns given and family names for customers. The
given name is accessed by the long path c.name.given. The family name is accessed by the long
path c.name.family.

SELECT c.id, c.name.given, c.name.family
FROM spectrum.customers c;

The preceding query returns the following data.

id	given	family
1 | John | Smith
2 | Jenny | Doe
3 | Andy | Jones
(3 rows)

A struct can be a column of another struct, which can be a column of another struct, at any
level. The paths that access columns in such deeply nested structs can be arbitrarily long. For
example, see the definition for the column x in the following example.

x struct<a: string,
 b: struct<c: integer,
 d: struct<e: string>
 >
 >

You can access the data in e as x.b.d.e.

Step 2: Query your nested data in Amazon S3 with SQL extensions 465

Amazon Redshift Database Developer Guide

Extension 2: Ranging over arrays in a FROM clause

You can extract data from array columns (and, by extension, map columns) by specifying the
array columns in a FROM clause in place of table names. The extension applies to the FROM clause
of the main query, and also the FROM clauses of subqueries.

You can reference array elements by position, such as c.orders[0]. (preview)

By combining ranging over arrays with joins, you can achieve various kinds of unnesting, as
explained in the following use cases.

Unnesting using inner joins

The following query selects customer IDs and order ship dates for customers that have orders. The
SQL extension in the FROM clause c.orders o depends on the alias c.

SELECT c.id, o.shipdate
FROM spectrum.customers c, c.orders o

For each customer c that has orders, the FROM clause returns one row for each order o of the
customer c. That row combines the customer row c and the order row o. Then the SELECT clause
keeps only the c.id and o.shipdate. The result is the following.

id	shipdate
1 |2018-03-01 11:59:59
1 |2018-03-01 09:10:00
3 |2018-03-02 08:02:15
(3 rows)

The alias c provides access to the customer fields, and the alias o provides access to the order
fields.

The semantics are similar to standard SQL. You can think of the FROM clause as running the
following nested loop, which is followed by SELECT choosing the fields to output.

for each customer c in spectrum.customers
 for each order o in c.orders
 output c.id and o.shipdate

Therefore, if a customer doesn't have an order, the customer doesn't appear in the result.

Step 2: Query your nested data in Amazon S3 with SQL extensions 466

Amazon Redshift Database Developer Guide

You can also think of this as the FROM clause performing a JOIN with the customers table and the
orders array. In fact, you can also write the query as shown in the following example.

SELECT c.id, o.shipdate
FROM spectrum.customers c INNER JOIN c.orders o ON true

Note

If a schema named c exists with a table named orders, then c.orders refers to the table
orders, and not the array column of customers.

Unnesting using left joins

The following query outputs all customer names and their orders. If a customer hasn't placed an
order, the customer's name is still returned. However, in this case, the order columns are NULL, as
shown in the following example for Jenny Doe.

SELECT c.id, c.name.given, c.name.family, o.shipdate, o.price
FROM spectrum.customers c LEFT JOIN c.orders o ON true

The preceding query returns the following data.

id	given	family	shipdate	price
 1 | John | Smith | 2018-03-01 11:59:59 | 100.5
 1 | John | Smith | 2018-03-01 09:10:00 | 99.12
 2 | Jenny | Doe | |
 3 | Andy | Jones | 2018-03-02 08:02:15 | 13.5
 (4 rows)

Extension 3: Accessing an array of scalars directly using an alias

When an alias p in a FROM clause ranges over an array of scalars, the query refers to the values of p
as p. For example, the following query produces pairs of customer names and phone numbers.

SELECT c.name.given, c.name.family, p AS phone
FROM spectrum.customers c LEFT JOIN c.phones p ON true

The preceding query returns the following data.

Step 2: Query your nested data in Amazon S3 with SQL extensions 467

Amazon Redshift Database Developer Guide

given	family	phone
John | Smith | 123-4577891
Jenny | Doe | 858-8675309
Jenny | Doe | 415-9876543
Andy | Jones |
(4 rows)

Extension 4: Accessing elements of maps

Redshift Spectrum treats the map data type as an array type that contains struct types with a
key column and a value column. The key must be a scalar; the value can be any data type.

For example, the following code creates an external table with a map for storing phone numbers.

CREATE EXTERNAL TABLE spectrum.customers2 (
 id int,
 name struct<given:varchar(20), family:varchar(20)>,
 phones map<varchar(20), varchar(20)>,
 orders array<struct<shipdate:timestamp, price:double precision>>
)
STORED AS PARQUET
LOCATION 's3://redshift-downloads/tickit/spectrum/customers/';

Because a map type behaves like an array type with columns key and value, you can think of the
preceding schemas as if they were the following.

CREATE EXTERNAL TABLE spectrum.customers3 (
 id int,
 name struct<given:varchar(20), family:varchar(20)>,
 phones array<struct<key:varchar(20), value:varchar(20)>>,
 orders array<struct<shipdate:timestamp, price:double precision>>
)
STORED AS PARQUET
LOCATION 's3://redshift-downloads/tickit/spectrum/customers/';

The following query returns the names of customers with a mobile phone number and returns the
number for each name. The map query is treated as the equivalent of querying a nested array
of struct types. The following query only returns data if you have created the external table as
described previously.

Step 2: Query your nested data in Amazon S3 with SQL extensions 468

Amazon Redshift Database Developer Guide

SELECT c.name.given, c.name.family, p.value
FROM spectrum.customers c, c.phones p
WHERE p.key = 'mobile';

Note

The key for a map is a string for Ion and JSON file types.

Nested data use cases

You can combine the extensions described previously with the usual SQL features. The following
use cases illustrate some common combinations. These examples help demonstrate how you can
use nested data. They aren't part of the tutorial.

Topics

• Ingesting nested data

• Aggregating nested data with subqueries

• Joining Amazon Redshift and nested data

Ingesting nested data

You can use a CREATE TABLE AS statement to ingest data from an external table that contains
complex data types. The following query extracts all customers and their phone numbers
from the external table, using LEFT JOIN, and stores them in the Amazon Redshift table
CustomerPhones.

CREATE TABLE CustomerPhones AS
SELECT c.name.given, c.name.family, p AS phone
FROM spectrum.customers c LEFT JOIN c.phones p ON true;

Aggregating nested data with subqueries

You can use a subquery to aggregate nested data. The following example illustrates this approach.

SELECT c.name.given, c.name.family, (SELECT COUNT(*) FROM c.orders o) AS ordercount

Nested data use cases 469

Amazon Redshift Database Developer Guide

FROM spectrum.customers c;

The following data is returned.

given	family	ordercount
 Jenny | Doe | 0
 John | Smith | 2
 Andy | Jones | 1
 (3 rows)

Note

When you aggregate nested data by grouping by the parent row, the most efficient way
is the one shown in the previous example. In that example, the nested rows of c.orders
are grouped by their parent row c. Alternatively, if you know that id is unique for each
customer and o.shipdate is never null, you can aggregate as shown in the following
example. However, this approach generally isn't as efficient as the previous example.

SELECT c.name.given, c.name.family, COUNT(o.shipdate) AS ordercount
FROM spectrum.customers c LEFT JOIN c.orders o ON true
GROUP BY c.id, c.name.given, c.name.family;

You can also write the query by using a subquery in the FROM clause that refers to an alias (c) of
the ancestor query and extracts array data. The following example demonstrates this approach.

SELECT c.name.given, c.name.family, s.count AS ordercount
FROM spectrum.customers c, (SELECT count(*) AS count FROM c.orders o) s;

Joining Amazon Redshift and nested data

You can also join Amazon Redshift data with nested data in an external table. For example,
suppose that you have the following nested data in Amazon S3.

CREATE EXTERNAL TABLE spectrum.customers2 (
 id int,
 name struct<given:varchar(20), family:varchar(20)>,

Nested data use cases 470

Amazon Redshift Database Developer Guide

 phones array<varchar(20)>,
 orders array<struct<shipdate:timestamp, item:int>>
);

Suppose also that you have the following table in Amazon Redshift.

CREATE TABLE prices (
 id int,
 price double precision
);

The following query finds the total number and amount of each customer's purchases based on the
preceding. The following example is only an illustration. It only returns data if you have created the
tables described previously.

SELECT c.name.given, c.name.family, COUNT(o.date) AS ordercount, SUM(p.price) AS
 ordersum
FROM spectrum.customers2 c, c.orders o, prices p ON o.item = p.id
GROUP BY c.id, c.name.given, c.name.family;

Nested data limitations (preview)

Note

The limitations marked (preview) in the following list only apply to preview clusters and
preview workgroups created in the following Regions.

• US East (Ohio) (us-east-2)

• US East (N. Virginia) (us-east-1)

• US West (N. California) (us-west-1)

• Asia Pacific (Tokyo) (ap-northeast-1)

• Europe (Ireland) (eu-west-1)

• Europe (Stockholm) (eu-north-1)

For information about setting up Preview clusters, see Creating a preview cluster in
the Amazon Redshift Management Guide. For information about setting up Preview
workgroups, see Creating a preview workgroup in the Amazon Redshift Management Guide.

Nested data limitations (preview) 471

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#cluster-preview
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html

Amazon Redshift Database Developer Guide

The following limitations apply to nested data:

• An array or map type can contain other array or map types as long as queries on the nested
arrays or maps don't return scalar values. (preview)

• Amazon Redshift Spectrum supports complex data types only as external tables.

• Subquery result columns must be top-level. (preview)

• If an OUTER JOIN expression refers to a nested table, it can refer only to that table and its
nested arrays (and maps). If an OUTER JOIN expression doesn't refer to a nested table, it can
refer to any number of non-nested tables.

• If a FROM clause in a subquery refers to a nested table, it can't refer to any other table.

• If a subquery depends on a nested table that refers to a parent table, the subquery can only
use the parent table in the FROM clause. You can't use the parent in any other clauses, such as a
SELECT or WHERE clause. For example, the following query doesn't run because the subquery's
SELECT clause refers to the parent table c.

SELECT c.name.given
FROM spectrum.customers c
WHERE (SELECT COUNT(c.id) FROM c.phones p WHERE p LIKE '858%') > 1;

The following query works because the parent c is used only in the FROM clause of the subquery.

SELECT c.name.given
FROM spectrum.customers c
WHERE (SELECT COUNT(*) FROM c.phones p WHERE p LIKE '858%') > 1;

• A subquery that accesses nested data anywhere other than the FROM clause must return a single
value. The only exceptions are (NOT) EXISTS operators in a WHERE clause.

• (NOT) IN is not supported.

• The maximum nesting depth for all nested types is 100. This restriction applies to all file formats
(Parquet, ORC, Ion, and JSON).

• Aggregation subqueries that access nested data can only refer to arrays and maps in their FROM
clause, not to an external table.

• Querying the pseudocolumns of nested data in a Redshift Spectrum table is not supported. For
more information, see Pseudocolumns.

• When extracting data from array or map columns by specifying them in a FROM clause, you can
only select values from those columns if the values are scalar. For example, the following

Nested data limitations (preview) 472

Amazon Redshift Database Developer Guide

queries both try to SELECT elements from inside an array. The query that selects arr.a works
because arr.a is a scalar value. The second query doesn't work because array is an array
extracted from s3.nested table in the FROM clause. (preview)

SELECT array_column FROM s3.nested_table;

array_column

[{"a":1},{"b":2}]

SELECT arr.a FROM s3.nested_table t, t.array_column arr;

arr.a

1

--This query fails to run.
SELECT array FROM s3.nested_table tab, tab.array_column array;

You can’t use an array or map in the FROM clause that itself comes from another array or map.
To select arrays or other complex structures that are nested inside other arrays, consider using
indexes in the SELECT statement.

Serializing complex nested JSON

An alternate to methods demonstrated in this tutorial is to query top-level nested collection
columns as serialized JSON. You can use the serialization to inspect, convert, and ingest nested
data as JSON with Redshift Spectrum. This method is supported for ORC, JSON, Ion, and
Parquet formats. Use the session configuration parameter json_serialization_enable
to configure the serialization behavior. When set, complex JSON data types are serialized to
VARCHAR(65535). The nested JSON can be accessed with JSON functions. For more information,
see json_serialization_enable.

For example, without setting json_serialization_enable, the following queries that access
nested columns directly fail.

SELECT * FROM spectrum.customers LIMIT 1;

=> ERROR: Nested tables do not support '*' in the SELECT clause.

Serializing complex nested JSON 473

Amazon Redshift Database Developer Guide

SELECT name FROM spectrum.customers LIMIT 1;

=> ERROR: column "name" does not exist in customers

Setting json_serialization_enable enables querying top-level collections directly.

SET json_serialization_enable TO true;

SELECT * FROM spectrum.customers order by id LIMIT 1;

id | name | phones | orders
---+--------------------------------------+----------------
+--
1 | {"given": "John", "family": "Smith"} | ["123-457789"] | [{"shipdate":
 "2018-03-01T11:59:59.000Z", "price": 100.50}, {"shipdate": "2018-03-01T09:10:00.000Z",
 "price": 99.12}]

SELECT name FROM spectrum.customers order by id LIMIT 1;

name

{"given": "John", "family": "Smith"}

Consider the following items when serializing nested JSON.

• When collection columns are serialized as VARCHAR(65535), their nested subfields can't be
accessed directly as part of the query syntax (for example, in the filter clause). However, JSON
functions can be used to access nested JSON.

• The following specialized representations are not supported:

• ORC unions

• ORC maps with complex type keys

• Ion datagrams

• Ion SEXP

• Timestamps are returned as ISO serialized strings.

• Primitive map keys are promoted to string (for example, 1 to "1").

• Top-level null values are serialized as NULLs.

• If the serialization overflows the maximum VARCHAR size of 65535, the cell is set to NULL.

Serializing complex nested JSON 474

Amazon Redshift Database Developer Guide

Serializing complex types containing JSON strings

By default, string values contained in nested collections are serialized as escaped JSON strings.
Escaping might be undesirable when the strings are valid JSON. Instead you might want to write
nested subelements or fields that are VARCHAR directly as JSON. Enable this behavior with the
json_serialization_parse_nested_strings session-level configuration. When both
json_serialization_enable and json_serialization_parse_nested_strings are set,
valid JSON values are serialized inline without escape characters. When the value is not valid JSON,
it is escaped as if the json_serialization_parse_nested_strings configuration value was
not set. For more information, see json_serialization_parse_nested_strings.

For example, assume the data from the previous example contained JSON as a structs complex
type in the name VARCHAR(20) field:

name

{"given": "{\"first\":\"John\",\"middle\":\"James\"}", "family": "Smith"}

When json_serialization_parse_nested_strings is set, the name column is serialized as
follows:

SET json_serialization_enable TO true;
SET json_serialization_parse_nested_strings TO true;
SELECT name FROM spectrum.customers order by id LIMIT 1;

name

{"given": {"first":"John","middle":"James"}, "family": "Smith"}

Instead of being escaped like this:

SET json_serialization_enable TO true;
SELECT name FROM spectrum.customers order by id LIMIT 1;

name

{"given": "{\"first\":\"John\",\"middle\":\"James\"}", "family": "Smith"}

Serializing complex nested JSON 475

Amazon Redshift Database Developer Guide

Using HyperLogLog sketches in Amazon Redshift

HyperLogLog is an algorithm used for estimating the cardinality of a multiset. Cardinality refers to
the number of distinct values in a multiset. For example, in the set of {4,3,6,2,2,6,4,3,6,2,2,3}, the
cardinality is 4 with distinct values of 4, 3, 6, and 2.

The precision of the HyperLogLog algorithm (also known as m value) can affect the accuracy of the
estimated cardinality. During the cardinality estimation, Amazon Redshift uses a default precision
value of 15. This value can be up to 26 for smaller datasets. Thus, the average relative error ranges
between 0.01–0.6%.

When calculating the cardinality of a multiset, the HyperLogLog algorithm generates a construct
called an HLL sketch. An HLL sketch encapsulates information about the distinct values in a
multiset. The Amazon Redshift data type HLLSKETCH represents such sketch values. This data type
can be used to store sketches in an Amazon Redshift table. Additionally, Amazon Redshift supports
operations that can be applied to HLLSKETCH values as aggregate and scalar functions. You can
use these functions to extract the cardinality of an HLLSKETCH and combine multiple HLLSKETCH
values.

The HLLSKETCH data type offers significant query performance benefits when extracting the
cardinality from large datasets. You can preaggregate these datasets using HLLSKETCH values
and store them in tables. Amazon Redshift can extract the cardinality directly from the stored
HLLSKETCH values without accessing the underlying datasets.

When processing HLL sketches, Amazon Redshift performs optimizations that minimize the
memory footprint of the sketch and maximize the precision of the extracted cardinality. Amazon
Redshift uses two representations for HLL sketches, sparse and dense. An HLLSKETCH starts in
sparse format. As new values are inserted into it, its size increases. After its size reaches the size
of the dense representation, Amazon Redshift automatically converts the sketch from sparse to
dense.

Amazon Redshift imports, exports, and prints an HLLSKETCH as JSON when the sketch is in a
sparse format. Amazon Redshift imports, exports, and prints an HLLSKETCH as a Base64 string
when the sketch is in a dense format. For more information about UNLOAD, see Unloading the
HLLSKETCH data type. To import text or comma-separated value (CSV) data into Amazon Redshift,
use the COPY command. For more information, see Loading the HLLSKETCH data type.

For information about functions used with HyperLogLog, see HyperLogLog functions.

476

Amazon Redshift Database Developer Guide

Topics

• Considerations

• Limitations

• Examples

Considerations

The following are considerations for using HyperLogLog in Amazon Redshift:

• The following non-HyperLogLog functions can accept an input of type HLLSKETCH or columns of
type HLLSKETCH:

• The aggregate function COUNT

• The conditional expressions COALESCE and NVL

• CASE expressions

• The supported encoding is RAW.

• You can perform an UNLOAD operation on table with HLLSKETCH columns into text or CSV. You
can use the UNLOAD HLLSKETCH columns to write HLLSKETCH data. Amazon Redshift shows the
data in a JSON format for a sparse representation or a Base64 format for a dense representation.
For more information about UNLOAD, see Unloading the HLLSKETCH data type.

The following shows the format used for a sparse HyperLogLog sketch represented in a JSON
format.

{"version":1,"logm":15,"sparse":{"indices":
[15099259,33107846,37891580,50065963],"values":[2,3,2,1]}}

• You can import text or CSV data into Amazon Redshift using the COPY command. For more
information, see Loading the HLLSKETCH data type.

• The default encoding for HLLSKETCH is RAW. For more information, see Compression encodings.

Limitations

The following are limitations for using HyperLogLog in Amazon Redshift:

• Amazon Redshift tables don't support an HLLSKETCH column as a sort key or a distribution key
for an Amazon Redshift table.

Considerations 477

Amazon Redshift Database Developer Guide

• Amazon Redshift doesn't support HLLSKETCH columns in ORDER BY, GROUP BY, or DISTINCT
clauses.

• You can only UNLOAD HLLSKETCH columns to text or CSV format. Amazon Redshift then writes
the HLLSKETCH data in either a JSON format or a Base64 format. For more information about
UNLOAD, see UNLOAD.

• Amazon Redshift only supports HyperLogLog sketches with a precision (logm value) of 15.

• JDBC and ODBC drivers don't support the HLLSKETCH data type. Therefore, the result set uses
VARCHAR to represent the HLLSKETCH values.

• Amazon Redshift Spectrum doesn't natively support the HLLSKETCH data. Therefore, you can't
create or alter an external table with an HLLSKETCH column.

• Data types for Python user-defined functions (UDFs) don't support the HLLSKETCH data type.
For more information about Python UDFs, see Creating a scalar Python UDF.

Examples

Example: Return cardinality in a subquery

The following example returns the cardinality for each sketch in a subquery for a table named
Sales.

CREATE TABLE Sales (customer VARCHAR, country VARCHAR, amount BIGINT);
INSERT INTO Sales VALUES ('David Joe', 'Greece', 14.5), ('David Joe', 'Greece',
 19.95), ('John Doe', 'USA', 29.95), ('John Doe', 'USA', 19.95), ('George Spanos',
 'Greece', 9.95), ('George Spanos', 'Greece', 2.95);

The following query generates an HLL sketch for the customers of each country and extracts the
cardinality. This shows unique customers from each country.

SELECT hll_cardinality(sketch), country
FROM (SELECT hll_create_sketch(customer) AS sketch, country
 FROM Sales
 GROUP BY country) AS hll_subquery;

hll_cardinality | country
----------------+---------
 1 | USA
 2 | Greece

Examples 478

Amazon Redshift Database Developer Guide

 ...

Example: Return an HLLSKETCH type from combined sketches in a
subquery

The following example returns a single HLLSKETCH type that represents the combination of
individual sketches from a subquery. The sketches are combined by using the HLL_COMBINE
aggregate function.

SELECT hll_combine(sketch)
FROM (SELECT hll_create_sketch(customers) AS sketch
 FROM Sales
 GROUP BY country) AS hll_subquery

 hll_combine
--
 {"version":1,"logm":15,"sparse":{"indices":[29808639,35021072,47612452],"values":
[1,1,1]}}
(1 row)

Example: Return a HyperLogLog sketch from combining multiple
sketches

For the following example, suppose that the table page-users stores preaggregated sketches
for each page that users visited on a given website. Each row in this table contains a HyperLogLog
sketch that represents all user IDs that show the visited pages.

page_users
-- +----------------+-------------+--------------+
-- | _PARTITIONTIME | page | sketch |
-- +----------------+-------------+--------------+
-- | 2019-07-28 | homepage | CHAQkAQYA... |
-- | 2019-07-28 | Product A | CHAQxPnYB... |
-- +----------------+-------------+--------------+

The following example unions the preaggregated multiple sketches and generates a single sketch.
This sketch encapsulates the collective cardinality that each sketch encapsulates.

SELECT hll_combine(sketch) as sketch

Example: Return an HLLSKETCH type from combined sketches in a subquery 479

Amazon Redshift Database Developer Guide

FROM page_users

The output looks similar to the following.

-- +---+
-- | sketch |
-- +---+
-- | CHAQ3sGoCxgCIAuCB4iAIBgTIBgqgIAgAwY.... |
-- +---+

When a new sketch is created, you can use the HLL_CARDINALITY function to get the collective
distinct values, as shown following.

SELECT hll_cardinality(sketch)
FROM (
 SELECT
 hll_combine(sketch) as sketch
 FROM page_users
) AS hll_subquery

The output looks similar to the following.

-- +-------+
-- | count |
-- +-------+
-- | 54356 |
-- +-------+

Example: Generate HyperLogLog sketches over S3 data using external
tables

The following examples cache HyperLogLog sketches to avoid directly accessing Amazon S3 for
cardinality estimation.

You can preaggregate and cache HyperLogLog sketches in external tables defined to hold Amazon
S3 data. By doing this, you can extract cardinality estimates without accessing the underlying base
data.

For example, suppose that you have unloaded a set of tab-delimited text files into Amazon S3. You
run the following query to define an external table named sales in the Amazon Redshift external

Example: Generate HyperLogLog sketches over S3 data using external tables 480

Amazon Redshift Database Developer Guide

schema named spectrum. The Amazon S3 bucket for this example is in the US East (N. Virginia)
AWS Region.

create external table spectrum.sales(
salesid integer,
listid integer,
sellerid smallint,
buyerid smallint,
eventid integer,
dateid integer,
qtysold integer,
pricepaid decimal(8,2),
commission decimal(8,2),
saletime timestamp)
row format delimited
fields terminated by '\t' stored as textfile
location 's3://redshift-downloads/tickit/spectrum/sales/';

Suppose that you want to compute the distinct buyers who purchased an item on arbitrary dates.
To do so, the following example generates sketches for the buyer IDs for each day of the year and
stores the result in the Amazon Redshift table hll_sales.

CREATE TABLE hll_sales AS
SELECT saletime, hll_create_sketch(buyerid) AS sketch
FROM spectrum.sales
GROUP BY saletime;

SELECT TOP 5 * FROM hll_sales;

The output looks similar to the following.

-- hll_sales

-- | saletime | sketch
 |
-- +-----------------
+---+
-- | 7/22/2008 8:30 | {"version":1,"logm":15,"sparse":{"indices":[9281416],"values":
[1]}}
-- | 2/19/2008 0:38 | {"version":1,"logm":15,"sparse":{"indices":[48735497],"values":
[3]}}

Example: Generate HyperLogLog sketches over S3 data using external tables 481

Amazon Redshift Database Developer Guide

-- | 11/5/2008 4:49 | {"version":1,"logm":15,"sparse":{"indices":[27858661],"values":
[1]}}
-- | 10/27/2008 4:08 | {"version":1,"logm":15,"sparse":{"indices":[65295430],"values":
[2]}}
-- | 2/16/2008 9:37 | {"version":1,"logm":15,"sparse":{"indices":[56869618],"values":
[2]}}
-- +----------------
 +---+

The following query shows the estimated number of distinct buyers that purchased an item during
the Friday after Thanksgiving in 2008.

SELECT hll_cardinality(hll_combine(sketch)) as distinct_buyers
FROM hll_sales
WHERE trunc(saletime) = '2008-11-28';

The output looks similar to the following.

distinct_buyers

386

Suppose that you want the number of distinct users who bought an item on a certain range of
dates. An example might be from the Friday after Thanksgiving to the following Monday. To get
this, the following query uses the hll_combine aggregate function. This function enables you to
avoid double-counting buyers who purchased an item on more than one day of the selected range.

SELECT hll_cardinality(hll_combine(sketch)) as distinct_buyers
FROM hll_sales
WHERE saletime BETWEEN '2008-11-28' AND '2008-12-01';

The output looks similar to the following.

distinct_buyers

1166

To keep the hll_sales table up-to-date, run the following query at the end of each day. Doing
this generates an HyperLogLog sketch based on the IDs of buyers that purchased an item today
and adds it to the hll_sales table.

Example: Generate HyperLogLog sketches over S3 data using external tables 482

Amazon Redshift Database Developer Guide

INSERT INTO hll_sales
SELECT saletime, hll_create_sketch(buyerid)
FROM spectrum.sales
WHERE TRUNC(saletime) = to_char(GETDATE(), 'YYYY-MM-DD')
GROUP BY saletime;

Example: Generate HyperLogLog sketches over S3 data using external tables 483

Amazon Redshift Database Developer Guide

Querying data across databases

By using cross-database queries in Amazon Redshift, you can query across databases in an Amazon
Redshift cluster. With cross-database queries, you can query data from any database in the Amazon
Redshift cluster, regardless of which database you are connected to. Cross-database queries
eliminate data copies and simplify your data organization to support multiple business groups
from the same data warehouse.

With cross-database queries, you can do the following:

• Query data across databases in your Amazon Redshift cluster.

Not only can you query from databases that you are connected to, you can also read from any
other databases that you have permissions to.

When you query database objects on any other unconnected databases, you have read access
only to those database objects. You can use cross-database queries to access data from any
of the databases on your Amazon Redshift cluster without having to connect to that specific
database. Doing this can help you query and join data that is spread across multiple databases in
your Amazon Redshift cluster quickly and easily.

You can also join datasets from multiple databases in a single query and analyze the data using
business intelligence (BI) or analytics tools. You can continue to set up granular table-level access
controls for users by using standard Amazon Redshift SQL commands. By doing so, you can help
ensure that users see only the relevant subsets of the data that they have permissions for.

• Query objects.

You can query other database objects using fully qualified object names expressed with the
three-part notation. The full path to any database object consists of three components: database
name, schema, and name of the object. You can access any object from any other database using
the full path notation, database_name.schema_name.object_name. To access a particular
column, use database_name.schema_name.object_name.column_name.

You can also create an alias for a schema in another database using the external
schema notation. This external schema references to another database and schema
pair. Query can access the other database object using the external schema notation,
external_schema_name.object_name.

484

Amazon Redshift Database Developer Guide

In the same read-only query, you can query various database objects, such as user tables, regular
views, materialized views, and late-binding views from other databases.

• Manage permissions.

Users with access privileges for objects in any databases in an Amazon Redshift cluster can query
those objects. You grant privileges to users and user groups using the GRANT command. You can
also revoke privileges using the REVOKE command when a user no longer requires the access to
specific database objects.

• Work with metadata and BI tools.

You can create an external schema to refer to a schema in another Amazon Redshift database
within the same Amazon Redshift cluster. For information, see CREATE EXTERNAL SCHEMA
command.

After external schema references are created, Amazon Redshift shows the tables under the
schema of the other database in SVV_EXTERNAL_TABLES and SVV_EXTERNAL_COLUMNS for the
tools to explore the metadata.

To integrate cross-database query with BI tools, you can use the following system views. These
help you view information about the metadata of objects in the connected and other databases
on the Amazon Redshift cluster.

Following are system views that show all Amazon Redshift objects and external objects of all
databases in your Amazon Redshift cluster:

• SVV_ALL_COLUMNS

• SVV_ALL_SCHEMAS

• SVV_ALL_TABLES

Following are system views that show all Amazon Redshift objects of all databases in your
Amazon Redshift cluster:

• SVV_REDSHIFT_COLUMNS

• SVV_REDSHIFT_DATABASES

• SVV_REDSHIFT_FUNCTIONS

• SVV_REDSHIFT_SCHEMAS

• SVV_REDSHIFT_TABLES

485

Amazon Redshift Database Developer Guide

Topics

• Considerations

• Examples of using a cross-database query

• Using cross-database queries with the query editor

Considerations

When you work with the cross-database query feature in Amazon Redshift, consider the following:

• Amazon Redshift supports cross-database query on the ra3.4xlarge, ra3.16xlarge, and ra3.xlplus
node types.

• Amazon Redshift supports joining data from tables or views across one or more databases in the
same Amazon Redshift cluster.

• Amazon Redshift Serverless supports the same cross-database capabilities as Amazon Redshift
clusters, so you can join data from tables or views across one or more databases in a serverless
namespace.

• All queries in a transaction on the connected database read data in the same state of the other
database as the data was at the beginning of the transaction. This approach helps to provide
query transactional consistency across databases. Amazon Redshift supports transactional
consistency for cross-database queries.

• To get metadata across databases, use SVV_ALL* and SVV_REDSHIFT* metadata views. You can't
use the three-part notation or external schemas to query cross-database metadata tables or
views under information_schema and pg_catalog.

Limitations

When you work with the cross-database query feature in Amazon Redshift, be aware of the
limitations following:

• When you query database objects on any other unconnected databases, you have read access
only to those database objects.

• You can't query views that are created on other databases that refer to objects of yet another
database.

• You can only create late-binding and materialized views on objects of other databases in the
cluster. You can't create regular views on objects of other databases in the cluster.

Considerations 486

Amazon Redshift Database Developer Guide

• Amazon Redshift doesn't support tables with column-level privileges for cross-database queries.

• Amazon Redshift doesn't support query catalog objects on AWS Glue or federated databases.
To query these objects, first create external schemas that refer to those external data sources in
each database.

• Running cross-database queries on tables with interleaved sort keys isn't supported.

Examples of using a cross-database query

Use the following examples to help learn how to set up a cross-database query that references an
Amazon Redshift database.

To start, create databases db1 and db2 and users user1 and user2 in your Amazon Redshift
cluster. For more information, see CREATE DATABASE and CREATE USER.

--As user1 on db1
CREATE DATABASE db1;

CREATE DATABASE db2;

CREATE USER user1 PASSWORD 'Redshift01';

CREATE USER user2 PASSWORD 'Redshift01';

As user1 on db1, create a table, grant access privileges to user2, and insert values into table1.
For more information, see GRANT and INSERT.

--As user1 on db1
CREATE TABLE table1 (c1 int, c2 int, c3 int);

GRANT SELECT ON table1 TO user2;

INSERT INTO table1 VALUES (1,2,3),(4,5,6),(7,8,9);

As user2 on db2, run a cross-database query in db2 using the three-part notation.

--As user2 on db2
SELECT * from db1.public.table1 ORDER BY c1;
c1 | c2 | c3
---+-----+----

Examples of using a cross-database query 487

Amazon Redshift Database Developer Guide

1 | 2 | 3
4 | 5 | 6
7 | 8 | 9
(3 rows)

As user2 on db2, create an external schema and run a cross-database query in db2 using the
external schema notation.

--As user2 on db2
CREATE EXTERNAL SCHEMA db1_public_sch
FROM REDSHIFT DATABASE 'db1' SCHEMA 'public';

SELECT * FROM db1_public_sch.table1 ORDER BY c1;

c1 | c2 | c3
----+----+----
1 | 2 | 3
4 | 5 | 6
7 | 8 | 9
(3 rows)

To create different views and grant permissions to those views, as user1 on db1, do the following.

--As user1 on db1
CREATE VIEW regular_view AS SELECT c1 FROM table1;

GRANT SELECT ON regular_view TO user2;

CREATE MATERIALIZED VIEW mat_view AS SELECT c2 FROM table1;

GRANT SELECT ON mat_view TO user2;

CREATE VIEW late_bind_view AS SELECT c3 FROM public.table1 WITH NO SCHEMA BINDING;

GRANT SELECT ON late_bind_view TO user2;

As user2 on db2, run the following cross-database query using the three-part notation to view the
particular view.

--As user2 on db2

Examples of using a cross-database query 488

Amazon Redshift Database Developer Guide

SELECT * FROM db1.public.regular_view;
c1

1
4
7
(3 rows)

SELECT * FROM db1.public.mat_view;
c2

8
5
2
(3 rows)

SELECT * FROM db1.public.late_bind_view;
c3

3
6
9
(3 rows)

As user2 on db2, run the following cross-database query using the external schema notation to
query the late-binding view.

--As user2 on db2
SELECT * FROM db1_public_sch.late_bind_view;
c3

3
6
9
(3 rows)

As user2 on db2, run the following command using connected tables in a single query.

--As user2 on db2
CREATE TABLE table1 (a int, b int, c int);

INSERT INTO table1 VALUES (1,2,3), (4,5,6), (7,8,9);

Examples of using a cross-database query 489

Amazon Redshift Database Developer Guide

SELECT a AS col_1, (db1.public.table1.c2 + b) AS sum_col2, (db1.public.table1.c3 + c)
 AS sum_col3 FROM db1.public.table1, table1 WHERE db1.public.table1.c1 = a;
col_1 | sum_col2 | sum_col3
------+----------+----------
1 | 4 | 6
4 | 10 | 12
7 | 16 | 18
(3 rows)

The following example lists all databases on the cluster.

select database_name, database_owner, database_type
from svv_redshift_databases
where database_name in ('db1', 'db2');

 database_name | database_owner | database_type
---------------+----------------+---------------
 db1 | 100 | local
 db2 | 100 | local
(2 rows)

The following example lists all Amazon Redshift schemas of all databases on the cluster.

select database_name, schema_name, schema_owner, schema_type
from svv_redshift_schemas
where database_name in ('db1', 'db2');

 database_name | schema_name | schema_owner | schema_type
---------------+--------------------+--------------+-------------
 db1 | pg_catalog | 1 | local
 db1 | public | 1 | local
 db1 | information_schema | 1 | local
 db2 | pg_catalog | 1 | local
 db2 | public | 1 | local
 db2 | information_schema | 1 | local
(6 rows)

The following example lists all Amazon Redshift tables or views of all databases on the cluster.

select database_name, schema_name, table_name, table_type
from svv_redshift_tables
where database_name in ('db1', 'db2') and schema_name in ('public');

Examples of using a cross-database query 490

Amazon Redshift Database Developer Guide

 database_name | schema_name | table_name | table_type
---------------+-------------+---------------------+------------
 db1 | public | late_bind_view | VIEW
 db1 | public | mat_view | VIEW
 db1 | public | mv_tbl__mat_view__0 | TABLE
 db1 | public | regular_view | VIEW
 db1 | public | table1 | TABLE
 db2 | public | table2 | TABLE
(6 rows)

The following example lists all Amazon Redshift and external schemas of all databases on the
cluster.

select database_name, schema_name, schema_owner, schema_type
from svv_all_schemas where database_name in ('db1', 'db2') ;

 database_name | schema_name | schema_owner | schema_type
---------------+--------------------+--------------+-------------
 db1 | pg_catalog | 1 | local
 db1 | public | 1 | local
 db1 | information_schema | 1 | local
 db2 | pg_catalog | 1 | local
 db2 | public | 1 | local
 db2 | information_schema | 1 | local
 db2 | db1_public_sch | 1 | external
(7 rows)

The following example lists all Amazon Redshift and external tables of all databases on the cluster.

select database_name, schema_name, table_name, table_type
from svv_all_tables
where database_name in ('db1', 'db2') and schema_name in ('public');

 database_name | schema_name | table_name | table_type
---------------+-------------+---------------------+------------
 db1 | public | regular_view | VIEW
 db1 | public | mv_tbl__mat_view__0 | TABLE
 db1 | public | mat_view | VIEW
 db1 | public | late_bind_view | VIEW
 db1 | public | table1 | TABLE
 db2 | public | table2 | TABLE

Examples of using a cross-database query 491

Amazon Redshift Database Developer Guide

(6 rows)

Using cross-database queries with the query editor

You can use cross-database queries to access data from any of the databases on your Amazon
Redshift cluster without having to connect to that specific database. When you run cross-database
queries on any other unconnected databases, you have read access only to those database objects.

You can query other database objects using fully qualified object names expressed with three-
part notation. The full path to any database object consists of three components: database name,
schema, and name of the object. An example is database_name.schema_name.object_name.

To use cross-database queries with the query editor v2

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. Create a cluster to use cross-database queries in Amazon Redshift query editor v2. For more
information, see Creating a cluster in the Amazon Redshift Management Guide.

3. Enable access to the query editor with the appropriate permissions. For more information, see
Querying a database using the query editor v2 in the Amazon Redshift Management Guide.

4. On the navigation menu, choose Query editor v2, then connect to a database in your cluster.

When you connect to the query editor v2 for the first time, Amazon Redshift shows the
resources for the connected database by default.

5. Choose the other databases that you have access to view database objects for these other
databases. To view objects, make sure that you have the appropriate permissions. After you
choose a database, Amazon Redshift shows the list of schemas from the database.

Select a schema to see the list of database objects within that schema.

Note

Amazon Redshift doesn't directly support query catalog objects that are part of AWS
Glue or federated databases. To query these, first create external schemas that refer to
those external data sources in each database.

Using cross-database queries with the query editor 492

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2.html

Amazon Redshift Database Developer Guide

Amazon Redshift cross-database queries with three-part notation don't support
metadata tables under the schemas information_schema and pg_catalog because
these metadata views are specific to a database.

6. (Optional) Filter the list of tables or views for the schema that you selected.

Using cross-database queries with the query editor 493

Amazon Redshift Database Developer Guide

Sharing data in Amazon Redshift
With Amazon Redshift data sharing, you can securely share access to live data across Amazon
Redshift clusters, workgroups, AWS accounts, and AWS Regions without manually moving or
copying the data. Since the data is live, all users can see the most up-to-date and consistent
information in Amazon Redshift as soon as it’s updated.

You can share data across provisioned clusters, serverless workgroups, Availability Zones, AWS
accounts, and AWS Regions. You can share between cluster types as well as between provisioned
clusters and serverless.

Multi-warehouse writes in Amazon Redshift (preview)

You can share database objects for both reads and writes across different Amazon Redshift clusters
or Amazon Redshift Serverless workgroups within the same AWS account, or from one AWS
account to another. You can write data across regions as well. You can grant permissions such as
SELECT, INSERT, and UPDATE for different tables and USAGE and CREATE for different schemas.
The data is live and available to all warehouses as soon as a write transaction is committed.

For more information about configuring capabilities for data sharing in the PREVIEW_2023 track,
see Sharing write access to data (Preview).

Note

Multi-warehouse writes through data sharing is not currently available on ra3.xlplus
clusters. To use this feature, create ra3.4xl clusters, ra3.16xl clusters, or Amazon Redshift
Serverless workgroups.

Overview of data sharing in Amazon Redshift

With data sharing, you can securely and easily share live data across Amazon Redshift clusters.

For information about how to get started working with data sharing and manage datashares using
the AWS Management Console, see Managing data sharing tasks.

Data sharing use cases for Amazon Redshift

Amazon Redshift data sharing is especially useful for these use cases:

Multi-warehouse writes in Amazon Redshift (preview) 494

https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html

Amazon Redshift Database Developer Guide

• Supporting different kinds of business-critical workloads – Use a central extract, transform,
and load (ETL) cluster that shares data with multiple business intelligence (BI) or analytic
clusters. This approach provides read workload isolation and chargeback for individual
workloads. You can size and scale your individual workload compute according to the workload-
specific requirements of price and performance.

• Enabling cross-group collaboration – Enable seamless collaboration across teams and business
groups for broader analytics, data science, and cross-product impact analysis.

• Delivering data as a service – Share data as a service across your organization.

• Sharing data between environments – Share data among development, test, and production
environments. You can improve team agility by sharing data at different levels of granularity.

• Licensing access to data in Amazon Redshift – List Amazon Redshift data sets in the AWS Data
Exchange catalog that customers can find, subscribe to, and query in minutes.

Data sharing write-access use cases (preview)

Datasharing for writes has several important use cases:

• Update business source data on the producer – You can share data as a service across your
organization, but then consumers can also perform actions on the source data. For instance, they
can communicate back up-to-date values or acknowledge receipt of data. These are just a couple
possible business use cases.

• Insert additional records on the producer – Consumers can add records to the original source
data. These can be marked as from the consumer, if needed.

For information specifically regarding how to perform write operations on a datashare, see Sharing
write access to data (Preview).

Sharing data at different levels in Amazon Redshift

With Amazon Redshift, you can share data at different levels. These levels include databases,
schemas, tables, views (including regular, late-binding, and materialized views), and SQL user-
defined functions (UDFs). You can create multiple datashares for a given database. A datashare can
contain objects from multiple schemas in the database on which sharing is created.

By having this flexibility in sharing data, you get fine-grained access control. You can tailor this
control for different users and businesses that need access to Amazon Redshift data.

Sharing data at different levels 495

https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html

Amazon Redshift Database Developer Guide

Managing data consistency in Amazon Redshift

Amazon Redshift provides transactional consistency on all producer and consumer clusters and
shares up-to-date and consistent views of the data with all consumers.

You can continuously update data on the producer cluster. All queries on a consumer cluster within
a transaction read the same state of the shared data. Amazon Redshift doesn't consider the data
that was changed by another transaction on the producer cluster that was committed after the
beginning of the transaction on the consumer cluster. After the data change is committed on the
producer cluster, new transactions on the consumer cluster can immediately query the updated
data.

The strong consistency removes the risks of lower-fidelity business reports that might contain
invalid results during sharing of data. This factor is especially important for financial analysis
or where the results might be used to prepare datasets that are used to train machine learning
models.

Considerations when using data sharing in Amazon Redshift

Following are considerations for working with Amazon Redshift data sharing. For information on
data sharing limitations, see Limitations for data sharing.

• Cross-region data sharing includes additional cross-region data-transfer charges. These data-
transfer charges don't apply within the same region, only across regions. For more information,
see Managing cost control for cross-Region data sharing.

• As a datashare user, you continue to connect to your local cluster database only. You can't
connect to the databases created from a datashare but can read from those databases.

• The consumer is charged for all compute and cross-region data transfer fees required to
query the producer's data. The producer is charged for the underlying storage of data in their
provisioned cluster or serverless namespace.

• The performance of the queries on shared data depends on the compute capacity of the
consumer clusters.

Managing cluster encryption

To share data across AWS account, both the producer and consumer clusters must be encrypted.

Managing data consistency 496

Amazon Redshift Database Developer Guide

In Amazon Redshift, you can turn on database encryption for your clusters to help protect data
at rest. When you turn on encryption for a cluster, the data blocks and system metadata are
encrypted for the cluster and its snapshots. You can turn on encryption when you launch your
cluster, or you can modify an unencrypted cluster to use AWS Key Management Service (AWS
KMS) encryption. For more information about Amazon Redshift database encryption, see Amazon
Redshift database encryption in the Amazon Redshift Management Guide.

To protect data in transit, all data is encrypted in transit through the encryption schema of the
producer cluster. The consumer cluster adopts this encryption schema when data is loaded. The
consumer cluster then operates as a normal encrypted cluster. Communications between the
producer and consumer are also encrypted using a shared key schema. For more information about
encryption in transit, Encryption in transit.

Limitations for data sharing

The following are limitations when working with datashares in Amazon Redshift:

• Data sharing is supported for all provisioned ra3 cluster types (ra3.16xlarge, ra3.4xlarge, and
ra3.xlplus) and Amazon Redshift Serverless. It isn't supported for other cluster types.

• For cross-account and cross-Region data sharing, both the producer and consumer clusters and
serverless namespaces must be encrypted. This is for security purposes. However, they don't
need to share the same encryption key.

• You can only share SQL UDFs through datashares. Python and Lambda UDFs aren't supported.

• If the producer database has specific collation, use the same collation settings for the consumer
database.

• Amazon Redshift doesn't support adding external schemas, tables, or late-binding views on
external tables to datashares.

• Amazon Redshift doesn't support nested SQL user-defined functions on producer clusters.

• Amazon Redshift doesn't support sharing tables with interleaved sort keys and views that refer
to tables with interleaved sort keys.

• Consumers can't add datashare objects to another datashare. Additionally, consumers can't add
views referencing datashare objects to another datashare.

• Amazon Redshift doesn't support accessing a datashare object which had a concurrent DDL occur
between the Prepare and Execute of the access.

• Amazon Redshift doesn't support sharing stored procedures through datashares.

• Amazon Redshift doesn't support sharing metadata system views and system tables.

Considerations when using data sharing in Amazon Redshift 497

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-db-encryption.html
https://docs.aws.amazon.com/redshift/latest/mgmt/security-encryption-in-transit.html

Amazon Redshift Database Developer Guide

Regions where data sharing is available

The following table lists availability for data-sharing capabilities.

Region Same-region data
sharing

Cross-region data
sharing

AWS Lake Formation
governed data
shares

US East (N. Virginia)
(us-east-1)

Yes Yes Yes

US East (Ohio) (us-
east-2)

Yes Yes Yes

US West (N. Californi
a) (us-west-1)

Yes Yes Yes

US West (Oregon)
(us-west-2)

Yes Yes Yes

Asia Pacific (Mumbai)
(ap-south-1)

Yes Yes Yes

Asia Pacific
(Hyderabad) (ap-
south-2)

Yes No No

Asia Pacific (Tokyo)
(ap-northeast-1)

Yes Yes Yes

Asia Pacific (Singapor
e) (ap-southeast-1)

Yes Yes Yes

Asia Pacific (Sydney)
(ap-southeast-2)

Yes Yes Yes

Asia Pacific (Jakarta);
(ap-southeast-3)

Yes No No

Regions where data sharing is available 498

Amazon Redshift Database Developer Guide

Region Same-region data
sharing

Cross-region data
sharing

AWS Lake Formation
governed data
shares

Asia Pacific
(Melbourne) (ap-
southeast-4)

Yes No No

Asia Pacific (Seoul)
(ap-northeast-2)

Yes Yes Yes

Asia Pacific (Osaka)
(ap-northeast-3)

Yes No No

Africa (Cape Town)
(af-south-1)

Yes Yes No

Canada West
(Calgary) (ca-west-1)

Yes No No

Canada (Central) (ca-
central-1)

Yes Yes Yes

Europe (Frankfurt)
(eu-central-1)

Yes Yes Yes

Europe (Zurich) (eu-
central-2)

Yes No No

Europe (Ireland) (eu-
west-1)

Yes Yes Yes

Europe (London) (eu-
west-2)

Yes Yes Yes

Europe (Paris) (eu-
west-3)

Yes Yes Yes

Regions where data sharing is available 499

Amazon Redshift Database Developer Guide

Region Same-region data
sharing

Cross-region data
sharing

AWS Lake Formation
governed data
shares

Europe (Milan) (eu-
south-1)

Yes No No

Europe (Spain) (eu-
south-2)

Yes No No

Europe (Stockholm)
(eu-north-1)

Yes Yes Yes

Middle East (UAE)
(me-central-1)

Yes No No

Middle East (Bahrain)
(me-south-1)

Yes No No

Israel (Tel Aviv) (il-
central-1)

Yes No No

South America (São
Paulo) (sa-east-1)

Yes Yes Yes

AWS GovCloud (US-
East) (us-gov-east-1)

Yes No Yes

AWS GovCloud (US-
West) (us-gov-w
est-1)

Yes No Yes

Regional availability for multi-warehouse writes for data sharing

In the PREVIEW_2023 track, data sharing has the capability for write operations and more granular
sharing capabilities. For more information about how to configure these, see Sharing write access
to data (Preview). For information about regions where preview capabilities are available, see
Regions where data sharing is available (preview).

Regions where data sharing is available 500

https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/within-account-multi-warehouse-regions.html

Amazon Redshift Database Developer Guide

What is a datashare?

A datashare is the unit of sharing data in Amazon Redshift. Use datashares to share data in the
same AWS account or different AWS accounts. Also, share data for read purposes across different
Amazon Redshift clusters.

Each datashare is associated with a specific database in your Amazon Redshift cluster.

A producer cluster administrator can create datashares and add datashare objects to share data
with other clusters, referred to as outbound shares. A consumer cluster administrator can receive
datashares from other clusters, referred to as inbound shares. For details on producers and
consumers, see Datashare producers and consumers.

Datashare objects are objects from specific databases on a cluster that producer cluster
administrators can add to datashares to be shared with data consumers. Datashare objects are
read-only for data consumers. Examples of datashare objects are tables, views, and user-defined
functions. You can add datashare objects to datashares while creating datashares or editing a
datashare at any time.

Data sharing continues to work when clusters are resized or when the producer cluster is paused.

There are different types of datashares.

Topics

• Standard datashares

• AWS Data Exchange datashares

• AWS Lake Formation-managed datashares

• Datashare producers and consumers

Standard datashares

With standard datashares, you can share data across provisioned clusters, serverless workgroups,
Availability Zones, AWS accounts, and AWS Regions. You can share between cluster types as well as
between provisioned clusters and Amazon Redshift Serverless.

To share data, note the following provisioned cluster, serverless namespace, and AWS account
identifiers:

What is a datashare? 501

Amazon Redshift Database Developer Guide

• Provisioned cluster namespaces are identifiers that identify Amazon Redshift provisioned
clusters. A namespace globally unique identifier (GUID) is automatically created during
provisioned cluster creation and attached to the cluster. A namespace Amazon Resource Name
(ARN) is in the arn:{partition}:redshift:{region}:{account-id}:namespace:{namespace-guid}
format. You can see the namespace of a provisioned cluster on the cluster details page on the
Amazon Redshift console.

In the data sharing workflow, the namespace GUID value and the cluster namespace ARN are
used to share data with clusters in the AWS account. You can also find the namespace for the
current cluster by using the current_namespace function.

• Serverless namespaces are identifiers that identify Amazon Redshift Serverless. A namespace
globally unique identifier (GUID) is automatically created during Amazon Redshift
Serverless creation and attached to the instance. A serverless namespace ARN is in the arn:
{partition}:redshift-serverless:{region}:{account-id}:namespace/{namespace-guid} format.

• AWS accounts can be consumers for datashares and are each represented by a 12-digit AWS
account ID.

For standard datashares, consider the following:

• When a producer cluster is deleted, Amazon Redshift deletes the datashares created by the
producer cluster. When a producer cluster is backed up and restored, the created datashares
still persist on the restored cluster. However, datashare permissions granted to other clusters
are no longer valid on the restored cluster. Re-grant usage permissions of datashares to desired
consumer clusters. The consumer database on the consumer cluster points to the datashare from
the original cluster where the snapshot is taken. To query the shared data from the restored
cluster, the consumer cluster administrator creates a different database. Or the administrator can
drop and recreate an existing consumer database to use the datashare from the newly restored
cluster.

• When a consumer cluster is deleted and restored from a snapshot, the previous access shared to
this cluster would no longer be valid and visible. If access to datashares is still required on the
restored consumer cluster, the producer cluster administrator must grant usage of datashares
to the restored consumer cluster again. The consumer cluster administrator must drop any stale
consumer databases created from the inactive datashares. Then the administrator must recreate
the consumer database from the datashare, after the producer re-granted the permissions. As
the cluster namespace GUID is different on a restored cluster from the original cluster, re-grant
datashare permissions when the consumer or producer cluster is restored from backup.

Standard datashares 502

Amazon Redshift Database Developer Guide

AWS Data Exchange datashares

An AWS Data Exchange datashare is a unit of licensing for sharing your data through AWS Data
Exchange. AWS manages all billing and payments associated with subscriptions to AWS Data
Exchange and use of Amazon Redshift data sharing. Approved data providers can add AWS Data
Exchange datashares to AWS Data Exchange products. When customers subscribe to a product with
AWS Data Exchange datashares, they get access to the datashares in the product.

AWS Data Exchange for Amazon Redshift makes it convenient to license access to your Amazon
Redshift data through AWS Data Exchange. When a customer subscribes to a product with
AWS Data Exchange datashares, AWS Data Exchange automatically adds the customer as a
data consumer on all AWS Data Exchange datashares included with the product. Invoices are
automatically generated, and payments are centrally collected and automatically disbursed
through AWS Marketplace Entitlement Service.

Providers can license data in Amazon Redshift at a granular level, such as schemas, tables, views,
and user-defined functions. You can use the same AWS Data Exchange datashare across multiple
AWS Data Exchange products. Any objects added to the AWS Data Exchange datashare is available
to consumers. Producers can view all AWS Data Exchange datashares managed by AWS Data
Exchange on their behalf using Amazon Redshift API operations, SQL commands, and the Amazon
Redshift console. Customers who subscribe to a product AWS Data Exchange datashares have read-
only access to the objects in the datashares.

Customers who want to consume third-party producer data can browse the AWS Data Exchange
catalog to discover and subscribe to datasets in Amazon Redshift. After their AWS Data Exchange
subscription is active, they can create a database from the datashare in their cluster and query the
data in Amazon Redshift.

How AWS Data Exchange datashares work

Managing AWS Data Exchange datashares as a producer administrator

If you are a data producer (also known as a provider on AWS Data Exchange), you can create AWS
Data Exchange datashares that connect to your Amazon Redshift databases. To add AWS Data
Exchange datashares to products on AWS Data Exchange, you must be a registered AWS Data
Exchange provider.

For more information on how to get started with AWS Data Exchange datashares, see Sharing
licensed Amazon Redshift data on AWS Data Exchange.

AWS Data Exchange datashares 503

Amazon Redshift Database Developer Guide

Using AWS Data Exchange datashares as a consumer with an active AWS Data Exchange
subscription

If you are a consumer with an active AWS Data Exchange subscription (also known as a subscriber
on AWS Data Exchange), you can browse the AWS Data Exchange catalog on the AWS Data
Exchange console to discover products containing AWS Data Exchange datashares.

After you subscribe to a product that contains AWS Data Exchange datashares, create a database
from the datashare within your cluster. You can then query the data in Amazon Redshift directly
without extracting, transforming, and loading the data.

For more information on how to get started with AWS Data Exchange datashares, see Sharing
licensed Amazon Redshift data on AWS Data Exchange.

For AWS Data Exchange datashares, consider the following:

• When a producer cluster is deleted, Amazon Redshift deletes the datashares created by the
producer cluster. When a producer cluster is backed up and restored, the created datashares
still persist on the restored cluster. For data subscribers to be able to continue accessing the
data, create the AWS Data Exchange datashares again and publish them to the product's data
sets. The consumer database on the consumer cluster points to the datashare from the original
cluster where the snapshot is taken. To query the shared data from the restored cluster, the
consumer cluster administrator creates a different database, or drops and recreates an existing
consumer database to use the newly created AWS Data Exchange datashare from the newly
restored cluster.

• When a consumer cluster is deleted and restored from a snapshot, the previous access shared
to this cluster remains valid and visible. Consumer cluster administrator must drop any stale
consumer databases created from the inactive datashares and recreate the consumer database
from the datashare after the producer re-grants the permissions. As the cluster namespace GUID
is different on a restored cluster from the original cluster, re-grant datashare permissions when
the producer cluster is restored from backup.

• We recommend that you don't delete your cluster if you have any AWS Data Exchange
datashares. Performing this type of alteration can breach data product terms in AWS Data
Exchange.

Considerations when using AWS Data Exchange for Amazon Redshift

When using AWS Data Exchange for Amazon Redshift, consider the following:

AWS Data Exchange datashares 504

Amazon Redshift Database Developer Guide

• Both producers and consumers must use the RA3 instance types to use Amazon Redshift
datashares. Producers must use the RA3 instance types with the latest Amazon Redshift cluster
version.

• Both the producer and consumer clusters must be encrypted.

• You must be registered as an AWS Data Exchange provider to list products on AWS Data
Exchange, including products that contain AWS Data Exchange datashares. For more information,
see Getting started as a provider.

• You don't need to be a registered AWS Data Exchange provider to find, subscribe to, and query
Amazon Redshift data through AWS Data Exchange.

• To control access to your data, create AWS Data Exchange datashares with the publicly accessible
setting turned on. To alter an AWS Data Exchange datashare to turn off the publicly accessible
setting, set the session variable to allow ALTER DATASHARE SET PUBLICACCESSIBLE FALSE. For
more information, see ALTER DATASHARE usage notes.

• Producers can't manually add or remove consumers from AWS Data Exchange datashares
because access to the datashares is granted based on having an active subscription to an AWS
Data Exchange product that contains the AWS Data Exchange datashare.

• Producers can't view the SQL queries that consumers run. They can only view metadata, such
as the number of queries or the objects consumers query, through Amazon Redshift tables that
only the producer can access. For more information, see Monitoring and auditing data sharing in
Amazon Redshift.

• We recommend that you make your datashares publicly accessible. If you don't, subscribers
on AWS Data Exchange with publicly accessible consumer clusters won't be able to use your
datashare.

• We recommend that you don't delete an AWS Data Exchange datashare shared to other AWS
accounts using the DROP DATASHARE statement. If you do, the AWS accounts that have access
to the datashare will lose access. This action is irreversible. Performing this type of alteration can
breach data product terms in AWS Data Exchange. If you want to delete an AWS Data Exchange
datashare, see DROP DATASHARE usage notes.

• For cross-Region data sharing, you can create AWS Data Exchange datashares to share licensed
data.

• When consuming data from a different Region, the consumer pays the Cross-Region data
transfer fee from the producer Region to the consumer Region.

AWS Data Exchange datashares 505

https://docs.aws.amazon.com/data-exchange/latest/userguide/provider-getting-started.html

Amazon Redshift Database Developer Guide

AWS Lake Formation-managed datashares

Using AWS Lake Formation, you can centrally define and enforce database, table, column, and row-
level access permissions of Amazon Redshift datashares and restrict user access to objects within a
datashare. By sharing data through Lake Formation, you can define permissions in Lake Formation
and apply those permissions to any datashare and its objects. For example, if you have a table
containing employee information, you can use Lake Formation's column-level filters to prevent
employees who don't work in the HR department from seeing personally identifiable information
(PII), such as a social security number. For more information about data filters, see Data filtering
and cell-level security in Lake Formation in the AWS Lake Formation Developer Guide.

You can also use tags in Lake Formation to configure permissions on Lake Formation resources. For
more information, see Lake Formation Tag-based access control.

Amazon Redshift currently supports data sharing via Lake Formation when sharing within the same
account or across accounts. Cross-Region sharing is currently not supported.

The following is a high-level overview of how to use Lake Formation to control datashare
permissions:

1. In Amazon Redshift, the producer cluster or workgroup administrator creates a datashare on
the producer cluster or workgroup and grants usage to a Lake Formation account.

2. The producer cluster or workgroup administrator authorizes the Lake Formation account to
access the datashare.

3. The Lake Formation administrator discovers and registers the datashares. They must also
discover the AWS Glue ARNs they have access to and associate the datashares with an AWS
Glue Data Catalog ARN. If you're using the AWS CLI you can discover and accept datashares
with the Redshift CLI operations describe-data-shares and associate-data-share-
consumer. To register a datashare, use the Lake Formation CLI operation register-
resource.

4. The Lake Formation administrator creates a federated database in the AWS Glue Data Catalog,
and configures Lake Formation permissions to control user access to objects within the
datashare. For more information about federated databases in AWS Glue, see Managing
permissions for data in an Amazon Redshift datashare.

5. The Lake Formation administrator discovers the AWS Glue databases they have access to and
associates the datashare with an AWS Glue Data Catalog ARN.

AWS Lake Formation-managed datashares 506

https://docs.aws.amazon.com/lake-formation/latest/dg/data-filtering.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-filtering.html
https://docs.aws.amazon.com/lake-formation/latest/dg/tag-based-access-control.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-sharing-redshift.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-sharing-redshift.html

Amazon Redshift Database Developer Guide

6. The Redshift administrator discovers the AWS Glue database ARNs they have access to, creates
an external database in the Amazon Redshift consumer cluster using a AWS Glue database
ARN, and grants usage to database users authenticated with IAM credentials to start querying
the Amazon Redshift database.

7. Database users can use the views SVV_EXTERNAL_TABLES and SVV_EXTERNAL_COLUMNS to
find all of the tables or columns within the AWS Glue database that they have access to, and
then they can query the AWS Glue database’s tables.

8. When the producer cluster or workgroup administrator decides to no longer share the data
with the consumer cluster, the producer cluster administrator can revoke usage, deauthorize,
or delete the datashare from Redshift. The associated permissions and objects in Lake
Formation are not automatically deleted.

For more information about sharing a datashare with AWS Lake Formation as a producer cluster
or workgroup administrator, see Working with Lake Formation-managed datashares as a producer.
To consume the shared data from the producer cluster or workgroup, see Working with Lake
Formation-managed datashares as a consumer.

Considerations and limitations when using AWS Lake Formation with Amazon
Redshift

The following are considerations and limitations for sharing Amazon Redshift data via Lake
Formation. For information on data sharing considerations and limitations, see Considerations
when using data sharing in Amazon Redshift. For information about Lake Formation limitations,
see Notes on working with Amazon Redshift datashares in Lake Formation.

• Sharing a datashare to Lake Formation across Regions is currently unsupported.

• If column-level filters are defined for a user on a shared relation, performing a SELECT *
operation returns only the columns the user has access to.

• Cell-level filters from Lake Formation are unsupported.

• If you created and shared a view and its tables to Lake Formation, you can configure filters to
manage access of the tables, Amazon Redshift enforces Lake Formation defined policies when
consumer cluster users access shared objects. When a user accesses a view shared with Lake
Formation, Redshift enforces only the Lake Formation policies defined on the view and not
the tables contained within the view. However, when users directly access the table, Redshift
enforces the defined Lake Formation policies on the table.

AWS Lake Formation-managed datashares 507

https://docs.aws.amazon.com/redshift/latest/mgmt/options-for-providing-iam-credentials.html
https://docs.aws.amazon.com/redshift/latest/dg/considerations.html
https://docs.aws.amazon.com/redshift/latest/dg/considerations.html
https://docs.aws.amazon.com/lake-formation/latest/dg/notes-rs-datashare.html

Amazon Redshift Database Developer Guide

• You can't create materialized views on the consumer based on a shared table if the table has
Lake Formation filters configured.

• The Lake Formation administrator must have data lake administrator permissions and the
required permissions to accept a datashare.

• The producer consumer cluster must be an RA3 cluster with the latest Amazon Redshift cluster
version or a serverless workgroup to share datashares via Lake Formation.

• Both the producer and consumer clusters must be encrypted.

• Redshift row-level and column-level access control policies implemented in the producer
cluster or workgroup are ignored when the datashare is shared to Lake Formation. The Lake
Formation administrator must configure these policies in Lake Formation. The producer cluster
or workgroup administrator can turn off RLS for a table by using the ALTER TABLE command.

• Sharing datashares via Lake Formation is only available to users who have access to both
Redshift and Lake Formation.

Datashare producers and consumers

Data producers (also known as data sharing producers or datashare producers) are clusters that
you want to share data from. Producer cluster administrators and database owners can create
datashares using the CREATE DATASHARE command. You can add objects such as schemas, tables,
views, and SQL user-defined functions (UDFs) from a database that you want the producer cluster
to share with consumer clusters.

Data producers (also known as providers on AWS Data Exchange) for AWS Data Exchange
datashares can license data through AWS Data Exchange. Approved providers can add AWS Data
Exchange datashares to AWS Data Exchange products.

When a customer subscribes to a product with AWS Data Exchange datashares, AWS Data Exchange
automatically adds the customer as a data consumer on all AWS Data Exchange datashares
included with the product. AWS Data Exchange also removes all customers from AWS Data
Exchange datashares when their subscription ends. AWS Data Exchange also automatically
manages billing, invoicing, payment collection, and payment distribution for paid products with
AWS Data Exchange datashares. For more information, see AWS Data Exchange datashares. To
register as an AWS Data Exchange data provider, see Getting started as a provider.

Data consumers (also known as data sharing consumers or datashare consumers) are clusters that
receive datashares from producer clusters.

Datashare producers and consumers 508

https://docs.aws.amazon.com/lake-formation/latest/dg/getting-started-setup.html#create-data-lake-admin
https://docs.aws.amazon.com/lake-formation/latest/dg/redshift-ds-prereqs.html
https://docs.aws.amazon.com/lake-formation/latest/dg/redshift-ds-prereqs.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/provider-getting-started.html

Amazon Redshift Database Developer Guide

Amazon Redshift clusters that share data can be in the same or different AWS accounts or
different AWS Regions, so you can share data across organizations and collaborate with other
parties. Consumer cluster administrators receive the datashares that they are granted usage
for and review the contents of each datashare. To consume shared data, the consumer cluster
administrator creates an Amazon Redshift database from the datashare. The administrator then
assigns permissions for the database to users and roles in the consumer cluster. After permissions
are granted, users and roles can list the shared objects as part of the standard metadata queries,
along with the local data on the consumer cluster. They can start querying immediately.

If you are a consumer with an active AWS Data Exchange subscription (also known as subscribers on
AWS Data Exchange), you can find, subscribe to, and query granular, up-to-date data in Amazon
Redshift without the need to extract, transform, and load the data. For more information, see AWS
Data Exchange datashares.

How data sharing works in Amazon Redshift

Managing datashares at different states

With cross-account datashares, there are different statuses of datashares that require your actions.
Your datashare can have the status are active, action required, or inactive.

Following describes each datashare status and its required action:

• When a producer cluster administrator creates a datashare, the datashare status on the producer
cluster is Pending authorization. The producer cluster administrator can authorize data
consumers to access the datashare. There isn't any action for the consumer cluster administrator.

• When a producer cluster administrator authorizes the datashare, the datashare status becomes
Authorized on the producer cluster. There isn't any action for the producer cluster administrator.
When there is at least one association with a data consumer for the datashare, the datashare
status changes from Authorized to Active.

The datashare share status then becomes Available (Action required on the Amazon Redshift
console) on the consumer cluster. The consumer cluster administrator can associate the
datashare with data consumers or reject the datashare. The consumer cluster administrator
can also use the AWS CLI command describeDatashareforConsumer to view the status of
datashares. Or the administrator can use the CLI command describeDatashare and provide
the datashare Amazon Resource Name (ARN) to view the status of the datashare.

How data sharing works 509

Amazon Redshift Database Developer Guide

• When the consumer cluster administrator associates a datashare with data consumers, the
datashare status becomes Active on the producer cluster. When there is at least one association
with a data consumer for the datashare, the datashare status changes from Authorized to
Active. There isn't any action required for the producer cluster administrator.

The datashare status becomes Active on the consumer cluster. There isn't any action required for
the consumer cluster administrator.

• When the consumer cluster administrator removes a consumer association from a datashare, the
datashare status becomes either Active or Authorized. It becomes Active when there is at least
one association exists for the datashare with another data consumer. It becomes Authorized
when there isn't any consumer association with the datashare on the producer cluster. There isn't
any action for the producer cluster administrator.

The datashare status becomes Action required on the consumer cluster if all associations are
removed. The consumer cluster administrator can reassociate a datashare with data consumers
when the datashare is available to the consumers.

• When a consumer cluster administrator declines a datashare, the datashare status on the
producer cluster becomes Action required and Declined on the consumer cluster. The producer
cluster administrator can reauthorize the datashare. There isn't any action for the consumer
cluster administrator.

• When the producer cluster administrator removes authorization from a datashare, the
datashare's status becomes Action required on the producer cluster. The producer cluster
administrator can choose to reauthorize the datashare, if necessary. There isn't any action
required for the consumer cluster administrator.

Sharing datashares

You only need datashares when you are sharing data between different Amazon Redshift
provisioned clusters or serverless workgroups. Within the same cluster, you can query another
database using simple three-part notation database.schema.table as long as you have the
required permissions on the objects in the other database.

Managing permissions for datashares in Amazon Redshift

As a producer cluster administrator, you retain control for the datasets you are sharing. You can
add new objects to or remove them from the datashare. You can also grant or revoke access to
datashares as a whole for the consumer clusters, AWS accounts, or AWS Regions. When permissions

Sharing datashares 510

Amazon Redshift Database Developer Guide

are revoked, consumer clusters immediately lose access to the shared objects and stop seeing them
in the list of INBOUND datashares in SVV_DATASHARES.

The following example creates the datashare salesshare, adds the schema public, and adds the
table public.tickit_sales_redshift to salesshare. It also grants usage permissions on
salesshare to the specified cluster namespace.

CREATE DATASHARE salesshare;

ALTER DATASHARE salesshare ADD SCHEMA public;

ALTER DATASHARE salesshare ADD TABLE public.tickit_sales_redshift;

GRANT USAGE ON DATASHARE salesshare TO NAMESPACE
 '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

For CREATE DATASHARE, superusers and database owners can create datashares. For more
information, see CREATE DATASHARE. For ALTER DATASHARE, the owner of the datashare with the
required permissions on the datashare objects to be added or removed can alter the datashare. For
information, see ALTER DATASHARE.

As a producer administrator, when you drop a datashare, it stops being listed on consumer clusters.
The databases and schema references created on the consumer cluster from the dropped datashare
continue to exist with no objects in them. The consumer cluster administrator must delete these
databases manually.

On the consumer side, a consumer cluster administrator can determine which users and roles
should get access to the shared data by creating a database from the datashare. Depending on the
options you choose when creating the database, you can control access to it as follows. For more
information about creating a database from a datashare, see CREATE DATABASE.

Creating the database without the WITH PERMISSIONS clause

An administrator can control access at the database or schema level. To control access at the
schema level, the administrator must create an external schema from the Amazon Redshift
database created from the datashare.

The following example grants permissions to access a shared table at the database level and
schema level.

GRANT USAGE ON DATABASE sales_db TO Bob;

Managing permissions for datashares 511

Amazon Redshift Database Developer Guide

CREATE EXTERNAL SCHEMA sales_schema FROM REDSHIFT DATABASE sales_db SCHEMA 'public';

GRANT USAGE ON SCHEMA sales_schema TO ROLE Analyst_role;

To further restrict access, you can create views on top of shared objects, exposing only the
necessary data. You can then use these views to give access to the users and roles.

Once the users are granted access to the database or schema, they will have access to all shared
objects in that database or schema.

Creating the database with the WITH PERMISSIONS clause

After granting usage rights on the database or schema, an administrator can further control access
using the same permission granting process as they would on a local database or schema. Without
individual object permissions, users can’t access any objects in the datashared database or schema
even after being granted the USAGE permission.

The following example grants permissions to access a shared table at the database level.

GRANT USAGE ON DATABASE sales_db TO Bob;
GRANT USAGE FOR SCHEMAS IN DATABASE sales_db TO Bob;
GRANT SELECT ON sales_db.public.tickit_sales_redshift TO Bob;

After being granted access to the database or schema, users still need to be given the relevant
permissions for any objects in the database or schema that you want them to access.

Granular sharing using WITH PERMISSIONS (preview)

Enabling clusters or Serverless workgroups to query the datashare

This step assumes the datashare is originating from another cluster or Amazon Redshift Serverless
namespace in your account, or it is coming from another account and has been associated with the
namespace you are using.

1. The consumer database administrator can create a database from the datashare.

CREATE DATABASE my_ds_db [WITH PERMISSIONS] FROM DATASHARE my_datashare OF
 NAMESPACE 'abc123def';

Granular sharing using WITH PERMISSIONS (preview) 512

Amazon Redshift Database Developer Guide

If you create a database WITH PERMISSIONS you can grant granular permissions on datashare
objects to different users and roles. Without this, all users and roles granted USAGE permission
on the datashare database are granted all permissions on all objects within the datashare
database.

2. The following shows how to grant permissions to a Redshift database user or role. You must
be connected to a local database to run these statements. You cannot run these statements if
you execute a USE command on the datashare database before running the grant statements.

GRANT USAGE ON DATABASE my_ds_db TO ROLE data_eng;
GRANT CREATE, USAGE ON SCHEMA my_ds_db.my_shared_schema TO ROLE data_eng;
GRANT ALL ON ALL TABLES IN SCHEMA my_ds_db.my_shared_schema TO ROLE data_eng;

GRANT USAGE ON DATABASE my_ds_db TO bi_user;
GRANT USAGE ON SCHEMA my_ds_db.my_shared_schema TO bi_user;
GRANT SELECT ON my_ds_db.my_shared_schema.table1 TO bi_user;

Working with views in Amazon Redshift data sharing

A producer cluster can share regular, late-binding, and materialized views. When sharing regular or
late-binding views, you don't have to share the base tables. The following table shows how views
are supported with data sharing.

View name Can this view be
added to a datashare
?

Can a consumer
create this view on
datashare objects
across clusters?

Regular view Yes No

Late-binding view Yes Yes

Materialized view Yes Yes, but only with a
complete refresh

The following query shows the output of a regular view that is supported with data sharing. For
information about regular view definition, see CREATE VIEW.

Working with views in Amazon Redshift data sharing 513

Amazon Redshift Database Developer Guide

SELECT * FROM tickit_db.public.myevent_regular_vw
ORDER BY eventid LIMIT 5;

 eventid | eventname
 ----------+-------------
 3835 | LeAnn Rimes
 3967 | LeAnn Rimes
 4856 | LeAnn Rimes
 4948 | LeAnn Rimes
 5131 | LeAnn Rimes

The following query shows the output of a late-binding view that is supported with data sharing.
For information about late-binding view definition, see CREATE VIEW.

SELECT * FROM tickit_db.public.event_lbv
ORDER BY eventid LIMIT 5;

 eventid | venueid | catid | dateid | eventname | starttime
 --------+---------+-------+--------+------------------------------
+---------------------
 1 | 305 | 8 | 1851 | Gotterdammerung | 2008-01-25
 14:30:00
 2 | 306 | 8 | 2114 | Boris Godunov | 2008-10-15
 20:00:00
 3 | 302 | 8 | 1935 | Salome | 2008-04-19
 14:30:00
 4 | 309 | 8 | 2090 | La Cenerentola (Cinderella) | 2008-09-21
 14:30:00
 5 | 302 | 8 | 1982 | Il Trovatore | 2008-06-05
 19:00:00

The following query shows the output of a materialized view that is supported with data sharing.
For information about materialized view definition, see CREATE MATERIALIZED VIEW.

SELECT * FROM tickit_db.public.tickets_mv;

 catgroup | qtysold
 ----------+---------
 Concerts | 195444
 Shows | 149905

Working with views in Amazon Redshift data sharing 514

Amazon Redshift Database Developer Guide

You can maintain common tables across all tenants in a producer cluster. You can also
share subsets of data filtered by dimension columns, such as tenant_id (account_id or
namespace_id), to consumer clusters. To do this, you can define a view on the base table with
a filter on these ID columns, for example current_aws_account = tenant_id. On the
consumer side, when you query the view, you see only the rows that qualify for your account.
To do this, you can use the Amazon Redshift context functions current_aws_account and
current_namespace.

The following query returns the account ID in which the current Amazon Redshift cluster resides.
You can run this query if you are connected to Amazon Redshift.

select current_user, current_aws_account;

current_user | current_aws_account
-------------+--------------------
dwuser | 111111111111
(1row)

The following query returns the namespace of the current Amazon Redshift cluster. You can run
this query if you are connected to the database.

select current_user, current_namespace;

current_user | current_namespace
-------------+--------------------------------------
dwuser | 86b5169f-01dc-4a6f-9fbb-e2e24359e9a8
(1 row)

Incremental refresh for materialized views in a datashare

Amazon Redshift supports incremental refresh for materialized views in a consumer datashare
when the base tables are shared. Incremental refresh is an operation where Amazon Redshift
identifies changes in the base table or tables that happened after the previous refresh and updates
only the corresponding records in the materialized view. For more information about this behavior,
see CREATE MATERIALIZED VIEW.

Managing access to data sharing API operations with IAM policies

To control the access to the data sharing API operations, use IAM action-based policies. For
information about how to manage IAM policies, see Managing IAM policies in the IAM User Guide.

Managing access to data sharing API operations with IAM policies 515

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-create-sql-command.html#mv_CREATE_MARTERIALIZED_VIEW_datashare
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon Redshift Database Developer Guide

For information on the permissions required to use the data sharing API operations, see
Permissions required to use the data sharing API operations in the Amazon Redshift Management
Guide.

To make cross-account data sharing more secure, you can use a conditional key
ConsumerIdentifier for the AuthorizeDataShare and DeauthorizeDataShare API
operations. By doing this, you can explicitly control which AWS accounts can make calls to the two
API operations.

You can deny authorizing or deauthorizing data sharing for any consumer that isn't your own
account. To do so, specify the AWS account number in the IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Deny",
 "Action": [
 "redshift:AuthorizeDataShare",
 "redshift:DeauthorizeDataShare"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "redshift:ConsumerIdentifier": "555555555555"
 }
 }
 }
]
}

You can allow a producer with a DataShareArn testshare2 to explicitly share with a consumer
with an AWS account of 111122223333 in the IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [

Managing access to data sharing API operations with IAM policies 516

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-identity-based.html

Amazon Redshift Database Developer Guide

 "redshift:AuthorizeDataShare",
 "redshift:DeauthorizeDataShare"
],
 "Resource": "arn:aws:redshift:us-
east-1:666666666666:datashare:af06285e-8a45-4ee9-b598-648c218c8ff1/testshare2",
 "Condition": {
 "StringEquals": {
 "redshift:ConsumerIdentifier": "111122223333"
 }
 }
 }
]
}

Querying datashares

Accessing shared data in Amazon Redshift

You can discover shared data using standard SQL interfaces, JDBC or ODBC drivers, and the Data
API. You can also query data with high performance from familiar business intelligence (BI) and
analytic tools. You can perform queries by referring to the objects from other Amazon Redshift
databases that are both local to and remote from your cluster that you have permissions to access.

You can do so simply by staying connected to local databases in your cluster. Then you can create
consumer databases from datashares to consume shared data.

After you have done so, you can perform cross-database queries joining the
datasets. You can query objects in consumer databases using the 3-part notation
(consumer_database_name.schema_name.table_name). You can also query using external
schema links to schemas in the consumer database. You can query both local data and data shared
from other clusters within the same query. Such a query can reference objects from the current
connected database and from other nonconnected databases, including consumer databases
created from datashares.

Accessing metadata for datashares in Amazon Redshift

To help cluster administrators discover datashares, Amazon Redshift provides a set of metadata
views to list datashares. These views list datashares created in your cluster and also those received
from other clusters within the same account, from other accounts, or other AWS Regions. These
views display the following information:

Querying datashares 517

Amazon Redshift Database Developer Guide

• Datashares that are shared and received by the clusters

• Contents of database objects in the datashares, including the basic share metadata, objects, and
consumers

Use SVV_DATASHARES to view a list of all datashares created in your cluster (outbound) and shared
from others (inbound). For more information, see SVV_DATASHARES.

Use SVV_DATASHARE_CONSUMERS to view a list of data consumers. For more information, see
SVV_DATASHARE_CONSUMERS.

Use SVV_DATASHARE_OBJECTS to view a list of objects in all datashares created in
your cluster (outbound) and shared from others (inbound). For more information, see
SVV_DATASHARE_OBJECTS.

Integrating Amazon Redshift data sharing with business intelligence
tools

To integrate data sharing with business intelligence (BI) tools, we recommend that you use the
Amazon Redshift JDBC or ODBC drivers.

Amazon Redshift JDBC and ODBC drivers support the GetCatalogs API operation in the drivers,
which returns the list of all databases including those created from datashares. The drivers also
support downstream operations, such as GetSchemas, GetTables, and so on, that return data
from all the databases that GetCatalogs returns. The drivers provide this support even when the
catalog isn't explicitly specified in the call. For more information about JDBC or ODBC drivers, see
Configuring connections in Amazon Redshift in the Amazon Redshift Management Guide.

You can't connect to consumer databases created from datashares directly. Connect to local
databases on your cluster. If you have a connection switching user interface in your tool, the list
of databases should include only the local cluster databases. The list should exclude consumer
databases created from datashares to provide the best experience. You can use an option in the
SVV_REDSHIFT_DATABASES view to filter databases.

Monitoring and auditing data sharing in Amazon Redshift

By auditing data sharing, producers can track the datashare evolution. For example, auditing helps
track when datashares are created, objects are added or removed, and permissions are granted or
revoked to Amazon Redshift clusters, AWS accounts, or AWS Regions.

Integrating Amazon Redshift data sharing with business intelligence tools 518

https://docs.aws.amazon.com/redshift/latest/mgmt/configuring-connections.html

Amazon Redshift Database Developer Guide

In addition to auditing, producers and consumers track datashare usage at various granularities,
such as account, cluster, and object levels. For more information about tracking usage and auditing
views, see SVL_DATASHARE_CHANGE_LOG and SVL_DATASHARE_USAGE_PRODUCER.

You can monitor datashares by querying system views.

1. The producer cluster administrator who wants to share data creates an Amazon Redshift
datashare. The producer cluster administrator then adds the needed database objects. These
might be schemas, tables, and views to the datashare and specifies a list of consumers that the
objects to be shared with.

Use the following system views to see consolidated views for tracking changes to and usage of
datashares on producer and/or consumer clusters:

• SYS_DATASHARE_CHANGE_LOG

• SYS_DATASHARE_USAGE_CONSUMER

• SYS_DATASHARE_USAGE_PRODUCER

Use the following system views to see datashare objects and data consumer information for
outbound datashares:

• SVV_DATASHARES

• SVV_DATASHARE_CONSUMERS

• SVV_DATASHARE_OBJECTS

2. The consumer cluster administrators look at the datashares for which they're granted use and
review the contents of each datashare by viewing inbound datashares using SVV_DATASHARES.

To consume shared data, each consumer cluster administrator creates an Amazon Redshift
database from the datashare. The administrator then assigns permissions to appropriate users
and roles in the consumer cluster. Users and roles can list the shared objects as part of the
standard metadata queries by viewing the following metadata system views and can start
querying data immediately.

• SVV_REDSHIFT_COLUMNS

• SVV_REDSHIFT_DATABASES

• SVV_REDSHIFT_FUNCTIONS

• SVV_REDSHIFT_SCHEMAS

• SVV_REDSHIFT_TABLES
Monitoring and auditing data sharing 519

Amazon Redshift Database Developer Guide

To view objects of both Amazon Redshift local and shared schemas and external schemas, use
the following metadata system views to query them.

• SVV_ALL_COLUMNS

• SVV_ALL_SCHEMAS

• SVV_ALL_TABLES

Integrating Amazon Redshift data sharing with AWS CloudTrail

Data sharing is integrated with AWS CloudTrail. CloudTrail is a service that provides a record of
actions taken by a user, a role, or an AWS service in Amazon Redshift. CloudTrail captures all API
calls for data sharing as events. The calls captured include calls from the AWS CloudTrail console
and code calls to the data sharing operations. For more information about Amazon Redshift
integration with AWS CloudTrail, see Logging with CloudTrail.

For more information about CloudTrail, see How CloudTrail works.

Managing data sharing tasks

You can get started with data sharing by using either the SQL interface or the Amazon Redshift
console.

Topics

• Managing data sharing using the SQL interface

• Managing data sharing using the console

• Managing data sharing with AWS CloudFormation

• Managing data sharing with writes using the console (preview)

Managing data sharing using the SQL interface

You can share data for read purposes across different Amazon Redshift clusters within or across
AWS accounts, or across AWS Regions.

Topics

• Sharing read access to data within an AWS account

• Sharing write access to data (Preview)

Integrating Amazon Redshift data sharing with AWS CloudTrail 520

https://docs.aws.amazon.com/redshift/latest/mgmt/logging-with-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/how-cloudtrail-works.html

Amazon Redshift Database Developer Guide

• Sharing data across AWS accounts

• Sharing data across AWS Regions

• Sharing licensed Amazon Redshift data on AWS Data Exchange

• Working with AWS Lake Formation-managed datashares

Sharing read access to data within an AWS account

You can share data for read purposes across different Amazon Redshift clusters within an AWS
account.

To share data for read purposes as a producer cluster administrator or database owner

1. Create datashares in your cluster. For more information, see CREATE DATASHARE.

CREATE DATASHARE salesshare;

Cluster superuser and database owners can create datashares. Each datashare is associated
with a database during creation. Only objects from that database can be shared in that
datashare. Multiple datashares can be created on the same database with the same or
different granularity of objects. There is no limit on the number of datashares a cluster can
create.

You can also use the Amazon Redshift console to create datashares. For more information, see
Creating datashares.

2. Delegate permissions to operate on the datashare. For more information, see GRANT or
REVOKE.

The following example grants permissions to dbuser on salesshare.

GRANT ALTER, SHARE ON DATASHARE salesshare TO dbuser;

Cluster superusers and the owners of the datashare can grant or revoke modification
permissions on the datashare to additional users.

3. Add objects to or remove objects from datashares. To add objects to a datashare, add the
schema before adding objects. When you add a schema, Amazon Redshift doesn't add all
the objects under it. Make sure to add these explicitly. For more information, see ALTER
DATASHARE.

Managing data sharing using the SQL interface 521

Amazon Redshift Database Developer Guide

ALTER DATASHARE salesshare ADD SCHEMA PUBLIC;
ALTER DATASHARE salesshare ADD TABLE public.tickit_sales_redshift;
ALTER DATASHARE salesshare ADD ALL TABLES IN SCHEMA PUBLIC;

You can also add views to a datashare.

CREATE VIEW public.sales_data_summary_view AS SELECT * FROM
 public.tickit_sales_redshift;
ALTER DATASHARE salesshare ADD TABLE public.sales_data_summary_view;

Use ALTER DATASHARE to share schemas, and tables, views, and functions in a given schema.
Superusers, datashare owners, or users who have ALTER or ALL permission on the datashare
can alter the datashare to add objects to or remove objects from it. Users should have the
permissions to add or remove objects from the datashare. Users should also be the owners of
the objects or have SELECT, USAGE, or ALL permissions on the objects.

You can also use GRANT to add objects to the datashare. This example shows how:

GRANT SELECT ON TABLE public.tickit_sales_redshift TO DATASHARE salesshare;

This syntax is functionally equivalent to ALTER DATASHARE salesshare ADD TABLE
public.tickit_sales_redshift;.

Use the INCLUDENEW clause to add any new tables, views, or SQL user-defined functions
(UDFs) created in a specified schema to the datashare. Only superusers can change this
property for each datashare-schema pair.

ALTER DATASHARE salesshare ADD SCHEMA PUBLIC;
ALTER DATASHARE salesshare SET INCLUDENEW = TRUE FOR SCHEMA PUBLIC;

You can also use the Amazon Redshift console to add or remove objects from datashares. For
more information, see Adding datashare objects to datashares, Removing datashare objects
from datashares, and Editing datashares created in your account.

4. Add consumers to or remove consumers from datashares. The following example adds the
consumer cluster namespace to salesshare. The namespace is the namespace globally
unique identifier (GUID) of the consumer cluster in the account. For more information, see
GRANT or REVOKE.

Managing data sharing using the SQL interface 522

Amazon Redshift Database Developer Guide

GRANT USAGE ON DATASHARE salesshare TO NAMESPACE
 '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

You can only grant permissions to one datashare consumer in a GRANT statement.

Cluster superusers and the owners of datashare objects or users that have SHARE permission
on the datashare can add consumers to or remove consumers from a datashare. To do so, they
use GRANT USAGE or REVOKE USAGE.

To find the namespace of the cluster that you currently see, you can use the SELECT
CURRENT_NAMESPACE command. To find the namespace of a different cluster within the
same AWS account, go to the Amazon Redshift console cluster details page. On that page, find
the newly added namespace field.

You can also use the Amazon Redshift console to add or remove data consumers for
datashares. For more information, see Adding data consumers to datashares and Removing
data consumers from datashares.

5. (Optional) Add security restrictions to the datashare. The following example shows that
the consumer cluster with a public IP access is allowed to read the datashare. For more
information, see ALTER DATASHARE.

ALTER DATASHARE salesshare SET PUBLICACCESSIBLE = TRUE;

You can modify properties about the type of consumers after datashare creation. For example,
you can define that clusters that want to consume data from a given datashare can't be
publicly accessible. Queries from consumer clusters that don't meet security restrictions
specified in datashare are rejected at query runtime.

You can also use the Amazon Redshift console to edit datashares. For more information, see
Editing datashares created in your account.

6. List datashares created in the cluster and look into the contents of the datashare.

The following example displays the information of a datashare named salesshare. For more
information, see DESC DATASHARE and SHOW DATASHARES.

DESC DATASHARE salesshare;

Managing data sharing using the SQL interface 523

Amazon Redshift Database Developer Guide

 producer_account | producer_namespace | share_type | share_name
 | object_type | object_name | include_new
-------------------+--------------------------------------+------------
+------------+-------------+--------------------------------+-------------------
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_users_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_venue_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_category_redshift|
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_date_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_event_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_listing_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_sales_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | schema | public | t
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | view | public.sales_data_summary_view |

The following example displays the outbound datashares in a producer cluster.

SHOW DATASHARES LIKE 'sales%';

The output looks similar to the following.

share_name | share_owner | source_database | consumer_database | share_type |
 createdate | is_publicaccessible | share_acl | producer_account |
 producer_namespace
-----------+--------------+-----------------+-------------------+------------
+---------------------+----------------------+-----------+------------------
+---------------------------------------
salesshare | 100 | dev | | OUTBOUND
 | 2020-12-09 02:27:08 | True | | 123456789012 |
 13b8833d-17c6-4f16-8fe4-1a018f5ed00d

For more information, see DESC DATASHARE and SHOW DATASHARES.

Managing data sharing using the SQL interface 524

Amazon Redshift Database Developer Guide

You can also use SVV_DATASHARES, SVV_DATASHARE_CONSUMERS, and
SVV_DATASHARE_OBJECTS to view the datashares, the objects within the datashare, and the
datashare consumers.

7. Drop datashares. For more information, see DROP DATASHARE.

You can delete the datashare objects at any point using DROP DATASHARE. Cluster superusers
and owners of datashare can drop datashares.

The following example drops a datashare named salesshare.

DROP DATASHARE salesshare;

You can also use the Amazon Redshift console to delete datashares. For more information, see
Deleting datashares created in your account.

8. Use ALTER DATASHARE to remove objects from datashares at any point from the datashare.
Use REVOKE USAGE ON to revoke permissions on the datashare to certain consumers. It
revokes USAGE permissions on objects within a datashare and instantly stops access to all
consumer clusters. Listing datashares and the metadata queries, such as listing databases and
tables, doesn't return the shared objects after access is revoked.

ALTER DATASHARE salesshare REMOVE TABLE public.tickit_sales_redshift;

You can also use the Amazon Redshift console to edit datashares. For more information, see
Editing datashares created in your account.

9. Revoke access to the datashare from namespaces if you don't want to share the data with the
consumers anymore.

REVOKE USAGE ON DATASHARE salesshare FROM NAMESPACE
 '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

You can also use the Amazon Redshift console to edit datashares. For more information, see
Editing datashares created in your account.

Managing data sharing using the SQL interface 525

Amazon Redshift Database Developer Guide

To share data for read purposes as a consumer cluster administrator

1. List the datashares that are made available to you and view the content of datashares. For
more information, see DESC DATASHARE and SHOW DATASHARES.

The following example displays the information of inbound datashares of a specified producer
namespace. When you run DESC DATASHARE as a consumer cluster administrator, you must
specify the NAMESPACE option to view inbound datashares.

DESC DATASHARE salesshare OF NAMESPACE '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

 producer_account | producer_namespace | share_type | share_name
 | object_type | object_name | include_new
-------------------+--------------------------------------+------------
+------------+-------------+---------------------------------+------------------
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_users_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_venue_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_category_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_date_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_event_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_listing_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_sales_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | schema | public |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | view | public.sales_data_summary_view |

Only cluster superusers can do this. You can also use SVV_DATASHARES to view the datashares
and SVV_DATASHARE_OBJECTS to view the objects within the datashare.

The following example displays the inbound datashares in a consumer cluster.

SHOW DATASHARES LIKE 'sales%';

Managing data sharing using the SQL interface 526

Amazon Redshift Database Developer Guide

 share_name | share_owner | source_database | consumer_database | share_type
 | createdate | is_publicaccessible | share_acl | producer_account |
 producer_namespace
------------+-------------+-----------------+-------------------+------------
+------------+---------------------+-----------+------------------
+--------------------------------------
 salesshare | | | | INBOUND
 | | t | | 123456789012 |
 13b8833d-17c6-4f16-8fe4-1a018f5ed00d

2. As a database superuser, you can create local databases that reference to the datashares. For
more information, see CREATE DATABASE.

CREATE DATABASE sales_db FROM DATASHARE salesshare OF NAMESPACE
 '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

If you want more granular control over access to the objects in the local database, use the
WITH PERMISSIONS clause when creating the database. This lets you grant object-level
permissions for objects in the database in step 4.

CREATE DATABASE sales_db WITH PERMISSIONS FROM DATASHARE salesshare OF NAMESPACE
 '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

You can see databases that you created from the datashare by querying the
SVV_REDSHIFT_DATABASES view. You can't connect to these databases created from
datashares, and they are read-only. However, you can connect to a local database on your
consumer cluster and perform a cross-database query to query the data from the databases
created from datashares. You can't create a datashare on top of database objects created from
an existing datashare. However, you can copy the data into a separate table on the consumer
cluster, perform any processing needed, and then share the new objects that were created.

You can also use the Amazon Redshift console to create databases from datashares. For more
information, see Creating databases from datashares.

3. (Optional) Create external schemas to refer to and assign granular permissions to specific
schemas in the consumer database imported on the consumer cluster. For more information,
see CREATE EXTERNAL SCHEMA.

Managing data sharing using the SQL interface 527

Amazon Redshift Database Developer Guide

CREATE EXTERNAL SCHEMA sales_schema FROM REDSHIFT DATABASE 'sales_db' SCHEMA
 'public';

4. Grant permissions on databases and schema references created from the datashares to users
and roles in the consumer cluster as needed. For more information, see GRANT or REVOKE.

GRANT USAGE ON DATABASE sales_db TO Bob;

GRANT USAGE ON SCHEMA sales_schema TO ROLE Analyst_role;

If you created your database without WITH PERMISSIONS, you can only assign permissions
on the entire database created from the datashare to your users and roles. In some cases, you
need fine-grained controls on a subset of database objects created from the datashare. If so,
you can create an external schema reference that points to specific schemas in the datashare
(as described in the previous step) and provide granular permissions at schema level.

You can also create late-binding views on top of shared objects and use these to assign
granular permissions. You can also consider having producer clusters create additional
datashares for you with the granularity required.

If you created your database with WITH PERMISSIONS in step 2, you must assign object-
level permissions for objects in the shared database. A user with only the USAGE permission
can’t access any objects in a database created with WITH PERMISSIONS until they’re granted
additional object-level permissions..

GRANT SELECT ON sales_db.public.tickit_sales_redshift to Bob;

5. Query data in the shared objects in the datashares.

Users and roles with permissions on consumer databases and schemas on consumer clusters
can explore and navigate the metadata of any shared objects. They can also explore and
navigate local objects in a consumer cluster. To do this, they use JDBC or ODBC drivers or
SVV_ALL and SVV_REDSHIFT views.

Producer clusters might have many schemas in the database, tables, and views within each
schema. The users on the consumer side can see only the subset of objects that are made
available through the datashare. These users can't see the entire metadata from the producer
cluster. This approach helps provide granular metadata security control with data sharing.

Managing data sharing using the SQL interface 528

Amazon Redshift Database Developer Guide

You continue to connect to local cluster databases. But now, you can also read from
the databases and schemas that are created from the datashare using the three-part
database.schema.table notation. You can perform queries that span across any and all
databases that are visible to you. These can be local databases on the cluster or databases
created from the datashares. Consumer clusters can't connect to the databases created from
the datashares.

You can access the data using full qualification. For more information, see Examples of using a
cross-database query.

SELECT * FROM sales_db.public.tickit_sales_redshift ORDER BY 1,2 LIMIT 5;

 salesid | listid | sellerid | buyerid | eventid | dateid | qtysold | pricepaid |
 commission | saletime
---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------
 1 | 1 | 36861 | 21191 | 7872 | 1875 | 4 | 728.00 |
 109.20 | 2008-02-18 02:36:48
 2 | 4 | 8117 | 11498 | 4337 | 1983 | 2 | 76.00 |
 11.40 | 2008-06-06 05:00:16
 3 | 5 | 1616 | 17433 | 8647 | 1983 | 2 | 350.00 |
 52.50 | 2008-06-06 08:26:17
 4 | 5 | 1616 | 19715 | 8647 | 1986 | 1 | 175.00 |
 26.25 | 2008-06-09 08:38:52
 5 | 6 | 47402 | 14115 | 8240 | 2069 | 2 | 154.00 |
 23.10 | 2008-08-31 09:17:02

You can only use SELECT statements on shared objects. However, you can create tables in the
consumer cluster by querying the data from the shared objects in a different local database.

In addition to queries, consumers can create views on shared objects. Only late-binding views
or materialized views are supported. Amazon Redshift doesn't support regular views on shared
data. Views that consumers create can span across multiple local databases or databases
created from datashares. For more information, see CREATE VIEW.

// Connect to a local cluster database

// Create a view on shared objects and access it.
CREATE VIEW sales_data
AS SELECT *

Managing data sharing using the SQL interface 529

Amazon Redshift Database Developer Guide

FROM sales_db.public.tickit_sales_redshift
WITH NO SCHEMA BINDING;

SELECT * FROM sales_data;

Sharing write access to data (Preview)

You can share database objects for both reads and writes across different Amazon Redshift clusters
or Amazon Redshift Serverless workgroups within the same AWS account, across accounts, and
across regions. The procedures in this topic show how to set up data sharing that includes write
permissions. You can grant permissions such as SELECT, INSERT, and UPDATE for different tables
and USAGE and CREATE for schemas. The data is live and available to all warehouses as soon as
a write transaction is committed. Producer account administrators can determine whether or not
specific namespaces or regions get read-only, read-and-write, or any access to the data.

The sections that follow show how to configure data sharing. The procedures assume you're
working in a database in a provisioned cluster or Amazon Redshift Serverless workgroup.

Read-only data sharing vs. data sharing for reads and writes

Previously, objects in datashares were read only in all circumstances. Writing to an object in
a datashare is a new feature. Objects in datashares are only write-enabled when a producer
specifically grants write privileges like INSERT or CREATE on objects to the datashare. Additionally,
for cross-account sharing, a producer has to authorize the datashare for writes and the consumer
has to associate specific clusters and workgroups for writes. Details follow in subsequent sections
in this topic.

Permissions you can grant to datashares (preview)

Different object types and various permissions you can grant to them in a data sharing context.

Schemas:

• USAGE

• CREATE

Tables:

• SELECT

Managing data sharing using the SQL interface 530

Amazon Redshift Database Developer Guide

• INSERT

• UPDATE

• DELETE

• TRUNCATE

• DROP

• REFERENCES

Functions:

• EXECUTE

Databases:

• CREATE

Requirements and limitations for datasharing in preview

• Connections – You must be connected directly to a datashare database or run the USE command
to write to datashares. However, we will soon enable the ability to do this with three-part
notation.

• Availability – You must use Serverless workgroups, ra3.4xl clusters, or ra3.16xl clusters to use this
feature. Support for ra3.xlplus clusters is planned.

• Metadata Discovery – When you're a consumer connected directly to a datashare database
through the Redshift JDBC, ODBC, or Python drivers, you can view catalog data in the following
ways:

• SQL SHOW commands.

• Querying information_schema tables and views.

• Querying SVV metadata views.

• Data API – You cannot connect to datashare databases via the Data API. Support for this will be
coming soon.

• Permissions visibility – Consumers cannot see the permissions granted to the datashares. We will
be adding this soon.

Managing data sharing using the SQL interface 531

https://docs.aws.amazon.com/redshift/latest/dg/r_SHOW.html
https://docs.aws.amazon.com/redshift/latest/dg/svv_views.html

Amazon Redshift Database Developer Guide

• Encryption – For cross-account data sharing, both the producer and consumer cluster must be
encrypted.

• Isolation level – Your database’s isolation level must be snapshot isolation in order to allow other
Serverless workgroups and clusters to write to it.

• Auto operations – Consumers writing to datashare objects will not trigger an auto analyze
operation. As a result, the producer must manually run analyze after data is inserted into the
table to have table statistics updated. Without this, query plans may not be optimal.

• Multi-statement queries and transactions – Multi-statement queries outside of a transaction block
aren't currently supported. As a result, if you are using a query editor like dbeaver and you have
multiple write queries, you need to wrap your queries in an explicit BEGIN...END transaction
statement.

SQL statements supported

These statements are supported for the public preview release of data sharing with writes:

• BEGIN | START TRANSACTION

• END | COMMIT | ROLLBACK

• COPY without COMPUPDATE

• { CREATE | DROP } SCHEMA

• { CREATE | DROP | SHOW } TABLE

• CREATE TABLE table_name AS

• DELETE

• { GRANT | REVOKE } privilege_name ON OBJECT_TYPE object_name TO consumer_user

• INSERT

• SELECT

• INSERT INTO SELECT

• TRUNCATE

• UPDATE

• Super data type columns

Unsupported statement types – The following aren't supported:

• Multi-statement queries to consumer warehouses when writing to producers.

Managing data sharing using the SQL interface 532

Amazon Redshift Database Developer Guide

• Concurrency scaling queries writing from consumers to producers.

• Auto-copy jobs writing from consumers to producers.

• Streaming jobs writing from consumers to producers.

• Consumers creating zero-ETL integration tables on producer clusters. For more information
about zero-ETL integrations, see Working with zero-ETL integrations.

• Writing to a table with an interleaved sort key.

Sharing data within an account with write permissions as the producer account administrator
(preview)

Previously, objects in datashares were read only in all circumstances. Writing to an object in
a datashare is a new feature. Objects in datashares are only write-enabled when a producer
specifically grants write privileges like INSERT or CREATE on objects to the datashare. Details
follow in subsequent sections in this topic.

If you're looking for the existing documentation for read-only datashares, that's available at
Sharing data across clusters in Amazon Redshift.

To start data sharing, the administrator on the producer creates a datashare and adds objects to it:

1. The producer database owner or superuser creates a datashare. A datashare is a logical
container of database objects, permissions, and consumers. (Consumers are clusters or Amazon
Redshift Serverless namespaces in your account and other accounts.) Each datashare is
associated with the database it's created in and only objects from that database can be added.
The following command creates a datashare:

CREATE DATASHARE my_datashare [PUBLICACCESSIBLE = TRUE];

Setting PUBLICACCESSIBLE = TRUE allows consumers to query your datashare from publicly
accessible clusters and provisioned workgroups. Leave this out or explicitly set it to false if you
do not want to allow it.

The datashare owner must grant USAGE on the schemas they want to add to the datashare.
The GRANT command is new. It's used to grant various actions on the schema, including
CREATE and USAGE. The schemas hold shared objects:

CREATE SCHEMA myshared_schema1;
CREATE SCHEMA myshared_schema2;

Managing data sharing using the SQL interface 533

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.html
https://docs.aws.amazon.com/redshift/latest/dg/datashare-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/r_superusers.html

Amazon Redshift Database Developer Guide

GRANT USAGE ON SCHEMA myshared_schema1 TO DATASHARE my_datashare;
GRANT CREATE, USAGE ON SCHEMA myshared_schema2 TO DATASHARE my_datashare;

Alternatively, the administrator can continue to run ALTER commands to add a schema to the
datashare. Only USAGE permissions are granted when a schema is added this way.

ALTER DATASHARE my_datashare ADD SCHEMA myshared_schema1;

2. After the administrator adds schemas, they can grant datashare permissions on objects in the
schema. These can be both read and write permissions. The GRANT ALL sample shows how to
grant all permissions.

GRANT SELECT, INSERT ON TABLE myshared_schema1.table1, myshared_schema1.table2,
 myshared_schema2.table1
TO DATASHARE my_datashare;

GRANT ALL ON TABLE myshared_schema1.table4 TO DATASHARE my_datashare;

You can continue to run commands like ALTER DATASHARE to add tables. When you do, only
SELECT permissions are granted on the objects added.

ALTER DATASHARE my_datashare ADD TABLE myshared_schema1.table1,
 myshared_schema1.table2, myshared_schema2.table1;

3. The administrator grants usage on the datashare to a specific namespace in the account.
You can find the namespace ID as part of the ARN in the cluster details page, in the
Amazon Redshift Serverless namespace details page, or by running the command SELECT
current_namespace;. For more information, see CURRENT_NAMESPACE.

GRANT USAGE ON DATASHARE my_datashare TO NAMESPACE '86b5169f-012a-234b-9fbb-
e2e24359e9a8';

Sharing write permissions to data across accounts (preview)

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.
The documentation and the feature are both subject to change. We recommend that you use

Managing data sharing using the SQL interface 534

https://docs.aws.amazon.com/redshift/latest/dg/r_CURRENT_NAMESPACE.html

Amazon Redshift Database Developer Guide

this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

If you haven't created a datashare yet on the PREVIEW_2023 track, go to Sharing write access to
data (Preview) to get started.

Associating shared data as the consumer data security administrator (preview)

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.
The documentation and the feature are both subject to change. We recommend that you use
this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

If you haven't created a datashare yet on the PREVIEW_2023 track, go to Sharing write access to
data (Preview) to get started.

Prerequisites: The steps in this section are performed after the producer administrator grants
specific actions on the shared database objects and, if the datashare is being shared with another
account, the producer security administrator authorizes access.

The consumer security administrator determines the following:

• Whether or not all namespaces in an account, namespaces in specific regions in the account, or
specific namespaces have access to the datashare.

• If namespaces have access to the datashare, whether or not those namespace have write
permissions.

The consumer security administrator can associate the datashare via the console, the CLI, or via
API. If by CLI, the administrator uses the following command:

associate-data-share-consumer
--data-share-arn <value>
--consumer-identifier <value>
[--allow-writes | --no-allow-writes]

For more information about the command, see associate-data-share-consumer.

Managing data sharing using the SQL interface 535

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/cli/latest/reference/redshift/associate-data-share-consumer.html

Amazon Redshift Database Developer Guide

The consumer security administrator must explicitly set allow-writes to true when associating
a datashare with a namespace, to allow use of INSERT and UPDATE commands. If they don't, the
users can perform only read operations, such as SELECT, USAGE, or EXECUTE privileges.

You can change the association of a namespace for a datashare by calling associate-data-
share-consumer again, with a different value. The old association is overwritten by the new
association, so if you originally associate and set allow-writes, but associate and specify no-
allow-writes, or simply do not specify a value, the consumer will have their write permissions
revoked.

Authorizing datashares for writes as the producer security administrator (preview)

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.
The documentation and the feature are both subject to change. We recommend that you use
this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

If you haven't created a datashare yet on the PREVIEW_2023 track, go to Sharing write access to
data (Preview) to get started.

Note

This only applies when the datashare is shared between accounts.

The producer security administrator determines the following:

• Whether or not another account can have access to the datashare.

• If an account has access to the datashare, whether or not that account has write permissions.

The following IAM permissions are required to authorize a datashare:

redshift:AuthorizeDataShare

You can authorize usage and writes using either a CLI call or with the API:

authorize-data-share

Managing data sharing using the SQL interface 536

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html

Amazon Redshift Database Developer Guide

--data-share-arn <value>
--consumer-identifier <value>
[--allow-writes | --no-allow-writes]

For more information about the command, see authorize-data-share.

The consumer identifier can be either:

• A twelve digit AWS account ID.

• The namespace identifier ARN.

Note that write permissions aren’t granted at the authorizing step. Authorizing a datashare for
writes just allows the account to have write permissions that were granted by the datashare
administrator. If an administrator does not allow writes, the only permissions available to the
specific consumer are SELECT, USAGE, and EXECUTE.

You can change the authorization of a datashare consumer by calling authorize-data-share
again, but with a different value. The old authorization is overwritten by the new authorization.
So if you originally authorize and allow writes, but re-authorize and specify no-allow-writes or
simply do not specify a value, the consumer will have their write permissions revoked.

Regions where data sharing is available (preview)

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.
The documentation and the feature are both subject to change. We recommend that you use
this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

If you haven't created a datashare yet on the PREVIEW_2023 track, go to Sharing write access to
data (Preview) to get started.

The following regions have data sharing available, in preview:

• US East (N. Virginia) (us-east-1)

• US East (Ohio) (us-east-2)

• US West (Oregon) (us-west-2)

Managing data sharing using the SQL interface 537

https://docs.aws.amazon.com/cli/latest/reference/redshift/authorize-data-share.html
https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html

Amazon Redshift Database Developer Guide

• Asia Pacific (Tokyo) (ap-northeast-1)

• Europe (Ireland) (eu-west-1)

• Europe (Stockholm) (eu-north-1)

Sharing data across AWS accounts

You can share data for read purposes across AWS accounts. Sharing data across AWS accounts
works similarly to sharing data within an account. The difference is that there is a two-way
handshake required in sharing data across AWS accounts. A producer account administrators can
either authorize consumer accounts to access datashares or choose not to authorize any access. To
use an authorized datashare, a consumer account administrator can associate the datashare. The
administrator can associate the datashare with an entire AWS account or with specific clusters in
the consumer account, or decline the datashare. For more information about sharing data within an
account, see Sharing read access to data within an AWS account.

A datashare can have data consumers that are either cluster namespaces in the same account or
different AWS accounts. You don't need to create separate datashares for sharing within an account
and cross-account sharing.

For cross-account data sharing, both the producer and consumer cluster must be encrypted.

When sharing data with AWS accounts, producer cluster administrators share with the AWS
account as an entity. A consumer cluster administrator can decide which cluster namespaces in the
consumer account get access to a datashare.

Topics

• Producer cluster administrator actions

• Consumer account administrator actions

• Consumer cluster administrator actions

Producer cluster administrator actions

If you are a producer cluster administrator or database owner – follow these steps:

1. Create datashares in your cluster and add datashare objects to the datashares. For more detailed
steps on how to create datashares and add datashare objects to datashares, see Sharing read
access to data within an AWS account. For information about the CREATE DATASHARE and
ALTER DATASHARE, see CREATE DATASHARE and ALTER DATASHARE.

Managing data sharing using the SQL interface 538

Amazon Redshift Database Developer Guide

The following example adds different datashare objects to the datashare salesshare.

-- Add schema to datashare
ALTER DATASHARE salesshare ADD SCHEMA PUBLIC;

-- Add table under schema to datashare
ALTER DATASHARE salesshare ADD TABLE public.tickit_sales_redshift;

-- Add view to datashare
ALTER DATASHARE salesshare ADD TABLE public.sales_data_summary_view;

-- Add all existing tables and views under schema to datashare (does not include
 future table)
ALTER DATASHARE salesshare ADD ALL TABLES in schema public;

You can also use the Amazon Redshift console to create or edit datashares. For more
information, see Creating datashares and Editing datashares created in your account.

2. Delegate permissions to operate on the datashare. For more information, see GRANT or
REVOKE.

The following example grants permissions to dbuser on salesshare.

GRANT ALTER, SHARE ON DATASHARE salesshare TO dbuser;

Cluster superusers and the owners of the datashare can grant or revoke modification
permissions on the datashare to additional users.

3. Add consumers to or remove consumers from datashares. The following example adds the AWS
account ID to salesshare. For more information, see GRANT or REVOKE.

GRANT USAGE ON DATASHARE salesshare TO ACCOUNT '123456789012';

You can only grant permissions to one data consumer in a GRANT statement.

Cluster superusers and the owners of datashare objects, or users that have SHARE permissions
on the datashare, can add consumers to or remove consumers from a datashare. To do so, they
use GRANT USAGE or REVOKE USAGE.

Managing data sharing using the SQL interface 539

Amazon Redshift Database Developer Guide

You can also use the Amazon Redshift console to add or remove data consumers for datashares.
For more information, see Adding data consumers to datashares and Removing data consumers
from datashares.

4. (Optional) Revoke access to the datashare from AWS accounts if you don't want to share the
data with the consumers anymore.

REVOKE USAGE ON DATASHARE salesshare FROM ACCOUNT '123456789012';

If you are a producer account administrator – follow these steps:

After granting usage to the AWS account, the datashare status is pending_authorization. The
producer account administrator should authorize datashares using the Amazon Redshift console
and choose the data consumers.

Sign in to the https://console.aws.amazon.com/redshiftv2/. Then choose which data consumers
to authorize to access datashares or to remove authorization from. Authorized data consumers
receive notifications to take actions on datashares. If you are adding a cluster namespace as a data
consumer, you don't have to perform authorization. After data consumers are authorized, they can
access datashare objects and create a consumer database to query the data. For more information,
see Authorizing or removing authorization from datashares.

Consumer account administrator actions

If you are a consumer account administrator – follow these steps:

To associate one or more datashares that are shared from other accounts with your entire AWS
account or specific cluster namespaces in your account, use the Amazon Redshift console.

Sign in to the https://console.aws.amazon.com/redshiftv2/. Then, associate one or more
datashares that are shared from other accounts with your entire AWS account or specific cluster
namespaces in your account. For more information, see Associating datashares.

After the AWS account or specific cluster namespaces are associated, the datashares become
available for consumption. You can also change datashare association at any time. When changing
association from individual cluster namespaces to an AWS account, Amazon Redshift overwrites
the cluster namespaces with the AWS account information. When changing association from
an AWS account to specific cluster namespaces, Amazon Redshift overwrites the AWS account

Managing data sharing using the SQL interface 540

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

information with the cluster namespace information. All cluster namespaces in the account get
access to the data.

Consumer cluster administrator actions

If you are a consumer cluster administrator – follow these steps:

1. List the datashares made available to you and view the content of datashares. The content
of datashares is available only when the producer cluster administrator has authorized the
datashares and the consumer cluster administrator has accepted and associated the datashares.
For more information, see DESC DATASHARE and SHOW DATASHARES.

The following example displays the information of inbound datashares of a specified producer
namespace. When you run the DESC DATAHSARE as a consumer cluster administrator, you must
specify the NAMESPACE and account ID to view inbound datashares. For outbound datashares,
specify the datashare name.

SHOW DATASHARES LIKE 'sales%';

share_name | share_owner | source_database | consumer_database | share_type
 | createdate | is_publicaccessible | share_acl | producer_account |
 producer_namespace
-----------+-------------+-----------------+-------------------+------------
+------------+---------------------+-----------+------------------
+---------------------------------------
salesshare | | | | INBOUND |
 | t | | 123456789012 | 'dd8772e1-
d792-4fa4-996b-1870577efc0d'

DESC DATASHARE salesshare OF ACCOUNT '123456789012' NAMESPACE 'dd8772e1-
d792-4fa4-996b-1870577efc0d';

 producer_account | producer_namespace | share_type | share_name |
 object_type | object_name
------------------+--------------------------------------+------------+------------
+-------------+---------------------------------
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d | INBOUND | salesshare |
 table | public.tickit_users_redshift
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d | INBOUND | salesshare |
 table | public.tickit_venue_redshift

Managing data sharing using the SQL interface 541

Amazon Redshift Database Developer Guide

 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d | INBOUND | salesshare |
 table | public.tickit_category_redshift
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d | INBOUND | salesshare |
 table | public.tickit_date_redshift
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d | INBOUND | salesshare |
 table | public.tickit_event_redshift
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d | INBOUND | salesshare |
 table | public.tickit_listing_redshift
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d | INBOUND | salesshare |
 table | public.tickit_sales_redshift
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d | INBOUND | salesshare |
 schema | public
(8 rows)

Only cluster superusers can do this. You can also use SVV_DATASHARES to view the datashares
and SVV_DATASHARE_OBJECTS to view the objects within the datashare.

The following example displays the inbound datashares in a consumer cluster.

SELECT * FROM SVV_DATASHARES WHERE share_name LIKE 'sales%';

share_name | share_owner | source_database | consumer_database | share_type
 | createdate | is_publicaccessible | share_acl | producer_account |
 producer_namespace
-----------+-------------+-----------------+-------------------+------------
+------------+---------------------+-----------+------------------
+---------------------------------------
salesshare | | | | INBOUND |
 | t | | 123456789012 | 'dd8772e1-
d792-4fa4-996b-1870577efc0d'

SELECT * FROM SVV_DATASHARE_OBJECTS WHERE share_name LIKE 'sales%';
 share_type | share_name | object_type | object_name |
 producer_account | producer_namespace
------------+------------+-------------+---------------------------------
+------------------+--------------------------------------
 INBOUND | salesshare | table | public.tickit_users_redshift |
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d
 INBOUND | salesshare | table | public.tickit_venue_redshift |
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d
 INBOUND | salesshare | table | public.tickit_category_redshift |
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d

Managing data sharing using the SQL interface 542

Amazon Redshift Database Developer Guide

 INBOUND | salesshare | table | public.tickit_date_redshift |
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d
 INBOUND | salesshare | table | public.tickit_event_redshift |
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d
 INBOUND | salesshare | table | public.tickit_listing_redshift |
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d
 INBOUND | salesshare | table | public.tickit_sales_redshift |
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d
 INBOUND | salesshare | schema | public |
 123456789012 | dd8772e1-d792-4fa4-996b-1870577efc0d
(8 rows)

2. Create local databases that reference to the datashares. Specify the NAMESPACE and account ID
when creating the database from the datashare. For more information, see CREATE DATABASE.

CREATE DATABASE sales_db FROM DATASHARE salesshare OF ACCOUNT '123456789012'
 NAMESPACE 'dd8772e1-d792-4fa4-996b-1870577efc0d';

If you want more granular control over access to the objects in the local database, use the WITH
PERMISSIONS clause when creating the database. This lets you grant object-level permissions
for objects in the database in step 4.

CREATE DATABASE sales_db WITH PERMISSIONS FROM DATASHARE salesshare OF ACCOUNT
 '123456789012' NAMESPACE 'dd8772e1-d792-4fa4-996b-1870577efc0d';

You can see databases that you created from the datashare by querying
SVV_REDSHIFT_DATABASES view. You can't connect to these databases created from
datashares, and they are read-only. However, you can connect to a local database on your
consumer cluster and perform a cross-database query on the data from the databases created
from datashares. You can't create a datashare on top of database objects created from an
existing datashare. However, you can copy the data into a separate table on the consumer
cluster, perform any processing needed, and then share the new objects created.

3. (Optional) Create external schemas to refer and assign granular permissions to specific schemas
in the consumer database imported on the consumer cluster. For more information, see CREATE
EXTERNAL SCHEMA.

CREATE EXTERNAL SCHEMA sales_schema FROM REDSHIFT DATABASE 'sales_db' SCHEMA
 'public';

Managing data sharing using the SQL interface 543

Amazon Redshift Database Developer Guide

4. Grant permissions on databases and schema references created from the datashares to user or
roles in the consumer cluster as needed. For more information, see GRANT or REVOKE.

GRANT USAGE ON DATABASE sales_db TO Bob;

GRANT USAGE ON SCHEMA sales_schema TO ROLE Analyst_role;

If you created your database without WITH PERMISSIONS, you can only assign permissions
on the entire database created from the datashare to your users or roles. In some cases, you
need fine-grained controls on a subset of database objects created from the datashare. If so,
you can create an external schema reference pointing to specific schemas in the datashare, as
described in the previous step. You can then provide granular permissions at the schema level.
You can also create late-binding views on top of shared objects and use these to assign granular
permissions. You can also consider having producer clusters create additional datashares for you
with the granularity required. You can create as many schema references to the database created
from the datashare as you need.

If you created your database with WITH PERMISSIONS in step 2, you must assign object-
level permissions for objects in the shared database. A user with only the USAGE permission
can’t access any objects in a database created with WITH PERMISSIONS until they’re granted
additional object-level permissions..

GRANT SELECT ON sales_db.public.tickit_sales_redshift to Bob;

5. Query data in the shared objects in the datashares.

Users and roles with permissions on consumer databases and schemas on consumer clusters can
explore and navigate the metadata of any shared objects. They can also explore and navigate
local objects in a consumer cluster. To do this, use JDBC or ODBC drivers or SVV_ALL and
SVV_REDSHIFT views.

Producer clusters might have many schemas in the database, tables, and views within each
schema. The users on the consumer side can see only the subset of objects that are made
available through the datashare. These users can't see all the metadata from the producer
cluster. This approach helps provide granular metadata security control with data sharing.

You continue to connect to local cluster databases. But now, you can also read from
the databases and schemas that are created from the datashare using the three-part

Managing data sharing using the SQL interface 544

Amazon Redshift Database Developer Guide

database.schema.table notation. You can perform queries that span across any and all databases
that are visible to you. These can be local databases on the cluster or databases created from the
datashares. Consumer clusters can't connect to the databases created from the datashares.

You can access the data using full qualification. For more information, see Examples of using a
cross-database query.

SELECT * FROM sales_db.public.tickit_sales_redshift;

You can only use SELECT statements on shared objects. However, you can create tables in the
consumer cluster by querying the data from the shared objects in a different local database.

In addition to performing queries, consumers can create views on shared objects. Only late-
binding views and materialized views are supported. Amazon Redshift doesn't support regular
views on shared data. Views that consumers create can span across multiple local databases or
databases created from datashares. For more information, see CREATE VIEW.

// Connect to a local cluster database

// Create a view on shared objects and access it.
CREATE VIEW sales_data
AS SELECT *
FROM sales_db.public.tickit_sales_redshift
WITH NO SCHEMA BINDING;

SELECT * FROM sales_data;

Sharing data across AWS Regions

You can share data for read purposes across Amazon Redshift clusters in AWS Regions. With
cross-Region data sharing, you can share data across AWS Regions without the need to copy
data manually. You don't have to unload your data into Amazon S3 and copy the data into a new
Amazon Redshift cluster or perform cross-Region snapshot copy.

With cross-Region data sharing, you can share data across clusters in the same AWS account, or in
different AWS accounts even when the clusters are in different Regions. When sharing data with
Amazon Redshift clusters that are in the same AWS account but different AWS Regions, follow the
same workflow as sharing data within an AWS account. For more information, see Sharing read
access to data within an AWS account.

Managing data sharing using the SQL interface 545

Amazon Redshift Database Developer Guide

If clusters sharing data are in different AWS accounts and AWS Regions, you can follow the same
workflow as sharing data across AWS accounts and include Region-level associations on the
consumer cluster. Cross-Region data sharing supports datashare association with the entire AWS
account, the entire AWS Region, or specific cluster namespaces within an AWS Region. For more
information about sharing data across AWS accounts, see Sharing data across AWS accounts.

When consuming data from a different Region, the consumer pays the Cross-Region data transfer
fee from the producer region to the consumer region.

To use the datashare, a consumer account administrator can associate the datashare in one of the
following three ways.

• Association with an entire AWS account spanning all its AWS Regions

• Association with a specific AWS Region in an AWS account

• Association with specific cluster namespaces within an AWS Region

When the administrator chooses the entire AWS account, all existing and future cluster namespaces
across different AWS Regions in the account have access to the datashares. A consumer account
administrator can also choose specific AWS Regions or cluster namespaces within a Region to grant
them access to the datashares.

If you are a producer cluster administrator or database owner, create a datashare, add database
objects and data consumers to the datashare, and grant permissions to data consumers. For more
information, see Producer cluster administrator actions.

If you are a producer account administrator, authorize datashares using the AWS Command Line
Interface (AWS CLI) or the Amazon Redshift console and choose the data consumers.

If you are a consumer account administrator – follow these steps:

To associate one or more datashares that are shared from other accounts to your entire AWS
account or specific AWS Regions or cluster namespaces within an AWS Region, use the Amazon
Redshift console.

With cross-Region datasharing, you can add clusters in a specific AWS Region using the AWS
Command Line Interface (AWS CLI) or Amazon Redshift console.

To specify one or more AWS Regions, you can use the associate-data-share-consumer CLI
command with the optional consumer-region option.

Managing data sharing using the SQL interface 546

Amazon Redshift Database Developer Guide

With the CLI, the following example associates the Salesshare with the entire AWS account with
the associate-entire-account option. You can only associate one Region at a time.

aws redshift associate-data-share-consumer
--region {PRODUCER_REGION}
--data-share-arn arn:aws:redshift:{PRODUCER_REGION}:{PRODUCER_ACCOUNT}:datashare:
{PRODUCER_CLUSTER_NAMESPACE}/Salesshare
--associate-entire-account

The following example associates the Salesshare with the US East (Ohio) Region (us-east-2).

aws redshift associate-data-share-consumer
--region {PRODUCER_REGION}
--data-share-arn arn:aws:redshift:{PRODUCER_REGION}:0123456789012:datashare:
{PRODUCER_CLUSTER_NAMESPACE}/Salesshare
--consumer-region 'us-east-2'

The following example associates the Salesshare with a specific consumer cluster namespace in
another AWS account in the Asia Pacific (Sydney) Region (ap-southeast-2).

aws redshift associate-data-share-consumer
--data-share-arn arn:aws:redshift:{PRODUCER_REGION}:{PRODUCER_ACCOUNT}:datashare:
{PRODUCER_CLUSTER_NAMESPACE}/Salesshare
--consumer-arn 'arn:aws:redshift:ap-southeast-2:{CONSUMER_ACCOUNT}:namespace:
{ConsumerImmutableClusterId}'

You can use the Amazon Redshift console to associate datashares with your entire AWS account
or specific AWS Regions or cluster namespaces within an AWS Region. To do this, sign in to the
https://console.aws.amazon.com/redshiftv2/. Then associate one or more datashares that are
shared from other accounts with your entire AWS account, the entire AWS Region, or a specific
cluster namespace within an AWS Region. For more information, see Associating datashares.

After the AWS account or specific cluster namespaces are associated, the datashares become
available for consumption. You can also change datashare association at any time. When changing
association from individual cluster namespaces to an AWS account, Amazon Redshift overwrites
the cluster namespaces with the AWS account information. When changing association from
an AWS account to specific cluster namespaces, Amazon Redshift overwrites the AWS account
information with the cluster namespace information. When changing association from an entire
AWS account to specific AWS Regions and cluster namespaces, Amazon Redshift overwrites the
AWS account information with the specific Region and cluster namespace information.

Managing data sharing using the SQL interface 547

https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

If you are a consumer cluster administrator, you can create local databases that reference to the
datashares and grant permissions on databases created from the datashares to user or roles in
the consumer cluster as needed. You can also create views on shared objects and create external
schemas to refer and assign granular permissions to specific schemas in the consumer database
imported on the consumer cluster. For more information, see Consumer cluster administrator
actions.

Managing cost control for cross-Region data sharing

When consuming data from a different Region, the consumer pays the Cross-Region data transfer
fee from the producer Region to the consumer Region. The price of data transfer is different for
different Regions. The charge is based on the bytes of data scanned for every successful query run.
For more information about Amazon Redshift pricing, see Amazon Redshift pricing.

You are charged for the number of bytes, rounded up to the next megabyte, with a 10MB minimum
per query. You can set cost controls on your query usage and view the amount of data being
transferred per query on your cluster.

To monitor and control your usage and associated cost of using cross-Region data sharing, you can
create daily, weekly, monthly usage limits, and define actions that Amazon Redshift automatically
takes if those limits are reached to help maintain your budget with predictability. For more
information about usage limits in Amazon Redshift, see Managing usage limits in Amazon Redshift.

Depending on the usage limits you set, actions that Amazon Redshift takes can be to log an event
to a system table, send a CloudWatch alarm and notify an administrator with an Amazon SNS, or to
turn off cross-Region data sharing for further usage. For more information about the actions, see
Managing usage limits in Amazon Redshift.

To create usage limits in the Amazon Redshift console, choose Configure usage limit under
Actions for your cluster. You can monitor your usage trends and get alerts on usage exceeding your
defined limits with automatically generated CloudWatch metrics from the Cluster performance or
Monitoring tabs. You can also create, modify, and delete usage limits programmatically by using
the AWS CLI or Amazon Redshift API operations. For more information, see Managing usage limits
in Amazon Redshift.

Sharing licensed Amazon Redshift data on AWS Data Exchange

When creating AWS Data Exchange datashares and adding them to an AWS Data Exchange
product, providers can license data in Amazon Redshift that consumers can discover, subscribe

Managing data sharing using the SQL interface 548

https://aws.amazon.com/redshift/pricing/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-usage-limits.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-usage-limits.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-usage-limits.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-usage-limits.html

Amazon Redshift Database Developer Guide

to, and query up-to-date data in Amazon Redshift when they have active AWS Data Exchange
subscriptions.

With AWS Data Exchange datashares added to an AWS Data Exchange product, consumers
automatically have access to a product's datashares when their subscription starts and retain their
access as long as their subscription is active.

Working with AWS Data Exchange datashares as a producer

If you are a producer cluster administrator, follow these steps to manage AWS Data Exchange
datashares on the Amazon Redshift console:

1. Create datashares in your cluster to share data on AWS Data Exchange and grant access to
AWS Data Exchange to the datashares.

Cluster superuser and database owners can create datashares. Each datashare is associated
with a database during creation. Only objects from that database can be shared in that
datashare. Multiple datashares can be created on the same database with the same or
different granularity of objects. There is no limit on the number of datashares you can create
on a cluster.

You can also use the Amazon Redshift console to create datashares. For more information, see
Creating datashares.

Use the MANAGEDBY ADX option to implicitly grant access of the datashare to AWS Data
Exchange when running the CREATE DATASHARE statement. This indicates that AWS Data
Exchange manages this datashare. You can only use the MANAGEDBY ADX option when
you create a new datashare. You can't use the ALTER DATASHARE statement to modify an
existing datashare to add the MANAGEDBY ADX option. Once a datashare is created with the
MANAGEDBY ADX option, only AWS Data Exchange can access and manage the datashare.

CREATE DATASHARE salesshare
[[SET] MANAGEDBY [=] {ADX}];

2. Add objects to the datashares. Producer administrator continues to manage datashare objects
that are available in an AWS Data Exchange datashare.

To add objects to a datashare, add the schema before adding objects. When you add a schema,
Amazon Redshift doesn't add all the objects under it. You must add them explicitly. For more
information, see ALTER DATASHARE.

Managing data sharing using the SQL interface 549

Amazon Redshift Database Developer Guide

ALTER DATASHARE salesshare ADD SCHEMA PUBLIC;
ALTER DATASHARE salesshare ADD TABLE public.tickit_sales_redshift;
ALTER DATASHARE salesshare ADD ALL TABLES IN SCHEMA PUBLIC;

You can also add views to a datashare.

CREATE VIEW public.sales_data_summary_view AS SELECT * FROM
 public.tickit_sales_redshift;
ALTER DATASHARE salesshare ADD TABLE public.sales_data_summary_view;

Use ALTER DATASHARE to share schemas, and tables, views, and functions in a given schema.
Superusers, datashare owners, or users who have ALTER or ALL permissions on the datashare
can alter the datashare to add objects to or remove objects from it. Users should have the
permissions to add or remove objects from the datashare. Users should also be the owners of
the objects or have SELECT, USAGE, or ALL permissions on the objects.

Use the INCLUDENEW clause to add any new tables, views, or SQL user-defined functions
(UDFs) created in a specified schema to the datashare. Only superusers can change this
property for each datashare-schema pair.

ALTER DATASHARE salesshare ADD SCHEMA PUBLIC;
ALTER DATASHARE salesshare SET INCLUDENEW = TRUE FOR SCHEMA PUBLIC;

You can also use the Amazon Redshift console to add or remove objects from datashares. For
more information, see Adding datashare objects to datashares, Removing datashare objects
from datashares, and Editing AWS Data Exchange datashares.

3. To authorize access to the datashares for AWS Data Exchange, do one of the following:

• Explicitly authorize access to the datashare for AWS Data Exchange by using the ADX
keyword in the aws redshift authorize-data-share API. This allows AWS Data
Exchange to recognize the datashare in the service account and manage associating
consumers to the datashare.

aws redshift authorize-data-share
--data-share-arn arn:aws:redshift:us-east-1:{PRODUCER_ACCOUNT}:datashare:
{PRODUCER_CLUSTER_NAMESPACE}/salesshare
--consumer-identifier ADX

Managing data sharing using the SQL interface 550

Amazon Redshift Database Developer Guide

You can use a conditional key ConsumerIdentifier for the AuthorizeDataShare and
DeauthorizeDataShare APIs to explicitly allow or deny AWS Data Exchange to make calls
to the two APIs in the IAM policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Deny",
 "Action": [
 "redshift:AuthorizeDataShare",
 "redshift:DeauthorizeDataShare"
],
 "Resource": "*",
 "Condition": {
 "StringEqualsIgnoreCase": {
 "redshift:ConsumerIdentifier": "ADX"
 }
 }
 }
]
}

• Use the Amazon Redshift console to authorize or remove authorization of AWS Data
Exchange datashares. For more information, see Authorizing or removing authorization from
datashares.

• Optionally, you can implicitly authorize access to the AWS Data Exchange datashare when
importing the datashare into an AWS Data Exchange dataset.

To remove authorization for access to the AWS Data Exchange datashares, use the ADX
keyword in the aws redshift deauthorize-data-share API operation. By doing this,
you allow AWS Data Exchange to recognize the datashare in the service account and manage
removing association from the datashare.

aws redshift deauthorize-data-share
--data-share-arn arn:aws:redshift:us-east-1:{PRODUCER_ACCOUNT}:datashare:
{PRODUCER_CLUSTER_NAMESPACE}/salesshare
--consumer-identifier ADX

Managing data sharing using the SQL interface 551

Amazon Redshift Database Developer Guide

4. List datashares created in the cluster and look into the contents of the datashare.

The following example displays the information of a datashare named salesshare. For more
information, see DESC DATASHARE and SHOW DATASHARES.

DESC DATASHARE salesshare;

 producer_account | producer_namespace | share_type | share_name
 | object_type | object_name | include_new
-------------------+--------------------------------------+------------
+------------+-------------+--------------------------------+-------------------
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_users_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_venue_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_category_redshift|
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_date_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_event_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_listing_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | table | public.tickit_sales_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | schema | public | t
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare
 | view | public.sales_data_summary_view |

The following example displays the outbound datashares in a producer cluster.

SHOW DATASHARES LIKE 'sales%';

The output looks similar to the following.

share_name | share_owner | source_database | consumer_database | share_type |
 createdate | is_publicaccessible | share_acl | producer_account |
 producer_namespace
-----------+--------------+-----------------+-------------------+------------
+---------------------+----------------------+-----------+------------------
+---------------------------------------

Managing data sharing using the SQL interface 552

Amazon Redshift Database Developer Guide

salesshare | 100 | dev | | OUTBOUND
 | 2020-12-09 02:27:08 | True | | 123456789012 |
 13b8833d-17c6-4f16-8fe4-1a018f5ed00d

For more information, see DESC DATASHARE and SHOW DATASHARES.

You can also use SVV_DATASHARES, SVV_DATASHARE_CONSUMERS, and
SVV_DATASHARE_OBJECTS to view the datashares, the objects within the datashare, and the
datashare consumers.

5. Drop datashares. We recommend that you don't delete an AWS Data Exchange datashare
shared to other AWS accounts using the DROP DATASHARE statement. Those accounts will
lose access to the datashare. This action is irreversible. This might breach data product offer
terms in AWS Data Exchange. If you want to delete an AWS Data Exchange datashare, see
DROP DATASHARE usage notes.

The following example drops a datashare named salesshare.

DROP DATASHARE salesshare;
ERROR: Drop of ADX-managed datashare salesshare requires session variable
 datashare_break_glass_session_var to be set to value '620c871f890c49'

To allow dropping an AWS Data Exchange datashare, set the
datashare_break_glass_session_var variable and run the DROP DATASHARE statement again. If
you want to delete an AWS Data Exchange datashare, see DROP DATASHARE usage notes.

You can also use the Amazon Redshift console to delete datashares. For more information, see
Deleting AWS Data Exchange datashares created in your account.

6. Use ALTER DATASHARE to remove objects from datashares at any point from the datashare.
Use REVOKE USAGE ON to revoke permissions on the datashare to certain consumers. It
revokes USAGE permissions on objects within a datashare and instantly stops access to all
consumer clusters. Listing datashares and the metadata queries, such as listing databases and
tables, doesn't return the shared objects after access is revoked.

ALTER DATASHARE salesshare REMOVE TABLE public.tickit_sales_redshift;

You can also use the Amazon Redshift console to edit datashares. For more information, see
Editing AWS Data Exchange datashares.

Managing data sharing using the SQL interface 553

Amazon Redshift Database Developer Guide

7. Grant or revoke GRANT USAGE from AWS Data Exchange datashares. You can't grant or revoke
GRANT USAGE for AWS Data Exchange datashare. The following example shows an error when
the GRANT USAGE permission is granted to an AWS account for a datashare that AWS Data
Exchange manages.

CREATE DATASHARE salesshare MANAGEDBY ADX;

GRANT USAGE ON DATASHARE salesshare TO ACCOUNT '012345678910';
ERROR: Permission denied to add/remove consumer to/from datashare salesshare.
 Datashare consumers are managed by ADX.

For more information, see GRANT or REVOKE.

If you are a producer cluster administrator, follow these steps to create and publish a datashare
product on the AWS Data Exchange console:

• When the AWS Data Exchange datashare has been created, the producer creates a new
dataset, imports assets, creates a revision, and creates and publishes a new product.

Use the Amazon Redshift console to create datasets. For more information, see Creating data
sets on AWS Data Exchange.

For more information, see Providing data products on AWS Data Exchange.

Working with AWS Data Exchange datashares as a consumer

If you are a consumer, follow these steps to discover data products that contain AWS Data
Exchange datashares and query Amazon Redshift data:

1. On the AWS Data Exchange console, discover and subscribe to data products that contains
AWS Data Exchange datashares.

Once your subscription starts, you can access licensed Amazon Redshift data that is imported
as assets to datasets that contain AWS Data Exchange datashares.

For more information on how to get started with using data products that contain AWS Data
Exchange datashares, see Subscribing to data products on AWS Data Exchange.

2. On the Amazon Redshift console, create an Amazon Redshift cluster, if needed.

Managing data sharing using the SQL interface 554

https://docs.aws.amazon.com/data-exchange/latest/userguide/providing-data-sets.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/subscribe-to-data-sets.html

Amazon Redshift Database Developer Guide

For information on how to create a cluster, see Creating a cluster.

3. List the datashares that are made available to you and view the content of datashares. For
more information, see DESC DATASHARE and SHOW DATASHARES.

The following example displays the information of inbound datashares of a specified producer
namespace. When you run DESC DATASHARE as a consumer cluster administrator, you must
specify the ACCOUNT and NAMESPACE option to view inbound datashares.

DESC DATASHARE salesshare of ACCOUNT '123456789012' NAMESPACE
 '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

 producer_account | producer_namespace | share_type | share_name
 | object_type | object_name | include_new
-------------------+--------------------------------------+------------
+------------+-------------+---------------------------------+------------------
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_users_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_venue_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_category_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_date_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_event_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_listing_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | table | public.tickit_sales_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | schema | public |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare
 | view | public.sales_data_summary_view |

Only cluster superusers can do this. You can also use SVV_DATASHARES to view the datashares
and SVV_DATASHARE_OBJECTS to view the objects within the datashare.

The following example displays the inbound datashares in a consumer cluster.

SHOW DATASHARES LIKE 'sales%';

Managing data sharing using the SQL interface 555

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster

Amazon Redshift Database Developer Guide

 share_name | share_owner | source_database | consumer_database | share_type
 | createdate | is_publicaccessible | share_acl | producer_account |
 producer_namespace
------------+-------------+-----------------+-------------------+------------
+------------+---------------------+-----------+------------------
+--------------------------------------
 salesshare | | | | INBOUND
 | | t | | 123456789012 |
 13b8833d-17c6-4f16-8fe4-1a018f5ed00d

4. Create local databases that reference to the datashares. You must specify the ACCOUNT and
NAMESPACE option to create local databases for AWS Data Exchange datashares. For more
information, see CREATE DATABASE.

CREATE DATABASE sales_db FROM DATASHARE salesshare OF ACCOUNT '123456789012'
 NAMESPACE '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

If you want more granular control over access to the objects in the local database, use the
WITH PERMISSIONS clause when creating the database. This lets you grant object-level
permissions for objects in the database in step 6.

CREATE DATABASE sales_db WITH PERMISSIONS FROM DATASHARE salesshare OF ACCOUNT
 '123456789012' NAMESPACE '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

You can see databases that you created from the datashare by querying the
SVV_REDSHIFT_DATABASES view. You can't connect to these databases created from
datashares, and they are read-only. However, you can connect to a local database on your
consumer cluster and perform a cross-database query on the data from the databases created
from datashares. You can't create a datashare on top of database objects created from an
existing datashare. However, you can copy the data into a separate table on the consumer
cluster, perform any processing needed, and then share the new objects that were created.

You can also use the Amazon Redshift console to create databases from datashares. For more
information, see Creating databases from datashares.

5. (Optional) Create external schemas to refer to and assign granular permissions to specific
schemas in the consumer database imported on the consumer cluster. For more information,
see CREATE EXTERNAL SCHEMA.

Managing data sharing using the SQL interface 556

Amazon Redshift Database Developer Guide

CREATE EXTERNAL SCHEMA sales_schema FROM REDSHIFT DATABASE 'sales_db' SCHEMA
 'public';

6. Grant permissions on databases and schema references created from the datashares to user or
roles in the consumer cluster as needed. For more information, see GRANT or REVOKE.

GRANT USAGE ON DATABASE sales_db TO Bob;

GRANT USAGE ON SCHEMA sales_schema TO ROLE Analyst_role;

If you created your database without WITH PERMISSIONS, you can only assign permissions
on the entire database created from the datashare to your users and roles. In some cases, you
need fine-grained controls on a subset of database objects created from the datashare. If so,
you can create an external schema reference that points to specific schemas in the datashare
(as described in the previous step) and provide granular permissions at schema level.

You can also create late-binding views on top of shared objects and use these to assign
granular permissions. You can also consider having producer clusters create additional
datashares for you with the granularity required. You can create as many schema references to
the database created from the datashare as you need.

If you created your database with WITH PERMISSIONS in step 4, you must assign object-
level permissions for objects in the shared database. A user with only the USAGE permission
can’t access any objects in a database created with WITH PERMISSIONS until they’re granted
additional object-level permissions..

GRANT SELECT ON sales_db.public.tickit_sales_redshift to Bob;

7. Query data in the shared objects in the datashares.

Users and roles with permissions on consumer databases and schemas on consumer clusters
can explore and navigate the metadata of any shared objects. They can also explore and
navigate local objects in a consumer cluster. To do this, they use JDBC or ODBC drivers or
SVV_ALL and SVV_REDSHIFT views.

Producer clusters might have many schemas in the database, tables, and views within each
schema. The users on the consumer side can see only the subset of objects that are made

Managing data sharing using the SQL interface 557

Amazon Redshift Database Developer Guide

available through the datashare. These users can't see the entire metadata from the producer
cluster. This approach helps provide granular metadata security control with data sharing.

You continue to connect to local cluster databases. But now, you can also read from
the databases and schemas that are created from the datashare using the three-part
database.schema.table notation. You can perform queries that span across any and all
databases that are visible to you. These can be local databases on the cluster or databases
created from the datashares. Consumer clusters can't connect to the databases created from
the datashares.

You can access the data using full qualification. For more information, see Examples of using a
cross-database query.

SELECT * FROM sales_db.public.tickit_sales_redshift ORDER BY 1,2 LIMIT 5;

 salesid | listid | sellerid | buyerid | eventid | dateid | qtysold | pricepaid |
 commission | saletime
---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------
 1 | 1 | 36861 | 21191 | 7872 | 1875 | 4 | 728.00 |
 109.20 | 2008-02-18 02:36:48
 2 | 4 | 8117 | 11498 | 4337 | 1983 | 2 | 76.00 |
 11.40 | 2008-06-06 05:00:16
 3 | 5 | 1616 | 17433 | 8647 | 1983 | 2 | 350.00 |
 52.50 | 2008-06-06 08:26:17
 4 | 5 | 1616 | 19715 | 8647 | 1986 | 1 | 175.00 |
 26.25 | 2008-06-09 08:38:52
 5 | 6 | 47402 | 14115 | 8240 | 2069 | 2 | 154.00 |
 23.10 | 2008-08-31 09:17:02

You can only use SELECT statements on shared objects. However, you can create tables in the
consumer cluster by querying the data from the shared objects in a different local database.

In addition to queries, consumers can create views on shared objects. Only late-binding views
or materialized views are supported. Amazon Redshift doesn't support regular views on shared
data. Views that consumers create can span across multiple local databases or databases
created from datashares. For more information, see CREATE VIEW.

// Connect to a local cluster database

Managing data sharing using the SQL interface 558

Amazon Redshift Database Developer Guide

// Create a view on shared objects and access it.
CREATE VIEW sales_data
AS SELECT *
FROM sales_db.public.tickit_sales_redshift
WITH NO SCHEMA BINDING;

SELECT * FROM sales_data;

Working with AWS Lake Formation-managed datashares

Sharing data to AWS Lake Formation lets you centrally define AWS Lake Formation permissions of
Amazon Redshift datashares and restrict user access to objects within a datashare.

Working with Lake Formation-managed datashares as a producer

As a producer cluster or workgroup administrator, follow these steps to share datashares to Lake
Formation:

1. Create datashares in your cluster and authorize AWS Lake Formation to access the datashares.

Only cluster superuser and database owners can create datashares. Each datashare is
associated with a database during creation. Only objects from that database can be shared
in that datashare. Multiple datashares can be created on the same database with the same or
different granularity of objects. There is no limit on the number of datashares you can create
on a cluster.

CREATE DATASHARE salesshare;

2. Add objects to the datashare. The producer cluster or workgroup administrator continues to
manage datashare objects that are available. To add objects to a datashare, add the schema
before adding objects. When you add a schema, Amazon Redshift doesn't add all the objects
under it. You must add them explicitly. For more information, see ALTER DATASHARE.

ALTER DATASHARE salesshare ADD SCHEMA PUBLIC;
ALTER DATASHARE salesshare ADD TABLE public.tickit_sales_redshift;
ALTER DATASHARE salesshare ADD ALL TABLES IN SCHEMA PUBLIC;

You can also add views to a datashare. Supported views are standard views, late binding views,
and materialized views.

Managing data sharing using the SQL interface 559

https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_DATASHARE.html

Amazon Redshift Database Developer Guide

CREATE VIEW public.sales_data_summary_view AS SELECT * FROM
 public.tickit_sales_redshift;
ALTER DATASHARE salesshare ADD TABLE public.tickit_sales_redshift;

Use ALTER DATASHARE to share schemas, tables, and views, in a given schema. Superusers,
datashare owners, or users who have ALTER or ALL permissions on the datashare can alter the
datashare to add objects to or remove objects from it. Database users should be the owners of
the objects or have SELECT, USAGE, or ALL permissions on the objects.

Use the INCLUDENEW clause to add any new tables and views created in a specified schema to
the datashare. Only superusers can change this property for each datashare-schema pair.

ALTER DATASHARE salesshare ADD SCHEMA PUBLIC;
ALTER DATASHARE salesshare SET INCLUDENEW = TRUE FOR SCHEMA PUBLIC;

3. Grant access of the datashare to a Lake Formation administrator account.

GRANT USAGE ON DATASHARE salesshare TO ACCOUNT '012345678910' VIA DATA CATALOG;

To revoke usage, use the following command.

REVOKE USAGE ON DATASHARE salesshare FROM ACCOUNT '012345678910' VIA DATA CATALOG;

4. Authorize access to the datashare for Lake Formation by using the aws redshift
authorize-data-share API operation. Doing so lets Lake Formation recognize the
datashare in the service account and manage associating consumers to the datashare.

aws redshift authorize-data-share
--data-share-arn arn:aws:redshift:us-east-1:{PRODUCER_ACCOUNT}:datashare:
{PRODUCER_CLUSTER_NAMESPACE}/salesshare
--consumer-identifier {"DataCatalog/<consumer-account-id>"}

To remove authorization from Lake Formation-managed datashares, use the aws redshift
deauthorize-data-share API operation. By doing so, you allow AWS Lake Formation to
recognize the datashare in the service account and remove authorization.

aws redshift deauthorize-data-share

Managing data sharing using the SQL interface 560

Amazon Redshift Database Developer Guide

--data-share-arn arn:aws:redshift:us-east-1:{PRODUCER_ACCOUNT}:datashare:
{PRODUCER_CLUSTER_NAMESPACE}/salesshare
--consumer-identifier {"DataCatalog/<consumer-account-id>"}

At any time, if the producer cluster or workgroup administrator decides that there is no longer
a need to share data with the consumer cluster or workgroup, they can use DROP DATASHARE
to delete the datashare, deauthorize the datashare, or revoke datashare permissions. The
associated permissions and objects in Lake Formation are not automatically deleted.

DROP DATASHARE salesshare;

After authorizing the Lake Formation account to manage the datashare, the Lake Formation
administrator can discover the shared datashare, associate the dateshare with an Data
Catalog ARN, and create a database in the AWS Glue Data Catalog linking to the datashare. To
associate datashares using the AWS CLI, use the command associate-data-share-consumer. To
share a datashare across AWS Regions, specify the --region parameter in the associate-
data-share-consumer command or use the AWS console to choose your data consumers.
The following example demonstrates how to to share a Lake Formation-managed datashare
across Regions.

aws redshift associate-data-share-consumer --region <region-1>
--data-share-arn 'arn:aws:redshift:us-
east-1:12345678912:datashare:035c45ea-61ce-86f0-8b75-19ac6102c3b7/sample_share'
--consumer-arn 'arn:aws:glue:<region-1>:111912345678:catalog'

The Lake Formation administrator must also create local resources that define how objects
within the datashare should map to objects within Lake Formation. For more information
about discovering datashares and creating local resources, see Managing permissions for data
in an Amazon Redshift datashare.

Working with Lake Formation-managed datashares as a consumer

After the AWS Lake Formation administrator discovers the datashare invitation and creates a
database in the AWS Glue Data Catalog that links to the datashare, the consumer cluster or
workgroup administrator can associate the cluster with the datashare and the database in the AWS
Glue Data Catalog, create a database local to the consumer cluster or workgroup, and grant access
to users and roles in the Amazon Redshift consumer cluster or workgroup to start querying. Follow
these steps to set up querying permissions.

Managing data sharing using the SQL interface 561

https://docs.aws.amazon.com/cli/latest/reference/redshift/associate-data-share-consumer.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-sharing-redshift.html
https://docs.aws.amazon.com/lake-formation/latest/dg/data-sharing-redshift.html

Amazon Redshift Database Developer Guide

1. On the Amazon Redshift console, create an Redshift cluster to serve as the consumer cluster or
workgroup, if needed. For information on how to create a cluster, see Creating a cluster.

2. To list which databases in the AWS Glue Data Catalog consumer cluster or workgroup users
have access to, run the SHOW DATABASES command.

SHOW DATABASES FROM DATA CATALOG [ACCOUNT <account-id>,<account-id2>] [LIKE
 <expression>]

Doing so lists the resources that are available from the Data Catalog, such as the AWS Glue
database’s ARN, database name, and information about the datashare.

3. Using the AWS Glue database ARN from SHOW DATABASES, create a local database in the
consumer cluster or workgroup. For more information, see CREATE DATABASE.

CREATE DATABASE lf_db FROM ARN <lake-formation-database-ARN> WITH [NO] DATA CATALOG
 SCHEMA [<schema>];

4. Grant access on databases and schema references created from the datashares to users and
roles in the consumer cluster or workgroup as needed. For more information, see GRANT or
REVOKE. Note that users created from the CREATE USER command cannot access objects in
datashare that have been shared to Lake Formation. Only users with access to both Redshift
and Lake Formation can access datashares that have been shared with Lake Formation.

GRANT USAGE ON DATABASE sales_db TO IAM:Bob;

As a consumer cluster or workgroup administrator, you can only assign permissions on the
entire database created from the datashare to your users and roles. In some cases, you need
fine-grained controls on a subset of database objects created from the datashare.

You can also create late-binding views on top of shared objects and use these to assign
granular permissions. You can also consider having producer clusters or workgroups create
additional datashares for you with the granularity required. You can create as many schema
references to the database created from the datashare.

5. Database users can use the views SVV_EXTERNAL_TABLES and SVV_EXTERNAL_COLUMNS to
find all of the shared tables or columns within the AWS Glue database

SELECT * from svv_external_tables WHERE redshift_database_name = 'lf_db';

Managing data sharing using the SQL interface 562

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster
https://docs.aws.amazon.com/redshift/latest/dg/r_SHOW_DATABASES.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATABASE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT.html
https://docs.aws.amazon.com/redshift/latest/dg/r_REVOKE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_USER.html

Amazon Redshift Database Developer Guide

SELECT * from svv_external_columns WHERE redshift_database_name = 'lf_db';

6. Query data in the shared objects in the datashares.

Users and roles with permissions on consumer databases and schemas on consumer clusters
or workgroups can explore and navigate the metadata of any shared objects. They can also
explore and navigate local objects in a consumer cluster or workgroup. To do so, they can use
the JDBC or ODBC drivers or the SVV_ALL and SVV_EXTERNAL views.

SELECT * FROM lf_db.schema.table;

You can only use SELECT statements on shared objects. However, you can create tables in the
consumer cluster by querying the data from the shared objects in a different local database.

// Connect to a local cluster database

// Create a view on shared objects and access it.

CREATE VIEW sales_data
AS SELECT *
FROM sales_db.public.tickit_sales_redshift
WITH NO SCHEMA BINDING;

SELECT * FROM sales_data;

Managing data sharing using the console

Use the Amazon Redshift console to manage datashares created in your account or shared from
other accounts.

You need permissions to create, edit, or delete datashares. For information, see Managing
permissions for datashares in Amazon Redshift.

• If you are a producer cluster administrator, you can create datashares, add data consumers, add
datashare objects, create databases from datashares, edit datashares, or delete datashares from
the CLUSTERS tab.

From the navigation menu, navigate the Clusters tab, choose a cluster from the cluster list. Then
do one of the following:

Managing data sharing using the console 563

Amazon Redshift Database Developer Guide

• Choose the Datashares tab, choose a datashare from the Datashares created in my
namespace section. Then do one of the following:

• Creating datashares

When a datashare is created, you can add datashare objects or data consumers. For more
information, see Adding datashare objects to datashares and Adding data consumers to
datashares.

• Editing datashares created in your account

• Deleting datashares created in your account

• Choose Datashares and choose a datashare from the Datashares from other clusters section.
Then do one of the following:

• Creating datashares

• Creating databases from datashares

• Choose Databases and choose a database from the Databases section. Then choose Create
datashare. For more information, see Creating databases from datashares.

Note

To view databases and objects within databases or to view datashares in the cluster,
connect to a database. For more information, see Connecting to a database.

Connecting to a database

Connect to a database to view databases and objects within databases in this cluster or to view
datashares.

The user credentials used to connect to a specified database must have the necessary permissions
to view all datashares.

If there is no local connection, do one of the following:

• In the cluster details page, from the Databases tab, in the Databases or Datashare objects
section, choose Connect to database to view database objects in the cluster.

• In the cluster details page, from the Datashares tab, do one of the following:

Managing data sharing using the console 564

Amazon Redshift Database Developer Guide

• In the Datashares from other clusters section, choose Connect to database to view
datashares from other clusters.

• In the Datashares created in my cluster section, choose Connect to database to view
datashares in your cluster.

• On the Connect to database window, do one of the following:

• If you choose Create a new connection, choose AWS Secrets Manager to use a stored secret
to authenticate access for the connection.

Or, choose Temporary credentials to use database credentials to authenticate access for the
connection. Specify values for Database name and Database user.

Choose Connect.

• Choose Use a recent connection to connect to another database that you have the necessary
permissions.

Amazon Redshift automatically makes the connection.

After database connection is established, you can start creating datashares, querying datashares, or
creating databases from datashares.

Creating datashares

Creating datashares

As a producer cluster administrator, you can create datashares from the Databases or Datashares
tabs in the cluster details page.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. In the cluster details page, do one of the following:

• From the Databases tab, in the Database section, choose a database. The database details
page appears.

Choose Create datashare. You can only create a datashare from a local database. If you
haven't connected to the database, the Connect to database page appears. Follow the steps in

Managing data sharing using the console 565

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

Connecting to a database to connect to a database. If there is a recent connection, the Create
datashare page appears.

• From the Datashares tab, in the Datashares section, connect to a database if you don't have a
database connection.

In the Datashares created in my cluster section, choose Create datashare. The Create
datashare page appears.

4. In the Datashare information section, choose one of the following:

• Choose Datashare to create datashares to share data for read purpose across different
Amazon Redshift clusters or in the same AWS account or different AWS accounts.

• Choose AWS Data Exchange datashare to create datashares to license your data through AWS
Data Exchange.

5. Specify values for Datashare name, Database name, and Publicly accessible.

When you change the database name, make a new database connection.

6. In the Datashare objects section, choose Add. The add datashare page appears. To add objects
to a datashare, follow Adding datashare objects to datashares.

7. In the Data consumers section, you can choose to publish to a Redshift account, or publish
to the AWS Glue Data Catalog, which starts the process of sharing data via Lake Formation.
Publishing your datashare to Redshift accounts means sharing your data with another Redshift
account that acts as the consumer cluster.

Note

Once the datashare is created, you can't edit the configuration to publish to the other
option.

8. Choose Create datashare.

Amazon Redshift creates the datashare. After the datashare is created, you can create databases
from the datashare.

Adding datashare objects to datashares

Add one or more objects to the datashare. Datashare objects are read-only for data consumers.

You can create a datashare without adding datashare objects and add objects later.

Managing data sharing using the console 566

Amazon Redshift Database Developer Guide

A datashare becomes active only when you add at least one object to the datashare.

1. Choose the datashare you want to add objects to from the datashare list.

2. Choose Add. The add datashare objects page appears.

3. Add at least one schema to the datashare before adding other datashare objects. Add multiple
schemas by choosing Add and repeat.

4. You can choose to add all existing objects of chosen object types from the specified schema
or add specific individual objects from the specified schema. Choose the Object types, such as
tables and views or user-defined functions.

5. You can choose Add and repeat to add the specified schemas and datashare objects and
continue to add another and objects.

Adding data consumers to datashares

You can add one or more data consumers to the datashares. Data consumers can be cluster
namespaces that uniquely identified Amazon Redshift clusters or AWS accounts.

You must explicitly choose to turn off or turn on sharing your datashare to clusters with public
access.

• Choose Add cluster namespaces to the datashare. Namespaces are globally unique identifier
(GUID) for Amazon Redshift cluster.

• Choose Add AWS accounts to the datashare. The specified AWS accounts must have access
permissions to the datashare.

Authorizing or removing authorization from datashares

As a producer cluster administrator, choose which data consumers to authorize to access
datashares or to remove authorization from. Authorized data consumers receive notifications to
take actions on datashares. If you are adding a cluster namespace as a data consumer, you don't
have to perform authorization.

Prerequisite: To authorize or remove authorization for the datashare, there must be at least one
data consumer added to the datashare.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

Managing data sharing using the console 567

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

2. On the navigation menu, choose Datashares. The datashare list page appears.

3. Choose In my account.

4. In the Datashares in my account section, do one of the following:

• Choose one or more consumer clusters that you want to authorize. The Authorize data
consumers page appears. Then choose Authorize.

If you chose Publish to AWS Glue Data Catalog when creating the datashare, you can only
grant authorization of the datashare to a Lake Formation account.

For AWS Data Exchange datashare, you can only authorize one datashare at a time.

When you authorize an AWS Data Exchange datashare, you are sharing the datashare with
the AWS Data Exchange service and allowing AWS Data Exchange to manage access to
the datashare on your behalf. AWS Data Exchange allows access to consumers by adding
consumer accounts as data consumers to the AWS Data Exchange datashare when they
subscribe to the products. AWS Data Exchange doesn't have read access to the datashare.

• Choose one or more consumer clusters that you want to remove authorization from. Then
choose Remove authorization.

After data consumers are authorized, they can access datashare objects and create a consumer
database to query the data.

After authorization is removed, data consumers lose access to the datashare immediately.

Managing datashares from other accounts as a consumer

Associating datashares

As a consumer cluster administrator, you can associate one or more datashares that are shared
from other accounts to your entire AWS account or specific cluster namespaces in your account.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Datashares. The datashare list page appears.

3. Choose From other accounts.

4. In the Datashares from other accounts section, choose the datashare that you want to associate
and choose Associate. When the Associate datashare page appears, choose one of the following
Association types:

Managing data sharing using the console 568

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

• Choose Entire AWS account to associate all existing and future cluster namespaces across
different AWS Regions in your AWS account with the datashare. Then choose Associate.

If the datashare is published to the AWS Glue Data Catalog, you can only associate the
datashare with the entire AWS account.

• Choose Specific AWS Regions and cluster namespaces to associate one or more AWS Regions
and specific cluster namespaces with the datashare.

a. Choose Add Region to add specific AWS Regions and cluster namespaces to the datashare.
The Add AWS Region page appears.

b. Choose an AWS Region.

c. Do one of the following:

• Choose Add all cluster namespaces to add all existing and future cluster namespaces in
this Region to the datashare.

• Choose Add specific cluster namespaces to add one or more specific cluster namespaces
in this Region to the datashare.

• Choose one or more cluster namespaces and choose Add AWS Region.

d. Choose Associate.

If you're associating the datashare with a Lake Formation account, go to the Lake Formation
console to create a database, then define permissions over the database. For more information,
see Setting up permissions for Amazon Redshift datashares in the AWS Lake Formation Developer
Guide. Once you create a AWS Glue database or a federated database, you can use query editor v2
or any preferred SQL client with your consumer cluster to query the data. For more information,
see Working with Lake Formation-managed datashares as a consumer.

After the datashare is associated, the datashares become available.

You can also change datashare association at any time. When changing association from specific
AWS Regions and cluster namespaces to the entire AWS account, Amazon Redshift overwrites the
specific Region and cluster namespaces information with AWS account information. All the AWS
Regions and cluster namespaces in the AWS account then have access to the datashare.

When changing association from specific cluster namespaces to all cluster namespaces in the
specified AWS Region, all cluster namespaces in this Region then have access to the datashare.

Managing data sharing using the console 569

https://docs.aws.amazon.com/lake-formation/latest/dg/setup-ds-perms.html

Amazon Redshift Database Developer Guide

Removing association of datashare from data consumers

As a consumer cluster administrator, you can remove association of datashares from data
consumers.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Datashares. The datashare list page appears.

3. Choose From other accounts.

4. In the Datashares from other accounts section, choose the datashare to remove association
from data consumers.

5. In the Data consumers section, choose one or more data consumers to remove association from.
Then choose Remove association.

6. When the Remove association page appears, choose Remove association.

After association is removed, data consumers will lose access to the datashare. You can change the
data consumer association at any time.

Declining datashares

As a consumer cluster administrator, you can reject any datashare whose state is available or active.
After you reject a datashare, consumer cluster users lose access to the datashare. Amazon Redshift
doesn't return the rejected datashare if you call the DescribeDataSharesForConsumer API
operation. If the producer cluster administrator runs the DescribeDataSharesForProducer API
operation, they will see that the datashare was rejected. Once a datashare is rejected, the producer
cluster administrator can authorize the datashare to a consumer cluster again, and the consumer
cluster administrator can choose to associate their AWS account with the datashare or reject it.

If your AWS account has an association to a datashare and a pending association to a datashare
that's managed by Lake Formation, rejecting the datashare association that's managed by Lake
Formation also rejects the original datashare. To reject a specific association, the producer cluster
administrator can remove authorization from a specified datashare. This action doesn't affect other
datashares.

To reject a datashare, use the AWS console, the API operation RejectDataShare, or reject-
datashare in the AWS CLI.

Managing data sharing using the console 570

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/dg/access-cross-account.html#manage-status

Amazon Redshift Database Developer Guide

To reject a datashare using the AWS console:

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. In the navigation menu, choose Datashares.

3. Choose From other accounts.

4. In the Datashares from other accounts section, choose the datashare you want to decline.
When the Decline datashare page appears, choose Decline.

After you decline the datashares, you can't revert the change. Amazon Redshift removes the
datashares from the list. To see the datashare again, the producer administrator must authorize it
again.

Managing existing datashares

Viewing datashares

View datashares from the DATASHARES or CLUSTERS tab.

• Use the DATASHARES tab to list datashares in your account or from other accounts.

• To view datashares created in your account, choose In my account, then choose the datashare
you want to view.

• To view datashares that are shared from other accounts, choose From other accounts, then
choose the datashare you want to view.

• Use the CLUSTERS tab to list datashares in your cluster or from other clusters.

Connect to a database. For more information, see Connecting to a database.

Then choose a datashare either from the Datashares from other clusters or Datashares created
in my cluster section to view its details.

Removing datashare objects from datashares

You can remove one or more objects from a datashare by using the following procedure.

Managing data sharing using the console 571

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

To remove one or more objects from a datashare

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. Choose Datashares.

4. In the Datashares created in my account section, choose Connect to database. For more
information, see Connecting to a database.

5. Choose the datashare you want to edit, then choose Edit. The datashare details page appears.

6. To remove one or more datashare objects to the datashare, do one of the following:

• To remove schemas from the datashare, choose one or more schemas. Then choose Remove.
Amazon Redshift removes the specified schemas and all the objects of the specified schemas
from the datashare.

• To remove tables and views from the datashare, choose one or more tables and views. Then
choose Remove. Alternatively, choose Remove by schema to remove all tables and views in
the specified schemas.

• To remove user-defined functions from the datashare, choose one or more user-defined
functions. Then choose Remove. Alternatively, choose Remove by schema to remove all
user-defined functions in the specified schemas.

Removing data consumers from datashares

You can remove one or more data consumers from a datashare. Data consumers can be cluster
namespaces that uniquely identified Amazon Redshift clusters or AWS accounts.

Choose one or more data consumers either from the cluster namespace IDs or AWS account, then
choose Remove.

Amazon Redshift removes the specified data consumers from the datashare. They lose access to
the datashare immediately.

Editing datashares created in your account

Edit datashares created in your account using the console. Connect to a database first to see the
list of datashares created in your account.

Managing data sharing using the console 572

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. Choose Datashares.

4. In the Datashares created in my account section, choose Connect to database. For more
information, see Connecting to a database.

5. Choose the datashare you want to edit, then choose Edit. The datashare details page appears.

6. Make any changes in the Datashare objects or Data consumers section.

Note

If you chose to publish your datashare to the AWS Glue Data Catalog, you can't edit the
configuration to publish the datashare to other Amazon Redshift accounts.

7. Choose Save changes.

Amazon Redshift updates your datashare with the changes.

Deleting datashares created in your account

Delete datashares created in your account using the console. Connect to a database first to see the
list of datashares created in your account.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. Choose Datashares. The datashare list appears.

4. In the Datashares created in my account section, choose Connect to database. For more
information, see Connecting to a database.

5. Choose one or more datashares you want to delete, then choose Delete. The Delete datashares
page appears.

Deleting a datashare shared with Lake Formation doesn't automatically remove the associated
permissions in Lake Formation. To remove them, go to the Lake Formation console.

Managing data sharing using the console 573

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

6. Type Delete to confirm deleting the specified datashares.

7. Choose Delete.

After datashares are deleted, datashare consumers lose access to the datashares.

Querying datashares

Creating databases from datashares

To start querying data in the datashare, create a database from a datashare. You can create only
one database from a specified datashare.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. Choose Datashares. The datashare list appears.

4. In the Datashares from other clusters section, choose Connect to database. For more
information, see Connecting to a database.

5. Choose a datashare that you want to create databases from, then choose Create database from
datashare. The Create database from datashare page appears.

6. In the Database name, specify a database name. The database name must be 1–64
alphanumeric characters (lowercase only) and it can't be a reserved word.

7. Choose Create.

After the database is created, you can query data in the database.

Managing AWS Data Exchange datashares

Creating data sets on AWS Data Exchange

Create data sets on AWS Data Exchange.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

Managing data sharing using the console 574

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

3. Choose Datashares.

4. In the Datashares created in my account section, choose an AWS Data Exchange datashare.

5. Choose Create data set on AWS Data Exchange. For more information, see Publishing a new
product.

Editing AWS Data Exchange datashares

Edit AWS Data Exchange datashares using the console. Connect to a database first to see the list of
datashares created in your account.

For AWS Data Exchange datashares, you can't make changes to data consumers.

To edit the publicly accessible setting for AWS Data Exchange datashares, use the Query editor v2.
Amazon Redshift generates a random one-time value to set the session variable to allow turning
this setting off. For more information, see ALTER DATASHARE usage notes.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. From the navigator menu, choose Editor, then Query editor v2.

4. If this is the first time you use the Query editor v2, configure your AWS account. By default, an
AWS owned key is used to encrypt resources. For more information about configuring your AWS
account, see Configuring your AWS account in the Amazon Redshift Management Guide.

5. To connect to the cluster that your AWS Data Exchange datashare is in, choose Database and the
cluster name in the tree-view panel. If prompted, enter the connection parameters.

6. Copy the following SQL statement. The following example changes the publicly accessible
setting of the salesshare datashare.

ALTER DATASHARE salesshare SET PUBLICACCESSIBLE FALSE;

7. To run the copied SQL statement, choose Queries and paste the copied SQL statement in the
query area. Then choose Run.

An error appears following:

ALTER DATASHARE salesshare SET PUBLICACCESSIBLE FALSE;

Managing data sharing using the console 575

https://docs.aws.amazon.com/data-exchange/latest/userguide/publishing-products.html
https://docs.aws.amazon.com/data-exchange/latest/userguide/publishing-products.html
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-getting-started.html

Amazon Redshift Database Developer Guide

ERROR: Alter of ADX-managed datashare salesshare requires session variable
 datashare_break_glass_session_var to be set to value 'c670ba4db22f4b'

The value 'c670ba4db22f4b' is a random one-time value that Amazon Redshift generates when
an unrecommended operation occurs.

8. Copy and paste the following sample statement into the query area. Then run the command.
The SET datashare_break_glass_session_var command applies a permission to allow an
unrecommended operation for an AWS Data Exchange datashare.

SET datashare_break_glass_session_var to 'c670ba4db22f4b';

9. Run the ALTER DATASHARE statement again.

ALTER DATASHARE salesshare;

Amazon Redshift updates your datashare with the changes.

Deleting AWS Data Exchange datashares created in your account

Delete AWS Data Exchange datashares created in your account using the console. Connect to a
database first to see the list of datashares created in your account.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. From the navigator menu, choose Editor, then Query editor v2.

4. If this is the first time you use the Query editor v2, configure your AWS account. By default, an
AWS owned key is used to encrypt resources. For more information about configuring your AWS
account, see Configuring your AWS account in the Amazon Redshift Management Guide.

5. To connect to the cluster that your AWS Data Exchange datashare is in, choose Database and the
cluster name in the tree-view panel. If prompted, enter the connection parameters.

6. Copy the following SQL statement. The following example drops the salesshare datashare.

DROP DATASHARE salesshare

Managing data sharing using the console 576

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-getting-started.html

Amazon Redshift Database Developer Guide

7. To run the copied SQL statement, choose Queries and paste the copied SQL statement in the
query area. Then choose Run.

An error appears following:

ERROR: Drop of ADX-managed datashare salesshare requires session variable
 datashare_break_glass_session_var to be set to value '620c871f890c49'

The value '620c871f890c49' is a random one-time value that Amazon Redshift generates when
an unrecommended operation occurs.

8. Copy and paste the following sample statement into the query area. Then run the command.
The SET datashare_break_glass_session_var command applies a permission to allow an
unrecommended operation for an AWS Data Exchange datashare.

SET datashare_break_glass_session_var to '620c871f890c49';

9. Run the DROP DATASHARE statement again.

DROP DATASHARE salesshare;

After the datashare is deleted, datashare consumers lose access to the datashare.

Deleting a shared AWS Data Exchange datashare can breach data product terms in AWS Data
Exchange.

Managing data sharing with AWS CloudFormation

You can automate data sharing setup by using an AWS CloudFormation stack, which provisions
AWS resources. The CloudFormation stack sets up data sharing between two Amazon Redshift
clusters in the same AWS account. Thus, you can start data sharing without running SQL
statements to provision your resources.

The stack creates a datashare on the cluster that you designate. The datashare includes a table and
sample read-only data. This data can be read by your other Amazon Redshift cluster.

If you want to start sharing data in an AWS account by running SQL statements to set up a
datashare and grant permissions, without using CloudFormation, see Sharing read access to data
within an AWS account.

Managing data sharing with CloudFormation 577

Amazon Redshift Database Developer Guide

Before running the data sharing CloudFormation stack, you must be logged in with a user that
has permission to create an IAM role and a Lambda function. You also need two Amazon Redshift
clusters in the same account. You use one, the producer, to share the sample data, and the other,
the consumer, to read it. The primary requirement for these clusters is that each use RA3 nodes. For
additional requirements, see Considerations when using data sharing in Amazon Redshift.

For more information about getting started setting up an Amazon Redshift cluster, see Amazon
Redshift provisioned clusters. For more information about automating setup with CloudFormation,
see What is AWS CloudFormation?

Important

Before launching your CloudFormation stack, make sure you have two Amazon Redshift
clusters in the same account and that the clusters use RA3 nodes. Make sure each cluster
has a database and a superuser. For more information, see CREATE DATABASE and
superuser.

To launch your CloudFormation stack for Amazon Redshift data sharing:

1. Click Launch CFN stack, which takes you to the CloudFormation service in the AWS
Management Console.

If you are prompted, sign in.

The stack creation process starts, referencing a CloudFormation template file, which is stored
in Amazon S3. A CloudFormation template is a text file in JSON format that declares AWS
resources that make up a stack. For more information about CloudFormation templates, see
Learn template basics.

2. Choose Next to enter the stack details.

3. Under Parameters, for each cluster, enter the following:

• Your Amazon Redshift cluster name, for example ra3-consumer-cluster

• Your database name, for example dev

• The name of your database user, for example consumeruser

We recommend using test clusters, because the stack creates several database objects.

Managing data sharing with CloudFormation 578

https://docs.aws.amazon.com/redshift/latest/gsg/new-user.html
https://docs.aws.amazon.com/redshift/latest/gsg/new-user.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://console.aws.amazon.com/cloudformation/home?#/stacks/new?stackName=DataShare&templateURL=https://s3.amazonaws.com/redshift-downloads/docs-downloads/DataShare.yml
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html

Amazon Redshift Database Developer Guide

Choose Next.

4. The stack options appear.

Choose Next to accept the default settings.

5. Under Capabilities, choose I acknowledge that AWS CloudFormation might create IAM
resources.

6. Choose Create stack.

CloudFormation takes about 10 minutes to build the Amazon Redshift stack using the template,
creating a datashare called myproducer_share. The stack creates the datashare in the database
specified in the stack details. Only objects from that database can be shared.

If an error occurs while the stack is created, do the following:

• Make sure that you entered the correct cluster name, database name, and database user name
for each Redshift cluster.

• Make sure that your cluster has RA3 nodes.

• Make sure you are logged in with a user that has permission to create an IAM role and a Lambda
function. For more information about creating IAM roles, see Creating IAM roles. For more
information about policies for Λ function creation, see Function development.

Querying the datashare that you created

To use the following procedure, make sure that you have the required permissions for running
queries on each cluster described.

To query your datashare:

1. Connect to the producer cluster on the database entered when your CloudFormation stack was
created, using a client tool such as the Amazon Redshift query editor v2.

2. Query for datashares.

SHOW DATASHARES;

+------------------+-------------+-----------------+-------------------
+------------+------------+---------------------+-----------+------------------
+--------------------------------------+

Managing data sharing with CloudFormation 579

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create.html
https://docs.aws.amazon.com/lambda/latest/dg/access-control-identity-based.html#permissions-user-function

Amazon Redshift Database Developer Guide

| share_name | share_owner | source_database | consumer_database | share_type
 | createdate | is_publicaccessible | share_acl | producer_account |
 producer_namespace |
+------------------+-------------+-----------------+-------------------
+------------+------------+---------------------+-----------+------------------
+--------------------------------------+
| myproducer_share | 100 | sample_data_dev | myconsumer_db | INBOUND
 | NULL | true | NULL | producer-acct | your-
producer-namespace |
+------------------+-------------+-----------------+-------------------
+------------+------------+---------------------+-----------+------------------
+--------------------------------------+

The preceding command returns the name of the datashare created by the stack, called
myproducer_share. It also returns the name of the database associated with the datashare,
myconsumer_db.

Copy the producer namespace identifier to use in a later step.

3. Describe objects in the datashare.

DESC DATASHARE myproducer_share;

+------------------+--------------------------------------+------------
+------------------+-------------+-------------------------------------
+-------------+
| producer_account | producer_namespace | share_type |
 share_name | object_type | object_name | include_new |
+------------------+--------------------------------------+------------
+------------------+-------------+-------------------------------------
+-------------+
| producer-acct | your-producer-namespace | OUTBOUND |
 myproducer_share | schema | myproducer_schema | true
 |
| producer-acct | your-producer-namespace | OUTBOUND |
 myproducer_share | table | myproducer_schema.tickit_sales | NULL
 |
| producer-acct | your-producer-namespace | OUTBOUND |
 myproducer_share | view | myproducer_schema.ticket_sales_view | NULL
 |
+------------------+--------------------------------------+------------
+------------------+-------------+-------------------------------------
+-------------+

Managing data sharing with CloudFormation 580

Amazon Redshift Database Developer Guide

When you describe the datashare, it returns properties for tables and views. The stack adds
tables and views with sample data to the producer database, for example tickit_sales and
tickit_sales_view. For more information about the TICKIT sample database, see Sample
database.

You don't have to delegate permissions on the datashare to run queries. The stack grants the
necessary permissions.

4. Connect to the consumer cluster using your client tool. Describe the datashare, specifying the
producer's namespace.

DESC DATASHARE myproducer_share OF NAMESPACE '<namespace id>'; --specify the unique
 identifier for the producer namespace

+------------------+--------------------------------------+------------
+------------------+-------------+-------------------------------------
+-------------+
| producer_account | producer_namespace | share_type |
 share_name | object_type | object_name | include_new |
+------------------+--------------------------------------+------------
+------------------+-------------+-------------------------------------
+-------------+
| producer-acct | your-producer-namespace | INBOUND |
 myproducer_share | schema | myproducer_schema | NULL
 |
| producer-acct | your-producer-namespace | INBOUND |
 myproducer_share | table | myproducer_schema.tickit_sales | NULL
 |
| producer-acct | your-producer-namespace | INBOUND |
 myproducer_share | view | myproducer_schema.ticket_sales_view | NULL
 |
+------------------+--------------------------------------+------------
+------------------+-------------+-------------------------------------
+-------------+

5. You can query tables in the datashare by specifying the datashare's database and schema.
For more information, see Examples of using a cross-database query. The following queries
return sales and seller data from the SALES table in the TICKIT sample database. For more
information, see SALES table.

SELECT * FROM myconsumer_db.myproducer_schema.tickit_sales_view;

Managing data sharing with CloudFormation 581

Amazon Redshift Database Developer Guide

+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+
| salesid | listid | sellerid | buyerid | eventid | dateid | qtysold | pricepaid |
 commission | saletime |
+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+
| 1 | 1 | 36861 | 21191 | 7872 | 1875 | 4 | 728 |
 109.2 | 2008-02-18 02:36:48 |
| 2 | 4 | 8117 | 11498 | 4337 | 1983 | 2 | 76 |
 11.4 | 2008-06-06 05:00:16 |
| 3 | 5 | 1616 | 17433 | 8647 | 1983 | 2 | 350 |
 52.5 | 2008-06-06 08:26:17 |
| 4 | 5 | 1616 | 19715 | 8647 | 1986 | 1 | 175 |
 26.25 | 2008-06-09 08:38:52 |
| 5 | 6 | 47402 | 14115 | 8240 | 2069 | 2 | 154 |
 23.1 | 2008-08-31 09:17:02 |
+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+

Note

The query runs against the view in the shared schema. You can't connect directly to
databases created from datashares. They are read-only.

6. To run a query that includes aggregations, use the following example.

SELECT * FROM myconsumer_db.myproducer_schema.tickit_sales ORDER BY 1,2 LIMIT 5;

+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+
| salesid | listid | sellerid | buyerid | eventid | dateid | qtysold | pricepaid |
 commission | saletime |
+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+
| 1 | 1 | 36861 | 21191 | 7872 | 1875 | 4 | 728 |
 109.2 | 2008-02-18 02:36:48 |
| 2 | 4 | 8117 | 11498 | 4337 | 1983 | 2 | 76 |
 11.4 | 2008-06-06 05:00:16 |
| 3 | 5 | 1616 | 17433 | 8647 | 1983 | 2 | 350 |
 52.5 | 2008-06-06 08:26:17 |

Managing data sharing with CloudFormation 582

Amazon Redshift Database Developer Guide

| 4 | 5 | 1616 | 19715 | 8647 | 1986 | 1 | 175 |
 26.25 | 2008-06-09 08:38:52 |
| 5 | 6 | 47402 | 14115 | 8240 | 2069 | 2 | 154 |
 23.1 | 2008-08-31 09:17:02 |
+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+

The query returns sales and seller data from the sample TICKIT data.

For more examples of datashare queries, see Sharing read access to data within an AWS
account.

Managing data sharing with writes using the console (preview)

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.
The documentation and the feature are both subject to change. We recommend that you use
this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

For more information about setting up PREVIEW_2023 track, see either of the following:

• For Amazon Redshift Serverless preview: Creating a preview workgroup

• For Amazon Redshift provisioned clusters preview: Creating a preview cluster

For more information about getting started with data sharing, go to Sharing write access to data
(Preview).

Use the Amazon Redshift console to manage datashares created in your account or shared from
other accounts.

Connecting to a database (preview)

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.
The documentation and the feature are both subject to change. We recommend that you use

Managing data sharing with writes using the console (preview) 583

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#cluster-preview
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html

Amazon Redshift Database Developer Guide

this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

For more information about getting started with data sharing, go to Sharing write access to data
(Preview).

Connect to a database to view databases and objects within databases in this cluster or to view
datashares.

The user credentials used to connect to a specified database must have the necessary permissions
to view all datashares.

If there is no local connection, do one of the following:

• In the cluster details page, from the Databases tab, in the Databases or Datashare objects
section, choose Connect to database to view database objects in the cluster.

• In the cluster details page, from the Datashares tab, do one of the following:

• In the Datashares from other clusters section, choose Connect to database to view
datashares from other clusters.

• In the Datashares created in my cluster section, choose Connect to database to view
datashares in your cluster.

• On the Connect to database window, do one of the following:

• If you choose Create a new connection, choose AWS Secrets Manager to use a stored secret
to authenticate access for the connection.

Or, choose Temporary credentials to use database credentials to authenticate access for the
connection. Specify values for Database name and Database user.

Choose Connect.

• Choose Use a recent connection to connect to another database that you have the necessary
permissions.

Amazon Redshift automatically makes the connection.

After database connection is established, you can start creating datashares, querying datashares, or
creating databases from datashares.

Managing data sharing with writes using the console (preview) 584

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html

Amazon Redshift Database Developer Guide

Creating datashares and adding objects (preview)

Creating datashares

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.
The documentation and the feature are both subject to change. We recommend that you use
this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

For more information about getting started with data sharing, go to Sharing write access to data
(Preview).

As a producer cluster administrator, you can create datashares from the Databases or Datashares
tabs in the cluster details page.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. In the cluster details page, do one of the following:

• From the Databases tab, in the Database section, choose a database. The database details
page appears.

Choose Create datashare. You can only create a datashare from a local database. If you
haven't connected to the database, the Connect to database page appears. Follow the steps
in Connecting to a database (preview) to connect to a database. If there is a recent connection,
the Create datashare page appears.

• From the Datashares tab, in the Datashares section, connect to a database if you don't have a
database connection.

In the Datashares created in my cluster section, choose Create datashare. The Create
datashare page appears.

4. From here, you can add database objects of various types. Select the Add button to add objects.
A dialog appears. Perform the following steps:

Managing data sharing with writes using the console (preview) 585

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

1. Choose a schema, or more than one schema. Doing this makes objects from the schemas
available to add.

2. Select Objects types from the schemas.

From here you can choose a couple options to Add objects:

• Add specific objects from schemas – If you choose this, it lists individual objects by
name. You can select objects and add them to the datashare. For example, you can add
specific Tables and Stored procedures, if you like. Then the tables and stored procedures
from the schema you selected are included in the datashare. Setting permissions is
explained further in subsequent steps. Continue with Views and other types, selecting
objects to add.

• Add all existing objects from the selected object types to the schema – This adds all of
the objects.

3. You can also choose whether you want to Add future objects. When you choose to include
datashare objects added to the schema, it means that objects added to the schema are
added to the datashare automatically.

4. Choose Add to complete the section and add the objects. They're listed under the
Datashare objects.

5. After you add objects, you can select individual objects and edit their permissions. If you
select a schema, a dialog appears that asks if you would like to add Scoped permissions.
This makes it so each existing or added object to the schema has a pre-selected set of
permissions, appropriate for the object type. For instance, the administrator can set that all
added tables have SELECT and UPDATE permissions, for instance.

6. After you configure schema permissions you can walk through additional object types and
select their permissions. For instance, you can add UPDATE permissions to a specific table.

7. In the Data consumers section, you can add namespaces or add AWS accounts as consumers
of the datashare.

8. Choose Create datashare to save your changes.

After you create the datashare, it appears in the list under Datashares created in my
namespace. If you choose a datashare from the list, you can view its consumers, its objects, and
other properties.

Managing data sharing with writes using the console (preview) 586

Amazon Redshift Database Developer Guide

Adding data consumers to datashares

You can add one or more data consumers to the datashares. Data consumers can be cluster
namespaces that uniquely identified Amazon Redshift clusters or AWS accounts.

You must explicitly choose to turn off or turn on sharing your datashare to clusters with public
access.

• Choose Add cluster namespaces to the datashare. Namespaces are globally unique identifier
(GUID) for Amazon Redshift cluster.

• Choose Add AWS accounts to the datashare. The specified AWS accounts must have access
permissions to the datashare.

Authorizing or removing authorization from datashares (preview)

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.
The documentation and the feature are both subject to change. We recommend that you use
this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

For more information about getting started with data sharing, go to Sharing write access to data
(Preview).

As a producer cluster administrator, choose which data consumers to authorize to access
datashares or to remove authorization from. Authorized data consumers receive notifications to
take actions on datashares. If you are adding a cluster namespace as a data consumer, you don't
have to perform authorization.

Prerequisite: To authorize or remove authorization for the datashare, there must be at least one
data consumer added to the datashare.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Datashares. From here you can see a list called Datashares
consumers. Choose one or more consumer clusters that you want to authorize. Then choose
Authorize.

Managing data sharing with writes using the console (preview) 587

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

3. The Authorize account dialog appears. You can choose among a couple authorization types.

• Read-only on [cluster name or workgroup name] – This means that no write permissions
are available on the consumer, even if the datashare creator granted write permissions.

• Read and write on [cluster name or workgroup name] – This means that all permissions
granted by the creator, including write permissions, are available on the consumer.

4. Choose Save.

You can also authorize AWS Data Exchange as a consumer.

1. If you chose Publish to AWS Glue Data Catalog when creating the datashare, you can only
grant authorization of the datashare to a Lake Formation account.

For AWS Data Exchange datashare, you can only authorize one datashare at a time.

When you authorize an AWS Data Exchange datashare, you are sharing the datashare with
the AWS Data Exchange service and allowing AWS Data Exchange to manage access to the
datashare on your behalf. AWS Data Exchange allows access to consumers by adding consumer
accounts as data consumers to the AWS Data Exchange datashare when they subscribe to the
products. AWS Data Exchange doesn't have read access to the datashare.

2. Choose Save.

After data consumers are authorized, they can access datashare objects and create a consumer
database to query the data.

Removing authorization:

Choose one or more consumer clusters that you want to remove authorization from. Then choose
Remove authorization.

After authorization is removed, data consumers lose access to the datashare immediately.

Associating or declining datashares as a consumer (preview)

Associating datashares

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.

Managing data sharing with writes using the console (preview) 588

Amazon Redshift Database Developer Guide

The documentation and the feature are both subject to change. We recommend that you use
this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

For more information about getting started with data sharing, go to Sharing write access to data
(Preview).

As a consumer cluster administrator, you can associate one or more datashares that are shared
from other accounts to your entire AWS account or specific cluster namespaces in your account.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Datashares. The datashare list page appears. Choose From
other accounts.

3. In the Datashares from other accounts section, choose the datashare that you want to
associate and choose Associate. When the Associate datashare page appears, choose one of
the following association types:

• Choose Entire AWS account to associate all existing and future cluster namespaces across
different AWS Regions in your AWS account with the datashare.

If the datashare is published to the AWS Glue Data Catalog, you can only associate the
datashare with the entire AWS account.

4. From here you can choose Allowed permissions. The choices are:

• Read-only – If you choose read only, write permissions like UPDATE or INSERT aren't
available on the consumer, even if these permissions were granted and authorized on the
producer.

• Read and write – Consumer datashare users will have all of the permissions, both read and
write, that were granted and authorized by the producer.

5. Or choose Specific AWS Regions and cluster namespaces to associate one or more AWS
Regions and specific cluster namespaces with the datashare. Choose Add Region to add
specific AWS Regions and cluster namespaces to the datashare. The Add AWS Region page
appears.

6. Choose an AWS Region.

7. Do one of the following:

Managing data sharing with writes using the console (preview) 589

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

• Choose Add all cluster namespaces to add all existing and future cluster namespaces in this
Region to the datashare.

• Choose Add specific cluster namespaces to add one or more specific cluster namespaces in
this Region to the datashare.

• Choose one or more cluster namespaces and choose Add AWS Region.

8. Choose Associate.

It's possible for the producer to go back and change settings for an authorization, which can affect
association settings on consumers.

If you're associating the datashare with a Lake Formation account, go to the Lake Formation
console to create a database, then define permissions over the database. For more information,
see Setting up permissions for Amazon Redshift datashares in the AWS Lake Formation Developer
Guide. Once you create a AWS Glue database or a federated database, you can use query editor v2
or any preferred SQL client with your consumer cluster to query the data. .

After the datashare is associated, the datashares become available.

You can also change datashare association at any time. When changing association from specific
AWS Regions and cluster namespaces to the entire AWS account, Amazon Redshift overwrites the
specific Region and cluster namespaces information with AWS account information. All the AWS
Regions and cluster namespaces in the AWS account then have access to the datashare.

When changing association from specific cluster namespaces to all cluster namespaces in the
specified AWS Region, all cluster namespaces in this Region then have access to the datashare.

Removing association of datashare from data consumers

As a consumer cluster administrator, you can remove association of datashares from data
consumers.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Datashares. The datashare list page appears.

3. Choose From other accounts.

4. In the Datashares from other accounts section, choose the datashare to remove association
from data consumers.

Managing data sharing with writes using the console (preview) 590

https://docs.aws.amazon.com/lake-formation/latest/dg/setup-ds-perms.html
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

5. In the Data consumers section, choose one or more data consumers to remove association from.
Then choose Remove association.

6. When the Remove association page appears, choose Remove association.

After association is removed, data consumers will lose access to the datashare. You can change the
data consumer association at any time.

Declining datashares

As a consumer cluster administrator, you can reject any datashare whose state is available or active.
After you reject a datashare, consumer cluster users lose access to the datashare. Amazon Redshift
doesn't return the rejected datashare if you call the DescribeDataSharesForConsumer API
operation. If the producer cluster administrator runs the DescribeDataSharesForProducer API
operation, they will see that the datashare was rejected. Once a datashare is rejected, the producer
cluster administrator can authorize the datashare to a consumer cluster again, and the consumer
cluster administrator can choose to associate their AWS account with the datashare or reject it.

If your AWS account has an association to a datashare and a pending association to a datashare
that's managed by Lake Formation, rejecting the datashare association that's managed by Lake
Formation also rejects the original datashare. To reject a specific association, the producer cluster
administrator can remove authorization from a specified datashare. This action doesn't affect other
datashares.

To reject a datashare, use the AWS console, the API operation RejectDataShare, or reject-
datashare in the AWS CLI.

To reject a datashare using the AWS console:

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. In the navigation menu, choose Datashares.

3. Choose From other accounts.

4. In the Datashares from other accounts section, choose the datashare you want to decline.
When the Decline datashare page appears, choose Decline.

Managing data sharing with writes using the console (preview) 591

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

After you decline the datashares, you can't revert the change. Amazon Redshift removes the
datashares from the list. To see the datashare again, the producer administrator must authorize it
again.

Managing existing datashares (preview)

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.
The documentation and the feature are both subject to change. We recommend that you use
this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

For more information about getting started with data sharing, go to Sharing write access to data
(Preview).

Viewing datashares

View datashares from the DATASHARES or CLUSTERS tab.

• Use the DATASHARES tab to list datashares in your account or from other accounts.

• To view datashares created in your account, choose In my account, then choose the datashare
you want to view.

• To view datashares that are shared from other accounts, choose From other accounts, then
choose the datashare you want to view.

• Use the CLUSTERS tab to list datashares in your cluster or from other clusters.

Connect to a database. For more information, see Connecting to a database (preview).

Then choose a datashare either from the Datashares from other clusters or Datashares created
in my cluster section to view its details.

Removing datashare objects from datashares

You can remove one or more objects from a datashare by using the following procedure.

Managing data sharing with writes using the console (preview) 592

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html

Amazon Redshift Database Developer Guide

To remove one or more objects from a datashare

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. Choose Datashares.

4. In the Datashares created in my account section, choose Connect to database. For more
information, see Connecting to a database (preview).

5. Choose the datashare you want to edit, then choose Edit. The datashare details page appears.

6. To remove one or more datashare objects to the datashare, do one of the following:

• To remove schemas from the datashare, choose one or more schemas. Then choose Remove.
Amazon Redshift removes the specified schemas and all the objects of the specified schemas
from the datashare.

• To remove tables and views from the datashare, choose one or more tables and views. Then
choose Remove. Alternatively, choose Remove by schema to remove all tables and views in
the specified schemas.

• To remove user-defined functions from the datashare, choose one or more user-defined
functions. Then choose Remove. Alternatively, choose Remove by schema to remove all
user-defined functions in the specified schemas.

Removing data consumers from datashares

You can remove one or more data consumers from a datashare. Data consumers can be cluster
namespaces that uniquely identified Amazon Redshift clusters or AWS accounts.

Choose one or more data consumers either from the cluster namespace IDs or AWS account, then
choose Remove.

Amazon Redshift removes the specified data consumers from the datashare. They lose access to
the datashare immediately.

Editing datashares created in your account

Edit datashares created in your account using the console. Connect to a database first to see the
list of datashares created in your account.

Managing data sharing with writes using the console (preview) 593

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. Choose Datashares.

4. In the Datashares created in my account section, choose Connect to database. .

5. Choose the datashare you want to edit, then choose Edit. The datashare details page appears.

6. Make any changes in the Datashare objects or Data consumers section.

Note

If you chose to publish your datashare to the AWS Glue Data Catalog, you can't edit the
configuration to publish the datashare to other Amazon Redshift accounts.

7. Choose Save changes.

Amazon Redshift updates your datashare with the changes.

Deleting datashares created in your account

Delete datashares created in your account using the console. Connect to a database first to see the
list of datashares created in your account.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. Choose Datashares. The datashare list appears.

4. In the Datashares created in my account section, choose Connect to database. .

5. Choose one or more datashares you want to delete, then choose Delete. The Delete datashares
page appears.

Deleting a datashare shared with Lake Formation doesn't automatically remove the associated
permissions in Lake Formation. To remove them, go to the Lake Formation console.

6. Type Delete to confirm deleting the specified datashares.

7. Choose Delete.

Managing data sharing with writes using the console (preview) 594

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

After datashares are deleted, datashare consumers lose access to the datashares.

Querying datashares (preview)

This is prerelease documentation for the multi-data warehouse writes through data sharing
feature for Amazon Redshift, which is available in public preview in the PREVIEW_2023 track.
The documentation and the feature are both subject to change. We recommend that you use
this feature only with test clusters, and not in production environments. For preview terms and
conditions, see Beta Service Participation in AWS Service Terms.

For more information about getting started with data sharing, go to Sharing write access to data
(Preview).

Creating databases from datashares

To start querying data in the datashare, create a database from a datashare. You can create only
one database from a specified datashare.

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose your cluster. The cluster details page
appears.

3. Choose Datashares. The datashare list appears.

4. In the Datashares from other clusters section, choose Connect to database. For more
information, see Connecting to a database (preview).

5. Choose a datashare that you want to create databases from, then choose Create database from
datashare. The Create database from datashare page appears.

6. In the Database name, specify a database name. The database name must be 1–64
alphanumeric characters (lowercase only) and it can't be a reserved word.

7. Choose Create.

After the database is created, you can query data in the database or perform write operations, if
they have been granted, authorized, and associated by the consumer administrator.

Managing data sharing with writes using the console (preview) 595

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://docs.aws.amazon.com/redshift/latest/dg/multi-warehouse-writes-data-sharing.html
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

Ingesting and querying semistructured data in Amazon
Redshift

By using semistructured data support in Amazon Redshift, you can ingest and store semistructured
data in your Amazon Redshift data warehouses. Using the SUPER data type and PartiQL language,
Amazon Redshift expands data warehouse capability to integrate with both SQL and NoSQL data
sources. This way, Amazon Redshift enables efficient analytics on relational and semistructured
stored data such as JSON.

Amazon Redshift offers two forms of semistructured data support: the SUPER data type and
Amazon Redshift Spectrum.

Use the SUPER data type if you need to insert or update small batches of JSON data with
low latency. Also, use SUPER when your query requires strong consistency, predictable query
performance, complex query support, and ease of use with evolving schemas and schemaless data.

In contrast, use Amazon Redshift Spectrum with an open file format if your data query requires
integration with other AWS services and with data mainly stored in Amazon S3 for archival
purposes.

Use cases for the SUPER data type

Semistructured data support using the SUPER data type in Amazon Redshift provides superior
performance, flexibility, and ease of use. The following use cases help demonstrate how you can
use semistructured data support with SUPER.

Rapid and flexible insertion of JSON data – Amazon Redshift supports rapid transactions that
can parse JSON and store it as a SUPER value. The insert transactions can operate up to five times
faster than performing the same insertions into tables that have shredded the attributes of SUPER
into conventional columns. For example, suppose that the incoming JSON is of the form {“a”:..,
“b”:.., “c”“..., ...}. You can accelerate the insert performance many times by storing the incoming
JSON into a table TJ with a single SUPER column S, instead of storing it into a conventional table
TR with columns ”a’, ‘b’, “c’, and so on. When there are hundreds of attributes in the JSON, the
performance advantage of SUPER data type becomes substantial.

Also, SUPER data type doesn't need a regular schema. You don't need to introspect and clean up
the incoming JSON before storing it. For example, suppose an incoming JSON has a string “c”

Use cases for the SUPER data type 596

Amazon Redshift Database Developer Guide

attribute and others that have an integer “c” attribute, without the SUPER data type. In this case,
you have to either separate c_string and c_int columns or clean up the data. In contrast, with the
SUPER data type, all JSON data is stored during ingestion without the loss of information. Later,
you can use the PartiQL extension of SQL to analyze the information.

Flexible queries for discovery – After you have stored your semistructured data (such as JSON)
into a SUPER data value, you can query it without imposing a schema. You can use PartiQL
dynamic typing and lax semantics to run your queries and discover the deeply nested data you
need, without the need to impose a schema before query.

Flexible queries for extract, load, transform (ETL) operations into conventional materialized
views – After you have stored your schemaless and semistructured data into SUPER, you can use
PartiQL materialized views to introspect the data and shred them into materialized views.

The materialized views with the shredded data are a good example of performance and usability
advantages to your classic analytics cases. When you perform analytics on the shredded data,
the columnar organization of Amazon Redshift materialized views provides better performance.
Furthermore, users and business intelligence (BI) tools that require a conventional schema
for ingested data can use views (either materialized or virtual) as the conventional schema
presentation of the data.

After your PartiQL materialized views have extracted the data found in JSON or SUPER into
conventional columnar materialized views, you can query the materialized views. For more
information on how the SUPER data type works with materialized views, see Using SUPER data
type with materialized views.

You can apply dynamic data masking policies to scalar values on the paths of SUPER type
columns. For more information about dynamic data masking, see Dynamic data masking. For
information about the using dynamic data masking with the SUPER data type, see Using dynamic
data masking with SUPER data type paths. (preview)

For information about the SUPER data type, see SUPER type.

For examples of using the SUPER data type, see the subsections for this topic, beginning with
SUPER sample dataset.

Concepts for SUPER data type use

Following, you can find some Amazon Redshift SUPER data type concepts.

Concepts for SUPER data type use 597

Amazon Redshift Database Developer Guide

Understand what the SUPER data type is in Amazon Redshift – The SUPER data type is an
Amazon Redshift data type that enables the storage of schemaless arrays and structures that
contain Amazon Redshift scalars and possibly nested arrays and structures. The SUPER data type
can natively store different formats of semistructured data, such as JSON or data originating
from document-oriented sources. You can add a new SUPER column to store semistructured data
and write queries that access the SUPER column, along with the usual scalar columns. For more
information about the SUPER data type, see SUPER type.

Ingest schemaless JSON into SUPER – With the flexible semistructured SUPER data type, Amazon
Redshift can receive and ingest schemaless JSON into a SUPER value. For example, Amazon
Redshift can ingest the JSON value [10.5, "first"] into a SUPER value [10.5, ‘first’], that is an array
containing the Amazon Redshift decimal 10.5 and varchar ‘first’. Amazon Redshift can ingest
the JSON into a SUPER value using the COPY command or the JSON parse function, such as
json_parse('[10.5, "first"]'). Both COPY and json_parse ingest JSON using strict parsing semantics
by default. You can also construct SUPER values including arrays and structures, using the database
data themselves.

The SUPER column requires no schema modifications while ingesting the irregular structures of
schemaless JSON. For example, while analyzing a click-stream, you initially store in the SUPER
column “click” structures with attributes “IP” and “time”. You can add an attribute “customer id”
without changing your schema in order to ingest such changes.

The native format used for the SUPER data type is a binary format that requires lesser space than
the JSON value in its textual form. This enables faster ingestion and runtime processing of SUPER
values at query.

Query SUPER data with PartiQL – PartiQL is a backward-compatible extension of SQL-92 that
many AWS services currently use. With the use of PartiQL, familiar SQL constructs seamlessly
combine access to both the classic, tabular SQL data and the semistructured data of SUPER. You
can perform object and array navigation and unnest arrays. PartiQL extends the standard SQL
language to declaratively express and process nested and multivalued data.

PartiQL is an extension of SQL where the nested and schemaless data of SUPER columns are
first-class citizens. PartiQL doesn't require all query expressions to be type-checked during query
compilation time. This approach enables query expressions that contain the SUPER data type to
be dynamically typed during query execution when the actual types of the data inside the SUPER
columns are accessed. Also, PartiQL operates in a lax mode where type inconsistencies don't cause
failures but return null. The combination of schemaless and lax query processing makes PartiQL

Concepts for SUPER data type use 598

Amazon Redshift Database Developer Guide

ideal for extract, load, transfer (ELT) applications where your SQL query evaluates the JSON data
that are ingested in the SUPER columns.

Integrate with Redshift Spectrum – Amazon Redshift supports multiple aspects of PartiQL when
running Redshift Spectrum queries over JSON, Parquet, and other formats that have nested
data. Redshift Spectrum only supports nested data that has schemas. For example, with Redshift
Spectrum you can declare that your JSON data have an attribute nested_schemaful_example in a
schema ARRAY<STRUCT<a:INTEGER, b:DECIMAL(5,2)>>. The schema of this attribute determines
that the data always contains an array, which contains a structure with integer a and decimal
b. If the data changes to include more attributes, the type also changes. In contrast, the SUPER
data type requires no schema. You can store arrays with structure elements that have different
attributes or types. Also, some values can be stored outside arrays.

For information about functions that support the SUPER data type, see the following:

• ABS function

• CEILING (or CEIL) function

• FLOOR function

• ROUND function

• SIGN function

• TRUNC function

Considerations for SUPER data

When working with SUPER data, consider the following:

• Use JDBC driver version 1.2.50, ODBC driver version 1.4.17 or later, and Amazon Redshift Python
driver version 2.0.872 or later.

For information about JDBC drivers, see Configuring a JDBC connection.

For information about ODBC drivers, see Configuring an ODBC connection.

• Find the schema examples used in the following topics at SUPER sample dataset.

• All the SQL code examples used in the following topics are included with the same S3 prefix for
download. These include the data definition language (DDL) and COPY statements, and also
certain TPC-H modified queries that work with SUPER.

Considerations for SUPER data 599

https://docs.aws.amazon.com/redshift/latest/mgmt/configure-jdbc-connection.html
https://docs.aws.amazon.com/redshift/latest/mgmt/configure-odbc-connection.html

Amazon Redshift Database Developer Guide

To view or download the SQL files, do one of the following:

• Download the SUPER tutorial SQL file and TPC-H file.

• Using the Amazon S3 CLI, run the following command. You can use your own target path.

aws s3 cp s3://redshift-downloads/semistructured/tutorialscripts/semistructured-
tutorial.sql /target/path
aws s3 cp s3://redshift-downloads/semistructured/tutorialscripts/
super_tpch_queries.sql /target/path

For more information about SUPER configurations, see SUPER configurations.

SUPER sample dataset

The table schema and data model used for ingestion and query examples are defined as follows.

/*customer-orders-lineitem*/
CREATE TABLE customer_orders_lineitem
(c_custkey bigint
,c_name varchar
,c_address varchar
,c_nationkey smallint
,c_phone varchar
,c_acctbal decimal(12,2)
,c_mktsegment varchar
,c_comment varchar
,c_orders super
);

/* Datamodel of documents to be stored in c_orders Super column would be as follows*/
ARRAY < STRUCT < o_orderkey:bigint
 ,o_orderstatus:string
 ,o_totalprice:double
 ,o_orderdate:string
 ,o_orderpriority:string
 ,o_clerk:string
 ,o_shippriority:int
 ,o_comment:string
 ,o_lineitems:ARRAY < STRUCT < l_partkey:bigint
 ,l_suppkey:bigint
 ,l_linenumber:int

SUPER sample dataset 600

https://s3.amazonaws.com/redshift-downloads/semistructured/tutorialscripts/semistructured-tutorial.sql
https://s3.amazonaws.com/redshift-downloads/semistructured/tutorialscripts/super_tpch_queries.sql

Amazon Redshift Database Developer Guide

 ,l_quantity:double
 ,l_extendedprice:double
 ,l_discount:double
 ,l_tax:double
 ,l_returnflag:string
 ,l_linestatus:string
 ,l_shipdate:string
 ,l_commitdate:string
 ,l_receiptdate:string
 ,l_shipinstruct:string
 ,l_shipmode:string
 ,l_comment:string
 > >
 > >

/*part*/
CREATE TABLE part
(
 p_partkey bigint
 ,p_name varchar
 ,p_mfgr varchar
 ,p_brand varchar
 ,p_type varchar
 ,p_size int
 ,p_container varchar
 ,p_retailprice decimal(12,2)
 ,p_comment varchar
);

/*region-nations*/
CREATE TABLE region_nations
(
 r_regionkey smallint
 ,r_name varchar
 ,r_comment varchar
 ,r_nations super
);

 /* Datamodel of documents to be stored in r_nations Super column would be as follows*/
 ARRAY < STRUCT < n_nationkey:int,n_name:string,n_comment:string > >

/*supplier-partsupp*/
CREATE TABLE supplier_partsupp
(

SUPER sample dataset 601

Amazon Redshift Database Developer Guide

 s_suppkey bigint
 ,s_name varchar
 ,s_address varchar
 ,s_nationkey smallint
 ,s_phone varchar
 ,s_acctbal double precision
 ,s_comment varchar
 ,s_partsupps super
);

 /* Datamodel of documents to be stored in s_partsupps Super column would be as
 follows*/
 ARRAY < STRUCT <
 ps_partkey:bigint,ps_availqty:int,ps_supplycost:double,ps_comment:string > >

Loading semistructured data into Amazon Redshift

Use the SUPER data type to persist and query hierarchical and generic data in Amazon Redshift.
Amazon Redshift introduces the json_parse function to parse data in JSON format and convert
it into the SUPER representation. Amazon Redshift also supports loading SUPER columns using the
COPY command. The supported file formats are JSON, Avro, text, comma-separated value (CSV)
format, Parquet, and ORC.

For information on the tables used in the following examples, see SUPER sample dataset.

For information about the json_parse function, see JSON_PARSE function.

The default encoding for SUPER data type is ZSTD.

Parsing JSON documents to SUPER columns

You can insert or update JSON data into a SUPER column using the json_parse function. The
function parses data in JSON format and converts it into the SUPER data type, which you can use
in INSERT or UPDATE statements.

The following example inserts JSON data into a SUPER column. If the json_parse function
is missing in the query, Amazon Redshift treats the value as a single string instead of a JSON-
formatted string that must be parsed.

If you update a SUPER data column, Amazon Redshift requires the complete document to be
passed to column values. Amazon Redshift doesn't support partial update.

Loading semistructured data into Amazon Redshift 602

Amazon Redshift Database Developer Guide

INSERT INTO region_nations VALUES(0,
 'lar deposits. blithely final packages cajole. regular waters are final requests.
 regular accounts are according to',
 'AFRICA',
 JSON_PARSE('{"r_nations":[
 {"n_comment":" haggle. carefully final deposits detect slyly agai",
 "n_nationkey":0,
 "n_name":"ALGERIA"
 },
 {"n_comment":"ven packages wake quickly. regu",
 "n_nationkey":5,
 "n_name":"ETHIOPIA"
 },
 {"n_comment":" pending excuses haggle furiously deposits. pending, express pinto
 beans wake fluffily past t",
 "n_nationkey":14,
 "n_name":"KENYA"
 },
 {"n_comment":"rns. blithely bold courts among the closely regular packages use
 furiously bold platelets?",
 "n_nationkey":15,
 "n_name":"MOROCCO"
 },
 {"n_comment":"s. ironic, unusual asymptotes wake blithely r",
 "n_nationkey":16,
 "n_name":"MOZAMBIQUE"
 }
]
}'));

Using COPY to load SUPER columns in Amazon Redshift

In the following sections, you can learn about different ways to use the COPY command to load
JSON data into Amazon Redshift.

Copying data from JSON and Avro

By using semistructured data support in Amazon Redshift, you can load a JSON document without
shredding the attributes of its JSON structures into multiple columns.

Amazon Redshift provides two methods to ingest JSON document using COPY, even with a JSON
structure that is fully or partially unknown:

Using COPY to load JSON data in Amazon Redshift 603

Amazon Redshift Database Developer Guide

1. Store the data deriving from a JSON document into a single SUPER data column using the
noshred option. This method is useful when the schema isn't known or is expected to change.
Thus, this method makes it easier to store the entire tuple in a single SUPER column.

2. Shred the JSON document into multiple Amazon Redshift columns using the auto or
jsonpaths option. Attributes can be Amazon Redshift scalars or SUPER values.

You can use these options with the JSON or Avro formats.

The maximum size for a JSON object before shredding is 4 MB.

Copying a JSON document into a single SUPER data column

To copy a JSON document into a single SUPER data column, create a table with a single SUPER
data column.

CREATE TABLE region_nations_noshred (rdata SUPER);

Copy the data from Amazon S3 into the single SUPER data column. To ingest the JSON source data
into a single SUPER data column, specify the noshred option in the FORMAT JSON clause.

COPY region_nations_noshred FROM 's3://redshift-downloads/semistructured/tpch-nested/
data/json/region_nation'
REGION 'us-east-1' IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3'
FORMAT JSON 'noshred';

After COPY has successfully ingested the JSON, your table has a rdata SUPER data column that
contains the data of the entire JSON object. The ingested data maintains all the properties of the
JSON hierarchy. However, the leaves are converted to Amazon Redshift scalar types for efficient
query processing.

Use the following query to retrieve the original JSON string.

SELECT rdata FROM region_nations_noshred;

When Amazon Redshift generates a SUPER data column, it becomes accessible using JDBC as a
string through JSON serialization. For more information, see Serializing complex nested JSON.

Using COPY to load JSON data in Amazon Redshift 604

Amazon Redshift Database Developer Guide

Copying a JSON document into multiple SUPER data columns

You can shred a JSON document into multiple columns that can be either SUPER data columns or
Amazon Redshift scalar types. Amazon Redshift spreads different portions of the JSON object to
different columns.

CREATE TABLE region_nations
(
 r_regionkey smallint
 ,r_name varchar
 ,r_comment varchar
 ,r_nations super
);

To copy the data of the previous example into the table, specify the AUTO option in the FORMAT
JSON clause to split the JSON value across multiple columns. COPY matches the top-level JSON
attributes with column names and allows nested values to be ingested as SUPER values, such as
JSON arrays and objects.

COPY region_nations FROM 's3://redshift-downloads/semistructured/tpch-nested/data/json/
region_nation'
REGION 'us-east-1' IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3'
FORMAT JSON 'auto';

When the JSON attribute names are in mixed upper and lower cases, specify the auto
ignorecase option in the FORMAT JSON clause. For more information about the COPY command,
see Load from JSON data using the 'auto ignorecase' option.

In some cases, there is a mismatch between column names and JSON attributes or the attribute to
load is nested more than a level deep. If so, use a jsonpaths file to manually map JSON attributes
to Amazon Redshift columns.

CREATE TABLE nations
(
 regionkey smallint
 ,name varchar
 ,comment super
 ,nations super
);

Using COPY to load JSON data in Amazon Redshift 605

Amazon Redshift Database Developer Guide

Suppose that you want to load data to a table where the column names don't match the
JSON attributes. In the following example, the nations table is such a table. You can create a
jsonpaths file that maps the paths of attributes to the table columns by their position in the
jsonpaths array.

{"jsonpaths": [
 "$.r_regionkey",
 "$.r_name",
 "$.r_comment",
 "$.r_nations
]
}

The location of the jsonpaths file is used as the argument to FORMAT JSON.

COPY nations FROM 's3://redshift-downloads/semistructured/tpch-nested/data/json/
region_nation'
REGION 'us-east-1' IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3'
FORMAT JSON 's3://redshift-downloads/semistructured/tpch-nested/data/jsonpaths/
nations_jsonpaths.json';

Use the following query to access the table that shows data spread to multiple columns. The
SUPER data columns are printed using the JSON format.

SELECT r_regionkey,r_name,r_comment,r_nations[0].n_nationkey FROM region_nations ORDER
 BY 1,2,3 LIMIT 1;

Jsonpaths files map fields in the JSON document to table columns. You can extract additional
columns, such as distribution and sort keys, while still loading the complete document as a SUPER
column. The following query loads the complete document to the nations column. The name
column is the sort key and the regionkey column is the distribution key.

CREATE TABLE nations_sorted (
 regionkey smallint,
 name varchar,
 nations super
) DISTKEY(regionkey) SORTKEY(name);

The root jsonpath "$" maps to the root of the document as follows:

Using COPY to load JSON data in Amazon Redshift 606

Amazon Redshift Database Developer Guide

{"jsonpaths": [
 "$.r_regionkey",
 "$.r_name",
 "$"
]
}

The location of the jsonpaths file is used as the argument to FORMAT JSON.

COPY nations_sorted FROM 's3://redshift-downloads/semistructured/tpch-nested/data/json/
region_nation'
REGION 'us-east-1' IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3'
FORMAT JSON 's3://redshift-downloads/semistructured/tpch-nested/data/jsonpaths/
nations_sorted_jsonpaths.json';

Copying data from text and CSV

Amazon Redshift represents SUPER columns in text and CSV formats as serialized JSON. Valid
JSON formatting is required for SUPER columns to load with the correct type information. Unquote
objects, arrays, numbers, booleans, and null values. Wrap string values in double quotes. SUPER
columns use standard escaping rules for text and CSV formats. For CSV, delimiters are escaped
according to the CSV standard. For text, if the chosen delimiter might also appear in a SUPER field,
use the ESCAPE option during COPY and UNLOAD.

COPY region_nations FROM 's3://redshift-downloads/semistructured/tpch-nested/data/csv/
region_nation'
REGION 'us-east-1' IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3'
FORMAT CSV;

COPY region_nations FROM 's3://redshift-downloads/semistructured/tpch-nested/data/text/
region_nation'
REGION 'us-east-1' IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3'
DELIMITER ','
ESCAPE;

Copying data from columnar-format Parquet and ORC

If your semistructured or nested data is already available in either Apache Parquet or Apache ORC
format, you can use the COPY command to ingest data into Amazon Redshift.

Using COPY to load JSON data in Amazon Redshift 607

Amazon Redshift Database Developer Guide

The Amazon Redshift table structure should match the number of columns and the column data
types of the Parquet or ORC files. By specifying SERIALIZETOJSON in the COPY command, you
can load any column type in the file that aligns with a SUPER column in the table as SUPER. This
includes structure and array types.

COPY region_nations FROM 's3://redshift-downloads/semistructured/tpch-nested/data/
parquet/region_nation'
REGION 'us-east-1' IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3'
FORMAT PARQUET SERIALIZETOJSON;

The following example uses an ORC format.

COPY region_nations FROM 's3://redshift-downloads/semistructured/tpch-nested/data/orc/
region_nation'
IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3'
FORMAT ORC SERIALIZETOJSON;

When the attributes of the date or time data types are in ORC, Amazon Redshift converts them to
varchar upon encoding them in SUPER.

Unloading semistructured data

You can unload tables with SUPER data columns to Amazon S3 in different formats.

Topics

• Unloading semistructured data in CSV or text formats

• Unloading semistructured data in the Parquet format

Unloading semistructured data in CSV or text formats

You can unload tables with SUPER data columns to Amazon S3 in a comma-separated value (CSV)
or text format. Using a combination of navigation and unnest clauses, Amazon Redshift unloads
hierarchical data in SUPER data format to Amazon S3 in CSV or text formats. Subsequently, you
can create external tables against unloaded data and query them using Redshift Spectrum. For
information on using UNLOAD and the required IAM permissions, see UNLOAD.

Unloading semistructured data 608

Amazon Redshift Database Developer Guide

Before running the following example, populate the region_nations table using the processes
in Loading semistructured data into Amazon Redshift. For information on the tables used in the
following example, see SUPER sample dataset.

The following example unloads data into Amazon S3.

UNLOAD ('SELECT * FROM region_nations')
TO 's3://xxxxxx/'
IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3-Write'
DELIMITER AS '|'
GZIP
ALLOWOVERWRITE;

Unlike other data types where a user-defined string represents a null value, Amazon Redshift
exports the SUPER data columns using the JSON format and represents it as null as determined by
the JSON format. As a result, SUPER data columns ignore the NULL [AS] option used in UNLOAD
commands.

Unloading semistructured data in the Parquet format

You can unload tables with SUPER data columns to Amazon S3 in the Parquet format. Amazon
Redshift represents SUPER columns in Parquet as the JSON data type. This enables semistructured
data to be represented in Parquet. You can query these columns using Redshift Spectrum or ingest
them back to Amazon Redshift using the COPY command. For information on using UNLOAD and
the required IAM permissions, see UNLOAD.

The following example unloads data into Amazon S3 in the Parquet format.

UNLOAD ('SELECT * FROM region_nations')
TO 's3://xxxxxx/'
IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3-Write'
FORMAT PARQUET;

Querying semistructured data

Amazon Redshift uses the PartiQL language to offer SQL-compatible access to relational,
semistructured, and nested data.

PartiQL operates with dynamic types. This approach enables intuitive filtering, joining, and
aggregation on the combination of structured, semistructured, and nested datasets. The PartiQL

Unloading semistructured data in the Parquet format 609

Amazon Redshift Database Developer Guide

syntax uses dotted notation and array subscript for path navigation when accessing nested data. It
also enables the FROM clause items to iterate over arrays and use for unnest operations. Following,
you can find descriptions of the different query patterns that combine the use of the SUPER data
type with path and array navigation, unnesting, unpivoting, and joins.

For information on the tables used in the following example, see SUPER sample dataset.

Navigation

Amazon Redshift uses PartiQL to enable navigation into arrays and structures using the [...] bracket
and dot notation respectively. Furthermore, you can mix navigation into structures using the dot
notation and arrays using the bracket notation. For example, the following example assumes
that the c_orders SUPER data column is an array with a structure and an attribute is named
o_orderkey.

To ingest data in the customer_orders_lineitem table, run the following command. Replace
the IAM role with your own credentials.

COPY customer_orders_lineitem FROM 's3://redshift-downloads/semistructured/tpch-nested/
data/json/customer_orders_lineitem'
REGION 'us-east-1' IAM_ROLE 'arn:aws:iam::xxxxxxxxxxxx:role/Redshift-S3'
FORMAT JSON 'auto';

SELECT c_orders[0].o_orderkey FROM customer_orders_lineitem;

Amazon Redshift also uses a table alias as a prefix to the notation. The following example is the
same query as the previous example.

SELECT cust.c_orders[0].o_orderkey FROM customer_orders_lineitem AS cust;

You can use the dot and bracket notations in all types of queries, such as filtering, join, and
aggregation. You can use these notations in a query in which there are normally column references.
The following example uses a SELECT statement that filters results.

SELECT count(*) FROM customer_orders_lineitem WHERE c_orders[0]. o_orderkey IS NOT
 NULL;

The following example uses the bracket and dot navigation in both GROUP BY and ORDER BY
clauses.

Navigation 610

Amazon Redshift Database Developer Guide

SELECT c_orders[0].o_orderdate,
 c_orders[0].o_orderstatus,
 count(*)
FROM customer_orders_lineitem
WHERE c_orders[0].o_orderkey IS NOT NULL
GROUP BY c_orders[0].o_orderstatus,
 c_orders[0].o_orderdate
ORDER BY c_orders[0].o_orderdate;

Unnesting queries

To unnest queries, Amazon Redshift uses the PartiQL syntax to iterate over SUPER arrays. It does
this by navigating the array using the FROM clause of a query. Using the previous example, the
following example iterates over the attribute values for c_orders.

SELECT c.*, o FROM customer_orders_lineitem c, c.c_orders o;

The unnesting syntax is an extension of the FROM clause. In standard SQL, the FROM clause x
(AS) y means that y iterates over each tuple in relation x. In this case, x refers to a relation and
y refers to an alias for relation x. Similarly, the PartiQL syntax of unnesting using the FROM clause
item x (AS) y means that y iterates over each (SUPER) value in (SUPER) array expression x. In this
case, x is a SUPER expression and y is an alias for x.

The left operand can also use the dot and bracket notation for regular navigation. In the previous
example, customer_orders_lineitem c is the iteration over the customer_order_lineitem
base table and c.c_orders o is the iteration over the c.c_orders array. To iterate over the
o_lineitems attribute, which is an array within an array, you add multiple clauses.

SELECT c.*, o, l FROM customer_orders_lineitem c, c.c_orders o, o.o_lineitems l;

Amazon Redshift also supports an array index when iterating over the array using the AT keyword.
The clause x AS y AT z iterates over array x and generates the field z, which is the array index.
The following example shows how an array index works.

SELECT c_name,
 orders.o_orderkey AS orderkey,
 index AS orderkey_index
FROM customer_orders_lineitem c, c.c_orders AS orders AT index

Unnesting queries 611

Amazon Redshift Database Developer Guide

ORDER BY orderkey_index;

c_name | orderkey | orderkey_index
-------------------+----------+----------------
Customer#000008251 | 3020007 | 0
Customer#000009452 | 4043971 | 0
 (2 rows)

The following example iterates over a scalar array.

CREATE TABLE bar AS SELECT json_parse('{"scalar_array": [1, 2.3, 45000000]}') AS data;

SELECT index, element FROM bar AS b, b.data.scalar_array AS element AT index;

 index | element
-------+----------
 0 | 1
 1 | 2.3
 2 | 45000000
(3 rows)

The following example iterates over an array of multiple levels. The example uses multiple
unnest clauses to iterate into the innermost arrays. The f.multi_level_array AS array
iterates over multi_level_array. The array AS element is the iteration over the arrays within
multi_level_array.

CREATE TABLE foo AS SELECT json_parse('[[1.1, 1.2], [2.1, 2.2], [3.1, 3.2]]') AS
 multi_level_array;

SELECT array, element FROM foo AS f, f.multi_level_array AS array, array AS element;

 array | element
-----------+---------
 [1.1,1.2] | 1.1
 [1.1,1.2] | 1.2
 [2.1,2.2] | 2.1
 [2.1,2.2] | 2.2
 [3.1,3.2] | 3.1
 [3.1,3.2] | 3.2
(6 rows)

For more information about the FROM clause, see FROM clause.

Unnesting queries 612

Amazon Redshift Database Developer Guide

Object unpivoting

To perform object unpivoting, Amazon Redshift uses the PartiQL syntax to iterate over SUPER
objects. It does this using the FROM clause of a query with the UNPIVOT keyword. In this case, the
expression is the c.c_orders[0] object. The example query iterates over each attribute returned
by the object.

SELECT attr as attribute_name, json_typeof(val) as value_type
FROM customer_orders_lineitem c, UNPIVOT c.c_orders[0] AS val AT attr
WHERE c_custkey = 9451;

 attribute_name | value_type
-----------------+------------
 o_orderstatus | string
 o_clerk | string
 o_lineitems | array
 o_orderdate | string
 o_shippriority | number
 o_totalprice | number
 o_orderkey | number
 o_comment | string
 o_orderpriority | string
(9 rows)

As with unnesting, the unpivoting syntax is also an extension of the FROM clause. The difference is
that the unpivoting syntax uses the UNPIVOT keyword to indicate that it's iterating over an object
instead of an array. It uses the AS value_alias for iteration over all the values inside an object
and uses the AT attribute_alias for iterating over all the attributes. Consider the following
syntax fragment:

UNPIVOT expression AS value_alias [AT attribute_alias]

Amazon Redshift supports using object unpivoting and array unnesting in a single FROM clause as
follows:

SELECT attr as attribute_name, val as object_value
FROM customer_orders_lineitem c, c.c_orders AS o, UNPIVOT o AS val AT attr
WHERE c_custkey = 9451;

Object unpivoting 613

Amazon Redshift Database Developer Guide

When you use object unpivoting, Amazon Redshift doesn't support correlated unpivoting.
Specifically, suppose that you have a case where there are multiple examples of unpivoting in
different query levels and the inner unpivoting references the outer one. Amazon Redshift doesn't
support this type of multiple unpivoting.

For more information about the FROM clause, see FROM clause. For examples that show how to
query structured data, with PIVOT and UNPIVOT, see PIVOT and UNPIVOT examples.

Dynamic typing

Dynamic typing doesn't require explicit casting of data that is extracted from the dot and bracket
paths. Amazon Redshift uses dynamic typing to process schemaless SUPER data without the need
to declare the data types before you use them in your query. Dynamic typing uses the results of
navigating into SUPER data columns without having to explicitly cast them into Amazon Redshift
types. Dynamic typing is most useful in joins and GROUP BY clauses. The following example uses
a SELECT statement that requires no explicit casting of the dot and bracket expressions to the
usual Amazon Redshift types. For information about type compatibility and conversion, see Type
compatibility and conversion.

SELECT c_orders[0].o_orderkey
FROM customer_orders_lineitem
WHERE c_orders[0].o_orderstatus = 'P';

The equality sign in this query evaluates to true when c_orders[0].o_orderstatus is the string ‘P’.
In all other cases, the equality sign evaluates to false, including the cases where the arguments of
the equality are different types.

Dynamic and static typing

Without using dynamic typing, you can't determine whether c_orders[0].o_orderstatus is a string,
an integer, or a structure. You can only determine that c_orders[0].o_orderstatus is a SUPER
data type, which can be an Amazon Redshift scalar, an array, or a structure. The static type of
c_orders[0].o_orderstatus is a SUPER data type. Conventionally, a type is implicitly a static type in
SQL.

Amazon Redshift uses dynamic typing to the processing of schemaless data. When the query
evaluates the data, c_orders[0].o_orderstatus turns out to be a specific type. For example,
evaluating c_orders[0].o_orderstatus on the first record of customer_orders_lineitem may result

Dynamic typing 614

Amazon Redshift Database Developer Guide

into an integer. Evaluating on the second record may result into a string. These are the dynamic
types of the expression.

When using an SQL operator or function with dot and bracket expressions that have dynamic
types, Amazon Redshift produces results similar to using standard SQL operator or function
with the respective static types. In this example, when the dynamic type of the path expression
is a string, the comparison with the string ‘P’ is meaningful. Whenever the dynamic type of
c_orders[0].o_orderstatus is any other data type except being a string, the equality returns false.
Other functions return null when mistyped arguments are used.

The following example writes the previous query with static typing:

SELECT c_custkey
FROM customer_orders_lineitem
WHERE CASE WHEN JSON_TYPEOF(c_orders[0].o_orderstatus) = 'string'
 THEN c_orders[0].o_orderstatus::VARCHAR = 'P'
 ELSE FALSE END;

Note the following distinction between equality predicates and comparison predicates. In the
previous example, if you replace the equality predicate with a less-than-or-equal predicate, the
semantics produce null instead of false.

SELECT c_orders[0]. o_orderkey
FROM customer_orders_lineitem
WHERE c_orders[0].o_orderstatus <= 'P';

In this example, if c_orders[0].o_orderstatus is a string, Amazon Redshift returns true if it is
alphabetically equal to or smaller than ‘P’. Amazon Redshift returns false if it is alphabetically
larger than 'P'. However, if c_orders[0].o_orderstatus is not a string, Amazon Redshift returns null
since Amazon Redshift can't compare values of different types, as shown in the following query:

SELECT c_custkey
FROM customer_orders_lineitem
WHERE CASE WHEN JSON_TYPEOF(c_orders[0].o_orderstatus) = 'string'
 THEN c_orders[0].o_orderstatus::VARCHAR <= 'P'
 ELSE NULL END;

Dynamic typing doesn't exclude from comparisons of types that are minimally comparable. For
example, you can convert both CHAR and VARCHAR Amazon Redshift scalar types to SUPER. They
are comparable as strings, including ignoring trailing white-space characters similar to Amazon

Dynamic typing 615

Amazon Redshift Database Developer Guide

Redshift CHAR and VARCHAR types. Similarly, integers, decimals, and floating-point values are
comparable as SUPER values. Specifically for decimal columns, each value can also have a different
scale. Amazon Redshift still considers them as dynamic types.

Amazon Redshift also supports equality on objects and arrays that are evaluated as deep equal,
such as evaluating deep into objects or arrays and comparing all attributes. Use deep equal with
caution, because the process of performing deep equal can be time-consuming.

Using dynamic typing for joins

For joins, dynamic typing automatically matches values with different dynamic types without
performing a long CASE WHEN analysis to find out what data types may appear. For example,
assume that your organization changed the format that it was using for part keys over time.

The initial integer part keys issued are replaced by string part keys, such as ‘A55’, and later replaced
again by array part keys, such as [‘X’, 10] combining a string and a number. Amazon Redshift
doesn't have to perform a lengthy case analysis about part keys and can use joins as shown in the
following example.

SELECT c.c_name
 ,l.l_extendedprice
 ,l.l_discount
FROM customer_orders_lineitem c
 ,c.c_orders o
 ,o.o_lineitems l
 ,supplier_partsupp s
 ,s.s_partsupps ps
WHERE l.l_partkey = ps.ps_partkey
AND c.c_nationkey = s.s_nationkey
ORDER BY c.c_name;

The following example shows how complex and inefficient the same query can be without using
dynamic typing:

SELECT c.c_name
 ,l.l_extendedprice
 ,l.l_discount
FROM customer_orders_lineitem c
 ,c.c_orders o
 ,o.o_lineitems l
 ,supplier_partsupp s

Dynamic typing 616

Amazon Redshift Database Developer Guide

 ,s.s_partsupps ps
WHERE CASE WHEN IS_INTEGER(l.l_partkey) AND IS_INTEGER(ps.ps_partkey)
 THEN l.l_partkey::integer = ps.ps_partkey::integer
 WHEN IS_VARCHAR(l.l_partkey) AND IS_VARCHAR(ps.ps_partkey)
 THEN l.l_partkey::varchar = ps.ps_partkey::varchar
 WHEN IS_ARRAY(l.l_partkey) AND IS_ARRAY(ps.ps_partkey)
 AND IS_VARCHAR(l.l_partkey[0]) AND IS_VARCHAR(ps.ps_partkey[0])
 AND IS_INTEGER(l.l_partkey[1]) AND IS_INTEGER(ps.ps_partkey[1])
 THEN l.l_partkey[0]::varchar = ps.ps_partkey[0]::varchar
 AND l.l_partkey[1]::integer = ps.ps_partkey[1]::integer
 ELSE FALSE END
AND c.c_nationkey = s.s_nationkey
ORDER BY c.c_name;

Lax semantics

By default, navigation operations on SUPER values return null instead of returning an error out
when the navigation is invalid. Object navigation is invalid if the SUPER value is not an object
or if the SUPER value is an object but doesn't contain the attribute name used in the query. For
example, the following query accesses an invalid attribute name in the SUPER data column cdata:

SELECT c.c_orders.something FROM customer_orders_lineitem c;

Array navigation returns null if the SUPER value is not an array or the array index is out of bounds.
The following query returns null because c_orders[1][1] is out of bounds.

SELECT c.c_orders[1][1] FROM customer_orders_lineitem c;

Lax semantics is especially useful when using dynamic typing to cast a SUPER value. Casting a
SUPER value to the wrong type returns null instead of an error if the cast is invalid. For example,
the following query returns null because it can't cast the string value 'Good' of the object attribute
o_orderstatus to INTEGER. Amazon Redshift returns an error for a VARCHAR to INTEGER cast but
not for a SUPER cast.

SELECT c.c_orders.o_orderstatus::integer FROM customer_orders_lineitem c;

Types of introspection

SUPER data columns support inspection functions that return the dynamic type and other type
information about the SUPER value. The most common example is the JSON_TYPEOF scalar

Lax semantics 617

Amazon Redshift Database Developer Guide

function that returns a VARCHAR with values boolean, number, string, object, array, or null,
depending on the dynamic type of the SUPER value. Amazon Redshift supports the following
boolean functions for SUPER data columns:

• DECIMAL_PRECISION

• DECIMAL_SCALE

• IS_ARRAY

• IS_BIGINT

• IS_CHAR

• IS_DECIMAL

• IS_FLOAT

• IS_INTEGER

• IS_OBJECT

• IS_SCALAR

• IS_SMALLINT

• IS_VARCHAR

• JSON_TYPEOF

All these functions return false if the input value is null. IS_SCALAR, IS_OBJECT, and IS_ARRAY are
mutually exclusive and cover all possible values except for null.

To infer the types corresponding to the data, Amazon Redshift uses the JSON_TYPEOF function
that returns the type of (the top level of) the SUPER value as shown in the following example:

SELECT JSON_TYPEOF(r_nations) FROM region_nations;
 json_typeof

 array
(1 row)

SELECT JSON_TYPEOF(r_nations[0].n_nationkey) FROM region_nations;
 json_typeof

 number

Types of introspection 618

Amazon Redshift Database Developer Guide

Amazon Redshift sees this as a single long string, similar to inserting this value into a VARCHAR
column instead of a SUPER. Since the column is SUPER, the single string is still a valid SUPER value
and the difference is noted in JSON_TYPEOF:

SELECT IS_VARCHAR(r_nations[0].n_name) FROM region_nations;
 is_varchar

 true
(1 row)

SELECT r_nations[4].n_name FROM region_nations
WHERE CASE WHEN IS_INTEGER(r_nations[4].n_nationkey)
 THEN r_nations[4].n_nationkey::INTEGER = 15
 ELSE false END;

Order by

Amazon Redshift doesn't define SUPER comparisons among values with different dynamic types.
A SUPER value that is a string is neither smaller nor larger than a SUPER value that is a number.
To use ORDER BY clauses with SUPER columns, Amazon Redshift defines a total ordering among
different types to be observed when Amazon Redshift ranks SUPER values using ORDER BY clauses.
The order among dynamic types is boolean, number, string, array, object. The following example
shows the orders of different types:

INSERT INTO region_nations VALUES
(100,'name1','comment1','AWS'),
(200,'name2','comment2',1),
(300,'name3','comment3',ARRAY(1, 'abc', null)),
(400,'name4','comment4',-2.5),
(500,'name5','comment5','Amazon');

SELECT r_nations FROM region_nations order by r_nations;

r_nations

 -2.5
 1
 "Amazon"
 "AWS"
 [1,"abc",null]

Order by 619

Amazon Redshift Database Developer Guide

(5 rows)

For more information about the ORDER BY clause, see ORDER BY clause.

Operators and functions

Amazon Redshift provides the following function support of SUPER operators and functions.

Arithmetic operators

SUPER values support all basic arithmetic operators +, -, *, /, % using dynamic typing. The resultant
type of the operation remains as SUPER. For all operators, except for the binary operator +,
the input operands must be numbers. Otherwise, Amazon Redshift returns null. The distinction
between decimals and floating-point values is retained when Amazon Redshift runs these
operators and the dynamic type doesn't change. However, decimal scale changes when you use
multiplications and divisions. Arithmetic overflows still cause query errors, they aren't changed to
null. Binary operator + performs addition if the inputs are numbers or concatenation if the inputs
are string. If one operand is a string and the other operand is a number, the result is null. Unary
prefix operators + and - returns null if the SUPER value is not a number as shown in the following
example:

SELECT (c_orders[0]. o_orderkey + 0.5) * c_orders[0]. o_orderkey / 10 AS math FROM
 customer_orders_lineitem;
 math

 1757958232200.1500
(1 row)

Dynamic typing allows decimal values in SUPER to have different scales. Amazon Redshift treats
decimal values as if they are different static types and allows all mathematical operations. Amazon
Redshift computes the resulting scale dynamically based on the scales of the operands. If one of
the operands is a floating-point number, then Amazon Redshift promotes the other operand to a
floating-point number and generates the result as a floating-point number.

Arithmetic functions

Amazon Redshift supports the following arithmetic functions for SUPER columns. They return null
if the input isn't a number:

Operators and functions 620

Amazon Redshift Database Developer Guide

• FLOOR. For more information, see FLOOR function.

• CEIL and CEILING. For more information, see CEILING (or CEIL) function.

• ROUND. For more information, see ROUND function.

• TRUNC. For more information, see TRUNC function.

• ABS. For more information, see ABS function.

The following example uses arithmetic functions to query data:

SELECT x, FLOOR(x), CEIL(x), ROUND(x)
FROM (
 SELECT (c_orders[0]. o_orderkey + 0.5) * c_orders[0].o_orderkey / 10 AS x
 FROM customer_orders_lineitem
);

 x | floor | ceil | round
--------------------+---------------+---------------+---------------
 1389636795898.0500 | 1389636795898 | 1389636795899 | 1389636795898

The ABS function retains the scale of the input decimal while FLOOR, CEIL. The ROUND eliminates
the scale of the input decimal.

Array functions

Amazon Redshift supports the following array composition and utility functions array,
array_concat, subarray, array_flatten, get_array_length, and split_to_array.

You can construct SUPER arrays from values in Amazon Redshift data types using the ARRAY
function, including other SUPER values. The following example uses the variadic function ARRAY:

SELECT ARRAY(1, c.c_custkey, NULL, c.c_name, 'abc') FROM customer_orders_lineitem c;
 array

[1,8401,null,""Customer#000008401"",""abc""]
[1,9452,null,""Customer#000009452"",""abc""]
[1,9451,null,""Customer#000009451"",""abc""]
[1,8251,null,""Customer#000008251"",""abc""]
[1,5851,null,""Customer#000005851"",""abc""]
(5 rows)

The following example uses array concatenation with the ARRAY_CONCAT function:

Array functions 621

Amazon Redshift Database Developer Guide

SELECT ARRAY_CONCAT(JSON_PARSE('[10001,10002]'),JSON_PARSE('[10003,10004]'));

 array_concat

 [10001,10002,10003,10004]
(1 row)

The following example uses array manipulation with the SUBARRAY function which returns a
subset of the input array.

SELECT SUBARRAY(ARRAY('a', 'b', 'c', 'd', 'e', 'f'), 2, 3);

 subarray

 ["c","d","e"]
(1 row))

The following example merges multiple levels of arrays into a single array using ARRAY_FLATTEN:

SELECT x, ARRAY_FLATTEN(x) FROM (SELECT ARRAY(1, ARRAY(2, ARRAY(3, ARRAY()))) AS x);

 x | array_flatten
 ----------------+---------------
 [1,[2,[3,[]]]] | [1,2,3]
(1 row)

Array functions ARRAY_CONCAT and ARRAY_FLATTEN use dynamic typing rules. They return a null
instead of an error if the input isn't an array. The GET_ARRAY_LENGTH function returns the length
of a SUPER array given an object or array path.

SELECT c_name
FROM customer_orders_lineitem
WHERE GET_ARRAY_LENGTH(c_orders) = (
 SELECT MAX(GET_ARRAY_LENGTH(c_orders))
 FROM customer_orders_lineitem
);

The following example splits a string to an array of strings using SPLIT_TO_ARRAY. The function
uses a delimiter as an optional parameter. If no delimiter is absent, then the default is a comma.

SELECT SPLIT_TO_ARRAY('12|345|6789', '|');

Array functions 622

Amazon Redshift Database Developer Guide

 split_to_array

 ["12","345","6789"]
(1 row)

SUPER configurations

Note the following considerations of SUPER configurations when you use Amazon Redshift SUPER
data type and PartiQL.

Lax and strict modes for SUPER

When you query SUPER data, the path expression may not match the actual SUPER data structure.
If you try to access a non-existent member of an object or element of an array, Amazon Redshift
returns a NULL value if your query is run in the default lax mode. If you run your query in the strict
mode, Amazon Redshift returns an error. The following session parameters can be set to set the lax
mode on or off.

The following example uses session parameters to enable lax mode.

SET navigate_super_null_on_error=ON; --default lax mode for navigation

SET cast_super_null_on_error=ON; --default lax mode for casting

SET parse_super_null_on_error=OFF; --default strict mode for ingestion

Accessing JSON fields with uppercase and mixedcase field names or
attributes

When your JSON attribute names are in uppercase or mixedcase, you must be able to
navigate SUPER type structures in a case sensitive way. To do that, you can configure
enable_case_sensitive_identifier to TRUE and wrap the uppercase and
mixedcase attribute names with double quotation marks. You can also configure
enable_case_sensitive_super_attribute to TRUE. In this case, you can use uppercase and
mixedcase attribute names in your queries without wrapping them in double quotation marks.

The following example illustrates how to set enable_case_sensitive_identifier to query
data.

SUPER configurations 623

Amazon Redshift Database Developer Guide

SET enable_case_sensitive_identifier to TRUE;

-- Accessing JSON attribute names with uppercase and mixedcase names
SELECT json_table.data."ITEMS"."Name",
 json_table.data."price"
FROM
 (SELECT json_parse('{"ITEMS":{"Name":"TV"}, "price": 345}') AS data) AS json_table;

 Name | price
------+-------
 "TV" | 345
(1 row)

RESET enable_case_sensitive_identifier;

-- After resetting the above configuration, the following query accessing JSON
 attribute names with uppercase and mixedcase names should return null (if in lax
 mode).
SELECT json_table.data."ITEMS"."Name",
 json_table.data."price"
FROM
 (SELECT json_parse('{"ITEMS":{"Name":"TV"}, "price": 345}') AS data) AS json_table;

 name | price
------+-------
 | 345
(1 row)

The following example illustrates how to set enable_case_sensitive_super_attribute to
query data.

SET enable_case_sensitive_super_attribute to TRUE;
 -- Accessing JSON attribute names with uppercase and mixedcase names

SELECT json_table.data.ITEMS.Name,
 json_table.data.price
FROM
 (SELECT json_parse('{"ITEMS":{"Name":"TV"}, "price": 345}') AS data) AS json_table;

 name | price
 -----+-------
 "TV" | 345
(1 row)

Accessing JSON fields with uppercase and mixedcase letters 624

Amazon Redshift Database Developer Guide

 RESET enable_case_sensitive_super_attribute;

 -- After resetting enable_case_sensitive_super_attribute, the query now returns NULL
 for ITEMS.Name (if in lax mode).

SELECT json_table.data.ITEMS.Name,
 json_table.data.price
FROM
 (SELECT json_parse('{"ITEMS":{"Name":"TV"}, "price": 345}') AS data) AS json_table;

 name | price
 -----+-------
 | 345
(1 row)

Parsing options for SUPER

When you use the JSON_PARSE function to parse JSON strings into SUPER values, certain
restrictions apply:

• The same attribute name cannot appear in the same object, but can appear in a nested object.
The json_parse_dedup_attributes configuration option allows JSON_PARSE to keep only
the last occurrence of duplicate attributes instead of returning an error.

• String values cannot exceed the system max varchar size of 65535 bytes. The
json_parse_truncate_strings configuration option allows JSON_PARSE() to automatically
truncate strings that are longer than this limit without returning an error. This behavior affects
string values only and not attribute names.

For more information about the JSON_PARSE function, see JSON_PARSE function.

The following example shows how to set the json_parse_dedup_attributes configuration
option to the default behavior of returning an error for duplicate attributes.

SET json_parse_dedup_attributes=OFF; --default behavior of returning error instead of
 de-duplicating attributes

The following example shows how to set the json_parse_truncate_strings configuration
option for the default behavior of returning an error for strings that are longer than this limit.

Parsing options 625

Amazon Redshift Database Developer Guide

SET json_parse_truncate_strings=OFF; --default behavior of returning error instead of
 truncating strings

Limitations

When using the SUPER data type, consider the following limitations:

• You can't define SUPER columns as either a distribution or sort key.

• An individual SUPER object can hold up to 16 MB of data.

• An individual value within a SUPER object is limited to the maximum length of the corresponding
Amazon Redshift type. For example, a single string value loaded to SUPER is limited to the
maximum VARCHAR length of 65535 bytes.

• You can't perform partial update or transform operations on SUPER columns.

• You can't use the SUPER data type and its alias in right joins or full outer joins.

• The SUPER data type doesn't support XML as inbound or outbound serialization format.

• In the FROM clause of a subquery (that is correlated or not) that references a table variable for
unnesting, the query can only refer to its parent table and not other tables.

• Casting limitations

SUPER values can be cast to and from other data types, with the following exceptions:

• Amazon Redshift doesn't differentiate integers and decimals of scale 0.

• If the scale isn't zero, SUPER data type has the same behavior as other Amazon Redshift data
types, except that Amazon Redshift converts SUPER-related errors to null, as shown in the
following example.

SELECT 5::bool;
 bool

 True
(1 row)

SELECT 5::decimal::bool;
ERROR: cannot cast type numeric to boolean

SELECT 5::super::bool;
 bool

Limitations 626

Amazon Redshift Database Developer Guide

 True
(1 row)

SELECT 5.0::bool;
ERROR: cannot cast type numeric to boolean

SELECT 5.0::super::bool;
 bool

(1 row)

• Amazon Redshift doesn't cast the date and time types to SUPER data type. Amazon Redshift
can only cast the date and time data types from SUPER data type, as shown in the following
example.

SELECT o.o_orderdate FROM customer_orders_lineitem c,c.c_orders o;
 order_date

 "2001-09-08"
(1 row)

SELECT JSON_TYPEOF(o.o_orderdate) FROM customer_orders_lineitem c,c.c_orders o;
 json_typeof

 string
(1 row)

SELECT o.o_orderdate::date FROM customer_orders_lineitem c,c.c_orders o;
 order_date

 2001-09-08
(1 row)

--date/time cannot be cast to super
SELECT '2019-09-09'::date::super;
ERROR: cannot cast type date to super

• Cast from non-scalar values (object and array) to string returns NULL. To properly serialize
these non-scalar values, don't cast them. Instead, use json_serialize to cast non-scalar
values. The json_serialize function returns a varchar. Typically, you don't need to cast

Limitations 627

Amazon Redshift Database Developer Guide

non-scalar values to varchar since Amazon Redshift implicitly serializes as shown in the
following first example.

SELECT r_nations FROM region_nations WHERE r_regionkey=300;
 r_nations

 [1,"abc",null]
(1 row)

SELECT r_nations::varchar FROM region_nations WHERE r_regionkey=300;
 r_nations

(1 row)

SELECT JSON_SERIALIZE(r_nations) FROM region_nations WHERE r_regionkey=300;
 json_serialize

 [1,"abc",null]
(1 row)

• For case-insensitive databases, Amazon Redshift doesn't support the SUPER data type. For
case-insensitive columns, Amazon Redshift doesn't cast them to the SUPER type. Thus,
Amazon Redshift doesn't support SUPER columns interacting with case-insensitive columns
that trigger casting.

• Amazon Redshift doesn't support volatile functions, such as RANDOM () or TIMEOFDAY (),
in subqueries that unnest an outer table or a left-hand side (LHS) of IN functions with such
subqueries.

Using SUPER data type with materialized views

Amazon Redshift extends the capability of materialized views to work with the SUPER data type
and PartiQL in materialized views. SQL and PartiQL queries can be precomputed using incremental
materialized views. For more information about materialized views, see Creating materialized views
in Amazon Redshift.

Once you have stored your schemaless and semistructured data into SUPER, you can use PartiQL
materialized views to introspect the data and shred them into materialized views.

Using SUPER data type with materialized views 628

Amazon Redshift Database Developer Guide

Accelerating PartiQL queries

You can use materialized views to accelerate PartiQL queries that navigate and/or unnest
hierarchical data in SUPER columns. Create one or more materialized views to shred the SUPER
values into multiple columns and utilize the columnar organization of Amazon Redshift analytical
queries. Consequently, queries make use of the materialized views.

The materialized view essentially extracts and normalizes the nested data. The level of
normalization depends on how much effort you put into turning the SUPER data into conventional
columnar data.

Shredding into SUPER columns with materialized views

The following example shows a materialized view that shreds the nested data with the resulting
columns still being the SUPER data type.

SELECT c.c_name, o.o_orderstatus
FROM customer_orders_lineitem c, c.c_orders o;

The following example shows a materialized view that creates conventional Amazon Redshift scalar
columns from the shredded data.

SELECT c.c_name, c.c_orders[0].o_totalprice
FROM customer_orders_lineitem c;

You can create a single materialized view super_mv to accelerate both queries.

To answer the first query, you must materialize the attribute o_orderstatus. You can omit the
attribute c_name because it doesn't involve nested navigation nor unnesting. You must also include
in the materialized view the attribute c_custkey of customer_orders_lineitem to be able to join the
base table with the materialized view.

To answer the second query, you must also materialize the attribute o_totalprice and the array
index o_idx of c_orders. Hence, you can access the index 0 of c_orders.

CREATE MATERIALIZED VIEW super_mv distkey(c_custkey) sortkey(c_custkey) AS (
 SELECT c_custkey, o.o_orderstatus, o.o_totalprice, o_idx
 FROM customer_orders_lineitem c, c.c_orders o AT o_idx

Accelerating PartiQL queries 629

Amazon Redshift Database Developer Guide

);

The attributes o_orderstatus and o_totalprice of the materialized view super_mv are SUPER.

The materialized view super_mv will be refreshed incrementally upon changes to the base table
customer_orders_lineitem.

REFRESH MATERIALIZED VIEW super_mv;
INFO: Materialized view super_mv was incrementally updated successfully.

To rewrite the first PartiQL query as a regular SQL query, join customer_orders_lineitem with
super_mv as follows.

SELECT c.c_name, v.o_orderstatus
FROM customer_orders_lineitem c
JOIN super_mv v ON c.c_custkey = v.c_custkey;

Similarly, you can rewrite the second PartiQL query. The following example uses a filter on o_idx =
0.

SELECT c.c_name, v.o_totalprice
FROM customer_orders_lineitem c
JOIN super_mv v ON c.c_custkey = v.c_custkey
WHERE v.o_idx = 0;

In the CREATE MATERIALIZED VIEW command, specify c_custkey as distribution key and sort key
for super_mv. Amazon Redshift performs an efficient merge join, assuming that c_custkey is also
the distribution key and sort key of customer_orders_lineitem. If that isn’t the case, you can specify
c_custkey as the sort key and distribution key of customer_orders_lineitem as follows.

ALTER TABLE customer_orders_lineitem
ALTER DISTKEY c_custkey, ALTER SORTKEY (c_custkey);

Use the EXPLAIN statement to verify that Amazon Redshift performs a merge join on the rewritten
queries.

EXPLAIN
 SELECT c.c_name, v.o_orderstatus

Accelerating PartiQL queries 630

Amazon Redshift Database Developer Guide

 FROM customer_orders_lineitem c JOIN super_mv v ON c.c_custkey = v.c_custkey;

 QUERY PLAN

 --
 XN Merge Join DS_DIST_NONE (cost=0.00..34701.82 rows=1470776 width=27)
 Merge Cond: ("outer".c_custkey = "inner".c_custkey)
 -> XN Seq Scan on mv_tbl__super_mv__0 derived_table2 (cost=0.00..14999.86
 rows=1499986 width=13)
 -> XN Seq Scan on customer_orders_lineitem c (cost=0.00..999.96 rows=99996
 width=30)
 (4 rows)

Creating Amazon Redshift scalar columns out of shredded data

Schemaless data stored in SUPER can affect the performance of Amazon Redshift. For instance,
filter predicates or join conditions as range-restricted scans can't effectively use zone maps. Users
and BI tools can use materialized views as the conventional presentation of the data and increase
performance of analytical queries.

The following query scans the materialized view super_mv and filters on o_orderstatus.

SELECT c.c_name, v.o_totalprice
FROM customer_orders_lineitem c
JOIN super_mv v ON c.c_custkey = v.c_custkey
WHERE v.o_orderstatus = 'F';

Inspect stl_scan to verify that Amazon Redshift can't effectively use zone maps on the range-
restricted scan over o_orderstatus.

SELECT slice, is_rrscan FROM stl_scan
WHERE query = pg_last_query_id() AND perm_table_name LIKE '%super_mv%';

 slice | is_rrscan
-------+-----------
 0 | f
 1 | f
 5 | f
 4 | f
 2 | f
 3 | f

Accelerating PartiQL queries 631

Amazon Redshift Database Developer Guide

(6 rows)

The following example adapts the materialized view super_mv to create scalar columns out of the
shredded data. In this case, Amazon Redshift casts o_orderstatus from SUPER to VARCHAR. In
addition, specify o_orderstatus as the sort key for super_mv.

CREATE MATERIALIZED VIEW super_mv distkey(c_custkey) sortkey(c_custkey, o_orderstatus)
 AS (
 SELECT c_custkey, o.o_orderstatus::VARCHAR AS o_orderstatus, o.o_totalprice, o_idx
 FROM customer_orders_lineitem c, c.c_orders o AT o_idx
);

After re-running the query, verify that Amazon Redshift can now use zone maps.

SELECT v.o_totalprice
FROM super_mv v
WHERE v.o_orderstatus = 'F';

You can verify that the range-restricted scan now uses zone maps as follows.

SELECT slice, is_rrscan FROM stl_scan
WHERE query = pg_last_query_id() AND perm_table_name LIKE '%super_mv%';

 slice | is_rrscan
-------+-----------
 0 | t
 1 | t
 2 | t
 3 | t
 4 | t
 5 | t
(6 rows)

Limitations for using the SUPER data type with materialized views

When using SUPER data type with materialized views, observe the following limitations.

Materialized views in Amazon Redshift don't have any specific limitations with respect to PartiQL or
SUPER.

For information about general SQL limitations when creating materialized views, see Limitations.

Limitations for using the SUPER data type with materialized views 632

Amazon Redshift Database Developer Guide

For information about general SQL limitations on incremental refresh of materialized views, see
Limitations for incremental refresh.

Limitations for using the SUPER data type with materialized views 633

Amazon Redshift Database Developer Guide

Using machine learning in Amazon Redshift

Amazon Redshift machine learning (Amazon Redshift ML) is a robust, cloud-based service that
makes it easier for analysts and data scientists of all skill levels to use machine learning technology.
You provide the data that you want to train a model, and metadata associated with data inputs
to Amazon Redshift. Then Amazon Redshift ML creates models that capture patterns in the input
data. You can then use these models to generate predictions for new input data without incurring
additional costs.

How Amazon Redshift ML works with Amazon SageMaker

Amazon Redshift works with Amazon SageMaker Autopilot to automatically obtain the best model
and make the prediction function available in Amazon Redshift.

The following diagram illustrates how Amazon Redshift ML works.

The general workflow is as follows:

1. Amazon Redshift exports the training data into Amazon S3.

2. Amazon SageMaker Autopilot preprocesses the training data. Preprocessing performs important
functions, such as imputing missing values. It recognizes that certain columns are categorical
(such as the postal code), properly formats them for training, and performs numerous other
tasks. Choosing the best preprocessors to apply on the training dataset is a problem in itself, and
Amazon SageMaker Autopilot automates its solution.

634

Amazon Redshift Database Developer Guide

3. Amazon SageMaker Autopilot finds the algorithm and algorithm hyperparameters that deliver
the model with the most accurate predictions.

4. Amazon Redshift registers the prediction function as a SQL function in your Amazon Redshift
cluster.

5. When you run CREATE MODEL statements, Amazon Redshift uses Amazon SageMaker for
training. Therefore, there is an associated cost for training your model. This is a separate line
item for Amazon SageMaker in your AWS bill. You also pay for the storage used in Amazon S3
for storing your training data. Inference using models created with CREATE MODEL that you
can compile and run on your Redshift cluster aren't charged. There are no additional Amazon
Redshift charges for using Amazon Redshift ML.

Topics

• Machine learning overview

• Machine learning for novices and experts

• Costs for using Amazon Redshift ML

• Getting started with Amazon Redshift ML

Machine learning overview

By using Amazon Redshift ML, you can train machine learning models using SQL statements and
invoke them in SQL queries for prediction.

To help you learn how to use Amazon Redshift ML, you can watch the following video: Amazon
Redshift ML.

For information about the prerequisites for setting up your Redshift cluster, permissions, and
ownership for using Amazon Redshift ML, read the following sections. These sections also describe
how simple training and predictions work in Amazon Redshift ML.

How machine learning can solve a problem

A machine learning model generates predictions by finding patterns in your training data and then
applying these patterns to new data. In machine learning, you train these models by learning the
patterns that best explain your data. Then you use the models to make predictions (also called
inferences) on new data. Machine learning is typically an iterative process where you can continue

Machine learning overview 635

https://www.youtube.com/embed/pJF2kYGtO4A
https://www.youtube.com/embed/pJF2kYGtO4A

Amazon Redshift Database Developer Guide

to improve the accuracy of the predictions by changing parameters and improving your training
data. If data changes, retraining new models with the new dataset happens.

To address various business goals, there are different fundamental machine learning approaches.

Supervised learning in Amazon Redshift ML

Amazon Redshift supports supervised learning, which is the most common approach to advanced
enterprise analytics. Supervised learning is the preferred machine learning approach when you
have an established set of data and an understanding of how specific input data predicts various
business outcomes. These outcomes are sometimes called labels. In particular, your dataset is a
table with attributes that comprise features (inputs) and targets (outputs). For example, suppose
that you have a table that provides the age and postal code for past and present customers.
Suppose that you also have a field “active” that is true for present customers and false for
customers who have suspended their membership. The goal of supervised machine learning is to
spot the patterns of age and postal code leading to customer churn, as represented by customers
whose targets are “False.” You can use this model to predict customers who are likely to churn,
such as suspending their membership, and potentially offer retention incentives.

Amazon Redshift supports supervised learning that includes regression, binary classification, and
multiclass classification. Regression refers to the problem of predicting continuous values, such as
the total spending of customers. Binary classification refers to the problem of predicting one of
two outcomes, such as predicting whether a customer churns or not. Multiclass classification refers
to the problem of predicting one of many outcomes, such as predicting the item a customer might
be interested. Data analysts and data scientists can use it to perform supervised learning to tackle
problems ranging from forecasting, personalization, or customer churn prediction. You can also use
supervised learning in problems such as prediction of which sales will close, revenue prediction,
fraud detection, and customer life-time value prediction.

Unsupervised learning in Amazon Redshift ML

Unsupervised learning uses machine learning algorithms to analyze and group unlabeled training
data. The algorithms discover hidden patterns or groupings. The goal is to model the underlying
structure or distribution in the data to learn more about the data.

Amazon Redshift supports the K-Means clustering algorithm to solve an unsupervised learning
problem. This algorithm solves clustering problems where you want to discover groupings in the
data. The K-Means algorithm attempts to find discrete groupings within the data. Unclassified
data is grouped and partitioned based on its similarities and differences. By grouping, the K-

How machine learning can solve a problem 636

Amazon Redshift Database Developer Guide

Means algorithm iteratively determines the best centroids and assigns each member to the closest
centroid. Members nearest the same centroid belong to the same group. Members of a group
are as similar as possible to other members in the same group, and as different as possible from
members of other groups. For example, the K-Means clustering algorithm can be used to classify
cities impacted by a pandemic or classify cities based on the popularity of consumer products.

When using the K-Means algorithm, you specify an input k that specifies the number of clusters
to find in the data. The output of this algorithm is a set of k centroids. Each data point belongs to
one of the k clusters that is closest to it. Each cluster is described by its centroid. The centroid can
be thought of as the multi-dimensional average of the cluster. The K-Means algorithm compares
the distances to see how different the clusters are from each other. A larger distance generally
indicates a greater difference between the clusters.

Preprocessing the data is important for K-Means, as it ensures that the features of the model
stay on the same scale and produce reliable results. Amazon Redshift supports some K-
Means preprocessors for the CREATE MODEL statement, such as StandardScaler, MinMax,
and NumericPassthrough. If you don't want to apply any preprocessing for K-means, choose
NumericPassthrough explicitly as a transformer. For more information about K-Means parameters,
see CREATE MODEL with K-MEANS parameters.

To help you learn how to perform unsupervised training with K-Means clustering, you can watch
the following video: Unsupervised training with K-Means clustering.

Terms and concepts for Amazon Redshift ML

The following terms are used to describe some Amazon Redshift ML concepts:

• Machine learning in Amazon Redshift trains a model with one SQL command. Amazon Redshift
ML and Amazon SageMaker manage all the data conversions, permissions, resource usage, and
discovery of the proper model.

• Training is the phase when Amazon Redshift creates a machine learning model by running a
specified subset of data into the model. Amazon Redshift automatically launches a training job
in Amazon SageMaker and generates a model.

• Prediction (also called inference) is the use of the model in Amazon Redshift SQL queries to
predict outcomes. At inference time, Amazon Redshift uses a model-based prediction function
as part of a larger query to produce predictions. The predictions are computed locally, at the
Redshift cluster, thus providing high throughput, low latency, and zero additional cost.

Terms and concepts for Amazon Redshift ML 637

https://www.youtube.com/embed/TFKgl5d0U_0

Amazon Redshift Database Developer Guide

• With bring your own model (BYOM), you can use a model trained outside of Amazon Redshift with
Amazon SageMaker for in-database inference locally in Amazon Redshift. Amazon Redshift ML
supports using BYOM in local inference.

• Local inference is used when models are pretrained in Amazon SageMaker, compiled by Amazon
SageMaker Neo, and localized in Amazon Redshift ML. To import models that are supported for
local inference to Amazon Redshift, use the CREATE MODEL command. Amazon Redshift imports
the pretrained SageMaker models by calling Amazon SageMaker Neo. You compile the model
there and import the compiled model into Amazon Redshift. Use local inference for faster speed
and lower costs.

• Remote inference is used when Amazon Redshift invokes a model endpoint deployed in
SageMaker. Remote inference provides the flexibility to invoke all types of custom models
and deep learning models, such as TensorFlow models that you built and deployed in Amazon
SageMaker.

Also important are the following:

• Amazon SageMaker is a fully managed machine learning service. With Amazon SageMaker, data
scientists and developers can easily build, train, and directly deploy models into a production-
ready hosted environment. For information about Amazon SageMaker, see What is Amazon
SageMaker in the Amazon SageMaker Developer Guide.

• Amazon SageMaker Autopilot is a feature set that automatically trains and tunes the best
machine learning models for classification or regression, based on your data. You maintain
full control and visibility. Amazon SageMaker Autopilot supports input data in tabular format.
Amazon SageMaker Autopilot provides automatic data cleaning and preprocessing, automatic
algorithm selection for linear regression, binary classification, and multiclass classification. It
also supports automatic hyperparameter optimization (HPO), distributed training, automatic
instance, and cluster size selection. For information about Amazon SageMaker Autopilot, see
Automate model development with Amazon SageMaker Autopilot in the Amazon SageMaker
Developer Guide.

Machine learning for novices and experts

Amazon Redshift ML enables you to train models with one single SQL CREATE MODEL command.
The CREATE MODEL command creates a model that Amazon Redshift uses to generate model-
based predictions with familiar SQL constructs.

Machine learning for novices and experts 638

https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/whatis.html
https://docs.aws.amazon.com/sagemaker/latest/dg/autopilot-automate-model-development.html

Amazon Redshift Database Developer Guide

Amazon Redshift ML is especially useful when you don't have expertise in machine learning,
tools, languages, algorithms, and APIs. With Amazon Redshift ML, you don't have to perform the
undifferentiated heavy lifting required for integrating with an external machine learning service.
Amazon Redshift saves you the time to format and move data, manage permission controls, or
build custom integrations, workflows, and scripts. You can easily use popular machine learning
algorithms and simplify training needs that require frequent iteration from training to prediction.
Amazon Redshift automatically discovers the best algorithm and tunes the best model for your
problem. You can make predictions from within the Amazon Redshift cluster without the need to
move data out of Amazon Redshift nor to interface with and pay for another service.

Amazon Redshift ML supports data analysts and data scientists in using machine learning. It also
makes it possible for machine learning experts to use their knowledge to guide the CREATE MODEL
statement to use only the aspects that they specify. By doing so, you can speed up the time that
CREATE MODEL needs to find the best candidate, improve the accuracy of the model, or both.

The CREATE MODEL statement offers flexibility in how you can specify the parameters to training
job. Using this flexibility, both machine learning novices or experts can choose their preferred
preprocessors, algorithms, problem types, and hyperparameters. For example, a user interested in
customer churn might specify for the CREATE MODEL statement that the problem type is a binary
classification, which works well for customer churn. Then the CREATE MODEL statement narrows
down its search for the best model into binary classification models. Even with the user choice of
the problem type, there are still many options that the CREATE MODEL statement can work with.
For example, the CREATE MODEL discovers and applies the best preprocessing transformations and
discovers the best hyperparameter settings.

Amazon Redshift ML makes training easier by automatically finding the best model using Amazon
SageMaker Autopilot. Behind the scenes, Amazon SageMaker Autopilot automatically trains and
tunes the best machine learning model based on your supplied data. Amazon SageMaker Neo then
compiles the training model and makes it available for prediction in your Redshift cluster. When
you run a machine learning inference query using a trained model, the query can use the massively
parallel processing capabilities of Amazon Redshift. At the same time, the query can use machine
learning–based prediction.

• As a machine learning beginner, with general knowledge of different aspects of machine learning
such as preprocessors, algorithms, and hyperparameters, use the CREATE MODEL statement for
only the aspects that you specify. Then you can shorten the time that CREATE MODEL needs to
find the best candidate or improve the accuracy of the model. Also, you can increase the business
value of the predictions by introducing additional domain knowledge such as the problem type

Machine learning for novices and experts 639

Amazon Redshift Database Developer Guide

or the objective. For example, in a customer churn scenario, if the outcome “customer is not
active” is rare, then the F1 objective is often preferred to the Accuracy objective. Because high
Accuracy models might predict “customer is active” all the time, this results in high accuracy
but little business value. For information about F1 objectives, see AutoMLJobObjective in the
Amazon SageMaker API Reference.

For more information about the basic options for the CREATE MODEL statement, see Simple
CREATE MODEL.

• As a machine learning advanced practitioner, you can specify the problem type and preprocessors
for certain (but not all) features. Then CREATE MODEL follows your suggestions on the specified
aspects. At the same time, CREATE MODEL still discovers the best preprocessors for the
remaining features and the best hyperparameters. For more information about how you can
constrain one or more aspects of the training pipeline, see CREATE MODEL with user guidance.

• As a machine learning expert, you can take full control of training and hyperparameter tuning.
Then the CREATE MODEL statement doesn't attempt to discover the optimal preprocessors,
algorithms, and hyperparameters because you make all the choices. For more information about
how to use CREATE MODEL with AUTO OFF, see CREATE XGBoost models with AUTO OFF.

• As a data engineer, you can bring a pretrained XGBoost model in Amazon SageMaker and import
it into Amazon Redshift for local inference. With bring your own model (BYOM), you can use a
model trained outside of Amazon Redshift with Amazon SageMaker for in-database inference
locally in Amazon Redshift. Amazon Redshift ML supports using BYOM in either local or remote
inference.

For more information about how to use the CREATE MODEL statement for local or remote
inference, see Bring your own model (BYOM) - local inference.

As an Amazon Redshift ML user, you can choose any of the following options to train and deploy
your model:

• Problem types, see CREATE MODEL with user guidance.

• Objectives, see CREATE MODEL with user guidance or CREATE XGBoost models with AUTO OFF.

• Model types, see CREATE XGBoost models with AUTO OFF.

• Preprocessors, see CREATE MODEL with user guidance.

• Hyperparameters, see CREATE XGBoost models with AUTO OFF.

• Bring your own model (BYOM), see Bring your own model (BYOM) - local inference.

Machine learning for novices and experts 640

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html

Amazon Redshift Database Developer Guide

Costs for using Amazon Redshift ML

Amazon Redshift ML uses your existing cluster resources for prediction so you can avoid additional
Amazon Redshift charges. There is no additional Amazon Redshift charge for creating or using a
model. Prediction happens locally in your Redshift cluster, so you don't have to pay extra unless
you need to resize your cluster. Amazon Redshift ML uses Amazon SageMaker for training your
model, which does have an additional associated cost.

There is no additional charge for prediction functions that run within your Amazon Redshift cluster.
The CREATE MODEL statement uses Amazon SageMaker and incurs an additional cost. The cost
increases with the number of cells in your training data. The number of cells is the product of the
number of records (in the training query or table times) times the number of columns. For example,
when a SELECT query of the CREATE MODEL statement creates 10,000 records and 5 columns,
then the number of cells it creates is 50,000.

In some cases, the training data produced by the SELECT query of the CREATE MODEL exceeds
the MAX_CELLS limit that you provided (or the default 1 million if you didn't provide a limit). In
these cases, CREATE MODEL randomly chooses approximately MAX_CELLS (that is the “number of
columns” records from the training dataset). CREATE MODEL then performs training using these
randomly chosen tuples. The random sampling ensures that the reduced training dataset doesn't
have any bias. Thus, by setting the MAX_CELLS, you can control your training costs.

When using the CREATE MODEL statement, you can use the MAX_CELLS and MAX_RUNTIME
options to control the costs, time, and potential model accuracy.

MAX_RUNTIME specifies the maximum amount of time the training can take in SageMaker when
the AUTO ON or OFF option is used. Training jobs often complete sooner than MAX_RUNTIME,
depending on the size of the dataset. After a model is trained, Amazon Redshift does additional
work in the background to compile and install your models in your cluster. Thus, CREATE MODEL
can take longer than MAX_RUNTIME to complete. However, MAX_RUNTIME limits the amount of
computation and time used in SageMaker to train your model. You can check the status of your
model at any time using SHOW MODEL.

When you run CREATE MODEL with AUTO ON, Amazon Redshift ML uses SageMaker Autopilot
to automatically and intelligently explore different models (or candidates) to find the best one.
MAX_RUNTIME limits the amount of time and computation spent. If MAX_RUNTIME is set too low,
there might not be enough time to explore even one candidate. If you see the error "Autopilot
candidate has no models," rerun the CREATE MODEL with a larger MAX_RUNTIME value. For more

Costs for using Amazon Redshift ML 641

Amazon Redshift Database Developer Guide

information about this parameter, see MaxAutoMLJobRuntimeInSeconds in the Amazon SageMaker
API Reference.

When you run CREATE MODEL with AUTO OFF, MAX_RUNTIME corresponds to a limit on how long
the training job is run in SageMaker. Training jobs often complete sooner, depending on the size of
the dataset and other parameters used, such as num_rounds in MODEL_TYPE XGBOOST.

You can also control costs or reduce training time by specifying a smaller MAX_CELLS value when
you run CREATE MODEL. A cell is an entry in the database. Each row corresponds to as many cells
as there are columns, which can be of fixed or varying width. MAX_CELLS limits the number of
cells, and thus the number of training examples used to train your model. By default, MAX_CELLS
is set to 1 million cells. Reducing MAX_CELLS reduces the number of rows from the result of the
SELECT query in CREATE MODEL that Amazon Redshift exports and sends to SageMaker to train
a model. Reducing MAX_CELLS thus reduces the size of the dataset used to train models both
with AUTO ON and AUTO OFF. This approach helps reduce the costs and time to train models. To
see information about training and billing times of a specific training job, choose Training jobs in
Amazon SageMaker.

Increasing MAX_RUNTIME and MAX_CELLS often improves model quality by allowing SageMaker
to explore more candidates. This way, SageMaker can take more time to train each candidate and
use more data to train better models. If you want faster iteration or exploration of your dataset,
use lower MAX_RUNTIME and MAX_CELLS. If you want improved accuracy of models, use higher
MAX_RUNTIME and MAX_CELLS.

For more information about costs associated with various cell numbers and free trial details, see
Amazon Redshift pricing.

Getting started with Amazon Redshift ML

Amazon Redshift ML makes it easy for SQL users to create, train, and deploy machine learning
models using familiar SQL commands. With Amazon Redshift ML, you can use your data in your
Redshift cluster to train model with Amazon SageMaker. Later, the models are localized and
predictions can be made within an Amazon Redshift database. Amazon Redshift ML currently
supports the machine learning algorithms XGBoost (AUTO ON and OFF) and multilayer perceptron
(AUTO ON), K-Means (AUTO OFF), and Linear Learner.

Topics

• Cluster and configure setup for Amazon Redshift ML administration

Getting started with Amazon Redshift ML 642

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobCompletionCriteria.html
https://aws.amazon.com/redshift/pricing

Amazon Redshift Database Developer Guide

• Using model explainability with Amazon Redshift ML

• Amazon Redshift ML probability metrics

• Tutorials for Amazon Redshift ML

Cluster and configure setup for Amazon Redshift ML administration

Before you work with Amazon Redshift ML, complete the cluster setup and configure permissions
for using Amazon Redshift ML.

Cluster setup for using Amazon Redshift ML

Before you work with Amazon Redshift ML, complete the following prerequisites.

As an Amazon Redshift administrator, do the following one-time setup.

To perform one-time cluster setup for Amazon Redshift ML

1. Create a Redshift cluster using the AWS Management Console or the AWS Command Line
Interface (AWS CLI). Make sure to attach the AWS Identity and Access Management (IAM)
policy while creating the cluster. For more information about permissions required to use
Amazon Redshift ML with Amazon SageMaker, see Permissions required to use Amazon
Redshift machine learning (ML) with Amazon SageMaker.

2. Create the IAM role required for using Amazon Redshift ML in one of the following ways:

• A simple operation is to create an IAM role with AmazonS3FullAccess and
AmazonSageMakerFullAccess policies for use with Amazon Redshift ML. If you plan to
also create Forecast models, attach the AmazonForecastFullAccess policy to your role
as well.

• We recommend that you create an IAM role through the Amazon Redshift console that
has the AmazonRedshiftAllCommandsFullAccess policy with permissions to run
SQL commands, such as CREATE MODEL. Amazon Redshift uses a seamless API-based
mechanism to programmatically create IAM roles in your AWS account on your behalf.
Amazon Redshift automatically attaches existing AWS managed policies to the IAM role. This
approach means that you can stay within the Amazon Redshift console and don't have to
switch to the IAM console for role creation. For more information, see Creating an IAM role
as default for Amazon Redshift.

Administrative setup 643

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-identity-based.html#iam-permission-ml
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-identity-based.html#iam-permission-ml
https://docs.aws.amazon.com/redshift/latest/mgmt/default-iam-role.html
https://docs.aws.amazon.com/redshift/latest/mgmt/default-iam-role.html

Amazon Redshift Database Developer Guide

When an IAM role is created as the default for your cluster, include redshift as part of the
resource name or use a Redshift-specific tag to tag those resources.

If your cluster has enhanced Amazon VPC routing turned on, you can use an
IAM role created through the Amazon Redshift console. This IAM role has the
AmazonRedshiftAllCommandsFullAccess policy attached and adds the following
permissions to the policy. These additional permissions allow Amazon Redshift to create
and delete an elastic network interface (ENI) in your account and attach it to compilation
tasks running on Amazon EC2 or Amazon ECS. Doing this enables objects in your Amazon
S3 buckets to be accessed only from within a virtual private cloud (VPC) with internet access
blocked.

{
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeVpcEndpoints",
 "ec2:DescribeDhcpOptions",
 "ec2:DescribeVpcs",
 "ec2:DescribeSubnets",
 "ec2:DescribeSecurityGroups",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:CreateNetworkInterface",
 "ec2:ModifyNetworkInterfaceAttribute"
],
 "Resource": "*"
}

• If you want to create an IAM role with a more restrictive policy, you can use the policy
following. You can also modify this policy to meet your needs.

The Amazon S3 bucket redshift-downloads/redshift-ml/ is the location where the
sample data used for other steps and examples is stored. You can remove it if you don't need
to load data from Amazon S3. Or, replace it with other Amazon S3 buckets that you use to
load data into Amazon Redshift.

The your-account-id, your-role, and your-s3-bucket values are the ones that you
specify as part of your CREATE MODEL command.

Administrative setup 644

Amazon Redshift Database Developer Guide

(Optional) Use the AWS KMS keys section of the sample policy if you specify an AWS KMS
key while using Amazon Redshift ML. The your-kms-key value is the key that you use as
part of your CREATE MODEL command.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "cloudwatch:PutMetricData",
 "ecr:BatchCheckLayerAvailability",
 "ecr:BatchGetImage",
 "ecr:GetAuthorizationToken",
 "ecr:GetDownloadUrlForLayer",
 "logs:CreateLogGroup",
 "logs:CreateLogStream",
 "logs:DescribeLogStreams",
 "logs:PutLogEvents",
 "sagemaker:*Job*"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole",
 "s3:AbortMultipartUpload",
 "s3:GetObject",
 "s3:DeleteObject",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:iam::<your-account-id>:role/<your-role>",
 "arn:aws:s3:::<your-s3-bucket>/*",
 "arn:aws:s3:::redshift-downloads/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",

Administrative setup 645

Amazon Redshift Database Developer Guide

 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::<your-s3-bucket>",
 "arn:aws:s3:::redshift-downloads"
]
 }
 // Optional section needed if you use AWS KMS keys.
 ,{
 "Effect": "Allow",
 "Action": [
 "kms:CreateGrant",
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:Encrypt",
 "kms:GenerateDataKey*"
],
 "Resource": [
 "arn:aws:kms:<your-region>:<your-account-id>:key/<your-kms-key>"
]
 }
]
}

3. To allow Amazon Redshift and SageMaker to assume the role to interact with other services,
add the following trust policy to the IAM role.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "redshift.amazonaws.com",
 "sagemaker.amazonaws.com",
 "forecast.amazonaws.com"
]
 },
 "Action": "sts:AssumeRole"
 }
]
}

Administrative setup 646

Amazon Redshift Database Developer Guide

4. (Optional) Create an Amazon S3 bucket and an AWS KMS key. These are for Amazon Redshift
to use to store the training data sent to Amazon SageMaker and receive the trained model
from Amazon SageMaker.

5. (Optional) Create different combinations of IAM roles and Amazon S3 buckets for controlling
access to different user groups.

6. (Optional) When you turn on VPC routing for your Redshift cluster, create an Amazon S3
endpoint and a SageMaker endpoint for the VPC that your Redshift cluster is in. Doing this
makes it possible for traffic to run through your VPC between services during CREATE MODEL.
For more information about VPC routing, see Enhanced VPC routing in Amazon Redshift.

For more information about permissions required to specify a private VPC for your
hyperparameter tuning job, see Permissions required to use Amazon Redshift ML with Amazon
SageMaker.

For information on how to use the CREATE MODEL statement to start creating models for different
use cases, see CREATE MODEL.

Managing permissions and ownership

Just as with other database objects, such as tables or functions, Amazon Redshift binds creating
and using ML models to access control mechanisms. There are separate permissions for creating a
model that runs prediction functions.

The following examples use two user groups, retention_analyst_grp (model creator) and
marketing_analyst_grp (model user) to illustrate how Amazon Redshift manages access
control. The retention analyst creates machine learning models that the other set of users can use
through acquired permissions.

A superuser can GRANT USER or GROUP permission to create machine learning models using the
following statement.

GRANT CREATE MODEL TO GROUP retention_analyst_grp;

Users or groups with this permission can create a model in any schema in the cluster if a user has
the usual CREATE permission on the SCHEMA. The machine learning model is part of the schema
hierarchy in a similar way to tables, views, procedures, and user-defined functions.

Administrative setup 647

https://docs.aws.amazon.com/redshift/latest/mgmt/enhanced-vpc-routing.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-identity-based.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-identity-based.html

Amazon Redshift Database Developer Guide

Assuming a schema demo_ml already exists, grant the two user groups the permission on the
schema as follows.

GRANT CREATE, USAGE ON SCHEMA demo_ml TO GROUP retention_analyst_grp;

GRANT USAGE ON SCHEMA demo_ml TO GROUP marketing_analyst_grp;

To let other users use your machine learning inference function, grant the EXECUTE permission.
The following example uses the EXECUTE permission to grant the marketing_analyst_grp GROUP
the permission to use the model.

GRANT EXECUTE ON MODEL demo_ml.customer_churn_auto_model TO GROUP
 marketing_analyst_grp;

Use the REVOKE statement with CREATE MODEL and EXECUTE to revoke those permissions from
users or groups. For more information on permission control commands, see GRANT and REVOKE.

Using model explainability with Amazon Redshift ML

With model explainability in Amazon Redshift ML, you use feature importance values to help
understand how each attribute in your training data contributes to the predicted result.

Model explainability helps improve your machine learning (ML) models by explaining the
predictions that your models make. Model explainability helps explain how these models make
predictions using a feature attribution approach.

Amazon Redshift ML incorporates model explainability to provide model explanation functionality
to Amazon Redshift ML users. For more information about model explainability, see What Is
Fairness and Model Explainability for Machine Learning Predictions? in the Amazon SageMaker
Developer Guide.

Model explainability also monitors the inferences that models make in production for feature
attribution drift. It also provides tools to help you generate model governance reports that you can
use to inform risk and compliance teams, and external regulators.

When you specify the AUTO ON or AUTO OFF option when using the CREATE MODEL statement,
after the model training job finishes, SageMaker creates the explanation output. You can use
the EXPLAIN_MODEL function to query the explainability report in a JSON format. For more
information, see Machine learning functions.

Using model explainability with Amazon Redshift ML 648

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html

Amazon Redshift Database Developer Guide

Amazon Redshift ML probability metrics

In supervised learning problems, class labels are outcomes of predictions that use the input
data. For example, if you're using a model to predict whether a customer would resubscribe to a
streaming service, possible labels are likely and unlikely. Redshift ML provides the capability of
probability metrics, which assign a probability to each label to indicate its likelihood. This helps
you make more informed decisions based on the predicted outcomes. In Amazon Redshift ML,
probability metrics are available when creating AUTO ON models with a problem type of either
binary classification or multiclass classification. If you omit the AUTO ON parameter, Redshift ML
assumes that the model should have AUTO ON.

Create the model

When creating a model, Amazon Redshift automatically detects the model type and problem type.
If it is a classification problem, Redshift automatically creates a second inference function that you
can use to output probabilities relative to each label. This second inference function's name is your
specified inference function name followed by the string _probabilities. For example, if you
name your inference function as customer_churn_predict, then the second inference function's
name is customer_churn_predict_probabilities. You can then query this function to get
the probabilities of each label.

CREATE MODEL customer_churn_model
FROM customer_activity
 PROBLEM_TYPE BINARY_CLASSIFICATION
TARGET churn
FUNCTION customer_churn_predict
IAM_ROLE {default}
AUTO ON
SETTINGS (S3_BUCKET '<DOC-EXAMPLE-BUCKET>'

Get probabilities

Once the probability function is ready, running the command returns a SUPER type that
contains arrays of the returned probabilities and their associated labels. For example, the result
"probabilities" : [0.7, 0.3], "labels" : ["False.", "True."] means that the
False label has a probability of 0.7, and the True label has a probability of 0.3.

SELECT customer_churn_predict_probabilities(Account_length, Area_code,
 VMail_message, Day_mins, Day_calls, Day_charge,Eve_mins, Eve_calls,

Amazon Redshift ML probability metrics 649

https://docs.aws.amazon.com/redshift/latest/dg/r_SUPER_type.html

Amazon Redshift Database Developer Guide

 Eve_charge, Night_mins, Night_calls, Night_charge,Intl_mins, Intl_calls,
 Intl_charge, Cust_serv_calls)
FROM customer_activity;

customer_churn_predict_probabilities

 {"probabilities" : [0.7, 0.3], "labels" : ["False.", "True."]}
 {"probabilities" : [0.8, 0.2], "labels" : ["False.", "True."]}
 {"probabilities" : [0.75, 0.25], "labels" : ["True.", "False"]}

The probabilities and labels arrays are always sorted by their probabilities in descending order. You
can write a query to return just the predicted label with the highest probability by unnesting the
SUPER returned results of the probability function.

SELECT prediction.labels[0], prediction.probabilities[0]
 FROM (SELECT customer_churn_predict_probabilities(Account_length,
 Area_code,
 VMail_message, Day_mins, Day_calls, Day_charge,Eve_mins, Eve_calls,
 Eve_charge, Night_mins, Night_calls, Night_charge,Intl_mins, Intl_calls,
 Intl_charge, Cust_serv_calls) AS prediction
FROM customer_activity);

 labels | probabilities
-----------+--------------
 "False." | 0.7
 "False." | 0.8
 "True." | 0.75

To make the queries simpler, you can store the results of the prediction function in a table.

CREATE TABLE churn_auto_predict_probabilities AS
 (SELECT customer_churn_predict_probabilities(Account_length, Area_code,
 VMail_message, Day_mins, Day_calls, Day_charge,Eve_mins, Eve_calls,
 Eve_charge, Night_mins, Night_calls, Night_charge,Intl_mins,
 Intl_calls, Intl_charge, Cust_serv_calls) AS prediction
FROM customer_activity);

You can query the table with the results to return only predictions that have a probability higher
than 0.7.

SELECT prediction.labels[0], prediction.probabilities[0]

Amazon Redshift ML probability metrics 650

Amazon Redshift Database Developer Guide

FROM churn_auto_predict_probabilities
WHERE prediction.probabilities[0] > 0.7;

 labels | probabilities
-----------+--------------
 "False." | 0.8
 "True." | 0.75

Using index notation, you can get the probability of a specific label. The following example returns
probabilities of all the True. labels.

SELECT label, index, p.prediction.probabilities[index]
FROM churn_auto_predict_probabilities p, p.prediction.labels AS label AT index
WHERE label='True.';

 label | index | probabilities
---------+-------+---------------
 "True." | 0 | 0.3
 "True." | 0 | 0.2
 "True." | 0 | 0.75

The following example returns all rows that have a True. label with a probability greater than 0.7,
indicating that the customer is likely to churn.

SELECT prediction.labels[0], prediction.probabilities[0]
FROM churn_auto_predict_probabilities
WHERE prediction.probabilities[0] > 0.7 AND prediction.labels[0] = "True.";

labels | probabilities
-----------+--------------
 "True." | 0.75

Tutorials for Amazon Redshift ML

You can use Amazon Redshift ML to train machine learning models using SQL statements, and
then invoke the models in SQL queries for prediction. Machine learning in Amazon Redshift trains a
model with one SQL command. Amazon Redshift automatically launches a training job in Amazon
SageMaker and generates a model. Once a model is created, you can perform predictions in
Amazon Redshift using the model’s prediction function.

Follow the steps in these tutorials to learn about Amazon Redshift ML features:

Tutorials for Amazon Redshift ML 651

Amazon Redshift Database Developer Guide

• Tutorial: Building customer churn models

• Tutorial: Building remote inference models

• Tutorial: Building K-means clustering models

• Tutorial: Building multi-class classification models

• Tutorial: Building XGBoost models

• Tutorial: Building regression models

• Tutorial: Building regression models with linear learner

• Tutorial: Building multi-class classification models with linear learner

Tutorial: Building customer churn models

In this tutorial, you use Amazon Redshift ML to create a customer churn model with the CREATE
MODEL command, and run prediction queries for user scenarios. Then, you implement queries
using the SQL function that the CREATE MODEL command generates.

You can use a simple CREATE MODEL command to export training data, train a model, import the
model, and prepare an Amazon Redshift prediction function. Use the CREATE MODEL statement to
specify training data either as a table or SELECT statement.

This example uses historical information to construct a machine learning model of a mobile
operator’s customer churn. First, SageMaker trains your machine learning model and then tests
your model using the profile information of an arbitrary customer. After the model is validated,
Amazon SageMaker deploys the model and the prediction function to Amazon Redshift. You can
use the prediction function to predict whether a customer is going to churn or not.

Use case examples

You can solve other binary classification problems using Amazon Redshift ML, such as predicting if
a sales lead will close or not. You could also predict whether a financial transaction is fraudulent or
not.

Tasks

• Prerequisites

• Step 1: Load the data from Amazon S3 to Amazon Redshift

• Step 2: Create the machine learning model

• Step 3: Perform predictions with the model

Tutorials for Amazon Redshift ML 652

Amazon Redshift Database Developer Guide

Prerequisites

To complete this tutorial, you must have the following prerequisites:

• You must set up an Amazon Redshift cluster for Amazon Redshift ML. To do so, use the
documentation for Cluster and configure setup for Amazon Redshift ML administration.

• The Amazon Redshift cluster that you use to create the model, and the Amazon S3 bucket
that you use to stage the training data and store the model artifacts must be in the same AWS
Region.

• To download the SQL commands and the sample dataset used in this documentation, do one of
the following:

• Download the SQL commands, Customer activity file, and Abalone file.

• Using the AWS CLI for Amazon S3, run the following command. You can use your own target
path.

aws s3 cp s3://redshift-downloads/redshift-ml/tutorial-scripts/redshift-ml-
tutorial.sql </target/path>
aws s3 cp s3://redshift-downloads/redshift-ml/customer_activity/
customer_activity.csv </target/path>
aws s3 cp s3://redshift-downloads/redshift-ml/abalone_xgb/abalone_xgb.csv </target/
path>

Step 1: Load the data from Amazon S3 to Amazon Redshift

Use the Amazon Redshift query editor v2 to edit and run queries and visualize results.

Running the following queries creates a table named customer_activity and ingests the
sample dataset from Amazon S3.

DROP TABLE IF EXISTS customer_activity;

CREATE TABLE customer_activity (
state varchar(2),
account_length int,
area_code int,
phone varchar(8),
intl_plan varchar(3),
vMail_plan varchar(3),
vMail_message int,
day_mins float,

Tutorials for Amazon Redshift ML 653

https://docs.aws.amazon.com/redshift/latest/dg/admin-setup.html
https://s3.amazonaws.com/redshift-downloads/redshift-ml/tutorial-scripts/redshift-ml-tutorial.sql
https://s3.amazonaws.com/redshift-downloads/redshift-ml/customer_activity/customer_activity.csv
https://s3.amazonaws.com/redshift-downloads/redshift-ml/abalone_xg/abalone.csv
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html

Amazon Redshift Database Developer Guide

day_calls int,
day_charge float,
total_charge float,
eve_mins float,
eve_calls int,
eve_charge float,
night_mins float,
night_calls int,
night_charge float,
intl_mins float,
intl_calls int,
intl_charge float,
cust_serv_calls int,
churn varchar(6),
record_date date
);

COPY customer_activity
FROM 's3://redshift-downloads/redshift-ml/customer_activity/'
REGION 'us-east-1' IAM_ROLE default
FORMAT AS CSV IGNOREHEADER 1;

Step 2: Create the machine learning model

Churn is our target input in this model. All other inputs for the model are attributes that help to
create a function to predict churn.

The following example uses the CREATE MODEL operation to deliver a model that predicts whether
a customer will be active, using inputs such as the customer’s age, postal code, spending, and
cases. In the following example, replace DOC-EXAMPLE-BUCKET with your own Amazon S3 bucket.

CREATE MODEL customer_churn_auto_model
FROM
 (
 SELECT state,
 account_length,
 area_code,
 total_charge/account_length AS average_daily_spend,
 cust_serv_calls/account_length AS average_daily_cases,
 churn
 FROM customer_activity
 WHERE record_date < '2020-01-01'
)

Tutorials for Amazon Redshift ML 654

Amazon Redshift Database Developer Guide

TARGET churn FUNCTION ml_fn_customer_churn_auto
IAM_ROLE default SETTINGS (
 S3_BUCKET '<DOC-EXAMPLE-BUCKET>'
);

The SELECT query in the preceding example creates the training data. The TARGET clause specifies
which column is the machine learning label that the CREATE MODEL operation uses to learn
how to predict. The target column “churn” indicates whether the customer still has an active
membership or has suspended the membership. The S3_BUCKET field is the name of the Amazon
S3 bucket that you previously created. The Amazon S3 bucket is used to share training data and
artifacts between Amazon Redshift and Amazon SageMaker. The remaining columns are the
features that are used for the prediction.

For a summary of the syntax and features of a basic use case of the CREATE MODEL command, see
Simple CREATE MODEL.

Add permissions for server-side encryption (optional)

Amazon Redshift by default uses Amazon SageMaker Autopilot for training. In particular, Amazon
Redshift securely exports the training data to the customer-specified Amazon S3 bucket. If you
don’t specify a KMS_KEY_ID, then the data is encrypted using server-side encryption SSE-S3 by
default.

When you encrypt your input using server-side encryption with a AWS KMS managed key (SSE-
MMS), then add the following permissions:

{
 "Effect": "Allow",
 "Action": [
 "kms:Encrypt"
 "kms:Decrypt"
]
}

For more information about Amazon SageMaker roles, see Amazon SageMaker roles in the Amazon
SageMaker Developer Guide.

Check the status of model training (optional)

You can use the SHOW MODEL command to know when your model is ready.

Use the following operation to check the status of the model.

Tutorials for Amazon Redshift ML 655

https://docs.aws.amazon.com/redshift/latest/dg/r_create_model_use_cases.html#r_simple_create_model
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

Amazon Redshift Database Developer Guide

SHOW MODEL customer_churn_auto_model;

The following is an example of the output of the previous operation.

+--------------------------
+---
+
| Key |
 Value
 |
+--------------------------
+---
+
| Model Name |
 customer_churn_auto_model
 |
| Schema Name |
 public
 |
| Owner |
 awsuser
 |
| Creation Time |
 Tue, 14.06.2022 17:15:52
 |
| Model State |
 TRAINING
 |
| |

 |
| TRAINING DATA: |

 |
| Query | SELECT STATE, ACCOUNT_LENGTH, AREA_CODE, TOTAL_CHARGE /
 ACCOUNT_LENGTH AS AVERAGE_DAILY_SPEND, CUST_SERV_CALLS / ACCOUNT_LENGTH AS
 AVERAGE_DAILY_CASES, CHURN |
| |
 FROM CUSTOMER_ACTIVITY
 |
| |
 WHERE RECORD_DATE < '2020-01-01'
 |

Tutorials for Amazon Redshift ML 656

Amazon Redshift Database Developer Guide

| Target Column |
 CHURN
 |
| |

 |
| PARAMETERS: |

 |
| Model Type |
 auto
 |
| Problem Type |

 |
| Objective |

 |
| AutoML Job Name |
 redshiftml-20220614171552640901
 |
| Function Name |
 ml_fn_customer_churn_auto
 |
| Function Parameters | state
 account_length area_code average_daily_spend average_daily_cases
 |
| Function Parameter Types |
 varchar int4 int4 float8 int4
 |
| IAM Role |
 default-aws-iam-role
 |
| S3 Bucket |
 DOC-EXAMPLE-BUCKET
 |
| Max Runtime |
 5400
 |
+--------------------------
+---
+

Tutorials for Amazon Redshift ML 657

Amazon Redshift Database Developer Guide

When the model training is complete, the model_state variable becomes Model is Ready, and
the prediction function becomes available.

Step 3: Perform predictions with the model

You can use SQL statements to view the predictions made by the prediction model. In
this example, the prediction function created by the CREATE MODEL operation is named
ml_fn_customer_churn_auto. The input arguments for the prediction function correspond to
the types of the features, such as varchar for the state and integer for account_length. The
output of the prediction function is the same type as the TARGET column of the CREATE MODEL
statement.

1. You trained the model on data from before 2020-01-01, so now you use the prediction function
on the testing set. The following query displays the predictions of whether customers who
signed up after 2020-01-01 will go through churn or not.

SELECT
 phone,
 ml_fn_customer_churn_auto(
 state,
 account_length,
 area_code,
 total_charge / account_length,
 cust_serv_calls / account_length
) AS active
FROM
 customer_activity
WHERE
 record_date > '2020-01-01';

2. The following example uses the same prediction function for a different use case. In this case,
Amazon Redshift predicts the proportion of churners and non-churners among customers from
different states where the record date is greater than 2020-01-01.

WITH predicted AS (
 SELECT
 state,
 ml_fn_customer_churn_auto(
 state,
 account_length,
 area_code,
 total_charge / account_length,

Tutorials for Amazon Redshift ML 658

Amazon Redshift Database Developer Guide

 cust_serv_calls / account_length
) :: varchar(6) AS active
 FROM
 customer_activity
 WHERE
 record_date > '2020-01-01'
)
SELECT
 state,
 SUM(
 CASE
 WHEN active = 'True.' THEN 1
 ELSE 0
 END
) AS churners,
 SUM(
 CASE
 WHEN active = 'False.' THEN 1
 ELSE 0
 END
) AS nonchurners,
 COUNT(*) AS total_per_state
FROM
 predicted
GROUP BY
 state
ORDER BY
 state;

3. The following example uses the prediction function for the use case of predicting the
percentage of customers who churn in a state. In this case, Amazon Redshift predicts the churn
percentage where the record date is greater than 2020-01-01.

WITH predicted AS (
 SELECT
 state,
 ml_fn_customer_churn_auto(
 state,
 account_length,
 area_code,
 total_charge / account_length,
 cust_serv_calls / account_length
) :: varchar(6) AS active

Tutorials for Amazon Redshift ML 659

Amazon Redshift Database Developer Guide

 FROM
 customer_activity
 WHERE
 record_date > '2020-01-01'
)
SELECT
 state,
 CAST((CAST((SUM(
 CASE
 WHEN active = 'True.' THEN 1
 ELSE 0
 END
)) AS FLOAT) / CAST(COUNT(*) AS FLOAT)) AS DECIMAL (3, 2)) AS pct_churn,
 COUNT(*) AS total_customers_per_state
FROM
 predicted
GROUP BY
 state
ORDER BY
 3 DESC;

Related topics

For more information about Amazon Redshift ML, see the following documentation:

• Costs for using Amazon RedshiftML

• CREATE MODEL command

• EXPLAIN_MODEL function

For more information about machine learning, see the following documentation:

• Machine learning overview

• Machine learning for novices and experts

• What Is Fairness and Model Explainability for Machine Learning Predictions?

Tutorial: Building remote inference models

The following tutorial goes over the steps of how to create a Random Cut Forest model that has
been previously trained and deployed in Amazon SageMaker, outside of Amazon Redshift. The

Tutorials for Amazon Redshift ML 660

https://docs.aws.amazon.com/redshift/latest/dg/cost.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_MODEL.html
https://docs.aws.amazon.com/redshift/latest/dg/r_explain_model_function.html
https://docs.aws.amazon.com/redshift/latest/dg/machine_learning_overview.html
https://docs.aws.amazon.com/redshift/latest/dg/novice_expert.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/randomcutforest.html

Amazon Redshift Database Developer Guide

Random Cut Forest algorithm detects anomalous data points within a dataset. Creating a model
with remote inference allows you to bring your Random Cut Forest SageMaker model into Amazon
Redshift. Then, in Amazon Redshift, you use SQL to perform predictions on a remote SageMaker
endpoint.

You can use a CREATE MODEL command to import a machine learning model from an Amazon
SageMaker endpoint and prepare an Amazon Redshift prediction function. When using the CREATE
MODEL operation, you provide the SageMaker machine learning model’s endpoint name.

In this tutorial, you create an Amazon Redshift machine learning model using a SageMaker model
endpoint. Once your machine learning model is ready, you can use it to perform predictions in
Amazon Redshift. First, you train and create an endpoint in Amazon SageMaker, and then you get
the endpoint name. Then, you use the CREATE MODEL command to create a model with Amazon
Redshift ML. Finally, you perform predictions on the model using the prediction function that the
CREATE MODEL command generates.

Use case examples

You can use Random Cut Forest models and remote inference for anomaly detection in other
datasets, such as predicting a rapid increase or decrease in e-commerce transactions. You could
also predict significant changes in weather or seismic activity.

Tasks

• Prerequisites

• Step 1: Deploy the Amazon SageMaker model

• Step 2: Get the SageMaker model endpoint

• Step 3: Load the data from Amazon S3 to Amazon Redshift

• Step 4: Create a model with Amazon Redshift ML

• Step 5: Perform predictions with the model

Prerequisites

To complete this tutorial, you must have the following prerequisites:

• You have completed the Administrative setup for Amazon Redshift ML.

• You have downloaded the NYC taxi dataset, created an Amazon S3 bucket, and uploaded the
data into the Amazon S3 bucket.

Tutorials for Amazon Redshift ML 661

https://docs.aws.amazon.com/redshift/latest/dg/admin-setup.html
https://s3.amazonaws.com/sagemaker-sample-files/datasets/tabular/anomaly_benchmark_taxi/NAB_nyc_taxi.csv
https://docs.aws.amazon.com/AmazonS3/latest/userguide/create-bucket-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/upload-objects.html

Amazon Redshift Database Developer Guide

• You must train, deploy the SageMaker model and endpoint, and get the name of the SageMaker
endpoint. Use this AWS CloudFormation template to provision all the SageMaker resources in
your AWS account automatically.

Step 1: Deploy the Amazon SageMaker model

1. To deploy the model, go to the Amazon SageMaker console, choose Notebook instances under
Notebook in the navigation pane.

2. Choose Open Jupyter for the Jupyter notebook that was created by the CloudFormation
template.

3. Choose bring-your-own-model-remote-inference.ipynb.

4. Set up the parameters to store the training input and output in Amazon S3 by replacing the
following lines with your Amazon S3 bucket and prefix.

data_location=f"s3://{bucket}/{prefix}/",
output_path=f"s3://{bucket}/{prefix}/output",

5. Choose the fast-forward button to run all cells.

Step 2: Get the SageMaker model endpoint

On the Amazon SageMaker console, under Inference in the navigation pane, choose Endpoints and
find your model name. You must copy your model’s endpoint name when you create the remote
inference model in Amazon Redshift.

Step 3: Load the data from Amazon S3 to Amazon Redshift

Use the Amazon Redshift query editor v2 to run the following SQL commands in Amazon Redshift.
These commands drop the rcf_taxi_data table if it exists, create a table of the same name, and
load the sample dataset into the table.

DROP TABLE IF EXISTS public.rcf_taxi_data CASCADE;

CREATE TABLE public.rcf_taxi_data (ride_timestamp timestamp, nbr_passengers int);

COPY public.rcf_taxi_data
FROM
 's3://sagemaker-sample-files/datasets/tabular/anomaly_benchmark_taxi/
NAB_nyc_taxi.csv'

Tutorials for Amazon Redshift ML 662

https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/create/template?stackName=RedshiftBYOM&templateURL=https://redshift-ml-multiclass.s3.amazonaws.com/redshift-byom-blog.yaml
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html

Amazon Redshift Database Developer Guide

 IAM_ROLE default
 IGNOREHEADER 1
 FORMAT AS CSV;

Step 4: Create a model with Amazon Redshift ML

Run the following query to create a model in Amazon Redshift ML using the SageMaker model
endpoint you got in the previous step. Replace randomcutforest-xxxxxxxxx with your own
SageMaker endpoint’s name.

CREATE MODEL public.remote_random_cut_forest
FUNCTION remote_fn_rcf(int)
RETURNS decimal(10, 6) SAGEMAKER '<randomcutforest-xxxxxxxxx>' IAM_ROLE default;

Check the model status (optional)

You can use the SHOW MODEL command to know when your model is ready.

To check the model status, use the following SHOW MODEL operation.

SHOW MODEL public.remote_random_cut_forest

The output shows the SageMaker endpoint and function name.

+--------------------------+---+
| Model Name | remote_random_cut_forest |
+--------------------------+---+
Schema Name	public
Owner	awsuser
Creation Time	Wed, 15.06.2022 17:58:21
Model State	READY
PARAMETERS:	
Endpoint	<randomcutforest-xxxxxxxxx>
Function Name	remote_fn_rcf
Inference Type	Remote
Function Parameter Types	int4
IAM Role	default-aws-iam-role
+--------------------------+---+

Tutorials for Amazon Redshift ML 663

Amazon Redshift Database Developer Guide

Step 5: Perform predictions with the model

The Amazon SageMaker Random Cut Forest algorithm is designed to detect anomalous data
points within a dataset. In this example, your model is designed to detect spikes in taxi rides due to
important events. You can use the model to predict anomalous events by generating an anomaly
score for each data point.

Use the following query to compute anomaly scores across the entire taxi dataset. Note that you
reference the function that you used in your CREATE MODEL statement in the previous step.

SELECT
 ride_timestamp,
 nbr_passengers,
 public.remote_fn_rcf(nbr_passengers) AS score
FROM
 public.rcf_taxi_data;

Check for high and low anomalies (optional)

Run the following query to find any data points with scores greater than three standard deviations
from the mean score.

WITH score_cutoff AS (
 SELECT
 STDDEV(public.remote_fn_rcf(nbr_passengers)) AS std,
 AVG(public.remote_fn_rcf(nbr_passengers)) AS mean,
 (mean + 3 * std) AS score_cutoff_value
 FROM
 public.rcf_taxi_data
)
SELECT
 ride_timestamp,
 nbr_passengers,
 public.remote_fn_rcf(nbr_passengers) AS score
FROM
 public.rcf_taxi_data
WHERE
 score > (
 SELECT
 score_cutoff_value
 FROM
 score_cutoff
)

Tutorials for Amazon Redshift ML 664

Amazon Redshift Database Developer Guide

ORDER BY
 2 DESC;

Run the following query to find any data points with scores greater than three standard deviations
from the mean score.

WITH score_cutoff AS (
 SELECT
 STDDEV(public.remote_fn_rcf(nbr_passengers)) AS std,
 AVG(public.remote_fn_rcf(nbr_passengers)) AS mean,
 (mean - 3 * std) AS score_cutoff_value
 FROM
 public.rcf_taxi_data
)
SELECT
 ride_timestamp,
 nbr_passengers,
 public.remote_fn_rcf(nbr_passengers) AS score
FROM
 public.rcf_taxi_data
WHERE
 score < (
 SELECT
 score_cutoff_value
 FROM
 score_cutoff
)
ORDER BY
 2 DESC;

Related topics

For more information about Amazon Redshift ML, see the following documentation:

• Costs for using Amazon Redshift ML

• CREATE MODEL operation

• EXPLAIN_MODEL function

For more information about machine learning, see the following documentation:

• Machine learning overview

Tutorials for Amazon Redshift ML 665

https://docs.aws.amazon.com/redshift/latest/dg/cost.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_MODEL.html
https://docs.aws.amazon.com/redshift/latest/dg/r_explain_model_function.html
https://docs.aws.amazon.com/redshift/latest/dg/machine_learning_overview.html

Amazon Redshift Database Developer Guide

• Machine learning for novices and experts

• What Is Fairness and Model Explainability for Machine Learning Predictions?

Tutorial: Building K-means clustering models

In this tutorial, you use Amazon Redshift ML to create, train, and deploy a machine learning model
based on the K-means algorithm. This algorithm solves clustering problems where you want
to discover groupings in the data. K-means helps in grouping data that has not been labeled
yet. To learn more about K-means clustering, see How K-means Clustering Worksin the Amazon
SageMaker Developer Guide.

You will use a CREATE MODEL operation to create a K-means model from a Amazon Redshift
cluster. You can use a CREATE MODEL command to export training data, train a model, import the
model, and prepare an Amazon Redshift prediction function. Use the CREATE MODEL operation to
specify training data either as a table or a SELECT statement.

In this tutorial, you use K-means on the Global Database of Events, Language, and Tone (GDELT)
dataset, which monitors world news across the world, and the data is stored for every second
of every day. K-means will group events that have similar tone, actors, or locations. The data is
stored as multiple files on Amazon Simple Storage Service, in two different folders. The folders are
historical, which cover the years 1979–2013, and daily updates, which cover the years 2013 and
later. For this example, we use the historical format and bring in 1979 data.

Use case examples

You can solve other clustering problems with Amazon Redshift ML, such as grouping customers
who have similar viewing habits on a streaming service. You could also use Redshift ML to predict
the optimal number of shipping centers for a delivery service.

Tasks

• Prerequisites

• Step 1: Load the data from Amazon S3 to Amazon Redshift

• Step 2: Create the machine learning model

• Step 3: Perform predictions with the model

Tutorials for Amazon Redshift ML 666

https://docs.aws.amazon.com/redshift/latest/dg/novice_expert.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html
url-sm-dev;k-means.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algo-kmeans-tech-notes.html
https://aws.amazon.com/public-datasets/gdelt/

Amazon Redshift Database Developer Guide

Prerequisites

To complete this tutorial, you must complete the Administrative setup for Amazon Redshift ML.

Step 1: Load the data from Amazon S3 to Amazon Redshift

1. Use the Amazon Redshift query editor v2 to run the following query. The query drops the
gdelt_data table in the public schema if it exists and creates a table of the same name in the
public schema.

DROP TABLE IF EXISTS gdelt_data CASCADE;

CREATE TABLE gdelt_data (
 GlobalEventId bigint,
 SqlDate bigint,
 MonthYear bigint,
 Year bigint,
 FractionDate double precision,
 Actor1Code varchar(256),
 Actor1Name varchar(256),
 Actor1CountryCode varchar(256),
 Actor1KnownGroupCode varchar(256),
 Actor1EthnicCode varchar(256),
 Actor1Religion1Code varchar(256),
 Actor1Religion2Code varchar(256),
 Actor1Type1Code varchar(256),
 Actor1Type2Code varchar(256),
 Actor1Type3Code varchar(256),
 Actor2Code varchar(256),
 Actor2Name varchar(256),
 Actor2CountryCode varchar(256),
 Actor2KnownGroupCode varchar(256),
 Actor2EthnicCode varchar(256),
 Actor2Religion1Code varchar(256),
 Actor2Religion2Code varchar(256),
 Actor2Type1Code varchar(256),
 Actor2Type2Code varchar(256),
 Actor2Type3Code varchar(256),
 IsRootEvent bigint,
 EventCode bigint,
 EventBaseCode bigint,
 EventRootCode bigint,
 QuadClass bigint,

Tutorials for Amazon Redshift ML 667

https://docs.aws.amazon.com/redshift/latest/dg/admin-setup.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html

Amazon Redshift Database Developer Guide

 GoldsteinScale double precision,
 NumMentions bigint,
 NumSources bigint,
 NumArticles bigint,
 AvgTone double precision,
 Actor1Geo_Type bigint,
 Actor1Geo_FullName varchar(256),
 Actor1Geo_CountryCode varchar(256),
 Actor1Geo_ADM1Code varchar(256),
 Actor1Geo_Lat double precision,
 Actor1Geo_Long double precision,
 Actor1Geo_FeatureID bigint,
 Actor2Geo_Type bigint,
 Actor2Geo_FullName varchar(256),
 Actor2Geo_CountryCode varchar(256),
 Actor2Geo_ADM1Code varchar(256),
 Actor2Geo_Lat double precision,
 Actor2Geo_Long double precision,
 Actor2Geo_FeatureID bigint,
 ActionGeo_Type bigint,
 ActionGeo_FullName varchar(256),
 ActionGeo_CountryCode varchar(256),
 ActionGeo_ADM1Code varchar(256),
 ActionGeo_Lat double precision,
 ActionGeo_Long double precision,
 ActionGeo_FeatureID bigint,
 DATEADDED bigint
);

2. The following query loads the sample data into the gdelt_data table.

COPY gdelt_data
FROM 's3://gdelt-open-data/events/1979.csv'
REGION 'us-east-1'
IAM_ROLE default
CSV
DELIMITER '\t';

Examine the training data (optional)

To see what data your model will be trained on, use the following query.

Tutorials for Amazon Redshift ML 668

Amazon Redshift Database Developer Guide

SELECT
 AvgTone,
 EventCode,
 NumArticles,
 Actor1Geo_Lat,
 Actor1Geo_Long,
 Actor2Geo_Lat,
 Actor2Geo_Long
FROM
 gdelt_data LIMIT 100;

Step 2: Create the machine learning model

The following example uses the CREATE MODEL command to create a model that groups the data
into seven clusters. The K value is the number of clusters that your data points are divided into. The
model classifies your data points into clusters where data points are more similar to each other.
By clustering the data points into groups, the K-Means algorithm iteratively determines the best
cluster center. The algorithm then assigns each data point to the closest cluster center. Members
nearest the same cluster center belong to the same group. Members of a group are as similar as
possible to other members in the same group, and as different as possible from members of other
groups. The K value is subjective and depends on methods that measure the similarities among
data points. You can change the K value to smooth out cluster sizes if the clusters are unevenly
distributed.

In the following example, replace DOC-EXAMPLE-BUCKET with your own Amazon S3 bucket.

CREATE MODEL news_data_clusters
FROM
 (
 SELECT
 AvgTone,
 EventCode,
 NumArticles,
 Actor1Geo_Lat,
 Actor1Geo_Long,
 Actor2Geo_Lat,
 Actor2Geo_Long
 FROM
 gdelt_data
) FUNCTION news_monitoring_cluster
 IAM_ROLE default

Tutorials for Amazon Redshift ML 669

Amazon Redshift Database Developer Guide

 AUTO OFF
 MODEL_TYPE KMEANS
 PREPROCESSORS 'none'
 HYPERPARAMETERS DEFAULT
 EXCEPT
 (K '7')
 SETTINGS (S3_BUCKET '<DOC-EXAMPLE-BUCKET>');

Check the status of model training (optional)

You can use the SHOW MODEL command to know when your model is ready.

To check the model status, use the following SHOW MODEL operation and find if the Model
State is Ready.

SHOW MODEL NEWS_DATA_CLUSTERS;

When the model is ready, the output of the previous operation should show that the Model
State is Ready. The following is an example of the output of the SHOW MODEL operation.

+--------------------------
+--
+
| Model Name |
 news_data_clusters |
+--------------------------
+--
+
| Schema Name | public
 |
| Owner | awsuser
 |
| Creation Time | Fri, 17.06.2022
 16:32:19 |
| Model State | READY
 |
| train:msd | 2973.822754
 |
| train:progress | 100.000000
 |
| train:throughput | 237114.875000
 |

Tutorials for Amazon Redshift ML 670

Amazon Redshift Database Developer Guide

| Estimated Cost | 0.004983
 |
| |
 |
| TRAINING DATA: |
 |
| Query | SELECT AVGTONE, EVENTCODE, NUMARTICLES, ACTOR1GEO_LAT,
 ACTOR1GEO_LONG, ACTOR2GEO_LAT, ACTOR2GEO_LONG |
| | FROM GDELT_DATA
 |
| |
 |
| PARAMETERS: |
 |
| Model Type | kmeans
 |
| Training Job Name |
 redshiftml-20220617163219978978-kmeans |
| Function Name |
 news_monitoring_cluster |
| Function Parameters | avgtone eventcode numarticles actor1geo_lat
 actor1geo_long actor2geo_lat actor2geo_long |
| Function Parameter Types | float8 int8 int8 float8 float8
 float8 float8 |
| IAM Role | default-aws-iam-
role |
| S3 Bucket | DOC-EXAMPLE-
BUCKET |
| Max Runtime | 5400
 |
| |
 |
| HYPERPARAMETERS: |
 |
| feature_dim | 7
 |
| k | 7
 |
+--------------------------
+--
+

Tutorials for Amazon Redshift ML 671

Amazon Redshift Database Developer Guide

Step 3: Perform predictions with the model

Identify the clusters

You can find discrete groupings identified in the data by your model, otherwise known as clusters.
A cluster is the set of data points that is closer to its cluster center than any other cluster center.
Since the K value represents the number of clusters in the model, it also represents the number of
cluster centers. The following query identifies the clusters by showing the cluster associated with
each globaleventid.

SELECT
 globaleventid,
 news_monitoring_cluster (
 AvgTone,
 EventCode,
 NumArticles,
 Actor1Geo_Lat,
 Actor1Geo_Long,
 Actor2Geo_Lat,
 Actor2Geo_Long
) AS cluster
FROM
 gdelt_data;

Check the distribution of data

You can check the distribution of data across clusters to see if the K value that you chose caused
the data to be somewhat evenly distributed. Use the following query to determine if the data is
evenly distributed across your clusters.

SELECT
 events_cluster,
 COUNT(*) AS nbr_events
FROM
 (
 SELECT
 globaleventid,
 news_monitoring_cluster(
 AvgTone,
 EventCode,
 NumArticles,
 Actor1Geo_Lat,

Tutorials for Amazon Redshift ML 672

Amazon Redshift Database Developer Guide

 Actor1Geo_Long,
 Actor2Geo_Lat,
 Actor2Geo_Long
) AS events_cluster
 FROM
 gdelt_data
)
GROUP BY
 1;

Note that you can change the K value to smooth out cluster sizes if the clusters are unevenly
distributed.

Determine the cluster centers

A data point is closer to its cluster center than it is to any other cluster center. Thus, finding the
cluster centers helps you define the clusters.

Run the following query to determine the centers of the clusters based on the number of articles
by event code.

SELECT
 news_monitoring_cluster (
 AvgTone,
 EventCode,
 NumArticles,
 Actor1Geo_Lat,
 Actor1Geo_Long,
 Actor2Geo_Lat,
 Actor2Geo_Long
) AS events_cluster,
 eventcode,
 SUM(numArticles) AS numArticles
FROM
 gdelt_data
GROUP BY
 1,
 2;

Show information about data points in a cluster

Use the following query to return the data for the points assigned to the fifth cluster. The selected
articles must have two actors.

Tutorials for Amazon Redshift ML 673

Amazon Redshift Database Developer Guide

SELECT
 news_monitoring_cluster (
 AvgTone,
 EventCode,
 NumArticles,
 Actor1Geo_Lat,
 Actor1Geo_Long,
 Actor2Geo_Lat,
 Actor2Geo_Long
) AS events_cluster,
 eventcode,
 actor1name,
 actor2name,
 SUM(numarticles) AS totalarticles
FROM
 gdelt_data
WHERE
 events_cluster = 5
 AND actor1name <> ' '
 AND actor2name <> ' '
GROUP BY
 1,
 2,
 3,
 4
ORDER BY
 5 desc;

Show data about events with actors of the same ethnic code

The following query counts the number of articles written about events with a positive tone. The
query also requires that the two actors have the same ethnic code and it returns which cluster each
event is assigned to.

SELECT
 news_monitoring_cluster (
 AvgTone,
 EventCode,
 NumArticles,
 Actor1Geo_Lat,
 Actor1Geo_Long,
 Actor2Geo_Lat,
 Actor2Geo_Long

Tutorials for Amazon Redshift ML 674

Amazon Redshift Database Developer Guide

) AS events_cluster,
 SUM(numarticles) AS total_articles,
 eventcode AS event_code,
 Actor1EthnicCode AS ethnic_code
FROM
 gdelt_data
WHERE
 Actor1EthnicCode = Actor2EthnicCode
 AND Actor1EthnicCode <> ' '
 AND Actor2EthnicCode <> ' '
 AND AvgTone > 0
GROUP BY
 1,
 3,
 4
HAVING
 (total_articles) > 4
ORDER BY
 1,
 2 ASC;

Related topics

For more information about Amazon Redshift ML, see the following documentation:

• Costs for using Amazon Redshift ML

• CREATE MODEL operation

• EXPLAIN_MODEL function

For more information about machine learning, see the following documentation:

• Machine learning overview

• Machine learning for novices and experts

• What Is Fairness and Model Explainability for Machine Learning Predictions?

Tutorial: Building multi-class classification models

In this tutorial, you use Amazon Redshift ML to create a machine learning model that solves multi-
class classification problems. The multi-class classification algorithm classifies data points into one

Tutorials for Amazon Redshift ML 675

https://docs.aws.amazon.com/redshift/latest/dg/cost.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_MODEL.html
https://docs.aws.amazon.com/redshift/latest/dg/r_explain_model_function.html
https://docs.aws.amazon.com/redshift/latest/dg/machine_learning_overview.html
https://docs.aws.amazon.com/redshift/latest/dg/novice_expert.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html

Amazon Redshift Database Developer Guide

of three or more classes. Then, you implement queries using the SQL function that the CREATE
MODEL command generates.

You can use a CREATE MODEL command to export training data, train a model, import the model,
and prepare an Amazon Redshift prediction function. Use the CREATE MODEL operation to specify
training data either as a table or a SELECT statement.

To follow along with the tutorial, you use the public dataset E-Commerce Sales Forecast, which
includes sales data of an online UK retailer. The model you generate will target the most active
customers for a special customer loyalty program. With multi-class classification, you can use
the model to predict how many months a customer will be active over a 13-month period. The
prediction function designates customers who are predicted to be active for 7 or more months for
admission to the program.

Use case examples

You can solve other multi-class classification problems with Amazon Redshift ML, such as
predicting the best-selling product from a product line. You could also predict which fruit an image
contains, such as selecting apples or pears or oranges.

Tasks

• Prerequisites

• Step 1: Load the data from Amazon S3 to Amazon Redshift

• Step 2: Create the machine learning model

• Step 3: Perform predictions with the model

Prerequisites

To complete this tutorial, you must complete the Administrative setup for Amazon Redshift ML.

Step 1: Load the data from Amazon S3 to Amazon Redshift

Use the Amazon Redshift query editor v2 to run the following queries. These queries load the
sample data into Amazon Redshift.

1. The following query creates a table named ecommerce_sales.

CREATE TABLE IF NOT EXISTS ecommerce_sales (
 invoiceno VARCHAR(30),

Tutorials for Amazon Redshift ML 676

https://www.kaggle.com/allunia/e-commerce-sales-forecast
https://docs.aws.amazon.com/redshift/latest/dg/admin-setup.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html

Amazon Redshift Database Developer Guide

 stockcode VARCHAR(30),
 description VARCHAR(60),
 quantity DOUBLE PRECISION,
 invoicedate VARCHAR(30),
 unitprice DOUBLE PRECISION,
 customerid BIGINT,
 country VARCHAR(25)
);

2. The following query copies the sample data from the E-Commerce Sales Forecast dataset into
the ecommerce_salestable.

COPY ecommerce_sales
FROM
 's3://redshift-ml-multiclass/ecommerce_data.txt'
IAM_ROLE default
DELIMITER '\t'
IGNOREHEADER 1
REGION 'us-east-1'
MAXERROR 100;

Split the data

When you create a model in Amazon Redshift ML, SageMaker automatically splits your data
into training and test sets, so that SageMaker can determine the model accuracy. By manually
splitting the data at this step, you will be able to verify the accuracy of the model by allocating an
additional prediction set.

Use the following SQL statement to split the data into three sets for training, validation, and
prediction.

--creates table with all data
CREATE TABLE ecommerce_sales_data AS (
 SELECT
 t1.stockcode,
 t1.description,
 t1.invoicedate,
 t1.customerid,
 t1.country,
 t1.sales_amt,
 CAST(RANDOM() * 100 AS INT) AS data_group_id
 FROM

Tutorials for Amazon Redshift ML 677

https://www.kaggle.com/allunia/e-commerce-sales-forecast

Amazon Redshift Database Developer Guide

 (
 SELECT
 stockcode,
 description,
 invoicedate,
 customerid,
 country,
 SUM(quantity * unitprice) AS sales_amt
 FROM
 ecommerce_sales
 GROUP BY
 1,
 2,
 3,
 4,
 5
) t1
);

--creates training set
CREATE TABLE ecommerce_sales_training AS (
 SELECT
 a.customerid,
 a.country,
 a.stockcode,
 a.description,
 a.invoicedate,
 a.sales_amt,
 (b.nbr_months_active) AS nbr_months_active
 FROM
 ecommerce_sales_data a
 INNER JOIN (
 SELECT
 customerid,
 COUNT(
 DISTINCT(
 DATE_PART(y, CAST(invoicedate AS DATE)) || '-' || LPAD(
 DATE_PART(mon, CAST(invoicedate AS DATE)),
 2,
 '00'
)
)
) AS nbr_months_active
 FROM

Tutorials for Amazon Redshift ML 678

Amazon Redshift Database Developer Guide

 ecommerce_sales_data
 GROUP BY
 1
) b ON a.customerid = b.customerid
 WHERE
 a.data_group_id < 80
);

--creates validation set
CREATE TABLE ecommerce_sales_validation AS (
 SELECT
 a.customerid,
 a.country,
 a.stockcode,
 a.description,
 a.invoicedate,
 a.sales_amt,
 (b.nbr_months_active) AS nbr_months_active
 FROM
 ecommerce_sales_data a
 INNER JOIN (
 SELECT
 customerid,
 COUNT(
 DISTINCT(
 DATE_PART(y, CAST(invoicedate AS DATE)) || '-' || LPAD(
 DATE_PART(mon, CAST(invoicedate AS DATE)),
 2,
 '00'
)
)
) AS nbr_months_active
 FROM
 ecommerce_sales_data
 GROUP BY
 1
) b ON a.customerid = b.customerid
 WHERE
 a.data_group_id BETWEEN 80
 AND 90
);

--creates prediction set
CREATE TABLE ecommerce_sales_prediction AS (

Tutorials for Amazon Redshift ML 679

Amazon Redshift Database Developer Guide

 SELECT
 customerid,
 country,
 stockcode,
 description,
 invoicedate,
 sales_amt
 FROM
 ecommerce_sales_data
 WHERE
 data_group_id > 90);

Step 2: Create the machine learning model

In this step, you use the CREATE MODEL statement to create your machine learning model using
multi-class classification.

The following query creates the multi-class classification model with the training set using the
CREATE MODEL operation. Replace DOC-EXAMPLE-BUCKET with your own Amazon S3 bucket.

CREATE MODEL ecommerce_customer_activity
FROM
 (
 SELECT
 customerid,
 country,
 stockcode,
 description,
 invoicedate,
 sales_amt,
 nbr_months_active
 FROM
 ecommerce_sales_training
) TARGET nbr_months_active FUNCTION predict_customer_activity IAM_ROLE default
 PROBLEM_TYPE MULTICLASS_CLASSIFICATION SETTINGS (
 S3_BUCKET '<DOC-EXAMPLE-BUCKET>',
 S3_GARBAGE_COLLECT OFF
);

In this query, you specify the problem type as Multiclass_Classification. The target that
you predict for the model is nbr_months_active. When SageMaker finishes training the model,

Tutorials for Amazon Redshift ML 680

Amazon Redshift Database Developer Guide

it creates the function predict_customer_activity, which you will use to make predictions in
Amazon Redshift.

Show the status of model training (optional)

You can use the SHOW MODEL command to know when your model is ready.

Use the following query to return various metrics of the model, including model state and
accuracy.

SHOW MODEL ecommerce_customer_activity;

When the model is ready, the output of the previous operation should show that the Model
State is Ready. The following is an example of the output of the SHOW MODEL operation.

+--------------------------
+---
+
| Model Name |
 ecommerce_customer_activity |
+--------------------------
+---
+
| Schema Name | public
 |
| Owner | awsuser
 |
| Creation Time | Fri, 17.06.2022 19:02:15
 |
| Model State | READY
 |
| Training Job Status |
 MaxAutoMLJobRuntimeReached |
| validation:accuracy | 0.991280
 |
| Estimated Cost | 7.897689
 |
| |
 |
| TRAINING DATA: |
 |
| Query | SELECT CUSTOMERID, COUNTRY, STOCKCODE, DESCRIPTION,
 INVOICEDATE, SALES_AMT, NBR_MONTHS_ACTIVE |

Tutorials for Amazon Redshift ML 681

Amazon Redshift Database Developer Guide

| | FROM
 ECOMMERCE_SALES_TRAINING |
| Target Column | NBR_MONTHS_ACTIVE
 |
| |
 |
| PARAMETERS: |
 |
| Model Type | xgboost
 |
| Problem Type | MulticlassClassification
 |
| Objective | Accuracy
 |
| AutoML Job Name |
 redshiftml-20220617190215268770 |
| Function Name |
 predict_customer_activity |
| Function Parameters | customerid country stockcode description
 invoicedate sales_amt |
| Function Parameter Types | int8 varchar varchar varchar
 varchar float8 |
| IAM Role | default-aws-iam-role
 |
| S3 Bucket | DOC-EXAMPLE-BUCKET
 |
| Max Runtime | 5400
 |
+--------------------------
+---
+

Step 3: Perform predictions with the model

The following query shows which customers qualify for your customer loyalty program. If the
model predicts that the customer will be active for at least seven months, then the model selects
the customer for the loyalty program.

SELECT
 customerid,
 predict_customer_activity(
 customerid,
 country,

Tutorials for Amazon Redshift ML 682

Amazon Redshift Database Developer Guide

 stockcode,
 description,
 invoicedate,
 sales_amt
) AS predicted_months_active
FROM
 ecommerce_sales_prediction
WHERE
 predicted_months_active >= 7
GROUP BY
 1,
 2
LIMIT
 10;

Run prediction queries against the validation data (optional)

Run the following prediction queries against the validation data to see the model’s level of
accuracy.

SELECT
 CAST(SUM(t1.match) AS decimal(7, 2)) AS predicted_matches,
 CAST(SUM(t1.nonmatch) AS decimal(7, 2)) AS predicted_non_matches,
 CAST(SUM(t1.match + t1.nonmatch) AS decimal(7, 2)) AS total_predictions,
 predicted_matches / total_predictions AS pct_accuracy
FROM
 (
 SELECT
 customerid,
 country,
 stockcode,
 description,
 invoicedate,
 sales_amt,
 nbr_months_active,
 predict_customer_activity(
 customerid,
 country,
 stockcode,
 description,
 invoicedate,
 sales_amt
) AS predicted_months_active,

Tutorials for Amazon Redshift ML 683

Amazon Redshift Database Developer Guide

 CASE
 WHEN nbr_months_active = predicted_months_active THEN 1
 ELSE 0
 END AS match,
 CASE
 WHEN nbr_months_active <> predicted_months_active THEN 1
 ELSE 0
 END AS nonmatch
 FROM
 ecommerce_sales_validation
)t1;

Predict how many customers miss entry (optional)

The following query compares the number of customers that are predicted to be active for only 5
or 6 months. The model predicts that these customers will miss out on the loyalty program. The
query then compares the amount that barely miss the program to the number that are predicted
to be eligible for the loyalty program. This query could be used to inform a decision on whether to
lower the threshold for the loyalty program. You can also determine if there is a significant amount
of customers that are predicted to barely miss out on the program. You could then encourage
those customers to increase their activity to get a loyalty program membership.

SELECT
 predict_customer_activity(
 customerid,
 country,
 stockcode,
 description,
 invoicedate,
 sales_amt
) AS predicted_months_active,
 COUNT(customerid)
FROM
 ecommerce_sales_prediction
WHERE
 predicted_months_active BETWEEN 5 AND 6
GROUP BY
 1
ORDER BY
 1 ASC
LIMIT
 10)

Tutorials for Amazon Redshift ML 684

Amazon Redshift Database Developer Guide

UNION
(SELECT
 NULL AS predicted_months_active,
 COUNT (customerid)
FROM
 ecommerce_sales_prediction
WHERE
 predict_customer_activity(
 customerid,
 country,
 stockcode,
 description,
 invoicedate,
 sales_amt
) >=7);

Related topics

For more information about Amazon Redshift ML, see the following documentation:

• Costs for using Amazon Redshift ML

• CREATE MODEL operation

• EXPLAIN_MODEL function

For more information about machine learning, see the following documentation:

• Machine learning overview

• Machine learning for novices and experts

• What Is Fairness and Model Explainability for Machine Learning Predictions?

Tutorial: Building XGBoost models

In this tutorial, you create a model with data from Amazon S3 and run prediction queries with
the model using Amazon Redshift ML. The XGBoost algorithm is an optimized implementation
of the gradient boosted trees algorithm. XGBoost handles more data types, relationships, and
distributions than other gradient boosted trees algorithms. You can use XGBoost for regression,
binary classification, multi-class classification, and ranking problems. For more information about
the XGBoost algorithm, see XGBoost algorithm in the Amazon SageMaker Developer Guide.

Tutorials for Amazon Redshift ML 685

https://docs.aws.amazon.com/redshift/latest/dg/cost.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_MODEL.html
https://docs.aws.amazon.com/redshift/latest/dg/r_explain_model_function.html
https://docs.aws.amazon.com/redshift/latest/dg/machine_learning_overview.html
https://docs.aws.amazon.com/redshift/latest/dg/novice_expert.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html

Amazon Redshift Database Developer Guide

The Amazon Redshift ML CREATE MODEL operation with the AUTO OFF option currently supports
XGBoost as the MODEL_TYPE. You can provide relevant information such as the objective and
hyperparameters as part of the CREATE MODEL command, based on your use case.

In this tutorial, you use the banknote authentication dataset, which is a binary classification
problem to predict whether a given banknote is genuine or forged.

Use case examples

You can solve other binary classification problems using Amazon Redshift ML, such as predicting
whether a patient is healthy or has a disease. You could also predict whether an email is spam or
not spam.

Tasks

• Prerequisites

• Step 1: Load the data from Amazon S3 to Amazon Redshift

• Step 2: Create the machine learning model

• Step 3: Perform predictions with the model

Prerequisites

To complete this tutorial, you must complete the Administrative setup for Amazon Redshift ML.

Step 1: Load the data from Amazon S3 to Amazon Redshift

Use the Amazon Redshift query editor v2 to run the following queries.

The following query creates two tables, loads the data from Amazon S3, and splits the data into
a training set and a testing set. You will use the training set to train your model and create the
prediction function. Then, you will test the prediction function on the testing set.

--create training set table
CREATE TABLE banknoteauthentication_train(
 variance FLOAT,
 skewness FLOAT,
 curtosis FLOAT,
 entropy FLOAT,
 class INT

Tutorials for Amazon Redshift ML 686

https://archive.ics.uci.edu/ml/datasets/banknote+authentication
https://docs.aws.amazon.com/redshift/latest/dg/admin-setup.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html

Amazon Redshift Database Developer Guide

);

--Load into training table
COPY banknoteauthentication_train
FROM
 's3://redshiftbucket-ml-sagemaker/banknote_authentication/train_data/' IAM_ROLE
 default REGION 'us-west-2' IGNOREHEADER 1 CSV;

--create testing set table
CREATE TABLE banknoteauthentication_test(
 variance FLOAT,
 skewness FLOAT,
 curtosis FLOAT,
 entropy FLOAT,
 class INT
);

--Load data into testing table
COPY banknoteauthentication_test
FROM
 's3://redshiftbucket-ml-sagemaker/banknote_authentication/test_data/'
 IAM_ROLE default
 REGION 'us-west-2'
 IGNOREHEADER 1
 CSV;

Step 2: Create the machine learning model

The following query creates the XGBoost model in Amazon Redshift ML from the training set you
created in the previous step. Replace DOC-EXAMPLE-BUCKET with your own S3_BUCKET, which
will store your input datasets and other Redshift ML artifacts.

CREATE MODEL model_banknoteauthentication_xgboost_binary
FROM
 banknoteauthentication_train
 TARGET class
 FUNCTION func_model_banknoteauthentication_xgboost_binary
 IAM_ROLE default
 AUTO OFF
 MODEL_TYPE xgboost
 OBJECTIVE 'binary:logistic'
 PREPROCESSORS 'none'
 HYPERPARAMETERS DEFAULT

Tutorials for Amazon Redshift ML 687

Amazon Redshift Database Developer Guide

EXCEPT(NUM_ROUND '100')
SETTINGS(S3_BUCKET '<DOC-EXAMPLE-BUCKET>');

Show the status of model training (optional)

You can use the SHOW MODEL command to know when your model is ready.

Use the following query to monitor the progress of the model training.

SHOW MODEL model_banknoteauthentication_xgboost_binary;

If the model is READY, the SHOW MODEL operation also provides the train:error metric, as
shown in the following example of the output. The train:error metric is a measure of accuracy
of your model that measures to six decimal places. A value of 0 is most accurate and a value of 1 is
least accurate.

+--------------------------+--+
| Model Name | model_banknoteauthentication_xgboost_binary |
+--------------------------+--+
Schema Name	public
Owner	awsuser
Creation Time	Tue, 21.06.2022 19:07:35
Model State	READY
train:error	0.000000
Estimated Cost	0.006197
TRAINING DATA:	
Query	SELECT *
	FROM "BANKNOTEAUTHENTICATION_TRAIN"
Target Column	CLASS
PARAMETERS:	
Model Type	xgboost
Training Job Name	redshiftml-20220621190735686935-xgboost
Function Name	func_model_banknoteauthentication_xgboost_binary
Function Parameters	variance skewness curtosis entropy
Function Parameter Types	float8 float8 float8 float8
IAM Role	default-aws-iam-role
S3 Bucket	DOC-EXAMPLE-BUCKET
Max Runtime	5400
HYPERPARAMETERS:	

Tutorials for Amazon Redshift ML 688

Amazon Redshift Database Developer Guide

| num_round | 100 |
| objective | binary:logistic |
+--------------------------+--+

Step 3: Perform predictions with the model

Check the accuracy of the model

The following prediction query uses the prediction function created in the previous step to check
the accuracy of your model. Run this query on the testing set to make sure the model does not
correspond too closely to the training set. This close correspondence is also known as overfitting,
and overfitting could cause the model to make unreliable predictions.

WITH predict_data AS (
 SELECT
 class AS label,
 func_model_banknoteauthentication_xgboost_binary (variance, skewness, curtosis,
 entropy) AS predicted,
 CASE
 WHEN label IS NULL THEN 0
 ELSE label
 END AS actual,
 CASE
 WHEN actual = predicted THEN 1 :: INT
 ELSE 0 :: INT
 END AS correct
 FROM
 banknoteauthentication_test
),
aggr_data AS (
 SELECT
 SUM(correct) AS num_correct,
 COUNT(*) AS total
 FROM
 predict_data
)
SELECT
 (num_correct :: FLOAT / total :: FLOAT) AS accuracy
FROM
 aggr_data;

Tutorials for Amazon Redshift ML 689

Amazon Redshift Database Developer Guide

Predict the amount of original and counterfeit banknotes

The following prediction query returns the predicted amount of original and counterfeit banknotes
in the testing set.

WITH predict_data AS (
 SELECT
 func_model_banknoteauthentication_xgboost_binary(variance, skewness, curtosis,
 entropy) AS predicted
 FROM
 banknoteauthentication_test
)
SELECT
 CASE
 WHEN predicted = '0' THEN 'Original banknote'
 WHEN predicted = '1' THEN 'Counterfeit banknote'
 ELSE 'NA'
 END AS banknote_authentication,
 COUNT(1) AS count
FROM
 predict_data
GROUP BY
 1;

Find the average observation for an original and a counterfeit banknote

The following prediction query returns the average value of each feature for banknotes that are
predicted to be original and counterfeit in the testing set.

WITH predict_data AS (
 SELECT
 func_model_banknoteauthentication_xgboost_binary(variance, skewness, curtosis,
 entropy) AS predicted,
 variance,
 skewness,
 curtosis,
 entropy
 FROM
 banknoteauthentication_test
)
SELECT
 CASE
 WHEN predicted = '0' THEN 'Original banknote'

Tutorials for Amazon Redshift ML 690

Amazon Redshift Database Developer Guide

 WHEN predicted = '1' THEN 'Counterfeit banknote'
 ELSE 'NA'
 END AS banknote_authentication,
 TRUNC(AVG(variance), 2) AS avg_variance,
 TRUNC(AVG(skewness), 2) AS avg_skewness,
 TRUNC(AVG(curtosis), 2) AS avg_curtosis,
 TRUNC(AVG(entropy), 2) AS avg_entropy
FROM
 predict_data
GROUP BY
 1
ORDER BY
 2;

Related topics

For more information about Amazon Redshift ML, see the following documentation:

• Costs for using Amazon Redshift ML

• CREATE MODEL operation

• EXPLAIN_MODEL function

For more information about machine learning, see the following documentation:

• Machine learning overview

• Machine learning for novices and experts

• What Is Fairness and Model Explainability for Machine Learning Predictions?

Tutorial: Building regression models

In this tutorial, you use Amazon Redshift ML to create a machine learning regression model and run
prediction queries on the model. Regression models allow you to predict numerical outcomes, such
as the price of a house, or how many people will use a city’s bike rental service. You use the CREATE
MODEL command in Amazon Redshift with your training data. Then, Amazon Redshift ML compiles
the model, imports the trained model to Redshift, and prepares a SQL prediction function. You can
use the prediction function in SQL queries in Amazon Redshift.

In this tutorial, you will use Amazon Redshift ML to build a regression model that predicts the
number of people that use the city of Toronto’s bike sharing service at any given hour of a day.

Tutorials for Amazon Redshift ML 691

https://docs.aws.amazon.com/redshift/latest/dg/cost.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_MODEL.html
https://docs.aws.amazon.com/redshift/latest/dg/r_explain_model_function.html
https://docs.aws.amazon.com/redshift/latest/dg/machine_learning_overview.html
https://docs.aws.amazon.com/redshift/latest/dg/novice_expert.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html

Amazon Redshift Database Developer Guide

The inputs for the model include holidays and weather conditions. You will use a regression model,
because you want a numerical outcome for this problem.

You can use the CREATE MODEL command to export training data, train a model, and make the
model available in Amazon Redshift as a SQL function. Use the CREATE MODEL operation to
specify training data either as a table or a SELECT statement.

Use case examples

You can solve other regression problems with Amazon Redshift ML, such as predicting a customer’s
lifetime value. You could also use Redshift ML to predict the most profitable price and the resulting
revenue of a product.

Tasks

• Prerequisites

• Step 1: Load the data from Amazon S3 to Amazon Redshift

• Step 2: Create the machine learning model

• Step 3: Validate the model

Prerequisites

To complete this tutorial, you must complete the Administrative setup for Amazon Redshift ML.

Step 1: Load the data from Amazon S3 to Amazon Redshift

Use the Amazon Redshift query editor v2 to run the following queries.

1. You must create three tables to load the three public datasets into Amazon Redshift. The
datasets are Toronto Bike Ridership Data, historical weather data, and historical holidays
data. Run the following query in the Amazon Redshift query editor to create tables named
ridership, weather, and holiday.

CREATE TABLE IF NOT EXISTS ridership (
 trip_id INT,
 trip_duration_seconds INT,
 trip_start_time timestamp,
 trip_stop_time timestamp,
 from_station_name VARCHAR(50),
 to_station_name VARCHAR(50),
 from_station_id SMALLINT,

Tutorials for Amazon Redshift ML 692

https://docs.aws.amazon.com/redshift/latest/dg/admin-setup.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html
https://open.toronto.ca/dataset/bike-share-toronto-ridership-data/
https://climate.weather.gc.ca/historical_data/search_historic_data_e.html
https://github.com/uWaterloo/Datasets/blob/master/Holidays/holidays.csv
https://github.com/uWaterloo/Datasets/blob/master/Holidays/holidays.csv

Amazon Redshift Database Developer Guide

 to_station_id SMALLINT,
 user_type VARCHAR(20)
);

CREATE TABLE IF NOT EXISTS weather (
 longitude_x DECIMAL(5, 2),
 latitude_y DECIMAL(5, 2),
 station_name VARCHAR(20),
 climate_id BIGINT,
 datetime_utc TIMESTAMP,
 weather_year SMALLINT,
 weather_month SMALLINT,
 weather_day SMALLINT,
 time_utc VARCHAR(5),
 temp_c DECIMAL(5, 2),
 temp_flag VARCHAR(1),
 dew_point_temp_c DECIMAL(5, 2),
 dew_point_temp_flag VARCHAR(1),
 rel_hum SMALLINT,
 rel_hum_flag VARCHAR(1),
 precip_amount_mm DECIMAL(5, 2),
 precip_amount_flag VARCHAR(1),
 wind_dir_10s_deg VARCHAR(10),
 wind_dir_flag VARCHAR(1),
 wind_spd_kmh VARCHAR(10),
 wind_spd_flag VARCHAR(1),
 visibility_km VARCHAR(10),
 visibility_flag VARCHAR(1),
 stn_press_kpa DECIMAL(5, 2),
 stn_press_flag VARCHAR(1),
 hmdx SMALLINT,
 hmdx_flag VARCHAR(1),
 wind_chill VARCHAR(10),
 wind_chill_flag VARCHAR(1),
 weather VARCHAR(10)
);

CREATE TABLE IF NOT EXISTS holiday (holiday_date DATE, description VARCHAR(100));

2. The following query loads the sample data into the tables that you created in the previous step.

COPY ridership
FROM
 's3://redshift-ml-bikesharing-data/bike-sharing-data/ridership/'

Tutorials for Amazon Redshift ML 693

Amazon Redshift Database Developer Guide

 IAM_ROLE default
 FORMAT CSV
 IGNOREHEADER 1
 DATEFORMAT 'auto'
 TIMEFORMAT 'auto'
 REGION 'us-west-2'
 gzip;

COPY weather
FROM
 's3://redshift-ml-bikesharing-data/bike-sharing-data/weather/'
 IAM_ROLE default
 FORMAT csv
 IGNOREHEADER 1
 DATEFORMAT 'auto'
 TIMEFORMAT 'auto'
 REGION 'us-west-2'
 gzip;

COPY holiday
FROM
 's3://redshift-ml-bikesharing-data/bike-sharing-data/holiday/'
 IAM_ROLE default
 FORMAT csv
 IGNOREHEADER 1
 DATEFORMAT 'auto'
 TIMEFORMAT 'auto'
 REGION 'us-west-2'
 gzip;

3. The following query performs transformations on the ridership and weather datasets to
remove bias or anomalies. Removing bias and anomalies results in improved model accuracy.
The query simplifies the tables by creating two new views called ridership_view and
weather_view.

CREATE
OR REPLACE VIEW ridership_view AS
SELECT
 trip_time,
 trip_count,
 TO_CHAR(trip_time, 'hh24') :: INT trip_hour,
 TO_CHAR(trip_time, 'dd') :: INT trip_day,
 TO_CHAR(trip_time, 'mm') :: INT trip_month,

Tutorials for Amazon Redshift ML 694

Amazon Redshift Database Developer Guide

 TO_CHAR(trip_time, 'yy') :: INT trip_year,
 TO_CHAR(trip_time, 'q') :: INT trip_quarter,
 TO_CHAR(trip_time, 'w') :: INT trip_month_week,
 TO_CHAR(trip_time, 'd') :: INT trip_week_day
FROM
 (
 SELECT
 CASE
 WHEN TRUNC(r.trip_start_time) < '2017-07-01' :: DATE THEN
 CONVERT_TIMEZONE(
 'US/Eastern',
 DATE_TRUNC('hour', r.trip_start_time)
)
 ELSE DATE_TRUNC('hour', r.trip_start_time)
 END trip_time,
 COUNT(1) trip_count
 FROM
 ridership r
 WHERE
 r.trip_duration_seconds BETWEEN 60
 AND 60 * 60 * 24
 GROUP BY
 1
);

CREATE
OR REPLACE VIEW weather_view AS
SELECT
 CONVERT_TIMEZONE(
 'US/Eastern',
 DATE_TRUNC('hour', datetime_utc)
) daytime,
 ROUND(AVG(temp_c)) temp_c,
 ROUND(AVG(precip_amount_mm)) precip_amount_mm
FROM
 weather
GROUP BY
 1;

4. The following query creates a table that combines all the relevant input attributes from
ridership_view and weather_view into the trip_data table.

CREATE TABLE trip_data AS

Tutorials for Amazon Redshift ML 695

Amazon Redshift Database Developer Guide

SELECT
 r.trip_time,
 r.trip_count,
 r.trip_hour,
 r.trip_day,
 r.trip_month,
 r.trip_year,
 r.trip_quarter,
 r.trip_month_week,
 r.trip_week_day,
 w.temp_c,
 w.precip_amount_mm,CASE
 WHEN h.holiday_date IS NOT NULL THEN 1
 WHEN TO_CHAR(r.trip_time, 'D') :: INT IN (1, 7) THEN 1
 ELSE 0
 END is_holiday,
 ROW_NUMBER() OVER (
 ORDER BY
 RANDOM()
) serial_number
FROM
 ridership_view r
 JOIN weather_view w ON (r.trip_time = w.daytime)
 LEFT OUTER JOIN holiday h ON (TRUNC(r.trip_time) = h.holiday_date);

View the sample data (optional)

The following query shows entries from the table. You can run this operation to make sure the
table was made correctly.

SELECT *
FROM trip_data
LIMIT 5;

The following is an example of the output of the previous operation.

+---------------------+------------+-----------+----------+------------+-----------
+--------------+-----------------+---------------+--------+------------------
+------------+---------------+

Tutorials for Amazon Redshift ML 696

Amazon Redshift Database Developer Guide

| trip_time | trip_count | trip_hour | trip_day | trip_month | trip_year
 | trip_quarter | trip_month_week | trip_week_day | temp_c | precip_amount_mm |
 is_holiday | serial_number |
+---------------------+------------+-----------+----------+------------+-----------
+--------------+-----------------+---------------+--------+------------------
+------------+---------------+
| 2017-03-21 22:00:00 | 47 | 22 | 21 | 3 | 17 |
 1 | 3 | 3 | 1 | 0 | 0 |
 1 |
| 2018-05-04 01:00:00 | 19 | 1 | 4 | 5 | 18 |
 2 | 1 | 6 | 12 | 0 | 0 |
 3 |
| 2018-01-11 10:00:00 | 93 | 10 | 11 | 1 | 18 |
 1 | 2 | 5 | 9 | 0 | 0 |
 5 |
| 2017-10-28 04:00:00 | 20 | 4 | 28 | 10 | 17 |
 4 | 4 | 7 | 11 | 0 | 1 |
 7 |
| 2017-12-31 21:00:00 | 11 | 21 | 31 | 12 | 17 |
 4 | 5 | 1 | -15 | 0 | 1 |
 9 |
+---------------------+------------+-----------+----------+------------+-----------
+--------------+-----------------+---------------+--------+------------------
+------------+---------------+

Show the correlation between attributes (optional)

Determining correlation helps you measure the strength of association between attributes. The
level of association can help you determine what affects your target output. In this tutorial, the
target output is trip_count.

The following query creates or replaces the sp_correlation procedure. You use the stored
procedure called sp_correlation to show the correlation between an attribute and other
attributes in a table in Amazon Redshift.

CREATE OR REPLACE PROCEDURE sp_correlation(source_schema_name in varchar(255),
 source_table_name in varchar(255), target_column_name in varchar(255),
 output_temp_table_name inout varchar(255)) AS $$
DECLARE
 v_sql varchar(max);
 v_generated_sql varchar(max);
 v_source_schema_name varchar(255)=lower(source_schema_name);
 v_source_table_name varchar(255)=lower(source_table_name);

Tutorials for Amazon Redshift ML 697

Amazon Redshift Database Developer Guide

 v_target_column_name varchar(255)=lower(target_column_name);
BEGIN
 EXECUTE 'DROP TABLE IF EXISTS ' || output_temp_table_name;
 v_sql = '
SELECT
 ''CREATE temp table '|| output_temp_table_name||' AS SELECT ''|| outer_calculation||
 '' FROM (SELECT COUNT(1) number_of_items, SUM('||v_target_column_name||')
 sum_target, SUM(POW('||v_target_column_name||',2)) sum_square_target, POW(SUM('||
v_target_column_name||'),2) square_sum_target,''||
 inner_calculation||
 '' FROM (SELECT ''||
 column_name||
 '' FROM '||v_source_table_name||'))''
FROM
 (
 SELECT
 DISTINCT
 LISTAGG(outer_calculation,'','') OVER () outer_calculation
 ,LISTAGG(inner_calculation,'','') OVER () inner_calculation
 ,LISTAGG(column_name,'','') OVER () column_name
 FROM
 (
 SELECT
 CASE WHEN atttypid=16 THEN ''DECODE(''||column_name||'',true,1,0)'' ELSE
 column_name END column_name
 ,atttypid
 ,''CAST(DECODE(number_of_items * sum_square_''||rn||'' - square_sum_''||
rn||'',0,null,(number_of_items*sum_target_''||rn||'' - sum_target * sum_''||rn||
 '')/SQRT((number_of_items * sum_square_target - square_sum_target) *
 (number_of_items * sum_square_''||rn||
 '' - square_sum_''||rn||''))) AS numeric(5,2)) ''||column_name
 outer_calculation
 ,''sum(''||column_name||'') sum_''||rn||'',''||
 ''SUM(trip_count*''||column_name||'') sum_target_''||rn||'',''||
 ''SUM(POW(''||column_name||'',2)) sum_square_''||rn||'',''||
 ''POW(SUM(''||column_name||''),2) square_sum_''||rn inner_calculation
 FROM
 (
 SELECT
 row_number() OVER (order by a.attnum) rn
 ,a.attname::VARCHAR column_name
 ,a.atttypid
 FROM pg_namespace AS n
 INNER JOIN pg_class AS c ON n.oid = c.relnamespace

Tutorials for Amazon Redshift ML 698

Amazon Redshift Database Developer Guide

 INNER JOIN pg_attribute AS a ON c.oid = a.attrelid
 WHERE a.attnum > 0
 AND n.nspname = '''||v_source_schema_name||'''
 AND c.relname = '''||v_source_table_name||'''
 AND a.atttypid IN (16,20,21,23,700,701,1700)
)
)
)';
 EXECUTE v_sql INTO v_generated_sql;
 EXECUTE v_generated_sql;
END;
$$ LANGUAGE plpgsql;

The following query shows the correlation between the target column, trip_count, and other
numeric attributes in our dataset.

call sp_correlation(
 'public',
 'trip_data',
 'trip_count',
 'tmp_corr_table'
);

SELECT
 *
FROM
 tmp_corr_table;

The following example shows the output of the previous sp_correlation operation.

+------------+-----------+----------+------------+-----------+--------------
+-----------------+---------------+--------+------------------+------------
+---------------+
| trip_count | trip_hour | trip_day | trip_month | trip_year | trip_quarter
 | trip_month_week | trip_week_day | temp_c | precip_amount_mm | is_holiday |
 serial_number |
+------------+-----------+----------+------------+-----------+--------------
+-----------------+---------------+--------+------------------+------------
+---------------+
| 1 | 0.32 | 0.01 | 0.18 | 0.12 | 0.18 |
 0 | 0.02 | 0.53 | -0.07 | -0.13 | 0 |

Tutorials for Amazon Redshift ML 699

Amazon Redshift Database Developer Guide

+------------+-----------+----------+------------+-----------+--------------
+-----------------+---------------+--------+------------------+------------
+---------------+

Step 2: Create the machine learning model

1. The following query splits your data into a training set and a validation set by designating 80%
of the dataset for training and 20% for validation. The training set is the input for the ML model
to identify the best possible algorithm for the model. After the model is created, you use the
validation set to validate the model accuracy.

CREATE TABLE training_data AS
SELECT
 trip_count,
 trip_hour,
 trip_day,
 trip_month,
 trip_year,
 trip_quarter,
 trip_month_week,
 trip_week_day,
 temp_c,
 precip_amount_mm,
 is_holiday
FROM
 trip_data
WHERE
 serial_number > (
 SELECT
 COUNT(1) * 0.2
 FROM
 trip_data
);

CREATE TABLE validation_data AS
SELECT
 trip_count,
 trip_hour,
 trip_day,
 trip_month,
 trip_year,
 trip_quarter,
 trip_month_week,

Tutorials for Amazon Redshift ML 700

Amazon Redshift Database Developer Guide

 trip_week_day,
 temp_c,
 precip_amount_mm,
 is_holiday,
 trip_time
FROM
 trip_data
WHERE
 serial_number <= (
 SELECT
 COUNT(1) * 0.2
 FROM
 trip_data
);

2. The following query creates a regression model to predict the trip_count value for any input
date and time. In the following example, replace DOC-EXAMPLE-BUCKET with your own S3
bucket.

CREATE MODEL predict_rental_count
FROM
 training_data TARGET trip_count FUNCTION predict_rental_count
 IAM_ROLE default
 PROBLEM_TYPE regression
 OBJECTIVE 'mse'
 SETTINGS (
 s3_bucket '<DOC-EXAMPLE-BUCKET>',
 s3_garbage_collect off,
 max_runtime 5000
);

Step 3: Validate the model

1. Use the following query to output aspects of the model, and find the mean square error metric
in the output. Mean square error is a typical accuracy metric for regression problems.

show model predict_rental_count;

2. Run the following prediction queries against the validation data to compare the predicted trip
count to the actual trip count.

Tutorials for Amazon Redshift ML 701

Amazon Redshift Database Developer Guide

SELECT
 trip_time,
 actual_count,
 predicted_count,
 (actual_count - predicted_count) difference
FROM
 (
 SELECT
 trip_time,
 trip_count AS actual_count,
 PREDICT_RENTAL_COUNT (
 trip_hour,
 trip_day,
 trip_month,
 trip_year,
 trip_quarter,
 trip_month_week,
 trip_week_day,
 temp_c,
 precip_amount_mm,
 is_holiday
) predicted_count
 FROM
 validation_data
)
LIMIT
 5;

3. The following query calculates the mean square error and root mean square error based on your
validation data. You use mean square error and root mean square error to measure the distance
between the predicted numeric target and the actual numeric answer. A good model has a low
score in both metrics. The following query returns the value of both metrics.

SELECT
 ROUND(
 AVG(POWER((actual_count - predicted_count), 2)),
 2
) mse,
 ROUND(
 SQRT(AVG(POWER((actual_count - predicted_count), 2))),
 2
) rmse

Tutorials for Amazon Redshift ML 702

Amazon Redshift Database Developer Guide

FROM
 (
 SELECT
 trip_time,
 trip_count AS actual_count,
 PREDICT_RENTAL_COUNT (
 trip_hour,
 trip_day,
 trip_month,
 trip_year,
 trip_quarter,
 trip_month_week,
 trip_week_day,
 temp_c,
 precip_amount_mm,
 is_holiday
) predicted_count
 FROM
 validation_data
);

4. The following query calculates the percent error in trip count for each trip time on 2017-01-01.
The query orders the trip times from the time with the lowest percent error to the time with the
highest percent error.

SELECT
 trip_time,
 CAST(ABS(((actual_count - predicted_count) / actual_count)) * 100 AS DECIMAL
 (7,2)) AS pct_error
FROM
 (
 SELECT
 trip_time,
 trip_count AS actual_count,
 PREDICT_RENTAL_COUNT (
 trip_hour,
 trip_day,
 trip_month,
 trip_year,
 trip_quarter,
 trip_month_week,
 trip_week_day,
 temp_c,

Tutorials for Amazon Redshift ML 703

Amazon Redshift Database Developer Guide

 precip_amount_mm,
 is_holiday
) predicted_count
 FROM
 validation_data
)
WHERE
 trip_time LIKE '2017-01-01 %%:%%:%%'
ORDER BY
 2 ASC;

Related topics

For more information about Amazon Redshift ML, see the following documentation:

• Costs for using Amazon Redshift ML

• CREATE MODEL operation

• EXPLAIN_MODEL function

For more information about machine learning, see the following documentation:

• Machine learning overview

• Machine learning for novices and experts

• What Is Fairness and Model Explainability for Machine Learning Predictions?

Tutorial: Building regression models with linear learner

In this tutorial, you create a linear learner model with data from Amazon S3 and run prediction
queries with the model using Amazon Redshift ML. The SageMaker linear learner algorithm solves
either regression or multi-class classification problems. To learn more about regression and multi-
class classification problems, see Problem types for the machine learning paradigms in the Amazon
SageMaker Developer Guide. In this tutorial, you solve a regression problem. The linear learner
algorithm trains many models in parallel, and automatically determines the most optimized model.
You use the CREATE MODEL operation in Amazon Redshift, which creates your linear learner model
using SageMaker and sends a prediction function to Amazon Redshift. For more information about
the linear learner algorithm, see Linear Learner Algorithm in the Amazon SageMaker Developer
Guide.

Tutorials for Amazon Redshift ML 704

https://docs.aws.amazon.com/redshift/latest/dg/cost.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_MODEL.html
https://docs.aws.amazon.com/redshift/latest/dg/r_explain_model_function.html
https://docs.aws.amazon.com/redshift/latest/dg/machine_learning_overview.html
https://docs.aws.amazon.com/redshift/latest/dg/novice_expert.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-choose.html#basic-machine-learning-paradigms
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html

Amazon Redshift Database Developer Guide

You can use a CREATE MODEL command to export training data, train a model, import the model,
and prepare an Amazon Redshift prediction function. Use the CREATE MODEL operation to specify
training data either as a table or a SELECT statement.

Linear learner models optimize either continuous objectives or discrete objectives. Continuous
objectives are used for regression, while discrete variables are used for classification. Some
methods provide a solution for only continuous objectives, such as the regression method. The
linear learner algorithm provides an increase in speed over naive hyperparameter optimization
techniques, such as the Naive Bayes technique. A naive optimization technique assumes that each
input variable is independent. To use the linear learner algorithm, you must provide columns
representing the dimensions of the inputs, and rows representing the observations. For more
information about the linear learner algorithm, see the Linear Learner Algorithm in the Amazon
SageMaker Developer Guide.

In this tutorial, you build a linear learner model that predicts the age of abalone. You use the
CREATE MODEL command on the Abalone dataset to determine the relationship between the
physical measurements of abalone. Then, you use the model to determine the age of abalone.

Use case examples

You can solve other regression problems with linear learner and Amazon Redshift ML, such as
predicting the price of a house. You could also use Redshift ML to predict the number of people
who will use a city’s bike rental service.

Tasks

• Prerequisites

• Step 1: Load the data from Amazon S3 to Amazon Redshift

• Step 2: Create the machine learning model

• Step 3: Validate the model

Prerequisites

To complete this tutorial, you must complete the Administrative setup for Amazon Redshift ML.

Step 1: Load the data from Amazon S3 to Amazon Redshift

Use the Amazon Redshift query editor v2 to run the following queries. These queries load the
sample data into Redshift and divide the data into a training set and a validation set.

Tutorials for Amazon Redshift ML 705

https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html
http://archive.ics.uci.edu/ml/datasets/Abalone
https://docs.aws.amazon.com/redshift/latest/dg/admin-setup.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html

Amazon Redshift Database Developer Guide

1. The following query creates the abalone_dataset table.

CREATE TABLE abalone_dataset (
 id INT IDENTITY(1, 1),
 Sex CHAR(1),
 Length float,
 Diameter float,
 Height float,
 Whole float,
 Shucked float,
 Viscera float,
 Shell float,
 Rings integer
);

2. The following query copies the sample data from the Abalone dataset in Amazon S3 to the
abalone_dataset table you created previously in Amazon Redshift.

COPY abalone_dataset
FROM
 's3://redshift-ml-multiclass/abalone.csv' REGION 'us-east-1' IAM_ROLE default CSV
 IGNOREHEADER 1 NULL AS 'NULL';

3. By manually splitting the data, you will be able to verify the accuracy of the model by
allocating an additional prediction set. The following query splits the data into two sets. The
abalone_training table is for training and the abalone_validation table is for validation.

CREATE TABLE abalone_training as
SELECT
 *
FROM
 abalone_dataset
WHERE
 mod(id, 10) < 8;

CREATE TABLE abalone_validation as
SELECT
 *
FROM
 abalone_dataset
WHERE
 mod(id, 10) >= 8;

Tutorials for Amazon Redshift ML 706

http://archive.ics.uci.edu/ml/datasets/Abalone

Amazon Redshift Database Developer Guide

Step 2: Create the machine learning model

In this step, you use the CREATE MODEL statement to create your machine learning model with the
linear learner algorithm.

The following query creates the linear learner model with the CREATE MODEL operation using your
S3 bucket. Replace DOC-EXAMPLE-BUCKET with your own S3 bucket.

CREATE MODEL model_abalone_ring_prediction
FROM
 (
 SELECT
 Sex,
 Length,
 Diameter,
 Height,
 Whole,
 Shucked,
 Viscera,
 Shell,
 Rings AS target_label
 FROM
 abalone_training
) TARGET target_label FUNCTION f_abalone_ring_prediction IAM_ROLE default
 MODEL_TYPE LINEAR_LEARNER PROBLEM_TYPE REGRESSION OBJECTIVE 'MSE' SETTINGS (
 S3_BUCKET 'DOC-EXAMPLE-BUCKET',
 MAX_RUNTIME 15000
);

Show the status of model training (optional)

You can use the SHOW MODEL command to know when your model is ready.

Use the following query to monitor the progress of the model training.

SHOW MODEL model_abalone_ring_prediction;

When the model is ready, the output of the previous operation should look similar to the following
example. Note that the output provides the validation:mse metric, which is the mean square
error. You will use the mean square error to validate the accuracy of the model in the next step.

Tutorials for Amazon Redshift ML 707

Amazon Redshift Database Developer Guide

+--------------------------
+--
+
| Model Name |
 model_abalone_ring_prediction |
+--------------------------
+--
+
| Schema Name | public
 |
| Owner | awsuser
 |
| Creation Time | Thu, 30.06.2022 18:00:10
 |
| Model State | READY
 |
| validation:mse |
 4.168633 |
| Estimated Cost |
 4.291608 |
| |
 |
| TRAINING DATA: |
 |
| Query | SELECT SEX , LENGTH , DIAMETER , HEIGHT , WHOLE ,
 SHUCKED , VISCERA , SHELL, RINGS AS TARGET_LABEL |
| | FROM ABALONE_TRAINING
 |
| Target Column | TARGET_LABEL
 |
| |
 |
| PARAMETERS: |
 |
| Model Type | linear_learner
 |
| Problem Type | Regression
 |
| Objective | MSE
 |
| AutoML Job Name | redshiftml-20220630180010947843
 |

Tutorials for Amazon Redshift ML 708

Amazon Redshift Database Developer Guide

| Function Name | f_abalone_ring_prediction
 |
| Function Parameters | sex length diameter height whole shucked viscera shell
 |
| Function Parameter Types | bpchar float8 float8 float8 float8 float8 float8 float8
 |
| IAM Role | default-aws-iam-role
 |
| S3 Bucket | DOC-EXAMPLE-BUCKET
 |
| Max Runtime |
 15000 |
+--------------------------
+--
+

Step 3: Validate the model

1. The following prediction query validates the accuracy of the model on the
abalone_validation dataset by calculating mean square error and root mean square error.

SELECT
 ROUND(AVG(POWER((tgt_label - predicted), 2)), 2) mse,
 ROUND(SQRT(AVG(POWER((tgt_label - predicted), 2))), 2) rmse
FROM
 (
 SELECT
 Sex,
 Length,
 Diameter,
 Height,
 Whole,
 Shucked,
 Viscera,
 Shell,
 Rings AS tgt_label,
 f_abalone_ring_prediction(
 Sex,
 Length,
 Diameter,
 Height,
 Whole,
 Shucked,

Tutorials for Amazon Redshift ML 709

Amazon Redshift Database Developer Guide

 Viscera,
 Shell
) AS predicted,
 CASE
 WHEN tgt_label = predicted then 1
 ELSE 0
 END AS match,
 CASE
 WHEN tgt_label <> predicted then 1
 ELSE 0
 END AS nonmatch
 FROM
 abalone_validation
) t1;

The output of the previous query should look like the following example. The value of the mean
square error metric should be similar to the validation:mse metric shown by the SHOW
MODEL operation’s output.

+-----+--------------------+
| mse | rmse |
+-----+--------------------+
| 5.1 | 2.2600000000000002 |
+-----+--------------------+

2. Use the following query to run the EXPLAIN_MODEL operation on your prediction function.
The operation will return a model explainability report. For more information about the
EXPLAIN_MODEL operation, see the EXPLAIN_MODEL function in the Amazon Redshift Database
Developer Guide.

SELECT
 EXPLAIN_MODEL ('model_abalone_ring_prediction');

The following information is an example of the model explainability report produced by the
previous EXPLAIN_MODEL operation. The values for each of the inputs are Shapley values. The
Shapley values represent the effect each input has on the prediction of your model, with higher-
valued inputs having more impact on the prediction. In this example, the higher-valued inputs
have more impact on predicting the age of abalone.

{

Tutorials for Amazon Redshift ML 710

https://docs.aws.amazon.com/redshift/latest/dg/r_explain_model_function.html

Amazon Redshift Database Developer Guide

 "explanations": {
 "kernel_shap": {
 "label0": {
 "expected_value" :10.290688514709473,
 "global_shap_values": {
 "diameter" :0.6856910187882492,
 "height" :0.4415323937124035,
 "length" :0.21507476107609084,
 "sex" :0.448611774505744,
 "shell" :1.70426496893776,
 "shucked" :2.1181392924386994,
 "viscera" :0.342220754059912,
 "whole" :0.6711906974084011
 }
 }
 }
 },
 "version" :"1.0"
};

3. Use the following query to calculate the percentage of correct predictions that the model makes
about abalone that are not yet mature. Abalone that are immature have 10 rings or less, and a
correct prediction is accurate to within one ring of the actual number of rings.

SELECT
 TRUNC(
 SUM(
 CASE
 WHEN ROUND(
 f_abalone_ring_prediction(
 Sex,
 Length,
 Diameter,
 Height,
 Whole,
 Shucked,
 Viscera,
 Shell
),
 0
) BETWEEN Rings - 1
 AND Rings + 1 THEN 1
 ELSE 0

Tutorials for Amazon Redshift ML 711

Amazon Redshift Database Developer Guide

 END
) / CAST(COUNT(SHELL) AS FLOAT),
 4
) AS prediction_pct
FROM
 abalone_validation
WHERE
 Rings <= 10;

Related topics

For more information about Amazon Redshift ML, see the following documentation:

• Costs for using Amazon Redshift ML

• CREATE MODEL operation

• EXPLAIN_MODEL function

For more information about machine learning, see the following documentation:

• Machine learning overview

• Machine learning for novices and experts

• What Is Fairness and Model Explainability for Machine Learning Predictions?

Tutorial: Building multi-class classification models with linear learner

In this tutorial, you create a linear learner model with data from Amazon S3, and then run
prediction queries with the model using Amazon Redshift ML. The SageMaker linear learner
algorithm solves either regression or classification problems. To learn more about regression and
multi-class classification problems, see Problem types for the machine learning paradigms in the
Amazon SageMaker Developer Guide. In this tutorial, you solve a multi-class classification problem.
The linear learner algorithm trains many models in parallel, and automatically determines the
most optimized model. You use the CREATE MODEL operation in Amazon Redshift, which creates
your linear learner model using SageMaker and sends the prediction function to Amazon Redshift.
For more information about the linear learner algorithm, see the Linear Learner Algorithm in the
Amazon SageMaker Developer Guide.

Tutorials for Amazon Redshift ML 712

https://docs.aws.amazon.com/redshift/latest/dg/cost.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_MODEL.html
https://docs.aws.amazon.com/redshift/latest/dg/r_explain_model_function.html
https://docs.aws.amazon.com/redshift/latest/dg/machine_learning_overview.html
https://docs.aws.amazon.com/redshift/latest/dg/novice_expert.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html
https://docs.aws.amazon.com/sagemaker/latest/dg/algorithms-choose.html#basic-machine-learning-paradigms
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html

Amazon Redshift Database Developer Guide

You can use a CREATE MODEL command to export training data, train a model, import the model,
and prepare an Amazon Redshift prediction function. Use the CREATE MODEL operation to specify
training data either as a table or a SELECT statement.

Linear learner models optimize either continuous objectives or discrete objectives. Continuous
objectives are used for regression, while discrete variables are used for classification. Some
methods provide a solution for only continuous objectives, such as a regression method. The
linear learner algorithm provides an increase in speed over naive hyperparameter optimization
techniques, such as the Naive Bayes technique. A naive optimization technique assumes that each
input variable is independent. The linear learner algorithm trains many models in parallel and
selects the most optimized model. A similar algorithm is XGBoost, which combines estimates
from a set of simpler and weaker models to make predictions. To learn more about XGBoost, see
XGBoost algorithm in the Amazon SageMaker Developer Guide.

To use the linear learner algorithm, you must provide columns representing the dimensions of the
inputs, and rows representing the observations. For more information about the linear learner
algorithm, see the Linear Learner Algorithm in the Amazon SageMaker Developer Guide.

In this tutorial, you build a linear learner model that predicts the types of cover for a given area.
You use the CREATE MODEL command on the Covertype dataset from the UCI Machine Learning
Repository. Then, you use the prediction function created by the command to determine the
types of cover in a wilderness area. A forest cover type is usually a type of tree. The inputs that
Redshift ML will use to create the model include soil type, distance to roadways, and wilderness
area designation. For more information about the dataset, see the Covertype Dataset from the UCI
Machine Learning Repository.

Use case examples

You can solve other multi-class classification problems with linear learner with Amazon Redshift
ML, such as predicting the species of a plant from an image. You could also predict the quantity of
a product that a customer will purchase.

Tasks

• Prerequisites

• Step 1: Load the data from Amazon S3 to Amazon Redshift

• Step 2: Create the machine learning model

• Step 3: Validate the model

Tutorials for Amazon Redshift ML 713

https://docs.aws.amazon.com/sagemaker/latest/dg/xgboost.html
https://docs.aws.amazon.com/sagemaker/latest/dg/linear-learner.html
https://archive.ics.uci.edu/ml/datasets/covertype
https://archive.ics.uci.edu/ml/datasets/covertype

Amazon Redshift Database Developer Guide

Prerequisites

To complete this tutorial, you must complete the Administrative setup for Amazon Redshift ML.

Step 1: Load the data from Amazon S3 to Amazon Redshift

Use the Amazon Redshift query editor v2 to run the following queries. These queries load the
sample data into Redshift and divide the data into a training set and a validation set.

1. The following query creates the covertype_data table.

CREATE TABLE public.covertype_data (
 elevation bigint ENCODE az64,
 aspect bigint ENCODE az64,
 slope bigint ENCODE az64,
 horizontal_distance_to_hydrology bigint ENCODE az64,
 vertical_distance_to_hydrology bigint ENCODE az64,
 horizontal_distance_to_roadways bigint ENCODE az64,
 hillshade_9am bigint ENCODE az64,
 hillshade_noon bigint ENCODE az64,
 hillshade_3pm bigint ENCODE az64,
 horizontal_distance_to_fire_points bigint ENCODE az64,
 wilderness_area1 bigint ENCODE az64,
 wilderness_area2 bigint ENCODE az64,
 wilderness_area3 bigint ENCODE az64,
 wilderness_area4 bigint ENCODE az64,
 soil_type1 bigint ENCODE az64,
 soil_type2 bigint ENCODE az64,
 soil_type3 bigint ENCODE az64,
 soil_type4 bigint ENCODE az64,
 soil_type5 bigint ENCODE az64,
 soil_type6 bigint ENCODE az64,
 soil_type7 bigint ENCODE az64,
 soil_type8 bigint ENCODE az64,
 soil_type9 bigint ENCODE az64,
 soil_type10 bigint ENCODE az64,
 soil_type11 bigint ENCODE az64,
 soil_type12 bigint ENCODE az64,
 soil_type13 bigint ENCODE az64,
 soil_type14 bigint ENCODE az64,
 soil_type15 bigint ENCODE az64,
 soil_type16 bigint ENCODE az64,
 soil_type17 bigint ENCODE az64,
 soil_type18 bigint ENCODE az64,

Tutorials for Amazon Redshift ML 714

https://docs.aws.amazon.com/redshift/latest/dg/admin-setup.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html

Amazon Redshift Database Developer Guide

 soil_type19 bigint ENCODE az64,
 soil_type20 bigint ENCODE az64,
 soil_type21 bigint ENCODE az64,
 soil_type22 bigint ENCODE az64,
 soil_type23 bigint ENCODE az64,
 soil_type24 bigint ENCODE az64,
 soil_type25 bigint ENCODE az64,
 soil_type26 bigint ENCODE az64,
 soil_type27 bigint ENCODE az64,
 soil_type28 bigint ENCODE az64,
 soil_type29 bigint ENCODE az64,
 soil_type30 bigint ENCODE az64,
 soil_type31 bigint ENCODE az64,
 soil_type32 bigint ENCODE az64,
 soil_type33 bigint ENCODE az64,
 soil_type34 bigint ENCODE az64,
 soil_type35 bigint ENCODE az64,
 soil_type36 bigint ENCODE az64,
 soil_type37 bigint ENCODE az64,
 soil_type38 bigint ENCODE az64,
 soil_type39 bigint ENCODE az64,
 soil_type40 bigint ENCODE az64,
 cover_type bigint ENCODE az64
) DISTSTYLE AUTO;

2. The following query copies the sample data from the Covertype dataset in Amazon S3 to the
covertype_data table you created previously in Amazon Redshift.

COPY public.covertype_data
FROM
 's3://redshift-ml-multiclass/covtype.data.gz' IAM_ROLE DEFAULT gzip DELIMITER ','
 REGION 'us-east-1';

3. By manually splitting the data, you will be able to verify the accuracy of the model by
allocating an additional testing set. The following query splits the data into three sets. The
covertype_training table is for training, the covertype_validation table is for
validation, and the covertype_test table is for testing your model. You will use the training
set to train your model and the validation set to validate the model’s development. Then, you
use the testing set to test the performance of the model and see if the model is overfitting or
underfitting the dataset.

CREATE TABLE public.covertype_data_prep AS

Tutorials for Amazon Redshift ML 715

https://archive.ics.uci.edu/ml/datasets/covertype

Amazon Redshift Database Developer Guide

SELECT
 a.*,
 CAST (random() * 100 AS int) AS data_group_id
FROM
 public.covertype_data a;

--training dataset
 CREATE TABLE public.covertype_training as
SELECT
 *
FROM
 public.covertype_data_prep
WHERE
 data_group_id < 80;

--validation dataset
 CREATE TABLE public.covertype_validation AS
SELECT
 *
FROM
 public.covertype_data_prep
WHERE
 data_group_id BETWEEN 80
 AND 89;

--test dataset
 CREATE TABLE public.covertype_test AS
SELECT
 *
FROM
 public.covertype_data_prep
WHERE
 data_group_id > 89;

Step 2: Create the machine learning model

In this step, you use the CREATE MODEL statement to create your machine learning model with the
linear learner algorithm.

The following query creates the linear learner model with the CREATE MODEL operation using your
S3 bucket. Replace DOC-EXAMPLE-BUCKET with your own S3 bucket.

Tutorials for Amazon Redshift ML 716

Amazon Redshift Database Developer Guide

CREATE MODEL forest_cover_type_model
FROM
 (
 SELECT
 Elevation,
 Aspect,
 Slope,
 Horizontal_distance_to_hydrology,
 Vertical_distance_to_hydrology,
 Horizontal_distance_to_roadways,
 HIllshade_9am,
 Hillshade_noon,
 Hillshade_3pm,
 Horizontal_Distance_To_Fire_Points,
 Wilderness_Area1,
 Wilderness_Area2,
 Wilderness_Area3,
 Wilderness_Area4,
 soil_type1,
 Soil_Type2,
 Soil_Type3,
 Soil_Type4,
 Soil_Type5,
 Soil_Type6,
 Soil_Type7,
 Soil_Type8,
 Soil_Type9,
 Soil_Type10,
 Soil_Type11,
 Soil_Type12,
 Soil_Type13,
 Soil_Type14,
 Soil_Type15,
 Soil_Type16,
 Soil_Type17,
 Soil_Type18,
 Soil_Type19,
 Soil_Type20,
 Soil_Type21,
 Soil_Type22,
 Soil_Type23,
 Soil_Type24,
 Soil_Type25,

Tutorials for Amazon Redshift ML 717

Amazon Redshift Database Developer Guide

 Soil_Type26,
 Soil_Type27,
 Soil_Type28,
 Soil_Type29,
 Soil_Type30,
 Soil_Type31,
 Soil_Type32,
 Soil_Type33,
 Soil_Type34,
 Soil_Type36,
 Soil_Type37,
 Soil_Type38,
 Soil_Type39,
 Soil_Type40,
 Cover_type
 from
 public.covertype_training
) TARGET cover_type FUNCTION predict_cover_type IAM_ROLE default MODEL_TYPE
 LINEAR_LEARNER PROBLEM_TYPE MULTICLASS_CLASSIFICATION OBJECTIVE 'Accuracy' SETTINGS (
 S3_BUCKET '<DOC-EXAMPLE-BUCKET>',
 S3_GARBAGE_COLLECT OFF,
 MAX_RUNTIME 15000
);

Show the status of model training (optional)

You can use the SHOW MODEL command to know when your model is ready.

Use the following query to monitor the progress of the model training.

SHOW MODEL forest_cover_type_model;

When the model is ready, the output of the previous operation should look similar to the following
example. Note that the output provides the validation:multiclass_accuracy metric, which
you can view on the righthand side of the following example. Multi-class accuracy measures
the percentage of data points that are classified correctly by the model. You will use multi-class
accuracy to validate the accuracy of the model in the next step.

+--------------------------------
+--
+

Tutorials for Amazon Redshift ML 718

Amazon Redshift Database Developer Guide

| Key |

 Value

 |
+--------------------------------
+--
+
| Model Name | forest_cover_type_model

 |
| Schema Name | public

 |
| Owner | awsuser

 |

Tutorials for Amazon Redshift ML 719

Amazon Redshift Database Developer Guide

| Creation Time | Tue, 12.07.2022 20:24:32

 |
| Model State | READY

 |
| validation:multiclass_accuracy |

 0.724952 |
| Estimated Cost |

 5.341750 |
| |

Tutorials for Amazon Redshift ML 720

Amazon Redshift Database Developer Guide

 |
| TRAINING DATA: |

 |
| Query | SELECT ELEVATION, ASPECT, SLOPE,
 HORIZONTAL_DISTANCE_TO_HYDROLOGY, VERTICAL_DISTANCE_TO_HYDROLOGY,
 HORIZONTAL_DISTANCE_TO_ROADWAYS, HILLSHADE_9AM, HILLSHADE_NOON, HILLSHADE_3PM ,
 HORIZONTAL_DISTANCE_TO_FIRE_POINTS, WILDERNESS_AREA1, WILDERNESS_AREA2,
 WILDERNESS_AREA3, WILDERNESS_AREA4, SOIL_TYPE1, SOIL_TYPE2, SOIL_TYPE3, SOIL_TYPE4,
 SOIL_TYPE5, SOIL_TYPE6, SOIL_TYPE7, SOIL_TYPE8, SOIL_TYPE9, SOIL_TYPE10 , SOIL_TYPE11,
 SOIL_TYPE12 , SOIL_TYPE13 , SOIL_TYPE14, SOIL_TYPE15, SOIL_TYPE16, SOIL_TYPE17,
 SOIL_TYPE18, SOIL_TYPE19, SOIL_TYPE20, SOIL_TYPE21, SOIL_TYPE22, SOIL_TYPE23,
 SOIL_TYPE24, SOIL_TYPE25, SOIL_TYPE26, SOIL_TYPE27, SOIL_TYPE28, SOIL_TYPE29,
 SOIL_TYPE30, SOIL_TYPE31, SOIL_TYPE32, SOIL_TYPE33, SOIL_TYPE34, SOIL_TYPE36,
 SOIL_TYPE37, SOIL_TYPE38, SOIL_TYPE39, SOIL_TYPE40, COVER_TYPE |
| | FROM PUBLIC.COVERTYPE_TRAINING

 |
| Target Column | COVER_TYPE

Tutorials for Amazon Redshift ML 721

Amazon Redshift Database Developer Guide

 |
| |

 |
| PARAMETERS: |

 |
| Model Type | linear_learner

 |
| Problem Type | MulticlassClassification

 |

Tutorials for Amazon Redshift ML 722

Amazon Redshift Database Developer Guide

| Objective | Accuracy

 |
| AutoML Job Name | redshiftml-20220712202432187659

 |
| Function Name | predict_cover_type

 |
| Function Parameters | elevation aspect slope
 horizontal_distance_to_hydrology vertical_distance_to_hydrology
 horizontal_distance_to_roadways hillshade_9am hillshade_noon hillshade_3pm
 horizontal_distance_to_fire_points wilderness_area1 wilderness_area2 wilderness_area3
 wilderness_area4 soil_type1 soil_type2 soil_type3 soil_type4 soil_type5 soil_type6
 soil_type7 soil_type8 soil_type9 soil_type10 soil_type11 soil_type12 soil_type13
 soil_type14 soil_type15 soil_type16 soil_type17 soil_type18 soil_type19 soil_type20
 soil_type21 soil_type22 soil_type23 soil_type24 soil_type25 soil_type26 soil_type27
 soil_type28 soil_type29 soil_type30 soil_type31 soil_type32 soil_type33 soil_type34
 soil_type36 soil_type37 soil_type38 soil_type39 soil_type40
 |
| Function Parameter Types | int8 int8 int8 int8 int8 int8 int8 int8 int8 int8
 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8
 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8 int8

Tutorials for Amazon Redshift ML 723

Amazon Redshift Database Developer Guide

 int8 int8 int8 int8 int8 int8 int8 int8 int8

 |
| IAM Role | default-aws-iam-role

 |
| S3 Bucket | DOC-EXAMPLE-BUCKET

 |
| Max Runtime |

 15000 |
+--------------------------------
+--
+

Tutorials for Amazon Redshift ML 724

Amazon Redshift Database Developer Guide

Step 3: Validate the model

1. The following prediction query validates the accuracy of the model on the
covertype_validation dataset by calculating multi-class accuracy. Multi-class accuracy is the
percentage of the model’s predictions that are correct.

SELECT
 CAST(sum(t1.match) AS decimal(7, 2)) AS predicted_matches,
 CAST(sum(t1.nonmatch) AS decimal(7, 2)) AS predicted_non_matches,
 CAST(sum(t1.match + t1.nonmatch) AS decimal(7, 2)) AS total_predictions,
 predicted_matches / total_predictions AS pct_accuracy
FROM
 (
 SELECT
 Elevation,
 Aspect,
 Slope,
 Horizontal_distance_to_hydrology,
 Vertical_distance_to_hydrology,
 Horizontal_distance_to_roadways,
 HIllshade_9am,
 Hillshade_noon,
 Hillshade_3pm,
 Horizontal_Distance_To_Fire_Points,
 Wilderness_Area1,
 Wilderness_Area2,
 Wilderness_Area3,
 Wilderness_Area4,
 soil_type1,
 Soil_Type2,
 Soil_Type3,
 Soil_Type4,
 Soil_Type5,
 Soil_Type6,
 Soil_Type7,
 Soil_Type8,
 Soil_Type9,
 Soil_Type10,
 Soil_Type11,
 Soil_Type12,
 Soil_Type13,
 Soil_Type14,
 Soil_Type15,

Tutorials for Amazon Redshift ML 725

Amazon Redshift Database Developer Guide

 Soil_Type16,
 Soil_Type17,
 Soil_Type18,
 Soil_Type19,
 Soil_Type20,
 Soil_Type21,
 Soil_Type22,
 Soil_Type23,
 Soil_Type24,
 Soil_Type25,
 Soil_Type26,
 Soil_Type27,
 Soil_Type28,
 Soil_Type29,
 Soil_Type30,
 Soil_Type31,
 Soil_Type32,
 Soil_Type33,
 Soil_Type34,
 Soil_Type36,
 Soil_Type37,
 Soil_Type38,
 Soil_Type39,
 Soil_Type40,
 Cover_type AS actual_cover_type,
 predict_cover_type(
 Elevation,
 Aspect,
 Slope,
 Horizontal_distance_to_hydrology,
 Vertical_distance_to_hydrology,
 Horizontal_distance_to_roadways,
 HIllshade_9am,
 Hillshade_noon,
 Hillshade_3pm,
 Horizontal_Distance_To_Fire_Points,
 Wilderness_Area1,
 Wilderness_Area2,
 Wilderness_Area3,
 Wilderness_Area4,
 soil_type1,
 Soil_Type2,
 Soil_Type3,
 Soil_Type4,

Tutorials for Amazon Redshift ML 726

Amazon Redshift Database Developer Guide

 Soil_Type5,
 Soil_Type6,
 Soil_Type7,
 Soil_Type8,
 Soil_Type9,
 Soil_Type10,
 Soil_Type11,
 Soil_Type12,
 Soil_Type13,
 Soil_Type14,
 Soil_Type15,
 Soil_Type16,
 Soil_Type17,
 Soil_Type18,
 Soil_Type19,
 Soil_Type20,
 Soil_Type21,
 Soil_Type22,
 Soil_Type23,
 Soil_Type24,
 Soil_Type25,
 Soil_Type26,
 Soil_Type27,
 Soil_Type28,
 Soil_Type29,
 Soil_Type30,
 Soil_Type31,
 Soil_Type32,
 Soil_Type33,
 Soil_Type34,
 Soil_Type36,
 Soil_Type37,
 Soil_Type38,
 Soil_Type39,
 Soil_Type40
) AS predicted_cover_type,
 CASE
 WHEN actual_cover_type = predicted_cover_type THEN 1
 ELSE 0
 END AS match,
 CASE
 WHEN actual_cover_type <> predicted_cover_type THEN 1
 ELSE 0
 END AS nonmatch

Tutorials for Amazon Redshift ML 727

Amazon Redshift Database Developer Guide

 FROM
 public.covertype_validation
) t1;

The output of the previous query should look like the following example. The value of the multi-
class accuracy metric should be similar to the validation:multiclass_accuracy metric
shown by the SHOW MODEL operation’s output.

+-------------------+-----------------------+-------------------+--------------+
| predicted_matches | predicted_non_matches | total_predictions | pct_accuracy |
+-------------------+-----------------------+-------------------+--------------+
| 41211 | 16324 | 57535 | 0.71627704 |
+-------------------+-----------------------+-------------------+--------------+

2. The following query predicts the most common cover type for wilderness_area2. This
dataset includes four wilderness areas and seven cover types. A wilderness area can have
multiple cover types.

SELECT t1. predicted_cover_type, COUNT(*)
FROM
(
SELECT
 Elevation,
 Aspect,
 Slope,
 Horizontal_distance_to_hydrology,
 Vertical_distance_to_hydrology,
 Horizontal_distance_to_roadways,
 HIllshade_9am,
 Hillshade_noon,
 Hillshade_3pm ,
 Horizontal_Distance_To_Fire_Points,
 Wilderness_Area1,
 Wilderness_Area2,
 Wilderness_Area3,
 Wilderness_Area4,
 soil_type1,
 Soil_Type2,
 Soil_Type3,
 Soil_Type4,
 Soil_Type5,
 Soil_Type6,

Tutorials for Amazon Redshift ML 728

Amazon Redshift Database Developer Guide

 Soil_Type7,
 Soil_Type8,
 Soil_Type9,
 Soil_Type10 ,
 Soil_Type11,
 Soil_Type12 ,
 Soil_Type13 ,
 Soil_Type14,
 Soil_Type15,
 Soil_Type16,
 Soil_Type17,
 Soil_Type18,
 Soil_Type19,
 Soil_Type20,
 Soil_Type21,
 Soil_Type22,
 Soil_Type23,
 Soil_Type24,
 Soil_Type25,
 Soil_Type26,
 Soil_Type27,
 Soil_Type28,
 Soil_Type29,
 Soil_Type30,
 Soil_Type31,
 Soil_Type32,
 Soil_Type33,
 Soil_Type34,
 Soil_Type36,
 Soil_Type37,
 Soil_Type38,
 Soil_Type39,
 Soil_Type40,
 predict_cover_type(Elevation,
 Aspect,
 Slope,
 Horizontal_distance_to_hydrology,
 Vertical_distance_to_hydrology,
 Horizontal_distance_to_roadways,
 HIllshade_9am,
 Hillshade_noon,
 Hillshade_3pm ,
 Horizontal_Distance_To_Fire_Points,
 Wilderness_Area1,

Tutorials for Amazon Redshift ML 729

Amazon Redshift Database Developer Guide

 Wilderness_Area2,
 Wilderness_Area3,
 Wilderness_Area4,
 soil_type1,
 Soil_Type2,
 Soil_Type3,
 Soil_Type4,
 Soil_Type5,
 Soil_Type6,
 Soil_Type7,
 Soil_Type8,
 Soil_Type9,
 Soil_Type10,
 Soil_Type11,
 Soil_Type12,
 Soil_Type13,
 Soil_Type14,
 Soil_Type15,
 Soil_Type16,
 Soil_Type17,
 Soil_Type18,
 Soil_Type19,
 Soil_Type20,
 Soil_Type21,
 Soil_Type22,
 Soil_Type23,
 Soil_Type24,
 Soil_Type25,
 Soil_Type26,
 Soil_Type27,
 Soil_Type28,
 Soil_Type29,
 Soil_Type30,
 Soil_Type31,
 Soil_Type32,
 Soil_Type33,
 Soil_Type34,
 Soil_Type36,
 Soil_Type37,
 Soil_Type38,
 Soil_Type39,
 Soil_Type40) AS predicted_cover_type

FROM public.covertype_test

Tutorials for Amazon Redshift ML 730

Amazon Redshift Database Developer Guide

WHERE wilderness_area2 = 1)
t1
GROUP BY 1;

The output of the previous operation should look similar to the following example. This output
means that the model predicted that the majority of cover is cover type 1, and there is some
cover of cover types 2 and 7.

+----------------------+-------+
| predicted_cover_type | count |
+----------------------+-------+
2	564
7	97
1	2309
+----------------------+-------+

3. The following query shows the most common cover type in a single wilderness area. The query
displays the amount of that cover type and the cover type’s wilderness area.

SELECT t1. predicted_cover_type, COUNT(*), wilderness_area
FROM
(
SELECT
 Elevation,
 Aspect,
 Slope,
 Horizontal_distance_to_hydrology,
 Vertical_distance_to_hydrology,
 Horizontal_distance_to_roadways,
 HIllshade_9am,
 Hillshade_noon,
 Hillshade_3pm ,
 Horizontal_Distance_To_Fire_Points,
 Wilderness_Area1,
 Wilderness_Area2,
 Wilderness_Area3,
 Wilderness_Area4,
 soil_type1,
 Soil_Type2,
 Soil_Type3,
 Soil_Type4,
 Soil_Type5,

Tutorials for Amazon Redshift ML 731

Amazon Redshift Database Developer Guide

 Soil_Type6,
 Soil_Type7,
 Soil_Type8,
 Soil_Type9,
 Soil_Type10 ,
 Soil_Type11,
 Soil_Type12 ,
 Soil_Type13 ,
 Soil_Type14,
 Soil_Type15,
 Soil_Type16,
 Soil_Type17,
 Soil_Type18,
 Soil_Type19,
 Soil_Type20,
 Soil_Type21,
 Soil_Type22,
 Soil_Type23,
 Soil_Type24,
 Soil_Type25,
 Soil_Type26,
 Soil_Type27,
 Soil_Type28,
 Soil_Type29,
 Soil_Type30,
 Soil_Type31,
 Soil_Type32,
 Soil_Type33,
 Soil_Type34,
 Soil_Type36,
 Soil_Type37,
 Soil_Type38,
 Soil_Type39,
 Soil_Type40,
 predict_cover_type(Elevation,
 Aspect,
 Slope,
 Horizontal_distance_to_hydrology,
 Vertical_distance_to_hydrology,
 Horizontal_distance_to_roadways,
 HIllshade_9am,
 Hillshade_noon,
 Hillshade_3pm ,
 Horizontal_Distance_To_Fire_Points,

Tutorials for Amazon Redshift ML 732

Amazon Redshift Database Developer Guide

 Wilderness_Area1,
 Wilderness_Area2,
 Wilderness_Area3,
 Wilderness_Area4,
 soil_type1,
 Soil_Type2,
 Soil_Type3,
 Soil_Type4,
 Soil_Type5,
 Soil_Type6,
 Soil_Type7,
 Soil_Type8,
 Soil_Type9,
 Soil_Type10,
 Soil_Type11,
 Soil_Type12,
 Soil_Type13,
 Soil_Type14,
 Soil_Type15,
 Soil_Type16,
 Soil_Type17,
 Soil_Type18,
 Soil_Type19,
 Soil_Type20,
 Soil_Type21,
 Soil_Type22,
 Soil_Type23,
 Soil_Type24,
 Soil_Type25,
 Soil_Type26,
 Soil_Type27,
 Soil_Type28,
 Soil_Type29,
 Soil_Type30,
 Soil_Type31,
 Soil_Type32,
 Soil_Type33,
 Soil_Type34,
 Soil_Type36,
 Soil_Type37,
 Soil_Type38,
 Soil_Type39,
 Soil_Type40) AS predicted_cover_type,
 CASE WHEN Wilderness_Area1 = 1 THEN 1

Tutorials for Amazon Redshift ML 733

Amazon Redshift Database Developer Guide

 WHEN Wilderness_Area2 = 1 THEN 2
 WHEN Wilderness_Area3 = 1 THEN 3
 WHEN Wilderness_Area4 = 1 THEN 4
 ELSE 0
 END AS wilderness_area

FROM public.covertype_test)
t1
GROUP BY 1, 3
ORDER BY 2 DESC
LIMIT 1;

The output of the previous operation should look similar to the following example.

+----------------------+-------+-----------------+
| predicted_cover_type | count | wilderness_area |
+----------------------+-------+-----------------+
| 2 | 15738 | 1 |
+----------------------+-------+-----------------+

Related topics

For more information about Amazon Redshift ML, see the following documentation:

• Costs for using Amazon Redshift ML

• CREATE MODEL operation

• EXPLAIN_MODEL function

For more information about machine learning, see the following documentation:

• Machine learning overview

• Machine learning for novices and experts

• What Is Fairness and Model Explainability for Machine Learning Predictions?

Tutorials for Amazon Redshift ML 734

https://docs.aws.amazon.com/redshift/latest/dg/cost.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_MODEL.html
https://docs.aws.amazon.com/redshift/latest/dg/r_explain_model_function.html
https://docs.aws.amazon.com/redshift/latest/dg/machine_learning_overview.html
https://docs.aws.amazon.com/redshift/latest/dg/novice_expert.html
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-fairness-and-explainability.html

Amazon Redshift Database Developer Guide

Tuning query performance

Amazon Redshift uses queries based on structured query language (SQL) to interact with data and
objects in the system. Data manipulation language (DML) is the subset of SQL that you use to view,
add, change, and delete data. Data definition language (DDL) is the subset of SQL that you use to
add, change, and delete database objects such as tables and views.

Once your system is set up, you typically work with DML the most, especially the SELECT command
for retrieving and viewing data. To write effective data retrieval queries in Amazon Redshift,
become familiar with SELECT and apply the tips outlined in Amazon Redshift best practices for
designing tables to maximize query efficiency.

To understand how Amazon Redshift processes queries, use the Query processing and Analyzing
and improving queries sections. Then you can apply this information in combination with
diagnostic tools to identify and remove issues in query performance.

To identify and address some of the most common and most serious issues you are likely to
encounter with Amazon Redshift queries, use the Troubleshooting queries section.

Topics

• Query processing

• Analyzing and improving queries

• Troubleshooting queries

Query processing

Amazon Redshift routes a submitted SQL query through the parser and optimizer to develop a
query plan. The execution engine then translates the query plan into code and sends that code to
the compute nodes for execution.

Topics

• Query planning and execution workflow

• Query plan

• Reviewing query plan steps

• Factors affecting query performance

Query processing 735

Amazon Redshift Database Developer Guide

Query planning and execution workflow

The following illustration provides a high-level view of the query planning and execution workflow.

The query planning and execution workflow follow these steps:

1. The leader node receives the query and parses the SQL.

2. The parser produces an initial query tree that is a logical representation of the original query.
Amazon Redshift then inputs this query tree into the query optimizer.

3. The optimizer evaluates and if necessary rewrites the query to maximize its efficiency. This
process sometimes results in creating multiple related queries to replace a single one.

4. The optimizer generates a query plan (or several, if the previous step resulted in multiple
queries) for the execution with the best performance. The query plan specifies execution options
such as join types, join order, aggregation options, and data distribution requirements.

You can use the EXPLAIN command to view the query plan. The query plan is a fundamental
tool for analyzing and tuning complex queries. For more information, see Query plan.

5. The execution engine translates the query plan into steps, segments, and streams:

Step

Each step is an individual operation needed during query execution. Steps can be combined
to allow compute nodes to perform a query, join, or other database operation.

Query planning and execution workflow 736

Amazon Redshift Database Developer Guide

Segment

A combination of several steps that can be done by a single process, also the smallest
compilation unit executable by a compute node slice. A slice is the unit of parallel processing
in Amazon Redshift. The segments in a stream run in parallel.

Stream

A collection of segments to be parceled out over the available compute node slices.

The execution engine generates compiled code based on steps, segments, and streams.
Compiled code runs faster than interpreted code and uses less compute capacity. This compiled
code is then broadcast to the compute nodes.

Note

When benchmarking your queries, you should always compare the times for the second
execution of a query, because the first execution time includes the overhead of compiling
the code. For more information, see Factors affecting query performance.

6. The compute node slices run the query segments in parallel. As part of this process, Amazon
Redshift takes advantage of optimized network communication, memory, and disk management
to pass intermediate results from one query plan step to the next. This also helps to speed query
execution.

Steps 5 and 6 happen once for each stream. The engine creates the executable segments for one
stream and sends them to the compute nodes. When the segments of that stream are complete,
the engine generates the segments for the next stream. In this way, the engine can analyze what
happened in the prior stream (for example, whether operations were disk-based) to influence the
generation of segments in the next stream.

When the compute nodes are done, they return the query results to the leader node for final
processing. The leader node merges the data into a single result set and addresses any needed
sorting or aggregation. The leader node then returns the results to the client.

Query planning and execution workflow 737

Amazon Redshift Database Developer Guide

Note

The compute nodes might return some data to the leader node during query execution if
necessary. For example, if you have a subquery with a LIMIT clause, the limit is applied on
the leader node before data is redistributed across the cluster for further processing.

Query plan

You can use the query plan to get information on the individual operations required to run a query.
Before you work with a query plan, we recommend that you first understand how Amazon Redshift
handles processing queries and creating query plans. For more information, see Query planning
and execution workflow.

To create a query plan, run the EXPLAIN command followed by the actual query text. The query
plan gives you the following information:

• What operations the execution engine performs, reading the results from bottom to top.

• What type of step each operation performs.

• Which tables and columns are used in each operation.

• How much data is processed in each operation, in terms of number of rows and data width in
bytes.

• The relative cost of the operation. Cost is a measure that compares the relative execution times
of the steps within a plan. Cost does not provide any precise information about actual execution
times or memory consumption, nor does it provide a meaningful comparison between execution
plans. It does give you an indication of which operations in a query are consuming the most
resources.

The EXPLAIN command doesn't actually run the query. It only shows the plan that Amazon
Redshift runs if the query is run under current operating conditions. If you change the schema or
data for a table and run ANALYZE again to update the statistical metadata, the query plan might
be different.

The query plan output by EXPLAIN is a simplified, high-level view of query execution. It
doesn't illustrate the details of parallel query processing. To see detailed information, run the
query itself, and then get query summary information from the SVL_QUERY_SUMMARY or

Query plan 738

Amazon Redshift Database Developer Guide

SVL_QUERY_REPORT view. For more information about using these views, see Analyzing the query
summary.

The following example shows the EXPLAIN output for a simple GROUP BY query on the EVENT
table:

explain select eventname, count(*) from event group by eventname;

 QUERY PLAN

XN HashAggregate (cost=131.97..133.41 rows=576 width=17)
 -> XN Seq Scan on event (cost=0.00..87.98 rows=8798 width=17)

EXPLAIN returns the following metrics for each operation:

Cost

A relative value that is useful for comparing operations within a plan. Cost consists of two
decimal values separated by two periods, for example cost=131.97..133.41. The first value,
in this case 131.97, provides the relative cost of returning the first row for this operation. The
second value, in this case 133.41, provides the relative cost of completing the operation. The
costs in the query plan are cumulative as you read up the plan, so the HashAggregate cost in
this example (131.97..133.41) includes the cost of the Seq Scan below it (0.00..87.98).

Rows

The estimated number of rows to return. In this example, the scan is expected to return 8798
rows. The HashAggregate operator on its own is expected to return 576 rows (after duplicate
event names are discarded from the result set).

Note

The rows estimate is based on the available statistics generated by the ANALYZE
command. If ANALYZE has not been run recently, the estimate is less reliable.

Width

The estimated width of the average row, in bytes. In this example, the average row is expected
to be 17 bytes wide.

Query plan 739

Amazon Redshift Database Developer Guide

EXPLAIN operators

This section briefly describes the operators that you see most often in the EXPLAIN output. For a
complete list of operators, see EXPLAIN in the SQL Commands section.

Sequential scan operator

The sequential scan operator (Seq Scan) indicates a table scan. Seq Scan scans each column in the
table sequentially from beginning to end and evaluates query constraints (in the WHERE clause) for
every row.

Join operators

Amazon Redshift selects join operators based on the physical design of the tables being joined, the
location of the data required for the join, and the specific requirements of the query itself.

• Nested Loop

The least optimal join, a nested loop is used mainly for cross-joins (Cartesian products) and some
inequality joins.

• Hash Join and Hash

Typically faster than a nested loop join, a hash join and hash are used for inner joins and left and
right outer joins. These operators are used when joining tables where the join columns are not
both distribution keys and sort keys. The hash operator creates the hash table for the inner table
in the join; the hash join operator reads the outer table, hashes the joining column, and finds
matches in the inner hash table.

• Merge Join

Typically the fastest join, a merge join is used for inner joins and outer joins. The merge join is
not used for full joins. This operator is used when joining tables where the join columns are both
distribution keys and sort keys, and when less than 20 percent of the joining tables are unsorted.
It reads two sorted tables in order and finds the matching rows. To view the percent of unsorted
rows, query the SVV_TABLE_INFO system table.

• Spatial Join

Typically a fast join based on proximity of spatial data, used for GEOMETRY and GEOGRAPHY data
types.

Query plan 740

Amazon Redshift Database Developer Guide

Aggregate operators

The query plan uses the following operators in queries that involve aggregate functions and
GROUP BY operations.

• Aggregate

Operator for scalar aggregate functions such as AVG and SUM.

• HashAggregate

Operator for unsorted grouped aggregate functions.

• GroupAggregate

Operator for sorted grouped aggregate functions.

Sort operators

The query plan uses the following operators when queries have to sort or merge result sets.

• Sort

Evaluates the ORDER BY clause and other sort operations, such as sorts required by UNION
queries and joins, SELECT DISTINCT queries, and window functions.

• Merge

Produces final sorted results according to intermediate sorted results that derive from parallel
operations.

UNION, INTERSECT, and EXCEPT operators

The query plan uses the following operators for queries that involve set operations with UNION,
INTERSECT, and EXCEPT.

• Subquery

Used to run UNION queries.

• Hash Intersect Distinct

Used to run INTERSECT queries.

• SetOp Except

Query plan 741

Amazon Redshift Database Developer Guide

Used to run EXCEPT (or MINUS) queries.

Other operators

The following operators also appear frequently in EXPLAIN output for routine queries.

• Unique

Removes duplicates for SELECT DISTINCT queries and UNION queries.

• Limit

Processes the LIMIT clause.

• Window

Runs window functions.

• Result

Runs scalar functions that do not involve any table access.

• Subplan

Used for certain subqueries.

• Network

Sends intermediate results to the leader node for further processing.

• Materialize

Saves rows for input to nested loop joins and some merge joins.

Joins in EXPLAIN

The query optimizer uses different join types to retrieve table data, depending on the structure of
the query and the underlying tables. The EXPLAIN output references the join type, the tables used,
and the way the table data is distributed across the cluster to describe how the query is processed.

Join type examples

The following examples show the different join types that the query optimizer can use. The join
type used in the query plan depends on the physical design of the tables involved.

Query plan 742

Amazon Redshift Database Developer Guide

Example: Hash join two tables

The following query joins EVENT and CATEGORY on the CATID column. CATID is the distribution
and sort key for CATEGORY but not for EVENT. A hash join is performed with EVENT as the outer
table and CATEGORY as the inner table. Because CATEGORY is the smaller table, the planner
broadcasts a copy of it to the compute nodes during query processing by using DS_BCAST_INNER.
The join cost in this example accounts for most of the cumulative cost of the plan.

explain select * from category, event where category.catid=event.catid;

 QUERY PLAN

 XN Hash Join DS_BCAST_INNER (cost=0.14..6600286.07 rows=8798 width=84)
 Hash Cond: ("outer".catid = "inner".catid)
 -> XN Seq Scan on event (cost=0.00..87.98 rows=8798 width=35)
 -> XN Hash (cost=0.11..0.11 rows=11 width=49)
 -> XN Seq Scan on category (cost=0.00..0.11 rows=11 width=49)

Note

Aligned indents for operators in the EXPLAIN output sometimes indicate that those
operations do not depend on each other and can start in parallel. In the preceding example,
although the scan on the EVENT table and the hash operation are aligned, the EVENT scan
must wait until the hash operation has fully completed.

Example: Merge join two tables

The following query also uses SELECT *, but it joins SALES and LISTING on the LISTID column,
where LISTID has been set as both the distribution and sort key for both tables. A merge join is
chosen, and no redistribution of data is required for the join (DS_DIST_NONE).

explain select * from sales, listing where sales.listid = listing.listid;
QUERY PLAN

XN Merge Join DS_DIST_NONE (cost=0.00..6285.93 rows=172456 width=97)
 Merge Cond: ("outer".listid = "inner".listid)
 -> XN Seq Scan on listing (cost=0.00..1924.97 rows=192497 width=44)
 -> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=53)

Query plan 743

Amazon Redshift Database Developer Guide

The following example demonstrates the different types of joins within the same query. As in the
previous example, SALES and LISTING are merge joined, but the third table, EVENT, must be hash
joined with the results of the merge join. Again, the hash join incurs a broadcast cost.

explain select * from sales, listing, event
where sales.listid = listing.listid and sales.eventid = event.eventid;
 QUERY PLAN
--
XN Hash Join DS_BCAST_INNER (cost=109.98..3871130276.17 rows=172456 width=132)
 Hash Cond: ("outer".eventid = "inner".eventid)
 -> XN Merge Join DS_DIST_NONE (cost=0.00..6285.93 rows=172456 width=97)
 Merge Cond: ("outer".listid = "inner".listid)
 -> XN Seq Scan on listing (cost=0.00..1924.97 rows=192497 width=44)
 -> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=53)
 -> XN Hash (cost=87.98..87.98 rows=8798 width=35)
 -> XN Seq Scan on event (cost=0.00..87.98 rows=8798 width=35)

Example: Join, aggregate, and sort

The following query runs a hash join of the SALES and EVENT tables, followed by aggregation and
sort operations to account for the grouped SUM function and the ORDER BY clause. The initial sort
operator runs in parallel on the compute nodes. Then the Network operator sends the results to
the leader node, where the Merge operator produces the final sorted results.

explain select eventname, sum(pricepaid) from sales, event
where sales.eventid=event.eventid group by eventname
order by 2 desc;
 QUERY PLAN

 XN Merge (cost=1002815366604.92..1002815366606.36 rows=576 width=27)
 Merge Key: sum(sales.pricepaid)
 -> XN Network (cost=1002815366604.92..1002815366606.36 rows=576 width=27)
 Send to leader
 -> XN Sort (cost=1002815366604.92..1002815366606.36 rows=576 width=27)
 Sort Key: sum(sales.pricepaid)
 -> XN HashAggregate (cost=2815366577.07..2815366578.51 rows=576
 width=27)
 -> XN Hash Join DS_BCAST_INNER (cost=109.98..2815365714.80
 rows=172456 width=27)
 Hash Cond: ("outer".eventid = "inner".eventid)
 -> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456
 width=14)

Query plan 744

Amazon Redshift Database Developer Guide

 -> XN Hash (cost=87.98..87.98 rows=8798 width=21)
 -> XN Seq Scan on event (cost=0.00..87.98 rows=8798
 width=21)

Data redistribution

The EXPLAIN output for joins also specifies a method for how data is moved around a cluster
to facilitate the join. This data movement can be either a broadcast or a redistribution. In a
broadcast, the data values from one side of a join are copied from each compute node to every
other compute node, so that every compute node ends up with a complete copy of the data. In a
redistribution, participating data values are sent from their current slice to a new slice (possibly on
a different node). Data is typically redistributed to match the distribution key of the other table
participating in the join if that distribution key is one of the joining columns. If neither of the tables
has distribution keys on one of the joining columns, either both tables are distributed or the inner
table is broadcast to every node.

The EXPLAIN output also references inner and outer tables. The inner table is scanned first,
and appears nearer the bottom of the query plan. The inner table is the table that is probed for
matches. It is usually held in memory, is usually the source table for hashing, and if possible, is
the smaller table of the two being joined. The outer table is the source of rows to match against
the inner table. It is usually read from disk. The query optimizer chooses the inner and outer table
based on database statistics from the latest run of the ANALYZE command. The order of tables in
the FROM clause of a query doesn't determine which table is inner and which is outer.

Use the following attributes in query plans to identify how data is moved to facilitate a query:

• DS_BCAST_INNER

A copy of the entire inner table is broadcast to all compute nodes.

• DS_DIST_ALL_NONE

No redistribution is required, because the inner table has already been distributed to every node
using DISTSTYLE ALL.

• DS_DIST_NONE

No tables are redistributed. Collocated joins are possible because corresponding slices are joined
without moving data between nodes.

• DS_DIST_INNER

Query plan 745

Amazon Redshift Database Developer Guide

The inner table is redistributed.

• DS_DIST_OUTER

The outer table is redistributed.

• DS_DIST_ALL_INNER

The entire inner table is redistributed to a single slice because the outer table uses DISTSTYLE
ALL.

• DS_DIST_BOTH

Both tables are redistributed.

Reviewing query plan steps

You can see the steps in a query plan by running the EXPLAIN command. The following example
shows an SQL query and explains the output. Reading the query plan from the bottom up, you
can see each of the logical operations used to perform the query. For more information, see Query
plan.

explain
select eventname, sum(pricepaid) from sales, event
where sales.eventid = event.eventid
group by eventname
order by 2 desc;

XN Merge (cost=1002815366604.92..1002815366606.36 rows=576 width=27)
 Merge Key: sum(sales.pricepaid)
 -> XN Network (cost=1002815366604.92..1002815366606.36 rows=576 width=27)
 Send to leader
 -> XN Sort (cost=1002815366604.92..1002815366606.36 rows=576 width=27)
 Sort Key: sum(sales.pricepaid)
 -> XN HashAggregate (cost=2815366577.07..2815366578.51 rows=576
 width=27)
 -> XN Hash Join DS_BCAST_INNER (cost=109.98..2815365714.80
 rows=172456 width=27)
 Hash Cond: ("outer".eventid = "inner".eventid)
 -> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456
 width=14)
 -> XN Hash (cost=87.98..87.98 rows=8798 width=21)

Reviewing query plan steps 746

Amazon Redshift Database Developer Guide

 -> XN Seq Scan on event (cost=0.00..87.98 rows=8798
 width=21)

As part of generating a query plan, the query optimizer breaks down the plan into streams,
segments, and steps. The query optimizer breaks the plan down to prepare for distributing the
data and query workload to the compute nodes. For more information about streams, segments,
and steps, see Query planning and execution workflow.

The following illustration shows the preceding query and associated query plan. It displays how the
query operations involved map to steps that Amazon Redshift uses to generate compiled code for
the compute node slices. Each query plan operation maps to multiple steps within the segments,
and sometimes to multiple segments within the streams.

In this illustration, the query optimizer runs the query plan as follows:

Reviewing query plan steps 747

Amazon Redshift Database Developer Guide

1. In Stream 0, the query runs Segment 0 with a sequential scan operation to scan the events
table. The query continues to Segment 1 with a hash operation to create the hash table for the
inner table in the join.

2. In Stream 1, the query runs Segment 2 with a sequential scan operation to scan the sales
table. It continues with Segment 2 with a hash join to join tables where the join columns
are not both distribution keys and sort keys. It again continues with Segment 2 with a hash
aggregate to aggregate results. Then the query runs Segment 3 with a hash aggregate
operation to perform unsorted grouped aggregate functions, and a sort operation to evaluate
the ORDER BY clause and other sort operations.

3. In Stream 2, the query runs a network operation in Segment 4 and Segment 5 to send
intermediate results to the leader node for further processing.

The last segment of a query returns the data. If the return set is aggregated or sorted, the compute
nodes each send their piece of the intermediate result to the leader node. The leader node then
merges the data so the final result can be sent back to the requesting client.

For more information about EXPLAIN operators, see EXPLAIN.

Factors affecting query performance

A number of factors can affect query performance. The following aspects of your data, cluster, and
database operations all play a part in how quickly your queries process.

• Number of nodes, processors, or slices – A compute node is partitioned into slices. More nodes
means more processors and more slices, which enables your queries to process faster by running
portions of the query concurrently across the slices. However, more nodes also means greater
expense, so you need to find the balance of cost and performance that is appropriate for your
system. For more information on Amazon Redshift cluster architecture, see Data warehouse
system architecture.

• Node types – An Amazon Redshift cluster can use one of several node types. Each node type
offers different sizes and limits to help you scale your cluster appropriately. The node size
determines the storage capacity, memory, CPU, and price of each node in the cluster. For more
information about node types, see Overview of Amazon Redshift clusters in the Amazon Redshift
Management Guide.

• Data distribution – Amazon Redshift stores table data on the compute nodes according to a
table's distribution style. When you run a query, the query optimizer redistributes the data to the
compute nodes as needed to perform any joins and aggregations. Choosing the right distribution

Factors affecting query performance 748

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#working-with-clusters-overview

Amazon Redshift Database Developer Guide

style for a table helps minimize the impact of the redistribution step by locating the data where
it needs to be before the joins are performed. For more information, see Working with data
distribution styles.

• Data sort order – Amazon Redshift stores table data on disk in sorted order according to a
table’s sort keys. The query optimizer and the query processor use the information about where
the data is located to reduce the number of blocks that need to be scanned and thereby improve
query speed. For more information, see Working with sort keys.

• Dataset size – A higher volume of data in the cluster can slow query performance for queries,
because more rows need to be scanned and redistributed. You can mitigate this effect by regular
vacuuming and archiving of data, and by using a predicate to restrict the query dataset.

• Concurrent operations – Running multiple operations at once can affect query performance.
Each operation takes one or more slots in an available query queue and uses the memory
associated with those slots. If other operations are running, enough query queue slots might not
be available. In this case, the query has to wait for slots to open before it can begin processing.
For more information about creating and configuring query queues, see Implementing workload
management.

• Query structure – How your query is written affects its performance. As much as possible, write
queries to process and return as little data as meets your needs. For more information, see
Amazon Redshift best practices for designing queries.

• Code compilation – Amazon Redshift generates and compiles code for each query execution
plan.

The compiled code runs faster because it removes the overhead of using an interpreter. You
generally have some overhead cost the first time code is generated and compiled. As a result, the
performance of a query the first time you run it can be misleading. The overhead cost might be
especially noticeable when you run one-off queries. Run the query a second time to determine
its typical performance. Amazon Redshift uses a serverless compilation service to scale query
compilations beyond the compute resources of an Amazon Redshift cluster. The compiled code
segments are cached locally on the cluster and in a virtually unlimited cache. This cache persists
after cluster reboots. Subsequent executions of the same query run faster because they can skip
the compilation phase.

The cache is not compatible across Amazon Redshift versions, so the compilation cache is flushed
and the code is recompiled when queries run after a version upgrade. If your queries have strict
SLAs, we recommend you pre-run query segments that scan data from cluster tables. This lets
Amazon Redshift cache the base table data, reducing the planning time for queries after a

Factors affecting query performance 749

Amazon Redshift Database Developer Guide

version upgrade. By using a scalable compilation service, Amazon Redshift can compile code in
parallel to provide consistently fast performance. The magnitude of workload speed-up depends
on the complexity and concurrency of queries.

Analyzing and improving queries

Retrieving information from an Amazon Redshift data warehouse involves running complex queries
on extremely large amounts of data, which can take a long time to process. To make sure that
queries process as quickly as possible, there are a number of tools you can use to identify potential
performance issues.

Topics

• Query analysis workflow

• Reviewing query alerts

• Analyzing the query plan

• Analyzing the query summary

• Improving query performance

• Diagnostic queries for query tuning

Query analysis workflow

If a query is taking longer than expected, use the following steps to identify and correct issues
that might be negatively affecting the query’s performance. If you aren’t sure what queries in
your system might benefit from performance tuning, start by running the diagnostic query in
Identifying queries that are top candidates for tuning.

1. Make sure that your tables are designed according to best practices. For more information, see
Amazon Redshift best practices for designing tables.

2. See if you can delete or archive any unneeded data in your tables. For example, suppose your
queries always target the last 6 months’ worth of data but you have the last 18 months’ worth
in your tables. In this case, you can delete or archive the older data to reduce the number of
records that must be scanned and distributed.

3. Run the VACUUM command on the tables in the query to reclaim space and re-sort rows.
Running VACUUM helps if the unsorted region is large and the query uses the sort key in a join
or in the predicate.

Analyzing and improving queries 750

Amazon Redshift Database Developer Guide

4. Run the ANALYZE command on the tables in the query to make sure that statistics are up to
date. Running ANALYZE helps if any of the tables in the query have recently changed a lot in
size. If running a full ANALYZE command will take too long, run ANALYZE on a single column
to reduce processing time. This approach still updates the table size statistics; table size is a
significant factor in query planning.

5. Make sure that your query has been run once for each type of client (based on what type of
connection protocol the client uses) so that the query is compiled and cached. This approach
speeds up subsequent runs of the query. For more information, see Factors affecting query
performance.

6. Check the STL_ALERT_EVENT_LOG table to identify and correct possible issues with your query.
For more information, see Reviewing query alerts.

7. Run the EXPLAIN command to get the query plan and use it to optimize the query. For more
information, see Analyzing the query plan.

8. Use the SVL_QUERY_SUMMARY and SVL_QUERY_REPORT views to get summary information
and use it to optimize the query. For more information, see Analyzing the query summary.

Sometimes a query that should run quickly is forced to wait until another, longer-running query
finishes. In that case, you might have nothing to improve in the query itself, but you can improve
overall system performance by creating and using query queues for different types of queries. To
get an idea of queue wait time for your queries, see Reviewing queue wait times for queries. For
more information about configuring query queues, see Implementing workload management.

Reviewing query alerts

To use the STL_ALERT_EVENT_LOG system table to identify and correct potential performance
issues with your query, follow these steps:

1. Run the following to determine your query ID:

select query, elapsed, substring
from svl_qlog
order by query
desc limit 5;

Examine the truncated query text in the substring field to determine which query value to
select. If you have run the query more than once, use the query value from the row with the
lower elapsed value. That is the row for the compiled version. If you have been running many

Reviewing query alerts 751

Amazon Redshift Database Developer Guide

queries, you can raise the value used by the LIMIT clause used to make sure that your query is
included.

2. Select rows from STL_ALERT_EVENT_LOG for your query:

Select * from stl_alert_event_log where query = MyQueryID;

3. Evaluate the results for your query. Use the following table to locate potential solutions for any
issues that you have identified.

Note

Not all queries have rows in STL_ALERT_EVENT_LOG, only those with identified issues.

Issue Event value Solution value Recommended
solution

Statistics for the tables in the query
are missing or out of date.

Missing query
planner statistic
s

Run the
ANALYZE
command

See Table
statistics
missing or out
of date.

There is a nested loop join (the
least optimal join) in the query
plan.

Nested Loop
Join in the
query plan

Review the join
predicates to
avoid Cartesian
 products

See Nested
loop.

The scan skipped a relatively large
number of rows that are marked
as deleted but not vacuumed, or

Scanned a large
number of
deleted rows

Run the
VACUUM
command to

See Ghost rows
or uncommitted
rows.

Reviewing query alerts 752

Amazon Redshift Database Developer Guide

Issue Event value Solution value Recommended
solution

rows that have been inserted but
not committed.

reclaim deleted
space

More than 1,000,000 rows were
redistributed for a hash join or
aggregation.

Distributed a
large number
of rows across
the network:R
owCount rows
were distribut
ed in order to
process the
aggregation

Review the
choice of
distribution key
to collocate
 the join or
aggregation

See Suboptima
l data distribut
ion.

More than 1,000,000 rows were
broadcast for a hash join.

Broadcasted a
large number of
rows across the
network

Review the
choice of
distribution key
to collocate
 the join and
consider using
distributed
tables

See Suboptima
l data distribut
ion.

A DS_DIST_ALL_INNER redistrib
ution style was indicated in the
query plan, which forces serial
execution because the entire inner
table was redistributed to a single
node.

DS_DIST_A
LL_INNER for
Hash Join in the
query plan

Review the
choice of
distribution
strategy to
distribute the
inner, rather
than outer,
table

See Suboptima
l data distribut
ion.

Reviewing query alerts 753

Amazon Redshift Database Developer Guide

Analyzing the query plan

Before analyzing the query plan, you should be familiar with how to read it. If you are unfamiliar
with reading a query plan, we recommend that you read Query plan before proceeding.

Run the EXPLAIN command to get a query plan. To analyze the data provided by the query plan,
follow these steps:

1. Identify the steps with the highest cost. Concentrate on optimizing those when proceeding
through the remaining steps.

2. Look at the join types:

• Nested Loop: Such joins usually occur because a join condition was omitted. For
recommended solutions, see Nested loop.

• Hash and Hash Join: Hash joins are used when joining tables where the join columns are not
distribution keys and also not sort keys. For recommended solutions, see Hash join.

• Merge Join: No change is needed.

3. Notice which table is used for the inner join, and which for the outer join. The query engine
generally chooses the smaller table for the inner join, and the larger table for the outer join. If
such a choice doesn't occur, your statistics are likely out of date. For recommended solutions, see
Table statistics missing or out of date.

4. See if there are any high-cost sort operations. If there are, see Unsorted or missorted rows for
recommended solutions.

5. Look for the following broadcast operators where there are high-cost operations:

• DS_BCAST_INNER: Indicates that the table is broadcast to all the compute nodes. This is fine
for a small table, but not ideal for a larger table.

• DS_DIST_ALL_INNER: Indicates that all of the workload is on a single slice.

• DS_DIST_BOTH: Indicates heavy redistribution.

For recommended solutions for these situations, see Suboptimal data distribution.

Analyzing the query summary

To get execution steps and statistics in more detail than in the query plan that EXPLAIN produces,
use the SVL_QUERY_SUMMARY and SVL_QUERY_REPORT system views.

Analyzing the query plan 754

Amazon Redshift Database Developer Guide

SVL_QUERY_SUMMARY provides query statistics by stream. You can use the information it provides
to identify issues with expensive steps, long-running steps, and steps that write to disk.

The SVL_QUERY_REPORT system view enables you to see information similar to that for
SVL_QUERY_SUMMARY, only by compute node slice rather than by stream. You can use the slice-
level information for detecting uneven data distribution across the cluster (also known as data
distribution skew), which forces some nodes to do more work than others and impairs query
performance.

Topics

• Using the SVL_QUERY_SUMMARY view

• Using the SVL_QUERY_REPORT view

• Mapping the query plan to the query summary

Using the SVL_QUERY_SUMMARY view

To analyze query summary information by stream, do the following:

1. Run the following query to determine your query ID:

select query, elapsed, substring
from svl_qlog
order by query
desc limit 5;

Examine the truncated query text in the substring field to determine which query value
represents your query. If you have run the query more than once, use the query value from the
row with the lower elapsed value. That is the row for the compiled version. If you have been
running many queries, you can raise the value used by the LIMIT clause used to make sure that
your query is included.

2. Select rows from SVL_QUERY_SUMMARY for your query. Order the results by stream, segment,
and step:

select * from svl_query_summary where query = MyQueryID order by stm, seg, step;

Analyzing the query summary 755

Amazon Redshift Database Developer Guide

3. Map the steps to the operations in the query plan using the information in Mapping the query
plan to the query summary. They should have approximately the same values for rows and bytes
(rows * width from the query plan). If they don’t, see Table statistics missing or out of date for
recommended solutions.

4. See if the is_diskbased field has a value of t (true) for any step. Hashes, aggregates, and sorts
are the operators that are likely to write data to disk if the system doesn't have enough memory
allocated for query processing.

If is_diskbased is true, see Insufficient memory allocated to the query for recommended
solutions.

5. Review the label field values and see if there is an AGG-DIST-AGG sequence anywhere in the
steps. Its presence indicates two-step aggregation, which is expensive. To fix this, change the
GROUP BY clause to use the distribution key (the first key, if there are multiple ones).

6. Review the maxtime value for each segment (it is the same across all steps in the segment).
Identify the segment with the highest maxtime value and review the steps in this segment for
the following operators.

Note

A high maxtime value doesn't necessarily indicate a problem with the segment. Despite
a high value, the segment might not have taken a long time to process. All segments
in a stream start getting timed in unison. However, some downstream segments might
not be able to run until they get data from upstream ones. This effect might make them
seem to have taken a long time because their maxtime value includes both their waiting
time and their processing time.

• BCAST or DIST: In these cases, the high maxtime value might be the result of redistributing a
large number of rows. For recommended solutions, see Suboptimal data distribution.

Analyzing the query summary 756

Amazon Redshift Database Developer Guide

• HJOIN (hash join): If the step in question has a very high value in the rows field compared
to the rows value in the final RETURN step in the query, see Hash join for recommended
solutions.

• SCAN/SORT: Look for a SCAN, SORT, SCAN, MERGE sequence of steps just before a join step.
This pattern indicates that unsorted data is being scanned, sorted, and then merged with the
sorted area of the table.

See if the rows value for the SCAN step has a very high value compared to the rows value
in the final RETURN step in the query. This pattern indicates that the execution engine is
scanning rows that are later discarded, which is inefficient. For recommended solutions, see
Insufficiently restrictive predicate.

If the maxtime value for the SCAN step is high, see Suboptimal WHERE clause for
recommended solutions.

If the rows value for the SORT step is not zero, see Unsorted or missorted rows for
recommended solutions.

7. Review the rows and bytes values for the 5–10 steps that precede the final RETURN step to get
an idea of the amount of data that is returned to the client. This process can be a bit of an art.

For example, in the following query summary, you can see that the third PROJECT step provides
a rows value but not a bytes value. By looking through the preceding steps for one with the
same rows value, you find the SCAN step that provides both rows and bytes information:

If you are returning an unusually large volume of data, see Very large result set for
recommended solutions.

Analyzing the query summary 757

Amazon Redshift Database Developer Guide

8. See if the bytes value is high relative to the rows value for any step, in comparison to other
steps. This pattern can indicate that you are selecting a lot of columns. For recommended
solutions, see Large SELECT list.

Using the SVL_QUERY_REPORT view

To analyze query summary information by slice, do the following:

1. Run the following to determine your query ID:

select query, elapsed, substring
from svl_qlog
order by query
desc limit 5;

Examine the truncated query text in the substring field to determine which query value
represents your query. If you have run the query more than once, use the query value from the
row with the lower elapsed value. That is the row for the compiled version. If you have been
running many queries, you can raise the value used by the LIMIT clause used to make sure that
your query is included.

2. Select rows from SVL_QUERY_REPORT for your query. Order the results by segment, step,
elapsed_time, and rows:

select * from svl_query_report where query = MyQueryID order by segment, step,
 elapsed_time, rows;

3. For each step, check to see that all slices are processing approximately the same number of
rows:

Also check to see that all slices are taking approximately the same amount of time:

Analyzing the query summary 758

Amazon Redshift Database Developer Guide

Large discrepancies in these values can indicate data distribution skew due to a suboptimal
distribution style for this particular query. For recommended solutions, see Suboptimal data
distribution.

Mapping the query plan to the query summary

It helps to map the operations from the query plan to the steps (identified by the label field values)
in the query summary to get further details:

Query plan operation Label field value Description

Aggregate

HashAggregate

GroupAggregate

AGGR Evaluates aggregate functions
and GROUP BY conditions.

DS_BCAST_INNER BCAST (broadcast) Broadcasts an entire table
or some set of rows (such as
a filtered set of rows from a
table) to all nodes.

Doesn’t appear in query plan DELETE Deletes rows from tables.

DS_DIST_NONE

DS_DIST_ALL_NONE

DS_DIST_INNER

DS_DIST_ALL_INNER

DIST (distribute) Distributes rows to nodes for
parallel joining purposes or
other parallel processing.

Analyzing the query summary 759

Amazon Redshift Database Developer Guide

Query plan operation Label field value Description

DS_DIST_ALL_BOTH

HASH HASH Builds hash table for use in
hash joins.

Hash Join HJOIN (hash join) Performs a hash join of two
tables or intermediate result
sets.

Doesn’t appear in query plan INSERT Inserts rows into tables.

Limit LIMIT Applies a LIMIT clause to
result sets.

Merge MERGE Merges rows derived from
parallel sort or join operation
s.

Merge Join MJOIN (merge join) Performs a merge join of two
tables or intermediate result
sets.

Nested Loop NLOOP (nested loop) Performs a nested loop join
of two tables or intermediate
result sets.

Doesn’t appear in query plan PARSE Parses strings into binary
values for loading.

Project PROJECT Evaluates expressions.

Network RETURN Returns rows to the leader or
the client.

Doesn’t appear in query plan SAVE Materializes rows for use in
the next processing step.

Analyzing the query summary 760

Amazon Redshift Database Developer Guide

Query plan operation Label field value Description

Seq Scan SCAN Scans tables or intermediate
result sets.

Sort SORT Sorts rows or intermediate
result sets as required by
other subsequent operation
s (such as joins or aggregati
ons) or to satisfy an ORDER
BY clause.

Unique UNIQUE Applies a SELECT DISTINCT
clause or removes duplicate
s as required by other
operations.

Window WINDOW Computes aggregate and
ranking window functions.

Improving query performance

Following are some common issues that affect query performance, with instructions on ways to
diagnose and resolve them.

Topics

• Table statistics missing or out of date

• Nested loop

• Hash join

• Ghost rows or uncommitted rows

• Unsorted or missorted rows

• Suboptimal data distribution

• Insufficient memory allocated to the query

• Suboptimal WHERE clause

• Insufficiently restrictive predicate

Improving query performance 761

Amazon Redshift Database Developer Guide

• Very large result set

• Large SELECT list

Table statistics missing or out of date

If table statistics are missing or out of date, you might see the following:

• A warning message in EXPLAIN command results.

• A missing statistics alert event in STL_ALERT_EVENT_LOG. For more information, see Reviewing
query alerts.

To fix this issue, run ANALYZE.

Nested loop

If a nested loop is present, you might see a nested loop alert event in STL_ALERT_EVENT_LOG. You
can also identify this type of event by running the query at Identifying queries with nested loops.
For more information, see Reviewing query alerts.

To fix this, review your query for cross-joins and remove them if possible. Cross-joins are joins
without a join condition that result in the Cartesian product of two tables. They are typically run as
nested loop joins, which are the slowest of the possible join types.

Hash join

If a hash join is present, you might see the following:

• Hash and hash join operations in the query plan. For more information, see Analyzing the query
plan.

• An HJOIN step in the segment with the highest maxtime value in SVL_QUERY_SUMMARY. For
more information, see Using the SVL_QUERY_SUMMARY view.

To fix this issue, you can take a couple of approaches:

• Rewrite the query to use a merge join if possible. You can do this by specifying join columns that
are both distribution keys and sort keys.

• If the HJOIN step in SVL_QUERY_SUMMARY has a very high value in the rows field compared to
the rows value in the final RETURN step in the query, check whether you can rewrite the query to

Improving query performance 762

Amazon Redshift Database Developer Guide

join on a unique column. When a query does not join on a unique column, such as a primary key,
that increases the number of rows involved in the join.

Ghost rows or uncommitted rows

If ghost rows or uncommitted rows are present, you might see an alert event in
STL_ALERT_EVENT_LOG that indicates excessive ghost rows. For more information, see Reviewing
query alerts.

To fix this issue, you can take a couple of approaches:

• Check the Loads tab of your Amazon Redshift console for active load operations on any of the
query tables. If you see active load operations, wait for those to complete before taking action.

• If there are no active load operations, run VACUUM on the query tables to remove deleted rows.

Unsorted or missorted rows

If unsorted or missorted rows are present, you might see a very selective filter alert event in
STL_ALERT_EVENT_LOG. For more information, see Reviewing query alerts.

You can also check to see if any of the tables in your query have large unsorted areas by running
the query in Identifying tables with data skew or unsorted rows.

To fix this issue, you can take a couple of approaches:

• Run VACUUM on the query tables to re-sort the rows.

• Review the sort keys on the query tables to see if any improvements can be made. Remember
to weigh the performance of this query against the performance of other important queries and
the system overall before making any changes. For more information, see Working with sort
keys.

Suboptimal data distribution

If data distribution is suboptimal, you might see the following:

• A serial execution, large broadcast, or large distribution alert event appears in
STL_ALERT_EVENT_LOG. For more information, see Reviewing query alerts.

Improving query performance 763

Amazon Redshift Database Developer Guide

• Slices are not processing approximately the same number of rows for a given step. For more
information, see Using the SVL_QUERY_REPORT view.

• Slices are not taking approximately the same amount of time for a given step. For more
information, see Using the SVL_QUERY_REPORT view.

If none of the preceding is true, you can also see if any of the tables in your query have data skew
by running the query in Identifying tables with data skew or unsorted rows.

To fix this issue, review the distribution styles for the tables in the query and see if any
improvements can be made. Remember to weigh the performance of this query against the
performance of other important queries and the system overall before making any changes. For
more information, see Working with data distribution styles.

Insufficient memory allocated to the query

If insufficient memory is allocated to your query, you might see a step in SVL_QUERY_SUMMARY
that has an is_diskbased value of true. For more information, see Using the
SVL_QUERY_SUMMARY view.

To fix this issue, allocate more memory to the query by temporarily increasing the number of
query slots it uses. Workload Management (WLM) reserves slots in a query queue equivalent to
the concurrency level set for the queue. For example, a queue with a concurrency level of 5 has 5
slots. Memory assigned to the queue is allocated equally to each slot. Assigning several slots to one
query gives that query access to the memory for all of those slots. For more information on how to
temporarily increase the slots for a query, see wlm_query_slot_count.

Suboptimal WHERE clause

If your WHERE clause causes excessive table scans, you might see a SCAN step in the segment
with the highest maxtime value in SVL_QUERY_SUMMARY. For more information, see Using the
SVL_QUERY_SUMMARY view.

To fix this issue, add a WHERE clause to the query based on the primary sort column of the largest
table. This approach helps minimize scanning time. For more information, see Amazon Redshift
best practices for designing tables.

Insufficiently restrictive predicate

If your query has an insufficiently restrictive predicate, you might see a SCAN step in the segment
with the highest maxtime value in SVL_QUERY_SUMMARY that has a very high rows value

Improving query performance 764

Amazon Redshift Database Developer Guide

compared to the rows value in the final RETURN step in the query. For more information, see
Using the SVL_QUERY_SUMMARY view.

To fix this issue, try adding a predicate to the query or making the existing predicate more
restrictive to narrow the output.

Very large result set

If your query returns a very large result set, consider rewriting the query to use UNLOAD to write
the results to Amazon S3. This approach improves the performance of the RETURN step by taking
advantage of parallel processing. For more information on checking for a very large result set, see
Using the SVL_QUERY_SUMMARY view.

Large SELECT list

If your query has an unusually large SELECT list, you might see a bytes value that is high relative
to the rows value for any step (in comparison to other steps) in SVL_QUERY_SUMMARY. This high
bytes value can be an indicator that you are selecting a lot of columns. For more information, see
Using the SVL_QUERY_SUMMARY view.

To fix this issue, review the columns you are selecting and see if any can be removed.

Diagnostic queries for query tuning

Use the following queries to identify issues with queries or underlying tables that can affect query
performance. We recommend using these queries with the query tuning processes discussed in
Analyzing and improving queries.

Topics

• Identifying queries that are top candidates for tuning

• Identifying tables with data skew or unsorted rows

• Identifying queries with nested loops

• Reviewing queue wait times for queries

• Reviewing query alerts by table

• Identifying tables with missing statistics

Diagnostic queries for query tuning 765

Amazon Redshift Database Developer Guide

Identifying queries that are top candidates for tuning

The following query identifies the top 50 most time-consuming statements that have been run in
the last 7 days. You can use the results to identify queries that are taking unusually long. You can
also identify queries that are run frequently (those that appear more than once in the result set).
These queries are frequently good candidates for tuning to improve system performance.

This query also provides a count of the alert events associated with each query identified. These
alerts provide details that you can use to improve the query’s performance. For more information,
see Reviewing query alerts.

select trim(database) as db, count(query) as n_qry,
max(substring (qrytext,1,80)) as qrytext,
min(run_minutes) as "min" ,
max(run_minutes) as "max",
avg(run_minutes) as "avg", sum(run_minutes) as total,
max(query) as max_query_id,
max(starttime)::date as last_run,
sum(alerts) as alerts, aborted
from (select userid, label, stl_query.query,
trim(database) as database,
trim(querytxt) as qrytext,
md5(trim(querytxt)) as qry_md5,
starttime, endtime,
(datediff(seconds, starttime,endtime)::numeric(12,2))/60 as run_minutes,
alrt.num_events as alerts, aborted
from stl_query
left outer join
(select query, 1 as num_events from stl_alert_event_log group by query) as alrt
on alrt.query = stl_query.query
where userid <> 1 and starttime >= dateadd(day, -7, current_date))
group by database, label, qry_md5, aborted
order by total desc limit 50;

Identifying tables with data skew or unsorted rows

The following query identifies tables that have uneven data distribution (data skew) or a high
percentage of unsorted rows.

A low skew value indicates that table data is properly distributed. If a table has a skew value of
4.00 or higher, consider modifying its data distribution style. For more information, see Suboptimal
data distribution.

Diagnostic queries for query tuning 766

Amazon Redshift Database Developer Guide

If a table has a pct_unsorted value greater than 20 percent, consider running the VACUUM
command. For more information, see Unsorted or missorted rows.

Also review the mbytes and pct_of_total values for each table. These columns identify the
size of the table and what percentage of raw disk space the table consumes. The raw disk space
includes space that is reserved by Amazon Redshift for internal use, so it is larger than the nominal
disk capacity, which is the amount of disk space available to the user. Use this information to verify
that you have free disk space equal to at least 2.5 times the size of your largest table. Having this
space available enables the system to write intermediate results to disk when processing complex
queries.

select trim(pgn.nspname) as schema,
trim(a.name) as table, id as tableid,
decode(pgc.reldiststyle,0, 'even',1,det.distkey ,8,'all') as distkey,
 dist_ratio.ratio::decimal(10,4) as skew,
det.head_sort as "sortkey",
det.n_sortkeys as "#sks", b.mbytes,
decode(b.mbytes,0,0,((b.mbytes/part.total::decimal)*100)::decimal(5,2)) as
 pct_of_total,
decode(det.max_enc,0,'n','y') as enc, a.rows,
decode(det.n_sortkeys, 0, null, a.unsorted_rows) as unsorted_rows ,
decode(det.n_sortkeys, 0, null, decode(a.rows,0,0, (a.unsorted_rows::decimal(32)/
a.rows)*100))::decimal(5,2) as pct_unsorted
from (select db_id, id, name, sum(rows) as rows,
sum(rows)-sum(sorted_rows) as unsorted_rows
from stv_tbl_perm a
group by db_id, id, name) as a
join pg_class as pgc on pgc.oid = a.id
join pg_namespace as pgn on pgn.oid = pgc.relnamespace
left outer join (select tbl, count(*) as mbytes
from stv_blocklist group by tbl) b on a.id=b.tbl
inner join (select attrelid,
min(case attisdistkey when 't' then attname else null end) as "distkey",
min(case attsortkeyord when 1 then attname else null end) as head_sort ,
max(attsortkeyord) as n_sortkeys,
max(attencodingtype) as max_enc
from pg_attribute group by 1) as det
on det.attrelid = a.id
inner join (select tbl, max(mbytes)::decimal(32)/min(mbytes) as ratio
from (select tbl, trim(name) as name, slice, count(*) as mbytes
from svv_diskusage group by tbl, name, slice)
group by tbl, name) as dist_ratio on a.id = dist_ratio.tbl

Diagnostic queries for query tuning 767

Amazon Redshift Database Developer Guide

join (select sum(capacity) as total
from stv_partitions where part_begin=0) as part on 1=1
where mbytes is not null
order by mbytes desc;

Identifying queries with nested loops

The following query identifies queries that have had alert events logged for nested loops. For
information on how to fix the nested loop condition, see Nested loop.

select query, trim(querytxt) as SQL, starttime
from stl_query
where query in (
select distinct query
from stl_alert_event_log
where event like 'Nested Loop Join in the query plan%')
order by starttime desc;

Reviewing queue wait times for queries

The following query shows how long recent queries waited for an open slot in a query queue
before running. If you see a trend of high wait times, you might want to modify your query queue
configuration for better throughput. For more information, see Implementing manual WLM.

select trim(database) as DB , w.query,
substring(q.querytxt, 1, 100) as querytxt, w.queue_start_time,
w.service_class as class, w.slot_count as slots,
w.total_queue_time/1000000 as queue_seconds,
w.total_exec_time/1000000 exec_seconds, (w.total_queue_time+w.total_Exec_time)/1000000
 as total_seconds
from stl_wlm_query w
left join stl_query q on q.query = w.query and q.userid = w.userid
where w.queue_start_Time >= dateadd(day, -7, current_Date)
and w.total_queue_Time > 0 and w.userid >1
and q.starttime >= dateadd(day, -7, current_Date)
order by w.total_queue_time desc, w.queue_start_time desc limit 35;

Reviewing query alerts by table

The following query identifies tables that have had alert events logged for them, and also
identifies what type of alerts are most frequently raised.

Diagnostic queries for query tuning 768

Amazon Redshift Database Developer Guide

If the minutes value for a row with an identified table is high, check that table to see if it needs
routine maintenance, such as having ANALYZE or VACUUM run against it.

If the count value is high for a row but the table value is null, run a query against
STL_ALERT_EVENT_LOG for the associated event value to investigate why that alert is getting
raised so often.

select trim(s.perm_table_name) as table,
(sum(abs(datediff(seconds, s.starttime, s.endtime)))/60)::numeric(24,0) as minutes,
 trim(split_part(l.event,':',1)) as event, trim(l.solution) as solution,
max(l.query) as sample_query, count(*)
from stl_alert_event_log as l
left join stl_scan as s on s.query = l.query and s.slice = l.slice
and s.segment = l.segment and s.step = l.step
where l.event_time >= dateadd(day, -7, current_Date)
group by 1,3,4
order by 2 desc,6 desc;

Identifying tables with missing statistics

The following query provides a count of the queries that you are running against tables that are
missing statistics. If this query returns any rows, look at the plannode value to determine the
affected table, and then run ANALYZE on it.

select substring(trim(plannode),1,100) as plannode, count(*)
from stl_explain
where plannode like '%missing statistics%'
group by plannode
order by 2 desc;

Troubleshooting queries

This section provides a quick reference for identifying and addressing some of the most common
and most serious issues that you are likely to encounter with Amazon Redshift queries.

Topics

• Connection fails

• Query hangs

Troubleshooting queries 769

Amazon Redshift Database Developer Guide

• Query takes too long

• Load fails

• Load takes too long

• Load data is incorrect

• Setting the JDBC fetch size parameter

These suggestions give you a starting point for troubleshooting. You can also refer to the following
resources for more detailed information.

• Accessing Amazon Redshift clusters and databases

• Working with automatic table optimization

• Loading data

• Tutorial: Loading data from Amazon S3

Connection fails

Your query connection can fail for the following reasons; we suggest the following troubleshooting
approaches.

Client cannot connect to server

If you are using SSL or server certificates, first remove this complexity while you troubleshoot
the connection issue. Then add SSL or server certificates back when you have found a solution.
For more information, go to Configure Security Options for Connections in the Amazon Redshift
Management Guide.

Connection is refused

Generally, when you receive an error message indicating that there is a failure to establish a
connection, it means that there is an issue with the permission to access the cluster. For more
information, go to The connection is refused or fails in the Amazon Redshift Management Guide.

Connection fails 770

https://docs.aws.amazon.com/redshift/latest/mgmt/using-rs-tools.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-ssl-support.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-refusal-failure-issues.html

Amazon Redshift Database Developer Guide

Query hangs

Your query can hang, or stop responding, for the following reasons; we suggest the following
troubleshooting approaches.

Connection to the database is dropped

Reduce the size of maximum transmission unit (MTU). The MTU size determines the maximum size,
in bytes, of a packet that can be transferred in one Ethernet frame over your network connection.
For more information, go to The connection to the database is dropped in the Amazon Redshift
Management Guide.

Connection to the database times out

Your client connection to the database appears to hang or time out when running long queries,
such as a COPY command. In this case, you might observe that the Amazon Redshift console
displays that the query has completed, but the client tool itself still appears to be running
the query. The results of the query might be missing or incomplete depending on when the
connection stopped. This effect happens when idle connections are terminated by an intermediate
network component. For more information, go to Firewall Timeout Issue in the Amazon Redshift
Management Guide.

Client-side out-of-memory error occurs with ODBC

If your client application uses an ODBC connection and your query creates a result set that is too
large to fit in memory, you can stream the result set to your client application by using a cursor. For
more information, see DECLARE and Performance considerations when using cursors.

Client-side out-of-memory error occurs with JDBC

When you attempt to retrieve large result sets over a JDBC connection, you might encounter client-
side out-of-memory errors. For more information, see Setting the JDBC fetch size parameter.

There is a potential deadlock

If there is a potential deadlock, try the following:

• View the STV_LOCKS and STL_TR_CONFLICT system tables to find conflicts involving updates to
more than one table.

• Use the PG_CANCEL_BACKEND function to cancel one or more conflicting queries.

Query hangs 771

https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-drop-issues.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-firewall-guidance.html

Amazon Redshift Database Developer Guide

• Use the PG_TERMINATE_BACKEND function to terminate a session, which forces any currently
running transactions in the terminated session to release all locks and roll back the transaction.

• Schedule concurrent write operations carefully. For more information, see Managing concurrent
write operations.

Query takes too long

Your query can take too long for the following reasons; we suggest the following troubleshooting
approaches.

Tables are not optimized

Set the sort key, distribution style, and compression encoding of the tables to take full advantage
of parallel processing. For more information, see Working with automatic table optimization

Query is writing to disk

Your queries might be writing to disk for at least part of the query execution. For more
information, see Improving query performance.

Query must wait for other queries to finish

You might be able to improve overall system performance by creating query queues and assigning
different types of queries to the appropriate queues. For more information, see Implementing
workload management.

Queries are not optimized

Analyze the explain plan to find opportunities for rewriting queries or optimizing the database. For
more information, see Query plan.

Query needs more memory to run

If a specific query needs more memory, you can increase the available memory by increasing the
wlm_query_slot_count.

Database requires a VACUUM command to be run

Run the VACUUM command whenever you add, delete, or modify a large number of rows, unless
you load your data in sort key order. The VACUUM command reorganizes your data to maintain the
sort order and restore performance. For more information, see Vacuuming tables.

Query takes too long 772

Amazon Redshift Database Developer Guide

Additional resources for troubleshooting long-running queries

The following are system-view topics and other documentation sections that are helpful for query
tuning:

• The STV_INFLIGHT system view shows which queries are running on the cluster. It can be helpful
to use it together with STV_RECENTS to determine which queries are currently running or
recently completed.

• SYS_QUERY_HISTORY is useful for troubleshooting. It shows DDL and DML queries with relevant
properties like their current status, such as running or failed, the time it took each to run, and
whether a query ran on a concurrency-scaling cluster.

• STL_QUERYTEXT captures the query text for SQL commands. Additionally,
SVV_QUERY_INFLIGHT, which joins STL_QUERYTEXT to STV_INFLIGHT, shows more query
metadata.

• A transaction-lock conflict can be a possible source of query-performance issues. For information
about transactions that currently hold locks on tables, see SVV_TRANSACTIONS.

• Identifying queries that are top candidates for tuning provides a troubleshooting query that
helps you determine which recently-run queries were the most time consuming. This can help
you focus your efforts on queries that need improvement.

• If you want to explore query management further and understand how to manage query
queues, Implementing workload management shows how to do it. Workload management is an
advanced feature and we recommend automated workload management in most cases.

Load fails

Your data load can fail for the following reasons; we suggest the following troubleshooting
approaches.

Data Source is in a different AWS Region

By default, the Amazon S3 bucket or Amazon DynamoDB table specified in the COPY command
must be in the same AWS Region as the cluster. If your data and your cluster are in different
Regions, you receive an error similar to the following:

The bucket you are attempting to access must be addressed using the specified endpoint.

Load fails 773

https://docs.aws.amazon.com/redshift/latest/dg/diagnostic-queries-for-query-tuning.html#identify-queries-that-are-top-candidates-for-tuning

Amazon Redshift Database Developer Guide

If at all possible, make sure your cluster and your data source are in the same Region. You can
specify a different Region by using the REGION option with the COPY command.

Note

If your cluster and your data source are in different AWS Regions, you incur data transfer
costs. You also have higher latency.

COPY command fails

Query STL_LOAD_ERRORS to discover the errors that occurred during specific loads. For more
information, see STL_LOAD_ERRORS.

Load takes too long

Your load operation can take too long for the following reasons; we suggest the following
troubleshooting approaches.

COPY loads data from a single file

Split your load data into multiple files. When you load all the data from a single large file, Amazon
Redshift is forced to perform a serialized load, which is much slower. The number of files should be
a multiple of the number of slices in your cluster, and the files should be about equal size, between
1 MB and 1 GB after compression. For more information, see Amazon Redshift best practices for
designing queries.

Load operation uses multiple COPY commands

If you use multiple concurrent COPY commands to load one table from multiple files, Amazon
Redshift is forced to perform a serialized load, which is much slower. In this case, use a single COPY
command.

Load data is incorrect

Your COPY operation can load incorrect data in the following ways; we suggest the following
troubleshooting approaches.

Wrong files are loaded

Load takes too long 774

Amazon Redshift Database Developer Guide

Using an object prefix to specify data files can cause unwanted files to be read. Instead,
use a manifest file to specify exactly which files to load. For more information, see the
copy_from_s3_manifest_file option for the COPY command and Example: COPY from Amazon S3
using a manifest in the COPY examples.

Setting the JDBC fetch size parameter

By default, the JDBC driver collects all the results for a query at one time. As a result, when you
attempt to retrieve a large result set over a JDBC connection, you might encounter a client-side
out-of-memory error. To enable your client to retrieve result sets in batches instead of in a single
all-or-nothing fetch, set the JDBC fetch size parameter in your client application.

Note

Fetch size is not supported for ODBC.

For the best performance, set the fetch size to the highest value that does not lead to out of
memory errors. A lower fetch size value results in more server trips, which prolong execution
times. The server reserves resources, including the WLM query slot and associated memory, until
the client retrieves the entire result set or the query is canceled. When you tune the fetch size
appropriately, those resources are released more quickly, making them available to other queries.

Note

If you need to extract large datasets, we recommend using an UNLOAD statement to
transfer the data to Amazon S3. When you use UNLOAD, the compute nodes work in
parallel to speed up the transfer of data.

For more information about setting the JDBC fetch size parameter, go to Getting results based on a
cursor in the PostgreSQL documentation.

Setting the JDBC fetch size parameter 775

https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html
https://jdbc.postgresql.org/documentation/query/#getting-results-based-on-a-cursor
https://jdbc.postgresql.org/documentation/query/#getting-results-based-on-a-cursor

Amazon Redshift Database Developer Guide

Implementing workload management

You can use workload management (WLM) to define multiple query queues and to route queries to
the appropriate queues at runtime.

In some cases, you might have multiple sessions or users running queries at the same time. In
these cases, some queries might consume cluster resources for long periods of time and affect the
performance of other queries. For example, suppose that one group of users submits occasional
complex, long-running queries that select and sort rows from several large tables. Another group
frequently submits short queries that select only a few rows from one or two tables and run in a
few seconds. In this situation, the short-running queries might have to wait in a queue for a long-
running query to complete. WLM helps manage this situation.

You can configure Amazon Redshift WLM to run with either automatic WLM or manual WLM.

Automatic WLM

To maximize system throughput and use resources effectively, you can enable Amazon Redshift
to manage how resources are divided to run concurrent queries with automatic WLM. Automatic
WLM manages the resources required to run queries. Amazon Redshift determines how many
queries run concurrently and how much memory is allocated to each dispatched query. You can
enable automatic WLM using the Amazon Redshift console by choosing Switch WLM mode and
then choosing Auto WLM. With this choice, up to eight queues are used to manage queries, and
the Memory and Concurrency on main fields are both set to Auto. You can specify a priority that
reflects the business priority of the workload or users that map to each queue. The default priority
of queries is set to Normal. For information about how to change the priority of queries in a queue,
see Query priority. For more information, see Implementing automatic WLM.

At runtime, you can route queries to these queues according to user groups or query groups. You
can also configure a query monitoring rule (QMR) to limit long-running queries.

Working with concurrency scaling and automatic WLM, you can support virtually unlimited
concurrent users and concurrent queries, with consistently fast query performance. For more
information, see Working with concurrency scaling.

776

Amazon Redshift Database Developer Guide

Note

We recommend that you create a parameter group and choose automatic WLM to manage
your query resources. For details about how to migrate from manual WLM to automatic
WLM, see Migrating from manual WLM to automatic WLM.

Manual WLM

Alternatively, you can manage system performance and your users' experience by modifying
your WLM configuration to create separate queues for the long-running queries and the short-
running queries. At runtime, you can route queries to these queues according to user groups or
query groups. You can enable this manual configuration using the Amazon Redshift console by
switching to Manual WLM. With this choice, you specify the queues used to manage queries,
and the Memory and Concurrency on main field values. With a manual configuration, you can
configure up to eight query queues and set the number of queries that can run in each of those
queues concurrently.

You can set up rules to route queries to particular queues based on the user running the query
or labels that you specify. You can also configure the amount of memory allocated to each
queue, so that large queries run in queues with more memory than other queues. You can also
configure a query monitoring rule (QMR) to limit long-running queries. For more information, see
Implementing manual WLM.

Note

We recommend configuring your manual WLM query queues with a total of 15 or fewer
query slots. For more information, see Concurrency level.

WLM queuing limitations

Note that in regards to a manual WLM configuration, the maximum slots you can allocate to
a queue is 50. However, this doesn't mean that in an automatic WLM configuration, a Amazon
Redshift cluster always runs 50 queries concurrently. This can change, based on the memory needs
or other types of resource allocation on the cluster.

Use cases for Auto WLM and Manual WLM

777

Amazon Redshift Database Developer Guide

Use Auto WLM when you want Amazon Redshift to manage how resources are divided to run
concurrent queries. Using Auto WLM often results in a higher throughput than Manual WLM. With
Auto WLM, you can define query priorities for workloads in a queue. For more information about
query priority, see Query priority.

Use Manual WLM when you want more control over concurrency.

Topics

• Modifying the WLM configuration

• Implementing automatic WLM

• Implementing manual WLM

• Working with concurrency scaling

• Working with short query acceleration

• WLM queue assignment rules

• Assigning queries to queues

• WLM dynamic and static configuration properties

• WLM query monitoring rules

• WLM system tables and views

Modifying the WLM configuration

The easiest way to modify the WLM configuration is by using the Amazon Redshift console. You can
also use the AWS CLI or the Amazon Redshift API.

When you switch your cluster between automatic and manual WLM, your cluster is put into
pending reboot state. The change doesn't take effect until the next cluster reboot.

For detailed information about modifying WLM configurations, see Configuring Workload
Management in the Amazon Redshift Management Guide.

Migrating from manual WLM to automatic WLM

To maximize system throughput and use resources most effectively, we recommend that you set
up automatic WLM for your queues. Consider taking the following approach to set up a smooth
transition from manual WLM to automatic WLM.

Modifying the WLM configuration 778

https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html
https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html

Amazon Redshift Database Developer Guide

To migrate from manual WLM to automatic WLM and use query priorities, we recommend that you
create a new parameter group, and then attach that parameter group to your cluster. For more
information, see Amazon Redshift Parameter Groups in the Amazon Redshift Management Guide.

Important

To change the parameter group or to switch from manual to automatic WLM requires a
cluster reboot. For more information, see WLM dynamic and static configuration properties.

Let's take an example where there are three manual WLM queues. One each for an ETL workload,
an analytics workload, and a data science workload. The ETL workload runs every 6 hours, the
analytics workload runs throughout the day, and the data science workload can spike at any time.
With manual WLM, you specify the memory and concurrency that each workload queue gets based
on your understanding of the importance of each workload to the business. Specifying the memory
and concurrency is not only hard to figure out, it also results in cluster resources being statically
partitioned and thereby wasted when only a subset of the workloads is running.

You can use automatic WLM with query priorities to indicate the relative priorities of the
workloads, avoiding the preceding issues. For this example, follow these steps:

• Create a new parameter group and switch to Auto WLM mode.

• Add queues for each of the three workloads: ETL workload, analytics workload, and data science
workload. Use the same user groups for each workload that was used with Manual WLM mode.

• Set the priority for the ETL workload to High, the analytics workload to Normal, and the data
science to Low. These priorities reflect your business priorities for the different workloads or user
groups.

• Optionally, enable concurrency scaling for the analytics or data science queue so that queries in
these queues get consistent performance even when the ETL workload is running every 6 hours.

With query priorities, when only the analytics workload is running on the cluster, it gets the entire
system to itself. This yields high throughput with better system utilization. However, when the ETL
workload starts, it gets the right of the way since it has a higher priority. Queries running as part of
the ETL workload get priority during admission, in addition to preferential resource allocation after
they are admitted. As a consequence, the ETL workload performs predictably regardless of what
else might be running on the system. The predictable performance for a high priority workload
comes at the cost of other, lower priority workloads that run longer either because their queries are

Migrating from manual WLM to automatic WLM 779

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html

Amazon Redshift Database Developer Guide

waiting behind more important queries to complete. Or, because they are getting a smaller fraction
of resources when they are running concurrently with higher priority queries. The scheduling
algorithms used by Amazon Redshift facilitate that the lower priority queries do not suffer from
starvation, but rather continue to make progress albeit at a slower pace.

Note

• The timeout field is not available in automatic WLM. Instead, use the QMR rule,
query_execution_time. For more information, see WLM query monitoring rules.

• The QMR action, HOP, is not applicable to automatic WLM. Instead, use the change
priority action. For more information, see WLM query monitoring rules.

• Clusters use automatic WLM and manual WLM queues differently, which can lead to
confusion with your configurations. For example, you can configure the priority property
in automatic WLM queues but not in manual WLM queues. As such, avoid mixing
automatic WLM queues and manual WLM queues within a parameter group. Instead,
create a new parameter group when migrating to automatic WLM.

Implementing automatic WLM

With automatic workload management (WLM), Amazon Redshift manages query concurrency and
memory allocation. You can create up to eight queues with the service class identifiers 100–107.
Each queue has a priority. For more information, see Query priority.

Automatic WLM determines the amount of resources that queries need and adjusts the
concurrency based on the workload. When queries requiring large amounts of resources are in
the system (for example, hash joins between large tables), the concurrency is lower. When lighter
queries (such as inserts, deletes, scans, or simple aggregations) are submitted, concurrency is
higher.

Automatic WLM is separate from short query acceleration (SQA) and it evaluates queries
differently. Automatic WLM and SQA work together to allow short running and lightweight queries
to complete even while long running, resource intensive queries are active. For more information
about SQA, see Working with short query acceleration.

Amazon Redshift enables automatic WLM through parameter groups:

Automatic WLM 780

Amazon Redshift Database Developer Guide

• If your clusters use the default parameter group, Amazon Redshift enables automatic WLM for
them.

• If your clusters use custom parameter groups, you can configure the clusters to enable automatic
WLM. We recommend that you create a separate parameter group for your automatic WLM
configuration.

To configure WLM, edit the wlm_json_configuration parameter in a parameter group that
can be associated with one or more clusters. For more information, see Modifying the WLM
configuration.

You define query queues within the WLM configuration. You can add additional query queues to
the default WLM configuration, up to a total of eight user queues. You can configure the following
for each query queue:

• Priority

• Concurrency scaling mode

• User groups

• Query groups

• Query monitoring rules

Priority

You can define the relative importance of queries in a workload by setting a priority value. The
priority is specified for a queue and inherited by all queries associated with the queue. For more
information, see Query priority.

Concurrency scaling mode

When concurrency scaling is enabled, Amazon Redshift automatically adds additional cluster
capacity when you need it to process an increase in concurrent read and write queries. Your users
see the most current data, whether the queries run on the main cluster or on a concurrency scaling
cluster.

You manage which queries are sent to the concurrency scaling cluster by configuring WLM queues.
When you enable concurrency scaling for a queue, eligible queries are sent to the concurrency
scaling cluster instead of waiting in a queue. For more information, see Working with concurrency
scaling.

Priority 781

Amazon Redshift Database Developer Guide

User groups

You can assign a set of user groups to a queue by specifying each user group name or by
using wildcards. When a member of a listed user group runs a query, that query runs in the
corresponding queue. There is no set limit on the number of user groups that can be assigned to a
queue. For more information, see Assigning queries to queues based on user groups.

Query groups

You can assign a set of query groups to a queue by specifying each query group name or by using
wildcards. A query group is simply a label. At runtime, you can assign the query group label to a
series of queries. Any queries that are assigned to a listed query group run in the corresponding
queue. There is no set limit to the number of query groups that can be assigned to a queue. For
more information, see Assigning a query to a query group.

Wildcards

If wildcards are enabled in the WLM queue configuration, you can assign user groups and query
groups to a queue either individually or by using Unix shell–style wildcards. The pattern matching
is case-insensitive.

For example, the '*' wildcard character matches any number of characters. Thus, if you
add dba_* to the list of user groups for a queue, any user-run query that belongs to a group with a
name that begins with dba_ is assigned to that queue. Examples are dba_admin or DBA_primary.
The '?' wildcard character matches any single character. Thus, if the queue includes user-group
dba?1, then user groups named dba11 and dba21 match, but dba12 doesn't match.

By default, wildcards aren't enabled.

Query monitoring rules

Query monitoring rules define metrics-based performance boundaries for WLM queues and
specify what action to take when a query goes beyond those boundaries. For example, for a queue
dedicated to short running queries, you might create a rule that cancels queries that run for more
than 60 seconds. To track poorly designed queries, you might have another rule that logs queries
that contain nested loops. For more information, see WLM query monitoring rules.

User groups 782

Amazon Redshift Database Developer Guide

Checking for automatic WLM

To check whether automatic WLM is enabled, run the following query. If the query returns at least
one row, then automatic WLM is enabled.

select * from stv_wlm_service_class_config
where service_class >= 100;

The following query shows the number of queries that went through each query queue (service
class). It also shows the average execution time, the number of queries with wait time at the 90th
percentile, and the average wait time. Automatic WLM queries use service classes 100 through 107.

select final_state, service_class, count(*), avg(total_exec_time),
percentile_cont(0.9) within group (order by total_queue_time), avg(total_queue_time)
from stl_wlm_query where userid >= 100 group by 1,2 order by 2,1;

To find which queries were run by automatic WLM, and completed successfully, run the following
query.

select a.queue_start_time, a.total_exec_time, label, trim(querytxt)
from stl_wlm_query a, stl_query b
where a.query = b.query and a.service_class >= 100 and a.final_state = 'Completed'
order by b.query desc limit 5;

Query priority

Not all queries are of equal importance, and often performance of one workload or set of users
might be more important. If you have enabled automatic WLM, you can define the relative
importance of queries in a workload by setting a priority value. The priority is specified for a
queue and inherited by all queries associated with the queue. You associate queries to a queue by
mapping user groups and query groups to the queue. You can set the following priorities (listed
from highest to lowest priority):

1. HIGHEST
2. HIGH
3. NORMAL
4. LOW
5. LOWEST

Checking for automatic WLM 783

Amazon Redshift Database Developer Guide

Administrators use these priorities to show the relative importance of their workloads when there
are queries with different priorities contending for the same resources. Amazon Redshift uses the
priority when letting queries into the system, and to determine the amount of resources allocated
to a query. By default, queries run with their priority set to NORMAL.

An additional priority, CRITICAL, which is a higher priority than HIGHEST, is available
to superusers. To set this priority, you can use the functions CHANGE_QUERY_PRIORITY,
CHANGE_SESSION_PRIORITY. and CHANGE_USER_PRIORITY. To grant a database user permission
to use these functions, you can create a stored procedure and grant permission to a user. For an
example, see CHANGE_SESSION_PRIORITY.

Note

Only one CRITICAL query can run at a time.

Let's take an example where the priority of an extract, transform, load (ETL) workload is higher
than the priority of the analytics workload. The ETL workload runs every six hours, and the
analytics workload runs throughout the day. When only the analytics workload is running on the
cluster, it gets the entire system to itself, yielding high throughput with optimal system utilization.
However, when the ETL workload starts, it gets the right of the way because it has a higher priority.
Queries running as part of the ETL workload get the right of the way during admission and also
preferential resource allocation after they are admitted. As a consequence, the ETL workload
performs predictably regardless of what else might be running on the system. Thus, it provides
predictable performance and the ability for administrators to provide service level agreements
(SLAs) for their business users.

Within a given cluster, the predictable performance for a high priority workload comes at the
cost of other, lower priority workloads. Lower priority workloads might run longer either because
their queries are waiting behind more important queries to complete. Or they might run longer
because they're getting a smaller fraction of resources when they are running concurrently with
higher priority queries. Lower priority queries don't suffer from starvation, but rather keep making
progress at a slower pace.

In the preceding example, the administrator can enable concurrency scaling for the analytics
workload. Doing this enables that workload to maintain its throughput, even though the ETL
workload is running at high priority.

Query priority 784

Amazon Redshift Database Developer Guide

Configuring queue priority

If you have enabled automatic WLM, each queue has a priority value. Queries are routed to queues
based on user groups and query groups. Start with a queue priority set to NORMAL. Set the priority
higher or lower based on the workload associated with the queue's user groups and query groups.

You can change the priority of a queue on the Amazon Redshift console. On the Amazon
Redshift console, the Workload Management page displays the queues and enables editing
of queue properties such as Priority. To set the priority using the CLI or API operations, use
the wlm_json_configuration parameter. For more information, see Configuring Workload
Management in the Amazon Redshift Management Guide.

The following wlm_json_configuration example defines three user groups (ingest,
reporting, and analytics). Queries submitted from users from one of these groups run with
priority highest, normal, and low, respectively.

[
 {
 "user_group": [
 "ingest"
],
 "priority": "highest",
 "queue_type": "auto"
 },
 {
 "user_group": [
 "reporting"
],
 "priority": "normal",
 "queue_type": "auto"
 },
 {
 "user_group": [
 "analytics"
],
 "priority": "low",
 "queue_type": "auto",
 "auto_wlm": true
 }
]

Query priority 785

https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html
https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html

Amazon Redshift Database Developer Guide

Changing query priority with query monitoring rules

Query monitoring rules (QMR) enable you to change the priority of a query based on its behavior
while it is running. You do this by specifying the priority attribute in a QMR predicate in addition to
an action. For more information, see WLM query monitoring rules.

For example, you can define a rule to cancel any query classified as high priority that runs for
more than 10 minutes.

"rules" :[
 {
 "rule_name":"rule_abort",
 "predicate":[
 {
 "metric_name":"query_cpu_time",
 "operator":">",
 "value":600
 },
 {
 "metric_name":"query_priority",
 "operator":"=",
 "value":"high"
 }
],
 "action":"abort"
 }
]

Another example is to define a rule to change the query priority to lowest for any query with
current priority normal that spills more than 1 TB to disk.

"rules":[
 {
 "rule_name":"rule_change_priority",
 "predicate":[
 {
 "metric_name":"query_temp_blocks_to_disk",
 "operator":">",
 "value":1000000
 },
 {
 "metric_name":"query_priority",

Query priority 786

Amazon Redshift Database Developer Guide

 "operator":"=",
 "value":"normal"
 }
],
 "action":"change_query_priority",
 "value":"lowest"
 }
]

Monitoring query priority

To display priority for waiting and running queries, view the query_priority column in the
stv_wlm_query_state system table.

query | service_cl | wlm_start_time | state | queue_time |
 query_priority
---------+------------+----------------------------+------------------+------------
+----------------
2673299 | 102 | 2019-06-24 17:35:38.866356 | QueuedWaiting | 265116 |
 Highest
2673236 | 101 | 2019-06-24 17:35:33.313854 | Running | 0 |
 Highest
2673265 | 102 | 2019-06-24 17:35:33.523332 | Running | 0 |
 High
2673284 | 102 | 2019-06-24 17:35:38.477366 | Running | 0 |
 Highest
2673288 | 102 | 2019-06-24 17:35:38.621819 | Running | 0 |
 Highest
2673310 | 103 | 2019-06-24 17:35:39.068513 | QueuedWaiting | 62970 |
 High
2673303 | 102 | 2019-06-24 17:35:38.968921 | QueuedWaiting | 162560 |
 Normal
2673306 | 104 | 2019-06-24 17:35:39.002733 | QueuedWaiting | 128691 |
 Lowest

To list query priority for completed queries, see the query_priority column in the
stl_wlm_query system table.

select query, service_class as svclass, service_class_start_time as starttime,
 query_priority
from stl_wlm_query order by 3 desc limit 10;

Query priority 787

Amazon Redshift Database Developer Guide

 query | svclass | starttime | query_priority
---------+---------+----------------------------+----------------------
 2723254 | 100 | 2019-06-24 18:14:50.780094 | Normal
 2723251 | 102 | 2019-06-24 18:14:50.749961 | Highest
 2723246 | 102 | 2019-06-24 18:14:50.725275 | Highest
 2723244 | 103 | 2019-06-24 18:14:50.719241 | High
 2723243 | 101 | 2019-06-24 18:14:50.699325 | Low
 2723242 | 102 | 2019-06-24 18:14:50.692573 | Highest
 2723239 | 101 | 2019-06-24 18:14:50.668535 | Low
 2723237 | 102 | 2019-06-24 18:14:50.661918 | Highest
 2723236 | 102 | 2019-06-24 18:14:50.643636 | Highest

To optimize the throughput of your workload, Amazon Redshift might modify the priority of user
submitted queries. Amazon Redshift uses advanced machine learning algorithms to determine
when this optimization benefits your workload and automatically applies it when all the following
conditions are met.

• Automatic WLM is enabled.

• Only one WLM queue is defined.

• You have not defined query monitoring rules (QMRs) which set query priority. Such rules include
the QMR metric query_priority or the QMR action change_query_priority. For more
information, see WLM query monitoring rules.

Implementing manual WLM

With manual WLM, you can manage system performance and your users' experience by modifying
the WLM configuration to create separate queues for the long-running queries and short-running
queries.

When users run queries in Amazon Redshift, the queries are routed to query queues. Each
query queue contains a number of query slots. Each queue is allocated a portion of the cluster's
available memory. A queue's memory is divided among the queue's query slots. You can enable
Amazon Redshift to manage query concurrency with automatic WLM. For more information, see
Implementing automatic WLM.

Or you can configure WLM properties for each query queue. You do so to specify the way that
memory is allocated among slots and how queries can be routed to specific queues at runtime. You
can also configure WLM properties to cancel long-running queries.

Manual WLM 788

Amazon Redshift Database Developer Guide

By default, Amazon Redshift configures the following query queues:

• One superuser queue

The superuser queue is reserved for superusers only and it can't be configured. Use this queue
only when you need to run queries that affect the system or for troubleshooting purposes. For
example, use this queue when you need to cancel a user's long-running query or to add users to
the database. Don't use it to perform routine queries. The queue doesn't appear in the console,
but it does appear in the system tables in the database as the fifth queue. To run a query in the
superuser queue, a user must be logged in as a superuser, and must run the query using the
predefined superuser query group.

• One default user queue

The default queue is initially configured to run five queries concurrently. When you use manual
WLM, you can change the concurrency, timeout, and memory allocation properties for the
default queue, but you cannot specify user groups or query groups. The default queue must be
the last queue in the WLM configuration. Any queries that are not routed to other queues run in
the default queue.

Query queues are defined in the WLM configuration. The WLM configuration is an editable
parameter (wlm_json_configuration) in a parameter group, which can be associated with one
or more clusters. For more information, see Configuring Workload Management in the Amazon
Redshift Management Guide.

You can add additional query queues to the default WLM configuration, up to a total of eight user
queues. You can configure the following for each query queue:

• Concurrency scaling mode

• Concurrency level

• User groups

• Query groups

• WLM memory percent to use

• WLM timeout

• WLM query queue hopping

• Query monitoring rules

Manual WLM 789

https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html

Amazon Redshift Database Developer Guide

Concurrency scaling mode

When concurrency scaling is enabled, Amazon Redshift automatically adds additional cluster
capacity when you need it to process an increase in concurrent read and write queries. Users see
the most current data, whether the queries run on the main cluster or on a concurrency scaling
cluster.

You manage which queries are sent to the concurrency scaling cluster by configuring WLM queues.
When you enable concurrency scaling for a queue, eligible queries are sent to the concurrency
scaling cluster instead of waiting in a queue. For more information, see Working with concurrency
scaling.

Concurrency level

Queries in a queue run concurrently until they reach the WLM query slot count, or concurrency
level, defined for that queue. Subsequent queries then wait in the queue.

Note

WLM concurrency level is different from the number of concurrent user connections that
can be made to a cluster. For more information, see Connecting to a Cluster in the Amazon
Redshift Management Guide.

In an automatic WLM configuration, which is recommended, the concurrency level is set to Auto.
Amazon Redshift dynamically allocates memory to queries, which subsequently determines how
many to run concurrently. This is based on the resources required for both running and queued
queries. Auto WLM isn't configurable. For more information, see Implementing automatic WLM.

In a manual WLM configuration, Amazon Redshift statically allocates a fixed amount of memory to
each queue. The queue's memory is split evenly among the query slots. To illustrate, if a queue is
allocated 20% of a cluster's memory and has 10 slots, each query is allocated 2% of the cluster's
memory. The memory allocation remains fixed regardless of the number of queries running
concurrently. Because of this fixed memory allocation, queries that run entirely in memory when
the slot count is 5 might write intermediate results to disk if the slot count is increased to 20.
In this instance each query's share of the queue's memory is reduced from 1/5th to 1/20th. The
additional disk I/O could degrade performance.

Concurrency scaling mode 790

https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-to-cluster.html

Amazon Redshift Database Developer Guide

The maximum slot count across all user-defined queues is 50. This limits the total slots for all
queues, including the default queue. The only queue that isn't subject to the limit is the reserved
superuser queue.

By default, manual WLM queues have a concurrency level of 5. Your workload might benefit from a
higher concurrency level in certain cases, such as the following:

• If many small queries are forced to wait for long-running queries, create a separate queue
with a higher slot count and assign the smaller queries to that queue. A queue with a higher
concurrency level has less memory allocated to each query slot, but the smaller queries require
less memory.

Note

If you enable short-query acceleration (SQA), WLM automatically prioritizes short queries
over longer-running queries, so you don't need a separate queue for short queries for
most workflows. For more information, see Working with short query acceleration.

• If you have multiple queries that each access data on a single slice, set up a separate WLM queue
to run those queries concurrently. Amazon Redshift assigns concurrent queries to separate slices,
which allows multiple queries to run in parallel on multiple slices. For example, if a query is a
simple aggregate with a predicate on the distribution key, the data for the query is located on a
single slice.

A manual WLM example

This example is a simple, manual WLM scenario to show how slots and memory can be allocated.
You implement manual WLM with three queues, which are the following:

• data-ingestion queue – This is set up for ingesting data. It's allocated 20% of the cluster's
memory and it has 5 slots. Subsequently, 5 queries can run concurrently in the queue and each is
allocated 4% of the memory.

• data-scientist queue – This is designed for memory-intensive queries. It's allocated 40% of the
cluster's memory and it has 5 slots. Subsequently, 5 queries can run concurrently and each is
allocated 8% of the memory.

• default queue – This is designed for the majority of the users in the organization. This includes
sales and accounting groups that typically have short or medium running queries that aren't
complicated. It's allocated 40% of the cluster's memory and it has 40 slots. 40 queries can run

Concurrency level 791

Amazon Redshift Database Developer Guide

concurrently in this queue, with each query allocated 1% of the memory. This is the maximum
number of slots that can be allocated for this queue because between all queues the limit is 50.

If you're running automatic WLM and your workload requires more than 15 queries to run in
parallel, we recommend turning on concurrency scaling. This is because increasing the query slot
count above 15 might create contention for system resources and limit the overall throughput
of a single cluster. With concurrency scaling, you can run hundreds of queries in parallel, up to a
configured number of concurrency scaling clusters. The number of concurrency scaling clusters is
controlled by max_concurrency_scaling_clusters. For more information about concurrency scaling,
see Working with concurrency scaling.

For more information, see Improving query performance.

User groups

You can assign a set of user groups to a queue by specifying each user group name or by
using wildcards. When a member of a listed user group runs a query, that query runs in the
corresponding queue. There is no set limit on the number of user groups that can be assigned to a
queue. For more information, see Assigning queries to queues based on user groups.

Query groups

You can assign a set of query groups to a queue by specifying each query group name or by using
wildcards. A query group is simply a label. At runtime, you can assign the query group label to a
series of queries. Any queries that are assigned to a listed query group run in the corresponding
queue. There is no set limit to the number of query groups that can be assigned to a queue. For
more information, see Assigning a query to a query group.

Wildcards

If wildcards are enabled in the WLM queue configuration, you can assign user groups and query
groups to a queue either individually or by using Unix shell-style wildcards. The pattern matching is
case-insensitive.

For example, the '*' wildcard character matches any number of characters. Thus, if you
add dba_* to the list of user groups for a queue, any user-run query that belongs to a group
with a name that begins with dba_ is assigned to that queue. Examples are dba_admin or
DBA_primary, . The '?' wildcard character matches any single character. Thus, if the queue includes
user-group dba?1, then user groups named dba11 and dba21 match, but dba12 doesn't match.

User groups 792

Amazon Redshift Database Developer Guide

Wildcards are turned off by default.

WLM memory percent to use

In an automatic WLM configuration, memory percent is set to auto. For more information, see
Implementing automatic WLM.

In a manual WLM configuration, to specify the amount of available memory that is allocated to a
query, you can set the WLM Memory Percent to Use parameter. By default, each user-defined
queue is allocated an equal portion of the memory that is available for user-defined queries. For
example, if you have four user-defined queues, each queue is allocated 25 percent of the available
memory. The superuser queue has its own allocated memory and cannot be modified. To change
the allocation, you assign an integer percentage of memory to each queue, up to a total of 100
percent. Any unallocated memory is managed by Amazon Redshift and can be temporarily given to
a queue if the queue requests additional memory for processing.

For example, if you configure four queues, you can allocate memory as follows: 20 percent, 30
percent, 15 percent, 15 percent. The remaining 20 percent is unallocated and managed by the
service.

WLM timeout

WLM timeout (max_execution_time) is deprecated. Instead, create a query monitoring rule
(QMR) using query_execution_time to limit the elapsed execution time for a query. For more
information, see WLM query monitoring rules.

To limit the amount of time that queries in a given WLM queue are permitted to use, you can set
the WLM timeout value for each queue. The timeout parameter specifies the amount of time, in
milliseconds, that Amazon Redshift waits for a query to run before either canceling or hopping the
query. The timeout is based on query execution time and doesn't include time spent waiting in a
queue.

WLM attempts to hop CREATE TABLE AS (CTAS) statements and read-only queries, such as SELECT
statements. Queries that can't be hopped are canceled. For more information, see WLM query
queue hopping.

WLM timeout doesn't apply to a query that has reached the returning state. To view the state
of a query, see the STV_WLM_QUERY_STATE system table. COPY statements and maintenance
operations, such as ANALYZE and VACUUM, are not subject to WLM timeout.

WLM memory percent to use 793

Amazon Redshift Database Developer Guide

The function of WLM timeout is similar to the statement_timeout configuration parameter. The
difference is that, where the statement_timeout configuration parameter applies to the entire
cluster, WLM timeout is specific to a single queue in the WLM configuration.

If statement_timeout is also specified, the lower of statement_timeout and WLM timeout
(max_execution_time) is used.

Query monitoring rules

Query monitoring rules define metrics-based performance boundaries for WLM queues and
specify what action to take when a query goes beyond those boundaries. For example, for a queue
dedicated to short running queries, you might create a rule that cancels queries that run for more
than 60 seconds. To track poorly designed queries, you might have another rule that logs queries
that contain nested loops. For more information, see WLM query monitoring rules.

WLM query queue hopping

A query can be hopped due to a WLM timeout or a query monitoring rule (QMR) hop action. You
can only hop queries in a manual WLM configuration.

When a query is hopped, WLM attempts to route the query to the next matching queue based on
the WLM queue assignment rules. If the query doesn't match any other queue definition, the query
is canceled. It's not assigned to the default queue.

WLM timeout actions

The following table summarizes the behavior of different types of queries with a WLM timeout.

Query type Action

INSERT, UPDATE, and DELETE Cancel

User-defined functions (UDFs) Cancel

UNLOAD Cancel

COPY Continue execution

Maintenance operations Continue execution

Read-only queries in a returning state Continue execution

Query monitoring rules 794

Amazon Redshift Database Developer Guide

Query type Action

Read-only queries in a running state Reassign or restart

CREATE TABLE AS (CTAS), SELECT INTO Reassign or restart

WLM timeout queue hopping

WLM hops the following types of queries when they time out:

• Read-only queries, such as SELECT statements, that are in a WLM state of running. To find the
WLM state of a query, view the STATE column on the STV_WLM_QUERY_STATE system table.

• CREATE TABLE AS (CTAS) statements. WLM queue hopping supports both user-defined and
system-generated CTAS statements.

• SELECT INTO statements.

Queries that aren't subject to WLM timeout continue running in the original queue until
completion. The following types of queries aren't subject to WLM timeout:

• COPY statements

• Maintenance operations, such as ANALYZE and VACUUM

• Read-only queries, such as SELECT statements, that have reached a WLM state of returning. To
find the WLM state of a query, view the STATE column on the STV_WLM_QUERY_STATE system
table.

Queries that aren't eligible for hopping by WLM timeout are canceled when they time out. The
following types of queries are not eligible for hopping by a WLM timeout:

• INSERT, UPDATE, and DELETE statements

• UNLOAD statements

• User-defined functions (UDFs)

WLM timeout reassigned and restarted queries

When a query is hopped and no matching queue is found, the query is canceled.

WLM query queue hopping 795

Amazon Redshift Database Developer Guide

When a query is hopped and a matching queue is found, WLM attempts to reassign the query
to the new queue. If a query can't be reassigned, it's restarted in the new queue, as described
following.

A query is reassigned only if all of the following are true:

• A matching queue is found.

• The new queue has enough free slots to run the query. A query might require multiple slots if the
wlm_query_slot_count parameter was set to a value greater than 1.

• The new queue has at least as much memory available as the query currently uses.

If the query is reassigned, the query continues executing in the new queue. Intermediate results are
preserved, so there is minimal effect on total execution time.

If the query can't be reassigned, the query is canceled and restarted in the new queue.
Intermediate results are deleted. The query waits in the queue, then begins running when enough
slots are available.

QMR hop actions

The following table summarizes the behavior of different types of queries with a QMR hop action.

Query type Action

COPY Continue execution

Maintenance operations Continue execution

User-defined functions (UDFs) Continue execution

UNLOAD Reassign or continue execution

INSERT, UPDATE, and DELETE Reassign or continue execution

Read-only queries in a returning state Reassign or continue execution

Read-only queries in a running state Reassign or restart

CREATE TABLE AS (CTAS), SELECT INTO Reassign or restart

WLM query queue hopping 796

Amazon Redshift Database Developer Guide

To find whether a query that was hopped by QMR was reassigned, restarted, or canceled, query the
STL_WLM_RULE_ACTION system log table.

QMR hop action reassigned and restarted queries

When a query is hopped and no matching queue is found, the query is canceled.

When a query is hopped and a matching queue is found, WLM attempts to reassign the query
to the new queue. If a query can't be reassigned, it's restarted in the new queue or continues
execution in the original queue, as described following.

A query is reassigned only if all of the following are true:

• A matching queue is found.

• The new queue has enough free slots to run the query. A query might require multiple slots if the
wlm_query_slot_count parameter was set to a value greater than 1.

• The new queue has at least as much memory available as the query currently uses.

If the query is reassigned, the query continues executing in the new queue. Intermediate results are
preserved, so there is minimal effect on total execution time.

If a query can't be reassigned, the query is either restarted or continues execution in the original
queue. If the query is restarted, the query is canceled and restarted in the new queue. Intermediate
results are deleted. The query waits in the queue, then begins execution when enough slots are
available.

Tutorial: Configuring manual workload management (WLM) queues

Overview

We recommend configuring automatic workload management (WLM) in Amazon Redshift. For
more information about automatic WLM, see Implementing workload management. However, if
you need multiple WLM queues, this tutorial walks you through the process of configuring manual
workload management (WLM) in Amazon Redshift. By configuring manual WLM, you can improve
query performance and resource allocation in your cluster.

Amazon Redshift routes user queries to queues for processing. WLM defines how those queries are
routed to the queues. By default, Amazon Redshift has two queues available for queries: one for
superusers, and one for users. The superuser queue cannot be configured and can only process one

Tutorial: Configuring manual WLM queues 797

Amazon Redshift Database Developer Guide

query at a time. You should reserve this queue for troubleshooting purposes only. The user queue
can process up to five queries at a time, but you can configure this by changing the concurrency
level of the queue if needed.

When you have several users running queries against the database, you might find another
configuration to be more efficient. For example, if some users run resource-intensive operations,
such as VACUUM, these might have a negative impact on less-intensive queries, such as reports.
You might consider adding additional queues and configuring them for different workloads.

Estimated time: 75 minutes

Estimated cost: 50 cents

Prerequisites

You need an Amazon Redshift cluster, the sample TICKIT database, and the Amazon Redshift RSQL
client tool. If you do not already have these set up, go to Amazon Redshift Getting Started Guide
and Amazon Redshift RSQL.

Sections

• Section 1: Understanding the default queue processing behavior

• Section 2: Modifying the WLM query queue configuration

• Section 3: Routing queries to queues based on user groups and query groups

• Section 4: Using wlm_query_slot_count to temporarily override the concurrency level in a queue

• Section 5: Cleaning up your resources

Section 1: Understanding the default queue processing behavior

Before you start to configure manual WLM, it’s useful to understand the default behavior of
queue processing in Amazon Redshift. In this section, you create two database views that return
information from several system tables. Then you run some test queries to see how queries
are routed by default. For more information about system tables, see System tables and views
reference.

Step 1: Create the WLM_QUEUE_STATE_VW view

In this step, you create a view called WLM_QUEUE_STATE_VW. This view returns information from
the following system tables.

Tutorial: Configuring manual WLM queues 798

https://docs.aws.amazon.com/redshift/latest/gsg/new-user.html
https://docs.aws.amazon.com/redshift/latest/mgmt/rsql-query-tool.html

Amazon Redshift Database Developer Guide

• STV_WLM_CLASSIFICATION_CONFIG

• STV_WLM_SERVICE_CLASS_CONFIG

• STV_WLM_SERVICE_CLASS_STATE

You use this view throughout the tutorial to monitor what happens to queues after you change the
WLM configuration. The following table describes the data that the WLM_QUEUE_STATE_VW view
returns.

Column Description

queue The number associated with the row that represents a queue. Queue
number determines the order of the queues in the database.

description A value that describes whether the queue is available only to certain
user groups, to certain query groups, or all types of queries.

slots The number of slots allocated to the queue.

mem The amount of memory, in MB per slot, allocated to the queue.

max_execution_time The amount of time a query is allowed to run before it is terminated.

user_* A value that indicates whether wildcard characters are allowed in the
WLM configuration to match user groups.

query_* A value that indicates whether wildcard characters are allowed in the
WLM configuration to match query groups.

queued The number of queries that are waiting in the queue to be processed.

executing The number of queries that are currently running.

executed The number of queries that have been run.

To create the WLM_QUEUE_STATE_VW view

1. Open Amazon Redshift RSQL and connect to your TICKIT sample database. If you do not have
this database, see Prerequisites.

Tutorial: Configuring manual WLM queues 799

https://docs.aws.amazon.com/redshift/latest/mgmt/rsql-query-tool.html

Amazon Redshift Database Developer Guide

2. Run the following query to create the WLM_QUEUE_STATE_VW view.

create view WLM_QUEUE_STATE_VW as
select (config.service_class-5) as queue
, trim (class.condition) as description
, config.num_query_tasks as slots
, config.query_working_mem as mem
, config.max_execution_time as max_time
, config.user_group_wild_card as "user_*"
, config.query_group_wild_card as "query_*"
, state.num_queued_queries queued
, state.num_executing_queries executing
, state.num_executed_queries executed
from
STV_WLM_CLASSIFICATION_CONFIG class,
STV_WLM_SERVICE_CLASS_CONFIG config,
STV_WLM_SERVICE_CLASS_STATE state
where
class.action_service_class = config.service_class
and class.action_service_class = state.service_class
and config.service_class > 4
order by config.service_class;

3. Run the following query to see the information that the view contains.

select * from wlm_queue_state_vw;

The following is an example result.

Step 2: Create the WLM_QUERY_STATE_VW view

In this step, you create a view called WLM_QUERY_STATE_VW. This view returns information from
the STV_WLM_QUERY_STATE system table.

You use this view throughout the tutorial to monitor the queries that are running. The following
table describes the data that the WLM_QUERY_STATE_VW view returns.

Tutorial: Configuring manual WLM queues 800

Amazon Redshift Database Developer Guide

Column Description

query The query ID.

queue The queue number.

slot_count The number of slots allocated to the query.

start_time The time that the query started.

state The state of the query, such as executing.

queue_time The number of microseconds that the query has spent in the queue.

exec_time The number of microseconds that the query has been running.

To create the WLM_QUERY_STATE_VW view

1. In RSQL, run the following query to create the WLM_QUERY_STATE_VW view.

create view WLM_QUERY_STATE_VW as
select query, (service_class-5) as queue, slot_count, trim(wlm_start_time) as
 start_time, trim(state) as state, trim(queue_time) as queue_time, trim(exec_time) as
 exec_time
from stv_wlm_query_state;

2. Run the following query to see the information that the view contains.

select * from wlm_query_state_vw;

The following is an example result.

Step 3: Run test queries

In this step, you run queries from multiple connections in RSQL and review the system tables to
determine how the queries were routed for processing.

Tutorial: Configuring manual WLM queues 801

Amazon Redshift Database Developer Guide

For this step, you need two RSQL windows open:

• In RSQL window 1, you run queries that monitor the state of the queues and queries using the
views you already created in this tutorial.

• In RSQL window 2, you run long-running queries to change the results you find in RSQL window
1.

To run the test queries

1. Open two RSQL windows. If you already have one window open, you only need to open a second
window. You can use the same user account for both of these connections.

2. In RSQL window 1, run the following query.

select * from wlm_query_state_vw;

The following is an example result.

This query returns a self-referential result. The query that is currently running is the SELECT
statement from this view. A query on this view always returns at least one result. Compare this
result with the result that occurs after starting the long-running query in the next step.

3. In RSQL window 2, run a query from the TICKIT sample database. This query should
run for approximately a minute so that you have time to explore the results of the
WLM_QUEUE_STATE_VW view and the WLM_QUERY_STATE_VW view that you created earlier. In
some cases, you might find that the query doesn't run long enough for you to query both views.
In these cases, you can increase the value of the filter on l.listid to make it run longer.

Note

To reduce query execution time and improve system performance, Amazon Redshift
caches the results of certain types of queries in memory on the leader node. When result
caching is enabled, subsequent queries run much faster. To prevent the query from
running to quickly, disable result caching for the current session.

Tutorial: Configuring manual WLM queues 802

Amazon Redshift Database Developer Guide

To turn off result caching for the current session, set the enable_result_cache_for_session
parameter to off, as shown following.

set enable_result_cache_for_session to off;

In RSQL window 2, run the following query.

select avg(l.priceperticket*s.qtysold) from listing l, sales s where l.listid <
 100000;

4. In RSQL window 1, query WLM_QUEUE_STATE_VW and WLM_QUERY_STATE_VW and compare
the results to your earlier results.

select * from wlm_queue_state_vw;
select * from wlm_query_state_vw;

The following are example results.

Note the following differences between your previous queries and the results in this step:

• There are two rows now in WLM_QUERY_STATE_VW. One result is the self-referential query for
running a SELECT operation on this view. The second result is the long-running query from the
previous step.

• The executing column in WLM_QUEUE_STATE_VW has increased from 1 to 2. This column entry
means that there are two queries running in the queue.

• The executed column is incremented each time you run a query in the queue.

Tutorial: Configuring manual WLM queues 803

Amazon Redshift Database Developer Guide

The WLM_QUEUE_STATE_VW view is useful for getting an overall view of the queues and how
many queries are being processed in each queue. The WLM_QUERY_STATE_VW view is useful for
getting a more detailed view of the individual queries that are currently running.

Section 2: Modifying the WLM query queue configuration

Now that you understand how queues work by default, you can learn how to configure query
queues using manual WLM. In this section, you create and configure a new parameter group for
your cluster. You create two additional user queues and configure them to accept queries based
on the queries' user group or query group labels. Any queries that don't get routed to one of these
two queues are routed to the default queue at runtime.

To create a manual WLM configuration in a parameter group

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Configurations, then choose Workload management to
display the Workload management page.

3. Choose Create to display the Create parameter group window.

4. Enter WLMTutorial for both Parameter group name and Description, and then choose
Create to create the parameter group.

Note

The Parameter group name is converted to all lower case format when created.

5. On the Workload management page, choose the parameter group wlmtutorial to display
the details page with tabs for Parameters and Workload management.

6. Confirm that you're on the Workload management tab, then choose Switch WLM mode to
display the Concurrency settings window.

7. Choose Manual WLM, then choose Save to switch to manual WLM.

8. Choose Edit workload queues.

9. Choose Add queue twice to add two queues. Now there are three queues: Queue 1, Queue 2,
and Default queue.

10. Enter information for each queue as follows:

Tutorial: Configuring manual WLM queues 804

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

• For Queue 1, enter 30 for Memory (%), 2 for Concurrency on main, and test for Query
groups. Leave the other settings with their default values.

• For Queue 2, enter 40 for Memory (%), 3 for Concurrency on main, and admin for User
groups. Leave the other settings with their default values.

• Don't make any changes to the Default queue. WLM assigns unallocated memory to the
default queue.

11. Choose Save to save your settings.

Next, associate the parameter group that has the manual WLM configuration with a cluster.

To associate a parameter group with a manual WLM configuration with a cluster

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Clusters, then choose Clusters to display a list of your
clusters.

3. Choose your cluster, such as examplecluster to display the details of the cluster. Then
choose the Properties tab to display the properties of that cluster.

4. In the Database configurations section, choose Edit, Edit parameter group to display the
parameter groups window.

5. For Parameter groups choose the wlmtutorial parameter group that you previously created.

6. Choose Save changes to associate the parameter group.

The cluster is modified with the changed parameter group. However, you need to reboot the
cluster for the changes to also be applied to the database.

7. Choose your cluster, and then choose Reboot for Actions.

After the cluster is rebooted, its status returns to Available.

Section 3: Routing queries to queues based on user groups and query groups

Now you have your cluster associated with a new parameter group and you've configured WLM.
Next, run some queries to see how Amazon Redshift routes queries into queues for processing.

Tutorial: Configuring manual WLM queues 805

https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

Step 1: View query queue configuration in the database

First, verify that the database has the WLM configuration that you expect.

To view the query queue configuration

1. Open RSQL and run the following query. The query uses the WLM_QUEUE_STATE_VW view
you created in Step 1: Create the WLM_QUEUE_STATE_VW view. If you already had a session
connected to the database prior to the cluster reboot, you need to reconnect.

select * from wlm_queue_state_vw;

The following is an example result.

Compare these results to the results you received in Step 1: Create the WLM_QUEUE_STATE_VW
view. Notice that there are now two additional queues. Queue 1 is now the queue for the test
query group, and queue 2 is the queue for the admin user group.

Queue 3 is now the default queue. The last queue in the list is always the default queue. That's
the queue to which queries are routed by default if no user group or query group is specified in a
query.

2. Run the following query to confirm that your query now runs in queue 3.

select * from wlm_query_state_vw;

The following is an example result.

Step 2: Run a query using the query group queue

To run a query using the query group queue

1. Run the following query to route it to the test query group.

Tutorial: Configuring manual WLM queues 806

Amazon Redshift Database Developer Guide

set query_group to test;
select avg(l.priceperticket*s.qtysold) from listing l, sales s where l.listid <40000;

2. From the other RSQL window, run the following query.

select * from wlm_query_state_vw;

The following is an example result.

The query was routed to the test query group, which is queue 1 now.

3. Select all from the queue state view.

select * from wlm_queue_state_vw;

You see a result similar to the following.

4. Now, reset the query group and run the long query again:

reset query_group;
select avg(l.priceperticket*s.qtysold) from listing l, sales s where l.listid <40000;

5. Run the queries against the views to see the results.

select * from wlm_queue_state_vw;
select * from wlm_query_state_vw;

The following are example results.

Tutorial: Configuring manual WLM queues 807

Amazon Redshift Database Developer Guide

The result should be that the query is now running in queue 3 again.

Step 3: Create a database user and group

Before you can run any queries in this queue, you need to create the user group in the database
and add a user to the group. Then you log in with RSQL using the new user’s credentials and run
queries. You need to run queries as a superuser, such as the admin user, to create database users.

To create a new database user and user group

1. In the database, create a new database user named adminwlm by running the following
command in an RSQL window.

create user adminwlm createuser password '123Admin';

2. Then, run the following commands to create the new user group and add your new adminwlm
user to it.

create group admin;
alter group admin add user adminwlm;

Step 4: Run a query using the user group queue

Next you run a query and route it to the user group queue. You do this when you want to route
your query to a queue that is configured to handle the type of query you want to run.

To run a query using the user group queue

1. In RSQL window 2, run the following queries to switch to the adminwlm account and run a
query as that user.

set session authorization 'adminwlm';
select avg(l.priceperticket*s.qtysold) from listing l, sales s where l.listid <40000;

2. In RSQL window 1, run the following query to see the query queue that the queries are routed
to.

Tutorial: Configuring manual WLM queues 808

Amazon Redshift Database Developer Guide

select * from wlm_query_state_vw;
select * from wlm_queue_state_vw;

The following are example results.

The queue that this query ran in is queue 2, the admin user queue. Anytime you run queries
logged in as this user, they run in queue 2 unless you specify a different query group to use. The
chosen queue depends on the queue assignment rules. For more information, see WLM queue
assignment rules.

3. Now run the following query from RSQL window 2.

set query_group to test;
select avg(l.priceperticket*s.qtysold) from listing l, sales s where l.listid <40000;

4. In RSQL window 1, run the following query to see the query queue that the queries are routed
to.

select * from wlm_queue_state_vw;
select * from wlm_query_state_vw;

The following are example results.

5. When you’re done, reset the query group.

Tutorial: Configuring manual WLM queues 809

Amazon Redshift Database Developer Guide

reset query_group;

Section 4: Using wlm_query_slot_count to temporarily override the concurrency
level in a queue

Sometimes, users might temporarily need more resources for a particular query. If so, they can use
the wlm_query_slot_count configuration setting to temporarily override the way slots are allocated
in a query queue. Slots are units of memory and CPU that are used to process queries. You might
override the slot count when you have occasional queries that take a lot of resources in the cluster,
such as when you perform a VACUUM operation in the database.

You might find that users often need to set wlm_query_slot_count for certain types of queries. If
so, consider adjusting the WLM configuration and giving users a queue that better suits the needs
of their queries. For more information about temporarily overriding the concurrency level by using
slot count, see wlm_query_slot_count.

Step 1: Override the concurrency level using wlm_query_slot_count

For the purposes of this tutorial, we run the same long-running SELECT query. We run it as the
adminwlm user using wlm_query_slot_count to increase the number of slots available for the
query.

To override the concurrency level using wlm_query_slot_count

1. Increase the limit on the query to make sure that you have enough time to query the
WLM_QUERY_STATE_VW view and see a result.

set wlm_query_slot_count to 3;
select avg(l.priceperticket*s.qtysold) from listing l, sales s where l.listid <40000;

2. Now, query WLM_QUERY_STATE_VW with the admin user to see how the query is running.

select * from wlm_query_state_vw;

The following is an example result.

Tutorial: Configuring manual WLM queues 810

Amazon Redshift Database Developer Guide

Notice that the slot count for the query is 3. This count means that the query is using all three
slots to process the query, allocating all of the resources in the queue to that query.

3. Now, run the following query.

select * from WLM_QUEUE_STATE_VW;

The following is an example result.

The wlm_query_slot_count configuration setting is valid for the current session only. If that
session expires, or another user runs a query, the WLM configuration is used.

4. Reset the slot count and rerun the test.

reset wlm_query_slot_count;
select avg(l.priceperticket*s.qtysold) from listing l, sales s where l.listid <40000;

The following are example results.

Step 2: Run queries from different sessions

Next, run queries from different sessions.

To run queries from different sessions

1. In RSQL window 1 and 2, run the following to use the test query group.

Tutorial: Configuring manual WLM queues 811

Amazon Redshift Database Developer Guide

set query_group to test;

2. In RSQL window 1, run the following long-running query.

select avg(l.priceperticket*s.qtysold) from listing l, sales s where l.listid <40000;

3. As the long-running query is still going in RSQL window 1, run the following. These commands
increase the slot count to use all the slots for the queue and then start running the long-running
query.

set wlm_query_slot_count to 2;
select avg(l.priceperticket*s.qtysold) from listing l, sales s where l.listid <40000;

4. Open a third RSQL window and query the views to see the results.

select * from wlm_queue_state_vw;
select * from wlm_query_state_vw;

The following are example results.

Notice that the first query is using one of the slots allocated to queue 1 to run the query. In
addition, notice that there is one query that is waiting in the queue (where queued is 1 and
state is QueuedWaiting). After the first query completes, the second one begins running. This
execution happens because both queries are routed to the test query group, and the second
query must wait for enough slots to begin processing.

Tutorial: Configuring manual WLM queues 812

Amazon Redshift Database Developer Guide

Section 5: Cleaning up your resources

Your cluster continues to accrue charges as long as it is running. When you have completed this
tutorial, return your environment to the previous state by following the steps in Find Additional
Resources and Reset Your Environment in Amazon Redshift Getting Started Guide.

For more information about WLM, see Implementing workload management.

Working with concurrency scaling

With the Concurrency Scaling feature, you can support thousands of concurrent users and
concurrent queries, with consistently fast query performance. When you turn on concurrency
scaling, Amazon Redshift automatically adds additional cluster capacity to process an increase in
both read and write queries. Users see the most current data, whether the queries run on the main
cluster or a concurrency-scaling cluster.

You can manage which queries are sent to the concurrency-scaling cluster by configuring WLM
queues. When you turn on concurrency scaling, eligible queries are sent to the concurrency-scaling
cluster instead of waiting in a queue.

You're charged for concurrency-scaling clusters only for the time they're actively running queries.
For more information about pricing, including how charges accrue and minimum charges, see
Concurrency Scaling pricing.

Concurrency scaling capabilities

When you turn on concurrency scaling for a WLM queue, it works for read operations, such as
dashboard queries. It also works for commonly used write operations, such as statements for data
ingestion and processing.

Concurrency scaling capabilities for write operations

Concurrency scaling supports frequently used write operations, such as extract, transform, and
load (ETL) statements. Concurrency scaling for write operations is especially useful when you want
to maintain consistent response times when your cluster receives a large number of requests. It
improves throughput for write operations contending for resources on the main cluster.

Concurrency scaling supports COPY, INSERT, DELETE, UPDATE, and CREATE TABLE AS (CTAS)
statements. Additionally, concurrency scaling supports materialized-view refresh for MVs that do
not use aggregations. Other data-manipulation language (DML) statements and data-definition

Concurrency scaling 813

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-clean-up-tasks.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-clean-up-tasks.html
https://aws.amazon.com/redshift/pricing/#Concurrency_Scaling_pricing

Amazon Redshift Database Developer Guide

language (DDL) statements aren't supported. When non-supported write statements, such as
CREATE without TABLE AS, are included in an explicit transaction before the supported write
statements, none of the write statements will run on concurrency-scaling clusters.

When you accrue credit for concurrency scaling, this credit accrual applies to both read and write
operations.

Limitations for concurrency scaling

The following are limitations for using Amazon Redshift concurrency scaling:

• It doesn't support queries on tables that use interleaved sort keys.

• It doesn't support queries on temporary tables.

• It doesn't support queries that access external resources that are protected by restrictive network
or virtual private cloud (VPC) configurations.

• It doesn't support queries that contain Python user-defined functions (UDFs) and Lambda UDFs.

• It doesn't support queries that access system tables, PostgreSQL catalog tables, or no-backup
tables.

• It doesn’t support COPY or UNLOAD queries that access an external resource when restrictive
IAM policy permissions are in place. This includes permissions applied either to the resource,
like an Amazon S3 bucket or DynamoDB table, or to the source. IAM sources can include the
following:

• aws:sourceVpc – A source VPC.

• aws:sourceVpce – A source VPC endpoint.

• aws:sourceIp – A source IP address.

In some cases, you might need to remove permissions that restrict either the resource or the
source, so that COPY and UNLOAD queries accessing the resource are sent to the concurrency-
scaling cluster.

For more information about resource policies, see Policy types in the AWS Identity and Access
Management user guide and Controlling access from VPC endpoints with bucket policies.

• Amazon Redshift concurrency scaling for write operations is not supported for DDL operations,
such as CREATE TABLE or ALTER TABLE.

• It doesn't support ANALYZE for the COPY command.

• It doesn't support write operations on a target table where DISTSTYLE is set to ALL.

Limitations for concurrency scaling 814

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policy-types
https://docs.aws.amazon.com/AmazonS3/latest/userguide/example-bucket-policies-vpc-endpoint.html

Amazon Redshift Database Developer Guide

• It doesn't support COPY from the following file formats:

• Parquet

• ORC

• It doesn't support write operations on tables with identity columns.

• Amazon Redshift supports concurrency scaling for write operations on only Amazon Redshift
RA3 nodes, specifically ra3.16xlarge, ra3.4xlarge, and ra3.xlplus. Concurrency scaling for write
operations isn't supported on other node types.

AWS Regions for concurrency scaling

Concurrency scaling is available in these AWS Regions:

• US East (N. Virginia) Region (us-east-1)

• US East (Ohio) Region (us-east-2)

• AWS GovCloud (US-East)

• US West (N. California) Region (us-west-1)

• US West (Oregon) Region (us-west-2)

• Asia Pacific (Mumbai) Region (ap-south-1)

• Asia Pacific (Seoul) Region (ap-northeast-2)

• Asia Pacific (Singapore) Region (ap-southeast-1)

• Asia Pacific (Sydney) Region (ap-southeast-2)

• Asia Pacific (Tokyo) Region (ap-northeast-1)

• Canada (Central) Region (ca-central-1)

• Europe (Frankfurt) Region (eu-central-1)

• Europe (Ireland) Region (eu-west-1)

• Europe (London) Region (eu-west-2)

• Europe (Paris) Region (eu-west-3)

• Europe (Stockholm) Region (eu-north-1)

• South America (São Paulo) Region (sa-east-1)

Regions for concurrency scaling 815

Amazon Redshift Database Developer Guide

Concurrency scaling candidates

Queries are routed to the concurrency scaling cluster only when the main cluster meets the
following requirements:

• EC2-VPC platform.

• Node type must be dc2.8xlarge, dc2.large, ra3.xlplus, ra3.4xlarge, or ra3.16xlarge. Concurrency
scaling for write operations is supported on only the following Amazon Redshift RA3 nodes:
ra3.16xlarge, ra3.4xlarge, and ra3.xlplus.

• Maximum of 32 compute nodes for clusters with ra3.xlplus, ra3.4xlarge, or ra3.16xlarge node
types. In addition, the number of nodes of the main cluster can't be larger than 32 nodes when
the cluster was originally created. For example, even if a cluster currently has 20 nodes, but was
originally created with 40, it does not meet the requirements for concurrency scaling. Conversely,
if a DC2 cluster currently has 40 nodes, but was originally created with 20, it does meet the
requirements for concurrency scaling.

• Not a single-node cluster.

Configuring concurrency scaling queues

You route queries to concurrency scaling clusters by enabling a workload manager (WLM) queue
as a concurrency scaling queue. To turn on concurrency scaling for a queue, set the Concurrency
Scaling mode value to auto.

When the number of queries routed to a concurrency scaling queue exceeds the queue's configured
concurrency, eligible queries are sent to the concurrency scaling cluster. When slots become
available, queries are run on the main cluster. The number of queues is limited only by the number
of queues permitted per cluster. As with any WLM queue, you route queries to a concurrency
scaling queue based on user groups or by labeling queries with query group labels. You can also
route queries by defining WLM query monitoring rules. For example, you might route all queries
that take longer than 5 seconds to a concurrency scaling queue.

The default number of concurrency scaling clusters is one. The number of concurrency scaling
clusters that can be used is controlled by max_concurrency_scaling_clusters.

Monitoring concurrency scaling

You can see whether a query is running on the main cluster or a concurrency scaling cluster by
navigating to Cluster in the Amazon Redshift console and choosing a cluster. Then choose the

Concurrency scaling candidates 816

Amazon Redshift Database Developer Guide

Query monitoring tab and Workload concurrency to view information about running queries and
queued queries.

To find execution times, query the STL_QUERY table and filter on the
concurrency_scaling_status column. The following query compares the queue time and
execution time for queries run on the concurrency scaling cluster and queries run on the main
cluster.

SELECT w.service_class AS queue
, CASE WHEN q.concurrency_scaling_status = 1 THEN 'concurrency scaling cluster' ELSE
 'main cluster' END as concurrency_scaling_status
, COUNT(*) AS queries
, SUM(q.aborted) AS aborted
, SUM(ROUND(total_queue_time::NUMERIC / 1000000,2)) AS queue_secs
, SUM(ROUND(total_exec_time::NUMERIC / 1000000,2)) AS exec_secs
FROM stl_query q
JOIN stl_wlm_query w
USING (userid,query)
WHERE q.userid > 1
AND q.starttime > '2019-01-04 16:38:00'
AND q.endtime < '2019-01-04 17:40:00'
GROUP BY 1,2
ORDER BY 1,2;

Adjust the starttime and endtime values according to your requirements.

Concurrency scaling system views

A set of system views with the prefix SVCS provides details from the system log tables about
queries on both the main and concurrency scaling clusters.

The following views have similar information as the corresponding STL views or SVL views:

• SVCS_ALERT_EVENT_LOG

• SVCS_COMPILE

• SVCS_EXPLAIN

• SVCS_PLAN_INFO

• SVCS_QUERY_SUMMARY

• SVCS_STREAM_SEGS

Concurrency scaling system views 817

Amazon Redshift Database Developer Guide

The following views are specific to concurrency scaling.

• SVCS_CONCURRENCY_SCALING_USAGE

For more information about concurrency scaling, see the following topics in the Amazon Redshift
Management Guide.

• Viewing Concurrency Scaling Data

• Viewing Cluster Performance During Query Execution

• Viewing Query Details

Working with short query acceleration

Short query acceleration (SQA) prioritizes selected short-running queries ahead of longer-running
queries. SQA runs short-running queries in a dedicated space, so that SQA queries aren't forced to
wait in queues behind longer queries. SQA only prioritizes queries that are short-running and are in
a user-defined queue. With SQA, short-running queries begin running more quickly and users see
results sooner.

If you enable SQA, you can reduce workload management (WLM) queues that are dedicated to
running short queries. In addition, long-running queries don't need to contend with short queries
for slots in a queue, so you can configure your WLM queues to use fewer query slots. When you use
lower concurrency, query throughput is increased and overall system performance is improved for
most workloads.

CREATE TABLE AS (CTAS) statements and read-only queries, such as SELECT statements, are
eligible for SQA.

Amazon Redshift uses a machine learning algorithm to analyze each eligible query and predict
the query's execution time. By default, WLM dynamically assigns a value for the SQA maximum
runtime based on analysis of your cluster's workload. Alternatively, you can specify a fixed value
of 1–20 seconds. If the query's predicted run time is less than the defined or dynamically assigned
SQA maximum runtime and the query is waiting in a WLM queue, SQA separates the query from
the WLM queues and schedules it for priority execution. If a query runs longer than the SQA
maximum runtime, WLM moves the query to the first matching WLM queue based on the WLM
queue assignment rules. Over time, predictions improve as SQA learns from your query patterns.

Short query acceleration 818

https://docs.aws.amazon.com/redshift/latest/mgmt/performance-metrics-concurrency-scaling.html
https://docs.aws.amazon.com/redshift/latest/mgmt/performance-metrics-query-cluster.html
https://docs.aws.amazon.com/redshift/latest/mgmt/performance-metrics-query-execution-details.html

Amazon Redshift Database Developer Guide

SQA is enabled by default in the default parameter group and for all new parameter groups. To
disable SQA in the Amazon Redshift console, edit the WLM configuration for a parameter group
and deselect Enable short query acceleration. As a best practice, we recommend using a WLM
query slot count of 15 or fewer to maintain optimum overall system performance. For information
about modifying WLM configurations, see Configuring Workload Management in the Amazon
Redshift Management Guide.

Maximum runtime for short queries

When you enable SQA, WLM sets the maximum runtime for short queries to dynamic by default.
We recommend keeping the dynamic setting for SQA maximum runtime. You can override the
default setting by specifying a fixed value of 1–20 seconds.

In some cases, you might consider using different values for the SQA maximum runtime values
to improve your system performance. In such cases, analyze your workload to find the maximum
execution time for most of your short-running queries. The following query returns the maximum
runtime for queries at about the 70th percentile.

select least(greatest(percentile_cont(0.7)
within group (order by total_exec_time / 1000000) + 2, 2), 20)
from stl_wlm_query
where userid >= 100
and final_state = 'Completed';

After you identify a maximum runtime value that works well for your workload, you don't need to
change it unless your workload changes significantly.

Monitoring SQA

To check whether SQA is enabled, run the following query. If the query returns a row, then SQA is
enabled.

select * from stv_wlm_service_class_config
where service_class = 14;

The following query shows the number of queries that went through each query queue (service
class). It also shows the average execution time, the number of queries with wait time at the 90th
percentile, and the average wait time. SQA queries use in service class 14.

Maximum SQA runtime 819

https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html

Amazon Redshift Database Developer Guide

select final_state, service_class, count(*), avg(total_exec_time),
percentile_cont(0.9) within group (order by total_queue_time), avg(total_queue_time)
from stl_wlm_query where userid >= 100 group by 1,2 order by 2,1;

To find which queries were picked up by SQA and completed successfully, run the following query.

select a.queue_start_time, a.total_exec_time, label, trim(querytxt)
from stl_wlm_query a, stl_query b
where a.query = b.query and a.service_class = 14 and a.final_state = 'Completed'
order by b.query desc limit 5;

To find queries that SQA picked up but that timed out, run the following query.

select a.queue_start_time, a.total_exec_time, label, trim(querytxt)
from stl_wlm_query a, stl_query b
where a.query = b.query and a.service_class = 14 and a.final_state = 'Evicted'
order by b.query desc limit 5;

For more information about evicted queries and, more generally, rule-based actions that can be
taken on queries, see WLM query monitoring rules.

WLM queue assignment rules

When a user runs a query, WLM assigns the query to the first matching queue, based on the WLM
queue assignment rules:

1. If a user is logged in as a superuser and runs a query in the query group labeled superuser, the
query is assigned to the superuser queue.

2. If a user is part of a role, belongs to a listed user group, or runs a query within a listed query
group, the query is assigned to the first matching queue.

3. If a query doesn't meet any criteria, the query is assigned to the default queue, which is the last
queue defined in the WLM configuration.

The following diagram illustrates how these rules work.

WLM queue assignment rules 820

Amazon Redshift Database Developer Guide

WLM queue assignment rules 821

Amazon Redshift Database Developer Guide

Queue assignments example

The following table shows a WLM configuration with the superuser queue and four user-defined
queues.

Queue Concurrency User Roles User Groups Query Groups

Superuser 1 superuser

1 5 test_db_rw UG_1

2 5 QG_B

3 5 UG_2 QG_C

Default 5

The following illustration shows how queries are assigned to the queues in the previous table
according to user groups and query groups. For information about how to assign queries to user
groups and query groups at runtime, see Assigning queries to queues later in this section.

Queue assignments example 822

Amazon Redshift Database Developer Guide

In this example, WLM makes the following assignments:

Queue assignments example 823

Amazon Redshift Database Developer Guide

1. The first set of statements shows three ways to assign users to user groups. The statements are
run by the user adminuser, which is not a member of a user group listed in any WLM queue. No
query group is set, so the statements are routed to the default queue.

2. The user adminuser is a superuser and the query group is set to 'superuser', so the query is
assigned to the superuser queue.

3. The user test_user is assigned the role test_db_rw listed in queue 1, so the query is assigned
to queue 1.

4. The user admin1 is a member of the user group listed in queue 1, so the query is assigned to
queue 1.

5. The user vp1 is not a member of any listed user group. The query group is set to 'QG_B', so the
query is assigned to queue 2.

6. The user analyst1 is a member of the user group listed in queue 3, but 'QG_B' matches queue
2, so the query is assigned to queue 2.

7. The user ralph is not a member of any listed user group and the query group was reset, so
there is no matching queue. The query is assigned to the default queue.

Assigning queries to queues

The following examples assign queries to queues according to user roles, user groups, and query
groups.

Assigning queries to queues based on user roles

If a user is assigned to a role and that role is attached to a queue, then queries run by that user are
assigned to that queue. The following example creates a user role named sales_rw and assigns
the user test_user to that role.

create role sales_rw;
grant role sales_rw to test_user;

You can also combine permissions of two roles by explicitly granting one role to another role.
Assigning a nested role to a user grants permissions of both roles to the user.

create role sales_rw;
create role sales_ro;
grant role sales_ro to role sales_rw;

Assigning queries to queues 824

Amazon Redshift Database Developer Guide

grant role sales_rw to test_user;

To see the list of users that have been granted roles in the cluster, query the SVV_USER_GRANTS
table. To see the list of roles that have been granted roles in the cluster, query the
SVV_ROLE_GRANTS table.

select * from svv_user_grants;
select * from svv_role_grants;

Assigning queries to queues based on user groups

If a user group name is listed in a queue definition, queries run by members of that user group are
assigned to the corresponding queue. The following example creates user groups and adds users to
groups by using the SQL commands CREATE USER, CREATE GROUP, and ALTER GROUP.

create group admin_group with user admin246, admin135, sec555;
create user vp1234 in group ad_hoc_group password 'vpPass1234';
alter group admin_group add user analyst44, analyst45, analyst46;

Assigning a query to a query group

You can assign a query to a queue at runtime by assigning your query to the appropriate query
group. Use the SET command to begin a query group.

SET query_group TO group_label

Here, group_label is a query group label that is listed in the WLM configuration.

All queries that you run after the SET query_group command run as members of the specified
query group until you either reset the query group or end your current login session. For
information about setting and resetting Amazon Redshift objects, see SET and RESET in the SQL
Command Reference.

The query group labels that you specify must be included in the current WLM configuration;
otherwise, the SET query_group command has no effect on query queues.

The label defined in the TO clause is captured in the query logs so that you can use the label
for troubleshooting. For information about the query_group configuration parameter, see
query_group in the Configuration Reference.

Assigning queries to queues based on user groups 825

Amazon Redshift Database Developer Guide

The following example runs two queries as part of the query group 'priority' and then resets the
query group.

set query_group to 'priority';
select count(*)from stv_blocklist;
select query, elapsed, substring from svl_qlog order by query desc limit 5;
reset query_group;

Assigning queries to the superuser queue

To assign a query to the superuser queue, log on to Amazon Redshift as a superuser and then run
the query in the superuser group. When you are done, reset the query group so that subsequent
queries do not run in the superuser queue.

The following example assigns two commands to run in the superuser queue.

set query_group to 'superuser';

analyze;
vacuum;
reset query_group;

To view a list of superusers, query the PG_USER system catalog table.

select * from pg_user where usesuper = 'true';

WLM dynamic and static configuration properties

The WLM configuration properties are either dynamic or static. You can apply dynamic properties
to the database without a cluster reboot, but static properties require a cluster reboot for changes
to take effect. However, if you change dynamic and static properties at the same time, then
you must reboot the cluster for all the property changes to take effect. This is true whether the
changed properties are dynamic or static.

While dynamic properties are being applied, your cluster status is modifying. Switching between
automatic WLM and manual WLM is a static change and requires a cluster reboot to take effect.

The following table indicates which WLM properties are dynamic or static when using automatic
WLM or manual WLM.

Assigning queries to the superuser queue 826

Amazon Redshift Database Developer Guide

WLM Property Automatic WLM Manual WLM

Query groups Dynamic Static

Query group wildcard Dynamic Static

User groups Dynamic Static

User group wildcard Dynamic Static

User roles Dynamic Static

User role wildcard Dynamic Static

Concurrency on main Not applicable Dynamic

Concurrency Scaling mode Dynamic Dynamic

Enable short query accelerat
ion

Not applicable Dynamic

Maximum runtime for short
queries

Dynamic Dynamic

Percent of memory to use Not applicable Dynamic

Timeout Not applicable Dynamic

Priority Dynamic Not applicable

Adding or removing queues Dynamic Static

If you modify a query monitoring rule (QMR), the change happens automatically without the need
to modify the cluster.

Note

When using manual WLM, if the timeout value is changed, the new value is applied to
any query that begins running after the value is changed. If the concurrency or percent
of memory to use are changed, Amazon Redshift changes to the new configuration

Dynamic and static properties 827

Amazon Redshift Database Developer Guide

dynamically. Thus, currently running queries aren't affected by the change. For more
information, see WLM Dynamic Memory Allocation.

Topics

• WLM dynamic memory allocation

• Dynamic WLM example

WLM dynamic memory allocation

In each queue, WLM creates a number of query slots equal to the queue's concurrency level. The
amount of memory allocated to a query slot equals the percentage of memory allocated to the
queue divided by the slot count. If you change the memory allocation or concurrency, Amazon
Redshift dynamically manages the transition to the new WLM configuration. Thus, active queries
can run to completion using the currently allocated amount of memory. At the same time, Amazon
Redshift ensures that total memory usage never exceeds 100 percent of available memory.

The workload manager uses the following process to manage the transition:

1. WLM recalculates the memory allocation for each new query slot.

2. If a query slot is not actively being used by a running query, WLM removes the slot, which makes
that memory available for new slots.

3. If a query slot is actively in use, WLM waits for the query to finish.

4. As active queries complete, the empty slots are removed and the associated memory is freed.

5. As enough memory becomes available to add one or more slots, new slots are added.

6. When all queries that were running at the time of the change finish, the slot count equals the
new concurrency level, and the transition to the new WLM configuration is complete.

In effect, queries that are running when the change takes place continue to use the original
memory allocation. Queries that are queued when the change takes place are routed to new slots
as they become available.

If the WLM dynamic properties are changed during the transition process, WLM immediately begins
to transition to the new configuration, starting from the current state. To view the status of the
transition, query the STV_WLM_SERVICE_CLASS_CONFIG system table.

WLM dynamic memory allocation 828

https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-dynamic-memory-allocation.html

Amazon Redshift Database Developer Guide

Dynamic WLM example

Suppose that your cluster WLM is configured with two queues, using the following dynamic
properties.

Queue Concurrency % Memory to Use

1 4 50%

2 4 50%

Now suppose that your cluster has 200 GB of memory available for query processing. (This number
is arbitrary and used for illustration only.) As the following equation shows, each slot is allocated
25 GB.

(200 GB * 50%) / 4 slots = 25 GB

Next, you change your WLM to use the following dynamic properties.

Queue Concurrency % Memory to Use

1 3 75%

2 4 25%

As the following equation shows, the new memory allocation for each slot in queue 1 is 50 GB.

(200 GB * 75%) / 3 slots = 50 GB

Suppose that queries A1, A2, A3, and A4 are running when the new configuration is applied, and
queries B1, B2, B3, and B4 are queued. WLM dynamically reconfigures the query slots as follows.

Step Queries
Running

Current Slot
Count

Target Slot
Count

Allocated
Memory

Available
Memory

1 A1, A2, A3,
A4

4 0 100 GB 50 GB

Dynamic WLM example 829

Amazon Redshift Database Developer Guide

Step Queries
Running

Current Slot
Count

Target Slot
Count

Allocated
Memory

Available
Memory

2 A2, A3, A4 3 0 75 GB 75 GB

3 A3, A4 2 0 50 GB 100 GB

4 A3, A4, B1 2 1 100 GB 50 GB

5 A4, B1 1 1 75 GB 75 GB

6 A4, B1, B2 1 2 125 GB 25 GB

7 B1, B2 0 2 100 GB 50 GB

8 B1, B2, B3 0 3 150 GB 0 GB

1. WLM recalculates the memory allocation for each query slot. Originally, queue 1 was allocated
100 GB. The new queue has a total allocation of 150 GB, so the new queue immediately has 50
GB available. Queue 1 is now using four slots, and the new concurrency level is three slots, so no
new slots are added.

2. When one query finishes, the slot is removed and 25 GB is freed. Queue 1 now has three slots
and 75 GB of available memory. The new configuration needs 50 GB for each new slot, but the
new concurrency level is three slots, so no new slots are added.

3. When a second query finishes, the slot is removed, and 25 GB is freed. Queue 1 now has two
slots and 100 GB of free memory.

4. A new slot is added using 50 GB of the free memory. Queue 1 now has three slots, and 50 GB
free memory. Queued queries can now be routed to the new slot.

5. When a third query finishes, the slot is removed, and 25 GB is freed. Queue 1 now has two slots,
and 75 GB of free memory.

6. A new slot is added using 50 GB of the free memory. Queue 1 now has three slots, and 25 GB
free memory. Queued queries can now be routed to the new slot.

7. When the fourth query finishes, the slot is removed, and 25 GB is freed. Queue 1 now has two
slots and 50 GB of free memory.

8. A new slot is added using the 50 GB of free memory. Queue 1 now has three slots with 50 GB
each and all available memory has been allocated.

Dynamic WLM example 830

Amazon Redshift Database Developer Guide

The transition is complete and all query slots are available to queued queries.

WLM query monitoring rules

In Amazon Redshift workload management (WLM), query monitoring rules define metrics-based
performance boundaries for WLM queues and specify what action to take when a query goes
beyond those boundaries. For example, for a queue dedicated to short running queries, you might
create a rule that cancels queries that run for more than 60 seconds. To track poorly designed
queries, you might have another rule that logs queries that contain nested loops.

You define query monitoring rules as part of your workload management (WLM) configuration. You
can define up to 25 rules for each queue, with a limit of 25 rules for all queues. Each rule includes
up to three conditions, or predicates, and one action. A predicate consists of a metric, a comparison
condition (=, <, or >), and a value. If all of the predicates for any rule are met, that rule's action is
triggered. Possible rule actions are log, hop, and abort, as discussed following.

The rules in a given queue apply only to queries running in that queue. A rule is independent of
other rules.

WLM evaluates metrics every 10 seconds. If more than one rule is triggered during the same
period, WLM initiates the most severe action—abort, then hop, then log. If the action is hop or
abort, the action is logged and the query is evicted from the queue. If the action is log, the query
continues to run in the queue. WLM initiates only one log action per query per rule. If the queue
contains other rules, those rules remain in effect. If the action is hop and the query is routed to
another queue, the rules for the new queue apply. For more information about query monitoring
and tracking actions taken on specific queries, see the collection of samples at Working with short
query acceleration.

When all of a rule's predicates are met, WLM writes a row to the STL_WLM_RULE_ACTION
system table. In addition, Amazon Redshift records query metrics for currently running queries to
STV_QUERY_METRICS. Metrics for completed queries are stored in STL_QUERY_METRICS.

Defining a query monitoring rule

You create query monitoring rules as part of your WLM configuration, which you define as part of
your cluster's parameter group definition.

You can create rules using the AWS Management Console or programmatically using JSON.

Query monitoring rules 831

Amazon Redshift Database Developer Guide

Note

If you choose to create rules programmatically, we strongly recommend using the console
to generate the JSON that you include in the parameter group definition. For more
information, see Creating or modifying a query monitoring rule using the console and
Configuring Parameter Values Using the AWS CLI in the Amazon Redshift Management
Guide.

To define a query monitoring rule, you specify the following elements:

• A rule name – Rule names must be unique within the WLM configuration. Rule names can be up
to 32 alphanumeric characters or underscores, and can't contain spaces or quotation marks. You
can have up to 25 rules per queue, and the total limit for all queues is 25 rules.

• One or more predicates – You can have up to three predicates per rule. If all the predicates for
any rule are met, the associated action is triggered. A predicate is defined by a metric name, an
operator (=, <, or >), and a value. An example is query_cpu_time > 100000. For a list of
metrics and examples of values for different metrics, see Query monitoring metrics for Amazon
Redshift provisioned following in this section.

• An action – If more than one rule is triggered, WLM chooses the rule with the most severe action.
Possible actions, in ascending order of severity, are:

• Log – Record information about the query in the STL_WLM_RULE_ACTION system table. Use
the Log action when you want to only write a log record. WLM creates at most one log per
query, per rule. Following a log action, other rules remain in force and WLM continues to
monitor the query.

• Hop (only available with manual WLM) – Log the action and hop the query to the next
matching queue. If there isn't another matching queue, the query is canceled. QMR hops only
CREATE TABLE AS (CTAS) statements and read-only queries, such as SELECT statements. For
more information, see WLM query queue hopping.

• Abort – Log the action and cancel the query. QMR doesn't stop COPY statements and
maintenance operations, such as ANALYZE and VACUUM.

• Change priority (only available with automatic WLM) – Change the priority of a query.

Defining a query monitor rule 832

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html#parameter-group-modify-qmr-console
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html#configure-parameters-using-the-cli
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_AS.html

Amazon Redshift Database Developer Guide

To limit the runtime of queries, we recommend creating a query monitoring rule instead of using
WLM timeout. For example, you can set max_execution_time to 50,000 milliseconds as shown in
the following JSON snippet.

"max_execution_time": 50000

But we recommend instead that you define an equivalent query monitoring rule that sets
query_execution_time to 50 seconds as shown in the following JSON snippet.

"rules":
[
 {
 "rule_name": "rule_query_execution",
 "predicate": [
 {
 "metric_name": "query_execution_time",
 "operator": ">",
 "value": 50
 }
],
 "action": "abort"
 }
]

For steps to create or modify a query monitoring rule, see Creating or modifying a query
monitoring rule using the console and Properties in the wlm_json_configuration Parameter in the
Amazon Redshift Management Guide.

You can find more information about query monitoring rules in the following topics:

• Query monitoring metrics for Amazon Redshift provisioned

• Query monitoring rules templates

• Creating a Rule Using the Console

• Configuring Workload Management

• System tables and views for query monitoring rules

Defining a query monitor rule 833

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html#parameter-group-modify-qmr-console
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html#parameter-group-modify-qmr-console
https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html#wlm-json-config-properties
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-parameter-groups-console.html#parameter-group-modify-qmr-console
https://docs.aws.amazon.com/redshift/latest/mgmt/workload-mgmt-config.html

Amazon Redshift Database Developer Guide

Query monitoring metrics for Amazon Redshift provisioned

The following table describes the metrics used in query monitoring rules. (These metrics are
distinct from the metrics stored in the STV_QUERY_METRICS and STL_QUERY_METRICS system
tables.)

For a given metric, the performance threshold is tracked either at the query level or the segment
level. For more information about segments and steps, see Query planning and execution
workflow.

Note

The WLM timeout parameter is distinct from query monitoring rules.

Metric Name Description

Query CPU time query_cpu_time CPU time used by the query, in seconds. CPU
time is distinct from Query execution
time.

Valid values are 0–999,999.

Blocks read query_blo
cks_read

Number of 1 MB data blocks read by the
query.

Valid values are 0–1,048,575.

Scan row count scan_row_count The number of rows in a scan step. The row
count is the total number of rows emitted
before filtering rows marked for deletion
(ghost rows) and before applying user-defined
query filters.

Valid values are 0–999,999,999,999,999.

Query execution time query_exe
cution_time

Elapsed execution time for a query, in seconds.
Execution time doesn't include time spent
waiting in a queue.

Query monitoring metrics for Amazon Redshift provisioned 834

Amazon Redshift Database Developer Guide

Metric Name Description

Valid values are 0–86,399.

Query queue time query_que
ue_time

Time spent waiting in a queue, in seconds.

Valid values are 0–86,399.

CPU usage query_cpu
_usage_percent

Percent of CPU capacity used by the query.

Valid values are 0–6,399.

Memory to disk query_tem
p_blocks_
to_disk

Temporary disk space used to write intermedi
ate results, in 1 MB blocks.

Valid values are 0–319,815,679.

CPU skew cpu_skew The ratio of maximum CPU usage for any slice
to average CPU usage for all slices. This metric
is defined at the segment level.

Valid values are 0–99.

I/O skew io_skew The ratio of maximum blocks read (I/O) for
any slice to average blocks read for all slices.
This metric is defined at the segment level.

Valid values are 0–99.

Rows joined join_row_count The number of rows processed in a join step.

Valid values are 0–999,999,999,999,999.

Nested loop join row
count

nested_lo
op_join_r
ow_count

The number or rows in a nested loop join.

Valid values are 0–999,999,999,999,999.

Return row count return_ro
w_count

The number of rows returned by the query.

Valid values are 0–999,999,999,999,999.

Query monitoring metrics for Amazon Redshift provisioned 835

Amazon Redshift Database Developer Guide

Metric Name Description

Segment execution
time

segment_e
xecution_time

Elapsed execution time for a single segment,
in seconds. To avoid or reduce sampling errors,
include segment_execution_time > 10
in your rules.

Valid values are 0–86,388.

Spectrum scan row
count

spectrum_
scan_row_count

The number of rows of data in Amazon S3
scanned by an Amazon Redshift Spectrum
query.

Valid values are 0–999,999,999,999,999.

Spectrum scan size spectrum_
scan_size_mb

The size of data in Amazon S3, in MB, scanned
by an Amazon Redshift Spectrum query.

Valid values are 0–999,999,999,999,999.

Query priority query_priority The priority of the query.

Valid values are HIGHEST, HIGH, NORMAL, LOW,
and LOWEST. When comparing query_pri
ority using greater than (>) and less than
(<) operators, HIGHEST is greater than HIGH,
HIGH is greater than NORMAL, and so on.

Note

• The hop action is not supported with the query_queue_time predicate. That is, rules
defined to hop when a query_queue_time predicate is met are ignored.

• Short segment execution times can result in sampling errors with some metrics,
such as io_skew and query_cpu_usage_percent. To avoid or reduce sampling
errors, include segment execution time in your rules. A good starting point is
segment_execution_time > 10.

Query monitoring metrics for Amazon Redshift provisioned 836

Amazon Redshift Database Developer Guide

The SVL_QUERY_METRICS view shows the metrics for completed queries. The
SVL_QUERY_METRICS_SUMMARY view shows the maximum values of metrics for completed
queries. Use the values in these views as an aid to determine threshold values for defining query
monitoring rules.

Query monitoring metrics for Amazon Redshift Serverless

The following table describes the metrics used in query monitoring rules for Amazon Redshift
Serverless.

Metric Name Description

Query CPU time max_query
_cpu_time

CPU time used by the query, in seconds. CPU
time is distinct from Query execution
time.

Valid values are 0–999,999.

Blocks read max_query
_blocks_read

Number of 1 MB data blocks read by the
query.

Valid values are 0–1,048,575.

Scan row count max_scan_
row_count

The number of rows in a scan step. The row
count is the total number of rows emitted
before filtering rows marked for deletion
(ghost rows) and before applying user-defined
query filters.

Valid values are 0–999,999,999,999,999.

Query execution time max_query_executio
n_time

Elapsed execution time for a query, in seconds.
Execution time doesn't include time spent
waiting in a queue. If a query exceeds the set
execution time, Amazon Redshift Serverless
stops the query.

Valid values are 0–86,399.

Query monitoring metrics for Amazon Redshift Serverless 837

Amazon Redshift Database Developer Guide

Metric Name Description

Query queue time max_query
_queue_time

Time spent waiting in a queue, in seconds.

Valid values are 0–86,399.

CPU usage max_query
_cpu_usag
e_percent

Percent of CPU capacity used by the query.

Valid values are 0–6,399.

Memory to disk max_query
_temp_blo
cks_to_disk

Temporary disk space used to write intermedi
ate results, in 1 MB blocks.

Valid values are 0–319,815,679.

Rows joined max_join_
row_count

The number of rows processed in a join step.

Valid values are 0–999,999,999,999,999.

Nested loop join row
count

max_neste
d_loop_jo
in_row_count

The number or rows in a nested loop join.

Valid values are 0–999,999,999,999,999.

Note

• The hop action is not supported with the max_query_queue_time predicate. That is,
rules defined to hop when a max_query_queue_time predicate is met are ignored.

• Short segment execution times can result in sampling errors with some metrics, such as
max_io_skew and max_query_cpu_usage_percent.

Query monitoring rules templates

When you add a rule using the Amazon Redshift console, you can choose to create a rule from a
predefined template. Amazon Redshift creates a new rule with a set of predicates and populates
the predicates with default values. The default action is log. You can modify the predicates and
action to meet your use case.

Query monitoring rules templates 838

Amazon Redshift Database Developer Guide

The following table lists available templates.

Template Name Predicates Description

Nested loop join nested_lo
op_join_r
ow_count > 100

A nested loop join might indicate an incomplet
e join predicate, which often results in a very
large return set (a Cartesian product). Use a
low row count to find a potentially runaway
query early.

Query returns a high
number of rows

return_ro
w_count >
1000000

If you dedicate a queue to simple, short
running queries, you might include a rule that
finds queries returning a high row count. The
template uses a default of 1 million rows. For
some systems, you might consider one million
rows to be high, or in a larger system, a billion
or more rows might be high.

Join with a high
number of rows

join_row_count
> 1000000000

A join step that involves an unusually high
number of rows might indicate a need for
more restrictive filters. The template uses a
default of 1 billion rows. For an ad hoc (one-
time) queue that's intended for quick, simple
queries, you might use a lower number.

High disk usage when
writing intermediate
results

query_tem
p_blocks_
to_disk >
100000

When currently executing queries use more
than the available system RAM, the query
execution engine writes intermediate results
to disk (spilled memory). Typically, this
condition is the result of a rogue query, which
usually is also the query that uses the most
disk space. The acceptable threshold for disk
usage varies based on the cluster node type
and number of nodes. The template uses a
default of 100,000 blocks, or 100 GB. For a
small cluster, you might use a lower number.

Query monitoring rules templates 839

Amazon Redshift Database Developer Guide

Template Name Predicates Description

Long running query
with high I/O skew

segment_e
xecution_time
> 120 and io_skew
> 1.30

I/O skew occurs when one node slice has a
much higher I/O rate than the other slices.
As a starting point, a skew of 1.30 (1.3 times
average) is considered high. High I/O skew is
not always a problem, but when combined
with a long running query time, it might
indicate a problem with the distribution style
or sort key.

System tables and views for query monitoring rules

When all of a rule's predicates are met, WLM writes a row to the STL_WLM_RULE_ACTION system
table. This row contains details for the query that triggered the rule and the resulting action.

In addition, Amazon Redshift records query metrics the following system tables and views.

• The STV_QUERY_METRICS table displays the metrics for currently running queries.

• The STL_QUERY_METRICS table records the metrics for completed queries.

• The SVL_QUERY_METRICS view shows the metrics for completed queries.

• The SVL_QUERY_METRICS_SUMMARY view shows the maximum values of metrics for completed
queries.

WLM system tables and views

WLM configures query queues according to WLM service classes, which are internally defined.
Amazon Redshift creates several internal queues according to these service classes along with
the queues defined in the WLM configuration. The terms queue and service class are often used
interchangeably in the system tables. The superuser queue uses service class 5. User-defined
queues use service class 6 and greater.

You can view the status of queries, queues, and service classes by using WLM-specific system
tables. Query the following system tables to do the following:

• View which queries are being tracked and what resources are allocated by the workload manager.

System tables and views for query monitoring rules 840

Amazon Redshift Database Developer Guide

• See which queue a query has been assigned to.

• View the status of a query that is currently being tracked by the workload manager.

Table Name Description

STL_WLM_ERROR Contains a log of WLM-related error events.

STL_WLM_QUERY Lists queries that are being tracked by WLM.

STV_WLM_CLASSIFICA
TION_CONFIG

Shows the current classification rules for WLM.

STV_WLM_QUERY_QUEU
E_STATE

Records the current state of the query queues.

STV_WLM_QUERY_STATE Provides a snapshot of the current state of queries that are
being tracked by WLM.

STV_WLM_QUERY_TASK_STATE Contains the current state of query tasks.

STV_WLM_SERVICE_CL
ASS_CONFIG

Records the service class configurations for WLM.

STV_WLM_SERVICE_CL
ASS_STATE

Contains the current state of the service classes.

STL_WLM_RULE_ACTION Records details about actions resulting from WLM query
monitoring rules associated with user-defined queues.

STV_WLM_QMR_CONFIG Records the configuration for WLM query monitoring rules
(QMR).

You use the task ID to track a query in the system tables. The following example shows how to
obtain the task ID of the most recently submitted user query:

select task from stl_wlm_query where exec_start_time =(select max(exec_start_time) from
 stl_wlm_query);

WLM system tables and views 841

Amazon Redshift Database Developer Guide

task

137
(1 row)

The following example displays queries that are currently executing or waiting in various service
classes (queues). This query is useful in tracking the overall concurrent workload for Amazon
Redshift:

select * from stv_wlm_query_state order by query;

xid |task|query|service_| wlm_start_ | state |queue_ | exec_
 | | |class | time | |time | time
----+----+-----+--------+-------------+---------+-------+--------
2645| 84 | 98 | 3 | 2010-10-... |Returning| 0 | 3438369
2650| 85 | 100 | 3 | 2010-10-... |Waiting | 0 | 1645879
2660| 87 | 101 | 2 | 2010-10-... |Executing| 0 | 916046
2661| 88 | 102 | 1 | 2010-10-... |Executing| 0 | 13291
(4 rows)

WLM service class IDs

The following table lists the IDs assigned to service classes.

ID Service class

1–4 Reserved for system use.

5 Used by the superuser queue.

6–13 Used by manual WLM queues that are defined in the WLM
configuration.

14 Used by short query acceleration.

15 Reserved for maintenance activities run by Amazon
Redshift.

100–107 Used by automatic WLM queue when auto_wlm is true.

WLM service class IDs 842

Amazon Redshift Database Developer Guide

Managing database security

Topics

• Amazon Redshift security overview

• Default database user permissions

• Superusers

• Users

• Groups

• Schemas

• Role-based access control (RBAC)

• Row-level security

• Metadata security

• Dynamic data masking

• Scoped permissions

You manage database security by controlling which users have access to which database objects.

Access to database objects depends on the permissions that you grant to users or groups. The
following guidelines summarize how database security works:

• By default, permissions are granted only to the object owner.

• Amazon Redshift database users are named users that can connect to a database. A user is
granted permissions in two ways: explicitly, by having those permissions assigned directly to the
account, or implicitly, by being a member of a group that is granted permissions.

• Groups are collections of users that can be collectively assigned permissions for streamlined
security maintenance.

• Schemas are collections of database tables and other database objects. Schemas are similar to
file system directories, except that schemas cannot be nested. Users can be granted access to a
single schema or to multiple schemas.

Additionally, Amazon Redshift employs the following features to give you finer control over which
users have access to which database objects:

843

Amazon Redshift Database Developer Guide

• Role-based access control (RBAC) lets you assign permissions to roles which you can then apply
to users, letting you control permissions for large groups of users. Unlike groups, roles can inherit
permissions from other roles.

Row-level security (RLS) lets you define policies that restrict access to rows of your choosing,
then apply those policies to users or groups.

Dynamic data masking (DDM) further protects your data by transforming it at query runtime so
that you can allow users access to data without exposing sensitive details.

For examples of security implementation, see Example for controlling user and group access.

For more information about protecting your data, see Security in Amazon Redshift in the Amazon
Redshift Management Guide.

Amazon Redshift security overview

Amazon Redshift database security is distinct from other types of Amazon Redshift security. In
addition to database security, which is described in this section, Amazon Redshift provides these
features to manage security:

• Sign-in credentials — Access to your Amazon Redshift AWS Management Console is controlled
by your AWS account permissions. For more information, see Sign-in credentials.

• Access management — To control access to specific Amazon Redshift resources, you define AWS
Identity and Access Management (IAM) accounts. For more information, see Controlling access to
Amazon Redshift resources.

• Cluster security groups — To grant other users inbound access to an Amazon Redshift cluster,
you define a cluster security group and associate it with a cluster. For more information, see
Amazon Redshift cluster security groups.

• VPC — To protect access to your cluster by using a virtual networking environment, you can
launch your cluster in an Amazon Virtual Private Cloud (VPC). For more information, see
Managing clusters in Virtual Private Cloud (VPC).

• Cluster encryption — To encrypt the data in all your user-created tables, you can turn on cluster
encryption when you launch the cluster. For more information, see Amazon Redshift clusters.

Amazon Redshift security overview 844

https://docs.aws.amazon.com/redshift/latest/mgmt/iam-redshift-user-mgmt.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://docs.aws.amazon.com/redshift/latest/mgmt/iam-redshift-user-mgmt.html
https://docs.aws.amazon.com/redshift/latest/mgmt/iam-redshift-user-mgmt.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-security-groups.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-security-groups.html
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html

Amazon Redshift Database Developer Guide

• SSL connections — To encrypt the connection between your SQL client and your cluster, you
can use secure sockets layer (SSL) encryption. For more information, see Connect to your cluster
using SSL.

• Load data encryption — To encrypt your table load data files when you upload them to Amazon
S3, you can use either server-side encryption or client-side encryption. When you load from
server-side encrypted data, Amazon S3 handles decryption transparently. When you load from
client-side encrypted data, the Amazon Redshift COPY command decrypts the data as it loads
the table. For more information, see Uploading encrypted data to Amazon S3.

• Data in transit — To protect your data in transit within the AWS Cloud, Amazon Redshift uses
hardware accelerated SSL to communicate with Amazon S3 or Amazon DynamoDB for COPY,
UNLOAD, backup, and restore operations.

• Column-level access control — To have column-level access control for data in Amazon
Redshift, use column-level grant and revoke statements without having to implement views-
based access control or use another system.

• Row-level security control — To have row-level security control for data in Amazon Redshift,
create and attach policies to roles or users that restrict access to rows defined in the policy.

Default database user permissions

When you create a database object, you are its owner. By default, only a superuser or the owner
of an object can query, modify, or grant permissions on the object. For users to use an object, you
must grant the necessary permissions to the user or the group that contains the user. Database
superusers have the same permissions as database owners.

Amazon Redshift supports the following permissions: SELECT, INSERT, UPDATE, DELETE,
REFERENCES, CREATE, TEMPORARY, and USAGE. Different permissions are associated with
different object types. For information about database object permissions supported by Amazon
Redshift, see the GRANT command.

Only the owner has the permission to modify or destroy an object.

By default, all users have CREATE and USAGE permissions on the PUBLIC schema of a database.
To disallow users from creating objects in the PUBLIC schema of a database, use the REVOKE
command to remove that permission.

To revoke a permission that was previously granted, use the REVOKE command. The permissions
of the object owner, such as DROP, GRANT, and REVOKE permissions, are implicit and cannot be

Default database user permissions 845

https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-ssl-support.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-ssl-support.html

Amazon Redshift Database Developer Guide

granted or revoked. Object owners can revoke their own ordinary permissions, for example, to
make a table read-only for themselves and others. Superusers retain all permissions regardless of
GRANT and REVOKE commands.

Superusers

Database superusers have the same permissions as database owners for all databases.

The admin user, which is the user you created when you launched the cluster, is a superuser.

You must be a superuser to create a superuser.

Amazon Redshift system tables and system views are either visible only to superusers or visible to
all users. Only superusers can query system tables and system views that are designated "visible to
superusers." For information, see System tables and views.

Superusers can view all catalog tables. For information, see System catalog tables.

A database superuser bypasses all permission checks. Superusers retain all permissions regardless
of GRANT and REVOKE commands. Be careful when using a superuser role. We recommend that
you do most of your work as a role that is not a superuser. You can create an administrator role
with more restrictive permissions. For more information about creating roles, see Role-based access
control (RBAC)

To create a new database superuser, log on to the database as a superuser and issue a CREATE
USER command or an ALTER USER command with the CREATEUSER permission.

CREATE USER adminuser CREATEUSER PASSWORD '1234Admin';
ALTER USER adminuser CREATEUSER;

To create, alter, or drop a superuser, use the same commands to manage users. For more
information, see Creating, altering, and deleting users.

Users

You can create and manage database users using the Amazon Redshift SQL commands CREATE
USER and ALTER USER. Or you can configure your SQL client with custom Amazon Redshift JDBC
or ODBC drivers. These manage the process of creating database users and temporary passwords
as part of the database logon process.

Superusers 846

Amazon Redshift Database Developer Guide

The drivers authenticate database users based on AWS Identity and Access Management (IAM)
authentication. If you already manage user identities outside of AWS, you can use a SAML 2.0-
compliant identity provider (IdP) to manage access to Amazon Redshift resources. You use an
IAM role to configure your IdP and AWS to permit your federated users to generate temporary
database credentials and log on to Amazon Redshift databases. For more information, see Using
IAM authentication to generate database user credentials.

Amazon Redshift users can only be created and dropped by a database superuser. Users are
authenticated when they log on to Amazon Redshift. They can own databases and database
objects (for example, tables). They can also grant permissions on those objects to users, groups,
and schemas to control who has access to which object. Users with CREATE DATABASE rights can
create databases and grant permissions to those databases. Superusers have database ownership
permissions for all databases.

Creating, altering, and deleting users

Database users are global across a data warehouse cluster (and not for each individual database).

• To create a user, use the CREATE USER command.

• To create a superuser, use the CREATE USER command with the CREATEUSER option.

• To remove an existing user, use the DROP USER command.

• To change a user, for example changing a password, use the ALTER USER command.

• To view a list of users, query the PG_USER catalog table.

select * from pg_user;

 usename | usesysid | usecreatedb | usesuper | usecatupd | passwd | valuntil |
 useconfig
------------+----------+-------------+----------+-----------+----------+----------
+-----------
 rdsdb | 1 | t | t | t | ******** | |
 masteruser | 100 | t | t | f | ******** | |
 dwuser | 101 | f | f | f | ******** | |
 simpleuser | 102 | f | f | f | ******** | |
 poweruser | 103 | f | t | f | ******** | |
 dbuser | 104 | t | f | f | ******** | |
(6 rows)

Creating, altering, and deleting users 847

https://docs.aws.amazon.com/redshift/latest/mgmt/generating-user-credentials.html
https://docs.aws.amazon.com/redshift/latest/mgmt/generating-user-credentials.html

Amazon Redshift Database Developer Guide

Groups

Groups are collections of users who are all granted whatever permissions are associated with the
group. You can use groups to assign permissions. For example, you can create different groups for
sales, administration, and support and give the users in each group the appropriate access to the
data they need for their work. You can grant or revoke permissions at the group level, and those
changes will apply to all members of the group, except for superusers.

To view all user groups, query the PG_GROUP system catalog table:

select * from pg_group;

For example, to list all database users by group, run the following SQL.

SELECT u.usesysid
,g.groname
,u.usename
FROM pg_user u
LEFT JOIN pg_group g ON u.usesysid = ANY (g.grolist)

Creating, altering, and deleting groups

Only a superuser can create, alter, or drop groups.

You can perform the following actions:

• To create a group, use the CREATE GROUP command.

• To add users to or remove users from an existing group, use the ALTER GROUP command.

• To delete a group, use the DROP GROUP command. This command only drops the group, not its
member users.

Example for controlling user and group access

This example creates user groups and users and then grants them various permissions for an
Amazon Redshift database that connects to a web application client. This example assumes three
groups of users: regular users of a web application, power users of a web application, and web
developers.

Groups 848

Amazon Redshift Database Developer Guide

1. Create the groups where the users will be assigned. The following set of commands creates
three different user groups:

create group webappusers;

create group webpowerusers;

create group webdevusers;

2. Create several database users with different permissions and add them to the groups.

a. Create two users and add them to the WEBAPPUSERS group:

create user webappuser1 password 'webAppuser1pass'
in group webappusers;

create user webappuser2 password 'webAppuser2pass'
in group webappusers;

b. Create a web developer user and add it to the WEBDEVUSERS group:

create user webdevuser1 password 'webDevuser2pass'
in group webdevusers;

c. Create a superuser. This user will have administrative rights to create other users:

create user webappadmin password 'webAppadminpass1'
createuser;

3. Create a schema to be associated with the database tables used by the web application, and
grant the various user groups access to this schema:

a. Create the WEBAPP schema:

create schema webapp;

b. Grant USAGE permissions to the WEBAPPUSERS group:

grant usage on schema webapp to group webappusers;

c. Grant USAGE permissions to the WEBPOWERUSERS group:

Example for controlling user and group access 849

Amazon Redshift Database Developer Guide

grant usage on schema webapp to group webpowerusers;

d. Grant ALL permissions to the WEBDEVUSERS group:

grant all on schema webapp to group webdevusers;

The basic users and groups are now set up. You can now alter the users and groups.

4. For example, the following command alters the search_path parameter for the WEBAPPUSER1.

alter user webappuser1 set search_path to webapp, public;

The SEARCH_PATH specifies the schema search order for database objects, such as tables and
functions, when the object is referenced by a simple name with no schema specified.

5. You can also add users to a group after creating the group, such as adding WEBAPPUSER2 to the
WEBPOWERUSERS group:

alter group webpowerusers add user webappuser2;

Schemas

A database contains one or more named schemas. Each schema in a database contains tables and
other kinds of named objects. By default, a database has a single schema, which is named PUBLIC.
You can use schemas to group database objects under a common name. Schemas are similar to file
system directories, except that schemas cannot be nested.

Identical database object names can be used in different schemas in the same database without
conflict. For example, both MY_SCHEMA and YOUR_SCHEMA can contain a table named MYTABLE.
Users with the necessary permissions can access objects across multiple schemas in a database.

By default, an object is created within the first schema in the search path of the database. For
information, see Search path later in this section.

Schemas can help with organization and concurrency issues in a multiuser environment in the
following ways:

• To let many developers work in the same database without interfering with each other.

Schemas 850

Amazon Redshift Database Developer Guide

• To organize database objects into logical groups to make them more manageable.

• To give applications the ability to put their objects into separate schemas so that their names will
not collide with the names of objects used by other applications.

Creating, altering, and deleting schemas

Any user can create schemas and alter or drop schemas they own.

You can perform the following actions:

• To create a schema, use the CREATE SCHEMA command.

• To change the owner of a schema, use the ALTER SCHEMA command.

• To delete a schema and its objects, use the DROP SCHEMA command.

• To create a table within a schema, create the table with the format schema_name.table_name.

To view a list of all schemas, query the PG_NAMESPACE system catalog table:

select * from pg_namespace;

To view a list of tables that belong to a schema, query the PG_TABLE_DEF system catalog table. For
example, the following query returns a list of tables in the PG_CATALOG schema.

select distinct(tablename) from pg_table_def
where schemaname = 'pg_catalog';

Search path

The search path is defined in the search_path parameter with a comma-separated list of schema
names. The search path specifies the order in which schemas are searched when an object, such as
a table or function, is referenced by a simple name that does not include a schema qualifier.

If an object is created without specifying a target schema, the object is added to the first schema
that is listed in search path. When objects with identical names exist in different schemas, an object
name that does not specify a schema will refer to the first schema in the search path that contains
an object with that name.

To change the default schema for the current session, use the SET command.

Creating, altering, and deleting schemas 851

Amazon Redshift Database Developer Guide

For more information, see the search_path description in the Configuration Reference.

Schema-based permissions

Schema-based permissions are determined by the owner of the schema:

• By default, all users have CREATE and USAGE permissions on the PUBLIC schema of a database.
To disallow users from creating objects in the PUBLIC schema of a database, use the REVOKE
command to remove that permission.

• Unless they are granted the USAGE permission by the object owner, users cannot access any
objects in schemas they do not own.

• If users have been granted the CREATE permission to a schema that was created by another user,
those users can create objects in that schema.

Role-based access control (RBAC)

By using role-based access control (RBAC) to manage database permissions in Amazon Redshift,
you can simplify the management of security permissions in Amazon Redshift. You can secure the
access to sensitive data by controlling what users can do both at a broad or fine level. You can
also control user access to tasks that are normally restricted to superusers. By assigning different
permissions to different roles and assigning them to different users, you can have more granular
control of user access.

Users with an assigned role can perform only the tasks that are specified by the assigned role that
they are authorized with. For example, a user with the assigned role that has the CREATE TABLE
and DROP TABLE permissions is only authorized to perform those tasks. You can control user
access by granting different levels of security permissions to different users to access the data they
require for their work.

RBAC applies the principle of least permissions to users based on their role requirements,
regardless of the types of objects that are involved. Granting and revoking of permissions is
performed at the role level, without the need to update permissions on individual database
objects.

With RBAC, you can create roles with permissions to run commands that used to require superuser
permissions. Users can run these commands, as long as they are authorized with a role that
includes these permissions. Similarly, you can also create roles to limit the access to certain

Schema-based permissions 852

Amazon Redshift Database Developer Guide

commands, and assign the role to either superusers or users that have been authorized with the
role.

To learn how Amazon Redshift RBAC works, watch the following video: Introducing Role-based
access control (RBAC) in Amazon Redshift.

Role hierarchy

Roles are collections of permissions that you can assign to a user or another role. You can assign
system or database permissions to a role. A user inherits permissions from an assigned role.

In RBAC, users can have nested roles. You can grant roles to both users and roles. When granting a
role to a user, you authorize the user with all the permissions that this role includes. When granting
a role r1 to a user, you authorize the user with permissions from r1. The user now has permissions
from r1 and also any existing permissions they already have.

When granting a role (r1) to another role (r2), you authorize r2 with all the permissions from
r1. Also, when granting r2 to another role (r3), the permissions of r3 are the combination of the
permissions from r1 and r2. Role hierarchy has r2 inherit permissions from r1. Amazon Redshift
propagates permissions with each role authorization. Granting r1 to r2 and then r2 to r3 authorizes
r3 with all the permissions from the three roles. Thus, by granting r3 to a user, the user has all the
permissions from the three roles.

Amazon Redshift doesn't allow the creation of a role authorization cycle. A role authorization cycle
happens when a nested role is assigned back to a role earlier in the role hierarchy, such as r3 being
assigned back to r1. For more information about how to create roles and manage role assignments,
see Managing roles in RBAC.

Role assignment

Superusers and regular users with the CREATE ROLE permissions can use the CREATE ROLE
statement to create roles. Superusers and role administrators can use the GRANT ROLE statement
to grant a role to others. They can use the REVOKE ROLE statement to revoke a role from others,
and the DROP ROLE statement to drop roles. Role administrators include role owners and users
who have been granted the role with the ADMIN OPTION permission.

Only superusers or role administrators can grant and revoke roles. You can grant or revoke one
or more roles to or from one or more roles or users. Use the WITH ADMIN OPTION option in the
GRANT ROLE statement to provide the administration options for all the granted roles to all the
grantees.

Role hierarchy 853

https://www.youtube.com/embed/IhHQ7mZ-tp4
https://www.youtube.com/embed/IhHQ7mZ-tp4

Amazon Redshift Database Developer Guide

Amazon Redshift supports different combinations of role assignments, such as granting multiple
roles or having multiple grantees. The WITH ADMIN OPTION only applies to users and not to roles.
Similarly, use the WITH ADMIN OPTION option in the REVOKE ROLE statement to remove the role
and the administrative authorization from the grantee. When used with the ADMIN OPTION, only
the administrative authorization is revoked from the role.

The following example revokes the administrative authorization of the sample_role2 role from
user2.

REVOKE ADMIN OPTION FOR sample_role2 FROM user2;

For more information about how to create roles and manage role assignments, see Managing roles
in RBAC.

Amazon Redshift system-defined roles

Amazon Redshift provides a few system-defined roles that are defined with specific permissions.
System-specific roles start with a sys: prefix. Only users with appropriate access can alter system-
defined roles or create custom system-defined roles. You can't use the sys: prefix for a custom
system-defined role.

The following table summarizes the roles and their permissions.

Role
name

Description

sys:monit
or

This role has the permission to
access catalog or system tables.

sys:opera
tor

This role has the permissions
to access catalog or system
tables, analyze, vacuum, or cancel
queries.

sys:dba This role has the permissio
ns to create schemas, create
tables, drop schemas, drop
tables, and truncate tables. It
has the permissions to create or

Amazon Redshift system-defined roles 854

Amazon Redshift Database Developer Guide

Role
name

Description

replace stored procedures, drop
procedures, create or replace
functions, create or replace
external functions, create views,
and drop views. Also, this role
inherits all the permissions from
the sys:operator role.

sys:super
user

This role has all the supported
system permissions defined in
System permissions for RBAC.

sys:secad
min

• This role has the permissions to
create users, alter users, drop
users, create roles, drop roles,
and grant roles.

• This role has permissions
to turn RLS ON or OFF on a
relation and permissions to
manage RLS and DDM policies
(CREATE, DROP, ATTACH,
DETACH, and ALTER). Also, note
that EXPLAIN RLS, IGNORE
RLS, and EXPLAIN MASKING
permissions are granted to this
role by default.

• This role can have access to user
tables only when the permissio
n is explicitly granted to the
role.

Amazon Redshift system-defined roles 855

Amazon Redshift Database Developer Guide

System-defined roles and users for data sharing

Amazon Redshift creates roles and users for internal use that correspond to datashares and
datashare consumers. Each internal role name and user name has the reserved namespace prefix
ds:. They have the following format:

Name Description

ds:sharenameA system role that corresponds
with a datashare.

ds:sharename
_consumer

A system user that corresponds
with a datashare consumer.

A data sharing role is created for each datashare. It holds all permissions currently granted to
to the datashare. A data sharing user is created for each consumer of a datashare. It is granted
permission to a single data sharing role. A consumer added to multiple datashares will have a data
sharing user created for each datashare.

These users and roles are required for data sharing to work properly. They cannot be modified
or dropped and they cannot be accessed or used for any tasks run by customers. You can safely
ignore them. For more information about data sharing, see Sharing data across clusters in Amazon
Redshift.

Note

You can't use the ds: prefix to create user-defined roles or users.

System permissions for RBAC

Following is a list of system permissions that you can grant to or revoke from a role.

System permissions 856

https://docs.aws.amazon.com/redshift/latest/dg/datashare-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/datashare-overview.html

Amazon Redshift Database Developer Guide

CommandYou must have permission by one of the following ways to run
the command

CREATE
ROLE

• Superuser.

• Users with the CREATE ROLE permission.

DROP
ROLE

• Superuser.

• Role owner who is either the user that created the role or a
user that has been granted the role with the WITH ADMIN
OPTION permission.

CREATE
USER

• Superuser.

• Users with the CREATE USER permission. These users can't
create superusers.

DROP
USER

• Superuser.

• Users with the DROP USER permission.

ALTER
USER

• Superuser.

• Users with the ALTER USER permission. These users can't
change users to superusers or change superusers to users.

• Current user who wants to change their own password.

CREATE
SCHEMA

• Superuser.

• Users with the CREATE SCHEMA permission.

DROP
SCHEMA

• Superuser.

• Users with the DROP SCHEMA permission.

• Schema owner.

ALTER
DEFAULT
PRIVILEGE
S

• Superuser.

• Users with the ALTER DEFAULT PRIVILEGES permission.

• Users changing their own default access permissions.

• Users setting permissions for schemas that they have access
permissions to.

System permissions 857

Amazon Redshift Database Developer Guide

CommandYou must have permission by one of the following ways to run
the command

CREATE
TABLE

• Superuser.

• Users with the CREATE TABLE permission.

• Users with the CREATE permission on schemas.

DROP
TABLE

• Superuser.

• Users with the DROP TABLE permission.

• Table owner with the USAGE permission on the schema.

ALTER
TABLE

• Superuser.

• Users with the ALTER TABLE permission.

• Table owner with the USAGE permission on the schema.

CREATE
OR
REPLACE
FUNCTION

• For CREATE FUNCTION:

• Superuser.

• Users with the CREATE OR REPLACE FUNCTION permission.

• Users with the USAGE permission on language.

• For REPLACE FUNCTION:

• Superuser.

• Users with the CREATE OR REPLACE FUNCTION permission.

• Function owner.

CREATE
OR
REPLACE
EXTERNAL
FUNCTION

• Superuser.

• Users with the CREATE OR REPLACE EXTERNAL FUNCTION
permission.

DROP
FUNCTION

• Superuser.

• Users with the DROP FUNCTION permission.

• Function owner.

System permissions 858

Amazon Redshift Database Developer Guide

CommandYou must have permission by one of the following ways to run
the command

CREATE
OR
REPLACE
PROCEDURE

• For CREATE PROCEDURE:

• Superuser.

• Users with the CREATE OR REPLACE PROCEDURE permissio
n.

• Users with the USAGE permission on language.

• For REPLACE PROCEDURE:

• Superuser.

• Users with the CREATE OR REPLACE PROCEDURE permissio
n.

• Procedure owner.

DROP
PROCEDURE

• Superuser.

• Users with the DROP PROCEDURE permission.

• Procedure owner.

CREATE
OR
REPLACE
VIEW

• For CREATE VIEW:

• Superuser.

• Users with the CREATE OR REPLACE VIEW permission.

• Users with the CREATE permission on schemas.

• For REPLACE VIEW:

• Superuser.

• Users with the CREATE OR REPLACE VIEW permission.

• View owner.

DROP
VIEW

• Superuser.

• Users with the DROP VIEW permission.

• View owner.

System permissions 859

Amazon Redshift Database Developer Guide

CommandYou must have permission by one of the following ways to run
the command

CREATE
MODEL

• Superuser.

• Users with the CREATE MODEL system permission, who should
be able to read the relation of the CREATE MODEL.

• Users with the CREATE MODEL permission.

DROP
MODEL

• Superuser.

• Users with the DROP MODEL permission.

• Model owner.

• Schema owner.

CREATE
DATASHARE

• Superuser.

• Users with the CREATE DATASHARE permission.

• Database owner.

ALTER
DATASHARE

• Superuser.

• User with the ALTER DATASHARE permission.

• Users who have the ALTER or ALL permission on the datashare.

• To add specific objects to a datashare, these users must have
the permission on the objects. Users should be the owners
of objects or have SELECT, USAGE, or ALL permissions on the
objects.

DROP
DATASHARE

• Superuser.

• Users with the DROP DATASHARE permission.

• Database owner.

CREATE
LIBRARY

• Superuser.

• Users with the CREATE LIBRARY permission or with the
permission of the specified language.

System permissions 860

Amazon Redshift Database Developer Guide

CommandYou must have permission by one of the following ways to run
the command

DROP
LIBRARY

• Superuser.

• Users with the DROP LIBRARY permission.

• Library owner.

ANALYZE • Superuser.

• Users with the ANALYZE permission.

• Owner of the relation.

• Database owner whom the table is shared to.

CANCEL • Superuser canceling their own query.

• Superuser canceling a user's query.

• Users with the CANCEL permission canceling a user's query.

• User canceling their own query.

TRUNCATE
TABLE

• Superuser.

• Users with the TRUNCATE TABLE permission.

• Table owner.

VACUUM • Superuser.

• Users with the VACUUM permission.

• Table owner.

• Database owner whom the table is shared to.

IGNORE
RLS

• Superuser.

• Users within the sys:secadmin role.

EXPLAIN
RLS

• Superuser.

• Users within the sys:secadmin role.

EXPLAIN
MASKING

• Superuser.

• Users within the sys:secadmin role.

System permissions 861

Amazon Redshift Database Developer Guide

Database object permissions

Apart from system permissions, Amazon Redshift includes database object permissions that define
access options. These include such options as the ability to read data in tables and views, write
data, create tables, and drop tables. For more information, see GRANT command.

By using RBAC, you can assign database object permissions to roles, similarly to how you can with
system permissions. Then you can assign roles to users, authorize users with system permissions,
and authorize users with database permissions.

ALTER DEFAULT PRIVILEGES for RBAC

Use the ALTER DEFAULT PRIVILEGES statement to define the default set of access permissions
to be applied to objects that are created in the future by the specified user. By default, users can
change only their own default access permissions. With RBAC, you can set the default access
permissions for roles. For more information, see the ALTER DEFAULT PRIVILEGES command.

RBAC enables you to assign database object permissions to roles, similarly to system permissions.
Then you can assign roles to users, authorize users with system and/or database permissions.

Considerations for role usage in RBAC

When working with RBAC roles, consider the following:

• Amazon Redshift doesn't allow cycles of role authorizations. You can't grant r1 to r2 and then
grant r2 to r1.

• RBAC works for both native Amazon Redshift objects and Amazon Redshift Spectrum tables.

• As an Amazon Redshift administrator, you can turn on RBAC by upgrading your cluster to the
latest maintenance patch to get started.

• Only superusers and users with the CREATE ROLE system permission can create roles.

• Only superusers and role administrators can modify or drop roles.

• A role name can't be the same as a user name.

• A role name can't contain invalid characters, such as “:/\n.”

• A role name can't be a reserved word, such as PUBLIC.

• The role name can't start with the reserved prefix for default roles, sys:.

Database object permissions 862

Amazon Redshift Database Developer Guide

• You can't drop a role that has the RESTRICT parameter when it is granted to another role. The
default setting is RESTRICT. Amazon Redshift throws an error when you try to drop a role that
has inherited another role.

• Users that don't have admin permissions on a role can't grant or revoke a role.

Managing roles in RBAC

To perform the following actions, use the following commands:

• To create a role, use the CREATE ROLE command.

• To rename a role or change the owner of the role, use the ALTER ROLE command.

• To delete a role, use the DROP ROLE command.

• To grant a role to a user, use the GRANT command.

• To revoke a role from a user, use the REVOKE command.

• To grant system permissions to a role, use the GRANT command.

• To revoke system permissions from a role, use the REVOKE command.

To view a list of roles in your cluster or workgroup, see SVV_ROLES.

Tutorial: Creating roles and querying with RBAC

With RBAC, you can create roles with permissions to run commands that used to require superuser
permissions. Users can run these commands, as long as they are authorized with a role that
includes these permissions.

In this tutorial, you use role-based access control (RBAC) to manage permissions in a database you
create. You then connect to the database and query the database from two different roles to test
the functionality of RBAC.

The two roles that you create and use to query the database are the sales_ro and sales_rw. You
create the sales_ro role and query data as a user with the sales_ro role. The sales_ro user
can only use the SELECT command but cannot use the UPDATE command. Then, you create the
sales_rw role and query data as a user with the sales_rw role. The sales_rw user can use the
SELECT command and the UPDATE command.

Additionally, you can create roles to limit the access to certain commands, and assign the role to
either superusers or users.

Managing roles 863

Amazon Redshift Database Developer Guide

Tasks

• Prerequisites

• Step 1: Create an administrator user

• Step 2: Set up schemas

• Step 3: Create a read-only user

• Step 4: Query the data as the read-only user

• Step 5: Create a read-write user

• Step 6: Query the data as the user with the inherited read-only role

• Step 7: Grant update and insert permissions to the read-write role

• Step 8: Query the data as the read-write user

• Step 9: Analyze and vacuum tables in a database as the administrator user

• Step 10: Truncate tables as the read-write user

Prerequisites

• Create an Amazon Redshift cluster or serverless workgroup that is loaded with the TICKIT sample
database. To create a serverless workgroup, see Amazon Redshift Serverless. To create a cluster,
see Create a sample Amazon Redshift cluster. For more information about the TICKIT sample
database, see Sample database.

• Have access to a user with superuser or role administrator permissions. Only superusers or role
administrators can grant or revoke roles. For more information about permissions required for
RBAC, see System permissions for RBAC.

• Review the Considerations for role usage in RBAC.

Step 1: Create an administrator user

To set up for this tutorial, you create a database admin role and attach it to a database
administrator user in this step. You must create the database administrator as a superuser or role
administrator.

Run all queries in the Amazon Redshift https://docs.aws.amazon.com/redshift/latest/mgmt/
query-editor-v2-using.html.

1. To create the administrator role db_admin, use the following example.

Tutorial: Creating roles and querying with RBAC 864

https://docs.aws.amazon.com/redshift/latest/gsg/new-user-serverless.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-launch-sample-cluster.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html

Amazon Redshift Database Developer Guide

CREATE ROLE db_admin;

2. To create a database user named dbadmin, use the following example.

CREATE USER dbadmin PASSWORD 'Test12345';

3. To grant the system defined role named sys:dba to the db_admin role, use the following
example. When granted the sys:dba role, the dbadmin user can create schemas and tables. For
more information, see Amazon Redshift system-defined roles.

Step 2: Set up schemas

In this step, you connect to your database as the database administrator. Then, you create two
schemas and add data to them.

1. Connect to the dev database as the dbadmin user using query editor v2. For more information
about connecting to a database, see Working with query editor v2.

2. To create the sales and marketing database schemas, use the following example.

CREATE SCHEMA sales;
CREATE SCHEMA marketing;

3. To create and insert values into tables in the sales schema, use the following example.

CREATE TABLE sales.cat(
catid smallint,
catgroup varchar(10),
catname varchar(10),
catdesc varchar(50)
);
INSERT INTO sales.cat(SELECT * FROM category);

CREATE TABLE sales.dates(
dateid smallint,
caldate date,
day char(3),
week smallint,
month char(5),
qtr char(5),
year smallint,

Tutorial: Creating roles and querying with RBAC 865

https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html

Amazon Redshift Database Developer Guide

holiday boolean
);
INSERT INTO sales.dates(SELECT * FROM date);

CREATE TABLE sales.events(
eventid integer,
venueid smallint,
catid smallint,
dateid smallint,
eventname varchar(200),
starttime timestamp
);
INSERT INTO sales.events(SELECT * FROM event);

 CREATE TABLE sales.sale(
salesid integer,
listid integer,
sellerid integer,
buyerid integer,
eventid integer,
dateid smallint,
qtysold smallint,
pricepaid decimal(8,2),
commission decimal(8,2),
saletime timestamp
);
INSERT INTO sales.sale(SELECT * FROM sales);

4. To create and insert values into tables in the marketing schema, use the following example.

CREATE TABLE marketing.cat(
catid smallint,
catgroup varchar(10),
catname varchar(10),
catdesc varchar(50)
);
INSERT INTO marketing.cat(SELECT * FROM category);

CREATE TABLE marketing.dates(
dateid smallint,
caldate date,
day char(3),
week smallint,
month char(5),

Tutorial: Creating roles and querying with RBAC 866

Amazon Redshift Database Developer Guide

qtr char(5),
year smallint,
holiday boolean
);
INSERT INTO marketing.dates(SELECT * FROM date);

CREATE TABLE marketing.events(
eventid integer,
venueid smallint,
catid smallint,
dateid smallint,
eventname varchar(200),
starttime timestamp
);
INSERT INTO marketing.events(SELECT * FROM event);

CREATE TABLE marketing.sale(
marketingid integer,
listid integer,
sellerid integer,
buyerid integer,
eventid integer,
dateid smallint,
qtysold smallint,
pricepaid decimal(8,2),
commission decimal(8,2),
saletime timestamp
);
INSERT INTO marketing.sale(SELECT * FROM marketing);

Step 3: Create a read-only user

In this step, you create a read-only role and a salesanalyst user for the read-only role. The sales
analyst only needs read-only access to the tables in the sales schema to accomplish their assigned
task of finding the events that resulted in the largest commissions.

1. Connect to the database as the dbadmin user.

2. To create the sales_ro role, use the following example.

CREATE ROLE sales_ro;

Tutorial: Creating roles and querying with RBAC 867

Amazon Redshift Database Developer Guide

3. To create the salesanalyst user, use the following example.

CREATE USER salesanalyst PASSWORD 'Test12345';

4. To grant the sales_ro role usage and select access to objects of the sales schema, use the
following example.

GRANT USAGE ON SCHEMA sales TO ROLE sales_ro;
GRANT SELECT ON ALL TABLES IN SCHEMA sales TO ROLE sales_ro;

5. To grant the salesanalyst user the sales_ro role, use the following example.

GRANT ROLE sales_ro TO salesanalyst;

Step 4: Query the data as the read-only user

In this step, the salesanalyst user queries data from the sales schema. Then, the salesanalyst user
attempts to update a table and read tables in the marketing schema.

1. Connect to the database as the salesanalyst user.

2. To find the 10 sales with the highest commissions, use the following example.

SET SEARCH_PATH TO sales;
SELECT DISTINCT events.dateid, sale.commission, cat.catname
FROM sale, events, dates, cat
WHERE events.dateid=dates.dateid AND events.dateid=sale.dateid AND events.catid =
 cat.catid
ORDER BY 2 DESC LIMIT 10;

+--------+------------+----------+
| dateid | commission | catname |
+--------+------------+----------+
1880	1893.6	Pop
1880	1893.6	Opera
1880	1893.6	Plays
1880	1893.6	Musicals
1861	1500	Plays
2003	1500	Pop
1861	1500	Opera
2003	1500	Plays
1861	1500	Musicals

Tutorial: Creating roles and querying with RBAC 868

Amazon Redshift Database Developer Guide

| 1861 | 1500 | Pop |
+--------+------------+----------+

3. To select 10 events from the events table in the sales schema, use the following example.

SELECT * FROM sales.events LIMIT 10;

+---------+---------+-------+--------+--------------------+---------------------+
| eventid | venueid | catid | dateid | eventname | starttime |
+---------+---------+-------+--------+--------------------+---------------------+
4836	73	9	1871	Soulfest	2008-02-14 19:30:00
5739	41	9	1871	Fab Faux	2008-02-14 19:30:00
627	229	6	1872	High Society	2008-02-15 14:00:00
2563	246	7	1872	Hamlet	2008-02-15 20:00:00
7703	78	9	1872	Feist	2008-02-15 14:00:00
7903	90	9	1872	Little Big Town	2008-02-15 19:30:00
7925	101	9	1872	Spoon	2008-02-15 19:00:00
8113	17	9	1872	Santana	2008-02-15 15:00:00
463	303	8	1873	Tristan und Isolde	2008-02-16 19:00:00
613	236	6	1873	Pal Joey	2008-02-16 15:00:00
+---------+---------+-------+--------+--------------------+---------------------+

4. To attempt to update the eventname for eventid 1, run the following example. This example will
result in a permission denied error because the salesanalyst user only has SELECT permissions
on the events table in the sales schema. To update the events table, you must grant the sales_ro
role permissions to UPDATE. For more information about granting permissions to update a table,
see the UPDATE parameter for GRANT. For more information about the UPDATE command, see
UPDATE.

UPDATE sales.events
SET eventname = 'Comment event'
WHERE eventid = 1;

ERROR: permission denied for relation events

5. To attempt to select all from the events table in the marketing schema, use the following
example. This example will result in a permission denied error because the salesanalyst user
only has SELECT permissions for the events table in the sales schema. To select data from the
events table in the marketing schema, you must grant the sales_ro role SELECT permissions on
the events table in the marketing schema.

Tutorial: Creating roles and querying with RBAC 869

Amazon Redshift Database Developer Guide

SELECT * FROM marketing.events;

 ERROR: permission denied for schema marketing

Step 5: Create a read-write user

In this step, the sales engineer who is responsible for building the extract, transform, and load
(ETL) pipeline for data processing in the sales schema will be given read-only access, but will later
be given read and write access to perform their tasks.

1. Connect to the database as the dbadmin user.

2. To create the sales_rw role in the sales schema, use the following example.

CREATE ROLE sales_rw;

3. To create the salesengineer user, use the following example.

CREATE USER salesengineer PASSWORD 'Test12345';

4. To grant the sales_rw role usage and select access to objects of the sales schema by assigning
the sales_ro role to it, use the following example. For more information on how roles inherit
permissions in Amazon Redshift, see Role hierarchy.

GRANT ROLE sales_ro TO ROLE sales_rw;

5. To assign the sales_rw role to the salesengineer user, use the following example.

GRANT ROLE sales_rw TO salesengineer;

Step 6: Query the data as the user with the inherited read-only role

In this step, the salesengineer user attempts to update the events table before they are granted
read permissions.

1. Connect to the database as the salesengineer user.

Tutorial: Creating roles and querying with RBAC 870

Amazon Redshift Database Developer Guide

2. The salesengineer user can successfully read data from the events table of the sales schema.
To select the event with eventid 1 from the events table in the sales schema, use the following
example.

SELECT * FROM sales.events where eventid=1;

+---------+---------+-------+--------+-----------------+---------------------+
| eventid | venueid | catid | dateid | eventname | starttime |
+---------+---------+-------+--------+-----------------+---------------------+
| 1 | 305 | 8 | 1851 | Gotterdammerung | 2008-01-25 14:30:00 |
+---------+---------+-------+--------+-----------------+---------------------+

3. To attempt to select all from the events table in the marketing schema, use the following
example. The salesengineer user doesn’t have permissions for tables in the marketing schema,
so this query will result in a permission denied error. To select data from the events table in the
marketing schema, you must grant the sales_rw role SELECT permissions on the events table in
the marketing schema.

SELECT * FROM marketing.events;

ERROR: permission denied for schema marketing

4. To attempt to update the eventname for eventid 1, run the following example. This example will
result in a permission denied error because the salesengineer user only has select permissions
on the events table in the sales schema. To update the events table, you must grant the sales_rw
role permissions to UPDATE.

UPDATE sales.events
SET eventname = 'Comment event'
WHERE eventid = 1;

ERROR: permission denied for relation events

Step 7: Grant update and insert permissions to the read-write role

In this step, you grant update and insert permissions to the sales_rw role.

1. Connect to the database as the dbadmin user.

Tutorial: Creating roles and querying with RBAC 871

Amazon Redshift Database Developer Guide

2. To grant UPDATE, INSERT, and DELETE permissions to the sales_rw role, use the following
example.

GRANT UPDATE, INSERT, ON ALL TABLES IN SCHEMA sales TO role sales_rw;

Step 8: Query the data as the read-write user

In this step, the salesengineer successfully updates the table after their role is granted insert and
update permissions. Next, the salesengineer attempts to analyze and vacuum the events table but
fails to do so.

1. Connect to the database as the salesengineer user.

2. To update the eventname for eventid 1, run the following example.

UPDATE sales.events
SET eventname = 'Comment event'
WHERE eventid = 1;

3. To view the change made in the previous query, use the following example to select the event
with eventid 1 from the events table in the sales schema.

SELECT * FROM sales.events WHERE eventid=1;

+---------+---------+-------+--------+---------------+---------------------+
| eventid | venueid | catid | dateid | eventname | starttime |
+---------+---------+-------+--------+---------------+---------------------+
| 1 | 305 | 8 | 1851 | Comment event | 2008-01-25 14:30:00 |
+---------+---------+-------+--------+---------------+---------------------+

4. To analyze the updated events table in the sales schema, use the following example. This
example will result in a permission denied error because the salesengineer user does not have
the necessary permissions and isn’t the owner of the events table in the sales schema. To
analyze the events table, you must grant the sales_rw role permissions to ANALYZE using the
GRANT command. For more information about the ANALYZE command, see ANALYZE.

ANALYZE sales.events;

 ERROR: skipping "events" --- only table or database owner can analyze

Tutorial: Creating roles and querying with RBAC 872

Amazon Redshift Database Developer Guide

5. To vacuum the updated events table, use the following example. This example will result in a
permission denied error because the salesengineer user does not have the necessary permissions
and isn’t the owner of the events table in the sales schema. To vacuum the events table, you
must grant the sales_rw role permissions to VACUUM using the GRANT command. For more
information about the VACUUM command, see VACUUM.

VACUUM sales.events;

ERROR: skipping "events" --- only table or database owner can vacuum it

Step 9: Analyze and vacuum tables in a database as the administrator user

In this step, the dbadmin user analyzes and vacuums all of the tables. The user has administrator
permissions on this database, so they are able to run these commands.

1. Connect to the database as the dbadmin user.

2. To analyze the events table in the sales schema, use the following example.

ANALYZE sales.events;

3. To vacuum the events table in the sales schema, use the following example.

VACUUM sales.events;

4. To analyze the events table in the marketing schema, use the following example.

ANALYZE marketing.events;

5. To vacuum the events table in the marketing schema, use the following example.

VACUUM marketing.events;

Step 10: Truncate tables as the read-write user

In this step, the salesengineer user attempts to truncate the events table in the sales schema, but
only succeeds when granted truncate permissions by the dbadmin user.

1. Connect to the database as the salesengineer user.

Tutorial: Creating roles and querying with RBAC 873

Amazon Redshift Database Developer Guide

2. To try to delete all of the rows from the events table in the sales schema, use the following
example. This example will result in an error because the salesengineer user does not have the
necessary permissions and isn’t the owner of the events table in the sales schema. To truncate
the events table, you must grant the sales_rw role permissions to TRUNCATE using the GRANT
command. For more information about the TRUNCATE command, see TRUNCATE.

TRUNCATE sales.events;

ERROR: must be owner of relation events

3. Connect to the database as the dbadmin user.

4. To grant truncate table privileges to the sales_rw role, use the following example.

GRANT TRUNCATE TABLE TO role sales_rw;

5. Connect to the database as the salesengineer user using query editor v2.

6. To read the first 10 events from the events table in the sales schema, use the following example.

SELECT * FROM sales.events ORDER BY eventid LIMIT 10;

+---------+---------+-------+--------+-----------------------------
+---------------------+
| eventid | venueid | catid | dateid | eventname | starttime
 |
+---------+---------+-------+--------+-----------------------------
+---------------------+
| 1 | 305 | 8 | 1851 | Comment event | 2008-01-25
 14:30:00 |
| 2 | 306 | 8 | 2114 | Boris Godunov | 2008-10-15
 20:00:00 |
| 3 | 302 | 8 | 1935 | Salome | 2008-04-19
 14:30:00 |
| 4 | 309 | 8 | 2090 | La Cenerentola (Cinderella) | 2008-09-21
 14:30:00 |
| 5 | 302 | 8 | 1982 | Il Trovatore | 2008-06-05
 19:00:00 |
| 6 | 308 | 8 | 2109 | L Elisir d Amore | 2008-10-10
 19:30:00 |
| 7 | 309 | 8 | 1891 | Doctor Atomic | 2008-03-06
 14:00:00 |

Tutorial: Creating roles and querying with RBAC 874

Amazon Redshift Database Developer Guide

| 8 | 302 | 8 | 1832 | The Magic Flute | 2008-01-06
 20:00:00 |
| 9 | 308 | 8 | 2087 | The Fly | 2008-09-18
 19:30:00 |
| 10 | 305 | 8 | 2079 | Rigoletto | 2008-09-10
 15:00:00 |
+---------+---------+-------+--------+-----------------------------
+---------------------+

7. To truncate the events table in the sales schema, use the following example.

TRUNCATE sales.events;

8. To read the data from the updated events table in the sales schema, use the following example.

SELECT * FROM sales.events ORDER BY eventid LIMIT 10;

+---------+---------+-------+--------+-----------------------------
+---------------------+
| eventid | venueid | catid | dateid | eventname | starttime
 |
+---------+---------+-------+--------+-----------------------------
+---------------------+

Create read-only and read-write roles for the marketing schema (optional)

In this step, you create read-only and read-write roles for the marketing schema.

1. Connect to the database as the dbadmin user.

2. To create read-only and read-write roles for the marketing schema, use the following example.

CREATE ROLE marketing_ro;

CREATE ROLE marketing_rw;

GRANT USAGE ON SCHEMA marketing TO ROLE marketing_ro, ROLE marketing_rw;

GRANT SELECT ON ALL TABLES IN SCHEMA marketing TO ROLE marketing_ro;

GRANT ROLE marketing_ro TO ROLE marketing_rw;

GRANT INSERT, UPDATE, DELETE ON ALL TABLES IN SCHEMA marketing TO ROLE marketing_rw;

Tutorial: Creating roles and querying with RBAC 875

Amazon Redshift Database Developer Guide

CREATE USER marketinganalyst PASSWORD 'Test12345';

CREATE USER marketingengineer PASSWORD 'Test12345';

GRANT ROLE marketing_ro TO marketinganalyst;

GRANT ROLE marketing_rw TO marketingengineer;

System functions for RBAC (optional)

Amazon Redshift has two functions to provide system information about user membership and
role membership in additional groups or roles: role_is_member_of and user_is_member_of. These
functions are available to superusers and regular users. Superusers can check all role memberships.
Regular users can only check membership for roles that they have been granted access to.

To use the role_is_member_of function

1. Connect to the database as the salesengineer user.

2. To check if the sales_rw role is a member of the sales_ro role, use the following example.

SELECT role_is_member_of('sales_rw', 'sales_ro');

+-------------------+
| role_is_member_of |
+-------------------+
| true |
+-------------------+

3. To check if the sales_ro role is a member of the sales_rw role, use the following example.

SELECT role_is_member_of('sales_ro', 'sales_rw');

+-------------------+
| role_is_member_of |
+-------------------+
| false |
+-------------------+

To use the user_is_member_of function

Tutorial: Creating roles and querying with RBAC 876

Amazon Redshift Database Developer Guide

1. Connect to the database as the salesengineer user.

2. The following example attempts to check the user membership for the salesanalyst user.
This query results in an error because salesengineer does not have access to salesanalyst. To
run this command successfully, connect to the database as the salesanalyst user and use the
example.

SELECT user_is_member_of('salesanalyst', 'sales_ro');

ERROR

3. Connect to the database as a superuser.

4. To check the membership of the salesanalyst user when connected as a superuser, use the
following example.

SELECT user_is_member_of('salesanalyst', 'sales_ro');

+-------------------+
| user_is_member_of |
+-------------------+
| true |
+-------------------+

5. Connect to the database as the dbadmin user.

6. To check the membership of the salesengineer user, use the following example.

SELECT user_is_member_of('salesengineer', 'sales_ro');

+-------------------+
| user_is_member_of |
+-------------------+
| true |
+-------------------+

SELECT user_is_member_of('salesengineer', 'marketing_ro');

+-------------------+
| user_is_member_of |
+-------------------+
| false |
+-------------------+

Tutorial: Creating roles and querying with RBAC 877

Amazon Redshift Database Developer Guide

SELECT user_is_member_of('marketinganalyst', 'sales_ro');

+-------------------+
| user_is_member_of |
+-------------------+
| false |
+-------------------+

System views for RBAC (optional)

To view the roles, the assignment of roles to users, the role hierarchy, and the privileges for
database objects via roles, use the system views for Amazon Redshift. These views are available to
superusers and regular users. Superusers can check all role details. Regular users can only check
details for roles that they have been granted access to.

1. To view a list of users that are explicitly granted roles in the cluster, use the following example.

SELECT * FROM svv_user_grants;

2. To view a list of roles that are explicitly granted roles in the cluster, use the following example.

SELECT * FROM svv_role_grants;

For the full list of system views, refer to SVV metadata views.

Use row-level security with RBAC (optional)

To have granular access control over your sensitive data, use row-level security (RLS). For more
information about RLS, see Row-level security.

In this section, you create a RLS policy that gives the salesengineer user permissions to only
view rows in the cat table that have the catdesc value of Major League Baseball. You then query
the database as the salesengineer user.

1. Connect to the database as the salesengineer user.

2. To view the first 5 entries in the cat table, use the following example.

SELECT *

Tutorial: Creating roles and querying with RBAC 878

Amazon Redshift Database Developer Guide

FROM sales.cat
ORDER BY catid ASC
LIMIT 5;

+-------+----------+---------+---------------------------------+
| catid | catgroup | catname | catdesc |
+-------+----------+---------+---------------------------------+
1	Sports	MLB	Major League Baseball
2	Sports	NHL	National Hockey League
3	Sports	NFL	National Football League
4	Sports	NBA	National Basketball Association
5	Sports	MLS	Major League Soccer
+-------+----------+---------+---------------------------------+

3. Connect to the database as the dbadmin user.

4. To create a RLS policy for the catdesc column in the cat table, use the following example.

CREATE RLS POLICY policy_mlb_engineer
WITH (catdesc VARCHAR(50))
USING (catdesc = 'Major League Baseball');

5. To attach the RLS policy to the sales_rw role, use the following example.

ATTACH RLS POLICY policy_mlb_engineer ON sales.cat TO ROLE sales_rw;

6. To alter the table to turn on RLS, use the following example.

ALTER TABLE sales.cat ROW LEVEL SECURITY ON;

7. Connect to the database as the salesengineer user.

8. To attempt to view the first 5 entries in the cat table, use the following example. Note that only
entries only appear when the catdesc column is Major League Baseball.

SELECT *
FROM sales.cat
ORDER BY catid ASC
LIMIT 5;

+-------+----------+---------+-----------------------+
| catid | catgroup | catname | catdesc |
+-------+----------+---------+-----------------------+
| 1 | Sports | MLB | Major League Baseball |

Tutorial: Creating roles and querying with RBAC 879

Amazon Redshift Database Developer Guide

+-------+----------+---------+-----------------------+

9. Connect to the database as the salesanalyst user.

10.To attempt to view the first 5 entries in the cat table, use the following example. Note that no
entries appear because the default deny all policy is applied.

SELECT *
FROM sales.cat
ORDER BY catid ASC
LIMIT 5;

+-------+----------+---------+-----------------------+
| catid | catgroup | catname | catdesc |
+-------+----------+---------+-----------------------+

11.Connect to the database as the dbadmin user.

12.To grant the IGNORE RLS permission to the sales_ro role, use the following example. This
grants the salesanalyst user the permissions to ignore RLS policies since they are a member
of the sales_ro role.

GRANT IGNORE RLS TO ROLE sales_ro;

13.Connect to the database as the salesanalyst user.

14.To view the first 5 entries in the cat table, use the following example.

SELECT *
FROM sales.cat
ORDER BY catid ASC
LIMIT 5;

+-------+----------+---------+---------------------------------+
| catid | catgroup | catname | catdesc |
+-------+----------+---------+---------------------------------+
1	Sports	MLB	Major League Baseball
2	Sports	NHL	National Hockey League
3	Sports	NFL	National Football League
4	Sports	NBA	National Basketball Association
5	Sports	MLS	Major League Soccer
+-------+----------+---------+---------------------------------+

15.Connect to the database as the dbadmin user.

Tutorial: Creating roles and querying with RBAC 880

Amazon Redshift Database Developer Guide

16.To revoke the IGNORE RLS permission from the sales_ro role, use the following example.

REVOKE IGNORE RLS FROM ROLE sales_ro;

17.Connect to the database as the salesanalyst user.

18.To attempt to view the first 5 entries in the cat table, use the following example. Note that no
entries appear because the default deny all policy is applied.

SELECT *
FROM sales.cat
ORDER BY catid ASC
LIMIT 5;

+-------+----------+---------+-----------------------+
| catid | catgroup | catname | catdesc |
+-------+----------+---------+-----------------------+

19.Connect to the database as the dbadmin user.

20.To detach the RLS policy from the cat table, use the following example.

DETACH RLS POLICY policy_mlb_engineer ON cat FROM ROLE sales_rw;

21.Connect to the database as the salesanalyst user.

22.To attempt to view the first 5 entries in the cat table, use the following example. Note that no
entries appear because the default deny all policy is applied.

SELECT *
FROM sales.cat
ORDER BY catid ASC
LIMIT 5;

+-------+----------+---------+---------------------------------+
| catid | catgroup | catname | catdesc |
+-------+----------+---------+---------------------------------+
1	Sports	MLB	Major League Baseball
2	Sports	NHL	National Hockey League
3	Sports	NFL	National Football League
4	Sports	NBA	National Basketball Association
5	Sports	MLS	Major League Soccer
+-------+----------+---------+---------------------------------+

Tutorial: Creating roles and querying with RBAC 881

Amazon Redshift Database Developer Guide

23.Connect to the database as the dbadmin user.

24.To drop the RLS policy, use the following example.

DROP RLS POLICY policy_mlb_engineer;

25.To remove RLS, use the following example.

ALTER TABLE cat ROW LEVEL SECURITY OFF;

Related topics

For more information about RBAC, see the following documentation:

• Role hierarchy

• Role assignment

• Database object permissions

• ALTER DEFAULT PRIVILEGES for RBAC

Row-level security

Using row-level security (RLS) in Amazon Redshift, you can have granular access control over
your sensitive data. You can decide which users or roles can access specific records of data within
schemas or tables, based on security policies that are defined at the database objects level. In
addition to column-level security, where you can grant users permissions to a subset of columns,
use RLS policies to further restrict access to particular rows of the visible columns. For more
information about column-level security, see Usage notes for column-level access control.

When you enforce RLS policies on tables, you can restrict returned result sets when users run
queries.

When creating RLS policies, you can specify expressions that dictate whether Amazon Redshift
returns any existing rows in a table in a query. By creating RLS policies to limit access, you don't
have to add or externalize additional conditions in your queries.

When creating RLS policies, we recommend that you create simple policies and avoid complex
statements in policies. When defining RLS policies, don't use excessive table joins in the policy
definition that are based on policies.

Row-level security 882

Amazon Redshift Database Developer Guide

When a policy refers to a lookup table, Amazon Redshift scans the additional table, in addition
to the table on which the policy exists. There will be performance differences between the same
query for a user with an RLS policy attached, and a user without any policy attached.

Using RLS policies in SQL statements

When using RLS policies in SQL statements, Amazon Redshift applies the following rules:

• Amazon Redshift applies RLS policies to the SELECT, UPDATE, and DELETE statements by default.

• For SELECT and UNLOAD, Amazon Redshift filters rows according to your defined policy.

• For UPDATE, Amazon Redshift updates only the rows that are visible to you. If a policy restricts a
subset of the rows in a table, then you can't update them.

• For DELETE, you can delete only the rows that are visible to you. If a policy restricts a subset of
the rows in a table, then you can't delete them. For TRUNCATE, you can still truncate the table.

• For CREATE TABLE LIKE, tables created with the LIKE options won't inherit permission settings
from the source table. Similarly, the target table won't inherit the RLS policies from source table.

Combining multiple policies per user

RLS in Amazon Redshift supports attaching multiple policies per user and object. When there are
multiple policies defined for a user, Amazon Redshift applies all the policies with either AND or
OR syntax depending on the RLS CONJUNCTION TYPE setting for the table. For more information
about conjunction type, see ALTER TABLE.

Multiple policies on a table can be associated with you. Either multiple policies are directly
attached to you, or you belong to multiple roles, and the roles have different policies attached to
them.

When the multiple policies should restrict rows access in a given relation, you can set RLS
CONJUNCTION TYPE of the relation to AND. Consider the following example. Alice can only see
Sports event that has a "catname" of NBA as the policy specified.

-- Create an analyst role and grant it to a user named Alice.
CREATE ROLE analyst;
CREATE USER alice WITH PASSWORD 'Name_is_alice_1';
GRANT ROLE analyst TO alice;

-- Create an RLS policy that only lets the user see sports.
CREATE RLS POLICY policy_sports

Using RLS policies in SQL statements 883

Amazon Redshift Database Developer Guide

WITH (catgroup VARCHAR(10))
USING (catgroup = 'Sports');

-- Create an RLS policy that only lets the user see NBA.
CREATE RLS POLICY policy_nba
WITH (catname VARCHAR(10))
USING (catname = 'NBA');

-- Attach both to the analyst role.
ATTACH RLS POLICY policy_sports ON category TO ROLE analyst;
ATTACH RLS POLICY policy_nba ON category TO ROLE analyst;

-- Activate RLS on the category table with AND CONJUNCTION TYPE.
ALTER TABLE category ROW LEVEL SECURITY ON CONJUNCTION TYPE AND;

-- Change session to Alice.
SET SESSION AUTHORIZATION alice;

-- Select all from the category table.
SELECT catgroup, catname
FROM category;

 catgroup | catname
---------+---------
 Sports | NBA
(1 row)

When the multiple policies should permit the users to see more rows in a given relation, user can
set RLS CONJUNCTION TYPE of the relation to OR. Consider the following example. Alice can only
see "Concerts" and "Sports" as the policy specified.

-- Create an analyst role and grant it to a user named Alice.
CREATE ROLE analyst;
CREATE USER alice WITH PASSWORD 'Name_is_alice_1';
GRANT ROLE analyst TO alice;

-- Create an RLS policy that only lets the user see concerts.
CREATE RLS POLICY policy_concerts
WITH (catgroup VARCHAR(10))
USING (catgroup = 'Concerts');

-- Create an RLS policy that only lets the user see sports.
CREATE RLS POLICY policy_sports

Combining multiple policies per user 884

Amazon Redshift Database Developer Guide

WITH (catgroup VARCHAR(10))
USING (catgroup = 'Sports');

-- Attach both to the analyst role.
ATTACH RLS POLICY policy_concerts ON category TO ROLE analyst;
ATTACH RLS POLICY policy_sports ON category TO ROLE analyst;

-- Activate RLS on the category table with OR CONJUNCTION TYPE.
ALTER TABLE category ROW LEVEL SECURITY ON CONJUNCTION TYPE OR;

-- Change session to Alice.
SET SESSION AUTHORIZATION alice;

-- Select all from the category table.
SELECT catgroup, count(*)
FROM category
GROUP BY catgroup ORDER BY catgroup;

 catgroup | count
---------+-------
 Concerts | 3
 Sports | 5
(2 rows)

RLS policy ownership and management

As a superuser, security administrator, or user that has the sys:secadmin role, you can create,
modify, or manage all RLS policies for tables. At the object level, you can turn row-level security on
or off without modifying the schema definition for tables.

To get started with row-level security, following are SQL statements that you can use:

• Use the ALTER TABLE statement to turn on or off RLS on a table. For more information, see
ALTER TABLE.

• Use the CREATE RLS POLICY statement to create a security policy for one or more tables, and
specify one or more users or roles in the policy.

For more information, see CREATE RLS POLICY.

• Use the ALTER RLS POLICY statement to alter the policy, such as changing the policy definition.
You can use the same policy for multiple tables or views.

For more information, see ALTER RLS POLICY.

RLS policy ownership and management 885

Amazon Redshift Database Developer Guide

• Use the ATTACH RLS POLICY statement to attach a policy to one or more relations, to one or
more users, or to roles.

For more information, see ATTACH RLS POLICY .

• Use the DETACH RLS POLICY statement to detach a policy from one or more relations, from one
or more users, or from roles.

For more information, see DETACH RLS POLICY .

• Use the DROP RLS POLICY statement to drop a policy.

For more information, see DROP RLS POLICY .

• Use the GRANT and REVOKE statements to explicitly grant and revoke SELECT permissions to
RLS policies that reference lookup tables. For more information, see GRANT and REVOKE.

To monitor the policies created, sys:secadmin can view the SVV_RLS_POLICY and
SVV_RLS_ATTACHED_POLICY.

To list RLS-protected relations, sys:secadmin can view SVV_RLS_RELATION.

To trace the application of RLS policies on queries that reference RLS-protected relations, a
superuser, sys:operator, or any user with the system permission ACCESS SYSTEM TABLE can view
SVV_RLS_APPLIED_POLICY . Note that sys:secadmin is not granted these permissions by default.

To query tables with attached RLS policies, but not see them, you can grant the permission
IGNORE RLS to any user. Users that are superusers or sys:secadmin are automatically granted the
permission IGNORE RLS. For more information, see GRANT.

To explain the RLS policy filters of a query in the EXPLAIN plan to troubleshoot RLS-related
queries, you can grant the permission EXPLAIN RLS to any user. For more information, see GRANT
and EXPLAIN.

Policy-dependent objects and principles

To provide security for applications and to prevent policy objects from becoming stale or invalid,
Amazon Redshift doesn't permit dropping or altering objects referenced by RLS policies.

The following example illustrates how schema dependency is being tracked.

-- The CREATE and ATTACH policy statements for `policy_events` references some
-- target and lookup tables.

Policy-dependent objects and principles 886

Amazon Redshift Database Developer Guide

-- Target tables are tickit_event_redshift and target_schema.target_event_table.
-- Lookup table is tickit_sales_redshift.
-- Policy `policy_events` has following dependencies:
-- table tickit_sales_redshift column eventid, qtysold
-- table tickit_event_redshift column eventid
-- table target_event_table column eventid
-- schema public and target_schema
CREATE RLS POLICY policy_events
WITH (eventid INTEGER)
USING (
 eventid IN (SELECT eventid FROM tickit_sales_redshift WHERE qtysold <3)
);

ATTACH RLS POLICY policy_events ON tickit_event_redshift TO ROLE analyst;

ATTACH RLS POLICY policy_events ON target_schema.target_event_table TO ROLE consumer;

Following lists schema object dependencies that Amazon Redshift tracks for RLS policies.

• When tracking schema object dependency for the target table, Amazon Redshift follows these
rules:

• Amazon Redshift detaches the policy from a relation, user, role, or public when you drop a
target table.

• When you rename a target table name, there is no impact to the attached policies.

• You can only drop the columns of the target table referenced inside the policy definition if you
drop or detach the policy first. This also applies when the CASCADE option is specified. You can
drop other columns in the target table.

• You can't rename the referred columns of the target table. To rename referred columns,
detach the policy first. This also applies when the CASCADE option is specified.

• You can't change the type of the referred column, even when you specify the CASCADE option.

• When tracking schema object dependency for the lookup table, Amazon Redshift follows these
rules:

• You can't drop a lookup table. To drop a lookup table, first drop the policy in which the lookup
table is referred.

• You can't rename a lookup table. To rename a lookup table, first drop the policy in which the
lookup table is referred. This also applies when the CASCADE option is specified.

• You can't drop the lookup table columns used in the policy definition. To drop the lookup table
columns used in the policy definition, first drop the policy in which the lookup table is referred.

Policy-dependent objects and principles 887

Amazon Redshift Database Developer Guide

This also applies when the CASCADE option is specified in the ALTER TABLE DROP COLUMN
statement. You can drop other columns in the lookup table.

• You can't rename the referred columns of the lookup table. To rename referred columns, first
drop the policy in which the lookup table is referred. This also applies when the CASCADE
option is specified.

• You can't change the type of the referred column.

• When a user or role is dropped, Amazon Redshift detaches all policies attached to the user or
role automatically.

• When you use the CASCADE option in the DROP SCHEMA statement, Amazon Redshift also
drops the relations in the schema. It also drops the relations in any other schemas that are
dependent on relations in the dropped schema. For a relation that is a lookup table in a policy,
Amazon Redshift fails the DROP SCHEMA DDL. For any relations dropped by the DROP SCHEMA
statement, Amazon Redshift detaches all policies that are attached to those relations.

• You can only drop a lookup function (a function that is referred inside a policy definition) when
you also drop the policy. This also applies when the CASCADE option is specified.

• When a policy is attached to a table, Amazon Redshift checks if this table is a lookup table in a
different policy. If this is the case, Amazon Redshift won't allow attaching a policy to this table.

• While creating an RLS policy, Amazon Redshift checks if this table is a target table for any other
RLS policy. If this is the case, Amazon Redshift won't allow creating a policy on this table.

Considerations using RLS policies

Following are considerations for working with RLS policies:

• Amazon Redshift applies RLS policies to SELECT, UPDATE, or DELETE statements.

• Amazon Redshift doesn't apply RLS policies to INSERT, COPY, ALTER TABLE APPEND statements.

• Row-level security works with column-level security to protect your data.

• When your Amazon Redshift cluster was on the latest generally available version that supports
RLS, but is downgraded to an earlier version, Amazon Redshift returns an error when you run a
query on base tables with RLS policies attached. The sys:secadmin can revoke access from users
that were granted restricted policies, turn off RLS on tables, and drop the policies.

• When RLS is turned on for the source relation, Amazon Redshift supports the ALTER TABLE
APPEND statement for superusers, users that have been explicitly granted the system permission
IGNORE RLS, or the sys:secadmin role. In this case, you can run the ALTER TABLE APPEND

Considerations using RLS policies 888

Amazon Redshift Database Developer Guide

statement to append rows to a target table by moving data from an existing source table.
Amazon Redshift moves all tuples from the source relation into the target relation. The RLS
status of the target relation doesn't affect the ALTER TABLE APPEND statement.

• To facilitate migration from other data warehouse systems, you can set and retrieve customized
session context variables for a connection by specifying the variable name and value.

The following example sets session context variables for a row-level security (RLS) policy.

-- Set a customized context variable.
SELECT set_config(‘app.category’, ‘Concerts’, FALSE);

-- Create a RLS policy using current_setting() to get the value of a customized
 context variable.
CREATE RLS POLICY policy_categories
WITH (catgroup VARCHAR(10))
USING (catgroup = current_setting('app.category', FALSE));

-- Set correct roles and attach the policy on the target table to one or more roles.
ATTACH RLS POLICY policy_categories ON tickit_category_redshift TO ROLE analyst, ROLE
 dbadmin;

For details on how to set and retrieve customized session context variables, see SET,
SET_CONFIG, SHOW, CURRENT_SETTING, and RESET.

• Changing session user using SET SESSION AUTHORIZATION between DECLARE and FETCH or
between subsequent FETCH statements won't refresh the already prepared plan based on the
user policies at DECLARE time. Avoid changing session user when cursors are used with RLS-
protected tables.

• When the base objects inside a view object are RLS-protected, policies attached to the user
running the query are applied on the respective base objects. This is different from object-
level permission checks, where the view owner's permissions are checked against the view base
objects. You can view the RLS-protected relations of a query in its EXPLAIN plan output.

• When a user-defined function (UDF) is referenced in a RLS policy of a relation attached to a user,
the user must have the EXECUTE permission over the UDF to query the relation.

• Row-level security might limit query optimization. We recommend carefully evaluating query
performance before deploying RLS-protected views on large datasets.

• Row-level security policies applied to late-binding views might be pushed into federated tables.
These RLS policies might be visible in external processing engine logs.

Considerations using RLS policies 889

Amazon Redshift Database Developer Guide

Limitations

Following are the limitations when working with RLS policies:

• Amazon Redshift supports SELECT statements for certain RLS policies with lookups that have
complex joins, but doesn't support UPDATE or DELETE statements. In cases with UPDATE or
DELETE statements, Amazon Redshift returns the following error:

ERROR: One of the RLS policies on target relation is not supported in UPDATE/DELETE.

• Whenever a user-defined function (UDF) is referenced in a RLS policy of a relation attached to a
user, the user must have the EXECUTE permission over the UDF to query the relation.

• Correlated subqueries aren't supported. Amazon Redshift returns the following error:

ERROR: RLS policy could not be rewritten.

• RLS policies can't be attached to external tables and materialized views.

• Amazon Redshift doesn't support datasharing with RLS. If a relation doesn't have RLS turned off
for datashares, the query fails on the consumer cluster with the following error:

RLS-protected relation "rls_protected_table" cannot be accessed via datasharing
 query.

• In cross-database queries, Amazon Redshift blocks reads to RLS-protected relations. Users with
the IGNORE RLS permission can access the protected relation using cross-database queries.
When a user without the IGNORE RLS permission accesses RLS-protected relation through a
cross-database query, the following error appears:

RLS-protected relation "rls_protected_table" cannot be accessed via cross-database
 query.

• ALTER RLS POLICY only supports modifying a RLS policy using the USING (using_predicate_exp)
clause. You can't modify a RLS policy with a WITH clause when running ALTER RLS POLICY.

• You can't query relations that have row-level security turned on if the values for any of the
following configuration options don't match the default value of the session:

• enable_case_sensitive_super_attribute

• enable_case_sensitive_identifier

• downcase_delimited_identifier

Considerations using RLS policies 890

Amazon Redshift Database Developer Guide

Consider resetting your session’s configuration options if you attempt to query a relation with
row-level security on and see the message "RLS protected relation does not support session level
config on case sensitivity being different from its default value."

• When your provisioned cluster or serverless namespace has any row-level security policies, the
following commands are blocked for regular users:

ALTER <current_user> SET enable_case_sensitive_super_attribute/
enable_case_sensitive_identifier/downcase_delimited_identifier

When you create RLS policies, we recommend that you change the default configuration option
settings for regular users to match the session’s configuration option settings at the time the
policy was created. Superusers and users with the ALTER USER privilege can do this by using
parameter group settings or the ALTER USER command. For information about parameter
groups, see Amazon Redshift parameter groups in the Amazon Redshift Management Guide. For
information about the ALTER USER command, see ALTER USER.

• Views and late-binding views with row-level security policies can't be replaced by regular users
using the CREATE VIEW command. To replace views or LBVs with RLS policies, first detach any
RLS policies attached to them, replace the views or LBVs, and reattach the policies. Superusers
and users with the sys:secadmin permission can use CREATE VIEW on views or LBVs with
RLS policies without detaching the policies.

• Views with row-level security policies can't reference system tables and system views.

• A late-binding view that's referenced by a regular view can't be RLS protected.

• RLS-protected relations and nested data from data lakes can't be accessed in the same query.

Best practices for RLS performance

Following are best practices to ensure better performance from Amazon Redshift on tables
protected by RLS.

Safety of operators and functions

When querying RLS-protected tables, the usage of certain operators or functions may lead to
performance degradation. Amazon Redshift classifies operators and functions either as safe or
unsafe for querying RLS-protected tables. A function or operator is classified as RLS-safe when
it doesn't have any observable side-effects depending on the inputs. In particular, a RLS-safe
function or operator can't be one of the following:

Best practices for RLS performance 891

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html

Amazon Redshift Database Developer Guide

• Outputs an input value, or any value that is dependent on the input value, with or without an
error message.

• Fails or returns errors that are dependent on the input value.

RLS-unsafe operators include:

• Arithmetic operators — +, -, /, *, %.

• Text operators — LIKE and SIMILAR TO.

• Cast operators.

• UDFs.

Use the following SELECT statement to check the safety of operators and functions.

SELECT proname, proc_is_rls_safe(oid) FROM pg_proc;

Amazon Redshift imposes restrictions on the order of evaluation of user predicates containing
RLS-unsafe operators and functions when planning queries on RLS-protected tables. Queries
referencing RLS-unsafe operators or functions might cause performance degradation when
querying RLS-protected tables. Performance can degrade significantly when Amazon Redshift
can't push RLS-unsafe predicates down to base table scans to take advantage of sort keys. For
better performance, avoid queries using RLS-unsafe predicates that take advantage of a sort key.
To verify that Amazon Redshift is able to push down operators and functions, you can use EXPLAIN
statements in combination with the system permission EXPLAIN RLS.

Result caching

To reduce query runtime and improve system performance, Amazon Redshift caches the results of
certain types of queries in the memory on the leader node.

Amazon Redshift uses cached results for a new query scanning RLS-protected tables when all the
conditions for unprotected tables are true and when all of the following are true:

• The tables or views in the policy haven't been modified.

• The policy doesn't use a function that must be evaluated each time it's run, such as GETDATE or
CURRENT_USER.

For better performance, avoid using policy predicates that don't satisfy the preceding conditions.

Best practices for RLS performance 892

Amazon Redshift Database Developer Guide

For more information about result caching in Amazon Redshift, see Result caching .

Complex policies

For better performance, avoid using complex policies with subqueries that join multiple tables.

Creating, attaching, detaching, and dropping RLS policies

You can perform the following actions:

• To create an RLS policy, use the CREATE RLS POLICY command.

• To attach an RLS policy on a table to one or more users or roles, use the ATTACH RLS POLICY
command.

• To detach a row-level security policy on a table from one or more users or roles, use the DETACH
RLS POLICY command.

• To drop an RLS policy for all tables in all databases, use the DROP RLS POLICY command.

The following is an end-to-end example to illustrate how a superuser creates some users and
roles. Then, a user with the secadmin role creates, attaches, detaches, and drops RLS policies. This
example uses the tickit sample database. For more information, see Load data from Amazon S3 to
Amazon Redshift in the Amazon Redshift Getting Started Guide.

-- Create users and roles referenced in the policy statements.
CREATE ROLE analyst;
CREATE ROLE consumer;
CREATE ROLE dbadmin;
CREATE ROLE auditor;
CREATE USER bob WITH PASSWORD 'Name_is_bob_1';
CREATE USER alice WITH PASSWORD 'Name_is_alice_1';
CREATE USER joe WITH PASSWORD 'Name_is_joe_1';
CREATE USER molly WITH PASSWORD 'Name_is_molly_1';
CREATE USER bruce WITH PASSWORD 'Name_is_bruce_1';
GRANT ROLE sys:secadmin TO bob;
GRANT ROLE analyst TO alice;
GRANT ROLE consumer TO joe;
GRANT ROLE dbadmin TO molly;
GRANT ROLE auditor TO bruce;
GRANT ALL ON TABLE tickit_category_redshift TO PUBLIC;
GRANT ALL ON TABLE tickit_sales_redshift TO PUBLIC;
GRANT ALL ON TABLE tickit_event_redshift TO PUBLIC;

Creating, attaching, detaching, and dropping RLS policies 893

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-create-sample-db.html
https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-create-sample-db.html

Amazon Redshift Database Developer Guide

-- Create table and schema referenced in the policy statements.
CREATE SCHEMA target_schema;
GRANT ALL ON SCHEMA target_schema TO PUBLIC;
CREATE TABLE target_schema.target_event_table (LIKE tickit_event_redshift);
GRANT ALL ON TABLE target_schema.target_event_table TO PUBLIC;

-- Change session to analyst alice.
SET SESSION AUTHORIZATION alice;

-- Check the tuples visible to analyst alice.
-- Should contain all 3 categories.
SELECT catgroup, count(*)
FROM tickit_category_redshift
GROUP BY catgroup ORDER BY catgroup;

-- Change session to security administrator bob.
SET SESSION AUTHORIZATION bob;

CREATE RLS POLICY policy_concerts
WITH (catgroup VARCHAR(10))
USING (catgroup = 'Concerts');

SELECT poldb, polname, polalias, polatts, polqual, polenabled, polmodifiedby FROM
 svv_rls_policy WHERE poldb = CURRENT_DATABASE();

ATTACH RLS POLICY policy_concerts ON tickit_category_redshift TO ROLE analyst, ROLE
 dbadmin;

ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY ON;

SELECT * FROM svv_rls_attached_policy;

-- Change session to analyst alice.
SET SESSION AUTHORIZATION alice;

-- Check that tuples with only `Concert` category will be visible to analyst alice.
SELECT catgroup, count(*)
FROM tickit_category_redshift
GROUP BY catgroup ORDER BY catgroup;

-- Change session to consumer joe.
SET SESSION AUTHORIZATION joe;

Creating, attaching, detaching, and dropping RLS policies 894

Amazon Redshift Database Developer Guide

-- Although the policy is attached to a different role, no tuples will be
-- visible to consumer joe because the default deny all policy is applied.
SELECT catgroup, count(*)
FROM tickit_category_redshift
GROUP BY catgroup ORDER BY catgroup;

-- Change session to dbadmin molly.
SET SESSION AUTHORIZATION molly;

-- Check that tuples with only `Concert` category will be visible to dbadmin molly.
SELECT catgroup, count(*)
FROM tickit_category_redshift
GROUP BY catgroup ORDER BY catgroup;

-- Check that EXPLAIN output contains RLS SecureScan to prevent disclosure of
-- sensitive information such as RLS filters.
EXPLAIN SELECT catgroup, count(*) FROM tickit_category_redshift GROUP BY catgroup ORDER
 BY catgroup;

-- Change session to security administrator bob.
SET SESSION AUTHORIZATION bob;

-- Grant IGNORE RLS permission so that RLS policies do not get applicable to role
 dbadmin.
GRANT IGNORE RLS TO ROLE dbadmin;

-- Grant EXPLAIN RLS permission so that anyone in role auditor can view complete
 EXPLAIN output.
GRANT EXPLAIN RLS TO ROLE auditor;

-- Change session to dbadmin molly.
SET SESSION AUTHORIZATION molly;

-- Check that all tuples are visible to dbadmin molly because `IGNORE RLS` is granted
 to role dbadmin.
SELECT catgroup, count(*)
FROM tickit_category_redshift
GROUP BY catgroup ORDER BY catgroup;

-- Change session to auditor bruce.
SET SESSION AUTHORIZATION bruce;

-- Check explain plan is visible to auditor bruce because `EXPLAIN RLS` is granted to
 role auditor.

Creating, attaching, detaching, and dropping RLS policies 895

Amazon Redshift Database Developer Guide

EXPLAIN SELECT catgroup, count(*) FROM tickit_category_redshift GROUP BY catgroup ORDER
 BY catgroup;

-- Change session to security administrator bob.
SET SESSION AUTHORIZATION bob;

DETACH RLS POLICY policy_concerts ON tickit_category_redshift FROM ROLE analyst, ROLE
 dbadmin;

-- Change session to analyst alice.
SET SESSION AUTHORIZATION alice;

-- Check that no tuples are visible to analyst alice.
-- Although the policy is detached, no tuples will be visible to analyst alice
-- because of default deny all policy is applied if the table has RLS on.
SELECT catgroup, count(*)
FROM tickit_category_redshift
GROUP BY catgroup ORDER BY catgroup;

-- Change session to security administrator bob.
SET SESSION AUTHORIZATION bob;

CREATE RLS POLICY policy_events
WITH (eventid INTEGER) AS ev
USING (
 ev.eventid IN (SELECT eventid FROM tickit_sales_redshift WHERE qtysold <3)
);

ATTACH RLS POLICY policy_events ON tickit_event_redshift TO ROLE analyst;
ATTACH RLS POLICY policy_events ON target_schema.target_event_table TO ROLE consumer;

RESET SESSION AUTHORIZATION;

-- Can not cannot alter type of dependent column.
ALTER TABLE target_schema.target_event_table ALTER COLUMN eventid TYPE float;
ALTER TABLE tickit_event_redshift ALTER COLUMN eventid TYPE float;
ALTER TABLE tickit_sales_redshift ALTER COLUMN eventid TYPE float;
ALTER TABLE tickit_sales_redshift ALTER COLUMN qtysold TYPE float;

-- Can not cannot rename dependent column.
ALTER TABLE target_schema.target_event_table RENAME COLUMN eventid TO renamed_eventid;
ALTER TABLE tickit_event_redshift RENAME COLUMN eventid TO renamed_eventid;
ALTER TABLE tickit_sales_redshift RENAME COLUMN eventid TO renamed_eventid;
ALTER TABLE tickit_sales_redshift RENAME COLUMN qtysold TO renamed_qtysold;

Creating, attaching, detaching, and dropping RLS policies 896

Amazon Redshift Database Developer Guide

-- Can not drop dependent column.
ALTER TABLE target_schema.target_event_table DROP COLUMN eventid CASCADE;
ALTER TABLE tickit_event_redshift DROP COLUMN eventid CASCADE;
ALTER TABLE tickit_sales_redshift DROP COLUMN eventid CASCADE;
ALTER TABLE tickit_sales_redshift DROP COLUMN qtysold CASCADE;

-- Can not drop lookup table.
DROP TABLE tickit_sales_redshift CASCADE;

-- Change session to security administrator bob.
SET SESSION AUTHORIZATION bob;

DROP RLS POLICY policy_concerts;
DROP RLS POLICY IF EXISTS policy_events;

ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY OFF;

RESET SESSION AUTHORIZATION;

-- Drop users and roles.
DROP USER bob;
DROP USER alice;
DROP USER joe;
DROP USER molly;
DROP USER bruce;
DROP ROLE analyst;
DROP ROLE consumer;
DROP ROLE auditor FORCE;
DROP ROLE dbadmin FORCE;

Metadata security

Like Amazon Redshift’s row-level security, metadata security gives you more granular control
over your metadata. If metadata security is enabled for your provisioned cluster or serverless
workgroup, users can see metadata for the objects for which they have viewing access. Metadata
security lets you separate visibility based on your needs. For example, you can use a single data
warehouse to centralize all of your data storage. However, if you store data for multiple sectors,
managing security can become troublesome. With metadata security enabled, you can configure
your visibility. Users of one sector can have more visibility over their objects, while you restrict
viewing access to users of another sector. Metadata security supports all object types, such as

Metadata security 897

Amazon Redshift Database Developer Guide

schemas, tables, views, materialized views, stored procedures, user-defined functions, and machine
learning models.

Users can see metadata of objects under the following circumstances:

• If object access is granted to the user.

• If object access is granted to a group or a role that the user is a part of.

• The object is public.

• The user is the owner of the database object.

To enable metadata security, use the ALTER SYSTEM command. The following is the syntax of how
to use the ALTER SYSTEM command with metadata security.

ALTER SYSTEM SET metadata_security=[true|t|on|false|f|off];

When you enable metadata security, all users who have the necessary permissions can see the
relevant metadata of objects that they have access to. If you want only certain users to be able
to see metadata security, grant the ACCESS CATALOG permission to a role, and then assign the
role to the user. For more information about using roles to better control security, see Role-based
access control.

The following example demonstrates how to grant the ACCESS CATALOG permission to a role, and
then assigns the role to a user. For more information about granting permissions, see the GRANT
command.

CREATE ROLE sample_metadata_viewer;

GRANT ACCESS CATALOG TO ROLE sample_metadata_viewer;

GRANT ROLE sample_metadata_viewer to salesadmin;

If you prefer to use already defined roles, the system-defined roles operator, secadmin, dba, and
superuser all have the necessary permissions to view object metadata. By default, superusers can
see the complete catalog.

GRANT ROLE operator to sample_user;

Metadata security 898

https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_SYSTEM.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Roles.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Roles.html
https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT.html
https://docs.aws.amazon.com/redshift/latest/dg/r_roles-default.html

Amazon Redshift Database Developer Guide

If you’re using roles to control metadata security, you have access to all of the system views and
functions that come with role-based access control. For example, you can query the SVV_ROLES
view to see the roles that are accessible by the current user. To see if a user is a member of a role
or group, use the USER_IS_MEMBER_OF function. For a full list of SVV views, see SVV metadata
views. For a list of system information functions, see System information functions.

Dynamic data masking

Overview

Using dynamic data masking (DDM) in Amazon Redshift, you can protect sensitive data in your
data warehouse. You can manipulate how Amazon Redshift shows sensitive data to the user at
query time, without transforming it in the database. You control access to data through masking
policies that apply custom obfuscation rules to a given user or role. In that way, you can respond to
changing privacy requirements without altering underlying data or editing SQL queries.

Dynamic data masking policies hide, obfuscate, or pseudonymize data that matches a given
format. When attached to a table, the masking expression is applied to one or more of its columns.
You can further modify masking policies to only apply them to certain users, or to user-defined
roles that you can create with Role-based access control (RBAC). Additionally, you can apply
DDM on the cell level by using conditional columns when creating your masking policy. For more
information about conditional masking, see Conditional dynamic data masking.

You can apply multiple masking policies with varying levels of obfuscation to the same column
in a table and assign them to different roles. To avoid conflicts when you have different roles
with different policies applying to one column, you can set priorities for each application. In
that way, you can control what data a given user or role can access. DDM policies can partially or
completely redact data, or hash it by using user-defined functions written in SQL, Python, or with
AWS Lambda. By masking data using hashes, you can apply joins on this data without access to
potentially sensitive information.

End-to-end example

The following is an end-to-end example showing how you can create and attach masking policies
to a column. These policies let users access a column and see different values, depending on the
degree of obfuscation in the policies attached to their roles. You must be a superuser or have the
sys:secadmin role to run this example.

Dynamic data masking 899

https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_ROLES.html
https://docs.aws.amazon.com/redshift/latest/dg/r_USER_IS_MEMBER_OF.html
https://docs.aws.amazon.com/redshift/latest/dg/svv_views.html
https://docs.aws.amazon.com/redshift/latest/dg/svv_views.html
https://docs.aws.amazon.com/redshift/latest/dg/r_System_information_functions.html
https://docs.aws.amazon.com/redshift/latest/dg/r_roles-default.html

Amazon Redshift Database Developer Guide

Creating a masking policy

First, create a table and populate it with credit card values.

--create the table
CREATE TABLE credit_cards (
 customer_id INT,
 credit_card TEXT
);

--populate the table with sample values
INSERT INTO credit_cards
VALUES
 (100, '4532993817514842'),
 (100, '4716002041425888'),
 (102, '5243112427642649'),
 (102, '6011720771834675'),
 (102, '6011378662059710'),
 (103, '373611968625635')
;

--run GRANT to grant permission to use the SELECT statement on the table
GRANT SELECT ON credit_cards TO PUBLIC;

--create two users
CREATE USER regular_user WITH PASSWORD '1234Test!';

CREATE USER analytics_user WITH PASSWORD '1234Test!';

--create the analytics_role role and grant it to analytics_user
--regular_user does not have a role
CREATE ROLE analytics_role;

GRANT ROLE analytics_role TO analytics_user;

Next, create a masking policy to apply to the analytics role.

--create a masking policy that fully masks the credit card number
CREATE MASKING POLICY mask_credit_card_full
WITH (credit_card VARCHAR(256))
USING ('000000XXXX0000'::TEXT);

--create a user-defined function that partially obfuscates credit card data

End-to-end example 900

Amazon Redshift Database Developer Guide

CREATE FUNCTION REDACT_CREDIT_CARD (credit_card TEXT)
RETURNS TEXT IMMUTABLE
AS $$
 import re
 regexp = re.compile("^([0-9]{6})[0-9]{5,6}([0-9]{4})")

 match = regexp.search(credit_card)
 if match != None:
 first = match.group(1)
 last = match.group(2)
 else:
 first = "000000"
 last = "0000"

 return "{}XXXXX{}".format(first, last)
$$ LANGUAGE plpythonu;

--create a masking policy that applies the REDACT_CREDIT_CARD function
CREATE MASKING POLICY mask_credit_card_partial
WITH (credit_card VARCHAR(256))
USING (REDACT_CREDIT_CARD(credit_card));

--confirm the masking policies using the associated system views
SELECT * FROM svv_masking_policy;

SELECT * FROM svv_attached_masking_policy;

Attaching a masking policy

Attach the masking policies to the credit card table.

--attach mask_credit_card_full to the credit card table as the default policy
--all users will see this masking policy unless a higher priority masking policy is
 attached to them or their role
ATTACH MASKING POLICY mask_credit_card_full
ON credit_cards(credit_card)
TO PUBLIC;

--attach mask_credit_card_partial to the analytics role
--users with the analytics role can see partial credit card information
ATTACH MASKING POLICY mask_credit_card_partial
ON credit_cards(credit_card)
TO ROLE analytics_role

End-to-end example 901

Amazon Redshift Database Developer Guide

PRIORITY 10;

--confirm the masking policies are applied to the table and role in the associated
 system view
SELECT * FROM svv_attached_masking_policy;

--confirm the full masking policy is in place for normal users by selecting from the
 credit card table as regular_user
SET SESSION AUTHORIZATION regular_user;

SELECT * FROM credit_cards;

--confirm the partial masking policy is in place for users with the analytics role by
 selecting from the credit card table as analytics_user
SET SESSION AUTHORIZATION analytics_user;

SELECT * FROM credit_cards;

Altering a masking policy

The following section shows how to alter a dynamic data masking policy.

--reset session authorization to the default
RESET SESSION AUTHORIZATION;

--alter the mask_credit_card_full policy
ALTER MASKING POLICY mask_credit_card_full
USING ('00000000000000'::TEXT);

--confirm the full masking policy is in place after altering the policy, and that
 results are altered from '000000XXXX0000' to '00000000000000'
SELECT * FROM credit_cards;

Detaching and dropping a masking policy

The following section shows how to detach and drop masking policies by removing all dynamic
data masking policies from the table.

--reset session authorization to the default
RESET SESSION AUTHORIZATION;

--detach both masking policies from the credit_cards table
DETACH MASKING POLICY mask_credit_card_full

End-to-end example 902

Amazon Redshift Database Developer Guide

ON credit_cards(credit_card)
FROM PUBLIC;

DETACH MASKING POLICY mask_credit_card_partial
ON credit_cards(credit_card)
FROM ROLE analytics_role;

--drop both masking policies
DROP MASKING POLICY mask_credit_card_full;

DROP MASKING POLICY mask_credit_card_partial;

Considerations when using dynamic data masking

When using dynamic data masking, consider the following:

• When querying objects created from tables, such as views, users will see results based on their
own masking policies, not the policies of the user who created the objects. For example, a user
with the analyst role querying a view created by a secadmin would see results with masking
policies attached to the analyst role.

• To prevent the EXPLAIN command from potentially exposing sensitive masking policy filters,
only users with the SYS_EXPLAIN_DDM permission can see masking policies applied in EXPLAIN
outputs. Users don't have the SYS_EXPLAIN_DDM permission by default.

The following is the syntax for granting the permission to a user or role.

GRANT EXPLAIN MASKING TO { username | ROLE rolename }

For more information about the EXPLAIN command, see EXPLAIN.

• Users with different roles can see differing results based on the filter conditions or join
conditions used. For example, running a SELECT command on a table using a specific column
value will fail if the user running the command has a masking policy applied that obfuscates that
column.

• DDM policies must be applied ahead of any predicate operations, or projections. Masking polices
can include the following:

• Low cost constant operations such as converting a value to null

• Moderate cost operations such as HMAC hashing

• High cost operations such as calls to external Lambda user defined functions

Considerations when using dynamic data masking 903

Amazon Redshift Database Developer Guide

As such, we recommend that you use simple masking expressions when possible.

• You can use DDM policies for roles with row-level security policies, but note that RLS policies are
applied before DDM. A dynamic data masking expression won't be able to read a row that was
protected by RLS. For more information about RLS, see Row-level security.

• When using the COPY command to copy from parquet to protected target tables, you should
explicitly specify columns in the COPY statement. For more information about mapping columns
with COPY, see Column mapping options.

• DDM policies can't attach to the following relations:

• System tables and catalogs

• External tables

• Datasharing tables

• Materialized views

• Cross-DB relations

• Temporary tables

• Correlated queries

• DDM policies can contain lookup tables. Lookup tables can be present in the USING clause. The
following relation types can’t be used as lookup tables:

• System tables and catalogs

• External tables

• Datasharing tables

• Views, materialized views, and late-binding views

• Cross-DB relations

• Temporary tables

• Correlated queries

Following is an example of attaching a masking policy to a lookup table.

--Create a masking policy referencing a lookup table
CREATE MASKING POLICY lookup_mask_credit_card WITH (credit_card TEXT) USING (
 CASE
 WHEN
 credit_card IN (SELECT credit_card_lookup FROM credit_cards_lookup)
 THEN '000000XXXX0000'
 ELSE REDACT_CREDIT_CARD(credit_card)

Considerations when using dynamic data masking 904

Amazon Redshift Database Developer Guide

 END
);

--Provides access to the lookup table via a policy attached to a role
GRANT SELECT ON TABLE credit_cards_lookup TO MASKING POLICY lookup_mask_credit_card;

• You can't attach a masking policy that would produce an output incompatible with the target
column's type and size. For example, you can’t attach a masking policy that outputs a 12
character long string to a VARCHAR(10) column. Amazon Redshift supports the following
exceptions:

• A masking policy with the input type INTN can be attached to a policy with size INTM as
long as M < N. For example, a BIGINT (INT8) input policy can be attached to a smallint (INT4)
column.

• A masking policy with the input type NUMERIC or DECIMAL can always be attached to a FLOAT
column.

• DDM policies can't be used with data sharing. If the datashare's data producer attaches a
DDM policy to a table in the datashare, the table becomes inaccessible to users from the data
consumer who are trying to query the table. Tables with DDM policies attached can't be added to
a datashare.

• You can't query relations that have attached DDM policies if your values for any of the following
configuration options don't match the default value of the session:

• enable_case_sensitive_super_attribute

• enable_case_sensitive_identifier

• downcase_delimited_identifier

Consider resetting your session’s configuration options if you attempt to query a relation with
a DDM policy attached and see the message "DDM protected relation does not support session
level config on case sensitivity being different from its default value."

• When your provisioned cluster or serverless namespace has any dynamic data masking policies,
the following commands are blocked for regular users:

ALTER <current_user> SET enable_case_sensitive_super_attribute/
enable_case_sensitive_identifier/downcase_delimited_identifier

When you create DDM policies, we recommend that you change the default configuration option
settings for regular users to match the session’s configuration option settings at the time the
policy was created. Superusers and users with the ALTER USER privilege can do this by using

Considerations when using dynamic data masking 905

Amazon Redshift Database Developer Guide

parameter group settings or the ALTER USER command. For information about parameter
groups, see Amazon Redshift parameter groups in the Amazon Redshift Management Guide. For
information about the ALTER USER command, see ALTER USER.

• Views and late-binding views with attached DDM policies can't be replaced by regular users using
the CREATE VIEW command. To replace views or LBVs with DDM policies, first detach any DDM
policies attached to them, replace the views or LBVs, and reattach the policies. Superusers and
users with the sys:secadmin permission can use CREATE VIEW on views or LBVs with DDM
policies without detaching the policies.

• Views with attached DDM policies can't reference system tables and views. Late-binding views
can reference system tables and views.

• Late-binding views with attached DDM policies can't reference nested data in data lakes, such as
JSON documents.

• Late-binding views can't have DDM policies attached if that late-binding view is referenced by
any view.

• DDM policies attached to late-binding views are attached by column name. At query time,
Amazon Redshift validates that all masking policies attached to the late-binding view have been
applied successfully, and that the late-binding view's output column type matches the types in
the attached masking policies. If the validation fails, Amazon Redshift returns an error for the
query.

Managing dynamic data masking policies

You can perform the following actions:

• To create a DDM policy, use the CREATE MASKING POLICY command.

The following is an example of creating a masking policy using a SHA-2 hash function.

CREATE MASKING POLICY hash_credit
WITH (credit_card varchar(256))
USING (sha2(credit_card + 'testSalt', 256));

• To alter an existing DDM policy, use the ALTER MASKING POLICY command.

The following is an example of altering an existing masking policy.

ALTER MASKING POLICY hash_credit

Managing dynamic data masking policies 906

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html

Amazon Redshift Database Developer Guide

USING (sha2(credit_card + 'otherTestSalt', 256));

• To attach a DDM policy on a table to one or more users or roles, use the ATTACH MASKING
POLICY command.

The following is an example of attaching a masking policy to a column/role pair.

 ATTACH MASKING POLICY hash_credit
ON credit_cards (credit_card)
TO ROLE science_role
PRIORITY 30;

The PRIORITY clause determines which masking policy applies to a user session when multiple
policies are attached to the same column. For example, if the user in the preceding example
has another masking policy attached to the same credit card column with a priority of 20,
science_role's policy is the one that applies, as it has the higher priority of 30.

• To detach a DDM policy on a table from one or more users or roles, use the DETACH MASKING
POLICY command.

The following is an example of detaching a masking policy from a column/role pair.

DETACH MASKING POLICY hash_credit
ON credit_cards(credit_card)
FROM ROLE science_role;

• To drop a DDM policy from all databases, use the DROP MASKING POLICY command.

The following is an example of dropping a masking policy from all databases.

DROP MASKING POLICY hash_credit;

Masking policy hierarchy

When attaching multiple masking policies, consider the following:

• You can attach multiple masking policies to a single column.

• When multiple masking policies are applicable to a query, the highest priority policy attached to
each respective column applies. Consider the following example.

Masking policy hierarchy 907

Amazon Redshift Database Developer Guide

ATTACH MASKING POLICY partial_hash
ON credit_cards(address, credit_card)
TO ROLE analytics_role
PRIORITY 20;

ATTACH MASKING POLICY full_hash
ON credit_cards(credit_card, ssn)
TO ROLE auditor_role
PRIORITY 30;

SELECT address, credit_card, ssn
FROM credit_cards;

When running the SELECT statement, a user with both the analytics and auditor roles sees the
address column with the partial_hash masking policy applied. They see the credit card and
SSN columns with the full_hash masking policy applied because the full_hash policy has
the higher priority on the credit card column.

• If you don't specify a priority when attaching a masking policy, the default priority is 0.

• You can't attach two policies to the same column with equal priority.

• You can't attach two policies to the same combination of user and column or role and column.

• When multiple masking policies are applicable along the same SUPER path while attached to
the same user or role, only the highest priority attachment takes effect. Consider the following
examples.

The first example shows two masking policies attached on the same path, with the higher
priority policy taking effect.

ATTACH MASKING POLICY hide_name
ON employees(col_person.name)
TO PUBLIC
PRIORITY 20;

ATTACH MASKING POLICY hide_last_name
ON employees(col_person.name.last)
TO PUBLIC
PRIORITY 30;

--Only the hide_last_name policy takes effect.

Masking policy hierarchy 908

Amazon Redshift Database Developer Guide

SELECT employees.col_person.name FROM employees;

The second example shows two masking policies attached to different paths in the same SUPER
object, with no conflict between the policies. Both attachments will apply at the same time.

ATTACH MASKING POLICY hide_first_name
ON employees(col_person.name.first)
TO PUBLIC
PRIORITY 20;

ATTACH MASKING POLICY hide_last_name
ON employees(col_person.name.last)
TO PUBLIC
PRIORITY 20;

--Both col_person.name.first and col_person.name.last are masked.
SELECT employees.col_person.name FROM employees;

To confirm which masking policy applies to a given user and column or role and column
combination, users with the sys:secadmin role can look up the column/role or column/user pair
in the SVV_ATTACHED_MASKING_POLICY system view. For more information, see System views for
dynamic data masking.

Using dynamic data masking with SUPER data type paths

Amazon Redshift supports attaching dynamic data masking policies to paths of SUPER type
columns. For more information about the SUPER data type, see Ingesting and querying
semistructured data in Amazon Redshift.

When attaching masking policies to paths of SUPER type columns, consider the following.

• When attaching a masking policy to a path on a column, that column must be defined as the
SUPER data type. You can only apply masking policies to scalar values on the SUPER path. You
can't apply masking policies to complex structures or arrays.

• You can apply different masking policies to multiple scalar values on a single SUPER column, as
long as the SUPER paths don't conflict. For example, the SUPER paths a.b and a.b.c conflict
because they are on the same path, with a.b being the parent of a.b.c. The SUPER paths
a.b.c and a.b.d don’t conflict.

Using DDM with SUPER type paths 909

https://docs.aws.amazon.com/redshift/latest/dg/r_roles-default.html

Amazon Redshift Database Developer Guide

• Amazon Redshift can’t check that the paths that a masking policy attaches to exist in the data
and are of the expected type until the policy is applied at user query runtime. For example, when
you attach a masking policy that masks TEXT values to a SUPER path that contains an INT value,
Amazon Redshift will attempt to cast the type of the value at the path.

In such situations, the behavior of Amazon Redshift at runtime depends on your configuration
settings for querying SUPER objects. By default, Amazon Redshift is in lax mode, and will resolve
missing paths and invalid casts as NULL for the given SUPER path. For more information about
SUPER-related configuration settings, see SUPER configurations.

• SUPER is a schemaless type, which means that Amazon Redshift can’t confirm the existence of
the value at a given SUPER path. If you attach a masking policy to a SUPER path that doesn’t
exist and Amazon Redshift is in lax mode, Amazon Redshift will resolve the path to a NULL value.
We recommend that you consider the expected format of SUPER objects and the likelihood of
them having unexpected attributes when attaching masking policies to paths of SUPER columns.
If you think there might be an unexpected schema in your SUPER column, consider attaching
your masking policies directly to the SUPER column. You can use SUPER type information
functions to check attributes and types, and using OBJECT_TRANSFORM to mask the values.
For more information about SUPER type information functions, see SUPER type information
functions.

Examples

Attaching masking policies to SUPER paths

The following example attaches multiple masking policies onto multiple SUPER type paths in one
column.

CREATE TABLE employees (
 col_person SUPER
);

INSERT INTO employees
VALUES
 (
 json_parse('
 {
 "name": {
 "first": "John",
 "last": "Doe"

Using DDM with SUPER type paths 910

Amazon Redshift Database Developer Guide

 },
 "age": 25,
 "ssn": "111-22-3333",
 "company": "Company Inc."
 }
 ')
),
 (
 json_parse('
 {
 "name": {
 "first": "Jane",
 "last": "Appleseed"
 },
 "age": 34,
 "ssn": "444-55-7777",
 "company": "Organization Org."
 }
 ')
)
;
GRANT ALL ON ALL TABLES IN SCHEMA "public" TO PUBLIC;

-- Create the masking policies.

-- This policy converts the given name to all uppercase letters.
CREATE MASKING POLICY mask_first_name
WITH(first_name TEXT)
USING (UPPER(first_name));

-- This policy replaces the given name with the fixed string 'XXXX'.
CREATE MASKING POLICY mask_last_name
WITH(last_name TEXT)
USING ('XXXX'::TEXT);

-- This policy rounds down the given age to the nearest 10.
CREATE MASKING POLICY mask_age
WITH(age INT)
USING ((FLOOR(age::FLOAT / 10) * 10)::INT);

-- This policy converts the first five digits of the given SSN to 'XXX-XX'.
CREATE MASKING POLICY mask_ssn
WITH(ssn TEXT)
USING ('XXX-XX-'::TEXT || SUBSTRING(ssn::TEXT FROM 8 FOR 4));

Using DDM with SUPER type paths 911

Amazon Redshift Database Developer Guide

-- Attach the masking policies to the employees table.
ATTACH MASKING POLICY mask_first_name
ON employees(col_person.name.first)
TO PUBLIC;

ATTACH MASKING POLICY mask_last_name
ON employees(col_person.name.last)
TO PUBLIC;

ATTACH MASKING POLICY mask_age
ON employees(col_person.age)
TO PUBLIC;

ATTACH MASKING POLICY mask_ssn
ON employees(col_person.ssn)
TO PUBLIC;

-- Verify that your masking policies are attached.
SELECT
 policy_name,
 TABLE_NAME,
 priority,
 input_columns,
 output_columns
FROM
 svv_attached_masking_policy;

 policy_name | table_name | priority | input_columns |
 output_columns
-----------------+------------+----------+-----------------------------------
+-----------------------------------
 mask_age | employees | 0 | ["col_person.\"age\""] |
 ["col_person.\"age\""]
 mask_first_name | employees | 0 | ["col_person.\"name\".\"first\""] |
 ["col_person.\"name\".\"first\""]
 mask_last_name | employees | 0 | ["col_person.\"name\".\"last\""] |
 ["col_person.\"name\".\"last\""]
 mask_ssn | employees | 0 | ["col_person.\"ssn\""] |
 ["col_person.\"ssn\""]
(4 rows)

-- Observe the masking policies taking effect.
SELECT col_person FROM employees ORDER BY col_person.age;

Using DDM with SUPER type paths 912

Amazon Redshift Database Developer Guide

-- This result is formatted for ease of reading.
 col_person

{
 "name": {
 "first": "JOHN",
 "last": "XXXX"
 },
 "age": 20,
 "ssn": "XXX-XX-3333",
 "company": "Company Inc."
}
{
 "name": {
 "first": "JANE",
 "last": "XXXX"
 },
 "age": 30,
 "ssn": "XXX-XX-7777",
 "company": "Organization Org."
}

Following are some examples of invalid masking policy attachments to SUPER paths.

-- This attachment fails because there is already a policy
-- with equal priority attached to employees.name.last, which is
-- on the same SUPER path as employees.name.
ATTACH MASKING POLICY mask_ssn
ON employees(col_person.name)
TO PUBLIC;
ERROR: DDM policy "mask_last_name" is already attached on relation "employees" column
 "col_person."name"."last"" with same priority

-- Create a masking policy that masks DATETIME objects.
CREATE MASKING POLICY mask_date
WITH(INPUT DATETIME)
USING (INPUT);

-- This attachment fails because SUPER type columns can't contain DATETIME objects.
ATTACH MASKING POLICY mask_date
ON employees(col_person.company)
TO PUBLIC;

Using DDM with SUPER type paths 913

Amazon Redshift Database Developer Guide

ERROR: cannot attach masking policy for output of type "timestamp without time zone"
 to column "col_person."company"" of type "super

Following is an example of attaching a masking policy to a SUPER path that doesn’t exist. By
default, Amazon Redshift will resolve the path to NULL.

ATTACH MASKING POLICY mask_first_name
ON employees(col_person.not_exists)
TO PUBLIC;

SELECT col_person FROM employees LIMIT 1;

-- This result is formatted for ease of reading.
 col_person

{
 "name": {
 "first": "JOHN",
 "last": "XXXX"
 },
 "age": 20,
 "ssn": "XXX-XX-3333",
 "company": "Company Inc.",
 "not_exists": null
}

Conditional dynamic data masking

You can mask data at the cell level by creating masking policies with conditional expressions in the
masking expression. For example, you can create a masking policy that applies different masks to a
value, depending on another column's value in that row.

The following is an example of using conditional data masking to create and attach a masking
policy that partially redacts credit card numbers involved in fraud, while completely hiding all
other credit card numbers. You must be a superuser or have the sys:secadmin role to run this
example.

--Create an analyst role.
CREATE ROLE analyst;

--Create a credit card table. The table contains an is_fraud boolean column,

Conditional dynamic data masking 914

https://docs.aws.amazon.com/redshift/latest/dg/r_roles-default.html

Amazon Redshift Database Developer Guide

--which is TRUE if the credit card number in that row was involved in a fraudulent
 transaction.
CREATE TABLE credit_cards (id INT, is_fraud BOOLEAN, credit_card_number VARCHAR(16));

--Create a function that partially redacts credit card numbers.
CREATE FUNCTION REDACT_CREDIT_CARD (credit_card VARCHAR(16))
RETURNS VARCHAR(16) IMMUTABLE
AS $$
 import re
 regexp = re.compile("^([0-9]{6})[0-9]{5,6}([0-9]{4})")

 match = regexp.search(credit_card)
 if match != None:
 first = match.group(1)
 last = match.group(2)
 else:
 first = "000000"
 last = "0000"

 return "{}XXXXX{}".format(first, last)
$$ LANGUAGE plpythonu;

--Create a masking policy that partially redacts credit card numbers if the is_fraud
 value for that row is TRUE,
--and otherwise blanks out the credit card number completely.
CREATE MASKING POLICY card_number_conditional_mask
 WITH (fraudulent BOOLEAN, pan varchar(16))
 USING (CASE WHEN fraudulent THEN REDACT_CREDIT_CARD(pan)
 ELSE Null
 END);

--Attach the masking policy to the credit_cards/analyst table/role pair.
ATTACH MASKING POLICY card_number_conditional_mask ON credit_cards (credit_card_number)
 USING (is_fraud, credit_card_number)
 TO ROLE analyst PRIORITY 100;

System views for dynamic data masking

Superusers, users with the sys:operator role, and users with the ACCESS SYSTEM TABLE
permission can access the following DDM-related system views.

• SVV_MASKING_POLICY

System views for dynamic data masking 915

Amazon Redshift Database Developer Guide

Use SVV_MASKING_POLICY to view all masking policies created on the cluster or workgroup.

• SVV_ATTACHED_MASKING_POLICY

Use SVV_ATTACHED_MASKING_POLICY to view all the relations and users or roles with policies
attached on the currently connected database.

• SYS_APPLIED_MASKING_POLICY_LOG

Use SYS_APPLIED_MASKING_POLICY_LOG to trace the application of masking policies on queries
that reference DDM-protected relations.

Following are some examples of the information that you can find using system views.

--Select all policies associated with specific users, as opposed to roles
SELECT policy_name,
 schema_name,
 table_name,
 grantee
FROM svv_attached_masking_policy
WHERE grantee_type = 'user';

--Select all policies attached to a specific user
SELECT policy_name,
 schema_name,
 table_name,
 grantee
FROM svv_attached_masking_policy
WHERE grantee = 'target_grantee_name'

--Select all policies attached to a given table
SELECT policy_name,
 schema_name,
 table_name,
 grantee
FROM svv_attached_masking_policy
WHERE table_name = 'target_table_name'
 AND schema_name = 'target_schema_name';

--Select the highest priority policy attachment for a given role
SELECT samp.policy_name,
 samp.priority,
 samp.grantee,

System views for dynamic data masking 916

Amazon Redshift Database Developer Guide

 smp.policy_expression
FROM svv_masking_policy AS smp
JOIN svv_attached_masking_policy AS samp
 ON samp.policy_name = smp.policy_name
WHERE
 samp.grantee_type = 'role' AND
 samp.policy_name = mask_get_policy_for_role_on_column(
 'target_schema_name',
 'target_table_name',
 'target_column_name',
 'target_role_name')
ORDER BY samp.priority desc
LIMIT 1;

--See which policy a specific user will see on a specific column in a given relation
SELECT samp.policy_name,
 samp.priority,
 samp.grantee,
 smp.policy_expression
FROM svv_masking_policy AS smp
JOIN svv_attached_masking_policy AS samp
 ON samp.policy_name = smp.policy_name
WHERE
 samp.grantee_type = 'role' AND
 samp.policy_name = mask_get_policy_for_user_on_column(
 'target_schema_name',
 'target_table_name',
 'target_column_name',
 'target_user_name')
ORDER BY samp.priority desc;

 --Select all policies attached to a given relation.
SELECT policy_name,
schema_name,
relation_name,
database_name
FROM sys_applied_masking_policy_log
WHERE relation_name = 'relation_name'
AND schema_name = 'schema_name';

System views for dynamic data masking 917

Amazon Redshift Database Developer Guide

Scoped permissions

Scoped permissions let you grant permissions to a user or role on all objects of a type within a
database or schema. Users and roles with scoped permissions have the specified permissions on all
current and future objects within the database or schema.

For more information on applying scoped permissions, see GRANT and REVOKE.

Considerations for using scoped permissions

When using scoped permissions, consider the following:

• You can use scoped permissions to grant or revoke permissions on a database or schema scope to
or from a specified user or role.

• You can't grant scoped permissions to user groups.

• Granting or revoking scoped permissions changes permissions for all current and future objects
in the scope.

• Scoped permissions and object-level permissions operate independently of each other. For
example, a user will maintain permissions on a table in both of the following cases.

• The user is granted SELECT on the table schema1.table1 and SELECT scoped permission on
schema1. The user then has SELECT revoked for all tables in schema schema1. The user retains
SELECT on schema1.table1.

• The user is granted SELECT on the table schema1.table1 and SELECT scoped permission on
schema1. The user then has SELECT revoked for schema1.table1. The user retains SELECT on
schema1.table1.

• To grant or revoke scoped permissions, you must meet one of the following criteria:

• Superusers.

• Users with the grant option for that permission. For more information on grant options, go to
the WITH GRANT OPTION parameter in GRANT.

• Scoped permissions can only be granted to or revoked from objects for the connected database,
or from databases imported from a datashare.

• You can use scoped permissions to set the default permissions on a database created from a
datashare. A consumer-side datashare user who is granted scoped permissions on a shared
database will automatically gain those permissions for any new object added to the datashare on
the producer side.

Scoped permissions 918

Amazon Redshift Database Developer Guide

• Producers can grant scoped permissions on objects within a schema to a datashare. (preview)

Considerations for using scoped permissions 919

Amazon Redshift Database Developer Guide

SQL reference

Topics

• Amazon Redshift SQL

• Using SQL

• SQL commands

• SQL functions reference

• Reserved words

Amazon Redshift SQL

Topics

• SQL functions supported on the leader node

• Amazon Redshift and PostgreSQL

Amazon Redshift is built around industry-standard SQL, with added functionality to manage very
large datasets and support high-performance analysis and reporting of those data.

Note

The maximum size for a single Amazon Redshift SQL statement is 16 MB.

SQL functions supported on the leader node

Some Amazon Redshift queries are distributed and run on the compute nodes, and other queries
run exclusively on the leader node.

The leader node distributes SQL to the compute nodes whenever a query references user-created
tables or system tables (tables with an STL or STV prefix and system views with an SVL or SVV
prefix). A query that references only catalog tables (tables with a PG prefix, such as PG_TABLE_DEF,
which reside on the leader node) or that does not reference any tables, runs exclusively on the
leader node.

Amazon Redshift SQL 920

Amazon Redshift Database Developer Guide

Some Amazon Redshift SQL functions are supported only on the leader node and are not
supported on the compute nodes. A query that uses a leader-node function must run exclusively
on the leader node, not on the compute nodes, or it will return an error.

The documentation for each function that must run exclusively on the leader node includes a note
stating that the function will return an error if it references user-defined tables or Amazon Redshift
system tables. See Leader node–only functions for a list of functions that run exclusively on the
leader node.

Examples

The following examples use the sample TICKIT database. For more information on the sample
database, go to Sample database.

CURRENT_SCHEMA

The CURRENT_SCHEMA function is a leader-node only function. In this example, the query does
not reference a table, so it runs exclusively on the leader node.

select current_schema();

current_schema

public

In the next example, the query references a system catalog table, so it runs exclusively on the
leader node.

select * from pg_table_def
where schemaname = current_schema() limit 1;

 schemaname | tablename | column | type | encoding | distkey | sortkey | notnull
------------+-----------+--------+----------+----------+---------+---------+---------
 public | category | catid | smallint | none | t | 1 | t

In the next example, the query references an Amazon Redshift system table that resides on the
compute nodes, so it returns an error.

select current_schema(), userid from users;

INFO: Function "current_schema()" not supported.

SQL functions supported on the leader node 921

Amazon Redshift Database Developer Guide

ERROR: Specified types or functions (one per INFO message) not supported on Amazon
 Redshift tables.

SUBSTR

SUBSTR is also a leader-node only function. In the following example, the query runs exclusive on
the leader node because it does not reference a table.

SELECT SUBSTR('amazon', 5);

+--------+
| substr |
+--------+
| on |
+--------+

In the following example, the query references a table that resides on the compute nodes. This
results in an error.

SELECT SUBSTR(catdesc, 1) FROM category LIMIT 1;

ERROR: SUBSTR() function is not supported (Hint: use SUBSTRING instead)

To successfully run the previous query, use SUBSTRING.

SELECT SUBSTRING(catdesc, 1) FROM category LIMIT 1;

+---------------------------------+
| substring |
+---------------------------------+
| National Basketball Association |
+---------------------------------+

FACTORIAL()

FACTORIAL() is a leader-node only function. In the following example, the query runs exclusive on
the leader node because it does not reference a table.

SELECT FACTORIAL(5);

 factorial

SQL functions supported on the leader node 922

https://docs.aws.amazon.com/redshift/latest/dg/r_SUBSTRING.html

Amazon Redshift Database Developer Guide

 120

In the following example, the query references a table that resides on the compute nodes. This
results in an error when run using query editor v2.

create table t(a int);
insert into t values (5);
select factorial(a) from t;

ERROR: Specified types or functions (one per INFO message) not supported on Redshift
 tables.
Info: Function "factorial(bigint)" not supported.

Amazon Redshift and PostgreSQL

Topics

• Amazon Redshift and PostgreSQL JDBC and ODBC

• Features that are implemented differently

• Unsupported PostgreSQL features

• Unsupported PostgreSQL data types

• Unsupported PostgreSQL functions

Amazon Redshift is based on PostgreSQL. Amazon Redshift and PostgreSQL have a number of very
important differences that you must be aware of as you design and develop your data warehouse
applications.

Amazon Redshift is specifically designed for online analytic processing (OLAP) and business
intelligence (BI) applications, which require complex queries against large datasets. Because it
addresses very different requirements, the specialized data storage schema and query execution
engine that Amazon Redshift uses are completely different from the PostgreSQL implementation.
For example, where online transaction processing (OLTP) applications typically store data in
rows, Amazon Redshift stores data in columns, using specialized data compression encodings for
optimum memory usage and disk I/O. Some PostgreSQL features that are suited to smaller-scale
OLTP processing, such as secondary indexes and efficient single-row data manipulation operations,
have been omitted to improve performance.

See System and architecture overview for a detailed explanation of the Amazon Redshift data
warehouse system architecture.

Amazon Redshift and PostgreSQL 923

Amazon Redshift Database Developer Guide

PostgreSQL 9.x includes some features that are not supported in Amazon Redshift. In addition,
there are important differences between Amazon Redshift SQL and PostgreSQL that you must
be aware of. This section highlights the differences between Amazon Redshift and PostgreSQL
and provides guidance for developing a data warehouse that takes full advantage of the Amazon
Redshift SQL implementation.

Amazon Redshift and PostgreSQL JDBC and ODBC

Because Amazon Redshift is based on PostgreSQL, we previously recommended using JDBC4
Postgresql driver version 8.4.703 and psqlODBC version 9.x drivers. If you are currently using those
drivers, we recommend moving to the new Amazon Redshift–specific drivers going forward. For
more information about drivers and configuring connections, see JDBC and ODBC Drivers for
Amazon Redshift in the Amazon Redshift Management Guide.

To avoid client-side out-of-memory errors when retrieving large data sets using JDBC, you can
enable your client to fetch data in batches by setting the JDBC fetch size parameter. For more
information, see Setting the JDBC fetch size parameter.

Amazon Redshift does not recognize the JDBC maxRows parameter. Instead, specify a LIMIT clause
to restrict the result set. You can also use an OFFSET clause to skip to a specific starting point in
the result set.

Features that are implemented differently

Many Amazon Redshift SQL language elements have different performance characteristics and use
syntax and semantics and that are quite different from the equivalent PostgreSQL implementation.

Important

Do not assume that the semantics of elements that Amazon Redshift and PostgreSQL have
in common are identical. Make sure to consult the Amazon Redshift Developer Guide SQL
commands to understand the often subtle differences.

One example in particular is the VACUUM command, which is used to clean up and reorganize
tables. VACUUM functions differently and uses a different set of parameters than the PostgreSQL
version. See Vacuuming tables for more about information about using VACUUM in Amazon
Redshift.

Amazon Redshift and PostgreSQL 924

https://docs.aws.amazon.com/redshift/latest/mgmt/configuring-connections.html#connecting-drivers
https://docs.aws.amazon.com/redshift/latest/mgmt/configuring-connections.html#connecting-drivers

Amazon Redshift Database Developer Guide

Often, database management and administration features and tools are different as well. For
example, Amazon Redshift maintains a set of system tables and views that provide information
about how the system is functioning. See System tables and views for more information.

The following list includes some examples of SQL features that are implemented differently in
Amazon Redshift.

• CREATE TABLE

Amazon Redshift does not support tablespaces, table partitioning, inheritance, and certain
constraints. The Amazon Redshift implementation of CREATE TABLE enables you to define the
sort and distribution algorithms for tables to optimize parallel processing.

Amazon Redshift Spectrum supports table partitioning using the CREATE EXTERNAL TABLE
command.

• ALTER TABLE

Only a subset of ALTER COLUMN actions are supported.

ADD COLUMN supports adding only one column in each ALTER TABLE statement.

• COPY

The Amazon Redshift COPY command is highly specialized to enable the loading of data from
Amazon S3 buckets and Amazon DynamoDB tables and to facilitate automatic compression. See
the Loading data section and the COPY command reference for details.

• VACUUM

The parameters for VACUUM are entirely different. For example, the default VACUUM operation
in PostgreSQL simply reclaims space and makes it available for re-use; however, the default
VACUUM operation in Amazon Redshift is VACUUM FULL, which reclaims disk space and resorts
all rows.

• Trailing spaces in VARCHAR values are ignored when string values are compared. For more
information, see Significance of trailing blanks.

Unsupported PostgreSQL features

These PostgreSQL features are not supported in Amazon Redshift.

Amazon Redshift and PostgreSQL 925

Amazon Redshift Database Developer Guide

Important

Do not assume that the semantics of elements that Amazon Redshift and PostgreSQL have
in common are identical. Make sure to consult the Amazon Redshift Developer Guide SQL
commands to understand the often subtle differences.

• The query tool psql is unsupported. The Amazon Redshift RSQL client is supported.

• Table partitioning (range and list partitioning)

• Tablespaces

• Constraints

• Unique

• Foreign key

• Primary key

• Check constraints

• Exclusion constraints

Unique, primary key, and foreign key constraints are permitted, but they are informational only.
They are not enforced by the system, but they are used by the query planner.

• Database roles

• Inheritance

• PostgreSQL system columns

Amazon Redshift SQL does not implicitly define system columns. However, the following
PostgreSQL system column names cannot be used as names of user-defined columns:
oid, tableoid, xmin, cmin, xmax, cmax, and ctid. For more information, see https://
www.postgresql.org/docs/8.0/static/ddl-system-columns.html.

• Indexes

• NULLS clause in Window functions

• Collations

Amazon Redshift does not support locale-specific or user-defined collation sequences. See
Collation sequences.

• Value expressions

Amazon Redshift and PostgreSQL 926

https://docs.aws.amazon.com/redshift/latest/mgmt/rsql-query-tool.html
https://www.postgresql.org/docs/8.0/static/ddl-system-columns.html
https://www.postgresql.org/docs/8.0/static/ddl-system-columns.html

Amazon Redshift Database Developer Guide

• Subscripted expressions

• Array constructors

• Row constructors

• Triggers

• Management of External Data (SQL/MED)

• Table functions

• VALUES list used as constant tables

• Sequences

• Full text search

Unsupported PostgreSQL data types

Generally, if a query attempts to use an unsupported data type, including explicit or implicit casts,
it will return an error. However, some queries that use unsupported data types will run on the
leader node but not on the compute nodes. See SQL functions supported on the leader node.

For a list of the supported data types, see Data types.

These PostgreSQL data types are not supported in Amazon Redshift.

• Arrays

• BIT, BIT VARYING

• BYTEA

• Composite Types

• Date/Time Types

• Enumerated Types

• Geometric Types

• HSTORE

• JSON

• Network Address Types

• Numeric Types

• SERIAL, BIGSERIAL, SMALLSERIAL

• MONEY

Amazon Redshift and PostgreSQL 927

Amazon Redshift Database Developer Guide

• Object Identifier Types

• Pseudo-Types

• Range Types

• Special Character Types

• "char" – A single-byte internal type (where the data type named char is enclosed in quotation
marks).

• name – An internal type for object names.

For more information about these types, see Special Character Types in the PostgreSQL
documentation.

• Text Search Types

• TXID_SNAPSHOT

• UUID

• XML

Unsupported PostgreSQL functions

Many functions that are not excluded have different semantics or usage. For example, some
supported functions will run only on the leader node. Also, some unsupported functions will not
return an error when run on the leader node. The fact that these functions do not return an error in
some cases should not be taken to indicate that the function is supported by Amazon Redshift.

Important

Do not assume that the semantics of elements that Amazon Redshift and PostgreSQL have
in common are identical. Make sure to consult the Amazon Redshift Database Developer
Guide SQL commands to understand the often subtle differences.

For more information, see SQL functions supported on the leader node.

These PostgreSQL functions are not supported in Amazon Redshift.

• Access privilege inquiry functions

• Advisory lock functions

• Aggregate functions

Amazon Redshift and PostgreSQL 928

https://www.postgresql.org/docs/8.0/datatype-character.html

Amazon Redshift Database Developer Guide

• STRING_AGG()

• ARRAY_AGG()

• EVERY()

• XML_AGG()

• CORR()

• COVAR_POP()

• COVAR_SAMP()

• REGR_AVGX(), REGR_AVGY()

• REGR_COUNT()

• REGR_INTERCEPT()

• REGR_R2()

• REGR_SLOPE()

• REGR_SXX(), REGR_SXY(), REGR_SYY()

• Array functions and operators

• Backup control functions

• Comment information functions

• Database object location functions

• Database object size functions

• Date/Time functions and operators

• CLOCK_TIMESTAMP()

• JUSTIFY_DAYS(), JUSTIFY_HOURS(), JUSTIFY_INTERVAL()

• PG_SLEEP()

• TRANSACTION_TIMESTAMP()

• ENUM support functions

• Geometric functions and operators

• Generic file access functions

• IS DISTINCT FROM

• Network address functions and operators

• Mathematical functions

• DIV()
Amazon Redshift and PostgreSQL 929

Amazon Redshift Database Developer Guide

• SETSEED()

• WIDTH_BUCKET()

• Set returning functions

• GENERATE_SERIES()

• GENERATE_SUBSCRIPTS()

• Range functions and operators

• Recovery control functions

• Recovery information functions

• ROLLBACK TO SAVEPOINT function

• Schema visibility inquiry functions

• Server signaling functions

• Snapshot synchronization functions

• Sequence manipulation functions

• String functions

• BIT_LENGTH()

• OVERLAY()

• CONVERT(), CONVERT_FROM(), CONVERT_TO()

• ENCODE()

• FORMAT()

• QUOTE_NULLABLE()

• REGEXP_MATCHES()

• REGEXP_SPLIT_TO_ARRAY()

• REGEXP_SPLIT_TO_TABLE()

• System catalog information functions

• System information functions

• CURRENT_CATALOG CURRENT_QUERY()

• INET_CLIENT_ADDR()

• INET_CLIENT_PORT()

• INET_SERVER_ADDR() INET_SERVER_PORT()

• PG_CONF_LOAD_TIME()
Amazon Redshift and PostgreSQL 930

Amazon Redshift Database Developer Guide

• PG_IS_OTHER_TEMP_SCHEMA()

• PG_LISTENING_CHANNELS()

• PG_MY_TEMP_SCHEMA()

• PG_POSTMASTER_START_TIME()

• PG_TRIGGER_DEPTH()

• SHOW VERSION()

• Text search functions and operators

• Transaction IDs and snapshots functions

• Trigger functions

• XML functions

Using SQL

Topics

• SQL reference conventions

• Basic elements

• Expressions

• Conditions

The SQL language consists of commands and functions that you use to work with databases and
database objects. The language also enforces rules regarding the use of data types, expressions,
and literals.

SQL reference conventions

This section explains the conventions that are used to write the syntax for the SQL expressions,
commands, and functions described in the SQL reference section.

Character Description

CAPS Words in capital letters are key words.

[] Brackets denote optional arguments. Multiple arguments in brackets
indicate that you can choose any number of the arguments. In addition,

Using SQL 931

Amazon Redshift Database Developer Guide

Character Description

arguments in brackets on separate lines indicate that the Amazon Redshift
parser expects the arguments to be in the order that they are listed in the
syntax. For an example, see SELECT.

{ } Braces indicate that you are required to choose one of the arguments inside
the braces.

| Pipes indicate that you can choose between the arguments.

italics Words in italics indicate placeholders. You must insert the appropriate value
in place of the word in italics.

. . . An ellipsis indicates that you can repeat the preceding element.

' Words in single quotation marks indicate that you must type the quotes.

Basic elements

Topics

• Names and identifiers

• Literals

• Nulls

• Data types

• Collation sequences

This section covers the rules for working with database object names, literals, nulls, and data types.

Names and identifiers

Names identify database objects, including tables and columns, as well as users and passwords.
The terms name and identifier can be used interchangeably. There are two types of identifiers,
standard identifiers and quoted or delimited identifiers. Identifiers must consist of only UTF-8
printable characters. ASCII letters in standard and delimited identifiers are case-insensitive and
are folded to lowercase in the database. In query results, column names are returned as lowercase

Basic elements 932

Amazon Redshift Database Developer Guide

by default. To return column names in uppercase, set the describe_field_name_in_uppercase
configuration parameter to true.

Standard identifiers

Standard SQL identifiers adhere to a set of rules and must:

• Begin with an ASCII single-byte alphabetic character or underscore character, or a UTF-8
multibyte character two to four bytes long.

• Subsequent characters can be ASCII single-byte alphanumeric characters, underscores, or dollar
signs, or UTF-8 multibyte characters two to four bytes long.

• Be between 1 and 127 bytes in length, not including quotation marks for delimited identifiers.

• Contain no quotation marks and no spaces.

• Not be a reserved SQL key word.

Delimited identifiers

Delimited identifiers (also known as quoted identifiers) begin and end with double quotation marks
("). If you use a delimited identifier, you must use the double quotation marks for every reference
to that object. The identifier can contain any standard UTF-8 printable characters other than
the double quotation mark itself. Therefore, you can create column or table names that include
otherwise illegal characters, such as spaces or the percent symbol.

ASCII letters in delimited identifiers are case-insensitive and are folded to lowercase. To use a
double quotation mark in a string, you must precede it with another double quotation mark
character.

Case-sensitive identifiers

Case-sensitive identifiers (also known as mixed-case identifiers) can contain both uppercase
and lowercase letters. To use case-sensitive identifiers, you can set the configuration
enable_case_sensitive_identifier to true. You can set this configuration for the cluster
or for a session. For more information, see Default parameter values in the Amazon Redshift
Management Guide and enable_case_sensitive_identifier.

Basic elements 933

https://docs.aws.amazon.com/redshift/latest/mgmt/default-param-group-values.html

Amazon Redshift Database Developer Guide

System column names

The following PostgreSQL system column names can't be used as column names in user-defined
columns. For more information, see https://www.postgresql.org/docs/8.0/static/ddl-system-
columns.html.

• oid

• tableoid

• xmin

• cmin

• xmax

• cmax

• ctid

Examples

This table shows examples of delimited identifiers, the resulting output, and a discussion:

Syntax Result Discussion

"group" group GROUP is a reserved word, so usage of it within an
identifier requires double quotation marks.

"""WHERE""" "where" WHERE is also a reserved word. To include quotation
 marks in the string, escape each double quotation
mark character with additional double quotation mark
characters.

"This name" this name Double quotation marks are required to preserve the
space.

"This ""IS IT""" this "is it" The quotation marks surrounding IS IT must each be
preceded by an extra quotation mark in order to become
part of the name.

To create a table named group with a column named this "is it":

Basic elements 934

https://www.postgresql.org/docs/8.0/static/ddl-system-columns.html
https://www.postgresql.org/docs/8.0/static/ddl-system-columns.html

Amazon Redshift Database Developer Guide

create table "group" (
"This ""IS IT""" char(10));

The following queries return the same result:

select "This ""IS IT"""
from "group";

this "is it"

(0 rows)

select "this ""is it"""
from "group";

this "is it"

(0 rows)

The following fully qualified table.column syntax also returns the same result:

select "group"."this ""is it"""
from "group";

this "is it"

(0 rows)

The following CREATE TABLE command creates a table with a slash in a column name:

create table if not exists city_slash_id(
 "city/id" integer not null,
 state char(2) not null);

Literals

A literal or constant is a fixed data value, composed of a sequence of characters or a numeric
constant. Amazon Redshift supports several types of literals, including:

Basic elements 935

Amazon Redshift Database Developer Guide

• Numeric literals for integer, decimal, and floating-point numbers. For more information, see
Integer and floating-point literals.

• Character literals, also referred to as strings, character strings, or character constants

• Datetime and interval literals, used with datetime data types. For more information, see Date,
time, and timestamp literals and Interval data types and literals.

Nulls

If a column in a row is missing, unknown, or not applicable, it is a null value or is said to contain
null. Nulls can appear in fields of any data type that are not restricted by primary key or NOT NULL
constraints. A null is not equivalent to the value zero or to an empty string.

Any arithmetic expression containing a null always evaluates to a null. All operators except
concatenation return a null when given a null argument or operand.

To test for nulls, use the comparison conditions IS NULL and IS NOT NULL. Because null represents
a lack of data, a null is not equal or unequal to any value or to another null.

Data types

Topics

• Multibyte characters

• Numeric types

• Character types

• Datetime types

• Boolean type

• HLLSKETCH type

• SUPER type

• VARBYTE type

• Type compatibility and conversion

Each value that Amazon Redshift stores or retrieves has a data type with a fixed set of associated
properties. Data types are declared when tables are created. A data type constrains the set of
values that a column or argument can contain.

Basic elements 936

Amazon Redshift Database Developer Guide

The following table lists the data types that you can use in Amazon Redshift tables.

Data type Aliases Description

SMALLINT INT2 Signed two-byte integer

INTEGER INT, INT4 Signed four-byte integer

BIGINT INT8 Signed eight-byte integer

DECIMAL NUMERIC Exact numeric of selectable
precision

REAL FLOAT4 Single precision floating-
point number

DOUBLE PRECISION FLOAT8, FLOAT Double precision floating-
point number

CHAR CHARACTER, NCHAR, BPCHAR Fixed-length character string

VARCHAR CHARACTER VARYING,
NVARCHAR, TEXT

Variable-length character
string with a user-defined
limit

DATE Calendar date (year, month,
day)

TIME TIME WITHOUT TIME ZONE Time of day

TIMETZ TIME WITH TIME ZONE Time of day with time zone

TIMESTAMP TIMESTAMP WITHOUT TIME
ZONE

Date and time (without time
zone)

TIMESTAMPTZ TIMESTAMP WITH TIME ZONE Date and time (with time
zone)

INTERVAL YEAR TO MONTH Time duration in year to
month order

Basic elements 937

Amazon Redshift Database Developer Guide

Data type Aliases Description

INTERVAL DAY TO SECOND Time duration in day to
second order

BOOLEAN BOOL Logical Boolean (true/false)

HLLSKETCH Type used with HyperLogLog
sketches.

SUPER A superset data type that
encompasses all scalar types
of Amazon Redshift including
complex types such as ARRAY
and STRUCTS.

VARBYTE VARBINARY, BINARY VARYING Variable-length binary value

GEOMETRY Spatial data

GEOGRAPHY Spatial data

Note

For information about unsupported data types, such as "char" (notice that char is enclosed
in quotation marks), see Unsupported PostgreSQL data types.

Multibyte characters

The VARCHAR data type supports UTF-8 multibyte characters up to a maximum of four bytes.
Five-byte or longer characters are not supported. To calculate the size of a VARCHAR column that
contains multibyte characters, multiply the number of characters by the number of bytes per
character. For example, if a string has four Chinese characters, and each character is three bytes
long, then you will need a VARCHAR(12) column to store the string.

The VARCHAR data type doesn't support the following invalid UTF-8 codepoints:

0xD800 – 0xDFFF (Byte sequences: ED A0 80 – ED BF BF)

Basic elements 938

Amazon Redshift Database Developer Guide

The CHAR data type doesn't support multibyte characters.

Numeric types

Topics

• Integer types

• DECIMAL or NUMERIC type

• Notes about using 128-bit DECIMAL or NUMERIC columns

• Floating-Point types

• Computations with numeric values

• Integer and floating-point literals

• Examples with numeric types

Numeric data types include integers, decimals, and floating-point numbers.

Integer types

Use the SMALLINT, INTEGER, and BIGINT data types to store whole numbers of various ranges. You
cannot store values outside of the allowed range for each type.

Name Storage Range

SMALLINT or INT2 2 bytes -32768 to +32767

INTEGER, INT, or INT4 4 bytes -2147483648 to
+2147483647

BIGINT or INT8 8 bytes -92233720
36854775808
to 922337203
6854775807

DECIMAL or NUMERIC type

Use the DECIMAL or NUMERIC data type to store values with a user-defined precision. The DECIMAL
and NUMERIC keywords are interchangeable. In this document, decimal is the preferred term for

Basic elements 939

Amazon Redshift Database Developer Guide

this data type. The term numeric is used generically to refer to integer, decimal, and floating-point
data types.

Storage Range

Variable, up to 128 bits for uncompressed
DECIMAL types.

128-bit signed integers with up to 38 digits of
precision.

Define a DECIMAL column in a table by specifying a precision and scale:

decimal(precision, scale)

precision

The total number of significant digits in the whole value: the number of digits on both sides of
the decimal point. For example, the number 48.2891 has a precision of 6 and a scale of 4. The
default precision, if not specified, is 18. The maximum precision is 38.

If the number of digits to the left of the decimal point in an input value exceeds the precision of
the column minus its scale, the value cannot be copied into the column (or inserted or updated).
This rule applies to any value that falls outside the range of the column definition. For example,
the allowed range of values for a numeric(5,2) column is -999.99 to 999.99.

scale

The number of decimal digits in the fractional part of the value, to the right of the decimal
point. Integers have a scale of zero. In a column specification, the scale value must be less than
or equal to the precision value. The default scale, if not specified, is 0. The maximum scale is 37.

If the scale of an input value that is loaded into a table is greater than the scale of the column,
the value is rounded to the specified scale. For example, the PRICEPAID column in the SALES
table is a DECIMAL(8,2) column. If a DECIMAL(8,4) value is inserted into the PRICEPAID column,
the value is rounded to a scale of 2.

insert into sales
values (0, 8, 1, 1, 2000, 14, 5, 4323.8951, 11.00, null);

select pricepaid, salesid from sales where salesid=0;

Basic elements 940

Amazon Redshift Database Developer Guide

pricepaid | salesid
-----------+---------
4323.90 | 0
(1 row)

However, results of explicit casts of values selected from tables are not rounded.

Note

The maximum positive value that you can insert into a DECIMAL(19,0)
column is 9223372036854775807 (263 -1). The maximum negative value
is -9223372036854775807. For example, an attempt to insert the value
9999999999999999999 (19 nines) will cause an overflow error. Regardless of the
placement of the decimal point, the largest string that Amazon Redshift can represent as a
DECIMAL number is 9223372036854775807. For example, the largest value that you can
load into a DECIMAL(19,18) column is 9.223372036854775807.
These rules are because DECIMAL values with 19 or fewer significant digits of precision are
stored internally as 8-byte integers, while DECIMAL values with 20 to 38 significant digits
of precision are stored as 16-byte integers.

Notes about using 128-bit DECIMAL or NUMERIC columns

Do not arbitrarily assign maximum precision to DECIMAL columns unless you are certain that your
application requires that precision. 128-bit values use twice as much disk space as 64-bit values
and can slow down query execution time.

Floating-Point types

Use the REAL and DOUBLE PRECISION data types to store numeric values with variable precision.
These types are inexact types, meaning that some values are stored as approximations, such that
storing and returning a specific value may result in slight discrepancies. If you require exact storage
and calculations (such as for monetary amounts), use the DECIMAL data type.

REAL represents the single-precision floating point format, according to the IEEE Standard 754 for
Binary Floating-Point Arithmetic. It has a precision of about 6 digits, and a range of around 1E-37
to 1E+37. You can also specify this data type as FLOAT4.

Basic elements 941

Amazon Redshift Database Developer Guide

DOUBLE PRECISION represents the double-precision floating point format, according to the IEEE
Standard 754 for Binary Floating-Point Arithmetic. It has a precision of about 15 digits, and a range
of around 1E-307 to 1E+308. You can also specify this data type as FLOAT or FLOAT8.

In addition to ordinary numeric values, the floating-point types have several special values. Use
single quotation marks around these values when using them in SQL:

• NaN – not-a-number

• Infinity – infinity

• -Infinity – negative infinity

For example, to insert not-a-number in column day_charge of table customer_activity run
the following SQL:

insert into customer_activity(day_charge) values('NaN');

Computations with numeric values

In this context, computation refers to binary mathematical operations: addition, subtraction,
multiplication, and division. This section describes the expected return types for these operations,
as well as the specific formula that is applied to determine precision and scale when DECIMAL data
types are involved.

When numeric values are computed during query processing, you might encounter cases where
the computation is impossible and the query returns a numeric overflow error. You might also
encounter cases where the scale of computed values varies or is unexpected. For some operations,
you can use explicit casting (type promotion) or Amazon Redshift configuration parameters to work
around these problems.

For information about the results of similar computations with SQL functions, see Aggregate
functions.

Return types for computations

Given the set of numeric data types supported in Amazon Redshift, the following table shows the
expected return types for addition, subtraction, multiplication, and division operations. The first
column on the left side of the table represents the first operand in the calculation, and the top row
represents the second operand.

Basic elements 942

Amazon Redshift Database Developer Guide

INT2 INT4 INT8 DECIMAL FLOAT4 FLOAT8

INT2 INT2 INT4 INT8 DECIMAL FLOAT8 FLOAT8

INT4 INT4 INT4 INT8 DECIMAL FLOAT8 FLOAT8

INT8 INT8 INT8 INT8 DECIMAL FLOAT8 FLOAT8

DECIMAL DECIMAL DECIMAL DECIMAL DECIMAL FLOAT8 FLOAT8

FLOAT4 FLOAT8 FLOAT8 FLOAT8 FLOAT8 FLOAT4 FLOAT8

FLOAT8 FLOAT8 FLOAT8 FLOAT8 FLOAT8 FLOAT8 FLOAT8

Precision and scale of computed DECIMAL results

The following table summarizes the rules for computing resulting precision and scale when
mathematical operations return DECIMAL results. In this table, p1 and s1 represent the precision
and scale of the first operand in a calculation and p2 and s2 represent the precision and scale of
the second operand. (Regardless of these calculations, the maximum result precision is 38, and the
maximum result scale is 38.)

Operation Result precision and scale

+ or - Scale = max(s1,s2)

Precision = max(p1-s1,p2-s2)+1+scale

* Scale = s1+s2

Precision = p1+p2+1

/ Scale = max(4,s1+p2-s2+1)

Precision = p1-s1+ s2+scale

For example, the PRICEPAID and COMMISSION columns in the SALES table are both DECIMAL(8,2)
columns. If you divide PRICEPAID by COMMISSION (or vice versa), the formula is applied as follows:

Basic elements 943

Amazon Redshift Database Developer Guide

Precision = 8-2 + 2 + max(4,2+8-2+1)
= 6 + 2 + 9 = 17

Scale = max(4,2+8-2+1) = 9

Result = DECIMAL(17,9)

The following calculation is the general rule for computing the resulting precision and scale for
operations performed on DECIMAL values with set operators such as UNION, INTERSECT, and
EXCEPT or functions such as COALESCE and DECODE:

Scale = max(s1,s2)
Precision = min(max(p1-s1,p2-s2)+scale,19)

For example, a DEC1 table with one DECIMAL(7,2) column is joined with a DEC2 table with one
DECIMAL(15,3) column to create a DEC3 table. The schema of DEC3 shows that the column
becomes a NUMERIC(15,3) column.

create table dec3 as select * from dec1 union select * from dec2;

Result

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'dec3';

column | type | encoding | distkey | sortkey
-------+---------------+----------+---------+---------
c1 | numeric(15,3) | none | f | 0

In the above example, the formula is applied as follows:

Precision = min(max(7-2,15-3) + max(2,3), 19)
= 12 + 3 = 15

Scale = max(2,3) = 3

Result = DECIMAL(15,3)

Basic elements 944

Amazon Redshift Database Developer Guide

Notes on division operations

For division operations, divide-by-zero conditions return errors.

The scale limit of 100 is applied after the precision and scale are calculated. If the calculated result
scale is greater than 100, division results are scaled as follows:

• Precision = precision - (scale - max_scale)

• Scale = max_scale

If the calculated precision is greater than the maximum precision (38), the precision is reduced to
38, and the scale becomes the result of: max((38 + scale - precision), min(4, 100))

Overflow conditions

Overflow is checked for all numeric computations. DECIMAL data with a precision of 19 or less is
stored as 64-bit integers. DECIMAL data with a precision that is greater than 19 is stored as 128-
bit integers. The maximum precision for all DECIMAL values is 38, and the maximum scale is 37.
Overflow errors occur when a value exceeds these limits, which apply to both intermediate and
final result sets:

• Explicit casting results in runtime overflow errors when specific data values do not fit the
requested precision or scale specified by the cast function. For example, you cannot cast all
values from the PRICEPAID column in the SALES table (a DECIMAL(8,2) column) and return a
DECIMAL(7,3) result:

select pricepaid::decimal(7,3) from sales;
ERROR: Numeric data overflow (result precision)

This error occurs because some of the larger values in the PRICEPAID column cannot be cast.

• Multiplication operations produce results in which the result scale is the sum of the scale of each
operand. If both operands have a scale of 4, for example, the result scale is 8, leaving only 10
digits for the left side of the decimal point. Therefore, it is relatively easy to run into overflow
conditions when multiplying two large numbers that both have significant scale.

The following example results in an overflow error.

SELECT CAST(1 AS DECIMAL(38, 20)) * CAST(10 AS DECIMAL(38, 20));
ERROR: 128 bit numeric data overflow (multiplication)

Basic elements 945

Amazon Redshift Database Developer Guide

You can work around the overflow error by using division instead of multiplication. Use the
following example to divide by 1 divided by the original divisor.

SELECT CAST(1 AS DECIMAL(38, 20)) / (1 / CAST(10 AS DECIMAL(38, 20)));
+----------+
| ?column? |
+----------+
| 10 |
+----------+

Numeric calculations with INTEGER and DECIMAL types

When one of the operands in a calculation has an INTEGER data type and the other operand is
DECIMAL, the INTEGER operand is implicitly cast as a DECIMAL:

• INT2 (SMALLINT) is cast as DECIMAL(5,0)

• INT4 (INTEGER) is cast as DECIMAL(10,0)

• INT8 (BIGINT) is cast as DECIMAL(19,0)

For example, if you multiply SALES.COMMISSION, a DECIMAL(8,2) column, and SALES.QTYSOLD, a
SMALLINT column, this calculation is cast as:

DECIMAL(8,2) * DECIMAL(5,0)

Integer and floating-point literals

Literals or constants that represent numbers can be integer or floating-point.

Integer literals

An integer constant is a sequence of the digits 0-9, with an optional positive (+) or negative (-) sign
preceding the digits.

Syntax

[+ | -] digit ...

Basic elements 946

Amazon Redshift Database Developer Guide

Examples

Valid integers include the following:

23
-555
+17

Floating-point literals

Floating-point literals (also referred to as decimal, numeric, or fractional literals) are sequences of
digits that can include a decimal point, and optionally the exponent marker (e).

Syntax

[+ | -] digit ... [.] [digit ...]
[e | E [+ | -] digit ...]

Arguments

e | E

e or E indicates that the number is specified in scientific notation.

Examples

Valid floating-point literals include the following:

3.14159
-37.
2.0e19
-2E-19

Examples with numeric types

CREATE TABLE statement

The following CREATE TABLE statement demonstrates the declaration of different numeric data
types:

create table film (

Basic elements 947

Amazon Redshift Database Developer Guide

film_id integer,
language_id smallint,
original_language_id smallint,
rental_duration smallint default 3,
rental_rate numeric(4,2) default 4.99,
length smallint,
replacement_cost real default 25.00);

Attempt to insert an integer that is out of range

The following example attempts to insert the value 33000 into a SMALLINT column.

insert into film(language_id) values(33000);

The range for SMALLINT is -32768 to +32767, so Amazon Redshift returns an error.

An error occurred when executing the SQL command:
insert into film(language_id) values(33000)

ERROR: smallint out of range [SQL State=22003]

Insert a decimal value into an integer column

The following example inserts the a decimal value into an INT column.

insert into film(language_id) values(1.5);

This value is inserted but rounded up to the integer value 2.

Insert a decimal that succeeds because its scale is rounded

The following example inserts a decimal value that has higher precision that the column.

insert into film(rental_rate) values(35.512);

In this case, the value 35.51 is inserted into the column.

Attempt to insert a decimal value that is out of range

In this case, the value 350.10 is out of range. The number of digits for values in DECIMAL columns
is equal to the column's precision minus its scale (4 minus 2 for the RENTAL_RATE column). In other
words, the allowed range for a DECIMAL(4,2) column is -99.99 through 99.99.

Basic elements 948

Amazon Redshift Database Developer Guide

insert into film(rental_rate) values (350.10);
ERROR: numeric field overflow
DETAIL: The absolute value is greater than or equal to 10^2 for field with precision
 4, scale 2.

Insert variable-precision values into a REAL column

The following example inserts variable-precision values into a REAL column.

insert into film(replacement_cost) values(1999999.99);

insert into film(replacement_cost) values(1999.99);

select replacement_cost from film;

+------------------+
| replacement_cost |
+------------------+
| 2000000 |
| 1999.99 |
+------------------+

The value 1999999.99 is converted to 2000000 to meet the precision requirement for the REAL
column. The value 1999.99 is loaded as is.

Character types

Topics

• Storage and ranges

• CHAR or CHARACTER

• VARCHAR or CHARACTER VARYING

• NCHAR and NVARCHAR types

• TEXT and BPCHAR types

• Significance of trailing blanks

• Examples with character types

Character data types include CHAR (character) and VARCHAR (character varying).

Basic elements 949

Amazon Redshift Database Developer Guide

Storage and ranges

CHAR and VARCHAR data types are defined in terms of bytes, not characters. A CHAR column can
only contain single-byte characters, so a CHAR(10) column can contain a string with a maximum
length of 10 bytes. A VARCHAR can contain multibyte characters, up to a maximum of four bytes
per character. For example, a VARCHAR(12) column can contain 12 single-byte characters, 6 two-
byte characters, 4 three-byte characters, or 3 four-byte characters.

Name Storage Range (width of column)

CHAR, CHARACTER or NCHAR Length of string,
including trailing
blanks (if any)

4096 bytes

VARCHAR, CHARACTER VARYING, or
NVARCHAR

4 bytes +
total bytes
for character
s, where each
character can be
1 to 4 bytes.

65535 bytes (64K -1)

BPCHAR Converted to
fixed-length
CHAR(256).

256 bytes

TEXT Converted to
VARCHAR(256).

260 bytes

Note

The CREATE TABLE syntax supports the MAX keyword for character data types. For
example:

create table test(col1 varchar(max));

The MAX setting defines the width of the column as 4096 bytes for CHAR or 65535 bytes
for VARCHAR.

Basic elements 950

Amazon Redshift Database Developer Guide

CHAR or CHARACTER

Use a CHAR or CHARACTER column to store fixed-length strings. These strings are padded with
blanks, so a CHAR(10) column always occupies 10 bytes of storage.

char(10)

A CHAR column without a length specification results in a CHAR(1) column.

VARCHAR or CHARACTER VARYING

Use a VARCHAR or CHARACTER VARYING column to store variable-length strings with a fixed limit.
These strings are not padded with blanks, so a VARCHAR(120) column consists of a maximum of
120 single-byte characters, 60 two-byte characters, 40 three-byte characters, or 30 four-byte
characters.

varchar(120)

If you use the VARCHAR data type without a length specifier in a CREATE TABLE statement, the
default length is 256. If used in an expression, the size of the output is determined using the input
expression (up to 65535).

NCHAR and NVARCHAR types

You can create columns with the NCHAR and NVARCHAR types (also known as NATIONAL
CHARACTER and NATIONAL CHARACTER VARYING types). These types are converted to CHAR and
VARCHAR types, respectively, and are stored in the specified number of bytes.

An NCHAR column without a length specification is converted to a CHAR(1) column.

An NVARCHAR column without a length specification is converted to a VARCHAR(256) column.

TEXT and BPCHAR types

You can create an Amazon Redshift table with a TEXT column, but it is converted to a
VARCHAR(256) column that accepts variable-length values with a maximum of 256 characters.

You can create an Amazon Redshift column with a BPCHAR (blank-padded character) type, which
Amazon Redshift converts to a fixed-length CHAR(256) column.

Basic elements 951

Amazon Redshift Database Developer Guide

Significance of trailing blanks

Both CHAR and VARCHAR data types store strings up to n bytes in length. An attempt to store a
longer string into a column of these types results in an error, unless the extra characters are all
spaces (blanks), in which case the string is truncated to the maximum length. If the string is shorter
than the maximum length, CHAR values are padded with blanks, but VARCHAR values store the
string without blanks.

Trailing blanks in CHAR values are always semantically insignificant. They are disregarded when
you compare two CHAR values, not included in LENGTH calculations, and removed when you
convert a CHAR value to another string type.

Trailing spaces in VARCHAR and CHAR values are treated as semantically insignificant when values
are compared.

Length calculations return the length of VARCHAR character strings with trailing spaces included in
the length. Trailing blanks are not counted in the length for fixed-length character strings.

Examples with character types

CREATE TABLE statement

The following CREATE TABLE statement demonstrates the use of VARCHAR and CHAR data types:

create table address(
address_id integer,
address1 varchar(100),
address2 varchar(50),
district varchar(20),
city_name char(20),
state char(2),
postal_code char(5)
);

The following examples use this table.

Trailing blanks in variable-length character strings

Because ADDRESS1 is a VARCHAR column, the trailing blanks in the second inserted address are
semantically insignificant. In other words, these two inserted addresses match.

insert into address(address1) values('9516 Magnolia Boulevard');

Basic elements 952

Amazon Redshift Database Developer Guide

insert into address(address1) values('9516 Magnolia Boulevard ');

select count(*) from address
where address1='9516 Magnolia Boulevard';

count

2
(1 row)

If the ADDRESS1 column were a CHAR column and the same values were inserted, the COUNT(*)
query would recognize the character strings as the same and return 2.

Results of the LENGTH function

The LENGTH function recognizes trailing blanks in VARCHAR columns:

select length(address1) from address;

length

23
25
(2 rows)

A value of Augusta in the CITY_NAME column, which is a CHAR column, would always return a
length of 7 characters, regardless of any trailing blanks in the input string.

Values that exceed the length of the column

Character strings are not truncated to fit the declared width of the column:

insert into address(city_name) values('City of South San Francisco');
ERROR: value too long for type character(20)

A workaround for this problem is to cast the value to the size of the column:

insert into address(city_name)
values('City of South San Francisco'::char(20));

Basic elements 953

Amazon Redshift Database Developer Guide

In this case, the first 20 characters of the string (City of South San Fr) would be loaded into
the column.

Datetime types

Topics

• Storage and ranges

• DATE

• TIME

• TIMETZ

• TIMESTAMP

• TIMESTAMPTZ

• Examples with datetime types

• Date, time, and timestamp literals

• Interval data types and literals

Datetime data types include DATE, TIME, TIMETZ, TIMESTAMP, and TIMESTAMPTZ.

Storage and ranges

Name Storage Range Resolution

DATE 4 bytes 4713 BC to 294276 AD 1 day

TIME 8 bytes 00:00:00 to 24:00:00 1 microsecond

TIMETZ 8 bytes 00:00:00+1459 to 00:00:00+1459 1 microsecond

TIMESTAMP 8 bytes 4713 BC to 294276 AD 1 microsecond

TIMESTAMP
TZ

8 bytes 4713 BC to 294276 AD 1 microsecond

DATE

Use the DATE data type to store simple calendar dates without timestamps.

Basic elements 954

Amazon Redshift Database Developer Guide

TIME

TIME is an alias of TIME WITHOUT TIME ZONE.

Use the TIME data type to store the time of day.

TIME columns store values with up to a maximum of six digits of precision for fractional seconds.

By default, TIME values are Coordinated Universal Time (UTC) in both user tables and Amazon
Redshift system tables.

TIMETZ

TIMETZ is an alias of TIME WITH TIME ZONE.

Use the TIMETZ data type to store the time of day with a time zone.

TIMETZ columns store values with up to a maximum of six digits of precision for fractional seconds.

By default, TIMETZ values are UTC in both user tables and Amazon Redshift system tables.

TIMESTAMP

TIMESTAMP is an alias of TIMESTAMP WITHOUT TIME ZONE.

Use the TIMESTAMP data type to store complete timestamp values that include the date and the
time of day.

TIMESTAMP columns store values with up to a maximum of six digits of precision for fractional
seconds.

If you insert a date into a TIMESTAMP column, or a date with a partial timestamp value, the value
is implicitly converted into a full timestamp value. This full timestamp value has default values (00)
for missing hours, minutes, and seconds. Time zone values in input strings are ignored.

By default, TIMESTAMP values are UTC in both user tables and Amazon Redshift system tables.

TIMESTAMPTZ

TIMESTAMPTZ is an alias of TIMESTAMP WITH TIME ZONE.

Use the TIMESTAMPTZ data type to input complete timestamp values that include the date, the
time of day, and a time zone. When an input value includes a time zone, Amazon Redshift uses the
time zone to convert the value to UTC and stores the UTC value.

Basic elements 955

Amazon Redshift Database Developer Guide

To view a list of supported time zone names, run the following command.

select pg_timezone_names();

To view a list of supported time zone abbreviations, run the following command.

select pg_timezone_abbrevs();

You can also find current information about time zones in the IANA Time Zone Database.

The following table has examples of time zone formats.

Format Example

dd mon hh:mi:ss yyyy tz 17 Dec 07:37:16 1997 PST

mm/dd/yyyy hh:mi:ss.ss tz 12/17/1997 07:37:16.00 PST

mm/dd/yyyy hh:mi:ss.ss tz 12/17/1997 07:37:16.00 US/Pacific

yyyy-mm-dd hh:mi:ss+/-tz 1997-12-17 07:37:16-08

dd.mm.yyyy hh:mi:ss tz 17.12.1997 07:37:16.00 PST

TIMESTAMPTZ columns store values with up to a maximum of six digits of precision for fractional
seconds.

If you insert a date into a TIMESTAMPTZ column, or a date with a partial timestamp, the value is
implicitly converted into a full timestamp value. This full timestamp value has default values (00)
for missing hours, minutes, and seconds.

TIMESTAMPTZ values are UTC in user tables.

Examples with datetime types

Following, you can find examples for working with datetime types supported by Amazon Redshift.

Date examples

The following examples insert dates that have different formats and display the output.

Basic elements 956

https://www.iana.org/time-zones

Amazon Redshift Database Developer Guide

create table datetable (start_date date, end_date date);

insert into datetable values ('2008-06-01','2008-12-31');

insert into datetable values ('Jun 1,2008','20081231');

select * from datetable order by 1;

start_date | end_date

2008-06-01 | 2008-12-31
2008-06-01 | 2008-12-31

If you insert a timestamp value into a DATE column, the time portion is ignored and only the date
is loaded.

Time examples

The following examples insert TIME and TIMETZ values that have different formats and display the
output.

create table timetable (start_time time, end_time timetz);

insert into timetable values ('19:11:19','20:41:19 UTC');
insert into timetable values ('191119', '204119 UTC');

select * from timetable order by 1;
start_time | end_time

 19:11:19 | 20:41:19+00
 19:11:19 | 20:41:19+00

Time stamp examples

If you insert a date into a TIMESTAMP or TIMESTAMPTZ column, the time defaults to midnight. For
example, if you insert the literal 20081231, the stored value is 2008-12-31 00:00:00.

To change the time zone for the current session, use the SET command to set the timezone
configuration parameter.

Basic elements 957

Amazon Redshift Database Developer Guide

The following example inserts timestamps that have different formats and display the resulting
table.

create table tstamp(timeofday timestamp, timeofdaytz timestamptz);

insert into tstamp values('Jun 1,2008 09:59:59', 'Jun 1,2008 09:59:59 EST');
insert into tstamp values('Dec 31,2008 18:20','Dec 31,2008 18:20');
insert into tstamp values('Jun 1,2008 09:59:59 EST', 'Jun 1,2008 09:59:59');

SELECT * FROM tstamp;

+---------------------+------------------------+
| timeofday | timeofdaytz |
+---------------------+------------------------+
2008-06-01 09:59:59	2008-06-01 14:59:59+00
2008-12-31 18:20:00	2008-12-31 18:20:00+00
2008-06-01 09:59:59	2008-06-01 09:59:59+00
+---------------------+------------------------+

Date, time, and timestamp literals

Following are rules for working with date, time, and timestamp literals supported by Amazon
Redshift.

Dates

The following input dates are all valid examples of literal date values for the DATE data type
that you can load into Amazon Redshift tables. The default MDY DateStyle mode is assumed
to be in effect. This mode means that the month value precedes the day value in strings such as
1999-01-08 and 01/02/00.

Note

A date or timestamp literal must be enclosed in quotation marks when you load it into a
table.

Input date Full date

January 8, 1999 January 8, 1999

Basic elements 958

Amazon Redshift Database Developer Guide

Input date Full date

1999-01-08 January 8, 1999

1/8/1999 January 8, 1999

01/02/00 January 2, 2000

2000-Jan-31 January 31, 2000

Jan-31-2000 January 31, 2000

31-Jan-2000 January 31, 2000

20080215 February 15, 2008

080215 February 15, 2008

2008.366 December 31, 2008 (the three-digit part of
date must be between 001 and 366)

Times

The following input times are all valid examples of literal time values for the TIME and TIMETZ data
types that you can load into Amazon Redshift tables.

Input times Description (of time part)

04:05:06.789 4:05 AM and 6.789 seconds

04:05:06 4:05 AM and 6 seconds

04:05 4:05 AM exactly

040506 4:05 AM and 6 seconds

04:05 AM 4:05 AM exactly; AM is optional

04:05 PM 4:05 PM exactly; the hour value must be less
than 12

Basic elements 959

Amazon Redshift Database Developer Guide

Input times Description (of time part)

16:05 4:05 PM exactly

Timestamps

The following input timestamps are all valid examples of literal time values for the TIMESTAMP
and TIMESTAMPTZ data types that you can load into Amazon Redshift tables. All of the valid date
literals can be combined with the following time literals.

Input timestamps (concatenated dates and
times)

Description (of time part)

20080215 04:05:06.789 4:05 AM and 6.789 seconds

20080215 04:05:06 4:05 AM and 6 seconds

20080215 04:05 4:05 AM exactly

20080215 040506 4:05 AM and 6 seconds

20080215 04:05 AM 4:05 AM exactly; AM is optional

20080215 04:05 PM 4:05 PM exactly; the hour value must be less
than 12

20080215 16:05 4:05 PM exactly

20080215 Midnight (by default)

Special datetime values

The following special values can be used as datetime literals and as arguments to date functions.
They require single quotation marks and are converted to regular timestamp values during query
processing.

Basic elements 960

Amazon Redshift Database Developer Guide

Special value Description

now Evaluates to the start time of the current
transaction and returns a timestamp with
microsecond precision.

today Evaluates to the appropriate date and returns
a timestamp with zeroes for the time parts.

tomorrow Evaluates to the appropriate date and returns
a timestamp with zeroes for the time parts.

yesterday Evaluates to the appropriate date and returns
a timestamp with zeroes for the time parts.

The following examples show how now and today work with the DATEADD function.

select dateadd(day,1,'today');

date_add

2009-11-17 00:00:00
(1 row)

select dateadd(day,1,'now');

date_add

2009-11-17 10:45:32.021394
(1 row)

Interval data types and literals

You can use an interval data type to store durations of time in units such as, seconds, minutes,
hours, days, months, and years. Interval data types and literals can be used in datetime
calculations, such as, adding intervals to dates and timestamps, summing intervals, and
subtracting an interval from a date or timestamp. Interval literals can be used as input values to
interval data type columns in a table.

Basic elements 961

Amazon Redshift Database Developer Guide

Syntax of interval data type

To specify an interval data type to store a duration of time in years and months:

INTERVAL year_to_month_qualifier

To specify an interval data type to store a duration in days, hours, minutes, and seconds:

INTERVAL day_to_second_qualifier [(fractional_precision)]

Syntax of interval literal

To specify an interval literal to define a duration of time in years and months:

INTERVAL quoted-string year_to_month_qualifier

To specify an interval literal to define a duration in days, hours, minutes, and seconds:

INTERVAL quoted-string day_to_second_qualifier [(fractional_precision)]

Arguments

quoted-string

Specifies a positive or negative numeric value specifying a quantity and the datetime unit as an
input string. If the quoted-string contains only a numeric, then Amazon Redshift determines the
units from the year_to_month_qualifier or day_to_second_qualifier. For example, '23' MONTH
represents 1 year 11 months, '-2' DAY represents -2 days 0 hours 0 minutes 0.0
seconds, '1-2' MONTH represents 1 year 2 months, and '13 day 1 hour 1 minute
1.123 seconds' SECOND represents 13 days 1 hour 1 minute 1.123 seconds. For
more information about output formats of an interval, see Interval styles.

year_to_month_qualifier

Specifies the range of the interval. If you use a qualifier and create an interval with time units
smaller than the qualifier, Amazon Redshift truncates and discards the smaller parts of the
interval. Valid values for year_to_month_qualifier are:

• YEAR

• MONTH

Basic elements 962

Amazon Redshift Database Developer Guide

• YEAR TO MONTH

day_to_second_qualifier

Specifies the range of the interval. If you use a qualifier and create an interval with time units
smaller than the qualifier, Amazon Redshift truncates and discards the smaller parts of the
interval. Valid values for day_to_second_qualifier are:

• DAY

• HOUR

• MINUTE

• SECOND

• DAY TO HOUR

• DAY TO MINUTE

• DAY TO SECOND

• HOUR TO MINUTE

• HOUR TO SECOND

• MINUTE TO SECOND

The output of the INTERVAL literal is truncated to the smallest INTERVAL component specified.
For example, when using a MINUTE qualifier, Amazon Redshift discards the time units smaller
than MINUTE.

select INTERVAL '1 day 1 hour 1 minute 1.123 seconds' MINUTE

The resulting value is truncated to '1 day 01:01:00'.

fractional_precision

Optional parameter that specifies the number of fractional digits allowed in the interval. The
fractional_precision argument should only be specified if your interval contains SECOND. For
example, SECOND(3) creates an interval that allows only three fractional digits, such as 1.234
seconds. The maximum number of fractional digits is six.

The session configuration interval_forbid_composite_literals determines whether an
error is returned when an interval is specified with both YEAR TO MONTH and DAY TO SECOND
parts. For more information, see interval_forbid_composite_literals.

Basic elements 963

Amazon Redshift Database Developer Guide

Interval arithmetic

You can use interval values with other datetime values to perform arithmetic operations. The
following table describes the available operations and what data type results from each operation.
For example, when you add an interval to a date the result is a date if it is a YEAR TO MONTH
interval, and a timestamp if it is a DAY TO SECOND interval.

 Date Timestamp Interval Numeric

Interval - N/A N/A Interval N/A

 + Date Date/Time
stamp

Interval N/A

 * N/A N/A N/A Interval

 / N/A N/A N/A Interval

Date - Numeric Interval Date/Time
stamp

Date

 + N/A N/A N/A N/A

Timestamp - Interval Interval Timestamp Timestamp

 + N/A N/A N/A N/A

Interval styles

You can use the SQL the section called “SET” command to change the output display format of
your interval values. When you use the interval data type in SQL, cast it to text to see the expected
interval style, for example, YEAR TO MONTH::text. Available values to SET the IntervalStyle
value are:

• postgres – follows PostgreSQL style. This is the default.

• postgres_verbose – follows PostgreSQL verbose style.

• sql_standard – follows the SQL standard interval literals style.

The following command sets the interval style to sql_standard.

Basic elements 964

Amazon Redshift Database Developer Guide

SET IntervalStyle to 'sql_standard';

postgres output format

The following is the output format for postgres interval style. Each numeric value can be
negative.

'<numeric> <unit> [, <numeric> <unit> ...]'

select INTERVAL '1-2' YEAR TO MONTH::text

varchar

1 year 2 mons

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

1 day 02:03:04.5678

postgres_verbose output format

postgres_verbose syntax is similar to postgres, but postgres_verbose outputs also contain the unit
of time.

'[@] <numeric> <unit> [, <numeric> <unit> ...] [direction]'

select INTERVAL '1-2' YEAR TO MONTH::text

varchar

@ 1 year 2 mons

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

@ 1 day 2 hours 3 mins 4.56 secs

Basic elements 965

Amazon Redshift Database Developer Guide

sql_standard output format

Interval year to month values are formatted as the following. Specifying a negative sign before the
interval indicates the interval is a negative value and applies to the entire interval.

'[-]yy-mm'

Interval day to second values are formatted as the following.

'[-]dd hh:mm:ss.ffffff'

SELECT INTERVAL '1-2' YEAR TO MONTH::text

varchar

1-2

select INTERVAL '1 2:3:4.5678' DAY TO SECOND::text

varchar

1 2:03:04.5678

Examples of interval data type

The following examples demonstrate how to use INTERVAL data types with tables.

create table sample_intervals (y2m interval month, h2m interval hour to minute);
insert into sample_intervals values (interval '20' month, interval '2 days
 1:1:1.123456' day to second);
select y2m::text, h2m::text from sample_intervals;

 y2m | h2m
---------------+-----------------
 1 year 8 mons | 2 days 01:01:00

update sample_intervals set y2m = interval '2' year where y2m = interval '1-8' year to
 month;

Basic elements 966

Amazon Redshift Database Developer Guide

select * from sample_intervals;

 y2m | h2m
---------+-----------------
 2 years | 2 days 01:01:00

delete from sample_intervals where h2m = interval '2 1:1:0' day to second;
select * from sample_intervals;

 y2m | h2m
-----+-----

Examples of interval literals

The following examples are run with interval style set to postgres.

The following example demonstrates how to create an INTERVAL literal of 1 year.

select INTERVAL '1' YEAR

intervaly2m

1 years 0 mons

If you specify a quoted-string that exceeds the qualifier, the remaining units of time are truncated
from the interval. In the following example, an interval of 13 months becomes 1 year and 1 month,
but the remaining 1 month is left out because of the YEAR qualifier.

select INTERVAL '13 months' YEAR

intervaly2m

1 years 0 mons

If you use a qualifier lower than your interval string, leftover units are included.

select INTERVAL '13 months' MONTH

intervaly2m

Basic elements 967

Amazon Redshift Database Developer Guide

1 years 1 mons

Specifying a precision in your interval truncates the number of fractional digits to the specified
precision.

select INTERVAL '1.234567' SECOND (3)

intervald2s

0 days 0 hours 0 mins 1.235 secs

If you don't specify a precision, Amazon Redshift uses the maximum precision of 6.

select INTERVAL '1.23456789' SECOND

intervald2s

0 days 0 hours 0 mins 1.234567 secs

The following example demonstrates how to create a ranged interval.

select INTERVAL '2:2' MINUTE TO SECOND

intervald2s

0 days 0 hours 2 mins 2.0 secs

Qualifiers dictate the units that you're specifying. For example, even though the following example
uses the same quoted-string of '2:2' as the previous example, Amazon Redshift recognizes that it
uses different units of time because of the qualifier.

select INTERVAL '2:2' HOUR TO MINUTE

intervald2s

0 days 2 hours 2 mins 0.0 secs

Abbreviations and plurals of each unit are also supported. For example, 5s, 5 second, and 5
seconds are equivalent intervals. Supported units are years, months, hours, minutes, and seconds.

Basic elements 968

Amazon Redshift Database Developer Guide

select INTERVAL '5s' SECOND

intervald2s

0 days 0 hours 0 mins 5.0 secs

select INTERVAL '5 HOURS' HOUR

intervald2s

0 days 5 hours 0 mins 0.0 secs

select INTERVAL '5 h' HOUR

intervald2s

0 days 5 hours 0 mins 0.0 secs

Examples of interval literals without qualifier syntax

Note

The following examples demonstrate using an interval literal without a YEAR TO MONTH or
DAY TO SECOND qualifier. For information about using the recommended interval literal
with a qualifier, see Interval data types and literals.

Use an interval literal to identify specific periods of time, such as 12 hours or 6 months. You can
use these interval literals in conditions and calculations that involve datetime expressions.

An interval literal is expressed as a combination of the INTERVAL keyword with a numeric quantity
and a supported date part, for example INTERVAL '7 days' or INTERVAL '59 minutes'. You
can connect several quantities and units to form a more precise interval, for example: INTERVAL
'7 days, 3 hours, 59 minutes'. Abbreviations and plurals of each unit are also supported;
for example: 5 s, 5 second, and 5 seconds are equivalent intervals.

If you don't specify a date part, the interval value represents seconds. You can specify the quantity
value as a fraction (for example: 0.5 days).

Basic elements 969

Amazon Redshift Database Developer Guide

The following examples show a series of calculations with different interval values.

The following adds 1 second to the specified date.

select caldate + interval '1 second' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:00:01
(1 row)

The following adds 1 minute to the specified date.

select caldate + interval '1 minute' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 00:01:00
(1 row)

The following adds 3 hours and 35 minutes to the specified date.

select caldate + interval '3 hours, 35 minutes' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 03:35:00
(1 row)

The following adds 52 weeks to the specified date.

select caldate + interval '52 weeks' as dateplus from date
where caldate='12-31-2008';
dateplus

2009-12-30 00:00:00
(1 row)

The following adds 1 week, 1 hour, 1 minute, and 1 second to the specified date.

select caldate + interval '1w, 1h, 1m, 1s' as dateplus from date

Basic elements 970

Amazon Redshift Database Developer Guide

where caldate='12-31-2008';
dateplus

2009-01-07 01:01:01
(1 row)

The following adds 12 hours (half a day) to the specified date.

select caldate + interval '0.5 days' as dateplus from date
where caldate='12-31-2008';
dateplus

2008-12-31 12:00:00
(1 row)

The following subtracts 4 months from February 15, 2023 and the result is October 15, 2022.

select date '2023-02-15' - interval '4 months';

?column?

2022-10-15 00:00:00

The following subtracts 4 months from March 31, 2023 and the result is November 30, 2022. The
calculation considers the number of days in a month.

select date '2023-03-31' - interval '4 months';

?column?

2022-11-30 00:00:00

Boolean type

Use the BOOLEAN data type to store true and false values in a single-byte column. The following
table describes the three possible states for a Boolean value and the literal values that result in
that state. Regardless of the input string, a Boolean column stores and outputs "t" for true and "f"
for false.

Basic elements 971

Amazon Redshift Database Developer Guide

State Valid literal
values

Storage

True TRUE 't'
'true' 'y'
'yes' '1'

1 byte

False FALSE 'f'
'false' 'n'
'no' '0'

1 byte

Unknown NULL 1 byte

You can use an IS comparison to check a Boolean value only as a predicate in the WHERE clause.
You can't use the IS comparison with a Boolean value in the SELECT list.

Examples

You could use a BOOLEAN column to store an "Active/Inactive" state for each customer in a
CUSTOMER table.

create table customer(
custid int,
active_flag boolean default true);

insert into customer values(100, default);

select * from customer;
custid | active_flag
-------+--------------
 100 | t

If no default value (true or false) is specified in the CREATE TABLE statement, inserting a default
value means inserting a null.

In this example, the query selects users from the USERS table who like sports but do not like
theatre:

Basic elements 972

Amazon Redshift Database Developer Guide

select firstname, lastname, likesports, liketheatre
from users
where likesports is true and liketheatre is false
order by userid limit 10;

firstname | lastname | likesports | liketheatre
----------+------------+------------+-------------
Lars | Ratliff | t | f
Mufutau | Watkins | t | f
Scarlett | Mayer | t | f
Shafira | Glenn | t | f
Winifred | Cherry | t | f
Chase | Lamb | t | f
Liberty | Ellison | t | f
Aladdin | Haney | t | f
Tashya | Michael | t | f
Lucian | Montgomery | t | f
(10 rows)

The following example selects users from the USERS table for whom is it unknown whether they
like rock music.

select firstname, lastname, likerock
from users
where likerock is unknown
order by userid limit 10;

firstname | lastname | likerock
----------+----------+----------
Rafael | Taylor |
Vladimir | Humphrey |
Barry | Roy |
Tamekah | Juarez |
Mufutau | Watkins |
Naida | Calderon |
Anika | Huff |
Bruce | Beck |
Mallory | Farrell |
Scarlett | Mayer |
(10 rows)

The following example returns an error because it uses an IS comparison in the SELECT list.

Basic elements 973

Amazon Redshift Database Developer Guide

select firstname, lastname, likerock is true as "check"
from users
order by userid limit 10;

[Amazon](500310) Invalid operation: Not implemented

The following example succeeds because it uses an equal comparison (=) in the SELECT list instead
of the IS comparison.

select firstname, lastname, likerock = true as "check"
from users
order by userid limit 10;

firstname | lastname | check
----------+-----------+------
Rafael | Taylor |
Vladimir | Humphrey |
Lars | Ratliff | true
Barry | Roy |
Reagan | Hodge | true
Victor | Hernandez | true
Tamekah | Juarez |
Colton | Roy | false
Mufutau | Watkins |
Naida | Calderon |

HLLSKETCH type

Use the HLLSKETCH data type for HyperLogLog sketches. Amazon Redshift supports HyperLogLog
sketch representations that are either sparse or dense. Sketches begin as sparse and switch to
dense when the dense format is more efficient to minimize the memory footprint that is used.

Amazon Redshift automatically transitions a sparse HyperLogLog sketch when importing,
exporting, or printing sketches in the following JSON format.

{"logm":15,"sparse":{"indices":[4878,9559,14523],"values":[1,2,1]}}

Amazon Redshift uses a string representation in a Base64 format to represent a dense
HyperLogLog sketch.

Basic elements 974

Amazon Redshift Database Developer Guide

Amazon Redshift uses the following string representation in a Base64 format to represent a dense
HyperLogLog sketch.

"ABAABA..."

The maximum size of a HLLSKETCH object is 24,580 bytes when used in raw compression.

SUPER type

Use the SUPER data type to store semistructured data or documents as values.

Semistructured data doesn't conform to the rigid and tabular structure of the relational data
model used in SQL databases. It contains tags that reference distinct entities within the data. They
can contain complex values such as arrays, nested structures, and other complex structures that
are associated with serialization formats, such as JSON. The SUPER data type is a set of schemaless
array and structure values that encompass all other scalar types of Amazon Redshift.

The SUPER data type supports up to 16 MB of data for an individual SUPER object. For more
information on the SUPER data type, including examples of implementing it in a table, see
Ingesting and querying semistructured data in Amazon Redshift.

SUPER objects larger than 1MB can only be ingested from the following file formats:

• Parquet

• JSON

• TEXT

• CSV

The SUPER data type has the following properties:

• An Amazon Redshift scalar value:

• A null

• A boolean

• A number, such as smallint, integer, bigint, decimal, or floating point (such as float4 or float8)

• A string value, such as varchar or char

• A complex value:

• An array of values, including scalar or complex

Basic elements 975

Amazon Redshift Database Developer Guide

• A structure, also known as tuple or object, that is a map of attribute names and values (scalar
or complex)

Any of the two types of complex values contain their own scalars or complex values without having
any restrictions for regularity.

The SUPER data type supports the persistence of semistructured data in a schemaless form.
Although hierarchical data model can change, the old versions of data can coexist in the same
SUPER column.

Amazon Redshift uses PartiQL to enable navigation into arrays and structures. Amazon Redshift
also uses the PartiQL syntax to iterate over SUPER arrays. For more information, see Navigation
and Unnesting queries.

Amazon Redshift uses dynamic typing to process schemaless SUPER data without needing to
declare the data types before you use them in your query. For more information, see Dynamic
typing.

You can apply dynamic data masking policies to scalar values on the paths of SUPER type
columns. For more information about dynamic data masking, see Dynamic data masking. For
information about using dynamic data masking with the SUPER data type, see Using dynamic data
masking with SUPER data type paths.

VARBYTE type

Use a VARBYTE, VARBINARY, or BINARY VARYING column to store variable-length binary value with
a fixed limit.

varbyte [(n)]

The maximum number of bytes (n) can range from 1 – 16,777,216. The default is 64,000.

Some examples where you might want to use a VARBYTE data type are as follows:

• Joining tables on VARBYTE columns.

• Creating materialized views that contain VARBYTE columns. Incremental refresh of materialized
views that contain VARBYTE columns is supported. However, aggregate functions other than
COUNT, MIN, and MAX and GROUP BY on VARBYTE columns don't support incremental refresh.

Basic elements 976

Amazon Redshift Database Developer Guide

To ensure that all bytes are printable characters, Amazon Redshift uses the hex format to print
VARBYTE values. For example, the following SQL converts the hexadecimal string 6162 into
a binary value. Even though the returned value is a binary value, the results are printed as
hexadecimal 6162.

select from_hex('6162');

 from_hex

 6162

Amazon Redshift supports casting between VARBYTE and the following data types:

• CHAR

• VARCHAR

• SMALLINT

• INTEGER

• BIGINT

When casting with CHAR and VARCHAR the UTF-8 format is used. For more information about the
UTF-8 format, see TO_VARBYTE. When casting from SMALLINT, INTEGER, and BIGINT the number
of bytes of the original data type is maintained. That is two bytes for SMALLINT, four bytes for
INTEGER, and eight bytes for BIGINT.

The following SQL statement casts a VARCHAR string to a VARBYTE. Even though the returned
value is a binary value, the results are printed as hexadecimal 616263.

select 'abc'::varbyte;

 varbyte

 616263

The following SQL statement casts a CHAR value in a column to a VARBYTE. This example creates
a table with a CHAR(10) column (c), inserts character values that are shorter than the length of 10.
The resulting cast pads the result with a space characters (hex'20') to the defined column size. Even
though the returned value is a binary value, the results are printed as hexadecimal.

Basic elements 977

Amazon Redshift Database Developer Guide

create table t (c char(10));
insert into t values ('aa'), ('abc');
select c::varbyte from t;
 c

 61612020202020202020
 61626320202020202020

The following SQL statement casts a SMALLINT string to a VARBYTE. Even though the returned
value is a binary value, the results are printed as hexadecimal 0005, which is two bytes or four
hexadecimal characters.

select 5::smallint::varbyte;

 varbyte

 0005

The following SQL statement casts an INTEGER to a VARBYTE. Even though the returned value
is a binary value, the results are printed as hexadecimal 00000005, which is four bytes or eight
hexadecimal characters.

select 5::int::varbyte;

 varbyte

 00000005

The following SQL statement casts a BIGINT to a VARBYTE. Even though the returned value is a
binary value, the results are printed as hexadecimal 0000000000000005, which is eight bytes or
16 hexadecimal characters.

select 5::bigint::varbyte;

 varbyte

 0000000000000005

Amazon Redshift features that support the VARBYTE data type include:

Basic elements 978

Amazon Redshift Database Developer Guide

• VARBYTE operators

• CONCAT

• LEN

• LENGTH function

• OCTET_LENGTH

• SUBSTRING function

• FROM_HEX

• TO_HEX

• FROM_VARBYTE

• TO_VARBYTE

• GETBIT

• Loading a column of the VARBYTE data type

• Unloading a column of the VARBYTE data type

Limitations when using the VARBYTE data type with Amazon Redshift

The following are limitations when using the VARBYTE data type with Amazon Redshift:

• Amazon Redshift Spectrum supports the VARBYTE data type only for Parquet and ORC files.

• Amazon Redshift query editor and Amazon Redshift query editor v2 don't yet fully support
VARBYTE data type. Therefore, use a different SQL client when working with VARBYTE
expressions.

As a workaround to use the query editor, if the length of your data is below 64 KB and the
content is valid UTF-8, you can cast the VARBYTE values to VARCHAR, for example:

select to_varbyte('6162', 'hex')::varchar;

• You can't use VARBYTE data types with Python or Lambda user-defined functions (UDFs).

• You can't create a HLLSKETCH column from a VARBYTE column or use APPROXIMATE COUNT
DISTINCT on a VARBYTE column.

• VARBYTE values larger than 1 MB can only be ingested from the following file formats:

• Parquet

Basic elements 979

Amazon Redshift Database Developer Guide

• Text

• Comma‐separated values (CSV)

Type compatibility and conversion

Following, you can find a discussion about how type conversion rules and data type compatibility
work in Amazon Redshift.

Compatibility

Data type matching and matching of literal values and constants to data types occurs during
various database operations, including the following:

• Data manipulation language (DML) operations on tables

• UNION, INTERSECT, and EXCEPT queries

• CASE expressions

• Evaluation of predicates, such as LIKE and IN

• Evaluation of SQL functions that do comparisons or extractions of data

• Comparisons with mathematical operators

The results of these operations depend on type conversion rules and data type compatibility.
Compatibility implies that a one-to-one matching of a certain value and a certain data type is not
always required. Because some data types are compatible, an implicit conversion, or coercion, is
possible (for more information, see Implicit conversion types). When data types are incompatible,
you can sometimes convert a value from one data type to another by using an explicit conversion
function.

General compatibility and conversion rules

Note the following compatibility and conversion rules:

• In general, data types that fall into the same type category (such as different numeric data types)
are compatible and can be implicitly converted.

For example, with implicit conversion you can insert a decimal value into an integer column.
The decimal is rounded to produce a whole number. Or you can extract a numeric value, such as
2008, from a date and insert that value into an integer column.

Basic elements 980

Amazon Redshift Database Developer Guide

• Numeric data types enforce overflow conditions that occur when you attempt to insert out-
of-range values. For example, a decimal value with a precision of 5 does not fit into a decimal
column that was defined with a precision of 4. An integer or the whole part of a decimal is never
truncated; however, the fractional part of a decimal can be rounded up or down, as appropriate.
However, results of explicit casts of values selected from tables are not rounded.

• Different types of character strings are compatible; VARCHAR column strings containing single-
byte data and CHAR column strings are comparable and implicitly convertible. VARCHAR strings
that contain multibyte data are not comparable. Also, you can convert a character string to a
date, time, timestamp, or numeric value if the string is an appropriate literal value; any leading
or trailing spaces are ignored. Conversely, you can convert a date, time, timestamp, or numeric
value to a fixed-length or variable-length character string.

Note

A character string that you want to cast to a numeric type must contain a character
representation of a number. For example, you can cast the strings '1.0' or '5.9' to
decimal values, but you cannot cast the string 'ABC' to any numeric type.

• If you compare DECIMAL values with character strings, Amazon Redshift attempts to convert the
character string to a DECIMAL value. When comparing all other numeric values with character
strings, the numeric values are converted to character strings. To enforce the opposite conversion
(for example, converting character strings to integers, or converting DECIMAL values to character
strings), use an explicit function, such as CAST.

• To convert 64-bit DECIMAL or NUMERIC values to a higher precision, you must use an explicit
conversion function such as the CAST or CONVERT functions.

• When converting DATE or TIMESTAMP to TIMESTAMPTZ, or converting TIME to TIMETZ, the time
zone is set to the current session time zone. The session time zone is UTC by default. For more
information about setting the session time zone, see timezone.

• Similarly, TIMESTAMPTZ is converted to DATE, TIME, or TIMESTAMP based on the current session
time zone. The session time zone is UTC by default. After the conversion, time zone information
is dropped.

• Character strings that represent a timestamp with time zone specified are converted to
TIMESTAMPTZ using the current session time zone, which is UTC by default. Likewise, character
strings that represent a time with time zone specified are converted to TIMETZ using the current
session time zone, which is UTC by default.

Basic elements 981

Amazon Redshift Database Developer Guide

Implicit conversion types

There are two types of implicit conversions:

• Implicit conversions in assignments, such as setting values in INSERT or UPDATE commands.

• Implicit conversions in expressions, such as performing comparisons in the WHERE clause.

The table following lists the data types that can be converted implicitly in assignments or
expressions. You can also use an explicit conversion function to perform these conversions.

From type To type

BOOLEAN

CHAR

DECIMAL (NUMERIC)

DOUBLE PRECISION (FLOAT8)

INTEGER (INT, INT4)

REAL (FLOAT4)

SMALLINT (INT2)

BIGINT (INT8)

VARCHAR

CHAR VARCHAR

CHAR

VARCHAR

TIMESTAMP

DATE

TIMESTAMPTZ

BIGINT (INT8)DECIMAL (NUMERIC)

CHAR

Basic elements 982

Amazon Redshift Database Developer Guide

From type To type

DOUBLE PRECISION (FLOAT8)

INTEGER (INT, INT4)

REAL (FLOAT4)

SMALLINT (INT2)

VARCHAR

BIGINT (INT8)

CHAR

DECIMAL (NUMERIC)

INTEGER (INT, INT4)

REAL (FLOAT4)

SMALLINT (INT2)

DOUBLE PRECISION (FLOAT8)

VARCHAR

BIGINT (INT8)

BOOLEAN

CHAR

DECIMAL (NUMERIC)

DOUBLE PRECISION (FLOAT8)

REAL (FLOAT4)

SMALLINT (INT2)

INTEGER (INT, INT4)

VARCHAR

Basic elements 983

Amazon Redshift Database Developer Guide

From type To type

BIGINT (INT8)

CHAR

DECIMAL (NUMERIC)

INTEGER (INT, INT4)

SMALLINT (INT2)

REAL (FLOAT4)

VARCHAR

BIGINT (INT8)

BOOLEAN

CHAR

DECIMAL (NUMERIC)

DOUBLE PRECISION (FLOAT8)

INTEGER (INT, INT4)

REAL (FLOAT4)

SMALLINT (INT2)

VARCHAR

CHAR

DATE

VARCHAR

TIMESTAMPTZ

TIMESTAMP

TIME

TIMESTAMPTZ CHAR

Basic elements 984

Amazon Redshift Database Developer Guide

From type To type

DATE

VARCHAR

TIMESTAMP

TIMETZ

VARCHAR

TIMETZ

TIME

INTERVAL DAY TO SECOND

VARCHARTIMETZ

TIME

GEOMETRY GEOGRAPHY

GEOGRAPHY GEOMETRY

Note

Implicit conversions between TIMESTAMPTZ, TIMESTAMP, DATE, TIME, TIMETZ, or character
strings use the current session time zone. For information about setting the current time
zone, see timezone.
The GEOMETRY and GEOGRAPHY data types can't be implicitly converted to any other data
type, except each other. For more information, see CAST function.
The VARBYTE data type can't be implicitly converted to any other data type. For more
information, see CAST function.

Using dynamic typing for the SUPER data type

Amazon Redshift uses dynamic typing to process schemaless SUPER data without the need to
declare the data types before you use them in your query. Dynamic typing uses the results of

Basic elements 985

Amazon Redshift Database Developer Guide

navigating into SUPER data columns without having to explicitly cast them into Amazon Redshift
types. For more information about using dynamic typing for SUPER data type, see Dynamic typing.

You can cast SUPER values to and from other data types with some exceptions. For more
information, see Limitations.

Collation sequences

Amazon Redshift doesn’t support locale-specific or user-defined collation sequences. In general,
the results of any predicate in any context could be affected by the lack of locale-specific rules for
sorting and comparing data values. For example, ORDER BY expressions and functions such as MIN,
MAX, and RANK return results based on binary UTF8 ordering of the data that does not take locale-
specific characters into account.

Expressions

Topics

• Simple expressions

• Compound expressions

• Expression lists

• Scalar subqueries

• Function expressions

An expression is a combination of one or more values, operators, or functions that evaluate to a
value. The data type of an expression is generally that of its components.

Simple expressions

A simple expression is one of the following:

• A constant or literal value

• A column name or column reference

• A scalar function

• An aggregate (set) function

• A window function

• A scalar subquery

Expressions 986

Amazon Redshift Database Developer Guide

Examples of simple expressions include:

5+12
dateid
sales.qtysold * 100
sqrt (4)
max (qtysold)
(select max (qtysold) from sales)

Compound expressions

A compound expression is a series of simple expressions joined by arithmetic operators. A simple
expression used in a compound expression must return a numeric value.

Syntax

expression
operator
expression | (compound_expression)

Arguments

expression

A simple expression that evaluates to a value.

operator

A compound arithmetic expression can be constructed using the following operators, in this
order of precedence:

• () : parentheses to control the order of evaluation

• + , - : positive and negative sign/operator

• ^ , |/ , ||/ : exponentiation, square root, cube root

• * , / , % : multiplication, division, and modulo operators

• @ : absolute value

• + , - : addition and subtraction

• & , |, #, ~, <<, >> : AND, OR, NOT, shift left, shift right bitwise operators

• ||: concatenation

Expressions 987

Amazon Redshift Database Developer Guide

(compound_expression)

Compound expressions can be nested using parentheses.

Examples

Examples of compound expressions include the following.

('SMITH' || 'JONES')
sum(x) / y
sqrt(256) * avg(column)
rank() over (order by qtysold) / 100
(select (pricepaid - commission) from sales where dateid = 1882) * (qtysold)

Some functions can also be nested within other functions. For example, any scalar function can
nest within another scalar function. The following example returns the sum of the absolute values
of a set of numbers:

sum(abs(qtysold))

Window functions cannot be used as arguments for aggregate functions or other window
functions. The following expression would return an error:

avg(rank() over (order by qtysold))

Window functions can have a nested aggregate function. The following expression sums sets of
values and then ranks them:

rank() over (order by sum(qtysold))

Expression lists

An expression list is a combination of expressions, and can appear in membership and comparison
conditions (WHERE clauses) and in GROUP BY clauses.

Syntax

expression , expression , ... | (expression, expression, ...)

Expressions 988

Amazon Redshift Database Developer Guide

Arguments

expression

A simple expression that evaluates to a value. An expression list can contain one or more
comma-separated expressions or one or more sets of comma-separated expressions. When
there are multiple sets of expressions, each set must contain the same number of expressions,
and be separated by parentheses. The number of expressions in each set must match the
number of expressions before the operator in the condition.

Examples

The following are examples of expression lists in conditions:

(1, 5, 10)
('THESE', 'ARE', 'STRINGS')
(('one', 'two', 'three'), ('blue', 'yellow', 'green'))

The number of expressions in each set must match the number in the first part of the statement:

select * from venue
where (venuecity, venuestate) in (('Miami', 'FL'), ('Tampa', 'FL'))
order by venueid;

venueid | venuename | venuecity | venuestate | venueseats
---------+-------------------------+-----------+------------+------------
28 | American Airlines Arena | Miami | FL | 0
54 | St. Pete Times Forum | Tampa | FL | 0
91 | Raymond James Stadium | Tampa | FL | 65647
(3 rows)

Scalar subqueries

A scalar subquery is a regular SELECT query in parentheses that returns exactly one value: one
row with one column. The query is run and the returned value is used in the outer query. If the
subquery returns zero rows, the value of the subquery expression is null. If it returns more than one
row, Amazon Redshift returns an error. The subquery can refer to variables from the parent query,
which will act as constants during any one invocation of the subquery.

You can use scalar subqueries in most statements that call for an expression. Scalar subqueries are
not valid expressions in the following cases:

Expressions 989

Amazon Redshift Database Developer Guide

• As default values for expressions

• In GROUP BY and HAVING clauses

Example

The following subquery computes the average price paid per sale across the entire year of 2008,
then the outer query uses that value in the output to compare against the average price per sale
per quarter:

select qtr, avg(pricepaid) as avg_saleprice_per_qtr,
(select avg(pricepaid)
from sales join date on sales.dateid=date.dateid
where year = 2008) as avg_saleprice_yearly
from sales join date on sales.dateid=date.dateid
where year = 2008
group by qtr
order by qtr;
qtr | avg_saleprice_per_qtr | avg_saleprice_yearly
-------+-----------------------+----------------------
1 | 647.64 | 642.28
2 | 646.86 | 642.28
3 | 636.79 | 642.28
4 | 638.26 | 642.28
(4 rows)

Function expressions

Syntax

Any built-in can be used as an expression. The syntax for a function call is the name of a function
followed by its argument list in parentheses.

function ([expression [, expression...]])

Arguments

function

Any built-in function. For some example functions, see SQL functions reference.

Expressions 990

Amazon Redshift Database Developer Guide

expression

Any expression(s) matching the data type and parameter count expected by the function.

Examples

abs (variable)
select avg (qtysold + 3) from sales;
select dateadd (day,30,caldate) as plus30days from date;

Conditions

Topics

• Syntax

• Comparison condition

• Logical conditions

• Pattern-matching conditions

• BETWEEN range condition

• Null condition

• EXISTS condition

• IN condition

A condition is a statement of one or more expressions and logical operators that evaluates to true,
false, or unknown. Conditions are also sometimes referred to as predicates.

Note

All string comparisons and LIKE pattern matches are case-sensitive. For example, 'A' and
'a' do not match. However, you can do a case-insensitive pattern match by using the ILIKE
predicate.

Syntax

comparison_condition

Conditions 991

Amazon Redshift Database Developer Guide

| logical_condition
| range_condition
| pattern_matching_condition
| null_condition
| EXISTS_condition
| IN_condition

Comparison condition

Comparison conditions state logical relationships between two values. All comparison conditions
are binary operators with a Boolean return type. Amazon Redshift supports the comparison
operators described in the following table:

Operator Syntax Description

< a < b Value a is less than value b.

> a > b Value a is greater than value b.

<= a <= b Value a is less than or equal to value b.

>= a >= b Value a is greater than or equal to value b.

= a = b Value a is equal to value b.

<> or != a <> b or a != b Value a is not equal to value b.

ANY | SOME a = ANY(subquery) Value a is equal to any value returned by the
subquery.

ALL a <> ALL or != ALL
(subquery))

Value a is not equal to any value returned by the
subquery.

IS TRUE
| FALSE |
UNKNOWN

a IS TRUE Value a is Boolean TRUE.

Conditions 992

Amazon Redshift Database Developer Guide

Usage notes

= ANY | SOME

The ANY and SOME keywords are synonymous with the IN condition, and return true if the
comparison is true for at least one value returned by a subquery that returns one or more
values. Amazon Redshift supports only the = (equals) condition for ANY and SOME. Inequality
conditions are not supported.

Note

The ALL predicate is not supported.

<> ALL

The ALL keyword is synonymous with NOT IN (see IN condition condition) and returns true if the
expression is not included in the results of the subquery. Amazon Redshift supports only the <>
or != (not equals) condition for ALL. Other comparison conditions are not supported.

IS TRUE/FALSE/UNKNOWN

Non-zero values equate to TRUE, 0 equates to FALSE, and null equates to UNKNOWN. See the
Boolean type data type.

Examples

Here are some simple examples of comparison conditions:

a = 5
a < b
min(x) >= 5
qtysold = any (select qtysold from sales where dateid = 1882

The following query returns venues with more than 10000 seats from the VENUE table:

select venueid, venuename, venueseats from venue
where venueseats > 10000
order by venueseats desc;

venueid | venuename | venueseats
---------+--------------------------------+------------

Conditions 993

Amazon Redshift Database Developer Guide

83 | FedExField | 91704
 6 | New York Giants Stadium | 80242
79 | Arrowhead Stadium | 79451
78 | INVESCO Field | 76125
69 | Dolphin Stadium | 74916
67 | Ralph Wilson Stadium | 73967
76 | Jacksonville Municipal Stadium | 73800
89 | Bank of America Stadium | 73298
72 | Cleveland Browns Stadium | 73200
86 | Lambeau Field | 72922
...
(57 rows)

This example selects the users (USERID) from the USERS table who like rock music:

select userid from users where likerock = 't' order by 1 limit 5;

userid

3
5
6
13
16
(5 rows)

This example selects the users (USERID) from the USERS table where it is unknown whether they
like rock music:

select firstname, lastname, likerock
from users
where likerock is unknown
order by userid limit 10;

firstname | lastname | likerock
----------+----------+----------
Rafael | Taylor |
Vladimir | Humphrey |
Barry | Roy |
Tamekah | Juarez |
Mufutau | Watkins |
Naida | Calderon |
Anika | Huff |

Conditions 994

Amazon Redshift Database Developer Guide

Bruce | Beck |
Mallory | Farrell |
Scarlett | Mayer |
(10 rows

Examples with a TIME column

The following example table TIME_TEST has a column TIME_VAL (type TIME) with three values
inserted.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

The following example extracts the hours from each timetz_val.

select time_val from time_test where time_val < '3:00';
 time_val

 00:00:00.5550
 00:58:00

The following example compares two time literals.

select time '18:25:33.123456' = time '18:25:33.123456';
 ?column?

 t

Examples with a TIMETZ column

The following example table TIMETZ_TEST has a column TIMETZ_VAL (type TIMETZ) with three
values inserted.

select timetz_val from timetz_test;

timetz_val

Conditions 995

Amazon Redshift Database Developer Guide

04:00:00+00
00:00:00.5550+00
05:58:00+00

The following example selects only the TIMETZ values less than 3:00:00 UTC. The comparison is
made after converting the value to UTC.

select timetz_val from timetz_test where timetz_val < '3:00:00 UTC';

 timetz_val

 00:00:00.5550+00

The following example compares two TIMETZ literals. The time zone is ignored for the comparison.

select time '18:25:33.123456 PST' < time '19:25:33.123456 EST';

 ?column?

 t

Logical conditions

Logical conditions combine the result of two conditions to produce a single result. All logical
conditions are binary operators with a Boolean return type.

Syntax

expression
{ AND | OR }
expression
NOT expression

Logical conditions use a three-valued Boolean logic where the null value represents an unknown
relationship. The following table describes the results for logical conditions, where E1 and E2
represent expressions:

E1 E2 E1 AND E2 E1 OR E2 NOT E2

TRUE TRUE TRUE TRUE FALSE

Conditions 996

Amazon Redshift Database Developer Guide

E1 E2 E1 AND E2 E1 OR E2 NOT E2

TRUE FALSE FALSE TRUE TRUE

TRUE UNKNOWN UNKNOWN TRUE UNKNOWN

FALSE TRUE FALSE TRUE

FALSE FALSE FALSE FALSE

FALSE UNKNOWN FALSE UNKNOWN

UNKNOWN TRUE UNKNOWN TRUE

UNKNOWN FALSE FALSE UNKNOWN

UNKNOWN UNKNOWN UNKNOWN UNKNOWN

The NOT operator is evaluated before AND, and the AND operator is evaluated before the OR
operator. Any parentheses used may override this default order of evaluation.

Examples

The following example returns USERID and USERNAME from the USERS table where the user likes
both Las Vegas and sports:

select userid, username from users
where likevegas = 1 and likesports = 1
order by userid;

userid | username
--------+----------
1 | JSG99FHE
67 | TWU10MZT
87 | DUF19VXU
92 | HYP36WEQ
109 | FPL38HZK
120 | DMJ24GUZ
123 | QZR22XGQ
130 | ZQC82ALK
133 | LBN45WCH
144 | UCX04JKN

Conditions 997

Amazon Redshift Database Developer Guide

165 | TEY68OEB
169 | AYQ83HGO
184 | TVX65AZX
...
(2128 rows)

The next example returns the USERID and USERNAME from the USERS table where the user likes
Las Vegas, or sports, or both. This query returns all of the output from the previous example plus
the users who like only Las Vegas or sports.

select userid, username from users
where likevegas = 1 or likesports = 1
order by userid;

userid | username
--------+----------
1 | JSG99FHE
2 | PGL08LJI
3 | IFT66TXU
5 | AEB55QTM
6 | NDQ15VBM
9 | MSD36KVR
10 | WKW41AIW
13 | QTF33MCG
15 | OWU78MTR
16 | ZMG93CDD
22 | RHT62AGI
27 | KOY02CVE
29 | HUH27PKK
...
(18968 rows)

The following query uses parentheses around the OR condition to find venues in New York or
California where Macbeth was performed:

select distinct venuename, venuecity
from venue join event on venue.venueid=event.venueid
where (venuestate = 'NY' or venuestate = 'CA') and eventname='Macbeth'
order by 2,1;

venuename | venuecity
--+---------------

Conditions 998

Amazon Redshift Database Developer Guide

Geffen Playhouse | Los Angeles
Greek Theatre | Los Angeles
Royce Hall | Los Angeles
American Airlines Theatre | New York City
August Wilson Theatre | New York City
Belasco Theatre | New York City
Bernard B. Jacobs Theatre | New York City
...

Removing the parentheses in this example changes the logic and results of the query.

The following example uses the NOT operator:

select * from category
where not catid=1
order by 1;

catid | catgroup | catname | catdesc
-------+----------+-----------+--
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
...

The following example uses a NOT condition followed by an AND condition:

select * from category
where (not catid=1) and catgroup='Sports'
order by catid;

catid | catgroup | catname | catdesc
-------+----------+---------+---------------------------------
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
(4 rows)

Pattern-matching conditions

Topics

Conditions 999

Amazon Redshift Database Developer Guide

• LIKE

• SIMILAR TO

• POSIX operators

A pattern-matching operator searches a string for a pattern specified in the conditional expression
and returns true or false depend on whether it finds a match. Amazon Redshift uses three methods
for pattern matching:

• LIKE expressions

The LIKE operator compares a string expression, such as a column name, with a pattern that uses
the wildcard characters % (percent) and _ (underscore). LIKE pattern matching always covers the
entire string. LIKE performs a case-sensitive match and ILIKE performs a case-insensitive match.

• SIMILAR TO regular expressions

The SIMILAR TO operator matches a string expression with a SQL standard regular expression
pattern, which can include a set of pattern-matching metacharacters that includes the two
supported by the LIKE operator. SIMILAR TO matches the entire string and performs a case-
sensitive match.

• POSIX-style regular expressions

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE
and SIMILAR TO operators. POSIX regular expression patterns can match any portion of the
string and performs a case-sensitive match.

Regular expression matching, using SIMILAR TO or POSIX operators, is computationally expensive.
We recommend using LIKE whenever possible, especially when processing a very large number of
rows. For example, the following queries are functionally identical, but the query that uses LIKE
runs several times faster than the query that uses a regular expression:

select count(*) from event where eventname SIMILAR TO '%(Ring|Die)%';
select count(*) from event where eventname LIKE '%Ring%' OR eventname LIKE '%Die%';

LIKE

The LIKE operator compares a string expression, such as a column name, with a pattern that uses
the wildcard characters % (percent) and _ (underscore). LIKE pattern matching always covers the

Conditions 1000

Amazon Redshift Database Developer Guide

entire string. To match a sequence anywhere within a string, the pattern must start and end with a
percent sign.

LIKE is case-sensitive; ILIKE is case-insensitive.

Syntax

expression [NOT] LIKE | ILIKE pattern [ESCAPE 'escape_char']

Arguments

expression

A valid UTF-8 character expression, such as a column name.

LIKE | ILIKE

LIKE performs a case-sensitive pattern match. ILIKE performs a case-insensitive pattern match
for single-byte UTF-8 (ASCII) characters. To perform a case-insensitive pattern match for
multibyte characters, use the LOWER function on expression and pattern with a LIKE condition.

In contrast to comparison predicates, such as = and <>, LIKE and ILIKE predicates do not
implicitly ignore trailing spaces. To ignore trailing spaces, use RTRIM or explicitly cast a CHAR
column to VARCHAR.

The ~~ operator is equivalent to LIKE, and ~~* is equivalent to ILIKE. Also the !~~ and !~~*
operators are equivalent to NOT LIKE and NOT ILIKE.

pattern

A valid UTF-8 character expression with the pattern to be matched.

escape_char

A character expression that will escape metacharacters characters in the pattern. The default is
two backslashes ('\\').

If pattern does not contain metacharacters, then the pattern only represents the string itself; in
that case LIKE acts the same as the equals operator.

Either of the character expressions can be CHAR or VARCHAR data types. If they differ, Amazon
Redshift converts pattern to the data type of expression.

Conditions 1001

Amazon Redshift Database Developer Guide

LIKE supports the following pattern-matching metacharacters:

Operator Description

% Matches any sequence of zero or more characters.

_ Matches any single character.

Examples

The following table shows examples of pattern matching using LIKE:

Expression Returns

'abc' LIKE 'abc' True

'abc' LIKE 'a%' True

'abc' LIKE '_B_' False

'abc' ILIKE '_B_' True

'abc' LIKE 'c%' False

The following example finds all cities whose names start with "E":

select distinct city from users
where city like 'E%' order by city;
city

East Hartford
East Lansing
East Rutherford
East St. Louis
Easthampton
Easton
Eatontown
Eau Claire
...

Conditions 1002

Amazon Redshift Database Developer Guide

The following example finds users whose last name contains "ten" :

select distinct lastname from users
where lastname like '%ten%' order by lastname;
lastname

Christensen
Wooten
...

The following example demonstrates how to match multiple patterns.

select distinct lastname from tickit.users
where lastname like 'Chris%' or lastname like '%Wooten' order by lastname;
lastname

Christensen
Christian
Wooten
...

The following example finds cities whose third and fourth characters are "ea". The command uses
ILIKE to demonstrate case insensitivity:

select distinct city from users where city ilike '__EA%' order by city;
city

Brea
Clearwater
Great Falls
Ocean City
Olean
Wheaton
(6 rows)

The following example uses the default escape string (\\) to search for strings that include
"start_" (the text start followed by an underscore _):

select tablename, "column" from pg_table_def
where "column" like '%start_%'
limit 5;

Conditions 1003

Amazon Redshift Database Developer Guide

 tablename | column
-------------------+---------------
 stl_s3client | start_time
 stl_tr_conflict | xact_start_ts
 stl_undone | undo_start_ts
 stl_unload_log | start_time
 stl_vacuum_detail | start_row
(5 rows)

The following example specifies '^' as the escape character, then uses the escape character to
search for strings that include "start_" (the text start followed by an underscore _):

select tablename, "column" from pg_table_def
where "column" like '%start^_%' escape '^'
limit 5;

 tablename | column
-------------------+---------------
 stl_s3client | start_time
 stl_tr_conflict | xact_start_ts
 stl_undone | undo_start_ts
 stl_unload_log | start_time
 stl_vacuum_detail | start_row
(5 rows)

The following example uses the ~~* operator to do a case-insensitive (ILIKE) search for cities that
start with "Ag".

select distinct city from users where city ~~* 'Ag%' order by city;

city

Agat
Agawam
Agoura Hills
Aguadilla

SIMILAR TO

The SIMILAR TO operator matches a string expression, such as a column name, with a SQL standard
regular expression pattern. A SQL regular expression pattern can include a set of pattern-matching
metacharacters, including the two supported by the LIKE operator.

Conditions 1004

Amazon Redshift Database Developer Guide

The SIMILAR TO operator returns true only if its pattern matches the entire string, unlike POSIX
regular expression behavior, where the pattern can match any portion of the string.

SIMILAR TO performs a case-sensitive match.

Note

Regular expression matching using SIMILAR TO is computationally expensive. We
recommend using LIKE whenever possible, especially when processing a very large number
of rows. For example, the following queries are functionally identical, but the query that
uses LIKE runs several times faster than the query that uses a regular expression:

select count(*) from event where eventname SIMILAR TO '%(Ring|Die)%';
select count(*) from event where eventname LIKE '%Ring%' OR eventname LIKE '%Die
%';

Syntax

expression [NOT] SIMILAR TO pattern [ESCAPE 'escape_char']

Arguments

expression

A valid UTF-8 character expression, such as a column name.

SIMILAR TO

SIMILAR TO performs a case-sensitive pattern match for the entire string in expression.

pattern

A valid UTF-8 character expression representing a SQL standard regular expression pattern.

escape_char

A character expression that will escape metacharacters in the pattern. The default is two
backslashes ('\\').

If pattern does not contain metacharacters, then the pattern only represents the string itself.

Conditions 1005

Amazon Redshift Database Developer Guide

Either of the character expressions can be CHAR or VARCHAR data types. If they differ, Amazon
Redshift converts pattern to the data type of expression.

SIMILAR TO supports the following pattern-matching metacharacters:

Operator Description

% Matches any sequence of zero or more characters.

_ Matches any single character.

| Denotes alternation (either of two alternatives).

* Repeat the previous item zero or more times.

+ Repeat the previous item one or more times.

? Repeat the previous item zero or one time.

{m} Repeat the previous item exactly m times.

{m,} Repeat the previous item m or more times.

{m,n} Repeat the previous item at least m and not more than n times.

() Parentheses group items into a single logical item.

[...] A bracket expression specifies a character class, just as in POSIX regular
expressions.

Examples

The following table shows examples of pattern matching using SIMILAR TO:

Expression Returns

'abc' SIMILAR TO 'abc' True

'abc' SIMILAR TO '_b_' True

Conditions 1006

Amazon Redshift Database Developer Guide

Expression Returns

'abc' SIMILAR TO '_A_' False

'abc' SIMILAR TO '%(b|d)%' True

'abc' SIMILAR TO '(b|c)%' False

'AbcAbcdefgefg12efgefg12' SIMILAR
TO '((Ab)?c)+d((efg)+(12))+'

True

'aaaaaab11111xy' SIMILAR TO 'a{6}_
[0-9]{5}(x|y){2}'

True

'$0.87' SIMILAR TO '$[0-9]+(.[0-9]
[0-9])?'

True

The following example finds cities whose names contain "E" or "H":

SELECT DISTINCT city FROM users
WHERE city SIMILAR TO '%E%|%H%' ORDER BY city LIMIT 5;

 city

 Agoura Hills
 Auburn Hills
 Benton Harbor
 Beverly Hills
 Chicago Heights

The following example uses the default escape string ('\\') to search for strings that include "_":

SELECT tablename, "column" FROM pg_table_def
WHERE "column" SIMILAR TO '%start_%'
ORDER BY tablename, "column" LIMIT 5;

 tablename | column
--------------------------+---------------------
 stcs_abort_idle | idle_start_time
 stcs_abort_idle | txn_start_time
 stcs_analyze_compression | start_time

Conditions 1007

Amazon Redshift Database Developer Guide

 stcs_auto_worker_levels | start_level
 stcs_auto_worker_levels | start_wlm_occupancy

The following example specifies '^' as the escape string, then uses the escape string to search for
strings that include "_":

SELECT tablename, "column" FROM pg_table_def
WHERE "column" SIMILAR TO '%start^_%' ESCAPE '^'
ORDER BY tablename, "column" LIMIT 5;

 tablename | column
--------------------------+---------------------
 stcs_abort_idle | idle_start_time
 stcs_abort_idle | txn_start_time
 stcs_analyze_compression | start_time
 stcs_auto_worker_levels | start_level
 stcs_auto_worker_levels | start_wlm_occupancy

POSIX operators

A POSIX regular expression is a sequence of characters that specifies a match pattern. A string
matches a regular expression if it is a member of the regular set described by the regular
expression.

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. POSIX regular expression patterns can match any portion of a string, unlike
the SIMILAR TO operator, which returns true only if its pattern matches the entire string.

Note

Regular expression matching using POSIX operators is computationally expensive. We
recommend using LIKE whenever possible, especially when processing a very large number
of rows. For example, the following queries are functionally identical, but the query that
uses LIKE runs several times faster than the query that uses a regular expression:

select count(*) from event where eventname ~ '.*(Ring|Die).*';
select count(*) from event where eventname LIKE '%Ring%' OR eventname LIKE '%Die
%';

Conditions 1008

Amazon Redshift Database Developer Guide

Syntax

expression [!] ~ pattern

Arguments

expression

A valid UTF-8 character expression, such as a column name.

!

Negation operator. Does not match the regular expression.

~

Perform a case-sensitive match for any substring of expression.

Note

A ~~ is a synonym for LIKE.

pattern

A string literal that represents a regular expression pattern.

If pattern does not contain wildcard characters, then the pattern only represents the string itself.

To search for strings that include metacharacters, such as ‘. * | ? ‘, and so on, escape the
character using two backslashes (' \\ '). Unlike SIMILAR TO and LIKE, POSIX regular expression
syntax does not support a user-defined escape character.

Either of the character expressions can be CHAR or VARCHAR data types. If they differ, Amazon
Redshift converts pattern to the data type of expression.

All of the character expressions can be CHAR or VARCHAR data types. If the expressions differ in
data type, Amazon Redshift converts them to the data type of expression.

POSIX pattern matching supports the following metacharacters:

Conditions 1009

Amazon Redshift Database Developer Guide

POSIX Description

. Matches any single character.

* Matches zero or more occurrences.

+ Matches one or more occurrences.

? Matches zero or one occurrence.

| Specifies alternative matches; for example, E | H means E or H.

^ Matches the beginning-of-line character.

$ Matches the end-of-line character.

$ Matches the end of the string.

[] Brackets specify a matching list, that should match one expression in the
list. A caret (^) precedes a nonmatching list, which matches any character
except for the expressions represented in the list.

() Parentheses group items into a single logical item.

{m} Repeat the previous item exactly m times.

{m,} Repeat the previous item m or more times.

{m,n} Repeat the previous item at least m and not more than n times.

[: :] Matches any character within a POSIX character class. In the following
character classes, Amazon Redshift supports only ASCII characters:
[:alnum:] , [:alpha:] , [:lower:] , [:upper:]

Amazon Redshift supports the following POSIX character classes.

Character Class Description

[[:alnum:]] All ASCII alphanumeric characters

Conditions 1010

Amazon Redshift Database Developer Guide

Character Class Description

[[:alpha:]] All ASCII alphabetic characters

[[:blank:]] All blank space characters

[[:cntrl:]] All control characters (nonprinting)

[[:digit:]] All numeric digits

[[:lower:]] All lowercase ASCII alphabetic characters

[[:punct:]] All punctuation characters

[[:space:]] All space characters (nonprinting)

[[:upper:]] All uppercase ASCII alphabetic characters

[[:xdigit:]] All valid hexadecimal characters

Amazon Redshift supports the following Perl-influenced operators in regular expressions. Escape
the operator using two backslashes (‘\\’).

Operator Description Equivalent character class
expression

\\d A digit character [[:digit:]]

\\D A nondigit character [^[:digit:]]

\\w A word character [[:word:]]

\\W A nonword character [^[:word:]]

\\s A white space character [[:space:]]

\\S A non–white space character [^[:space:]]

\\b A boundary word

Conditions 1011

Amazon Redshift Database Developer Guide

Examples

The following table shows examples of pattern matching using POSIX operators:

Expression Returns

'abc' ~ 'abc' True

'abc' ~ 'a' True

'abc' ~ 'A' False

'abc' ~ '.*(b|d).*' True

'abc' ~ '(b|c).*' True

'AbcAbcdefgefg12efgefg12' ~
'((Ab)?c)+d((efg)+(12))+'

True

'aaaaaab11111xy' ~ 'a{6}.[1]{5}
(x|y){2}'

True

'$0.87' ~ '\\$[0-9]+(\\.[0-9]
[0-9])?'

True

'ab c' ~ '[[:space:]]' True

'ab c' ~ '\\s' True

' ' ~ '\\S' False

The following example finds cities whose names contain E or H:

SELECT DISTINCT city FROM users
WHERE city ~ '.*E.*|.*H.*' ORDER BY city LIMIT 5;

 city

 Agoura Hills
 Auburn Hills
 Benton Harbor

Conditions 1012

Amazon Redshift Database Developer Guide

 Beverly Hills
 Chicago Heights

The following example finds cities whose names don't contain E or H:

SELECT DISTINCT city FROM users WHERE city !~ '.*E.*|.*H.*' ORDER BY city LIMIT 5;

 city

 Aberdeen
 Abilene
 Ada
 Agat
 Agawam

The following example uses the escape string ('\\') to search for strings that include a period.

SELECT venuename FROM venue
WHERE venuename ~ '.*\\..*'
ORDER BY venueid;

 venuename

 St. Pete Times Forum
 Jobing.com Arena
 Hubert H. Humphrey Metrodome
 U.S. Cellular Field
 Superpages.com Center
 E.J. Nutter Center
 Bernard B. Jacobs Theatre
 St. James Theatre

BETWEEN range condition

A BETWEEN condition tests expressions for inclusion in a range of values, using the keywords
BETWEEN and AND.

Syntax

expression [NOT] BETWEEN expression AND expression

Conditions 1013

Amazon Redshift Database Developer Guide

Expressions can be numeric, character, or datetime data types, but they must be compatible. The
range is inclusive.

Examples

The first example counts how many transactions registered sales of either 2, 3, or 4 tickets:

select count(*) from sales
where qtysold between 2 and 4;

count

104021
(1 row)

The range condition includes the begin and end values.

select min(dateid), max(dateid) from sales
where dateid between 1900 and 1910;

min | max
-----+-----
1900 | 1910

The first expression in a range condition must be the lesser value and the second expression
the greater value. The following example will always return zero rows due to the values of the
expressions:

select count(*) from sales
where qtysold between 4 and 2;

count

0
(1 row)

However, applying the NOT modifier will invert the logic and produce a count of all rows:

select count(*) from sales
where qtysold not between 4 and 2;

Conditions 1014

Amazon Redshift Database Developer Guide

count

172456
(1 row)

The following query returns a list of venues with 20000 to 50000 seats:

select venueid, venuename, venueseats from venue
where venueseats between 20000 and 50000
order by venueseats desc;

venueid | venuename | venueseats
---------+-------------------------------+------------
116 | Busch Stadium | 49660
106 | Rangers BallPark in Arlington | 49115
96 | Oriole Park at Camden Yards | 48876
...
(22 rows)

The following example demonstrates using BETWEEN for date values:

select salesid, qtysold, pricepaid, commission, saletime
from sales
where eventid between 1000 and 2000
 and saletime between '2008-01-01' and '2008-01-03'
order by saletime asc;

salesid | qtysold | pricepaid | commission | saletime
--------+---------+-----------+------------+---------------
 65082 | 4 | 472 | 70.8 | 1/1/2008 06:06
 110917 | 1 | 337 | 50.55 | 1/1/2008 07:05
 112103 | 1 | 241 | 36.15 | 1/2/2008 03:15
 137882 | 3 | 1473 | 220.95 | 1/2/2008 05:18
 40331 | 2 | 58 | 8.7 | 1/2/2008 05:57
 110918 | 3 | 1011 | 151.65 | 1/2/2008 07:17
 96274 | 1 | 104 | 15.6 | 1/2/2008 07:18
 150499 | 3 | 135 | 20.25 | 1/2/2008 07:20
 68413 | 2 | 158 | 23.7 | 1/2/2008 08:12

Note that although BETWEEN's range is inclusive, dates default to having a time value of 00:00:00.
The only valid January 3 row for the sample query would be a row with a saletime of 1/3/2008
00:00:00.

Conditions 1015

Amazon Redshift Database Developer Guide

Null condition

The null condition tests for nulls, when a value is missing or unknown.

Syntax

expression IS [NOT] NULL

Arguments

expression

Any expression such as a column.

IS NULL

Is true when the expression's value is null and false when it has a value.

IS NOT NULL

Is false when the expression's value is null and true when it has a value.

Example

This example indicates how many times the SALES table contains null in the QTYSOLD field:

select count(*) from sales
where qtysold is null;
count

0
(1 row)

EXISTS condition

EXISTS conditions test for the existence of rows in a subquery, and return true if a subquery returns
at least one row. If NOT is specified, the condition returns true if a subquery returns no rows.

Syntax

[NOT] EXISTS (table_subquery)

Conditions 1016

Amazon Redshift Database Developer Guide

Arguments

EXISTS

Is true when the table_subquery returns at least one row.

NOT EXISTS

Is true when the table_subquery returns no rows.

table_subquery

A subquery that evaluates to a table with one or more columns and one or more rows.

Example

This example returns all date identifiers, one time each, for each date that had a sale of any kind:

select dateid from date
where exists (
select 1 from sales
where date.dateid = sales.dateid
)
order by dateid;

dateid

1827
1828
1829
...

IN condition

An IN condition tests a value for membership in a set of values or in a subquery.

Syntax

expression [NOT] IN (expr_list | table_subquery)

Conditions 1017

Amazon Redshift Database Developer Guide

Arguments

expression

A numeric, character, or datetime expression that is evaluated against the expr_list or
table_subquery and must be compatible with the data type of that list or subquery.

expr_list

One or more comma-delimited expressions, or one or more sets of comma-delimited
expressions bounded by parentheses.

table_subquery

A subquery that evaluates to a table with one or more rows, but is limited to only one column in
its select list.

IN | NOT IN

IN returns true if the expression is a member of the expression list or query. NOT IN returns true
if the expression is not a member. IN and NOT IN return NULL and no rows are returned in the
following cases: If expression yields null; or if there are no matching expr_list or table_subquery
values and at least one of these comparison rows yields null.

Examples

The following conditions are true only for those values listed:

qtysold in (2, 4, 5)
date.day in ('Mon', 'Tues')
date.month not in ('Oct', 'Nov', 'Dec')

Optimization for Large IN Lists

To optimize query performance, an IN list that includes more than 10 values is internally evaluated
as a scalar array. IN lists with fewer than 10 values are evaluated as a series of OR predicates. This
optimization is supported for SMALLINT, INTEGER, BIGINT, REAL, DOUBLE PRECISION, BOOLEAN,
CHAR, VARCHAR, DATE, TIMESTAMP, and TIMESTAMPTZ data types.

Look at the EXPLAIN output for the query to see the effect of this optimization. For example:

explain select * from sales

Conditions 1018

Amazon Redshift Database Developer Guide

QUERY PLAN
--
XN Seq Scan on sales (cost=0.00..6035.96 rows=86228 width=53)
Filter: (salesid = ANY ('{1,2,3,4,5,6,7,8,9,10,11}'::integer[]))
(2 rows)

SQL commands

The SQL language consists of commands that you use to create and manipulate database objects,
run queries, load tables, and modify the data in tables.

Amazon Redshift is based on PostgreSQL. Amazon Redshift and PostgreSQL have a number of
important differences that you must be aware of as you design and develop your data warehouse
applications. For more information about how Amazon Redshift SQL differs from PostgreSQL, see
Amazon Redshift and PostgreSQL.

Note

The maximum size for a single SQL statement is 16 MB.

Topics

• ABORT

• ALTER DATABASE

• ALTER DATASHARE

• ALTER DEFAULT PRIVILEGES

• ALTER EXTERNAL VIEW (preview)

• ALTER FUNCTION

• ALTER GROUP

• ALTER IDENTITY PROVIDER

• ALTER MASKING POLICY

• ALTER MATERIALIZED VIEW

• ALTER RLS POLICY

• ALTER ROLE

SQL commands 1019

Amazon Redshift Database Developer Guide

• ALTER PROCEDURE

• ALTER SCHEMA

• ALTER SYSTEM

• ALTER TABLE

• ALTER TABLE APPEND

• ALTER USER

• ANALYZE

• ANALYZE COMPRESSION

• ATTACH MASKING POLICY

• ATTACH RLS POLICY

• BEGIN

• CALL

• CANCEL

• CLOSE

• COMMENT

• COMMIT

• COPY

• CREATE DATABASE

• CREATE DATASHARE

• CREATE EXTERNAL FUNCTION

• CREATE EXTERNAL SCHEMA

• CREATE EXTERNAL TABLE

• CREATE EXTERNAL VIEW (preview)

• CREATE FUNCTION

• CREATE GROUP

• CREATE IDENTITY PROVIDER

• CREATE LIBRARY

• CREATE MASKING POLICY

• CREATE MATERIALIZED VIEW

• CREATE MODEL

SQL commands 1020

Amazon Redshift Database Developer Guide

• CREATE PROCEDURE

• CREATE RLS POLICY

• CREATE ROLE

• CREATE SCHEMA

• CREATE TABLE

• CREATE TABLE AS

• CREATE USER

• CREATE VIEW

• DEALLOCATE

• DECLARE

• DELETE

• DESC DATASHARE

• DESC IDENTITY PROVIDER

• DETACH MASKING POLICY

• DETACH RLS POLICY

• DROP DATABASE

• DROP DATASHARE

• DROP EXTERNAL VIEW (preview)

• DROP FUNCTION

• DROP GROUP

• DROP IDENTITY PROVIDER

• DROP LIBRARY

• DROP MASKING POLICY

• DROP MODEL

• DROP MATERIALIZED VIEW

• DROP PROCEDURE

• DROP RLS POLICY

• DROP ROLE

• DROP SCHEMA

• DROP TABLE

SQL commands 1021

Amazon Redshift Database Developer Guide

• DROP USER

• DROP VIEW

• END

• EXECUTE

• EXPLAIN

• FETCH

• GRANT

• INSERT

• INSERT (external table)

• LOCK

• MERGE

• PREPARE

• REFRESH MATERIALIZED VIEW

• RESET

• REVOKE

• ROLLBACK

• SELECT

• SELECT INTO

• SET

• SET SESSION AUTHORIZATION

• SET SESSION CHARACTERISTICS

• SHOW

• SHOW COLUMNS

• SHOW EXTERNAL TABLE

• SHOW DATABASES

• SHOW MODEL

• SHOW DATASHARES

• SHOW PROCEDURE

• SHOW SCHEMAS

SQL commands 1022

Amazon Redshift Database Developer Guide

• SHOW TABLE

• SHOW TABLES

• SHOW VIEW

• START TRANSACTION

• TRUNCATE

• UNLOAD

• UPDATE

• VACUUM

ABORT

Stops the currently running transaction and discards all updates made by that transaction. ABORT
has no effect on already completed transactions.

This command performs the same function as the ROLLBACK command. For information, see
ROLLBACK.

Syntax

ABORT [WORK | TRANSACTION]

Parameters

WORK

Optional keyword.

TRANSACTION

Optional keyword; WORK and TRANSACTION are synonyms.

Example

The following example creates a table then starts a transaction where data is inserted into the
table. The ABORT command then rolls back the data insertion to leave the table empty.

The following command creates an example table called MOVIE_GROSS:

ABORT 1023

Amazon Redshift Database Developer Guide

create table movie_gross(name varchar(30), gross bigint);

The next set of commands starts a transaction that inserts two data rows into the table:

begin;

insert into movie_gross values ('Raiders of the Lost Ark', 23400000);

insert into movie_gross values ('Star Wars', 10000000);

Next, the following command selects the data from the table to show that it was successfully
inserted:

select * from movie_gross;

The command output shows that both rows are successfully inserted:

 name | gross
------------------------+----------
Raiders of the Lost Ark | 23400000
Star Wars | 10000000
(2 rows)

This command now rolls back the data changes to where the transaction began:

abort;

Selecting data from the table now shows an empty table:

select * from movie_gross;

 name | gross
------+-------
(0 rows)

ALTER DATABASE

Changes the attributes of a database.

ALTER DATABASE 1024

Amazon Redshift Database Developer Guide

Required privileges

To use ALTER DATABASE, one of the following privileges is required..

• Superuser

• Users with the ALTER DATABASE privilege

• Database owner

Syntax

ALTER DATABASE database_name
{ RENAME TO new_name
| OWNER TO new_owner
| CONNECTION LIMIT { limit | UNLIMITED }
| COLLATE { CASE_SENSITIVE | CASE_INSENSITIVE }
| ISOLATION LEVEL { SERIALIZABLE | SNAPSHOT }
| INTEGRATION REFRESH {{ ALL | INERROR } TABLES [IN SCHEMA schema [, ...]] |
 TABLE schema.table [, ...]}
}

Parameters

database_name

Name of the database to alter. Typically, you alter a database that you are not currently
connected to; in any case, the changes take effect only in subsequent sessions. You can change
the owner of the current database, but you can't rename it:

alter database tickit rename to newtickit;
ERROR: current database may not be renamed

RENAME TO

Renames the specified database. For more information about valid names, see Names and
identifiers. You can't rename the dev, padb_harvest, template0, template1, or sys:internal
databases, and you can't rename the current database. Only the database owner or a
superuser (p. 846) can rename a database; non-superuser owners must also have the CREATEDB
privilege.

ALTER DATABASE 1025

Amazon Redshift Database Developer Guide

new_name

New database name.

OWNER TO

Changes the owner of the specified database. You can change the owner of the current
database or some other database. Only a superuser can change the owner.

new_owner

New database owner. The new owner must be an existing database user with write privileges.
For more information about user privileges, see GRANT.

CONNECTION LIMIT { limit | UNLIMITED }

The maximum number of database connections users are permitted to have open concurrently.
The limit is not enforced for superusers. Use the UNLIMITED keyword to permit the maximum
number of concurrent connections. A limit on the number of connections for each user might
also apply. For more information, see CREATE USER. The default is UNLIMITED. To view current
connections, query the STV_SESSIONS system view.

Note

If both user and database connection limits apply, an unused connection slot must be
available that is within both limits when a user attempts to connect.

COLLATE { CASE_SENSITIVE | CASE_INSENSITIVE }

A clause that specifies whether string search or comparison is case-sensitive or case-insensitive.

You can change the case sensitivity of the current database which is empty.

You must have the privilege to the current database to change case sensitivity. Superusers
or database owners with the CREATE DATABASE privilege can also change database case
sensitivity.

ISOLATION LEVEL { SERIALIZABLE | SNAPSHOT }

A clause that specifies the isolation level used when queries run against a database.

• SERIALIZABLE isolation – provides full serializability for concurrent transactions. For more
information, see Serializable isolation.

ALTER DATABASE 1026

Amazon Redshift Database Developer Guide

• SNAPSHOT isolation – provides an isolation level with protection against update and delete
conflicts.

For more information about isolation levels, see CREATE DATABASE.

Consider the following items when altering the isolation level of a database:

• You must have the superuser or CREATE DATABASE privilege to the current database to
change the database isolation level.

• You can't alter the isolation level of the dev database.

• You can't alter the isolation level within a transaction block.

• The alter isolation level command fails if other users are connected to the database.

• The alter isolation level command can alter the isolation level settings of the current session.

INTEGRATION REFRESH {{ ALL | INERROR } TABLES [IN SCHEMA schema [, ...]] | TABLE schema.table
[, ...]}

A clause that specifies whether Amazon Redshift will refresh all tables or tables with errors in
the specified schema or table. The refresh will trigger the tables in the specified schema or table
to be fully replicated from the source database.

For more information, see Working with zero-ETL integrations in the Amazon
Redshift Management Guide. For more information about integration states, see
SVV_INTEGRATION_TABLE_STATE and SVV_INTEGRATION.

Usage notes

ALTER DATABASE commands apply to subsequent sessions not current sessions. You must
reconnect to the altered database to see the effect of the change.

Examples

The following example renames a database named TICKIT_SANDBOX to TICKIT_TEST:

alter database tickit_sandbox rename to tickit_test;

The following example changes the owner of the TICKIT database (the current database) to
DWUSER:

alter database tickit owner to dwuser;

ALTER DATABASE 1027

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.html

Amazon Redshift Database Developer Guide

The following example changes the database case sensitivity of the sampledb database:

ALTER DATABASE sampledb COLLATE CASE_INSENSITIVE;

The following example alters a database named sampledb with SNAPSHOT isolation level.

ALTER DATABASE sampledb ISOLATION LEVEL SNAPSHOT;

The following example refreshes the tables sample_table1 and sample_table2 in the database
sample_integration_db in your zero-ETL integration.

ALTER DATABASE sample_integration_db INTEGRATION REFRESH TABLES sample_table1,
 sample_table2;

The following example refreshes all synced and failed tables within your zero-ETL integration.

ALTER DATABASE sample_integration_db INTEGRATION REFRESH ALL tables;

The following example refresh all tables that are in the ErrorState in the schema
sample_schema.

ALTER DATABASE sample_integration_db INTEGRATION REFRESH INERROR TABLES in SCHEMA
 sample_schema;

ALTER DATASHARE

Changes the definition of a datashare. You can add objects or remove objects using ALTER
DATASHARE. You can only change a datashare in the current database. Add or remove objects from
the associated database to a datashare. The owner of the datashare with the required permissions
on the datashare objects to be added or removed can alter the datashare.

Required privileges

Following are required privileges for ALTER DATASHARE:

• Superuser.

• User with the ALTER DATASHARE privilege.

ALTER DATASHARE 1028

Amazon Redshift Database Developer Guide

• Users who have the ALTER or ALL privilege on the datashare.

• To add specific objects to a datashare, users must have the privilege on the objects. For this case,
users should be the owners of objects or have SELECT, USAGE, or ALL privileges on the objects.

Syntax

The following syntax illustrates how to add or remove objects to the datashare.

ALTER DATASHARE datashare_name { ADD | REMOVE } {
TABLE schema.table [, ...]
| SCHEMA schema [, ...]
| FUNCTION schema.sql_udf (argtype,...) [, ...]
| ALL TABLES IN SCHEMA schema [, ...]
| ALL FUNCTIONS IN SCHEMA schema [, ...] }

The following syntax illustrates how to configure the properties of the datashare.

ALTER DATASHARE datashare_name {
[SET PUBLICACCESSIBLE [=] TRUE | FALSE]
[SET INCLUDENEW [=] TRUE | FALSE FOR SCHEMA schema] }

Parameters

datashare_name

The name of the datashare to be altered.

ADD | REMOVE

A clause that specifies whether to add objects to or remove objects from the datashare.

TABLE schema.table [, ...]

The name of the table or view in the specified schema to add to the datashare.

SCHEMA schema [, ...]

The name of the schema to add to the datashare.

FUNCTION schema.sql_udf (argtype,...) [, ...]

The name of the user-defined SQL function with argument types to add to the datashare.

ALTER DATASHARE 1029

Amazon Redshift Database Developer Guide

ALL TABLES IN SCHEMA schema [, ...]

A clause that specifies whether to add all tables and views in the specified schema to the
datashare.

ALL FUNCTIONS IN SCHEMA schema [, ...] }

A clause that specifies adding all functions in the specified schema to the datashare.

[SET PUBLICACCESSIBLE [=] TRUE | FALSE]

A clause that specifies whether a datashare can be shared to clusters that are publicly
accessible.

[SET INCLUDENEW [=] TRUE | FALSE FOR SCHEMA schema]

A clause that specifies whether to add any future tables, views, or SQL user-defined functions
(UDFs) created in the specified schema to the datashare. Current tables, views, or SQL UDFs in
the specified schema aren't added to the datashare. Only superusers can change this property
for each datashare-schema pair. By default, the INCLUDENEW clause is false.

ALTER DATASHARE usage notes

• The following users can alter a datashare:

• A superuser

• The owner of the datashare

• Users that have ALTER or ALL privilege on the datashare

• To add specific objects to a datashare, users must have the correct privileges on the objects.
Users should be the owners of objects or have SELECT, USAGE, or ALL privileges on the objects.

• You can share schemas, tables, regular views, late-binding views, materialized views, and SQL
user-defined functions (UDFs). Add a schema to a datashare first before adding objects in the
schema.

When you add a schema, Amazon Redshift doesn't add all the objects under it. You must add
them explicitly.

• We recommend that you create AWS Data Exchange datashares with the publicly accessible
setting turned on.

• In general, we recommend that you don't alter an AWS Data Exchange datashare to turn off
public accessibility using the ALTER DATASHARE statement. If you do, the AWS accounts that

ALTER DATASHARE 1030

Amazon Redshift Database Developer Guide

have access to the datashare lose access if their clusters are publicly accessible. Performing this
type of alteration can breach data product terms in AWS Data Exchange. For an exception to this
recommendation, see following.

The following example shows an error when an AWS Data Exchange datashare is created with
the setting turned off.

ALTER DATASHARE salesshare SET PUBLICACCESSIBLE FALSE;
ERROR: Alter of ADX-managed datashare salesshare requires session variable
 datashare_break_glass_session_var to be set to value 'c670ba4db22f4b'

To allow altering an AWS Data Exchange datashare to turn off the publicly accessible setting, set
the following variable and run the ALTER DATASHARE statement again.

SET datashare_break_glass_session_var to 'c670ba4db22f4b';

ALTER DATASHARE salesshare SET PUBLICACCESSIBLE FALSE;

In this case, Amazon Redshift generates a random one-time value to set the session variable to
allow ALTER DATASHARE SET PUBLICACCESSIBLE FALSE for an AWS Data Exchange datashare.

Examples

The following example adds the public schema to the datashare salesshare.

ALTER DATASHARE salesshare ADD SCHEMA public;

The following example adds the public.tickit_sales_redshift table to the datashare
salesshare.

ALTER DATASHARE salesshare ADD TABLE public.tickit_sales_redshift;

The following example adds all tables to the datashare salesshare.

ALTER DATASHARE salesshare ADD ALL TABLES IN SCHEMA PUBLIC;

The following example removes the public.tickit_sales_redshift table from the datashare
salesshare.

ALTER DATASHARE 1031

Amazon Redshift Database Developer Guide

ALTER DATASHARE salesshare REMOVE TABLE public.tickit_sales_redshift;

ALTER DEFAULT PRIVILEGES

Defines the default set of access permissions to be applied to objects that are created in the future
by the specified user. By default, users can change only their own default access permissions. Only
a superuser can specify default permissions for other users.

You can apply default privileges to roles, users, or user groups. You can set default permissions
globally for all objects created in the current database, or for objects created only in the specified
schemas.

Default permissions apply only to new objects. Running ALTER DEFAULT PRIVILEGES doesn’t
change permissions on existing objects. To grant permissions on all current and future objects
created by any user within a database or schema, see Scoped permissions.

To view information about the default privileges for database users, query the PG_DEFAULT_ACL
system catalog table.

For more information about privileges, see GRANT.

Required privileges

Following are required privileges for ALTER DEFAULT PRIVILEGES:

• Superuser

• Users with the ALTER DEFAULT PRIVILEGES privilege

• Users changing their own default access privileges

• Users setting privileges for schemas that they have access privileges to

Syntax

ALTER DEFAULT PRIVILEGES
 [FOR USER target_user [, ...]]
 [IN SCHEMA schema_name [, ...]]
 grant_or_revoke_clause

where grant_or_revoke_clause is one of:

ALTER DEFAULT PRIVILEGES 1032

https://docs.aws.amazon.com/redshift/latest/dg/t_scoped-permissions.html

Amazon Redshift Database Developer Guide

GRANT { { SELECT | INSERT | UPDATE | DELETE | DROP | REFERENCES | TRUNCATE } [,...] |
 ALL [PRIVILEGES] }
 ON TABLES
 TO { user_name [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTIONS
 TO { user_name [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURES
 TO { user_name [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

REVOKE [GRANT OPTION FOR] { { SELECT | INSERT | UPDATE | DELETE | REFERENCES |
 TRUNCATE } [,...] | ALL [PRIVILEGES] }
 ON TABLES
 FROM user_name [, ...] [RESTRICT]

REVOKE { { SELECT | INSERT | UPDATE | DELETE | REFERENCES | TRUNCATE } [,...] | ALL
 [PRIVILEGES] }
 ON TABLES
 FROM { ROLE role_name | GROUP group_name | PUBLIC } [, ...] [RESTRICT]

REVOKE [GRANT OPTION FOR] { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTIONS
 FROM user_name [, ...] [RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTIONS
 FROM { ROLE role_name | GROUP group_name | PUBLIC } [, ...] [RESTRICT]

REVOKE [GRANT OPTION FOR] { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURES
 FROM user_name [, ...] [RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURES
 FROM { ROLE role_name | GROUP group_name | PUBLIC } [, ...] [RESTRICT]

ALTER DEFAULT PRIVILEGES 1033

Amazon Redshift Database Developer Guide

Parameters

FOR USER target_user

Optional. The name of the user for which default privileges are defined. Only a superuser can
specify default privileges for other users. The default value is the current user.

IN SCHEMA schema_name

Optional. If an IN SCHEMA clause appears, the specified default privileges are applied to new
objects created in the specified schema_name. In this case, the user or user group that is the
target of ALTER DEFAULT PRIVILEGES must have CREATE privilege for the specified schema.
Default privileges that are specific to a schema are added to existing global default privileges.
By default, default privileges are applied globally to the entire database.

GRANT

The set of privileges to grant to the specified users or groups for all new tables and views,
functions, or stored procedures created by the specified user. You can set the same privileges
and options with the GRANT clause that you can with the GRANT command.

WITH GRANT OPTION

A clause that indicates that the user receiving the privileges can in turn grant the same
privileges to others. You can't grant WITH GRANT OPTION to a group or to PUBLIC.

TO user_name | ROLE role_name | GROUP group_name

The name of the user, role, or user group to which the specified default privileges are applied.

REVOKE

The set of privileges to revoke from the specified users or groups for all new tables, functions,
or stored procedures created by the specified user. You can set the same privileges and options
with the REVOKE clause that you can with the REVOKE command.

GRANT OPTION FOR

A clause that revokes only the option to grant a specified privilege to other users and doesn't
revoke the privilege itself. You can't revoke GRANT OPTION from a group or from PUBLIC.

FROM user_name | ROLE role_name | GROUP group_name

The name of the user, role, or user group from which the specified privileges are revoked by
default.

ALTER DEFAULT PRIVILEGES 1034

Amazon Redshift Database Developer Guide

RESTRICT

The RESTRICT option revokes only those privileges that the user directly granted. This is the
default.

Examples

Suppose that you want to allow any user in the user group report_readers to view all tables and
views created by the user report_admin. In this case, run the following command as a superuser.

alter default privileges for user report_admin grant select on tables to group
 report_readers;

In the following example, the first command grants SELECT privileges on all new tables and views
you create.

alter default privileges grant select on tables to public;

The following example grants INSERT privilege to the sales_admin user group for all new tables
and views that you create in the sales schema.

alter default privileges in schema sales grant insert on tables to group sales_admin;

The following example reverses the ALTER DEFAULT PRIVILEGES command in the preceding
example.

alter default privileges in schema sales revoke insert on tables from group
 sales_admin;

By default, the PUBLIC user group has execute permission for all new user-defined functions. To
revoke public execute permissions for your new functions and then grant execute permission only
to the dev_test user group, run the following commands.

alter default privileges revoke execute on functions from public;
alter default privileges grant execute on functions to group dev_test;

ALTER DEFAULT PRIVILEGES 1035

Amazon Redshift Database Developer Guide

ALTER EXTERNAL VIEW (preview)

This is prerelease documentation views in Data Catalog for Amazon Redshift, which is
in preview release. The documentation and the feature are both subject to change. We
recommend that you use this feature only with test clusters, and not in production environme
nts. For preview terms and conditions, see Beta and Previews in AWS Service Terms.

You can create an Amazon Redshift cluster in Preview to test new features of Amazon Redshift.
You can't use those features in production or move your Preview cluster to a production cluster or
a cluster on another track. For preview terms and conditions, see Beta and Previews in AWS Service
Terms.

To create a cluster in Preview

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Provisioned clusters dashboard, and choose Clusters. The
clusters for your account in the current AWS Region are listed. A subset of properties of each
cluster is displayed in columns in the list.

3. A banner displays on the Clusters list page that introduces preview. Choose the button Create
preview cluster to open the create cluster page.

4. Enter properties for your cluster. Choose the Preview track that contains the features you
want to test. We recommend entering a name for the cluster that indicates that it is on a
preview track. Choose options for your cluster, including options labeled as -preview, for the
features you want to test. For general information about creating clusters, see Creating a
cluster in the Amazon Redshift Management Guide.

5. Choose Create cluster to create a cluster in preview.

Note

The preview_2023 track is the most recent preview track available. This track
supports creating clusters with RA3 node types only. Node type DC2 and any older
node type is not supported.

6. When your preview cluster is available, use your SQL client to load and query data.

ALTER EXTERNAL VIEW (preview) 1036

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster

Amazon Redshift Database Developer Guide

The Data Catalog views preview feature is available only in the following Regions.

• US East (Ohio) (us-east-2)

• US East (N. Virginia) (us-east-1)

• US West (N. California) (us-west-1)

• Asia Pacific (Tokyo) (ap-northeast-1)

• Europe (Ireland) (eu-west-1)

• Europe (Stockholm) (eu-north-1)

You can also create a preview workgroup to test Data Catalog views. You can't use those features in
production or move your workgroup to another workgroup. For preview terms and conditions, see
Beta and Previews in AWS Service Terms. For instructions on how to create a preview workgroup,
see Creating a preview workgroup.

Use the ALTER EXTERNAL VIEW command to update your external view. Depending on which
parameters you use, other SQL engines such as Amazon Athena and Amazon EMR Spark that can
also reference this view might be affected. For more information about Data Catalog views, see
Creating Data Catalog views (preview).

Syntax

ALTER EXTERNAL VIEW schema_name.view_name
{catalog_name.schema_name.view_name | awsdatacatalog.dbname.view_name |
 external_schema_name.view_name}
[FORCE] { AS (query_definition) | REMOVE DEFINITION }

Parameters

schema_name.view_name

The schema that’s attached to your AWS Glue database, followed by the name of the view.

catalog_name.schema_name.view_name | awsdatacatalog.dbname.view_name |
external_schema_name.view_name

The notation of the schema to use when altering the view. You can specify to use the AWS Glue
Data Catalog, a Glue database that you created, or an external schema that you created. See
CREATE DATABASE and CREATE EXTERNAL SCHEMA for more information.

ALTER EXTERNAL VIEW (preview) 1037

https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html
https://docs.aws.amazon.com/redshift/latest/dg/data-catalog-views-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATABASE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_SCHEMA.html

Amazon Redshift Database Developer Guide

FORCE

Whether AWS Lake Formation should update the definition of the view even if the objects
referenced in the table are inconsistent with other SQL engines. If Lake Formation updates the
view, the view is considered stale for the other SQL engines until those engines are updated as
well.

AS query_definition

The definition of the SQL query that Amazon Redshift runs to alter the view.

REMOVE DEFINITION

Whether to drop and recreate the views. Views must be dropped and recreated to mark them as
PROTECTED.

Examples

The following example alters a Data Catalog view named sample_schema.glue_data_catalog_view.

ALTER EXTERNAL VIEW sample_schema.glue_data_catalog_view
FORCE
REMOVE DEFINITION

ALTER FUNCTION

Renames a function or changes the owner. Both the function name and data types are required.
Only the owner or a superuser can rename a function. Only a superuser can change the owner of a
function.

Syntax

ALTER FUNCTION function_name ({ [py_arg_name py_arg_data_type | sql_arg_data_type }
 [, ...]])
 RENAME TO new_name

ALTER FUNCTION function_name ({ [py_arg_name py_arg_data_type | sql_arg_data_type }
 [, ...]])
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

ALTER FUNCTION 1038

Amazon Redshift Database Developer Guide

Parameters

function_name

The name of the function to be altered. Either specify the name of the function in the current
search path, or use the format schema_name.function_name to use a specific schema.

py_arg_name py_arg_data_type | sql_arg_data_type

Optional. A list of input argument names and data types for the Python user-defined function,
or a list of input argument data types for the SQL user-defined function.

new_name

A new name for the user-defined function.

new_owner | CURRENT_USER | SESSION_USER

A new owner for the user-defined function.

Examples

The following example changes the name of a function from first_quarter_revenue to
quarterly_revenue.

ALTER FUNCTION first_quarter_revenue(bigint, numeric, int)
 RENAME TO quarterly_revenue;

The following example changes the owner of the quarterly_revenue function to etl_user.

ALTER FUNCTION quarterly_revenue(bigint, numeric) OWNER TO etl_user;

ALTER GROUP

Changes a user group. Use this command to add users to the group, drop users from the group, or
rename the group.

Syntax

ALTER GROUP group_name
{
ADD USER username [, ...] |

ALTER GROUP 1039

Amazon Redshift Database Developer Guide

DROP USER username [, ...] |
RENAME TO new_name
}

Parameters

group_name

Name of the user group to modify.

ADD

Adds a user to a user group.

DROP

Removes a user from a user group.

username

Name of the user to add to the group or drop from the group.

RENAME TO

Renames the user group. Group names beginning with two underscores are reserved for
Amazon Redshift internal use. For more information about valid names, see Names and
identifiers.

new_name

New name of the user group.

Examples

The following example adds a user named DWUSER to the ADMIN_GROUP group.

ALTER GROUP admin_group
ADD USER dwuser;

The following example renames the group ADMIN_GROUP to ADMINISTRATORS.

ALTER GROUP admin_group
RENAME TO administrators;

The following example adds two users to the group ADMIN_GROUP.

ALTER GROUP 1040

Amazon Redshift Database Developer Guide

ALTER GROUP admin_group
ADD USER u1, u2;

The following example drops two users from the group ADMIN_GROUP.

ALTER GROUP admin_group
DROP USER u1, u2;

ALTER IDENTITY PROVIDER

Alters an identity provider to assign new parameters and values. When you run this command, all
previously set parameter values are deleted before the new values are assigned. Only a superuser
can alter an identity provider.

Syntax

ALTER IDENTITY PROVIDER identity_provider_name
[PARAMETERS parameter_string]
[NAMESPACE namespace]
[IAM_ROLE iam_role]
[DISABLE | ENABLE]

Parameters

identity_provider_name

Name of the new identity provider. For more information about valid names, see Names and
identifiers.

parameter_string

A string containing a properly formatted JSON object that contains parameters and values
required for the specific identity provider.

namespace

The organization namespace.

iam_role

The IAM role that provides permissions for the connection to IAM Identity Center. This
parameter is applicable only when the identity-provider type is AWSIDC.

ALTER IDENTITY PROVIDER 1041

Amazon Redshift Database Developer Guide

DISABLE or ENABLE

Turns an identity provider on or off. The default is ENABLE

Examples

The following example alters an identity provider named oauth_standard. It applies specifically to
when Microsoft Azure AD is the identity provider.

ALTER IDENTITY PROVIDER oauth_standard
PARAMETERS '{"issuer":"https://sts.windows.net/2sdfdsf-d475-420d-b5ac-667adad7c702/",
"client_id":"87f4aa26-78b7-410e-bf29-57b39929ef9a",
"client_secret":"BUAH~ewrqewrqwerUUY^%tHe1oNZShoiU7",
"audience":["https://analysis.windows.net/powerbi/connector/AmazonRedshift"]
}'

The following sample shows how to set the identity-provider namespace. This can apply to
Microsoft Azure AD, if it follows a statement like the previous sample, or to another identity
provider. It can also apply to a case where you connect an existing Amazon Redshift provisioned
cluster or Amazon Redshift Serverless workgroup to IAM Identity Center, if you have a connection
set up through a managed application.

ALTER IDENTITY PROVIDER "my-redshift-idc-application"
NAMESPACE 'MYCO';

The following sample sets the IAM role and works in the use case for configuring Redshift
integration with IAM Identity Center.

ALTER IDENTITY PROVIDER "my-redshift-idc-application"
IAM_ROLE 'arn:aws:iam::123456789012:role/myadministratorrole';

For more information about setting up a connection to IAM Identity Center from Redshift, see
Connect Redshift with IAM Identity Center to give users a single sign-on experience.

Disabling an identity provider

The following sample statement shows how to disable an identity provider. When it's disabled,
federated users from the identity provider can't login to the cluster until it's enabled again.

ALTER IDENTITY PROVIDER 1042

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-idp-connect.html

Amazon Redshift Database Developer Guide

ALTER IDENTITY PROVIDER "redshift-idc-app" DISABLE;

ALTER MASKING POLICY

Alters an existing dynamic data masking policy. For more information on dynamic data masking,
see Dynamic data masking.

Superusers and users or roles that have the sys:secadmin role can alter a masking policy.

Syntax

ALTER MASKING POLICY policy_name
 USING (masking_expression);

Parameters

policy_name

The name of the masking policy. This must be the name of a masking policy that already exists
in the database.

masking_expression

The SQL expression used to transform the target columns. It can be written using data
manipulation functions such as String manipulation functions, or in conjunction with user-
defined functions written in SQL, Python, or with AWS Lambda.

The expression must match the original expression's input columns and data types. For
example, if the original masking policy's input columns were sample_1 FLOAT and sample_2
VARCHAR(10), you wouldn't be able to alter the masking policy to take a third column, or make
the policy take a FLOAT and a BOOLEAN. If you use a constant as your masking expression, you
must explicitly cast it to a type that matches the input type.

You must have the USAGE permission on any user-defined functions that you use in the
masking expression.

ALTER MATERIALIZED VIEW

Enables automatic refreshing of a materialized view.

ALTER MASKING POLICY 1043

Amazon Redshift Database Developer Guide

Syntax

ALTER MATERIALIZED VIEW mv_name
[AUTO REFRESH { YES | NO }]
[ROW LEVEL SECURITY { ON | OFF } [CONJUNCTION TYPE { AND | OR }] [FOR DATASHARES]];

Parameters

mv_name

The name of the materialized view to alter.

AUTO REFRESH { YES | NO }

A clause that turns on or off automatic refreshing of a materialized view. For more information
about automatic refresh of materialized views, see Refreshing a materialized view.

ROW LEVEL SECURITY { ON | OFF } [CONJUNCTION TYPE { AND | OR }] [FOR DATASHARES]

A clause that turns on or off row-level security for a relation.

When row-level security is turned on for a relation, you can only read the rows that the row-
level security policy permits you to access. When there isn't any policy granting you access to
the relation, you can't see any rows from the relation. Only superusers and users or roles that
have the sys:secadmin role can set the ROW LEVEL SECURITY clause. For more information,
see Row-level security.

• [CONJUNCTION TYPE { AND | OR }]

A clause that allows you to choose the conjunction type of row-level security policy for
a relation. When multiple row-level security policies are attached to a relation, you can
combine the policies with the AND or OR clause. By default, Amazon Redshift combines RLS
policies with the AND clause. Superusers, users, or roles that have the sys:secadmin role
can use this clause to define the conjunction type of row-level security policy for a relation.
For more information, see Combining multiple policies per user.

• FOR DATASHARES

A clause that determines whether an RLS-protected relation can be accessed over datashares.
By default, an RLS-protected relation can’t be accessed over a datashare. An ALTER
MATERIALIZED VIEW ROW LEVEL SECURITY command run with this clause only affects the
relation’s datashare accessibility property. The ROW LEVEL SECURITY property isn’t changed.

ALTER MATERIALIZED VIEW 1044

Amazon Redshift Database Developer Guide

If you make an RLS-protected relation accessible over datashares, the relation doesn’t have
row-level security in the consumer-side datashared database. The relation retains its RLS
property on the producer side.

Examples

The following example enables the tickets_mv materialized view to be automatically refreshed.

ALTER MATERIALIZED VIEW tickets_mv AUTO REFRESH YES

DISTSTYLE and SORTKEY examples

The examples in this topic show you how to perform DISTSTYLE and SORTKEY changes, using
ALTER MATERIALIZED VIEW.

The following example queries show how to alter a DISTSTYLE KEY DISTKEY column using a
sample base table:

CREATE TABLE base_inventory(
inv_date_sk int4 not null,
inv_item_sk int4 not null,
inv_warehouse_sk int4 not null,
inv_quantity_on_hand int4
);

INSERT INTO base_inventory VALUES(1,1,1,1);

CREATE MATERIALIZED VIEW inventory DISTSTYLE EVEN
as SELECT * FROM base_inventory;
SELECT "table", DISTSTYLE FROM svv_table_info WHERE "table" = 'inventory';

ALTER MATERIALIZED VIEW inventory ALTER DISTSTYLE KEY DISTKEY inv_warehouse_sk;
SELECT "table", DISTSTYLE FROM svv_table_info where "table" = 'inventory';

ALTER MATERIALIZED VIEW inventory ALTER DISTKEY inv_item_sk;
SELECT "table", diststyle from svv_table_info where "table" = 'inventory';

Alter a materialized view to DISTSTYLE ALL:

CREATE TABLE base_inventory(

ALTER MATERIALIZED VIEW 1045

Amazon Redshift Database Developer Guide

inv_date_sk int4 not null,
inv_item_sk int4 not null,
inv_warehouse_sk int4 not null,
inv_quantity_on_hand int4
);

INSERT INTO base_inventory values(1,1,1,1);

CREATE MATERIALIZED VIEW inventory DISTSTYLE EVEN
as SELECT * FROM base_inventory;

SELECT "table", DISTSTYLE FROM svv_table_info WHERE "table" = 'inventory';

The following commands show ALTER MATERIALIZED VIEW SORTKEY examples, using a sample
base table:

CREATE MATERIALIZED VIEW base_inventory (c0 int, c1 int);

CREATE MATERIALIZED VIEW inventory
interleaved sortkey(c0, c1)
as SELECT * FROM base_inventory;

SELECT "table", sortkey1 FROM svv_table_info WHERE "table" = 'inventory';

ALTER MATERIALIZED VIEW t1 alter sortkey(c0, c1);
SELECT "table", diststyle, sortkey_num FROM svv_table_info WHERE "table" = 'inventory';

ALTER MATERIALIZED VIEW t1 alter sortkey none;
SELECT "table", diststyle, sortkey_num FROM svv_table_info WHERE "table" = 'inventory';

ALTER MATERIALIZED VIEW t1 alter sortkey(c0);
SELECT "table", diststyle, sortkey_num FROM svv_table_info WHERE "table" = 'inventory';

ALTER RLS POLICY

Alter an existing row-level security policy on a table.

Superusers and users or roles that have the sys:secadmin role can alter a policy.

Syntax

ALTER RLS POLICY policy_name

ALTER RLS POLICY 1046

Amazon Redshift Database Developer Guide

USING (using_predicate_exp);

Parameters

policy_name

The name of the policy.

USING (using_predicate_exp)

Specifies a filter that is applied to the WHERE clause of the query. Amazon Redshift applies a
policy predicate before the query-level user predicates. For example, current_user = ‘joe’
and price > 10 limits Joe to see only records with the price greater than $10.

The expression has access to the variables declared in the WITH clause of the CREATE RLS
POLICY statement that was used to create the policy with name policy_name.

Examples

The following example alters a RLS policy.

-- First create an RLS policy that limits access to rows where catgroup is 'concerts'.
CREATE RLS POLICY policy_concerts
WITH (catgroup VARCHAR(10))
USING (catgroup = 'concerts');

-- Then, alter the RLS policy to only show rows where catgroup is 'piano concerts'.
ALTER RLS POLICY policy_concerts
USING (catgroup = 'piano concerts');

ALTER ROLE

Renames a role or changes the owner. For a list of Amazon Redshift system-defined roles, see the
section called “Amazon Redshift system-defined roles”.

Required permissions

Following are the required permissions for ALTER ROLE:

• Superuser

• Users with the ALTER ROLE permissions

ALTER ROLE 1047

Amazon Redshift Database Developer Guide

Syntax

ALTER ROLE role [WITH]
 { { RENAME TO role } | { OWNER TO user_name } }[, ...]
 [EXTERNALID TO external_id]

Parameters

role

The name of the role to be altered.

RENAME TO

A new name for the role.

OWNER TO user_name

A new owner for the role.

EXTERNALID TO external_id

A new external ID for the role, which is associated with an identity provider. For more
information, see Native identity provider (IdP) federation for Amazon Redshift.

Examples

The following example changes the name of a role from sample_role1 to sample_role2.

ALTER ROLE sample_role1 WITH RENAME TO sample_role2;

The following example changes the owner of the role.

ALTER ROLE sample_role1 WITH OWNER TO user1

The syntax of the ALTER ROLE is similar to ALTER PROCEDURE following.

ALTER PROCEDURE first_quarter_revenue(bigint, numeric) RENAME TO quarterly_revenue;

The following example changes the owner of a procedure to etl_user.

ALTER PROCEDURE quarterly_revenue(bigint, numeric) OWNER TO etl_user;

ALTER ROLE 1048

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-native-idp.html

Amazon Redshift Database Developer Guide

The following example updates a role sample_role1 with a new external ID that is associated
with an identity provider.

ALTER ROLE sample_role1 EXTERNALID TO "XYZ456";

ALTER PROCEDURE

Renames a procedure or changes the owner. Both the procedure name and data types, or signature,
are required. Only the owner or a superuser can rename a procedure. Only a superuser can change
the owner of a procedure.

Syntax

ALTER PROCEDURE sp_name [([[argname] [argmode] argtype [, ...]])]
 RENAME TO new_name

ALTER PROCEDURE sp_name [([[argname] [argmode] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

Parameters

sp_name

The name of the procedure to be altered. Either specify just the name of the procedure in the
current search path, or use the format schema_name.sp_procedure_name to use a specific
schema.

[argname] [argmode] argtype

A list of argument names, argument modes, and data types. Only the input data types are
required, which are used to identify the stored procedure. Alternatively, you can provide the full
signature used to create the procedure including the input and output parameters with their
modes.

new_name

A new name for the stored procedure.

new_owner | CURRENT_USER | SESSION_USER

A new owner for the stored procedure.

ALTER PROCEDURE 1049

Amazon Redshift Database Developer Guide

Examples

The following example changes the name of a procedure from first_quarter_revenue to
quarterly_revenue.

ALTER PROCEDURE first_quarter_revenue(volume INOUT bigint, at_price IN numeric,
 result OUT int) RENAME TO quarterly_revenue;

This example is equivalent to the following.

ALTER PROCEDURE first_quarter_revenue(bigint, numeric) RENAME TO quarterly_revenue;

The following example changes the owner of a procedure to etl_user.

ALTER PROCEDURE quarterly_revenue(bigint, numeric) OWNER TO etl_user;

ALTER SCHEMA

Changes the definition of an existing schema. Use this command to rename a schema or change
the owner of a schema. For example, rename an existing schema to preserve a backup copy of
that schema when you plan to create a new version of that schema. For more information about
schemas, see CREATE SCHEMA.

To view the configured schema quotas, see SVV_SCHEMA_QUOTA_STATE.

To view the records where schema quotas were exceeded, see STL_SCHEMA_QUOTA_VIOLATIONS.

Required privileges

Following are required privileges for ALTER SCHEMA:

• Superuser

• User with the ALTER SCHEMA privilege

• Schema owner

When you change a schema name, note that objects using the old name, such as stored procedures
or materialized views, must be updated to use the new name.

ALTER SCHEMA 1050

Amazon Redshift Database Developer Guide

Syntax

ALTER SCHEMA schema_name
{
RENAME TO new_name |
OWNER TO new_owner |
QUOTA { quota [MB | GB | TB] | UNLIMITED }
}

Parameters

schema_name

The name of the database schema to be altered.

RENAME TO

A clause that renames the schema.

new_name

The new name of the schema. For more information about valid names, see Names and
identifiers.

OWNER TO

A clause that changes the owner of the schema.

new_owner

The new owner of the schema.

QUOTA

The maximum amount of disk space that the specified schema can use. This space is the
collective size of all tables under the specified schema. Amazon Redshift converts the selected
value to megabytes. Gigabytes is the default unit of measurement when you don't specify a
value.

For more information about configuring schema quotas, see CREATE SCHEMA.

Examples

The following example renames the SALES schema to US_SALES.

ALTER SCHEMA 1051

Amazon Redshift Database Developer Guide

alter schema sales
rename to us_sales;

The following example gives ownership of the US_SALES schema to the user DWUSER.

alter schema us_sales
owner to dwuser;

The following example changes the quota to 300 GB and removes the quota.

alter schema us_sales QUOTA 300 GB;
alter schema us_sales QUOTA UNLIMITED;

ALTER SYSTEM

Changes a system-level configuration option for the Amazon Redshift cluster or Redshift Serverless
workgroup.

Required privileges

One of the following user types can run the ALTER SYSTEM command:

• Superuser

• Admin user

Syntax

ALTER SYSTEM SET system-level-configuration = {true| t | on | false | f | off}

Parameters

system-level-configuration

A system-level configuration. Valid value: data_catalog_auto_mount and
metadata_security.

{true| t | on | false | f | off}

A value to activate or deactivate the system-level configuration. A true, t, or on indicates to
activate the configuration. A false, f, or off indicates to deactivate the configuration.

ALTER SYSTEM 1052

Amazon Redshift Database Developer Guide

Usage notes

For a provisioned cluster, changes to data_catalog_auto_mount take effect on the next reboot
of the cluster. For more information, see Rebooting a cluster in the Amazon Redshift Management
Guide.

For a serverliess workgroup, changes to data_catalog_auto_mount do not take effect
immediately.

Examples

The following example turns on automounting the AWS Glue Data Catalog.

ALTER SYSTEM SET data_catalog_auto_mount = true;

The following example turns on metadata security.

ALTER SYSTEM SET metadata_security = true;

Setting a default identity namespace

This example is specific to working with an identity provider. You can integrate Redshift with IAM
Identity Center and an identity provider to centralize identity management for Redshift and other
AWS services.

The following sample shows how to set the default identity namespace for the system. Doing this
subsequently makes it more simple to run GRANT and CREATE statements, because you don't have
to include the namespace as a prefix for each identity.

ALTER SYSTEM SET default_identity_namespace = 'MYCO';

After running the command, you can run statements like the following:

GRANT SELECT ON TABLE mytable TO alice;

GRANT UPDATE ON TABLE mytable TO salesrole;

CREATE USER bob password 'md50c983d1a624280812631c5389e60d48c';

The effect of setting the default identity namespace is that each identity doesn't require it as
a prefix. In this example, alice is replaced with MYCO:alice. This happens with any identity

ALTER SYSTEM 1053

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#reboot-cluster

Amazon Redshift Database Developer Guide

included. For more information about using an identity provider with Redshift, see Connect
Redshift with IAM Identity Center to give users a single sign-on experience.

For more information about settings that pertain to Redshift configuration with IAM Identity
Center, see SET and ALTER IDENTITY PROVIDER.

ALTER TABLE

This command changes the definition of a Amazon Redshift table or Amazon Redshift Spectrum
external table. This command updates the values and properties set by CREATE TABLE or CREATE
EXTERNAL TABLE.

You can't run ALTER TABLE on an external table within a transaction block (BEGIN ... END). For
more information about transactions, see Serializable isolation.

ALTER TABLE locks the table for read and write operations until the transaction enclosing the
ALTER TABLE operation completes, unless it's specifically stated in the documentation that you can
query data or perform other operations on the table while it is altered.

Required privileges

The user that alters a table needs the proper privilege for the command to succeed. Depending on
the ALTER TABLE command, one of the following privileges is required.

• Superuser

• Users with the ALTER TABLE privilege

• Table owner with the USAGE privilege on the schema

Syntax

ALTER TABLE table_name
{
ADD table_constraint
| DROP CONSTRAINT constraint_name [RESTRICT | CASCADE]
| OWNER TO new_owner
| RENAME TO new_name
| RENAME COLUMN column_name TO new_name
| ALTER COLUMN column_name TYPE updated_varchar_data_type_size
| ALTER COLUMN column_name ENCODE new_encode_type
| ALTER COLUMN column_name ENCODE encode_type,

ALTER TABLE 1054

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-idp-connect.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-idp-connect.html

Amazon Redshift Database Developer Guide

| ALTER COLUMN column_name ENCODE encode_type,;
| ALTER DISTKEY column_name
| ALTER DISTSTYLE ALL
| ALTER DISTSTYLE EVEN
| ALTER DISTSTYLE KEY DISTKEY column_name
| ALTER DISTSTYLE AUTO
| ALTER [COMPOUND] SORTKEY (column_name [,...])
| ALTER SORTKEY AUTO
| ALTER SORTKEY NONE
| ALTER ENCODE AUTO
| ADD [COLUMN] column_name column_type
 [DEFAULT default_expr]
 [ENCODE encoding]
 [NOT NULL | NULL]
 [COLLATE { CASE_SENSITIVE | CASE_INSENSITIVE }] |
| DROP [COLUMN] column_name [RESTRICT | CASCADE]
| ROW LEVEL SECURITY { ON | OFF } [CONJUNCTION TYPE { AND | OR }] [FOR DATASHARES]}

where table_constraint is:

[CONSTRAINT constraint_name]
{ UNIQUE (column_name [, ...])
| PRIMARY KEY (column_name [, ...])
| FOREIGN KEY (column_name [, ...])
 REFERENCES reftable [(refcolumn)]}

The following options apply only to external tables:

SET LOCATION { 's3://bucket/folder/' | 's3://bucket/manifest_file' }
| SET FILE FORMAT format |
| SET TABLE PROPERTIES ('property_name'='property_value')
| PARTITION (partition_column=partition_value [, ...])
 SET LOCATION { 's3://bucket/folder' |'s3://bucket/manifest_file' }
| ADD [IF NOT EXISTS]
 PARTITION (partition_column=partition_value [, ...]) LOCATION
 { 's3://bucket/folder' |'s3://bucket/manifest_file' }
 [, ...]
| DROP PARTITION (partition_column=partition_value [, ...])

To reduce the time to run the ALTER TABLE command, you can combine some clauses of the ALTER
TABLE command.

Amazon Redshift supports the following combinations of the ALTER TABLE clauses:

ALTER TABLE 1055

Amazon Redshift Database Developer Guide

ALTER TABLE tablename ALTER SORTKEY (column_list), ALTER DISTKEY column_Id;
ALTER TABLE tablename ALTER DISTKEY column_Id, ALTER SORTKEY (column_list);
ALTER TABLE tablename ALTER SORTKEY (column_list), ALTER DISTSTYLE ALL;
ALTER TABLE tablename ALTER DISTSTYLE ALL, ALTER SORTKEY (column_list);

Parameters

table_name

The name of the table to alter. Either specify just the name of the table, or use the format
schema_name.table_name to use a specific schema. External tables must be qualified by an
external schema name. You can also specify a view name if you're using the ALTER TABLE
statement to rename a view or change its owner. The maximum length for the table name is
127 bytes; longer names are truncated to 127 bytes. You can use UTF-8 multibyte characters
up to a maximum of four bytes. For more information about valid names, see Names and
identifiers.

ADD table_constraint

A clause that adds the specified constraint to the table. For descriptions of valid
table_constraint values, see CREATE TABLE.

Note

You can't add a primary-key constraint to a nullable column. If the column was
originally created with the NOT NULL constraint, you can add the primary-key
constraint.

DROP CONSTRAINT constraint_name

A clause that drops the named constraint from the table. To drop a constraint, specify the
constraint name, not the constraint type. To view table constraint names, run the following
query.

select constraint_name, constraint_type
from information_schema.table_constraints;

ALTER TABLE 1056

Amazon Redshift Database Developer Guide

RESTRICT

A clause that removes only the specified constraint. RESTRICT is an option for DROP
CONSTRAINT. RESTRICT can't be used with CASCADE.

CASCADE

A clause that removes the specified constraint and anything dependent on that constraint.
CASCADE is an option for DROP CONSTRAINT. CASCADE can't be used with RESTRICT.

OWNER TO new_owner

A clause that changes the owner of the table (or view) to the new_owner value.

RENAME TO new_name

A clause that renames a table (or view) to the value specified in new_name. The maximum table
name length is 127 bytes; longer names are truncated to 127 bytes.

You can't rename a permanent table to a name that begins with '#'. A table name beginning
with '#' indicates a temporary table.

You can't rename an external table.

ALTER COLUMN column_name TYPE updated_varchar_data_type_size

A clause that changes the size of a column defined as a VARCHAR data type. This clause only
supports altering the size of a VARCHAR data type. Consider the following limitations:

• You can't alter a column with compression encodings BYTEDICT, RUNLENGTH, TEXT255, or
TEXT32K.

• You can't decrease the size less than maximum size of existing data.

• You can't alter columns with default values.

• You can't alter columns with UNIQUE, PRIMARY KEY, or FOREIGN KEY.

• You can't alter columns within a transaction block (BEGIN ... END). For more information
about transactions, see Serializable isolation.

ALTER COLUMN column_name ENCODE new_encode_type

A clause that changes the compression encoding of a column. If you specify compression
encoding for a column, the table is no longer set to ENCODE AUTO. For information on
compression encoding, see Working with column compression.

ALTER TABLE 1057

Amazon Redshift Database Developer Guide

When you change compression encoding for a column, the table remains available to query.

Consider the following limitations:

• You can't alter a column to the same encoding as currently defined for the column.

• You can't alter the encoding for a column in a table with an interleaved sortkey.

ALTER COLUMN column_name ENCODE encode_type, ALTER COLUMN column_name ENCODE
encode_type,;

A clause that changes the compression encoding of multiple columns in a single command. For
information on compression encoding, see Working with column compression.

When you change compression encoding for a column, the table remains available to query.

Consider the following limitations:

• You can't alter a column to the same or different encoding type multiple times in a single
command.

• You can't alter a column to the same encoding as currently defined for the column.

• You can't alter the encoding for a column in a table with an interleaved sortkey.

ALTER DISTSTYLE ALL

A clause that changes the existing distribution style of a table to ALL. Consider the following:

• An ALTER DISTSTYLE, ALTER SORTKEY, and VACUUM can't run concurrently on the same
table.

• If VACUUM is currently running, then running ALTER DISTSTYLE ALL returns an error.

• If ALTER DISTSTYLE ALL is running, then a background vacuum doesn't start on a table.

• The ALTER DISTSTYLE ALL command is not supported for tables with interleaved sort keys
and temporary tables.

• If the distribution style was previously defined as AUTO, then the table is no longer a
candidate for automatic table optimization.

For more information about DISTSTYLE ALL, see CREATE TABLE.

ALTER DISTSTYLE EVEN

A clause that changes the existing distribution style of a table to EVEN. Consider the following:

• An ALTER DISTSYTLE, ALTER SORTKEY, and VACUUM can't run concurrently on the same
table.

ALTER TABLE 1058

Amazon Redshift Database Developer Guide

• If VACUUM is currently running, then running ALTER DISTSTYLE EVEN returns an error.

• If ALTER DISTSTYLE EVEN is running, then a background vacuum doesn't start on a table.

• The ALTER DISTSTYLE EVEN command is not supported for tables with interleaved sort keys
and temporary tables.

• If the distribution style was previously defined as AUTO, then the table is no longer a
candidate for automatic table optimization.

For more information about DISTSTYLE EVEN, see CREATE TABLE.

ALTER DISTKEY column_name or ALTER DISTSTYLE KEY DISTKEY column_name

A clause that changes the column used as the distribution key of a table. Consider the
following:

• VACUUM and ALTER DISTKEY can't run concurrently on the same table.

• If VACUUM is already running, then ALTER DISTKEY returns an error.

• If ALTER DISTKEY is running, then background vacuum doesn't start on a table.

• If ALTER DISTKEY is running, then foreground vacuum returns an error.

• You can only run one ALTER DISTKEY command on a table at a time.

• The ALTER DISTKEY command is not supported for tables with interleaved sort keys.

• If the distribution style was previously defined as AUTO, then the table is no longer a
candidate for automatic table optimization.

When specifying DISTSTYLE KEY, the data is distributed by the values in the DISTKEY column.
For more information about DISTSTYLE, see CREATE TABLE.

ALTER DISTSTYLE AUTO

A clause that changes the existing distribution style of a table to AUTO.

When you alter a distribution style to AUTO, the distribution style of the table is set to the
following:

• A small table with DISTSTYLE ALL is converted to AUTO(ALL).

• A small table with DISTSTYLE EVEN is converted to AUTO(ALL).

• A small table with DISTSTYLE KEY is converted to AUTO(ALL).

• A large table with DISTSTYLE ALL is converted to AUTO(EVEN).

• A large table with DISTSTYLE EVEN is converted to AUTO(EVEN).

ALTER TABLE 1059

Amazon Redshift Database Developer Guide

• A large table with DISTSTYLE KEY is converted to AUTO(KEY) and the DISTKEY is preserved.
In this case, Amazon Redshift makes no changes to the table.

If Amazon Redshift determines that a new distribution style or key will improve the
performance of queries, then Amazon Redshift might change the distribution style or key of
your table in the future. For example, Amazon Redshift might convert a table with a DISTSTYLE
of AUTO(KEY) to AUTO(EVEN), or vice versa. For more information about behavior when
distribution keys are altered, including data redistribution and locks, see Amazon Redshift
Advisor recommendations.

For more information about DISTSTYLE AUTO, see CREATE TABLE.

To view the distribution style of a table, query the SVV_TABLE_INFO system catalog
view. For more information, see SVV_TABLE_INFO. To view the Amazon Redshift Advisor
recommendations for tables, query the SVV_ALTER_TABLE_RECOMMENDATIONS system
catalog view. For more information, see SVV_ALTER_TABLE_RECOMMENDATIONS. To view the
actions taken by Amazon Redshift, query the SVL_AUTO_WORKER_ACTION system catalog
view. For more information, see SVL_AUTO_WORKER_ACTION.

ALTER [COMPOUND] SORTKEY (column_name [,...])

A clause that changes or adds the sort key used for a table.

When you alter a sort key, the compression encoding of columns in the new or original sort
key can change. If no encoding is explicitly defined for the table, then Amazon Redshift
automatically assigns compression encodings as follows:

• Columns that are defined as sort keys are assigned RAW compression.

• Columns that are defined as BOOLEAN, REAL, or DOUBLE PRECISION data types are assigned
RAW compression.

• Columns that are defined as SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIME, TIMETZ,
TIMESTAMP, or TIMESTAMPTZ are assigned AZ64 compression.

• Columns that are defined as CHAR or VARCHAR are assigned LZO compression.

Consider the following:

• You can define a maximum of 400 columns for a sort key per table.

• You can alter an interleaved sort key to a compound sort key or no sort key. However, you
can't alter a compound sort key to an interleaved sort key.

• If the sort key was previously defined as AUTO, then the table is no longer a candidate for
automatic table optimization.

ALTER TABLE 1060

https://docs.aws.amazon.com/redshift/latest/dg/advisor-recommendations.html#alter-diststyle-distkey-recommendation
https://docs.aws.amazon.com/redshift/latest/dg/advisor-recommendations.html#alter-diststyle-distkey-recommendation

Amazon Redshift Database Developer Guide

• Amazon Redshift recommends using RAW encoding (no compression) for columns defined
as sort keys. When you alter a column to choose it as a sort key, the column’s compression
is changed to RAW compression (no compression). This can increase the amount of storage
required by the table. How much the table size increases depend on the specific table
definition and table contents. For more information about compression, see Compression
encodings

When data is loaded into a table, the data is loaded in the order of the sort key. When you alter
the sort key, Amazon Redshift reorders the data. For more information about SORTKEY, see
CREATE TABLE.

ALTER SORTKEY AUTO

A clause that changes or adds the sort key of the target table to AUTO.

When you alter a sort key to AUTO, Amazon Redshift preserves the existing sort key of the
table.

If Amazon Redshift determines that a new sort key will improve the performance of queries,
then Amazon Redshift might change the sort key of your table in the future.

For more information about SORTKEY AUTO, see CREATE TABLE.

To view the sort key of a table, query the SVV_TABLE_INFO system catalog view. For more
information, see SVV_TABLE_INFO. To view the Amazon Redshift Advisor recommendations
for tables, query the SVV_ALTER_TABLE_RECOMMENDATIONS system catalog view. For more
information, see SVV_ALTER_TABLE_RECOMMENDATIONS. To view the actions taken by
Amazon Redshift, query the SVL_AUTO_WORKER_ACTION system catalog view. For more
information, see SVL_AUTO_WORKER_ACTION.

ALTER SORTKEY NONE

A clause that removes the sort key of the target table.

If the sort key was previously defined as AUTO, then the table is no longer a candidate for
automatic table optimization.

ALTER ENCODE AUTO

A clause that changes the encoding type of the target table columns to AUTO. When you alter
encoding to AUTO, Amazon Redshift preserves the existing encoding type of the columns in
the table. Then, if Amazon Redshift determines that a new encoding type can improve query
performance, Amazon Redshift can change the encoding type of the table columns.

ALTER TABLE 1061

Amazon Redshift Database Developer Guide

If you alter one or more columns to specify an encoding, Amazon Redshift no longer
automatically adjusts encoding for all columns in the table. The columns retain the current
encode settings.

The following actions don't affect the ENCODE AUTO setting for the table:

• Renaming the table.

• Altering the DISTSTYLE or SORTKEY setting for the table.

• Adding or dropping a column with an ENCODE setting.

• Using the COMPUPDATE option of the COPY command. For more information, see Data load
operations.

To view the encoding of a table, query the SVV_TABLE_INFO system catalog view. For more
information, see SVV_TABLE_INFO.

RENAME COLUMN column_name TO new_name

A clause that renames a column to the value specified in new_name. The maximum column
name length is 127 bytes; longer names are truncated to 127 bytes. For more information
about valid names, see Names and identifiers.

ADD [COLUMN] column_name

A clause that adds a column with the specified name to the table. You can add only one column
in each ALTER TABLE statement.

You can't add a column that is the distribution key (DISTKEY) or a sort key (SORTKEY) of the
table.

You can't use an ALTER TABLE ADD COLUMN command to modify the following table and
column attributes:

• UNIQUE

• PRIMARY KEY

• REFERENCES (foreign key)

• IDENTITY or GENERATED BY DEFAULT AS IDENTITY

The maximum column name length is 127 bytes; longer names are truncated to 127 bytes. The
maximum number of columns you can define in a single table is 1,600.

The following restrictions apply when adding a column to an external table:

ALTER TABLE 1062

Amazon Redshift Database Developer Guide

• You can't add a column to an external table with the column constraints DEFAULT, ENCODE,
NOT NULL, or NULL.

• You can't add columns to an external table that's defined using the AVRO file format.

• If pseudocolumns are enabled, the maximum number of columns that you can define in a
single external table is 1,598. If pseudocolumns aren't enabled, the maximum number of
columns that you can define in a single table is 1,600.

For more information, see CREATE EXTERNAL TABLE.

column_type

The data type of the column being added. For CHAR and VARCHAR columns, you can use the
MAX keyword instead of declaring a maximum length. MAX sets the maximum length to 4,096
bytes for CHAR or 65,535 bytes for VARCHAR. The maximum size of a GEOMETRY object is
1,048,447 bytes.

For information about the data types that Amazon Redshift supports, see Data types.

DEFAULT default_expr

A clause that assigns a default data value for the column. The data type of default_expr must
match the data type of the column. The DEFAULT value must be a variable-free expression.
Subqueries, cross-references to other columns in the current table, and user-defined functions
aren't allowed.

The default_expr is used in any INSERT operation that doesn't specify a value for the column. If
no default value is specified, the default value for the column is null.

If a COPY operation encounters a null field on a column that has a DEFAULT value and a NOT
NULL constraint, the COPY command inserts the value of the default_expr.

DEFAULT isn't supported for external tables.

ENCODE encoding

The compression encoding for a column. By default, Amazon Redshift automatically manages
compression encoding for all columns in a table if you don't specify compression encoding for
any column in the table or if you specify the ENCODE AUTO option for the table.

If you specify compression encoding for any column in the table or if you don't specify the
ENCODE AUTO option for the table, Amazon Redshift automatically assigns compression
encoding to columns for which you don't specify compression encoding as follows:

ALTER TABLE 1063

Amazon Redshift Database Developer Guide

• All columns in temporary tables are assigned RAW compression by default.

• Columns that are defined as sort keys are assigned RAW compression.

• Columns that are defined as BOOLEAN, REAL, DOUBLE PRECISION, GEOMETRY, or
GEOGRAPHY data type are assigned RAW compression.

• Columns that are defined as SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIME, TIMETZ,
TIMESTAMP, or TIMESTAMPTZ are assigned AZ64 compression.

• Columns that are defined as CHAR, VARCHAR, or VARBYTE are assigned LZO compression.

Note

If you don't want a column to be compressed, explicitly specify RAW encoding.

The following compression encodings (p. 64) are supported:

• AZ64

• BYTEDICT

• DELTA

• DELTA32K

• LZO

• MOSTLY8

• MOSTLY16

• MOSTLY32

• RAW (no compression)

• RUNLENGTH

• TEXT255

• TEXT32K

• ZSTD

ENCODE isn't supported for external tables.

NOT NULL | NULL

NOT NULL specifies that the column isn't allowed to contain null values. NULL, the default,
specifies that the column accepts null values.

NOT NULL and NULL aren't supported for external tables.

ALTER TABLE 1064

Amazon Redshift Database Developer Guide

COLLATE { CASE_SENSITIVE | CASE_INSENSITIVE }

A clause that specifies whether string search or comparison on the column is CASE_SENSITIVE
or CASE_INSENSITIVE. The default value is the same as the current case sensitivity configuration
of the database.

To find the database collation information, use the following command:

SELECT db_collation();

db_collation

 case_sensitive
(1 row)

DROP [COLUMN] column_name

The name of the column to delete from the table.

You can't drop the last column in a table. A table must have at least one column.

You can't drop a column that is the distribution key (DISTKEY) or a sort key (SORTKEY) of the
table. The default behavior for DROP COLUMN is RESTRICT if the column has any dependent
objects, such as a view, primary key, foreign key, or UNIQUE restriction.

The following restrictions apply when dropping a column from an external table:

• You can't drop a column from an external table if the column is used as a partition.

• You can't drop a column from an external table that is defined using the AVRO file format.

• RESTRICT and CASCADE are ignored for external tables.

• You can't drop the columns of the policy table referenced inside the policy definition unless
you drop or detach the policy. This also applies when the CASCADE option is specified. You
can drop other columns in the policy table.

For more information, see CREATE EXTERNAL TABLE.

RESTRICT

When used with DROP COLUMN, RESTRICT means that column to be dropped isn't dropped, in
these cases:

• If a defined view references the column that is being dropped

• If a foreign key references the column

ALTER TABLE 1065

Amazon Redshift Database Developer Guide

• If the column takes part in a multipart key

RESTRICT can't be used with CASCADE.

RESTRICT and CASCADE are ignored for external tables.

CASCADE

When used with DROP COLUMN, removes the specified column and anything dependent on
that column. CASCADE can't be used with RESTRICT.

RESTRICT and CASCADE are ignored for external tables.

The following options apply only to external tables.

SET LOCATION { 's3://bucket/folder/' | 's3://bucket/manifest_file' }

The path to the Amazon S3 folder that contains the data files or a manifest file that contains
a list of Amazon S3 object paths. The buckets must be in the same AWS Region as the
Amazon Redshift cluster. For a list of supported AWS Regions, see Amazon Redshift Spectrum
considerations. For more information about using a manifest file, see LOCATION in the CREATE
EXTERNAL TABLE Parameters reference.

SET FILE FORMAT format

The file format for external data files.

Valid formats are as follows:

• AVRO

• PARQUET

• RCFILE

• SEQUENCEFILE

• TEXTFILE

SET TABLE PROPERTIES ('property_name'='property_value')

A clause that sets the table definition for table properties for an external table.

Note

Table properties are case-sensitive.

ALTER TABLE 1066

Amazon Redshift Database Developer Guide

'numRows'='row_count'

A property that sets the numRows value for the table definition. To explicitly update an
external table's statistics, set the numRows property to indicate the size of the table.
Amazon Redshift doesn't analyze external tables to generate the table statistics that
the query optimizer uses to generate a query plan. If table statistics aren't set for an
external table, Amazon Redshift generates a query execution plan. This plan is based on an
assumption that external tables are the larger tables and local tables are the smaller tables.

'skip.header.line.count'='line_count'

A property that sets number of rows to skip at the beginning of each source file.

PARTITION (partition_column=partition_value [, ...] SET LOCATION { 's3://bucket/folder' |
's3://bucket/manifest_file' }

A clause that sets a new location for one or more partition columns.

ADD [IF NOT EXISTS] PARTITION (partition_column=partition_value [, ...]) LOCATION
{ 's3://bucket/folder' | 's3://bucket/manifest_file' } [, ...]

A clause that adds one or more partitions. You can specify multiple PARTITION clauses using a
single ALTER TABLE … ADD statement.

Note

If you use the AWS Glue catalog, you can add up to 100 partitions using a single ALTER
TABLE statement.

The IF NOT EXISTS clause indicates that if the specified partition already exists, the command
should make no changes. It also indicates that the command should return a message that the
partition exists, rather than terminating with an error. This clause is useful when scripting, so
the script doesn’t fail if ALTER TABLE tries to add a partition that already exists.

DROP PARTITION (partition_column=partition_value [, ...])

A clause that drops the specified partition. Dropping a partition alters only the external table
metadata. The data on Amazon S3 isn't affected.

ROW LEVEL SECURITY { ON | OFF } [CONJUNCTION TYPE { AND | OR }] [FOR DATASHARES]

A clause that turns on or off row-level security for a relation.

ALTER TABLE 1067

Amazon Redshift Database Developer Guide

When row-level security is turned on for a relation, you can only read the rows that the row-
level security policy permits you to access. When there isn't any policy granting you access to
the relation, you can't see any rows from the relation. Only superusers and users or roles that
have the sys:secadmin role can set the ROW LEVEL SECURITY clause. For more information,
see Row-level security.

• [CONJUNCTION TYPE { AND | OR }]

A clause that allows you to choose the conjunction type of row-level security policy for
a relation. When multiple row-level security policies are attached to a relation, you can
combine the policies with the AND or OR clause. By default, Amazon Redshift combines RLS
policies with the AND clause. Superusers, users, or roles that have the sys:secadmin role
can use this clause to define the conjunction type of row-level security policy for a relation.
For more information, see Combining multiple policies per user.

• FOR DATASHARES

A clause that determines whether an RLS-protected relation can be accessed over datashares.
By default, an RLS-protected relation can’t be accessed over a datashare. An ALTER TABLE
ROW LEVEL SECURITY command run with this clause only affects the relation’s datashare
accessibility property. The ROW LEVEL SECURITY property isn’t changed.

If you make an RLS-protected relation accessible over datashares, the relation doesn’t have
row-level security in the consumer-side datashared database. The relation retains its RLS
property on the producer side.

Examples

For examples that show how to use the ALTER TABLE command, see the following.

• ALTER TABLE examples

• ALTER EXTERNAL TABLE examples

• ALTER TABLE ADD and DROP COLUMN examples

ALTER TABLE examples

The following examples demonstrate basic usage of the ALTER TABLE command.

ALTER TABLE 1068

Amazon Redshift Database Developer Guide

Rename a table or view

The following command renames the USERS table to USERS_BKUP:

alter table users
rename to users_bkup;

You can also use this type of command to rename a view.

Change the owner of a table or view

The following command changes the VENUE table owner to the user DWUSER:

alter table venue
owner to dwuser;

The following commands create a view, then change its owner:

create view vdate as select * from date;
alter table vdate owner to vuser;

Rename a column

The following command renames the VENUESEATS column in the VENUE table to VENUESIZE:

alter table venue
rename column venueseats to venuesize;

Drop a table constraint

To drop a table constraint, such as a primary key, foreign key, or unique constraint, first find the
internal name of the constraint. Then specify the constraint name in the ALTER TABLE command.
The following example finds the constraints for the CATEGORY table, then drops the primary key
with the name category_pkey.

select constraint_name, constraint_type
from information_schema.table_constraints
where constraint_schema ='public'
and table_name = 'category';

constraint_name | constraint_type
----------------+----------------

ALTER TABLE 1069

Amazon Redshift Database Developer Guide

category_pkey | PRIMARY KEY

alter table category
drop constraint category_pkey;

Alter a VARCHAR column

To conserve storage, you can define a table initially with VARCHAR columns with the minimum size
needed for your current data requirements. Later, to accommodate longer strings, you can alter the
table to increase the size of the column.

The following example increases the size of the EVENTNAME column to VARCHAR(300).

alter table event alter column eventname type varchar(300);

Alter the compression encoding for a column

You can alter the compression encoding of a column. Below, you can find a set of examples
demonstrating this approach. The table definition for these examples is as follows.

create table t1(c0 int encode lzo, c1 bigint encode zstd, c2 varchar(16) encode lzo, c3
 varchar(32) encode zstd);

The following statement alters the compression encoding for column c0 from LZO encoding to
AZ64 encoding.

alter table t1 alter column c0 encode az64;

The following statement alters the compression encoding for column c1 from Zstandard encoding
to AZ64 encoding.

alter table t1 alter column c1 encode az64;

The following statement alters the compression encoding for column c2 from LZO encoding to
Byte-dictionary encoding.

alter table t1 alter column c2 encode bytedict;

The following statement alters the compression encoding for column c3 from Zstandard encoding
to Runlength encoding.

ALTER TABLE 1070

Amazon Redshift Database Developer Guide

alter table t1 alter column c3 encode runlength;

Alter a DISTSTYLE KEY DISTKEY column

The following examples show how to change the DISTSTYLE and DISTKEY of a table.

Create a table with an EVEN distribution style. The SVV_TABLE_INFO view shows that the
DISTSTYLE is EVEN.

create table inventory(
 inv_date_sk int4 not null ,
 inv_item_sk int4 not null ,
 inv_warehouse_sk int4 not null ,
 inv_quantity_on_hand int4
) diststyle even;

Insert into inventory values(1,1,1,1);

select "table", "diststyle" from svv_table_info;

 table | diststyle
-----------+----------------
 inventory | EVEN

Alter the table DISTKEY to inv_warehouse_sk. The SVV_TABLE_INFO view shows the
inv_warehouse_sk column as the resulting distribution key.

alter table inventory alter diststyle key distkey inv_warehouse_sk;

select "table", "diststyle" from svv_table_info;

 table | diststyle
-----------+-----------------------
 inventory | KEY(inv_warehouse_sk)

Alter the table DISTKEY to inv_item_sk. The SVV_TABLE_INFO view shows the inv_item_sk
column as the resulting distribution key.

alter table inventory alter distkey inv_item_sk;

select "table", "diststyle" from svv_table_info;

ALTER TABLE 1071

Amazon Redshift Database Developer Guide

 table | diststyle
-----------+-----------------------
 inventory | KEY(inv_item_sk)

Alter a table to DISTSTYLE ALL

The following examples show how to change a table to DISTSTYLE ALL.

Create a table with an EVEN distribution style. The SVV_TABLE_INFO view shows that the
DISTSTYLE is EVEN.

create table inventory(
 inv_date_sk int4 not null ,
 inv_item_sk int4 not null ,
 inv_warehouse_sk int4 not null ,
 inv_quantity_on_hand int4
) diststyle even;

Insert into inventory values(1,1,1,1);

select "table", "diststyle" from svv_table_info;

 table | diststyle
-----------+----------------
 inventory | EVEN

Alter the table DISTSTYLE to ALL. The SVV_TABLE_INFO view shows the changed DISTSYTLE.

alter table inventory alter diststyle all;

select "table", "diststyle" from svv_table_info;

 table | diststyle
-----------+----------------
 inventory | ALL

Alter a table SORTKEY

You can alter a table to have a compound sort key or no sort key.

In the following table definition, table t1 is defined with an interleaved sortkey.

ALTER TABLE 1072

Amazon Redshift Database Developer Guide

create table t1 (c0 int, c1 int) interleaved sortkey(c0, c1);

The following command alters the table from an interleaved sort key to a compound sort key.

alter table t1 alter sortkey(c0, c1);

The following command alters the table to remove the interleaved sort key.

alter table t1 alter sortkey none;

In the following table definition, table t1 is defined with column c0 as a sortkey.

create table t1 (c0 int, c1 int) sortkey(c0);

The following command alters the table t1 to a compound sort key.

alter table t1 alter sortkey(c0, c1);

Alter a table to ENCODE AUTO

The following example shows how to alter a table to ENCODE AUTO.

The table definition for this example follows. Column c0 is defined with the encoding type AZ64,
and column c1 is defined with the encoding type LZO.

create table t1(c0 int encode AZ64, c1 varchar encode LZO);

For this table, the following statement alters the encoding to AUTO.

alter table t1 alter encode auto;

The following example shows how to alter a table to remove the ENCODE AUTO setting.

The table definition for this example follows. The table columns are defined without encoding. In
this case, the encoding defaults to ENCODE AUTO.

create table t2(c0 int, c1 varchar);

ALTER TABLE 1073

Amazon Redshift Database Developer Guide

For this table, the following statement alters the encoding of column c0 to LZO. The table
encoding is no longer set to ENCODE AUTO.

alter table t2 alter column c0 encode lzo;;

Alter row-level security control

The following command turns RLS off for the table:

ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY OFF;

The following command turns RLS on for the table:

ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY ON;

The following command turns RLS on for the table and makes it accessible over datashares:

ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY ON;
ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY FOR DATASHARES OFF;

The following command turns RLS on for the table and makes it inaccessible over datashares:

ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY ON;
ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY FOR DATASHARES ON;

The following command turns RLS on and sets RLS conjunction type to OR for the table:

ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY ON CONJUNCTION TYPE OR;

The following command turns RLS on and sets RLS conjunction type to AND for the table:

ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY ON CONJUNCTION TYPE AND;

ALTER EXTERNAL TABLE examples

The following examples use an Amazon S3 bucket located in the US East (N. Virginia) Region (us-
east-1) AWS Region and the example tables created in Examples for CREATE TABLE. For more
information about how to use partitions with external tables, see Partitioning Redshift Spectrum
external tables.

ALTER TABLE 1074

Amazon Redshift Database Developer Guide

The following example sets the numRows table property for the SPECTRUM.SALES external table
to 170,000 rows.

alter table spectrum.sales
set table properties ('numRows'='170000');

The following example changes the location for the SPECTRUM.SALES external table.

alter table spectrum.sales
set location 's3://redshift-downloads/tickit/spectrum/sales/';

The following example changes the format for the SPECTRUM.SALES external table to Parquet.

alter table spectrum.sales
set file format parquet;

The following example adds one partition for the table SPECTRUM.SALES_PART.

alter table spectrum.sales_part
add if not exists partition(saledate='2008-01-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01/';

The following example adds three partitions for the table SPECTRUM.SALES_PART.

alter table spectrum.sales_part add if not exists
partition(saledate='2008-01-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01/'
partition(saledate='2008-02-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/'
partition(saledate='2008-03-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-03/';

The following example alters SPECTRUM.SALES_PART to drop the partition with
saledate='2008-01-01''.

alter table spectrum.sales_part
drop partition(saledate='2008-01-01');

The following example sets a new Amazon S3 path for the partition with
saledate='2008-01-01'.

ALTER TABLE 1075

Amazon Redshift Database Developer Guide

alter table spectrum.sales_part
partition(saledate='2008-01-01')
set location 's3://redshift-downloads/tickit/spectrum/sales_partition/
saledate=2008-01-01/';

The following example changes the name of sales_date to transaction_date.

alter table spectrum.sales rename column sales_date to transaction_date;

The following example sets the column mapping to position mapping for an external table that
uses optimized row columnar (ORC) format.

alter table spectrum.orc_example
set table properties('orc.schema.resolution'='position');

The following example sets the column mapping to name mapping for an external table that uses
ORC format.

alter table spectrum.orc_example
set table properties('orc.schema.resolution'='name');

ALTER TABLE ADD and DROP COLUMN examples

The following examples demonstrate how to use ALTER TABLE to add and then drop a basic table
column and also how to drop a column with a dependent object.

ADD then DROP a basic column

The following example adds a standalone FEEDBACK_SCORE column to the USERS table. This
column simply contains an integer, and the default value for this column is NULL (no feedback
score).

First, query the PG_TABLE_DEF catalog table to view the schema of the USERS table:

column | type | encoding | distkey | sortkey
--------------+------------------------+----------+---------+--------
userid | integer | delta | true | 1
username | character(8) | lzo | false | 0
firstname | character varying(30) | text32k | false | 0
lastname | character varying(30) | text32k | false | 0

ALTER TABLE 1076

Amazon Redshift Database Developer Guide

city | character varying(30) | text32k | false | 0
state | character(2) | bytedict | false | 0
email | character varying(100) | lzo | false | 0
phone | character(14) | lzo | false | 0
likesports | boolean | none | false | 0
liketheatre | boolean | none | false | 0
likeconcerts | boolean | none | false | 0
likejazz | boolean | none | false | 0
likeclassical | boolean | none | false | 0
likeopera | boolean | none | false | 0
likerock | boolean | none | false | 0
likevegas | boolean | none | false | 0
likebroadway | boolean | none | false | 0
likemusicals | boolean | none | false | 0

Now add the feedback_score column:

alter table users
add column feedback_score int
default NULL;

Select the FEEDBACK_SCORE column from USERS to verify that it was added:

select feedback_score from users limit 5;

feedback_score

NULL
NULL
NULL
NULL
NULL

Drop the column to reinstate the original DDL:

alter table users drop column feedback_score;

Dropping a column with a dependent object

The following example drops a column that has a dependent object. As a result, the dependent
object is also dropped.

ALTER TABLE 1077

Amazon Redshift Database Developer Guide

To start, add the FEEDBACK_SCORE column to the USERS table again:

alter table users
add column feedback_score int
default NULL;

Next, create a view from the USERS table called USERS_VIEW:

create view users_view as select * from users;

Now, try to drop the FEEDBACK_SCORE column from the USERS table. This DROP statement uses
the default behavior (RESTRICT):

alter table users drop column feedback_score;

Amazon Redshift displays an error message that the column can't be dropped because another
object depends on it.

Try dropping the FEEDBACK_SCORE column again, this time specifying CASCADE to drop all
dependent objects:

alter table users
drop column feedback_score cascade;

ALTER TABLE APPEND

Appends rows to a target table by moving data from an existing source table. Data in the source
table is moved to matching columns in the target table. Column order doesn't matter. After data
is successfully appended to the target table, the source table is empty. ALTER TABLE APPEND is
usually much faster than a similar CREATE TABLE AS or INSERT INTO operation because data is
moved, not duplicated.

Note

ALTER TABLE APPEND moves data blocks between the source table and the target table.
To improve performance, ALTER TABLE APPEND doesn't compact storage as part of the
append operation. As a result, storage usage increases temporarily. To reclaim the space,
run a VACUUM operation.

ALTER TABLE APPEND 1078

Amazon Redshift Database Developer Guide

Columns with the same names must also have identical column attributes. If either the source table
or the target table contains columns that don't exist in the other table, use the IGNOREEXTRA or
FILLTARGET parameters to specify how extra columns should be managed.

You can't append an identity column. If both tables include an identity column, the command fails.
If only one table has an identity column, include the FILLTARGET or IGNOREEXTRA parameter. For
more information, see ALTER TABLE APPEND usage notes.

You can append a GENERATED BY DEFAULT AS IDENTITY column. You can update columns defined
as GENERATED BY DEFAULT AS IDENTITY with values that you supply. For more information, see
ALTER TABLE APPEND usage notes.

The target table must be a permanent table. However, the source can be a permanent table or a
materialized view configured for streaming ingestion. Both objects must use the same distribution
style and distribution key, if one is defined. If the objects are sorted, both objects must use the
same sort style and define the same columns as sort keys.

An ALTER TABLE APPEND command automatically commits immediately upon completion of the
operation. It can't be rolled back. You can't run ALTER TABLE APPEND within a transaction block
(BEGIN ... END). For more information about transactions, see Serializable isolation.

Required privileges

Depending on the ALTER TABLE APPEND command, one of the following privileges is required:

• Superuser

• Users with the ALTER TABLE system privilege

• Users with DELETE and SELECT privileges on the source table, and INSERT privilege on the target
table

Syntax

ALTER TABLE target_table_name APPEND FROM [source_table_name
 | source_materialized_view_name]
[IGNOREEXTRA | FILLTARGET]

Appending from a materialized view works only in the case where your materialized view is
configured for Streaming ingestion.

ALTER TABLE APPEND 1079

Amazon Redshift Database Developer Guide

Parameters

target_table_name

The name of the table to which rows are appended. Either specify just the name of the table or
use the format schema_name.table_name to use a specific schema. The target table must be an
existing permanent table.

FROM source_table_name

The name of the table that provides the rows to be appended. Either specify just the name of
the table or use the format schema_name.table_name to use a specific schema. The source table
must be an existing permanent table.

FROM source_materialized_view_name

The name of a materialized view that provides the rows to be appended. Appending from
a materialized view works only in the case where your materialized view is configured for
Streaming ingestion. The source materialized view must already exist.

IGNOREEXTRA

A keyword that specifies that if the source table includes columns that are not present in the
target table, data in the extra columns should be discarded. You can't use IGNOREEXTRA with
FILLTARGET.

FILLTARGET

A keyword that specifies that if the target table includes columns that are not present in the
source table, the columns should be filled with the DEFAULT column value, if one was defined,
or NULL. You can't use IGNOREEXTRA with FILLTARGET.

ALTER TABLE APPEND usage notes

ALTER TABLE APPEND moves only identical columns from the source table to the target table.
Column order doesn't matter.

If either the source table or the target table contains extra columns, use either FILLTARGET or
IGNOREEXTRA according to the following rules:

• If the source table contains columns that don't exist in the target table, include IGNOREEXTRA.
The command ignores the extra columns in the source table.

ALTER TABLE APPEND 1080

Amazon Redshift Database Developer Guide

• If the target table contains columns that don't exist in the source table, include FILLTARGET.
The command fills the extra columns in the target table with either the default column value or
IDENTITY value, if one was defined, or NULL.

• If both the source table and the target table contain extra columns, the command fails. You can't
use both FILLTARGET and IGNOREEXTRA.

If a column with the same name but different attributes exists in both tables, the command fails.
Like-named columns must have the following attributes in common:

• Data type

• Column size

• Compression encoding

• Not null

• Sort style

• Sort key columns

• Distribution style

• Distribution key columns

You can't append an identity column. If both the source table and the target table have identity
columns, the command fails. If only the source table has an identity column, include the
IGNOREEXTRA parameter so that the identity column is ignored. If only the target table has an
identity column, include the FILLTARGET parameter so that the identity column is populated
according to the IDENTITY clause defined for the table. For more information, see DEFAULT.

You can append a default identity column with the ALTER TABLE APPEND statement. For more
information, see CREATE TABLE.

ALTER TABLE APPEND examples

Suppose your organization maintains a table, SALES_MONTHLY, to capture current sales
transactions. You want to move data from the transaction table to the SALES table, every month.

You can use the following INSERT INTO and TRUNCATE commands to accomplish the task.

insert into sales (select * from sales_monthly);
truncate sales_monthly;

ALTER TABLE APPEND 1081

Amazon Redshift Database Developer Guide

However, you can perform the same operation much more efficiently by using an ALTER TABLE
APPEND command.

First, query the PG_TABLE_DEF system catalog table to verify that both tables have the same
columns with identical column attributes.

select trim(tablename) as table, "column", trim(type) as type,
encoding, distkey, sortkey, "notnull"
from pg_table_def where tablename like 'sales%';

table | column | type | encoding | distkey | sortkey |
 notnull
-----------+------------+-----------------------------+----------+---------+---------
+--------
sales | salesid | integer | lzo | false | 0 |
 true
sales | listid | integer | none | true | 1 |
 true
sales | sellerid | integer | none | false | 2 |
 true
sales | buyerid | integer | lzo | false | 0 |
 true
sales | eventid | integer | mostly16 | false | 0 |
 true
sales | dateid | smallint | lzo | false | 0 |
 true
sales | qtysold | smallint | mostly8 | false | 0 |
 true
sales | pricepaid | numeric(8,2) | delta32k | false | 0 |
 false
sales | commission | numeric(8,2) | delta32k | false | 0 |
 false
sales | saletime | timestamp without time zone | lzo | false | 0 |
 false
salesmonth | salesid | integer | lzo | false | 0 |
 true
salesmonth | listid | integer | none | true | 1 |
 true
salesmonth | sellerid | integer | none | false | 2 |
 true
salesmonth | buyerid | integer | lzo | false | 0 |
 true

ALTER TABLE APPEND 1082

Amazon Redshift Database Developer Guide

salesmonth | eventid | integer | mostly16 | false | 0 |
 true
salesmonth | dateid | smallint | lzo | false | 0 |
 true
salesmonth | qtysold | smallint | mostly8 | false | 0 |
 true
salesmonth | pricepaid | numeric(8,2) | delta32k | false | 0 |
 false
salesmonth | commission | numeric(8,2) | delta32k | false | 0 |
 false
salesmonth | saletime | timestamp without time zone | lzo | false | 0 |
 false

Next, look at the size of each table.

select count(*) from sales_monthly;
 count

 2000
(1 row)

select count(*) from sales;
 count

 412,214
(1 row)

Now run the following ALTER TABLE APPEND command.

alter table sales append from sales_monthly;

Look at the size of each table again. The SALES_MONTHLY table now has 0 rows, and the SALES
table has grown by 2000 rows.

select count(*) from sales_monthly;
 count

 0
(1 row)

select count(*) from sales;
 count

ALTER TABLE APPEND 1083

Amazon Redshift Database Developer Guide

 414214
(1 row)

If the source table has more columns than the target table, specify the IGNOREEXTRA parameter.
The following example uses the IGNOREEXTRA parameter to ignore extra columns in the
SALES_LISTING table when appending to the SALES table.

alter table sales append from sales_listing ignoreextra;

If the target table has more columns than the source table, specify the FILLTARGET parameter. The
following example uses the FILLTARGET parameter to populate columns in the SALES_REPORT
table that don't exist in the SALES_MONTH table.

alter table sales_report append from sales_month filltarget;

The following example shows an example of how to use ALTER TABLE APPEND with a materialized
view as a source.

ALTER TABLE target_tbl APPEND FROM my_streaming_materialized_view;

The table and materialized view names in this example are samples. Appending from a
materialized view works only in the case where your materialized view is configured for Streaming
ingestion. It moves all records in the source materialized view to a target table with the same
schema as the materialized view and leaves the materialized view intact. This is the same behavior
as when the source of the data is a table.

ALTER USER

Changes a database user.

Required privileges

Following are required privileges for ALTER USER:

• Superuser

• Users with the ALTER USER privilege

ALTER USER 1084

Amazon Redshift Database Developer Guide

• Current user who wants to change their own password

Syntax

ALTER USER username [WITH] option [, ...]

where option is

CREATEDB | NOCREATEDB
| CREATEUSER | NOCREATEUSER
| SYSLOG ACCESS { RESTRICTED | UNRESTRICTED }
| PASSWORD { 'password' | 'md5hash' | DISABLE }
[VALID UNTIL 'expiration_date']
| RENAME TO new_name |
| CONNECTION LIMIT { limit | UNLIMITED }
| SESSION TIMEOUT limit | RESET SESSION TIMEOUT
| SET parameter { TO | = } { value | DEFAULT }
| RESET parameter
| EXTERNALID external_id

Parameters

username

Name of the user.

WITH

Optional keyword.

CREATEDB | NOCREATEDB

The CREATEDB option allows the user to create new databases. NOCREATEDB is the default.

CREATEUSER | NOCREATEUSER

The CREATEUSER option creates a superuser with all database privileges, including CREATE
USER. The default is NOCREATEUSER. For more information, see superuser.

SYSLOG ACCESS { RESTRICTED | UNRESTRICTED }

A clause that specifies the level of access that the user has to the Amazon Redshift system
tables and views.

ALTER USER 1085

Amazon Redshift Database Developer Guide

Regular users who have the SYSLOG ACCESS RESTRICTED permission can see only the rows
generated by that user in user-visible system tables and views. The default is RESTRICTED.

Regular users who have the SYSLOG ACCESS UNRESTRICTED permission can see all rows in
user-visible system tables and views, including rows generated by another user. UNRESTRICTED
doesn't give a regular user access to superuser-visible tables. Only superusers can see
superuser-visible tables.

Note

Giving a user unrestricted access to system tables gives the user visibility to data
generated by other users. For example, STL_QUERY and STL_QUERYTEXT contain the
full text of INSERT, UPDATE, and DELETE statements, which might contain sensitive
user-generated data.

All rows in SVV_TRANSACTIONS are visible to all users.

For more information, see Visibility of data in system tables and views.

PASSWORD { 'password' | 'md5hash' | DISABLE }

Sets the user's password.

By default, users can change their own passwords, unless the password is disabled. To disable a
user's password, specify DISABLE. When a user's password is disabled, the password is deleted
from the system and the user can log on only using temporary AWS Identity and Access
Management (IAM) user credentials. For more information, see Using IAM authentication to
generate database user credentials. Only a superuser can enable or disable passwords. You can't
disable a superuser's password. To enable a password, run ALTER USER and specify a password.

For details about using the PASSWORD parameter, see CREATE USER.

VALID UNTIL 'expiration_date'

Specifies that the password has an expiration date. Use the value 'infinity' to avoid having
an expiration date. The valid data type for this parameter is timestamp.

Only superusers can use this parameter.

RENAME TO

Renames the user.

ALTER USER 1086

https://docs.aws.amazon.com/redshift/latest/mgmt/generating-user-credentials.html
https://docs.aws.amazon.com/redshift/latest/mgmt/generating-user-credentials.html

Amazon Redshift Database Developer Guide

new_name

New name of the user. For more information about valid names, see Names and identifiers.

Important

When you rename a user, you must also reset the user’s password. The reset password
doesn't have to be different from the previous password. The user name is used as part
of the password encryption, so when a user is renamed, the password is cleared. The
user will not be able to log on until the password is reset. For example:

alter user newuser password 'EXAMPLENewPassword11';

CONNECTION LIMIT { limit | UNLIMITED }

The maximum number of database connections the user is permitted to have open
concurrently. The limit isn't enforced for superusers. Use the UNLIMITED keyword to permit
the maximum number of concurrent connections. A limit on the number of connections for
each database might also apply. For more information, see CREATE DATABASE. The default is
UNLIMITED. To view current connections, query the STV_SESSIONS system view.

Note

If both user and database connection limits apply, an unused connection slot must be
available that is within both limits when a user attempts to connect.

SESSION TIMEOUT limit | RESET SESSION TIMEOUT

The maximum time in seconds that a session remains inactive or idle. The range is 60 seconds
(one minute) to 1,728,000 seconds (20 days). If no session timeout is set for the user, the cluster
setting applies. For more information, see Quotas and limits in Amazon Redshift in the Amazon
Redshift Management Guide.

When you set the session timeout, it's applied to new sessions only.

To view information about active user sessions, including the start time, user name, and session
timeout, query the STV_SESSIONS system view. To view information about user-session history,

ALTER USER 1087

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Redshift Database Developer Guide

query the STL_SESSIONS view. To retrieve information about database users, including session-
timeout values, query the SVL_USER_INFO view.

SET

Sets a configuration parameter to a new default value for all sessions run by the specified user.

RESET

Resets a configuration parameter to the original default value for the specified user.

parameter

Name of the parameter to set or reset.

value

New value of the parameter.

DEFAULT

Sets the configuration parameter to the default value for all sessions run by the specified user.

EXTERNALID external_id

The identifier for the user, which is associated with an identity provider. The user must have
their password disabled. For more information, see Native identity provider (IdP) federation for
Amazon Redshift.

Usage notes

• Attempting to alter rdsdb – You can't alter the user named rdsdb.

• Creating an unknown password – When using AWS Identity and Access Management (IAM)
authentication to create database user credentials, you might want to create a superuser that is
able to log in only using temporary credentials. You can't disable a superuser's password, but you
can create an unknown password using a randomly generated MD5 hash string.

alter user iam_superuser password 'md51234567890123456780123456789012';

• Setting search_path – When you set the search_path parameter with the ALTER USER command,
the modification takes effect on the specified user's next login. If you want to change the
search_path value for the current user and session, use a SET command.

• Setting the time zone – When you use SET TIMEZONE with the ALTER USER command, the
modification takes effect on the specified user's next login.

ALTER USER 1088

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-native-idp.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-native-idp.html

Amazon Redshift Database Developer Guide

• Working with dynamic data masking and row-level security policies – When your provisioned
cluster or serverless namespace has any dynamic data masking or row-level security policies, the
following commands are blocked for regular users:

ALTER <current_user> SET enable_case_sensitive_super_attribute/
enable_case_sensitive_identifier/downcase_delimited_identifier

Only superusers and users with the ALTER USER privilege can set these configuration options.
For information on row-level security, see Row-level security. For information on dynamic data
masking, see Dynamic data masking.

Examples

The following example gives the user ADMIN the privilege to create databases:

alter user admin createdb;

The following example sets the password of the user ADMIN to adminPass9 and sets an expiration
date and time for the password:

alter user admin password 'adminPass9'
valid until '2017-12-31 23:59';

The following example renames the user ADMIN to SYSADMIN:

alter user admin rename to sysadmin;

The following example updates the idle-session timeout for a user to 300 seconds.

ALTER USER dbuser SESSION TIMEOUT 300;

Resets the user's idle-session timeout. When you reset it, the cluster setting applies. You must be a
database superuser to run this command. For more information, see Quotas and limits in Amazon
Redshift in the Amazon Redshift Management Guide.

ALTER USER dbuser RESET SESSION TIMEOUT;

ALTER USER 1089

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html
https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Redshift Database Developer Guide

The following example updates the external ID for a user named bob. The namespace is myco_aad.
If the namespace isn't associated with a registered identity provider, it results in an error.

ALTER USER myco_aad:bob EXTERNALID "ABC123" PASSWORD DISABLE;

The following example sets the time zone for all sessions run by a specific database user. It changes
the time zone for subsequent sessions, but not for the current session.

ALTER USER odie SET TIMEZONE TO 'Europe/Zurich';

The following example sets the maximum number of database connections that the user bob is
allowed to have open.

ALTER USER bob CONNECTION LIMIT 10;

ANALYZE

Updates table statistics for use by the query planner.

Required privileges

Following are required privileges for ANALYZE:

• Superuser

• Users with the ANALYZE privilege

• Owner of the relation

• Database owner whom the table is shared to

Syntax

ANALYZE [VERBOSE]
[[table_name [(column_name [, ...])]]
[PREDICATE COLUMNS | ALL COLUMNS]

ANALYZE 1090

Amazon Redshift Database Developer Guide

Parameters

VERBOSE

A clause that returns progress information messages about the ANALYZE operation. This option
is useful when you don't specify a table.

table_name

You can analyze specific tables, including temporary tables. You can qualify the table with its
schema name. You can optionally specify a table_name to analyze a single table. You can't
specify more than one table_name with a single ANALYZE table_name statement. If you don't
specify a table_name value, all of the tables in the currently connected database are analyzed,
including the persistent tables in the system catalog. Amazon Redshift skips analyzing a table
if the percentage of rows that have changed since the last ANALYZE is lower than the analyze
threshold. For more information, see Analyze threshold.

You don't need to analyze Amazon Redshift system tables (STL and STV tables).

column_name

If you specify a table_name, you can also specify one or more columns in the table (as a column-
separated list within parentheses). If a column list is specified, only the listed columns are
analyzed.

PREDICATE COLUMNS | ALL COLUMNS

Clauses that indicate whether ANALYZE should include only predicate columns. Specify
PREDICATE COLUMNS to analyze only columns that have been used as predicates in previous
queries or are likely candidates to be used as predicates. Specify ALL COLUMNS to analyze all
columns. The default is ALL COLUMNS.

A column is included in the set of predicate columns if any of the following is true:

• The column has been used in a query as a part of a filter, join condition, or group by clause.

• The column is a distribution key.

• The column is part of a sort key.

If no columns are marked as predicate columns, for example because the table has not yet been
queried, all of the columns are analyzed even when PREDICATE COLUMNS is specified. For more
information about predicate columns, see Analyzing tables.

ANALYZE 1091

Amazon Redshift Database Developer Guide

Usage notes

Amazon Redshift automatically runs ANALYZE on tables that you create with the following
commands:

• CREATE TABLE AS

• CREATE TEMP TABLE AS

• SELECT INTO

You can't analyze an external table.

You don't need to run the ANALYZE command on these tables when they are first created. If you
modify them, you should analyze them in the same way as other tables.

Analyze threshold

To reduce processing time and improve overall system performance, Amazon Redshift skips
ANALYZE for a table if the percentage of rows that have changed since the last ANALYZE command
run is lower than the analyze threshold specified by the analyze_threshold_percent parameter.
By default, analyze_threshold_percent is 10. To change analyze_threshold_percent
for the current session, run the SET command. The following example changes
analyze_threshold_percent to 20 percent.

set analyze_threshold_percent to 20;

To analyze tables when only a small number of rows have changed, set
analyze_threshold_percent to an arbitrarily small number. For example, if you set
analyze_threshold_percent to 0.01, then a table with 100,000,000 rows aren't skipped if at
least 10,000 rows have changed.

set analyze_threshold_percent to 0.01;

If ANALYZE skips a table because it doesn't meet the analyze threshold, Amazon Redshift returns
the following message.

ANALYZE SKIP

To analyze all tables even if no rows have changed, set analyze_threshold_percent to 0.

ANALYZE 1092

Amazon Redshift Database Developer Guide

To view the results of ANALYZE operations, query the STL_ANALYZE system table.

For more information about analyzing tables, see Analyzing tables.

Examples

Analyze all of the tables in the TICKIT database and return progress information.

analyze verbose;

Analyze the LISTING table only.

analyze listing;

Analyze the VENUEID and VENUENAME columns in the VENUE table.

analyze venue(venueid, venuename);

Analyze only predicate columns in the VENUE table.

analyze venue predicate columns;

ANALYZE COMPRESSION

Performs compression analysis and produces a report with the suggested compression encoding
for the tables analyzed. For each column, the report includes an estimate of the potential reduction
in disk space compared to the RAW encoding.

Syntax

ANALYZE COMPRESSION
[[table_name]
[(column_name [, ...])]]
[COMPROWS numrows]

Parameters

table_name

You can analyze compression for specific tables, including temporary tables. You can qualify the
table with its schema name. You can optionally specify a table_name to analyze a single table.

ANALYZE COMPRESSION 1093

Amazon Redshift Database Developer Guide

If you don't specify a table_name, all of the tables in the currently connected database are
analyzed. You can't specify more than one table_name with a single ANALYZE COMPRESSION
statement.

column_name

If you specify a table_name, you can also specify one or more columns in the table (as a column-
separated list within parentheses).

COMPROWS

Number of rows to be used as the sample size for compression analysis. The analysis is run on
rows from each data slice. For example, if you specify COMPROWS 1000000 (1,000,000) and
the system contains 4 total slices, no more than 250,000 rows per slice are read and analyzed. If
COMPROWS isn't specified, the sample size defaults to 100,000 per slice. Values of COMPROWS
lower than the default of 100,000 rows per slice are automatically upgraded to the default
value. However, compression analysis doesn't produce recommendations if the amount of data
in the table is insufficient to produce a meaningful sample. If the COMPROWS number is greater
than the number of rows in the table, the ANALYZE COMPRESSION command still proceeds and
runs the compression analysis against all of the available rows.

numrows

Number of rows to be used as the sample size for compression analysis. The accepted range for
numrows is a number between 1000 and 1000000000 (1,000,000,000).

Usage notes

ANALYZE COMPRESSION acquires an exclusive table lock, which prevents concurrent reads and
writes against the table. Only run the ANALYZE COMPRESSION command when the table is idle.

Run ANALYZE COMPRESSION to get recommendations for column encoding schemes, based on a
sample of the table's contents. ANALYZE COMPRESSION is an advisory tool and doesn't modify the
column encodings of the table. You can apply the suggested encoding by recreating the table or by
creating a new table with the same schema. Recreating an uncompressed table with appropriate
encoding schemes can significantly reduce its on-disk footprint. This approach saves disk space and
improves query performance for I/O-bound workloads.

ANALYZE COMPRESSION skips the actual analysis phase and directly returns the original encoding
type on any column that is designated as a SORTKEY. It does this because range-restricted scans

ANALYZE COMPRESSION 1094

Amazon Redshift Database Developer Guide

might perform poorly when SORTKEY columns are compressed much more highly than other
columns.

Examples

The following example shows the encoding and estimated percent reduction for the columns in the
LISTING table only:

analyze compression listing;

 Table | Column | Encoding | Est_reduction_pct
---------+----------------+----------+-------------------
 listing | listid | az64 | 40.96
 listing | sellerid | az64 | 46.92
 listing | eventid | az64 | 53.37
 listing | dateid | raw | 0.00
 listing | numtickets | az64 | 65.66
 listing | priceperticket | az64 | 72.94
 listing | totalprice | az64 | 68.05
 listing | listtime | az64 | 49.74

The following example analyzes the QTYSOLD, COMMISSION, and SALETIME columns in the SALES
table.

analyze compression sales(qtysold, commission, saletime);

 Table | Column | Encoding | Est_reduction_pct
-------+------------+----------+-------------------
 sales | salesid | N/A | 0.00
 sales | listid | N/A | 0.00
 sales | sellerid | N/A | 0.00
 sales | buyerid | N/A | 0.00
 sales | eventid | N/A | 0.00
 sales | dateid | N/A | 0.00
 sales | qtysold | az64 | 83.06
 sales | pricepaid | N/A | 0.00
 sales | commission | az64 | 71.85
 sales | saletime | az64 | 49.63

ANALYZE COMPRESSION 1095

Amazon Redshift Database Developer Guide

ATTACH MASKING POLICY

Attaches an existing dynamic data masking policy to a column. For more information on dynamic
data masking, see Dynamic data masking.

Superusers and users or roles that have the sys:secadmin role can attach a masking policy.

Syntax

ATTACH MASKING POLICY policy_name
 ON { relation_name }
 ({output_columns_names | output_path}) [USING ({input_column_names | input_path
)}]
 TO { user_name | ROLE role_name | PUBLIC }
 [PRIORITY priority];

Parameters

policy_name

The name of the masking policy to attach.

relation_name

The name of the relation to attach the masking policy to.

output_column_names

The names of the columns that the masking policy will apply to.

output_paths

The full path of the SUPER object that the masking policy will apply to, including the column
name. For example, for a relation with a SUPER type column named person, output_path
might be person.name.first_name.

input_column_names

The names of the columns that the masking policy will take as input. This parameter is optional.
If not specified, the masking policy uses output_column_names as inputs.

input_paths

The full path of the SUPER object that the masking policy will take as input. This parameter is
optional. If not specified, the masking policy uses output_path for inputs.

ATTACH MASKING POLICY 1096

Amazon Redshift Database Developer Guide

user_name

The name of the user to whom the masking policy will attach. You can't attach two policies to
the same combination of user and column or role and column. You can attach a policy to a user
and another policy to the user's role. In this case, the policy with the higher priority applies.

You can only set one of user_name, role_name, and PUBLIC in a single ATTACH MASKING
POLICY command.

role_name

The name of the role to which the masking policy will attach. You can't attach two policies to
the same column/role pair. You can attach a policy to a user and another policy to the user's
role. In this case, the policy with the higher priority applies.

You can only set one of user_name, role_name, and PUBLIC in a single ATTACH MASKING
POLICY command.

PUBLIC

Attaches the masking policy to all users accessing the table. You must give other masking
policies attached to specific column/user or column/role pairs a higher priority than the PUBLIC
policy for them to apply.

You can only set one of user_name, role_name, and PUBLIC in a single ATTACH MASKING
POLICY command.

priority

The priority of the masking policy. When multiple masking policies apply to a given user's
query, the highest priority policy applies.

You can't attach two different policies to the same column with equal priority, even if the two
policies are attached to different users or roles. You can attach the same policy multiple times
to the same set of table, output column, input column, and priority parameters, as long as the
user or role the policy attaches to is different each time.

You can't apply a policy to a column with the same priority as another policy attached to that
column, even if they're for different roles. This field is optional. If you don't specify a priority,
the masking policy defaults to attaching with a priority of 0.

ATTACH MASKING POLICY 1097

Amazon Redshift Database Developer Guide

ATTACH RLS POLICY

Attach a row-level security policy on a table to one or more users or roles.

Superusers and users or roles that have the sys:secadmin role can attach a policy.

Syntax

ATTACH RLS POLICY policy_name ON [TABLE] table_name [, ...]
TO { user_name | ROLE role_name | PUBLIC } [, ...]

Parameters

policy_name

The name of the policy.

ON [TABLE] table_name [, ...]

The relation that the row-level security policy is attached to.

TO { user_name | ROLE role_name | PUBLIC} [, ...]

Specifies whether the policy is attached to one or more specified users or roles.

Usage notes

When working with the ATTACH RLS POLICY statement, observe the following:

• The table being attached should have all the columns listed in the WITH clause of the policy
creation statement.

• Amazon Redshift RLS doesn't support attaching RLS policies to the following objects:

• Catalog tables

• Cross-database relations

• External tables

• Materialized views

• Temporary tables

• Lookup tables

• You can't attach a RLS policy to superusers or to users with the sys:secadmin permission.

ATTACH RLS POLICY 1098

Amazon Redshift Database Developer Guide

Examples

The following example attaches a policy on a table to a role.

ATTACH RLS POLICY policy_concerts ON tickit_category_redshift TO ROLE analyst, ROLE
 dbadmin;

BEGIN

Starts a transaction. Synonymous with START TRANSACTION.

A transaction is a single, logical unit of work, whether it consists of one command or multiple
commands. In general, all commands in a transaction run on a snapshot of the database whose
starting time is determined by the value set for the transaction_snapshot_begin system
configuration parameter.

By default, individual Amazon Redshift operations (queries, DDL statements, loads) are
automatically committed to the database. If you want to suspend the commit for an operation
until subsequent work is completed, you need to open a transaction with the BEGIN statement,
then run the required commands, then close the transaction with a COMMIT or END statement.
If necessary, you can use a ROLLBACK statement to stop a transaction that is in progress. An
exception to this behavior is the TRUNCATE command, which commits the transaction in which it is
run and can't be rolled back.

Syntax

BEGIN [WORK | TRANSACTION] [ISOLATION LEVEL option] [READ WRITE | READ ONLY]

START TRANSACTION [ISOLATION LEVEL option] [READ WRITE | READ ONLY]

Where option is

SERIALIZABLE
| READ UNCOMMITTED
| READ COMMITTED
| REPEATABLE READ

Note: READ UNCOMMITTED, READ COMMITTED, and REPEATABLE READ have no
operational impact and map to SERIALIZABLE in Amazon Redshift. You can see database
 isolation levels on your cluster

BEGIN 1099

Amazon Redshift Database Developer Guide

by querying the stv_db_isolation_level table.

Parameters

WORK

Optional keyword.

TRANSACTION

Optional keyword; WORK and TRANSACTION are synonyms.

ISOLATION LEVEL SERIALIZABLE

Serializable isolation is supported by default, so the behavior of the transaction is the same
whether or not this syntax is included in the statement. For more information, see Managing
concurrent write operations. No other isolation levels are supported.

Note

The SQL standard defines four levels of transaction isolation to prevent dirty reads
(where a transaction reads data written by a concurrent uncommitted transaction),
nonrepeatable reads (where a transaction re-reads data it read previously and finds that
data was changed by another transaction that committed since the initial read), and
phantom reads (where a transaction re-runs a query, returns a set of rows that satisfy a
search condition, and then finds that the set of rows has changed because of another
recently committed transaction):

• Read uncommitted: Dirty reads, nonrepeatable reads, and phantom reads are
possible.

• Read committed: Nonrepeatable reads and phantom reads are possible.

• Repeatable read: Phantom reads are possible.

• Serializable: Prevents dirty reads, nonrepeatable reads, and phantom reads.
Though you can use any of the four transaction isolation levels, Amazon Redshift
processes all isolation levels as serializable.

READ WRITE

Gives the transaction read and write permissions.

BEGIN 1100

Amazon Redshift Database Developer Guide

READ ONLY

Gives the transaction read-only permissions.

Examples

The following example starts a serializable transaction block:

begin;

The following example starts the transaction block with a serializable isolation level and read and
write permissions:

begin read write;

CALL

Runs a stored procedure. The CALL command must include the procedure name and the input
argument values. You must call a stored procedure by using the CALL statement.

Note

CALL can't be part of any regular queries.

Syntax

CALL sp_name ([argument] [, ...])

Parameters

sp_name

The name of the procedure to run.

argument

The value of the input argument. This parameter can also be a function name, for example
pg_last_query_id(). You can't use queries as CALL arguments.

CALL 1101

Amazon Redshift Database Developer Guide

Usage notes

Amazon Redshift stored procedures support nested and recursive calls, as described following. In
addition, make sure your driver support is up-to-date, also described following.

Topics

• Nested calls

• Driver support

Nested calls

Amazon Redshift stored procedures support nested and recursive calls. The maximum number of
nesting levels allowed is 16. Nested calls can encapsulate business logic into smaller procedures,
which can be shared by multiple callers.

If you call a nested procedure that has output parameters, the inner procedure must define INOUT
arguments. In this case, the inner procedure is passed in a nonconstant variable. OUT arguments
aren't allowed. This behavior occurs because a variable is needed to hold the output of the inner
call.

The relationship between inner and outer procedures is logged in the from_sp_call column of
SVL_STORED_PROC_CALL.

The following example shows passing variables to a nested procedure call through INOUT
arguments.

CREATE OR REPLACE PROCEDURE inner_proc(INOUT a int, b int, INOUT c int) LANGUAGE
 plpgsql
AS $$
BEGIN
 a := b * a;
 c := b * c;
END;
$$;

CREATE OR REPLACE PROCEDURE outer_proc(multiplier int) LANGUAGE plpgsql
AS $$
DECLARE
 x int := 3;
 y int := 4;
BEGIN

CALL 1102

Amazon Redshift Database Developer Guide

 DROP TABLE IF EXISTS test_tbl;
 CREATE TEMP TABLE test_tbl(a int, b varchar(256));
 CALL inner_proc(x, multiplier, y);
 insert into test_tbl values (x, y::varchar);
END;
$$;

CALL outer_proc(5);

SELECT * from test_tbl;
 a | b
----+----
 15 | 20
(1 row)

Driver support

We recommend that you upgrade your Java Database Connectivity (JDBC) and Open Database
Connectivity (ODBC) drivers to the latest version that has support for Amazon Redshift stored
procedures.

You might be able to use your existing driver if your client tool uses driver API operations that pass
through the CALL statement to the server. Output parameters, if any, are returned as a result set of
one row.

The latest versions of Amazon Redshift JDBC and ODBC drivers have metadata support for stored
procedure discovery. They also have CallableStatement support for custom Java applications.
For more information on drivers, see Connecting to an Amazon Redshift Cluster Using SQL Client
Tools in the Amazon Redshift Management Guide.

The following examples show how to use different API operations of the JDBC driver for stored
procedure calls.

void statement_example(Connection conn) throws SQLException {
 statement.execute("CALL sp_statement_example(1)");
}

void prepared_statement_example(Connection conn) throws SQLException {
 String sql = "CALL sp_prepared_statement_example(42, 84)";
 PreparedStatement pstmt = conn.prepareStatement(sql);
 pstmt.execute();
}

CALL 1103

https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-to-cluster.html
https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-to-cluster.html

Amazon Redshift Database Developer Guide

void callable_statement_example(Connection conn) throws SQLException {
 CallableStatement cstmt = conn.prepareCall("CALL sp_create_out_in(?,?)");
 cstmt.registerOutParameter(1, java.sql.Types.INTEGER);
 cstmt.setInt(2, 42);
 cstmt.executeQuery();
 Integer out_value = cstmt.getInt(1);
}

Examples

The following example calls the procedure name test_spl.

call test_sp1(3,'book');
INFO: Table "tmp_tbl" does not exist and will be skipped
INFO: min_val = 3, f2 = book

The following example calls the procedure name test_spl2.

call test_sp2(2,'2019');

 f2 | column2
---------------------+---------
 2019+2019+2019+2019 | 2
(1 row)

CANCEL

Cancels a database query that is currently running.

The CANCEL command requires the process ID or session ID of the running query and displays a
confirmation message to verify that the query was canceled.

Required privileges

Following are required privileges for CANCEL:

• Superuser canceling their own query

• Superuser canceling a user's query

• Users with the CANCEL privilege canceling a user's query

• User canceling their own query

CANCEL 1104

Amazon Redshift Database Developer Guide

Syntax

CANCEL process_id ['message']

Parameters

process_id

To cancel a query running in an Amazon Redshift cluster, use the pid (Process ID) from
STV_RECENTS that corresponds to the query that you want to cancel.

To cancel a query running in an Amazon Redshift Serverless workgroup, use the session_id
from SYS_QUERY_HISTORY that corresponds to the query that you want to cancel.

'message'

An optional confirmation message that displays when the query cancellation completes. If you
don't specify a message, Amazon Redshift displays the default message as verification. You
must enclose the message in single quotation marks.

Usage notes

You can't cancel a query by specifying a query ID; you must specify the query's process ID (PID) or
Session ID. You can only cancel queries currently being run by your user. Superusers can cancel all
queries.

If queries in multiple sessions hold locks on the same table, you can use the
PG_TERMINATE_BACKEND function to terminate one of the sessions. Doing this forces any
currently running transactions in the terminated session to release all locks and roll back the
transaction. To view currently held locks, query the STV_LOCKS system table.

Following certain internal events, Amazon Redshift might restart an active session and assign a
new PID. If the PID has changed, you might receive the following error message.

Session <PID> does not exist. The session PID might have changed. Check the
 stl_restarted_sessions system table for details.

To find the new PID, query the STL_RESTARTED_SESSIONS system table and filter on the oldpid
column.

CANCEL 1105

Amazon Redshift Database Developer Guide

select oldpid, newpid from stl_restarted_sessions where oldpid = 1234;

Examples

To cancel a currently running query in a Amazon Redshift cluster, first retrieve the process ID for
the query that you want to cancel. To determine the process IDs for all currently running queries,
type the following command:

select pid, starttime, duration,
trim(user_name) as user,
trim (query) as querytxt
from stv_recents
where status = 'Running';

pid | starttime | duration | user | querytxt
-----+----------------------------+----------+----------+-----------------
802 | 2008-10-14 09:19:03.550885 | 132 | dwuser | select
venuename from venue where venuestate='FL', where venuecity not in
('Miami' , 'Orlando');
834 | 2008-10-14 08:33:49.473585 | 1250414 | dwuser | select *
from listing;
964 | 2008-10-14 08:30:43.290527 | 326179 | dwuser | select
sellerid from sales where qtysold in (8, 10);

Check the query text to determine which process id (PID) corresponds to the query that you want
to cancel.

Type the following command to use PID 802 to cancel that query:

cancel 802;

The session where the query was running displays the following message:

ERROR: Query (168) cancelled on user's request

where 168 is the query ID (not the process ID used to cancel the query).

Alternatively, you can specify a custom confirmation message to display instead of the default
message. To specify a custom message, include your message in single quotation marks at the end
of the CANCEL command:

CANCEL 1106

Amazon Redshift Database Developer Guide

cancel 802 'Long-running query';

The session where the query was running displays the following message:

ERROR: Long-running query

CLOSE

(Optional) Closes all of the free resources that are associated with an open cursor. COMMIT, END,
and ROLLBACK automatically close the cursor, so it isn't necessary to use the CLOSE command to
explicitly close the cursor.

For more information, see DECLARE, FETCH.

Syntax

CLOSE cursor

Parameters

cursor

Name of the cursor to close.

CLOSE example

The following commands close the cursor and perform a commit, which ends the transaction:

close movie_cursor;
commit;

COMMENT

Creates or changes a comment about a database object.

Syntax

COMMENT ON

CLOSE 1107

Amazon Redshift Database Developer Guide

{
TABLE object_name |
COLUMN object_name.column_name |
CONSTRAINT constraint_name ON table_name |
DATABASE object_name |
VIEW object_name
}
IS 'text' | NULL

Parameters

object_name

Name of the database object being commented on. You can add a comment to the following
objects:

• TABLE

• COLUMN (also takes a column_name).

• CONSTRAINT (also takes a constraint_name and table_name).

• DATABASE

• VIEW

• SCHEMA

IS 'text' | NULL

The comment text that you want to add or replace for the specified object. The text string
is data type TEXT. Enclose the comment in single quotation marks. Set the value to NULL to
remove the comment text.

column_name

Name of the column being commented on. Parameter of COLUMN. Follows a table specified in
object_name.

constraint_name

Name of the constraint that is being commented on. Parameter of CONSTRAINT.

table_name

Name of a table containing the constraint. Parameter of CONSTRAINT.

COMMENT 1108

Amazon Redshift Database Developer Guide

Usage notes

You must be a superuser or the owner of a database object to add or update a comment.

Comments on databases may only be applied to the current database. A warning message is
displayed if you attempt to comment on a different database. The same warning is displayed for
comments on databases that don't exist.

Comments on external tables, external columns, and columns of late binding views are not
supported.

Examples

The following example adds a comment to the SALES table.

COMMENT ON TABLE sales IS 'This table stores tickets sales data';

The following example displays the comment on the SALES table.

select obj_description('public.sales'::regclass);

obj_description

This table stores tickets sales data

The following example removes a comment from the SALES table.

COMMENT ON TABLE sales IS NULL;

The following example adds a comment to the EVENTID column of the SALES table.

COMMENT ON COLUMN sales.eventid IS 'Foreign-key reference to the EVENT table.';

The following example displays a comment on the EVENTID column (column number 5) of the
SALES table.

select col_description('public.sales'::regclass, 5::integer);

col_description

COMMENT 1109

Amazon Redshift Database Developer Guide

Foreign-key reference to the EVENT table.

The following example adds a descriptive comment to the EVENT table.

comment on table event is 'Contains listings of individual events.';

To view comments, query the PG_DESCRIPTION system catalog. The following example returns the
description for the EVENT table.

select * from pg_catalog.pg_description
where objoid =
(select oid from pg_class where relname = 'event'
and relnamespace =
(select oid from pg_catalog.pg_namespace where nspname = 'public'));

objoid | classoid | objsubid | description
-------+----------+----------+--
116658 | 1259 | 0 | Contains listings of individual events.

COMMIT

Commits the current transaction to the database. This command makes the database updates from
the transaction permanent.

Syntax

COMMIT [WORK | TRANSACTION]

Parameters

WORK

Optional keyword. This keyword isn't supported within a stored procedure.

TRANSACTION

Optional keyword. WORK and TRANSACTION are synonyms. Neither is supported within a
stored procedure.

For information about using COMMIT within a stored procedure, see Managing transactions.

COMMIT 1110

Amazon Redshift Database Developer Guide

Examples

Each of the following examples commits the current transaction to the database:

commit;

commit work;

commit transaction;

COPY

Loads data into a table from data files or from an Amazon DynamoDB table. The files can be
located in an Amazon Simple Storage Service (Amazon S3) bucket, an Amazon EMR cluster, or a
remote host that is accessed using a Secure Shell (SSH) connection.

Note

Amazon Redshift Spectrum external tables are read-only. You can't COPY to an external
table.

The COPY command appends the input data as additional rows to the table.

The maximum size of a single input row from any source is 4 MB.

Topics

• Required permissions

• COPY syntax

• Required parameters

• Optional parameters

• Usage notes and additional resources for the COPY command

• COPY command examples

• COPY JOB (preview)

• COPY parameter reference

• Usage notes

COPY 1111

Amazon Redshift Database Developer Guide

• COPY examples

Required permissions

To use the COPY command, you must have INSERT privilege for the Amazon Redshift table.

COPY syntax

COPY table-name
[column-list]
FROM data_source
authorization
[[FORMAT] [AS] data_format]
[parameter [argument] [, ...]]

You can perform a COPY operation with as few as three parameters: a table name, a data source,
and authorization to access the data.

Amazon Redshift extends the functionality of the COPY command to enable you to load data
in several data formats from multiple data sources, control access to load data, manage data
transformations, and manage the load operation.

The following sections present the required COPY command parameters, grouping the optional
parameters by function. They also describe each parameter and explain how various options work
together. You can go directly to a parameter description by using the alphabetical parameter list.

Required parameters

The COPY command requires three elements:

• Table Name

• Data Source

• Authorization

The simplest COPY command uses the following format.

COPY table-name
FROM data-source
authorization;

COPY 1112

Amazon Redshift Database Developer Guide

The following example creates a table named CATDEMO, and then loads the table with sample
data from a data file in Amazon S3 named category_pipe.txt.

create table catdemo(catid smallint, catgroup varchar(10), catname varchar(10), catdesc
 varchar(50));

In the following example, the data source for the COPY command is a data file named
category_pipe.txt in the tickit folder of an Amazon S3 bucket named redshift-
downloads. The COPY command is authorized to access the Amazon S3 bucket through an AWS
Identity and Access Management (IAM) role. If your cluster has an existing IAM role with permission
to access Amazon S3 attached, you can substitute your role's Amazon Resource Name (ARN) in the
following COPY command and run it.

copy catdemo
from 's3://redshift-downloads/tickit/category_pipe.txt'
iam_role 'arn:aws:iam::<aws-account-id>:role/<role-name>'
region 'us-east-1';

For complete instructions on how to use COPY commands to load sample data, including
instructions for loading data from other AWS regions, see Load Sample Data from Amazon S3 in
the Amazon Redshift Getting Started Guide.

table-name

The name of the target table for the COPY command. The table must already exist in the
database. The table can be temporary or persistent. The COPY command appends the new
input data to any existing rows in the table.

FROM data-source

The location of the source data to be loaded into the target table. A manifest file can be
specified with some data sources.

The most commonly used data repository is an Amazon S3 bucket. You can also load from data
files located in an Amazon EMR cluster, an Amazon EC2 instance, or a remote host that your
cluster can access using an SSH connection, or you can load directly from a DynamoDB table.

• COPY from Amazon S3

• COPY from Amazon EMR

• COPY from remote host (SSH)

COPY 1113

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-create-sample-db.html

Amazon Redshift Database Developer Guide

• COPY from Amazon DynamoDB

Authorization

A clause that indicates the method that your cluster uses for authentication and authorization
to access other AWS resources. The COPY command needs authorization to access data in
another AWS resource, including in Amazon S3, Amazon EMR, Amazon DynamoDB, and Amazon
EC2. You can provide that authorization by referencing an IAM role that is attached to your
cluster or by providing the access key ID and secret access key for an IAM user.

• Authorization parameters

• Role-based access control

• Key-based access control

Optional parameters

You can optionally specify how COPY maps field data to columns in the target table, define source
data attributes to enable the COPY command to correctly read and parse the source data, and
manage which operations the COPY command performs during the load process.

• Column mapping options

• Data format parameters

• Data conversion parameters

• Data load operations

Column mapping

By default, COPY inserts field values into the target table's columns in the same order as the fields
occur in the data files. If the default column order will not work, you can specify a column list or
use JSONPath expressions to map source data fields to the target columns.

• Column List

• JSONPaths File

Data format parameters

You can load data from text files in fixed-width, character-delimited, comma-separated values
(CSV), or JSON format, or from Avro files.

COPY 1114

Amazon Redshift Database Developer Guide

By default, the COPY command expects the source data to be in character-delimited UTF-8 text
files. The default delimiter is a pipe character (|). If the source data is in another format, use the
following parameters to specify the data format.

• FORMAT

• CSV

• DELIMITER

• FIXEDWIDTH

• SHAPEFILE

• AVRO

• JSON

• ENCRYPTED

• BZIP2

• GZIP

• LZOP

• PARQUET

• ORC

• ZSTD

Data conversion parameters

As it loads the table, COPY attempts to implicitly convert the strings in the source data to the
data type of the target column. If you need to specify a conversion that is different from the
default behavior, or if the default conversion results in errors, you can manage data conversions by
specifying the following parameters.

• ACCEPTANYDATE

• ACCEPTINVCHARS

• BLANKSASNULL

• DATEFORMAT

• EMPTYASNULL

• ENCODING

COPY 1115

Amazon Redshift Database Developer Guide

• ESCAPE

• EXPLICIT_IDS

• FILLRECORD

• IGNOREBLANKLINES

• IGNOREHEADER

• NULL AS

• REMOVEQUOTES

• ROUNDEC

• TIMEFORMAT

• TRIMBLANKS

• TRUNCATECOLUMNS

Data load operations

Manage the default behavior of the load operation for troubleshooting or to reduce load times by
specifying the following parameters.

• COMPROWS

• COMPUPDATE

• IGNOREALLERRORS

• MAXERROR

• NOLOAD

• STATUPDATE

Usage notes and additional resources for the COPY command

For more information about how to use the COPY command, see the following topics:

• Usage notes

• Tutorial: Loading data from Amazon S3

• Amazon Redshift best practices for loading data

• Using a COPY command to load data

COPY 1116

Amazon Redshift Database Developer Guide

• Loading data from Amazon S3

• Loading data from Amazon EMR

• Loading data from remote hosts

• Loading data from an Amazon DynamoDB table

• Troubleshooting data loads

COPY command examples

For more examples that show how to COPY from various sources, in disparate formats, and with
different COPY options, see COPY examples.

COPY JOB (preview)

This is prerelease documentation for autocopy (SQL COPY JOB), which is in preview release.
The documentation and the feature are both subject to change. We recommend that you use
this feature only in test environments, and not in production environments. Public preview
will end on June 30, 2024. Preview clusters will be removed automatically two weeks after the
end of the preview. For preview terms and conditions, see Betas and Previews in AWS Service
Terms.

For information about using this command in preview, see Continuous file ingestion from Amazon
S3 (preview).

Manages COPY commands that load data into a table. The COPY JOB command is an extension
of the COPY command and automates data loading from Amazon S3 buckets. When you create a
COPY job, Amazon Redshift detects when new Amazon S3 files are created in a specified path, and
then loads them automatically without your intervention. The same parameters that are used in
the original COPY command are used when loading the data. Amazon Redshift keeps track of the
loaded files to verify that they are loaded only one time.

Note

For information about the COPY command, including usage, parameters, and permissions,
see COPY.

COPY 1117

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/

Amazon Redshift Database Developer Guide

Required permission

To run the COPY command of a COPY JOB, you must have INSERT privilege of the table being
loaded.

The IAM role specified with the COPY command must have permission to access the data to load.
For more information, see IAM permissions for COPY, UNLOAD, and CREATE LIBRARY.

Syntax

Create a copy job. The parameters of the COPY command are saved with the copy job.

COPY copy-command JOB CREATE job-name
[AUTO ON | OFF]

Change the configuration of a copy job.

COPY JOB ALTER job-name
[AUTO ON | OFF]

Run a copy job. The stored COPY command parameters are used.

COPY JOB RUN job-name

List all copy jobs.

COPY JOB LIST

Show the details of a copy job.

COPY JOB SHOW job-name

Delete a copy job.

COPY JOB DROP job-name

COPY 1118

Amazon Redshift Database Developer Guide

Parameters

copy-command

A COPY command that loads data from Amazon S3 to Amazon Redshift. The clause contains
COPY parameters that define the Amazon S3 bucket, target table, IAM role, and other
parameters used when loading data. All COPY command parameters for an Amazon S3 data
load are supported except:

• The COPY JOB does not ingest preexisting files in the folder pointed to by the COPY
command. Only files created after the COPY JOB creation timestamp are ingested.

• You cannot specify a COPY command with the MAXERROR or IGNOREALLERRORS options.

• You cannot specify a manifest file. COPY JOB requires a designated Amazon S3 location to
monitor for newly created files.

• You cannot specify a COPY command with authorization types like Access and Secret keys.
Only COPY commands that use the IAM_ROLE parameter for authorization are supported. For
more information, see Authorization parameters.

• The COPY JOB doesn't support the default IAM role associated with the cluster. You must
specify the IAM_ROLE in the COPY command.

For more information, see COPY from Amazon S3.

job-name

The name of the job used to reference the COPY job.

[AUTO ON | OFF]

Clause that indicates whether Amazon S3 data is automatically loaded into Amazon Redshift
tables.

• When ON, Amazon Redshift monitors the source Amazon S3 path for newly created files, and
if found, a COPY command is run with the COPY parameters in the job definition. This is the
default.

• When OFF, Amazon Redshift does not run the COPY JOB automatically.

Usage notes

The options of the COPY command aren't validated until run time. For example, an invalid
IAM_ROLE or an Amazon S3 data source results in runtime errors when the COPY JOB starts.

COPY 1119

Amazon Redshift Database Developer Guide

If the cluster is paused, COPY JOBS are not run.

To query COPY command files loaded and load errors, see STL_LOAD_COMMITS,
STL_LOAD_ERRORS, STL_LOADERROR_DETAIL. For more information, see Verifying that the data
loaded correctly.

Examples

The following example shows creating a COPY JOB to load data from an Amazon S3 bucket.

COPY public.target_table
FROM 's3://mybucket-bucket/staging-folder'
IAM_ROLE 'arn:aws:iam::123456789012:role/MyLoadRoleName'
JOB CREATE my_copy_job_name
AUTO ON;

COPY parameter reference

COPY has many parameters that can be used in many situations. However, not all parameters are
supported in each situation. For example, to load from ORC or PARQUET files there is a limited
number of supported parameters. For more information, see COPY from columnar data formats.

Topics

• Data sources

• Authorization parameters

• Column mapping options

• Data format parameters

• File compression parameters

• Data conversion parameters

• Data load operations

• Alphabetical parameter list

Data sources

You can load data from text files in an Amazon S3 bucket, in an Amazon EMR cluster, or on a
remote host that your cluster can access using an SSH connection. You can also load data directly
from a DynamoDB table.

COPY 1120

Amazon Redshift Database Developer Guide

The maximum size of a single input row from any source is 4 MB.

To export data from a table to a set of files in an Amazon S3, use the UNLOAD command.

Topics

• COPY from Amazon S3

• COPY from Amazon EMR

• COPY from remote host (SSH)

• COPY from Amazon DynamoDB

COPY from Amazon S3

To load data from files located in one or more S3 buckets, use the FROM clause to indicate how
COPY locates the files in Amazon S3. You can provide the object path to the data files as part of
the FROM clause, or you can provide the location of a manifest file that contains a list of Amazon
S3 object paths. COPY from Amazon S3 uses an HTTPS connection. Ensure that the S3 IP ranges
are added to your allow list. To learn more about the required S3 IP ranges, see Network isolation.

Important

If the Amazon S3 buckets that hold the data files don't reside in the same AWS Region as
your cluster, you must use the REGION parameter to specify the Region in which the data is
located.

Topics

• Syntax

• Examples

• Optional parameters

• Unsupported parameters

Syntax

FROM { 's3://objectpath' | 's3://manifest_file' }
authorization

COPY 1121

https://docs.aws.amazon.com/redshift/latest/mgmt/security-network-isolation.html#network-isolation

Amazon Redshift Database Developer Guide

| MANIFEST
| ENCRYPTED
| REGION [AS] 'aws-region'
| optional-parameters

Examples

The following example uses an object path to load data from Amazon S3.

copy customer
from 's3://mybucket/customer'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

The following example uses a manifest file to load data from Amazon S3.

copy customer
from 's3://mybucket/cust.manifest'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
manifest;

Parameters

FROM

The source of the data to be loaded. For more information about the encoding of the Amazon
S3 file, see Data conversion parameters.

's3://copy_from_s3_objectpath'

Specifies the path to the Amazon S3 objects that contain the data—for example,
's3://mybucket/custdata.txt'. The s3://copy_from_s3_objectpath parameter can
reference a single file or a set of objects or folders that have the same key prefix. For
example, the name custdata.txt is a key prefix that refers to a number of physical files:
custdata.txt,custdata.txt.1, custdata.txt.2, custdata.txt.bak,and so on.
The key prefix can also reference a number of folders. For example, 's3://mybucket/
custfolder' refers to the folders custfolder, custfolder_1, custfolder_2, and so on.
If a key prefix references multiple folders, all of the files in the folders are loaded. If a key prefix
matches a file as well as a folder, such as custfolder.log, COPY attempts to load the file
also. If a key prefix might result in COPY attempting to load unwanted files, use a manifest file.
For more information, see copy_from_s3_manifest_file, following.

COPY 1122

Amazon Redshift Database Developer Guide

Important

If the S3 bucket that holds the data files doesn't reside in the same AWS Region as your
cluster, you must use the REGION parameter to specify the Region in which the data is
located.

For more information, see Loading data from Amazon S3.

's3://copy_from_s3_manifest_file'

Specifies the Amazon S3 object key for a manifest file that lists the data files to be loaded. The
's3://copy_from_s3_manifest_file' argument must explicitly reference a single file—for example,
's3://mybucket/manifest.txt'. It can't reference a key prefix.

The manifest is a text file in JSON format that lists the URL of each file that is to be loaded
from Amazon S3. The URL includes the bucket name and full object path for the file. The files
that are specified in the manifest can be in different buckets, but all the buckets must be in the
same AWS Region as the Amazon Redshift cluster. If a file is listed twice, the file is loaded twice.
The following example shows the JSON for a manifest that loads three files.

{
 "entries": [
 {"url":"s3://mybucket-alpha/custdata.1","mandatory":true},
 {"url":"s3://mybucket-alpha/custdata.2","mandatory":true},
 {"url":"s3://mybucket-beta/custdata.1","mandatory":false}
]
}

The double quotation mark characters are required, and must be simple quotation marks
(0x22), not slanted or "smart" quotation marks. Each entry in the manifest can optionally
include a mandatory flag. If mandatory is set to true, COPY terminates if it doesn't find the
file for that entry; otherwise, COPY will continue. The default value for mandatory is false.

When loading from data files in ORC or Parquet format, a meta field is required, as shown in the
following example.

{
 "entries":[
 {

COPY 1123

Amazon Redshift Database Developer Guide

 "url":"s3://mybucket-alpha/orc/2013-10-04-custdata",
 "mandatory":true,
 "meta":{
 "content_length":99
 }
 },
 {
 "url":"s3://mybucket-beta/orc/2013-10-05-custdata",
 "mandatory":true,
 "meta":{
 "content_length":99
 }
 }
]
}

The manifest file must not be encrypted or compressed, even if the ENCRYPTED, GZIP, LZOP,
BZIP2, or ZSTD options are specified. COPY returns an error if the specified manifest file isn't
found or the manifest file isn't properly formed.

If a manifest file is used, the MANIFEST parameter must be specified with the COPY command.
If the MANIFEST parameter isn't specified, COPY assumes that the file specified with FROM is a
data file.

For more information, see Loading data from Amazon S3.

authorization

The COPY command needs authorization to access data in another AWS resource, including
in Amazon S3, Amazon EMR, Amazon DynamoDB, and Amazon EC2. You can provide that
authorization by referencing an AWS Identity and Access Management (IAM) role that is
attached to your cluster (role-based access control) or by providing the access credentials for a
user (key-based access control). For increased security and flexibility, we recommend using IAM
role-based access control. For more information, see Authorization parameters.

MANIFEST

Specifies that a manifest is used to identify the data files to be loaded from Amazon S3. If the
MANIFEST parameter is used, COPY loads data from the files listed in the manifest referenced
by 's3://copy_from_s3_manifest_file'. If the manifest file isn't found, or isn't properly formed,
COPY fails. For more information, see Using a manifest to specify data files.

COPY 1124

Amazon Redshift Database Developer Guide

ENCRYPTED

A clause that specifies that the input files on Amazon S3 are encrypted using client-side
encryption with customer managed keys. For more information, see Loading encrypted
data files from Amazon S3. Don't specify ENCRYPTED if the input files are encrypted using
Amazon S3 server-side encryption (SSE-KMS or SSE-S3). COPY reads server-side encrypted files
automatically.

If you specify the ENCRYPTED parameter, you must also specify the MASTER_SYMMETRIC_KEY
parameter or include the master_symmetric_key value in the CREDENTIALS string.

If the encrypted files are in compressed format, add the GZIP, LZOP, BZIP2, or ZSTD parameter.

Manifest files and JSONPaths files must not be encrypted, even if the ENCRYPTED option is
specified.

MASTER_SYMMETRIC_KEY 'root_key'

The root symmetric key that was used to encrypt data files on Amazon S3. If
MASTER_SYMMETRIC_KEY is specified, the ENCRYPTED parameter must also be specified.
MASTER_SYMMETRIC_KEY can't be used with the CREDENTIALS parameter. For more
information, see Loading encrypted data files from Amazon S3.

If the encrypted files are in compressed format, add the GZIP, LZOP, BZIP2, or ZSTD parameter.

REGION [AS] 'aws-region'

Specifies the AWS Region where the source data is located. REGION is required for COPY from
an Amazon S3 bucket or an DynamoDB table when the AWS resource that contains the data
isn't in the same Region as the Amazon Redshift cluster.

The value for aws_region must match a Region listed in the Amazon Redshift regions and
endpoints table.

If the REGION parameter is specified, all resources, including a manifest file or multiple Amazon
S3 buckets, must be located in the specified Region.

Note

Transferring data across Regions incurs additional charges against the Amazon S3
bucket or the DynamoDB table that contains the data. For more information about

COPY 1125

https://docs.aws.amazon.com/general/latest/gr/rande.html#redshift_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#redshift_region

Amazon Redshift Database Developer Guide

pricing, see Data Transfer OUT From Amazon S3 To Another AWS Region on the
Amazon S3 Pricing page and Data Transfer OUT on the Amazon DynamoDB Pricing
page.

By default, COPY assumes that the data is located in the same Region as the Amazon Redshift
cluster.

Optional parameters

You can optionally specify the following parameters with COPY from Amazon S3:

• Column mapping options

• Data format parameters

• Data conversion parameters

• Data load operations

Unsupported parameters

You can't use the following parameters with COPY from Amazon S3:

• SSH

• READRATIO

COPY from Amazon EMR

You can use the COPY command to load data in parallel from an Amazon EMR cluster configured
to write text files to the cluster's Hadoop Distributed File System (HDFS) in the form of fixed-width
files, character-delimited files, CSV files, JSON-formatted files, or Avro files.

Topics

• Syntax

• Example

• Parameters

• Supported parameters

COPY 1126

https://aws.amazon.com/s3/pricing/
https://aws.amazon.com/dynamodb/pricing/

Amazon Redshift Database Developer Guide

• Unsupported parameters

Syntax

FROM 'emr://emr_cluster_id/hdfs_filepath'
authorization
[optional_parameters]

Example

The following example loads data from an Amazon EMR cluster.

copy sales
from 'emr://j-SAMPLE2B500FC/myoutput/part-*'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

Parameters

FROM

The source of the data to be loaded.

'emr://emr_cluster_id/hdfs_file_path'

The unique identifier for the Amazon EMR cluster and the HDFS file path that references the
data files for the COPY command. The HDFS data file names must not contain the wildcard
characters asterisk (*) and question mark (?).

Note

The Amazon EMR cluster must continue running until the COPY operation completes.
If any of the HDFS data files are changed or deleted before the COPY operation
completes, you might have unexpected results, or the COPY operation might fail.

You can use the wildcard characters asterisk (*) and question mark (?) as part of the
hdfs_file_path argument to specify multiple files to be loaded. For example, 'emr://j-
SAMPLE2B500FC/myoutput/part*' identifies the files part-0000, part-0001, and so on.
If the file path doesn't contain wildcard characters, it is treated as a string literal. If you specify
only a folder name, COPY attempts to load all files in the folder.

COPY 1127

Amazon Redshift Database Developer Guide

Important

If you use wildcard characters or use only the folder name, verify that no unwanted files
will be loaded. For example, some processes might write a log file to the output folder.

For more information, see Loading data from Amazon EMR.

authorization

The COPY command needs authorization to access data in another AWS resource, including
in Amazon S3, Amazon EMR, Amazon DynamoDB, and Amazon EC2. You can provide that
authorization by referencing an AWS Identity and Access Management (IAM) role that is
attached to your cluster (role-based access control) or by providing the access credentials for a
user (key-based access control). For increased security and flexibility, we recommend using IAM
role-based access control. For more information, see Authorization parameters.

Supported parameters

You can optionally specify the following parameters with COPY from Amazon EMR:

• Column mapping options

• Data format parameters

• Data conversion parameters

• Data load operations

Unsupported parameters

You can't use the following parameters with COPY from Amazon EMR:

• ENCRYPTED

• MANIFEST

• REGION

• READRATIO

• SSH

COPY 1128

Amazon Redshift Database Developer Guide

COPY from remote host (SSH)

You can use the COPY command to load data in parallel from one or more remote hosts, such
Amazon Elastic Compute Cloud (Amazon EC2) instances or other computers. COPY connects to
the remote hosts using Secure Shell (SSH) and runs commands on the remote hosts to generate
text output. The remote host can be an EC2 Linux instance or another Unix or Linux computer
configured to accept SSH connections. Amazon Redshift can connect to multiple hosts, and can
open multiple SSH connections to each host. Amazon Redshift sends a unique command through
each connection to generate text output to the host's standard output, which Amazon Redshift
then reads as it does a text file.

Use the FROM clause to specify the Amazon S3 object key for the manifest file that provides the
information COPY uses to open SSH connections and run the remote commands.

Topics

• Syntax

• Examples

• Parameters

• Optional parameters

• Unsupported parameters

Important

If the S3 bucket that holds the manifest file doesn't reside in the same AWS Region as your
cluster, you must use the REGION parameter to specify the Region in which the bucket is
located.

Syntax

FROM 's3://'ssh_manifest_file' }
authorization
SSH
| optional-parameters

Examples

The following example uses a manifest file to load data from a remote host using SSH.

COPY 1129

Amazon Redshift Database Developer Guide

copy sales
from 's3://mybucket/ssh_manifest'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
ssh;

Parameters

FROM

The source of the data to be loaded.

's3://copy_from_ssh_manifest_file'

The COPY command can connect to multiple hosts using SSH, and can create multiple SSH
connections to each host. COPY runs a command through each host connection, and then loads
the output from the commands in parallel into the table. The s3://copy_from_ssh_manifest_file
argument specifies the Amazon S3 object key for the manifest file that provides the
information COPY uses to open SSH connections and run the remote commands.

The s3://copy_from_ssh_manifest_file argument must explicitly reference a single file; it can't be
a key prefix. The following shows an example:

's3://mybucket/ssh_manifest.txt'

The manifest file is a text file in JSON format that Amazon Redshift uses to connect to the host.
The manifest file specifies the SSH host endpoints and the commands that will be run on the
hosts to return data to Amazon Redshift. Optionally, you can include the host public key, the
login user name, and a mandatory flag for each entry. The following example shows a manifest
file that creates two SSH connections:

{
 "entries": [
 {"endpoint":"<ssh_endpoint_or_IP>",
 "command": "<remote_command>",
 "mandatory":true,
 "publickey": "<public_key>",
 "username": "<host_user_name>"},
 {"endpoint":"<ssh_endpoint_or_IP>",
 "command": "<remote_command>",
 "mandatory":true,
 "publickey": "<public_key>",
 "username": "<host_user_name>"}

COPY 1130

Amazon Redshift Database Developer Guide

]
}

The manifest file contains one "entries" construct for each SSH connection. You can have
multiple connections to a single host or multiple connections to multiple hosts. The double
quotation mark characters are required as shown, both for the field names and the values. The
quotation mark characters must be simple quotation marks (0x22), not slanted or "smart"
quotation marks. The only value that doesn't need double quotation mark characters is the
Boolean value true or false for the "mandatory" field.

The following list describes the fields in the manifest file.

endpoint

The URL address or IP address of the host—for example,
"ec2-111-222-333.compute-1.amazonaws.com", or "198.51.100.0".

command

The command to be run by the host to generate text output or binary output in gzip, lzop,
bzip2, or zstd format. The command can be any command that the user "host_user_name"
has permission to run. The command can be as simple as printing a file, or it can query a
database or launch a script. The output (text file, gzip binary file, lzop binary file, or bzip2
binary file) must be in a form that the Amazon Redshift COPY command can ingest. For
more information, see Preparing your input data.

publickey

(Optional) The public key of the host. If provided, Amazon Redshift will use the public key
to identify the host. If the public key isn't provided, Amazon Redshift will not attempt
host identification. For example, if the remote host's public key is ssh-rsa AbcCbaxxx…
Example root@amazon.com, type the following text in the public key field: "AbcCbaxxx…
Example"

mandatory

(Optional) A clause that indicates whether the COPY command should fail if the connection
attempt fails. The default is false. If Amazon Redshift doesn't successfully make at least
one connection, the COPY command fails.

username

(Optional) The user name that will be used to log on to the host system and run the remote
command. The user login name must be the same as the login that was used to add the

COPY 1131

Amazon Redshift Database Developer Guide

Amazon Redshift cluster's public key to the host's authorized keys file. The default username
is redshift.

For more information about creating a manifest file, see Loading data process.

To COPY from a remote host, the SSH parameter must be specified with the COPY command. If
the SSH parameter isn't specified, COPY assumes that the file specified with FROM is a data file
and will fail.

If you use automatic compression, the COPY command performs two data read operations,
which means it will run the remote command twice. The first read operation is to provide
a data sample for compression analysis, then the second read operation actually loads the
data. If executing the remote command twice might cause a problem, you should disable
automatic compression. To disable automatic compression, run the COPY command with the
COMPUPDATE parameter set to OFF. For more information, see Loading tables with automatic
compression.

For detailed procedures for using COPY from SSH, see Loading data from remote hosts.

authorization

The COPY command needs authorization to access data in another AWS resource, including
in Amazon S3, Amazon EMR, Amazon DynamoDB, and Amazon EC2. You can provide that
authorization by referencing an AWS Identity and Access Management (IAM) role that is
attached to your cluster (role-based access control) or by providing the access credentials for a
user (key-based access control). For increased security and flexibility, we recommend using IAM
role-based access control. For more information, see Authorization parameters.

SSH

A clause that specifies that data is to be loaded from a remote host using the SSH
protocol. If you specify SSH, you must also provide a manifest file using the s3://
copy_from_ssh_manifest_file argument.

Note

If you are using SSH to copy from a host using a private IP address in a remote VPC, the
VPC must have enhanced VPC routing enabled. For more information about Enhanced
VPC routing, see Amazon Redshift Enhanced VPC Routing.

COPY 1132

https://docs.aws.amazon.com/redshift/latest/mgmt/enhanced-vpc-routing.html

Amazon Redshift Database Developer Guide

Optional parameters

You can optionally specify the following parameters with COPY from SSH:

• Column mapping options

• Data format parameters

• Data conversion parameters

• Data load operations

Unsupported parameters

You can't use the following parameters with COPY from SSH:

• ENCRYPTED

• MANIFEST

• READRATIO

COPY from Amazon DynamoDB

To load data from an existing DynamoDB table, use the FROM clause to specify the DynamoDB
table name.

Topics

• Syntax

• Examples

• Optional parameters

• Unsupported parameters

Important

If the DynamoDB table doesn't reside in the same region as your Amazon Redshift cluster,
you must use the REGION parameter to specify the region in which the data is located.

COPY 1133

Amazon Redshift Database Developer Guide

Syntax

FROM 'dynamodb://table-name'
authorization
READRATIO ratio
| REGION [AS] 'aws_region'
| optional-parameters

Examples

The following example loads data from a DynamoDB table.

copy favoritemovies from 'dynamodb://ProductCatalog'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
readratio 50;

Parameters

FROM

The source of the data to be loaded.

'dynamodb://table-name'

The name of the DynamoDB table that contains the data, for example 'dynamodb://
ProductCatalog'. For details about how DynamoDB attributes are mapped to Amazon
Redshift columns, see Loading data from an Amazon DynamoDB table.

A DynamoDB table name is unique to an AWS account, which is identified by the AWS access
credentials.

authorization

The COPY command needs authorization to access data in another AWS resource, including in
Amazon S3, Amazon EMR, DynamoDB, and Amazon EC2. You can provide that authorization by
referencing an AWS Identity and Access Management (IAM) role that is attached to your cluster
(role-based access control) or by providing the access credentials for a user (key-based access
control). For increased security and flexibility, we recommend using IAM role-based access
control. For more information, see Authorization parameters.

READRATIO [AS] ratio

The percentage of the DynamoDB table's provisioned throughput to use for the data load.
READRATIO is required for COPY from DynamoDB. It can't be used with COPY from Amazon

COPY 1134

Amazon Redshift Database Developer Guide

S3. We highly recommend setting the ratio to a value less than the average unused provisioned
throughput. Valid values are integers 1–200.

Important

Setting READRATIO to 100 or higher enables Amazon Redshift to consume the entirety
of the DynamoDB table's provisioned throughput, which seriously degrades the
performance of concurrent read operations against the same table during the COPY
session. Write traffic is unaffected. Values higher than 100 are allowed to troubleshoot
rare scenarios when Amazon Redshift fails to fulfill the provisioned throughput of
the table. If you load data from DynamoDB to Amazon Redshift on an ongoing basis,
consider organizing your DynamoDB tables as a time series to separate live traffic from
the COPY operation.

Optional parameters

You can optionally specify the following parameters with COPY from Amazon DynamoDB:

• Column mapping options

• The following data conversion parameters are supported:

• ACCEPTANYDATE

• BLANKSASNULL

• DATEFORMAT

• EMPTYASNULL

• ROUNDEC

• TIMEFORMAT

• TRIMBLANKS

• TRUNCATECOLUMNS

• Data load operations

Unsupported parameters

You can't use the following parameters with COPY from DynamoDB:

• All data format parameters

COPY 1135

Amazon Redshift Database Developer Guide

• ESCAPE

• FILLRECORD

• IGNOREBLANKLINES

• IGNOREHEADER

• NULL

• REMOVEQUOTES

• ACCEPTINVCHARS

• MANIFEST

• ENCRYPTED

Authorization parameters

The COPY command needs authorization to access data in another AWS resource, including
in Amazon S3, Amazon EMR, Amazon DynamoDB, and Amazon EC2. You can provide that
authorization by referencing an AWS Identity and Access Management (IAM) role that is attached
to your cluster (role-based access control). You can encrypt your load data on Amazon S3.

The following topics provide more details and examples of authentication options:

• IAM permissions for COPY, UNLOAD, and CREATE LIBRARY

• Role-based access control

• Key-based access control

Use one of the following to provide authorization for the COPY command:

• IAM_ROLE parameter

• ACCESS_KEY_ID and SECRET_ACCESS_KEY parameters

• CREDENTIALS clause

IAM_ROLE { default | 'arn:aws:iam::<AWS account-id>:role/<role-name>' }

Use the default keyword to have Amazon Redshift use the IAM role that is set as default and
associated with the cluster when the COPY command runs.

COPY 1136

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

Amazon Redshift Database Developer Guide

Use the Amazon Resource Name (ARN) for an IAM role that your cluster uses for
authentication and authorization. If you specify IAM_ROLE, you can't use ACCESS_KEY_ID and
SECRET_ACCESS_KEY, SESSION_TOKEN, or CREDENTIALS.

The following shows the syntax for the IAM_ROLE parameter.

IAM_ROLE { default | 'arn:aws:iam::<AWS account-id>:role/<role-name>' }

For more information, see Role-based access control.

ACCESS_KEY_ID 'access-key-id ' SECRET_ACCESS_KEY 'secret-access-key'

This authorization method is not recommended.

Note

Instead of providing access credentials as plain text, we strongly recommend using role-
based authentication by specifying the IAM_ROLE parameter. For more information, see
Role-based access control.

SESSION_TOKEN 'temporary-token'

The session token for use with temporary access credentials. When SESSION_TOKEN
is specified, you must also use ACCESS_KEY_ID and SECRET_ACCESS_KEY to provide
temporary access key credentials. If you specify SESSION_TOKEN you can't use IAM_ROLE or
CREDENTIALS. For more information, see Temporary security credentials in the IAM User Guide.

Note

Instead of creating temporary security credentials, we strongly recommend using
role-based authentication. When you authorize using an IAM role, Amazon Redshift
automatically creates temporary user credentials for each session. For more
information, see Role-based access control.

The following shows the syntax for the SESSION_TOKEN parameter with the ACCESS_KEY_ID
and SECRET_ACCESS_KEY parameters.

ACCESS_KEY_ID '<access-key-id>'

COPY 1137

Amazon Redshift Database Developer Guide

SECRET_ACCESS_KEY '<secret-access-key>'
SESSION_TOKEN '<temporary-token>';

If you specify SESSION_TOKEN you can't use CREDENTIALS or IAM_ROLE.

[WITH] CREDENTIALS [AS] 'credentials-args'

A clause that indicates the method your cluster will use when accessing other AWS resources
that contain data files or manifest files. You can't use the CREDENTIALS parameter with
IAM_ROLE or ACCESS_KEY_ID and SECRET_ACCESS_KEY.

Note

For increased flexibility, we recommend using the IAM_ROLE parameter instead of the
CREDENTIALS parameter.

Optionally, if the ENCRYPTED parameter is used, the credentials-args string also provides the
encryption key.

The credentials-args string is case-sensitive and must not contain spaces.

The keywords WITH and AS are optional and are ignored.

You can specify either role-based access control or key-based access control. In either case, the
IAM role or user must have the permissions required to access the specified AWS resources. For
more information, see IAM permissions for COPY, UNLOAD, and CREATE LIBRARY.

Note

To safeguard your AWS credentials and protect sensitive data, we strongly recommend
using role-based access control.

To specify role-based access control, provide the credentials-args string in the following format.

'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'

To use temporary token credentials, you must provide the temporary access key ID, the
temporary secret access key, and the temporary token. The credentials-args string is in the
following format.

COPY 1138

Amazon Redshift Database Developer Guide

CREDENTIALS
'aws_access_key_id=<temporary-access-key-id>;aws_secret_access_key=<temporary-
secret-access-key>;token=<temporary-token>'

For more information, see Temporary security credentials.

If the ENCRYPTED parameter is used, the credentials-args string is in the following format,
where <root-key> is the value of the root key that was used to encrypt the files.

CREDENTIALS
'<credentials-args>;master_symmetric_key=<root-key>'

For example, the following COPY command uses role-based access control with an encryption
key.

copy customer from 's3://mybucket/mydata'
credentials
'aws_iam_role=arn:aws:iam::<account-id>:role/<role-name>;master_symmetric_key=<root-
key>'

The following COPY command shows role-based access control with an encryption key.

copy customer from 's3://mybucket/mydata'
credentials
'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-
name>;master_symmetric_key=<root-key>'

Column mapping options

By default, COPY inserts values into the target table's columns in the same order as fields occur
in the data files. If the default column order will not work, you can specify a column list or use
JSONPath expressions to map source data fields to the target columns.

• Column List

• JSONPaths File

COPY 1139

Amazon Redshift Database Developer Guide

Column list

You can specify a comma-separated list of column names to load source data fields into specific
target columns. The columns can be in any order in the COPY statement, but when loading from
flat files, such as in an Amazon S3 bucket, their order must match the order of the source data.

When loading from an Amazon DynamoDB table, order doesn't matter. The COPY command
matches attribute names in the items retrieved from the DynamoDB table to column names in the
Amazon Redshift table. For more information, see Loading data from an Amazon DynamoDB table

The format for a column list is as follows.

COPY tablename (column1 [,column2, ...])

If a column in the target table is omitted from the column list, then COPY loads the target column's
DEFAULT expression.

If the target column doesn't have a default, then COPY attempts to load NULL.

If COPY attempts to assign NULL to a column that is defined as NOT NULL, the COPY command
fails.

If an IDENTITY column is included in the column list, then EXPLICIT_IDS must also be specified; if
an IDENTITY column is omitted, then EXPLICIT_IDS can't be specified. If no column list is specified,
the command behaves as if a complete, in-order column list was specified, with IDENTITY columns
omitted if EXPLICIT_IDS was also not specified.

If a column is defined with GENERATED BY DEFAULT AS IDENTITY, then it can be copied. Values are
generated or updated with values that you supply. The EXPLICIT_IDS option isn't required. COPY
doesn't update the identity high watermark. For more information, see GENERATED BY DEFAULT
AS IDENTITY.

JSONPaths file

When loading from data files in JSON or Avro format, COPY automatically maps the data elements
in the JSON or Avro source data to the columns in the target table. It does so by matching field
names in the Avro schema to column names in the target table or column list.

In some cases, your column names and field names don't match, or you need to map to deeper
levels in the data hierarchy. In these cases, you can use a JSONPaths file to explicitly map JSON or
Avro data elements to columns.

COPY 1140

Amazon Redshift Database Developer Guide

For more information, see JSONPaths file.

Data format parameters

By default, the COPY command expects the source data to be character-delimited UTF-8 text. The
default delimiter is a pipe character (|). If the source data is in another format, use the following
parameters to specify the data format:

• FORMAT

• CSV

• DELIMITER

• FIXEDWIDTH

• SHAPEFILE

• AVRO

• JSON

• PARQUET

• ORC

In addition to the standard data formats, COPY supports the following columnar data formats for
COPY from Amazon S3:

• ORC

• PARQUET

COPY from columnar format is supported with certain restriction. For more information, see COPY
from columnar data formats.

Data format parameters

FORMAT [AS]

(Optional) Identifies data format keywords. The FORMAT arguments are described following.

CSV [QUOTE [AS] 'quote_character']

Enables use of CSV format in the input data. To automatically escape delimiters, newline
characters, and carriage returns, enclose the field in the character specified by the QUOTE

COPY 1141

Amazon Redshift Database Developer Guide

parameter. The default quotation mark character is a double quotation mark ("). When
the quotation mark character is used within a field, escape the character with an additional
quotation mark character. For example, if the quotation mark character is a double quotation
mark, to insert the string A "quoted" word the input file should include the string "A
""quoted"" word". When the CSV parameter is used, the default delimiter is a comma (,).
You can specify a different delimiter by using the DELIMITER parameter.

When a field is enclosed in quotation marks, white space between the delimiters and the
quotation mark characters is ignored. If the delimiter is a white space character, such as a tab,
the delimiter isn't treated as white space.

CSV can't be used with FIXEDWIDTH, REMOVEQUOTES, or ESCAPE.

QUOTE [AS] 'quote_character'

Optional. Specifies the character to be used as the quotation mark character when using the
CSV parameter. The default is a double quotation mark ("). If you use the QUOTE parameter
to define a quotation mark character other than double quotation mark, you don't need to
escape double quotation marks within the field. The QUOTE parameter can be used only
with the CSV parameter. The AS keyword is optional.

DELIMITER [AS] ['delimiter_char']

Specifies the single ASCII character that is used to separate fields in the input file, such as a pipe
character (|), a comma (,), or a tab (\t). Non-printing ASCII characters are supported. ASCII
characters can also be represented in octal, using the format '\ddd', where 'd' is an octal digit
(0–7). The default delimiter is a pipe character (|), unless the CSV parameter is used, in which
case the default delimiter is a comma (,). The AS keyword is optional. DELIMITER can't be used
with FIXEDWIDTH.

FIXEDWIDTH 'fixedwidth_spec'

Loads the data from a file where each column width is a fixed length, rather than columns being
separated by a delimiter. The fixedwidth_spec is a string that specifies a user-defined column
label and column width. The column label can be either a text string or an integer, depending
on what the user chooses. The column label has no relation to the column name. The order of
the label/width pairs must match the order of the table columns exactly. FIXEDWIDTH can't be
used with CSV or DELIMITER. In Amazon Redshift, the length of CHAR and VARCHAR columns is
expressed in bytes, so be sure that the column width that you specify accommodates the binary
length of multibyte characters when preparing the file to be loaded. For more information, see
Character types.

COPY 1142

Amazon Redshift Database Developer Guide

The format for fixedwidth_spec is shown following:

'colLabel1:colWidth1,colLabel:colWidth2, ...'

SHAPEFILE [SIMPLIFY [AUTO] ['tolerance']]

Enables use of SHAPEFILE format in the input data. By default, the first column of the shapefile
is either a GEOMETRY or IDENTITY column. All subsequent columns follow the order specified
in the shapefile.

You can't use SHAPEFILE with FIXEDWIDTH, REMOVEQUOTES, or ESCAPE.

To use GEOGRAPHY objects with COPY FROM SHAPEFILE, first ingest into a GEOMETRY column,
and then cast the objects to GEOGRAPHY objects. .

SIMPLIFY [tolerance]

(Optional) Simplifies all geometries during the ingestion process using the Ramer-Douglas-
Peucker algorithm and the given tolerance.

SIMPLIFY AUTO [tolerance]

(Optional) Simplifies only geometries that are larger than the maximum geometry size. This
simplification uses the Ramer-Douglas-Peucker algorithm and the automatically calculated
tolerance if this doesn't exceed the specified tolerance. This algorithm calculates the size to
store objects within the tolerance specified. The tolerance value is optional.

For examples of loading shapefiles, see Loading a shapefile into Amazon Redshift.

AVRO [AS] 'avro_option'

Specifies that the source data is in Avro format.

Avro format is supported for COPY from these services and protocols:

• Amazon S3

• Amazon EMR

• Remote hosts (SSH)

Avro isn't supported for COPY from DynamoDB.

Avro is a data serialization protocol. An Avro source file includes a schema that defines the
structure of the data. The Avro schema type must be record. COPY accepts Avro files created

COPY 1143

Amazon Redshift Database Developer Guide

using the default uncompressed codec as well as the deflate and snappy compression
codecs. For more information about Avro, go to Apache Avro.

Valid values for avro_option are as follows:

• 'auto'

• 'auto ignorecase'

• 's3://jsonpaths_file'

The default is 'auto'.

COPY automatically maps the data elements in the Avro source data to the columns in the
target table. It does so by matching field names in the Avro schema to column names in the
target table. The matching is case-sensitive for 'auto' and isn't case-sensitive for 'auto
ignorecase'.

Column names in Amazon Redshift tables are always lowercase, so when you use the 'auto'
option, matching field names must also be lowercase. If the field names aren't all lowercase,
you can use the 'auto ignorecase' option. With the default 'auto' argument, COPY
recognizes only the first level of fields, or outer fields, in the structure.

To explicitly map column names to Avro field names, you can use a JSONPaths file.

By default, COPY attempts to match all columns in the target table to Avro field names. To load
a subset of the columns, you can optionally specify a column list. If a column in the target table
is omitted from the column list, COPY loads the target column's DEFAULT expression. If the
target column doesn't have a default, COPY attempts to load NULL. If a column is included in
the column list and COPY doesn't find a matching field in the Avro data, COPY attempts to load
NULL to the column.

If COPY attempts to assign NULL to a column that is defined as NOT NULL, the COPY command
fails.

Avro Schema

An Avro source data file includes a schema that defines the structure of the data. COPY reads
the schema that is part of the Avro source data file to map data elements to target table
columns. The following example shows an Avro schema.

{
 "name": "person",

COPY 1144

https://avro.apache.org/

Amazon Redshift Database Developer Guide

 "type": "record",
 "fields": [
 {"name": "id", "type": "int"},
 {"name": "guid", "type": "string"},
 {"name": "name", "type": "string"},
 {"name": "address", "type": "string"}]
}

The Avro schema is defined using JSON format. The top-level JSON object contains three name-
value pairs with the names, or keys, "name", "type", and "fields".

The "fields" key pairs with an array of objects that define the name and data type of each
field in the data structure. By default, COPY automatically matches the field names to column
names. Column names are always lowercase, so matching field names must also be lowercase,
unless you specify the ‘auto ignorecase’ option. Any field names that don't match a
column name are ignored. Order doesn't matter. In the previous example, COPY maps to the
column names id, guid, name, and address.

With the default 'auto' argument, COPY matches only the first-level objects to columns. To
map to deeper levels in the schema, or if field names and column names don't match, use a
JSONPaths file to define the mapping. For more information, see JSONPaths file.

If the value associated with a key is a complex Avro data type such as byte, array, record, map,
or link, COPY loads the value as a string. Here, the string is the JSON representation of the data.
COPY loads Avro enum data types as strings, where the content is the name of the type. For an
example, see COPY from JSON format.

The maximum size of the Avro file header, which includes the schema and file metadata, is 1
MB.

The maximum size of a single Avro data block is 4 MB. This is distinct from the maximum row
size. If the maximum size of a single Avro data block is exceeded, even if the resulting row size is
less than the 4 MB row-size limit, the COPY command fails.

In calculating row size, Amazon Redshift internally counts pipe characters (|) twice. If your
input data contains a very large number of pipe characters, it is possible for row size to exceed 4
MB even if the data block is less than 4 MB.

JSON [AS] 'json_option'

The source data is in JSON format.

COPY 1145

Amazon Redshift Database Developer Guide

JSON format is supported for COPY from these services and protocols:

• Amazon S3

• COPY from Amazon EMR

• COPY from SSH

JSON isn't supported for COPY from DynamoDB.

Valid values for json_option are as follows :

• 'auto'

• 'auto ignorecase'

• 's3://jsonpaths_file'

• 'noshred'

The default is 'auto'. Amazon Redshift doesn't shred the attributes of JSON structures into
multiple columns while loading a JSON document.

By default, COPY attempts to match all columns in the target table to JSON field name keys. To
load a subset of the columns, you can optionally specify a column list. If the JSON field name
keys aren't all lowercase, you can use the 'auto ignorecase' option or a JSONPaths file to
explicitly map column names to JSON field name keys.

If a column in the target table is omitted from the column list, then COPY loads the target
column's DEFAULT expression. If the target column doesn't have a default, COPY attempts to
load NULL. If a column is included in the column list and COPY doesn't find a matching field in
the JSON data, COPY attempts to load NULL to the column.

If COPY attempts to assign NULL to a column that is defined as NOT NULL, the COPY command
fails.

COPY maps the data elements in the JSON source data to the columns in the target table. It
does so by matching object keys, or names, in the source name-value pairs to the names of
columns in the target table.

Refer to the following details about each json_option value:

'auto'

With this option, matching is case-sensitive. Column names in Amazon Redshift tables are
always lowercase, so when you use the 'auto' option, matching JSON field names must
also be lowercase.

COPY 1146

Amazon Redshift Database Developer Guide

'auto ignorecase'

With this option, the matching isn't case-sensitive. Column names in Amazon Redshift tables
are always lowercase, so when you use the 'auto ignorecase' option, the corresponding
JSON field names can be lowercase, uppercase, or mixed case.

's3://jsonpaths_file'

With this option, COPY uses the named JSONPaths file to map the data elements in
the JSON source data to the columns in the target table. The s3://jsonpaths_file
argument must be an Amazon S3 object key that explicitly references a single file. An
example is 's3://mybucket/jsonpaths.txt'. The argument can't be a key prefix. For
more information about using a JSONPaths file, see the section called “JSONPaths file”.

In some cases, the file specified by jsonpaths_file has the same prefix as the
path specified by copy_from_s3_objectpath for the data files. If so, COPY reads
the JSONPaths file as a data file and returns errors. For example, suppose that your
data files use the object path s3://mybucket/my_data.json and your JSONPaths
file is s3://mybucket/my_data.jsonpaths. In this case, COPY attempts to load
my_data.jsonpaths as a data file.

'noshred'

With this option, Amazon Redshift doesn't shred the attributes of JSON structures into
multiple columns while loading a JSON document.

JSON data file

The JSON data file contains a set of either objects or arrays. COPY loads each JSON object or array
into one row in the target table. Each object or array corresponding to a row must be a stand-
alone, root-level structure; that is, it must not be a member of another JSON structure.

A JSON object begins and ends with braces ({ }) and contains an unordered collection of name-
value pairs. Each paired name and value are separated by a colon, and the pairs are separated by
commas. By default, the object key, or name, in the name-value pairs must match the name of the
corresponding column in the table. Column names in Amazon Redshift tables are always lowercase,
so matching JSON field name keys must also be lowercase. If your column names and JSON keys
don't match, use a the section called “JSONPaths file” to explicitly map columns to keys.

Order in a JSON object doesn't matter. Any names that don't match a column name are ignored.
The following shows the structure of a simple JSON object.

COPY 1147

Amazon Redshift Database Developer Guide

{
 "column1": "value1",
 "column2": value2,
 "notacolumn" : "ignore this value"
}

A JSON array begins and ends with brackets ([]), and contains an ordered collection of values
separated by commas. If your data files use arrays, you must specify a JSONPaths file to match the
values to columns. The following shows the structure of a simple JSON array.

["value1", value2]

The JSON must be well-formed. For example, the objects or arrays can't be separated by commas
or any other characters except white space. Strings must be enclosed in double quotation mark
characters. Quote characters must be simple quotation marks (0x22), not slanted or "smart"
quotation marks.

The maximum size of a single JSON object or array, including braces or brackets, is 4 MB. This
is distinct from the maximum row size. If the maximum size of a single JSON object or array is
exceeded, even if the resulting row size is less than the 4 MB row-size limit, the COPY command
fails.

In calculating row size, Amazon Redshift internally counts pipe characters (|) twice. If your input
data contains a very large number of pipe characters, it is possible for row size to exceed 4 MB even
if the object size is less than 4 MB.

COPY loads \n as a newline character and loads \t as a tab character. To load a backslash, escape
it with a backslash (\\).

COPY searches the specified JSON source for a well-formed, valid JSON object or array. If COPY
encounters any non–white-space characters before locating a usable JSON structure, or between
valid JSON objects or arrays, COPY returns an error for each instance. These errors count toward
the MAXERROR error count. When the error count equals or exceeds MAXERROR, COPY fails.

For each error, Amazon Redshift records a row in the STL_LOAD_ERRORS system table. The
LINE_NUMBER column records the last line of the JSON object that caused the error.

If IGNOREHEADER is specified, COPY ignores the specified number of lines in the JSON data.
Newline characters in the JSON data are always counted for IGNOREHEADER calculations.

COPY 1148

Amazon Redshift Database Developer Guide

COPY loads empty strings as empty fields by default. If EMPTYASNULL is specified, COPY loads
empty strings for CHAR and VARCHAR fields as NULL. Empty strings for other data types, such as
INT, are always loaded with NULL.

The following options aren't supported with JSON:

• CSV

• DELIMITER

• ESCAPE

• FILLRECORD

• FIXEDWIDTH

• IGNOREBLANKLINES

• NULL AS

• READRATIO

• REMOVEQUOTES

For more information, see COPY from JSON format. For more information about JSON data
structures, go to www.json.org.

JSONPaths file

If you are loading from JSON-formatted or Avro source data, by default COPY maps the first-level
data elements in the source data to the columns in the target table. It does so by matching each
name, or object key, in a name-value pair to the name of a column in the target table.

If your column names and object keys don't match, or to map to deeper levels in the data
hierarchy, you can use a JSONPaths file to explicitly map JSON or Avro data elements to columns.
The JSONPaths file maps JSON data elements to columns by matching the column order in the
target table or column list.

The JSONPaths file must contain only a single JSON object (not an array). The JSON object is a
name-value pair. The object key, which is the name in the name-value pair, must be "jsonpaths".
The value in the name-value pair is an array of JSONPath expressions. Each JSONPath expression
references a single element in the JSON data hierarchy or Avro schema, similarly to how an
XPath expression refers to elements in an XML document. For more information, see JSONPath
expressions.

COPY 1149

https://www.json.org/

Amazon Redshift Database Developer Guide

To use a JSONPaths file, add the JSON or AVRO keyword to the COPY command. Specify the S3
bucket name and object path of the JSONPaths file using the following format.

COPY tablename
FROM 'data_source'
CREDENTIALS 'credentials-args'
FORMAT AS { AVRO | JSON } 's3://jsonpaths_file';

The s3://jsonpaths_file value must be an Amazon S3 object key that explicitly references a
single file, such as 's3://mybucket/jsonpaths.txt'. It can't be a key prefix.

In some cases, if you're loading from Amazon S3 the file specified by jsonpaths_file has the
same prefix as the path specified by copy_from_s3_objectpath for the data files. If so, COPY
reads the JSONPaths file as a data file and returns errors. For example, suppose that your data
files use the object path s3://mybucket/my_data.json and your JSONPaths file is s3://
mybucket/my_data.jsonpaths. In this case, COPY attempts to load my_data.jsonpaths as a
data file.

If the key name is any string other than "jsonpaths", the COPY command doesn't return an error,
but it ignores jsonpaths_file and uses the 'auto' argument instead.

If any of the following occurs, the COPY command fails:

• The JSON is malformed.

• There is more than one JSON object.

• Any characters except white space exist outside the object.

• An array element is an empty string or isn't a string.

MAXERROR doesn't apply to the JSONPaths file.

The JSONPaths file must not be encrypted, even if the ENCRYPTED option is specified.

For more information, see COPY from JSON format.

JSONPath expressions

The JSONPaths file uses JSONPath expressions to map data fields to target columns. Each
JSONPath expression corresponds to one column in the Amazon Redshift target table. The order

COPY 1150

Amazon Redshift Database Developer Guide

of the JSONPath array elements must match the order of the columns in the target table or the
column list, if a column list is used.

The double quotation mark characters are required as shown, both for the field names and the
values. The quotation mark characters must be simple quotation marks (0x22), not slanted or
"smart" quotation marks.

If an object element referenced by a JSONPath expression isn't found in the JSON data, COPY
attempts to load a NULL value. If the referenced object is malformed, COPY returns a load error.

If an array element referenced by a JSONPath expression isn't found in the JSON or Avro data,
COPY fails with the following error: Invalid JSONPath format: Not an array or index
out of range. Remove any array elements from the JSONPaths that don't exist in the source
data and verify that the arrays in the source data are well formed.

The JSONPath expressions can use either bracket notation or dot notation, but you can't mix
notations. The following example shows JSONPath expressions using bracket notation.

{
 "jsonpaths": [
 "$['venuename']",
 "$['venuecity']",
 "$['venuestate']",
 "$['venueseats']"
]
}

The following example shows JSONPath expressions using dot notation.

{
 "jsonpaths": [
 "$.venuename",
 "$.venuecity",
 "$.venuestate",
 "$.venueseats"
]
}

In the context of Amazon Redshift COPY syntax, a JSONPath expression must specify the explicit
path to a single name element in a JSON or Avro hierarchical data structure. Amazon Redshift

COPY 1151

Amazon Redshift Database Developer Guide

doesn't support any JSONPath elements, such as wildcard characters or filter expressions, that
might resolve to an ambiguous path or multiple name elements.

For more information, see COPY from JSON format.

Using JSONPaths with Avro Data

The following example shows an Avro schema with multiple levels.

{
 "name": "person",
 "type": "record",
 "fields": [
 {"name": "id", "type": "int"},
 {"name": "guid", "type": "string"},
 {"name": "isActive", "type": "boolean"},
 {"name": "age", "type": "int"},
 {"name": "name", "type": "string"},
 {"name": "address", "type": "string"},
 {"name": "latitude", "type": "double"},
 {"name": "longitude", "type": "double"},
 {
 "name": "tags",
 "type": {
 "type" : "array",
 "name" : "inner_tags",
 "items" : "string"
 }
 },
 {
 "name": "friends",
 "type": {
 "type" : "array",
 "name" : "inner_friends",
 "items" : {
 "name" : "friends_record",
 "type" : "record",
 "fields" : [
 {"name" : "id", "type" : "int"},
 {"name" : "name", "type" : "string"}
]
 }
 }
 },

COPY 1152

Amazon Redshift Database Developer Guide

 {"name": "randomArrayItem", "type": "string"}
]
}

The following example shows a JSONPaths file that uses AvroPath expressions to reference the
previous schema.

{
 "jsonpaths": [
 "$.id",
 "$.guid",
 "$.address",
 "$.friends[0].id"
]
}

The JSONPaths example includes the following elements:

jsonpaths

The name of the JSON object that contains the AvroPath expressions.

[…]

Brackets enclose the JSON array that contains the path elements.

$

The dollar sign refers to the root element in the Avro schema, which is the "fields" array.

"$.id",

The target of the AvroPath expression. In this instance, the target is the element in the
"fields" array with the name "id". The expressions are separated by commas.

"$.friends[0].id"

Brackets indicate an array index. JSONPath expressions use zero-based indexing, so this
expression references the first element in the "friends" array with the name "id".

The Avro schema syntax requires using inner fields to define the structure of record and array
data types. The inner fields are ignored by the AvroPath expressions. For example, the field

COPY 1153

Amazon Redshift Database Developer Guide

"friends" defines an array named "inner_friends", which in turn defines a record named
"friends_record". The AvroPath expression to reference the field "id" can ignore the extra
fields to reference the target field directly. The following AvroPath expressions reference the two
fields that belong to the "friends" array.

"$.friends[0].id"
"$.friends[0].name"

Columnar data format parameters

In addition to the standard data formats, COPY supports the following columnar data formats for
COPY from Amazon S3. COPY from columnar format is supported with certain restrictions. For
more information, see COPY from columnar data formats.

ORC

Loads the data from a file that uses Optimized Row Columnar (ORC) file format.

PARQUET

Loads the data from a file that uses Parquet file format.

File compression parameters

You can load from compressed data files by specifying the following parameters.

File compression parameters

BZIP2

A value that specifies that the input file or files are in compressed bzip2 format (.bz2 files). The
COPY operation reads each compressed file and uncompresses the data as it loads.

GZIP

A value that specifies that the input file or files are in compressed gzip format (.gz files). The
COPY operation reads each compressed file and uncompresses the data as it loads.

LZOP

A value that specifies that the input file or files are in compressed lzop format (.lzo files). The
COPY operation reads each compressed file and uncompresses the data as it loads.

COPY 1154

Amazon Redshift Database Developer Guide

Note

COPY doesn't support files that are compressed using the lzop --filter option.

ZSTD

A value that specifies that the input file or files are in compressed Zstandard format (.zst files).
The COPY operation reads each compressed file and uncompresses the data as it loads. For
more information, see ZSTD.

Note

ZSTD is supported only with COPY from Amazon S3.

Data conversion parameters

As it loads the table, COPY attempts to implicitly convert the strings in the source data to the
data type of the target column. If you need to specify a conversion that is different from the
default behavior, or if the default conversion results in errors, you can manage data conversions by
specifying the following parameters. For more information on the syntax of these parameters, see
COPY syntax.

• ACCEPTANYDATE

• ACCEPTINVCHARS

• BLANKSASNULL

• DATEFORMAT

• EMPTYASNULL

• ENCODING

• ESCAPE

• EXPLICIT_IDS

• FILLRECORD

• IGNOREBLANKLINES

• IGNOREHEADER

• NULL AS

COPY 1155

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html#r_COPY-syntax

Amazon Redshift Database Developer Guide

• REMOVEQUOTES

• ROUNDEC

• TIMEFORMAT

• TRIMBLANKS

• TRUNCATECOLUMNS

Data conversion parameters

ACCEPTANYDATE

Allows any date format, including invalid formats such as 00/00/00 00:00:00, to be loaded
without generating an error. This parameter applies only to TIMESTAMP and DATE columns.
Always use ACCEPTANYDATE with the DATEFORMAT parameter. If the date format for the data
doesn't match the DATEFORMAT specification, Amazon Redshift inserts a NULL value into that
field.

ACCEPTINVCHARS [AS] ['replacement_char']

Enables loading of data into VARCHAR columns even if the data contains invalid UTF-8
characters. When ACCEPTINVCHARS is specified, COPY replaces each invalid UTF-8 character
with a string of equal length consisting of the character specified by replacement_char. For
example, if the replacement character is '^', an invalid three-byte character will be replaced with
'^^^'.

The replacement character can be any ASCII character except NULL. The default is a question
mark (?). For information about invalid UTF-8 characters, see Multibyte character load errors.

COPY returns the number of rows that contained invalid UTF-8 characters, and it adds an
entry to the STL_REPLACEMENTS system table for each affected row, up to a maximum of
100 rows for each node slice. Additional invalid UTF-8 characters are also replaced, but those
replacement events aren't recorded.

If ACCEPTINVCHARS isn't specified, COPY returns an error whenever it encounters an invalid
UTF-8 character.

ACCEPTINVCHARS is valid only for VARCHAR columns.

COPY 1156

Amazon Redshift Database Developer Guide

BLANKSASNULL

Loads blank fields, which consist of only white space characters, as NULL. This option applies
only to CHAR and VARCHAR columns. Blank fields for other data types, such as INT, are always
loaded with NULL. For example, a string that contains three space characters in succession (and
no other characters) is loaded as a NULL. The default behavior, without this option, is to load
the space characters as is.

DATEFORMAT [AS] {'dateformat_string' | 'auto' }

If no DATEFORMAT is specified, the default format is 'YYYY-MM-DD'. For example, an
alternative valid format is 'MM-DD-YYYY'.

If the COPY command doesn't recognize the format of your date or time values, or if your
date or time values use different formats, use the 'auto' argument with the DATEFORMAT
or TIMEFORMAT parameter. The 'auto' argument recognizes several formats that aren't
supported when using a DATEFORMAT and TIMEFORMAT string. The 'auto'' keyword is
case-sensitive. For more information, see Using automatic recognition with DATEFORMAT and
TIMEFORMAT.

The date format can include time information (hour, minutes, seconds), but this information
is ignored. The AS keyword is optional. For more information, see DATEFORMAT and
TIMEFORMAT strings.

EMPTYASNULL

Indicates that Amazon Redshift should load empty CHAR and VARCHAR fields as NULL. Empty
fields for other data types, such as INT, are always loaded with NULL. Empty fields occur
when data contains two delimiters in succession with no characters between the delimiters.
EMPTYASNULL and NULL AS '' (empty string) produce the same behavior.

ENCODING [AS] file_encoding

Specifies the encoding type of the load data. The COPY command converts the data from the
specified encoding into UTF-8 during loading.

Valid values for file_encoding are as follows:

• UTF8

• UTF16

• UTF16LE

• UTF16BE

COPY 1157

Amazon Redshift Database Developer Guide

The default is UTF8.

Source file names must use UTF-8 encoding.

The following files must use UTF-8 encoding, even if a different encoding is specified for the
load data:

• Manifest files

• JSONPaths files

The argument strings provided with the following parameters must use UTF-8:

• FIXEDWIDTH 'fixedwidth_spec'

• ACCEPTINVCHARS 'replacement_char'

• DATEFORMAT 'dateformat_string'

• TIMEFORMAT 'timeformat_string'

• NULL AS 'null_string'

Fixed-width data files must use UTF-8 encoding. The field widths are based on the number of
characters, not the number of bytes.

All load data must use the specified encoding. If COPY encounters a different encoding, it skips
the file and returns an error.

If you specify UTF16, then your data must have a byte order mark (BOM). If you know whether
your UTF-16 data is little-endian (LE) or big-endian (BE), you can use UTF16LE or UTF16BE,
regardless of the presence of a BOM.

ESCAPE

When this parameter is specified, the backslash character (\) in input data is treated as an
escape character. The character that immediately follows the backslash character is loaded into
the table as part of the current column value, even if it is a character that normally serves a
special purpose. For example, you can use this parameter to escape the delimiter character, a
quotation mark, an embedded newline character, or the escape character itself when any of
these characters is a legitimate part of a column value.

If you specify the ESCAPE parameter in combination with the REMOVEQUOTES parameter, you
can escape and retain quotation marks (' or ") that might otherwise be removed. The default
null string, \N, works as is, but it can also be escaped in the input data as \\N. As long as you

COPY 1158

Amazon Redshift Database Developer Guide

don't specify an alternative null string with the NULL AS parameter, \N and \\N produce the
same results.

Note

The control character 0x00 (NUL) can't be escaped and should be removed from the
input data or converted. This character is treated as an end of record (EOR) marker,
causing the remainder of the record to be truncated.

You can't use the ESCAPE parameter for FIXEDWIDTH loads, and you can't specify the escape
character itself; the escape character is always the backslash character. Also, you must ensure
that the input data contains the escape character in the appropriate places.

Here are some examples of input data and the resulting loaded data when the ESCAPE
parameter is specified. The result for row 4 assumes that the REMOVEQUOTES parameter is
also specified. The input data consists of two pipe-delimited fields:

1|The quick brown fox\[newline]
jumped over the lazy dog.
2| A\\B\\C
3| A \| B \| C
4| 'A Midsummer Night\'s Dream'

The data loaded into column 2 looks like this:

The quick brown fox
jumped over the lazy dog.
A\B\C
A|B|C
A Midsummer Night's Dream

Note

Applying the escape character to the input data for a load is the responsibility of the
user. One exception to this requirement is when you reload data that was previously
unloaded with the ESCAPE parameter. In this case, the data will already contain the
necessary escape characters.

COPY 1159

Amazon Redshift Database Developer Guide

The ESCAPE parameter doesn't interpret octal, hex, Unicode, or other escape sequence
notation. For example, if your source data contains the octal line feed value (\012) and you try
to load this data with the ESCAPE parameter, Amazon Redshift loads the value 012 into the
table and doesn't interpret this value as a line feed that is being escaped.

In order to escape newline characters in data that originates from Microsoft Windows
platforms, you might need to use two escape characters: one for the carriage return and one
for the line feed. Alternatively, you can remove the carriage returns before loading the file (for
example, by using the dos2unix utility).

EXPLICIT_IDS

Use EXPLICIT_IDS with tables that have IDENTITY columns if you want to override the
autogenerated values with explicit values from the source data files for the tables. If the
command includes a column list, that list must include the IDENTITY columns to use this
parameter. The data format for EXPLICIT_IDS values must match the IDENTITY format specified
by the CREATE TABLE definition.

When you run a COPY command against a table with the EXPLICIT_IDS option, Amazon Redshift
does not check the uniqueness of IDENTITY columns in the table.

If a column is defined with GENERATED BY DEFAULT AS IDENTITY, then it can be copied. Values
are generated or updated with values that you supply. The EXPLICIT_IDS option isn't required.
COPY doesn't update the identity high watermark.

For an example of a COPY command using EXPLICIT_IDS, see Load VENUE with explicit values
for an IDENTITY column.

FILLRECORD

Allows data files to be loaded when contiguous columns are missing at the end of some of the
records. The missing columns are loaded as NULLs. For text and CSV formats, if the missing
column is a VARCHAR column, zero-length strings are loaded instead of NULLs. To load NULLs
to VARCHAR columns from text and CSV, specify the EMPTYASNULL keyword. NULL substitution
only works if the column definition allows NULLs.

For example, if the table definition contains four nullable CHAR columns, and a record contains
the values apple, orange, banana, mango, the COPY command could load and fill in
a record that contains only the values apple, orange. The missing CHAR values would be
loaded as NULL values.

COPY 1160

Amazon Redshift Database Developer Guide

IGNOREBLANKLINES

Ignores blank lines that only contain a line feed in a data file and does not try to load them.

IGNOREHEADER [AS] number_rows

Treats the specified number_rows as a file header and doesn't load them. Use IGNOREHEADER
to skip file headers in all files in a parallel load.

NULL AS 'null_string'

Loads fields that match null_string as NULL, where null_string can be any string. If your data
includes a null terminator, also referred to as NUL (UTF-8 0000) or binary zero (0x000), COPY
treats it as any other character. For example, a record containing '1' || NUL || '2' is copied as
string of length 3 bytes. If a field contains only NUL, you can use NULL AS to replace the null
terminator with NULL by specifying '\0' or '\000'—for example, NULL AS '\0' or NULL
AS '\000'. If a field contains a string that ends with NUL and NULL AS is specified, the string
is inserted with NUL at the end. Do not use '\n' (newline) for the null_string value. Amazon
Redshift reserves '\n' for use as a line delimiter. The default null_string is '\N'.

Note

If you attempt to load nulls into a column defined as NOT NULL, the COPY command
will fail.

REMOVEQUOTES

Removes surrounding quotation marks from strings in the incoming data. All characters within
the quotation marks, including delimiters, are retained. If a string has a beginning single or
double quotation mark but no corresponding ending mark, the COPY command fails to load
that row and returns an error. The following table shows some simple examples of strings that
contain quotation marks and the resulting loaded values.

Input String Loaded Value with REMOVEQUOTES
Option

"The delimiter is a pipe (|) character" The delimiter is a pipe (|) character

'Black' Black

COPY 1161

Amazon Redshift Database Developer Guide

Input String Loaded Value with REMOVEQUOTES
Option

"White" White

Blue' Blue'

'Blue Value not loaded: error condition

"Blue Value not loaded: error condition

' ' 'Black' ' ' ' 'Black' '

' ' <white space>

ROUNDEC

Rounds up numeric values when the scale of the input value is greater than the scale of the
column. By default, COPY truncates values when necessary to fit the scale of the column.
For example, if a value of 20.259 is loaded into a DECIMAL(8,2) column, COPY truncates the
value to 20.25 by default. If ROUNDEC is specified, COPY rounds the value to 20.26. The
INSERT command always rounds values when necessary to match the column's scale, so a COPY
command with the ROUNDEC parameter behaves the same as an INSERT command.

TIMEFORMAT [AS] {'timeformat_string' | 'auto' | 'epochsecs' | 'epochmillisecs' }

Specifies the time format. If no TIMEFORMAT is specified, the default format is YYYY-MM-DD
HH:MI:SS for TIMESTAMP columns or YYYY-MM-DD HH:MI:SSOF for TIMESTAMPTZ columns,
where OF is the offset from Coordinated Universal Time (UTC). You can't include a time zone
specifier in the timeformat_string. To load TIMESTAMPTZ data that is in a format different
from the default format, specify 'auto'; for more information, see Using automatic recognition
with DATEFORMAT and TIMEFORMAT. For more information about timeformat_string, see
DATEFORMAT and TIMEFORMAT strings.

The 'auto' argument recognizes several formats that aren't supported when using a
DATEFORMAT and TIMEFORMAT string. If the COPY command doesn't recognize the format
of your date or time values, or if your date and time values use formats different from each
other, use the 'auto' argument with the DATEFORMAT or TIMEFORMAT parameter. For more
information, see Using automatic recognition with DATEFORMAT and TIMEFORMAT.

COPY 1162

Amazon Redshift Database Developer Guide

If your source data is represented as epoch time, that is the number of seconds or milliseconds
since January 1, 1970, 00:00:00 UTC, specify 'epochsecs' or 'epochmillisecs'.

The 'auto', 'epochsecs', and 'epochmillisecs' keywords are case-sensitive.

The AS keyword is optional.

TRIMBLANKS

Removes the trailing white space characters from a VARCHAR string. This parameter applies
only to columns with a VARCHAR data type.

TRUNCATECOLUMNS

Truncates data in columns to the appropriate number of characters so that it fits the column
specification. Applies only to columns with a VARCHAR or CHAR data type, and rows 4 MB or
less in size.

Data load operations

Manage the default behavior of the load operation for troubleshooting or to reduce load times by
specifying the following parameters.

• COMPROWS

• COMPUPDATE

• IGNOREALLERRORS

• MAXERROR

• NOLOAD

• STATUPDATE

Parameters

COMPROWS numrows

Specifies the number of rows to be used as the sample size for compression analysis. The
analysis is run on rows from each data slice. For example, if you specify COMPROWS 1000000
(1,000,000) and the system contains four total slices, no more than 250,000 rows for each slice
are read and analyzed.

COPY 1163

Amazon Redshift Database Developer Guide

If COMPROWS isn't specified, the sample size defaults to 100,000 for each slice. Values of
COMPROWS lower than the default of 100,000 rows for each slice are automatically upgraded
to the default value. However, automatic compression will not take place if the amount of data
being loaded is insufficient to produce a meaningful sample.

If the COMPROWS number is greater than the number of rows in the input file, the COPY
command still proceeds and runs the compression analysis on all of the available rows. The
accepted range for this argument is a number between 1000 and 2147483647 (2,147,483,647).

COMPUPDATE [PRESET | { ON | TRUE } | { OFF | FALSE }],

Controls whether compression encodings are automatically applied during a COPY.

When COMPUPDATE is PRESET, the COPY command chooses the compression encoding for
each column if the target table is empty; even if the columns already have encodings other
than RAW. Currently specified column encodings can be replaced. Encoding for each column
is based on the column data type. No data is sampled. Amazon Redshift automatically assigns
compression encoding as follows:

• Columns that are defined as sort keys are assigned RAW compression.

• Columns that are defined as BOOLEAN, REAL, or DOUBLE PRECISION data types are assigned
RAW compression.

• Columns that are defined as SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIMESTAMP, or
TIMESTAMPTZ are assigned AZ64 compression.

• Columns that are defined as CHAR or VARCHAR are assigned LZO compression.

When COMPUPDATE is omitted, the COPY command chooses the compression encoding for
each column only if the target table is empty and you have not specified an encoding (other
than RAW) for any of the columns. The encoding for each column is determined by Amazon
Redshift. No data is sampled.

When COMPUPDATE is ON (or TRUE), or COMPUPDATE is specified without an option, the
COPY command applies automatic compression if the table is empty; even if the table columns
already have encodings other than RAW. Currently specified column encodings can be replaced.
Encoding for each column is based on an analysis of sample data. For more information, see
Loading tables with automatic compression.

When COMPUPDATE is OFF (or FALSE), automatic compression is disabled. Column encodings
aren't changed.

COPY 1164

Amazon Redshift Database Developer Guide

For information about the system table to analyze compression, see
STL_ANALYZE_COMPRESSION.

IGNOREALLERRORS

You can specify this option to ignore all errors that occur during the load operation.

You can't specify the IGNOREALLERRORS option if you specify the MAXERROR option. You can't
specify the IGNOREALLERRORS option for columnar formats including ORC and Parquet.

MAXERROR [AS] error_count

If the load returns the error_count number of errors or greater, the load fails. If the load returns
fewer errors, it continues and returns an INFO message that states the number of rows that
could not be loaded. Use this parameter to allow loads to continue when certain rows fail to
load into the table because of formatting errors or other inconsistencies in the data.

Set this value to 0 or 1 if you want the load to fail as soon as the first error occurs. The AS
keyword is optional. The MAXERROR default value is 0 and the limit is 100000.

The actual number of errors reported might be greater than the specified MAXERROR because
of the parallel nature of Amazon Redshift. If any node in the Amazon Redshift cluster detects
that MAXERROR has been exceeded, each node reports all of the errors it has encountered.

NOLOAD

Checks the validity of the data file without actually loading the data. Use the NOLOAD
parameter to make sure that your data file loads without any errors before running the actual
data load. Running COPY with the NOLOAD parameter is much faster than loading the data
because it only parses the files.

STATUPDATE [{ ON | TRUE } | { OFF | FALSE }]

Governs automatic computation and refresh of optimizer statistics at the end of a successful
COPY command. By default, if the STATUPDATE parameter isn't used, statistics are updated
automatically if the table is initially empty.

Whenever ingesting data into a nonempty table significantly changes the size of the table,
we recommend updating statistics either by running an ANALYZE command or by using the
STATUPDATE ON argument.

With STATUPDATE ON (or TRUE), statistics are updated automatically regardless of whether the
table is initially empty. If STATUPDATE is used, the current user must be either the table owner
or a superuser. If STATUPDATE is not specified, only INSERT permission is required.

COPY 1165

Amazon Redshift Database Developer Guide

With STATUPDATE OFF (or FALSE), statistics are never updated.

For additional information, see Analyzing tables.

Alphabetical parameter list

The following list provides links to each COPY command parameter description, sorted
alphabetically.

• ACCEPTANYDATE

• ACCEPTINVCHARS

• ACCESS_KEY_ID and SECRET_ACCESS_KEY

• AVRO

• BLANKSASNULL

• BZIP2

• COMPROWS

• COMPUPDATE

• CREDENTIALS

• CSV

• DATEFORMAT

• DELIMITER

• EMPTYASNULL

• ENCODING

• ENCRYPTED

• ESCAPE

• EXPLICIT_IDS

• FILLRECORD

• FIXEDWIDTH

• FORMAT

• FROM

• GZIP

• IAM_ROLE

• IGNOREALLERRORS

COPY 1166

Amazon Redshift Database Developer Guide

• IGNOREBLANKLINES

• IGNOREHEADER

• JSON

• LZOP

• MANIFEST

• MASTER_SYMMETRIC_KEY

• MAXERROR

• NOLOAD

• NULL AS

• READRATIO

• REGION

• REMOVEQUOTES

• ROUNDEC

• SESSION_TOKEN

• SHAPEFILE

• SSH

• STATUPDATE

• TIMEFORMAT

• SESSION_TOKEN

• TRIMBLANKS

• TRUNCATECOLUMNS

• ZSTD

Usage notes

Topics

• Permissions to access other AWS Resources

• Using COPY with Amazon S3 access point aliases

• Loading multibyte data from Amazon S3

• Loading a column of the GEOMETRY or GEOGRAPHY data type

• Loading the HLLSKETCH data type

COPY 1167

Amazon Redshift Database Developer Guide

• Loading a column of the VARBYTE data type

• Errors when reading multiple files

• COPY from JSON format

• COPY from columnar data formats

• DATEFORMAT and TIMEFORMAT strings

• Using automatic recognition with DATEFORMAT and TIMEFORMAT

Permissions to access other AWS Resources

To move data between your cluster and another AWS resource, such as Amazon S3, Amazon
DynamoDB, Amazon EMR, or Amazon EC2, your cluster must have permission to access the
resource and perform the necessary actions. For example, to load data from Amazon S3, COPY
must have LIST access to the bucket and GET access for the bucket objects. For information about
minimum permissions, see IAM permissions for COPY, UNLOAD, and CREATE LIBRARY.

To get authorization to access the resource, your cluster must be authenticated. You can choose
either of the following authentication methods:

• Role-based access control – For role-based access control, you specify an AWS Identity and
Access Management (IAM) role that your cluster uses for authentication and authorization. To
safeguard your AWS credentials and sensitive data, we strongly recommend using role-based
authentication.

• Key-based access control – For key-based access control, you provide the AWS access credentials
(access key ID and secret access key) for a user as plain text.

Role-based access control

With role-based access control, your cluster temporarily assumes an IAM role on your behalf.
Then, based on the authorizations granted to the role, your cluster can access the required AWS
resources.

Creating an IAM role is similar to granting permissions to a user, in that it is an AWS identity with
permissions policies that determine what the identity can and can't do in AWS. However, instead of
being uniquely associated with one user, a role can be assumed by any entity that needs it. Also, a
role doesn’t have any credentials (a password or access keys) associated with it. Instead, if a role is
associated with a cluster, access keys are created dynamically and provided to the cluster.

COPY 1168

Amazon Redshift Database Developer Guide

We recommend using role-based access control because it provides more secure, fine-grained
control of access to AWS resources and sensitive user data, in addition to safeguarding your AWS
credentials.

Role-based authentication delivers the following benefits:

• You can use AWS standard IAM tools to define an IAM role and associate the role with multiple
clusters. When you modify the access policy for a role, the changes are applied automatically to
all clusters that use the role.

• You can define fine-grained IAM policies that grant permissions for specific clusters and database
users to access specific AWS resources and actions.

• Your cluster obtains temporary session credentials at run time and refreshes the credentials as
needed until the operation completes. If you use key-based temporary credentials, the operation
fails if the temporary credentials expire before it completes.

• Your access key ID and secret access key ID aren't stored or transmitted in your SQL code.

To use role-based access control, you must first create an IAM role using the Amazon Redshift
service role type, and then attach the role to your cluster. The role must have, at a minimum, the
permissions listed in IAM permissions for COPY, UNLOAD, and CREATE LIBRARY. For steps to create
an IAM role and attach it to your cluster, see Authorizing Amazon Redshift to Access Other AWS
Services On Your Behalf in the Amazon Redshift Management Guide.

You can add a role to a cluster or view the roles associated with a cluster by using the Amazon
Redshift Management Console, CLI, or API. For more information, see Associating an IAM Role With
a Cluster in the Amazon Redshift Management Guide.

When you create an IAM role, IAM returns an Amazon Resource Name (ARN) for the role. To specify
an IAM role, provide the role ARN with either the IAM_ROLE parameter or the CREDENTIALS
parameter.

For example, suppose the following role is attached to the cluster.

"IamRoleArn": "arn:aws:iam::0123456789012:role/MyRedshiftRole"

The following COPY command example uses the IAM_ROLE parameter with the ARN in the
previous example for authentication and access to Amazon S3.

copy customer from 's3://mybucket/mydata'

COPY 1169

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html
https://docs.aws.amazon.com/redshift/latest/mgmt/copy-unload-iam-role.html

Amazon Redshift Database Developer Guide

iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

The following COPY command example uses the CREDENTIALS parameter to specify the IAM role.

copy customer from 's3://mybucket/mydata'
credentials
'aws_iam_role=arn:aws:iam::0123456789012:role/MyRedshiftRole';

In addition, a superuser can grant the ASSUMEROLE privilege to database users and groups to
provide access to a role for COPY operations. For information, see GRANT.

Key-based access control

With key-based access control, you provide the access key ID and secret access key for an IAM
user that is authorized to access the AWS resources that contain the data. You can user either the
ACCESS_KEY_ID and SECRET_ACCESS_KEY parameters together or the CREDENTIALS parameter.

Note

We strongly recommend using an IAM role for authentication instead of supplying a plain-
text access key ID and secret access key. If you choose key-based access control, never use
your AWS account (root) credentials. Always create an IAM user and provide that user's
access key ID and secret access key. For steps to create an IAM user, see Creating an IAM
User in Your AWS Account.

To authenticate using ACCESS_KEY_ID and SECRET_ACCESS_KEY, replace <access-key-id>
and <secret-access-key> with an authorized user's access key ID and full secret access key as
shown following.

ACCESS_KEY_ID '<access-key-id>'
SECRET_ACCESS_KEY '<secret-access-key>';

To authenticate using the CREDENTIALS parameter, replace <access-key-id> and <secret-
access-key> with an authorized user's access key ID and full secret access key as shown
following.

CREDENTIALS

COPY 1170

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_create.html

Amazon Redshift Database Developer Guide

'aws_access_key_id=<access-key-id>;aws_secret_access_key=<secret-access-key>';

The IAM user must have, at a minimum, the permissions listed in IAM permissions for COPY,
UNLOAD, and CREATE LIBRARY.

Temporary security credentials

If you are using key-based access control, you can further limit the access users have to your data
by using temporary security credentials. Role-based authentication automatically uses temporary
credentials.

Note

We strongly recommend using role-based access control instead of creating temporary
credentials and providing access key ID and secret access key as plain text. Role-based
access control automatically uses temporary credentials.

Temporary security credentials provide enhanced security because they have short lifespans and
can't be reused after they expire. The access key ID and secret access key generated with the token
can't be used without the token, and a user who has these temporary security credentials can
access your resources only until the credentials expire.

To grant users temporary access to your resources, you call AWS Security Token Service (AWS
STS) API operations. The AWS STS API operations return temporary security credentials consisting
of a security token, an access key ID, and a secret access key. You issue the temporary security
credentials to the users who need temporary access to your resources. These users can be existing
IAM users, or they can be non-AWS users. For more information about creating temporary security
credentials, see Using Temporary Security Credentials in the IAM User Guide.

You can use either the ACCESS_KEY_ID and SECRET_ACCESS_KEY parameters together with the
SESSION_TOKEN parameter or the CREDENTIALS parameter. You must also supply the access key
ID and secret access key that were provided with the token.

To authenticate using ACCESS_KEY_ID, SECRET_ACCESS_KEY, and SESSION_TOKEN, replace
<temporary-access-key-id>, <temporary-secret-access-key>, and <temporary-
token> as shown following.

ACCESS_KEY_ID '<temporary-access-key-id>'
SECRET_ACCESS_KEY '<temporary-secret-access-key>'

COPY 1171

https://docs.aws.amazon.com/STS/latest/UsingSTS/Welcome.html

Amazon Redshift Database Developer Guide

SESSION_TOKEN '<temporary-token>';

To authenticate using CREDENTIALS, include session_token=<temporary-token> in the
credentials string as shown following.

CREDENTIALS
'aws_access_key_id=<temporary-access-key-id>;aws_secret_access_key=<temporary-secret-
access-key>;session_token=<temporary-token>';

The following example shows a COPY command with temporary security credentials.

copy table-name
from 's3://objectpath'
access_key_id '<temporary-access-key-id>'
secret_access_key '<temporary-secret-access-key>'
session_token '<temporary-token>';

The following example loads the LISTING table with temporary credentials and file encryption.

copy listing
from 's3://mybucket/data/listings_pipe.txt'
access_key_id '<temporary-access-key-id>'
secret_access_key '<temporary-secret-access-key>'
session_token '<temporary-token>'
master_symmetric_key '<root-key>'
encrypted;

The following example loads the LISTING table using the CREDENTIALS parameter with temporary
credentials and file encryption.

copy listing
from 's3://mybucket/data/listings_pipe.txt'
credentials
'aws_access_key_id=<temporary-access-key-id>;aws_secret_access_key=<temporary-secret-
access-key>;session_token=<temporary-token>;master_symmetric_key=<root-key>'
encrypted;

Important

The temporary security credentials must be valid for the entire duration of the COPY or
UNLOAD operation. If the temporary security credentials expire during the operation,

COPY 1172

Amazon Redshift Database Developer Guide

the command fails and the transaction is rolled back. For example, if temporary security
credentials expire after 15 minutes and the COPY operation requires one hour, the COPY
operation fails before it completes. If you use role-based access, the temporary security
credentials are automatically refreshed until the operation completes.

IAM permissions for COPY, UNLOAD, and CREATE LIBRARY

The IAM role or user referenced by the CREDENTIALS parameter must have, at a minimum, the
following permissions:

• For COPY from Amazon S3, permission to LIST the Amazon S3 bucket and GET the Amazon S3
objects that are being loaded, and the manifest file, if one is used.

• For COPY from Amazon S3, Amazon EMR, and remote hosts (SSH) with JSON-formatted data,
permission to LIST and GET the JSONPaths file on Amazon S3, if one is used.

• For COPY from DynamoDB, permission to SCAN and DESCRIBE the DynamoDB table that is being
loaded.

• For COPY from an Amazon EMR cluster, permission for the ListInstances action on the
Amazon EMR cluster.

• For UNLOAD to Amazon S3, GET, LIST, and PUT permissions for the Amazon S3 bucket to which
the data files are being unloaded.

• For CREATE LIBRARY from Amazon S3, permission to LIST the Amazon S3 bucket and GET the
Amazon S3 objects being imported.

Note

If you receive the error message S3ServiceException: Access Denied, when running
a COPY, UNLOAD, or CREATE LIBRARY command, your cluster doesn’t have proper access
permissions for Amazon S3.

You can manage IAM permissions by attaching an IAM policy to an IAM role that is attached
to your cluster, to a user, or to the group to which your user belongs. For example, the
AmazonS3ReadOnlyAccess managed policy grants LIST and GET permissions to Amazon S3
resources. For more information about IAM policies, see Managing IAM Policies in the IAM User
Guide.

COPY 1173

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html

Amazon Redshift Database Developer Guide

Using COPY with Amazon S3 access point aliases

COPY supports Amazon S3 access point aliases. For more information, see Using a bucket–style
alias for your access point in the Amazon Simple Storage Service User Guide.

Loading multibyte data from Amazon S3

If your data includes non-ASCII multibyte characters (such as Chinese or Cyrillic characters), you
must load the data to VARCHAR columns. The VARCHAR data type supports four-byte UTF-8
characters, but the CHAR data type only accepts single-byte ASCII characters. You can't load
five-byte or longer characters into Amazon Redshift tables. For more information, see Multibyte
characters.

Loading a column of the GEOMETRY or GEOGRAPHY data type

You can COPY to GEOMETRY or GEOGRAPHY columns from data in a character-delimited text file,
such as a CSV file. The data must be in the hexadecimal form of the well-known binary format
(either WKB or EWKB) or the well-known text format (either WKT or EWKT) and fit within the
maximum size of a single input row to the COPY command. For more information, see COPY.

For information about how to load from a shapefile, see Loading a shapefile into Amazon Redshift.

For more information about the GEOMETRY or GEOGRAPHY data type, see Querying spatial data in
Amazon Redshift.

Loading the HLLSKETCH data type

You can copy HLL sketches only in sparse or dense format supported by Amazon Redshift. To use
the COPY command on HyperLogLog sketches, use the Base64 format for dense HyperLogLog
sketches and the JSON format for sparse HyperLogLog sketches. For more information, see
HyperLogLog functions.

The following example imports data from a CSV file into a table using CREATE TABLE and COPY.
First, the example creates the table t1 using CREATE TABLE.

CREATE TABLE t1 (sketch hllsketch, a bigint);

Then it uses COPY to import data from a CSV file into the table t1.

COPY t1 FROM s3://DOC-EXAMPLE-BUCKET/unload/' IAM_ROLE
 'arn:aws:iam::0123456789012:role/MyRedshiftRole' NULL AS 'null' CSV;

COPY 1174

https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-points-alias.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-points-alias.html

Amazon Redshift Database Developer Guide

Loading a column of the VARBYTE data type

You can load data from a file in CSV, Parquet, and ORC format. For CSV, the data is loaded from
a file in hexadecimal representation of the VARBYTE data. You can't load VARBYTE data with the
FIXEDWIDTH option. The ADDQUOTES or REMOVEQUOTES option of COPY is not supported. A
VARBYTE column can't be used as a partition column.

Errors when reading multiple files

The COPY command is atomic and transactional. In other words, even when the COPY command
reads data from multiple files, the entire process is treated as a single transaction. If COPY
encounters an error reading a file, it automatically retries until the process times out (see
statement_timeout) or if data can't be download from Amazon S3 for a prolonged period of time
(between 15 and 30 minutes), ensuring that each file is loaded only once. If the COPY command
fails, the entire transaction is canceled and all changes are rolled back. For more information about
handling load errors, see Troubleshooting data loads.

After a COPY command is successfully initiated, it doesn't fail if the session terminates, for example
when the client disconnects. However, if the COPY command is within a BEGIN … END transaction
block that doesn't complete because the session terminates, the entire transaction, including the
COPY, is rolled back. For more information about transactions, see BEGIN.

COPY from JSON format

The JSON data structure is made up of a set of objects or arrays. A JSON object begins and ends
with braces, and contains an unordered collection of name-value pairs. Each name and value
are separated by a colon, and the pairs are separated by commas. The name is a string in double
quotation marks. The quotation mark characters must be simple quotation marks (0x22), not
slanted or "smart" quotation marks.

A JSON array begins and ends with brackets, and contains an ordered collection of values
separated by commas. A value can be a string in double quotation marks, a number, a Boolean true
or false, null, a JSON object, or an array.

JSON objects and arrays can be nested, enabling a hierarchical data structure. The following
example shows a JSON data structure with two valid objects.

{
 "id": 1006410,
 "title": "Amazon Redshift Database Developer Guide"

COPY 1175

Amazon Redshift Database Developer Guide

}
{
 "id": 100540,
 "name": "Amazon Simple Storage Service User Guide"
}

The following shows the same data as two JSON arrays.

[
 1006410,
 "Amazon Redshift Database Developer Guide"
]
[
 100540,
 "Amazon Simple Storage Service User Guide"
]

COPY options for JSON

You can specify the following options when using COPY with JSON format data:

• 'auto' – COPY automatically loads fields from the JSON file.

• 'auto ignorecase' – COPY automatically loads fields from the JSON file while ignoring the
case of field names.

• s3://jsonpaths_file – COPY uses a JSONPaths file to parse the JSON source data. A
JSONPaths file is a text file that contains a single JSON object with the name "jsonpaths"
paired with an array of JSONPath expressions. If the name is any string other than
"jsonpaths", COPY uses the 'auto' argument instead of using the JSONPaths file.

For examples that show how to load data using 'auto', 'auto ignorecase', or a JSONPaths
file, and using either JSON objects or arrays, see Copy from JSON examples.

JSONPath option

In the Amazon Redshift COPY syntax, a JSONPath expression specifies the explicit path to a single
name element in a JSON hierarchical data structure, using either bracket notation or dot notation.
Amazon Redshift doesn't support any JSONPath elements, such as wildcard characters or filter
expressions, that might resolve to an ambiguous path or multiple name elements. As a result,
Amazon Redshift can't parse complex, multi-level data structures.

COPY 1176

Amazon Redshift Database Developer Guide

The following is an example of a JSONPaths file with JSONPath expressions using bracket notation.
The dollar sign ($) represents the root-level structure.

{
 "jsonpaths": [
 "$['id']",
 "$['store']['book']['title']",
 "$['location'][0]"
]
}

In the previous example, $['location'][0] references the first element in an array. JSON uses
zero-based array indexing. Array indexes must be positive integers (greater than or equal to zero).

The following example shows the previous JSONPaths file using dot notation.

{
 "jsonpaths": [
 "$.id",
 "$.store.book.title",
 "$.location[0]"
]
}

You can't mix bracket notation and dot notation in the jsonpaths array. Brackets can be used in
both bracket notation and dot notation to reference an array element.

When using dot notation, the JSONPath expressions can't contain the following characters:

• Single straight quotation mark (')

• Period, or dot (.)

• Brackets ([]) unless used to reference an array element

If the value in the name-value pair referenced by a JSONPath expression is an object or an array,
the entire object or array is loaded as a string, including the braces or brackets. For example,
suppose that your JSON data contains the following object.

{
 "id": 0,

COPY 1177

Amazon Redshift Database Developer Guide

 "guid": "84512477-fa49-456b-b407-581d0d851c3c",
 "isActive": true,
 "tags": [
 "nisi",
 "culpa",
 "ad",
 "amet",
 "voluptate",
 "reprehenderit",
 "veniam"
],
 "friends": [
 {
 "id": 0,
 "name": "Martha Rivera"
 },
 {
 "id": 1,
 "name": "Renaldo"
 }
]
}

The JSONPath expression $['tags'] then returns the following value.

"["nisi","culpa","ad","amet","voluptate","reprehenderit","veniam"]"

The JSONPath expression $['friends'][1] then returns the following value.

"{"id": 1,"name": "Renaldo"}"

Each JSONPath expression in the jsonpaths array corresponds to one column in the Amazon
Redshift target table. The order of the jsonpaths array elements must match the order of the
columns in the target table or the column list, if a column list is used.

For examples that show how to load data using either the 'auto' argument or a JSONPaths file,
and using either JSON objects or arrays, see Copy from JSON examples.

For information on how to copy multiple JSON files, see Using a manifest to specify data files.

COPY 1178

Amazon Redshift Database Developer Guide

Escape characters in JSON

COPY loads \n as a newline character and loads \t as a tab character. To load a backslash, escape
it with a backslash (\\).

For example, suppose you have the following JSON in a file named escape.json in the bucket
s3://mybucket/json/.

{
 "backslash": "This is a backslash: \\",
 "newline": "This sentence\n is on two lines.",
 "tab": "This sentence \t contains a tab."
}

Run the following commands to create the ESCAPES table and load the JSON.

create table escapes (backslash varchar(25), newline varchar(35), tab varchar(35));

copy escapes from 's3://mybucket/json/escape.json'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
format as json 'auto';

Query the ESCAPES table to view the results.

select * from escapes;

 backslash | newline | tab
------------------------+-------------------+----------------------------------
 This is a backslash: \ | This sentence | This sentence contains a tab.
 : is on two lines.
(1 row)

Loss of numeric precision

You might lose precision when loading numbers from data files in JSON format to a column that is
defined as a numeric data type. Some floating point values aren't represented exactly in computer
systems. As a result, data you copy from a JSON file might not be rounded as you expect. To avoid
a loss of precision, we recommend using one of the following alternatives:

• Represent the number as a string by enclosing the value in double quotation characters.

• Use ROUNDEC to round the number instead of truncating.

COPY 1179

Amazon Redshift Database Developer Guide

• Instead of using JSON or Avro files, use CSV, character-delimited, or fixed-width text files.

COPY from columnar data formats

COPY can load data from Amazon S3 in the following columnar formats:

• ORC

• Parquet

For examples of using COPY from columnar data formats, see COPY examples.

COPY supports columnar formatted data with the following considerations:

• The Amazon S3 bucket must be in the same AWS Region as the Amazon Redshift database.

• To access your Amazon S3 data through a VPC endpoint, set up access using IAM policies and
IAM roles as described in Using Amazon Redshift Spectrum with Enhanced VPC Routing in the
Amazon Redshift Management Guide.

• COPY doesn't automatically apply compression encodings.

• Only the following COPY parameters are supported:

• ACCEPTINVCHARS when copying from an ORC or Parquet file.

• FILLRECORD

• FROM

• IAM_ROLE

• CREDENTIALS

• STATUPDATE

• MANIFEST

• EXPLICIT_IDS

• If COPY encounters an error while loading, the command fails. ACCEPTANYDATE and MAXERROR
aren't supported for columnar data types.

• Error messages are sent to the SQL client. Some errors are logged in STL_LOAD_ERRORS and
STL_ERROR.

• COPY inserts values into the target table's columns in the same order as the columns occur in the
columnar data files. The number of columns in the target table and the number of columns in
the data file must match.

COPY 1180

https://docs.aws.amazon.com/redshift/latest/mgmt/spectrum-enhanced-vpc.html

Amazon Redshift Database Developer Guide

• If the file you specify for the COPY operation includes one of the following extensions, we
decompress the data without the need for adding any parameters:

• .gz

• .snappy

• .bz2

• COPY from the Parquet and ORC file formats uses Redshift Spectrum and the bucket access.
To use COPY for these formats, be sure there are no IAM policies blocking the use of Amazon
S3 presigned URLs. The presigned URLs generated by Amazon Redshift are valid for 1 hour
so that Amazon Redshift has enough time to load all the files from the Amazon S3 bucket. A
unique presigned URL is generated for each file scanned by COPY from columnar data formats.
For bucket policies that include an s3:signatureAge action, make sure to set the value to at
least 3,600,000 milliseconds. For more information, see Using Amazon Redshift Spectrum with
enhanced VPC routing.

DATEFORMAT and TIMEFORMAT strings

The COPY command uses the DATEFORMAT and TIMEFORMAT options to parse date and time
values in your source data. DATEFORMAT and TIMEFORMAT are formatted strings that must match
the format of your source data's date and time values. For example, a COPY command loading
source data with the date value Jan-01-1999 must include the following DATEFORMAT string:

COPY ...
 DATEFORMAT AS 'MON-DD-YYYY'

For more information on managing COPY data conversions, see Data conversion parameters.

DATEFORMAT and TIMEFORMAT strings can contain datetime separators (such as '-', '/', or ':'), as
well the datepart and timepart formats in the following table.

Note

If you can't match the format of your date or time values with the following dateparts and
timeparts, or if you have date and time values that use formats different from each other,
use the 'auto' argument with the DATEFORMAT or TIMEFORMAT parameter. The 'auto'
argument recognizes several formats that aren't supported when using a DATEFORMAT

COPY 1181

https://docs.aws.amazon.com/redshift/latest/mgmt/spectrum-enhanced-vpc.html
https://docs.aws.amazon.com/redshift/latest/mgmt/spectrum-enhanced-vpc.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-conversion.html

Amazon Redshift Database Developer Guide

or TIMEFORMAT string. For more information, see Using automatic recognition with
DATEFORMAT and TIMEFORMAT.

Datepart or timepart Meaning

YY Year without century

YYYY Year with century

MM Month as a number

MON Month as a name (abbreviated name or full
name)

DD Day of month as a number

HH or HH24 Hour (24-hour clock)

Note

In DATETIME format strings for
SQL functions, HH is the same as
HH12. However, in DATEFORMAT and
TIMEFORMAT strings for COPY, HH is
the same as HH24.

HH12 Hour (12-hour clock)

MI Minutes

SS Seconds

AM or PM Meridian indicator (for 12-hour clock)

The default date format is YYYY-MM-DD. The default timestamp without time zone (TIMESTAMP)
format is YYYY-MM-DD HH:MI:SS. The default timestamp with time zone (TIMESTAMPTZ) format is
YYYY-MM-DD HH:MI:SSOF, where OF is the offset from UTC (for example, -8:00. You can't include

COPY 1182

Amazon Redshift Database Developer Guide

a time zone specifier (TZ, tz, or OF) in the timeformat_string. The seconds (SS) field also supports
fractional seconds up to a microsecond level of detail. To load TIMESTAMPTZ data that is in a
format different from the default format, specify 'auto'.

Following are some sample dates or times you can encounter in your source data, and the
corresponding DATEFORMAT or TIMEFORMAT strings for them.

Example of source data date or time DATEFORMAT or
TIMEFORMAT Syntax

03/31/2003 DATEFORMAT AS 'MM/DD/YY
YY'

March 31, 2003 DATEFORMAT AS 'MON DD,
YYYY'

03.31.2003 18:45:05

03.31.2003 18:45:05.123456

TIMEFORMAT AS 'MM.DD.YY
YY HH:MI:SS'

Example

For an example of using TIMEFORMAT, see Load a timestamp or datestamp.

Using automatic recognition with DATEFORMAT and TIMEFORMAT

If you specify 'auto' as the argument for the DATEFORMAT or TIMEFORMAT parameter, Amazon
Redshift will automatically recognize and convert the date format or time format in your source
data. The following shows an example.

copy favoritemovies from 'dynamodb://ProductCatalog'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
dateformat 'auto';

When used with the 'auto' argument for DATEFORMAT and TIMEFORMAT, COPY recognizes and
converts the date and time formats listed in the table in DATEFORMAT and TIMEFORMAT strings.
In addition, the 'auto' argument recognizes the following formats that aren't supported when
using a DATEFORMAT and TIMEFORMAT string.

COPY 1183

Amazon Redshift Database Developer Guide

Format Example of Valid Input String

ISO 8601 2019-02-11T05:09:12.195Z

Julian J2451187

BC Jan-08-95 BC

YYYYMMDD HHMISS 19960108 040809

YYMMDD HHMISS 960108 040809

YYYY.DDD 1996.008

YYYY-MM-DD HH:MI:SS.
SSS

1996-01-08 04:05:06.789

DD Mon HH:MI:SS YYYY TZ 17 Dec 07:37:16 1997 PST

MM/DD/YYYY HH:MI:SS.SS
TZ

12/17/1997 07:37:16.00 PST

YYYY-MM-DD HH:MI:SS+/-
TZ

1997-12-17 07:37:16-08

DD.MM.YYYY HH:MI:SS TZ 12.17.1997 07:37:16.00 PST

Automatic recognition doesn't support epochsecs and epochmillisecs.

To test whether a date or timestamp value will be automatically converted, use a CAST function to
attempt to convert the string to a date or timestamp value. For example, the following commands
test the timestamp value 'J2345678 04:05:06.789':

create table formattest (test char(21));
insert into formattest values('J2345678 04:05:06.789');
select test, cast(test as timestamp) as timestamp, cast(test as date) as date from
 formattest;

 test | timestamp | date
----------------------+---------------------+------------

COPY 1184

Amazon Redshift Database Developer Guide

J2345678 04:05:06.789 1710-02-23 04:05:06 1710-02-23

If the source data for a DATE column includes time information, the time component is truncated.
If the source data for a TIMESTAMP column omits time information, 00:00:00 is used for the time
component.

COPY examples

Note

These examples contain line breaks for readability. Do not include line breaks or spaces in
your credentials-args string.

Topics

• Load FAVORITEMOVIES from an DynamoDB table

• Load LISTING from an Amazon S3 bucket

• Load LISTING from an Amazon EMR cluster

• Using a manifest to specify data files

• Load LISTING from a pipe-delimited file (default delimiter)

• Load LISTING using columnar data in Parquet format

• Load LISTING using columnar data in ORC format

• Load EVENT with options

• Load VENUE from a fixed-width data file

• Load CATEGORY from a CSV file

• Load VENUE with explicit values for an IDENTITY column

• Load TIME from a pipe-delimited GZIP file

• Load a timestamp or datestamp

• Load data from a file with default values

• COPY data with the ESCAPE option

• Copy from JSON examples

• Copy from Avro examples

• Preparing files for COPY with the ESCAPE option

COPY 1185

Amazon Redshift Database Developer Guide

• Loading a shapefile into Amazon Redshift

• COPY command with the NOLOAD option

Load FAVORITEMOVIES from an DynamoDB table

The AWS SDKs include a simple example of creating a DynamoDB table called Movies. (For this
example, see Getting Started with DynamoDB.) The following example loads the Amazon Redshift
MOVIES table with data from the DynamoDB table. The Amazon Redshift table must already exist
in the database.

copy favoritemovies from 'dynamodb://Movies'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
readratio 50;

Load LISTING from an Amazon S3 bucket

The following example loads LISTING from an Amazon S3 bucket. The COPY command loads all of
the files in the /data/listing/ folder.

copy listing
from 's3://mybucket/data/listing/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

Load LISTING from an Amazon EMR cluster

The following example loads the SALES table with tab-delimited data from lzop-compressed files
in an Amazon EMR cluster. COPY loads every file in the myoutput/ folder that begins with part-.

copy sales
from 'emr://j-SAMPLE2B500FC/myoutput/part-*'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '\t' lzop;

The following example loads the SALES table with JSON formatted data in an Amazon EMR cluster.
COPY loads every file in the myoutput/json/ folder.

copy sales
from 'emr://j-SAMPLE2B500FC/myoutput/json/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'

COPY 1186

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GettingStarted.html

Amazon Redshift Database Developer Guide

JSON 's3://mybucket/jsonpaths.txt';

Using a manifest to specify data files

You can use a manifest to ensure that your COPY command loads all of the required files, and only
the required files, from Amazon S3. You can also use a manifest when you need to load multiple
files from different buckets or files that don't share the same prefix.

For example, suppose that you need to load the following three files: custdata1.txt,
custdata2.txt, and custdata3.txt. You could use the following command to load all of the
files in mybucket that begin with custdata by specifying a prefix:

copy category
from 's3://mybucket/custdata'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

If only two of the files exist because of an error, COPY loads only those two files and finishes
successfully, resulting in an incomplete data load. If the bucket also contains an unwanted file that
happens to use the same prefix, such as a file named custdata.backup for example, COPY loads
that file as well, resulting in unwanted data being loaded.

To ensure that all of the required files are loaded and to prevent unwanted files from being loaded,
you can use a manifest file. The manifest is a JSON-formatted text file that lists the files to be
processed by the COPY command. For example, the following manifest loads the three files in the
previous example.

{
 "entries":[
 {
 "url":"s3://mybucket/custdata.1",
 "mandatory":true
 },
 {
 "url":"s3://mybucket/custdata.2",
 "mandatory":true
 },
 {
 "url":"s3://mybucket/custdata.3",
 "mandatory":true
 }
]

COPY 1187

Amazon Redshift Database Developer Guide

}

The optional mandatory flag indicates whether COPY should terminate if the file doesn't exist.
The default is false. Regardless of any mandatory settings, COPY terminates if no files are found.
In this example, COPY returns an error if any of the files isn't found. Unwanted files that might
have been picked up if you specified only a key prefix, such as custdata.backup, are ignored,
because they aren't on the manifest.

When loading from data files in ORC or Parquet format, a meta field is required, as shown in the
following example.

{
 "entries":[
 {
 "url":"s3://mybucket-alpha/orc/2013-10-04-custdata",
 "mandatory":true,
 "meta":{
 "content_length":99
 }
 },
 {
 "url":"s3://mybucket-beta/orc/2013-10-05-custdata",
 "mandatory":true,
 "meta":{
 "content_length":99
 }
 }
]
}

The following example uses a manifest named cust.manifest.

copy customer
from 's3://mybucket/cust.manifest'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
format as orc
manifest;

You can use a manifest to load files from different buckets or files that don't share the same prefix.
The following example shows the JSON to load data with files whose names begin with a date
stamp.

COPY 1188

Amazon Redshift Database Developer Guide

{
 "entries": [
 {"url":"s3://mybucket/2013-10-04-custdata.txt","mandatory":true},
 {"url":"s3://mybucket/2013-10-05-custdata.txt","mandatory":true},
 {"url":"s3://mybucket/2013-10-06-custdata.txt","mandatory":true},
 {"url":"s3://mybucket/2013-10-07-custdata.txt","mandatory":true}
]
}

The manifest can list files that are in different buckets, as long as the buckets are in the same AWS
Region as the cluster.

{
 "entries": [
 {"url":"s3://mybucket-alpha/custdata1.txt","mandatory":false},
 {"url":"s3://mybucket-beta/custdata1.txt","mandatory":false},
 {"url":"s3://mybucket-beta/custdata2.txt","mandatory":false}
]
}

Load LISTING from a pipe-delimited file (default delimiter)

The following example is a very simple case in which no options are specified and the input file
contains the default delimiter, a pipe character ('|').

copy listing
from 's3://mybucket/data/listings_pipe.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

Load LISTING using columnar data in Parquet format

The following example loads data from a folder on Amazon S3 named parquet.

copy listing
from 's3://mybucket/data/listings/parquet/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
format as parquet;

Load LISTING using columnar data in ORC format

The following example loads data from a folder on Amazon S3 named orc.

COPY 1189

Amazon Redshift Database Developer Guide

copy listing
from 's3://mybucket/data/listings/orc/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
format as orc;

Load EVENT with options

The following example loads pipe-delimited data into the EVENT table and applies the following
rules:

• If pairs of quotation marks are used to surround any character strings, they are removed.

• Both empty strings and strings that contain blanks are loaded as NULL values.

• The load fails if more than 5 errors are returned.

• Timestamp values must comply with the specified format; for example, a valid timestamp is
2008-09-26 05:43:12.

copy event
from 's3://mybucket/data/allevents_pipe.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
removequotes
emptyasnull
blanksasnull
maxerror 5
delimiter '|'
timeformat 'YYYY-MM-DD HH:MI:SS';

Load VENUE from a fixed-width data file

copy venue
from 's3://mybucket/data/venue_fw.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
fixedwidth 'venueid:3,venuename:25,venuecity:12,venuestate:2,venueseats:6';

The preceding example assumes a data file formatted in the same way as the sample data shown.
In the sample following, spaces act as placeholders so that all of the columns are the same width
as noted in the specification:

1 Toyota Park Bridgeview IL0

COPY 1190

Amazon Redshift Database Developer Guide

2 Columbus Crew Stadium Columbus OH0
3 RFK Stadium Washington DC0
4 CommunityAmerica BallparkKansas City KS0
5 Gillette Stadium Foxborough MA68756

Load CATEGORY from a CSV file

Suppose you want to load the CATEGORY with the values shown in the following table.

catid catgroup catname catdesc

12 Shows Musicals Musical theatre

13 Shows Plays All "non-musical" theatre

14 Shows Opera All opera, light, and "rock" opera

15 Concerts Classical All symphony, concerto, and choir
concerts

The following example shows the contents of a text file with the field values separated by commas.

12,Shows,Musicals,Musical theatre
13,Shows,Plays,All "non-musical" theatre
14,Shows,Opera,All opera, light, and "rock" opera
15,Concerts,Classical,All symphony, concerto, and choir concerts

If you load the file using the DELIMITER parameter to specify comma-delimited input, the COPY
command fails because some input fields contain commas. You can avoid that problem by using
the CSV parameter and enclosing the fields that contain commas in quotation mark characters. If
the quotation mark character appears within a quoted string, you need to escape it by doubling the
quotation mark character. The default quotation mark character is a double quotation mark, so you
need to escape each double quotation mark with an additional double quotation mark. Your new
input file looks something like this.

12,Shows,Musicals,Musical theatre
13,Shows,Plays,"All ""non-musical"" theatre"
14,Shows,Opera,"All opera, light, and ""rock"" opera"
15,Concerts,Classical,"All symphony, concerto, and choir concerts"

COPY 1191

Amazon Redshift Database Developer Guide

Assuming the file name is category_csv.txt, you can load the file by using the following COPY
command:

copy category
from 's3://mybucket/data/category_csv.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
csv;

Alternatively, to avoid the need to escape the double quotation marks in your input, you can
specify a different quotation mark character by using the QUOTE AS parameter. For example, the
following version of category_csv.txt uses '%' as the quotation mark character.

12,Shows,Musicals,Musical theatre
13,Shows,Plays,%All "non-musical" theatre%
14,Shows,Opera,%All opera, light, and "rock" opera%
15,Concerts,Classical,%All symphony, concerto, and choir concerts%

The following COPY command uses QUOTE AS to load category_csv.txt:

copy category
from 's3://mybucket/data/category_csv.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
csv quote as '%';

Load VENUE with explicit values for an IDENTITY column

The following example assumes that when the VENUE table was created that at least one column
(such as the venueid column) was specified to be an IDENTITY column. This command overrides
the default IDENTITY behavior of autogenerating values for an IDENTITY column and instead loads
the explicit values from the venue.txt file. Amazon Redshift does not check if duplicate IDENTITY
values are loaded into the table when using the EXLICIT_IDS option.

copy venue
from 's3://mybucket/data/venue.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
explicit_ids;

Load TIME from a pipe-delimited GZIP file

The following example loads the TIME table from a pipe-delimited GZIP file:

COPY 1192

Amazon Redshift Database Developer Guide

copy time
from 's3://mybucket/data/timerows.gz'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
gzip
delimiter '|';

Load a timestamp or datestamp

The following example loads data with a formatted timestamp.

Note

The TIMEFORMAT of HH:MI:SS can also support fractional seconds beyond the SS to a
microsecond level of detail. The file time.txt used in this example contains one row,
2009-01-12 14:15:57.119568.

copy timestamp1
from 's3://mybucket/data/time.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
timeformat 'YYYY-MM-DD HH:MI:SS';

The result of this copy is as follows:

select * from timestamp1;
c1

2009-01-12 14:15:57.119568
(1 row)

Load data from a file with default values

The following example uses a variation of the VENUE table in the TICKIT database. Consider a
VENUE_NEW table defined with the following statement:

create table venue_new(
venueid smallint not null,
venuename varchar(100) not null,
venuecity varchar(30),

COPY 1193

Amazon Redshift Database Developer Guide

venuestate char(2),
venueseats integer not null default '1000');

Consider a venue_noseats.txt data file that contains no values for the VENUESEATS column, as
shown in the following example:

1|Toyota Park|Bridgeview|IL|
2|Columbus Crew Stadium|Columbus|OH|
3|RFK Stadium|Washington|DC|
4|CommunityAmerica Ballpark|Kansas City|KS|
5|Gillette Stadium|Foxborough|MA|
6|New York Giants Stadium|East Rutherford|NJ|
7|BMO Field|Toronto|ON|
8|The Home Depot Center|Carson|CA|
9|Dick's Sporting Goods Park|Commerce City|CO|
10|Pizza Hut Park|Frisco|TX|

The following COPY statement will successfully load the table from the file and apply the DEFAULT
value ('1000') to the omitted column:

copy venue_new(venueid, venuename, venuecity, venuestate)
from 's3://mybucket/data/venue_noseats.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '|';

Now view the loaded table:

select * from venue_new order by venueid;
venueid | venuename | venuecity | venuestate | venueseats
---------+----------------------------+-----------------+------------+------------
1 | Toyota Park | Bridgeview | IL | 1000
2 | Columbus Crew Stadium | Columbus | OH | 1000
3 | RFK Stadium | Washington | DC | 1000
4 | CommunityAmerica Ballpark | Kansas City | KS | 1000
5 | Gillette Stadium | Foxborough | MA | 1000
6 | New York Giants Stadium | East Rutherford | NJ | 1000
7 | BMO Field | Toronto | ON | 1000
8 | The Home Depot Center | Carson | CA | 1000
9 | Dick's Sporting Goods Park | Commerce City | CO | 1000
10 | Pizza Hut Park | Frisco | TX | 1000
(10 rows)

COPY 1194

Amazon Redshift Database Developer Guide

For the following example, in addition to assuming that no VENUESEATS data is included in the
file, also assume that no VENUENAME data is included:

1||Bridgeview|IL|
2||Columbus|OH|
3||Washington|DC|
4||Kansas City|KS|
5||Foxborough|MA|
6||East Rutherford|NJ|
7||Toronto|ON|
8||Carson|CA|
9||Commerce City|CO|
10||Frisco|TX|

Using the same table definition, the following COPY statement fails because no DEFAULT value was
specified for VENUENAME, and VENUENAME is a NOT NULL column:

copy venue(venueid, venuecity, venuestate)
from 's3://mybucket/data/venue_pipe.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '|';

Now consider a variation of the VENUE table that uses an IDENTITY column:

create table venue_identity(
venueid int identity(1,1),
venuename varchar(100) not null,
venuecity varchar(30),
venuestate char(2),
venueseats integer not null default '1000');

As with the previous example, assume that the VENUESEATS column has no corresponding
values in the source file. The following COPY statement successfully loads the table, including the
predefined IDENTITY data values instead of autogenerating those values:

copy venue(venueid, venuename, venuecity, venuestate)
from 's3://mybucket/data/venue_pipe.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '|' explicit_ids;

COPY 1195

Amazon Redshift Database Developer Guide

This statement fails because it doesn't include the IDENTITY column (VENUEID is missing from the
column list) yet includes an EXPLICIT_IDS parameter:

copy venue(venuename, venuecity, venuestate)
from 's3://mybucket/data/venue_pipe.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '|' explicit_ids;

This statement fails because it doesn't include an EXPLICIT_IDS parameter:

copy venue(venueid, venuename, venuecity, venuestate)
from 's3://mybucket/data/venue_pipe.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '|';

COPY data with the ESCAPE option

The following example shows how to load characters that match the delimiter character (in this
case, the pipe character). In the input file, make sure that all of the pipe characters (|) that you want
to load are escaped with the backslash character (\). Then load the file with the ESCAPE parameter.

$ more redshiftinfo.txt
1|public\|event\|dwuser
2|public\|sales\|dwuser

create table redshiftinfo(infoid int,tableinfo varchar(50));

copy redshiftinfo from 's3://mybucket/data/redshiftinfo.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter '|' escape;

select * from redshiftinfo order by 1;
infoid | tableinfo
-------+--------------------
1 | public|event|dwuser
2 | public|sales|dwuser
(2 rows)

Without the ESCAPE parameter, this COPY command fails with an Extra column(s) found
error.

COPY 1196

Amazon Redshift Database Developer Guide

Important

If you load your data using a COPY with the ESCAPE parameter, you must also specify the
ESCAPE parameter with your UNLOAD command to generate the reciprocal output file.
Similarly, if you UNLOAD using the ESCAPE parameter, you need to use ESCAPE when you
COPY the same data.

Copy from JSON examples

In the following examples, you load the CATEGORY table with the following data.

CATID CATGROUP CATNAME CATDESC

1 Sports MLB Major League Baseball

2 Sports NHL National Hockey League

3 Sports NFL National Football League

4 Sports NBA National Basketball Association

5 Concerts Classical All symphony, concerto, and choir
concerts

Topics

• Load from JSON data using the 'auto' option

• Load from JSON data using the 'auto ignorecase' option

• Load from JSON data using a JSONPaths file

• Load from JSON arrays using a JSONPaths file

Load from JSON data using the 'auto' option

To load from JSON data using the 'auto' option, the JSON data must consist of a set of objects.
The key names must match the column names, but the order doesn't matter. The following shows
the contents of a file named category_object_auto.json.

COPY 1197

Amazon Redshift Database Developer Guide

{
 "catdesc": "Major League Baseball",
 "catid": 1,
 "catgroup": "Sports",
 "catname": "MLB"
}
{
 "catgroup": "Sports",
 "catid": 2,
 "catname": "NHL",
 "catdesc": "National Hockey League"
}{
 "catid": 3,
 "catname": "NFL",
 "catgroup": "Sports",
 "catdesc": "National Football League"
}
{
 "bogus": "Bogus Sports LLC",
 "catid": 4,
 "catgroup": "Sports",
 "catname": "NBA",
 "catdesc": "National Basketball Association"
}
{
 "catid": 5,
 "catgroup": "Shows",
 "catname": "Musicals",
 "catdesc": "All symphony, concerto, and choir concerts"
}

To load from the JSON data file in the previous example, run the following COPY command.

copy category
from 's3://mybucket/category_object_auto.json'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
json 'auto';

Load from JSON data using the 'auto ignorecase' option

To load from JSON data using the 'auto ignorecase' option, the JSON data must consist of a
set of objects. The case of the key names doesn't have to match the column names and the order

COPY 1198

Amazon Redshift Database Developer Guide

doesn't matter. The following shows the contents of a file named category_object_auto-
ignorecase.json.

{
 "CatDesc": "Major League Baseball",
 "CatID": 1,
 "CatGroup": "Sports",
 "CatName": "MLB"
}
{
 "CatGroup": "Sports",
 "CatID": 2,
 "CatName": "NHL",
 "CatDesc": "National Hockey League"
}{
 "CatID": 3,
 "CatName": "NFL",
 "CatGroup": "Sports",
 "CatDesc": "National Football League"
}
{
 "bogus": "Bogus Sports LLC",
 "CatID": 4,
 "CatGroup": "Sports",
 "CatName": "NBA",
 "CatDesc": "National Basketball Association"
}
{
 "CatID": 5,
 "CatGroup": "Shows",
 "CatName": "Musicals",
 "CatDesc": "All symphony, concerto, and choir concerts"
}

To load from the JSON data file in the previous example, run the following COPY command.

copy category
from 's3://mybucket/category_object_auto ignorecase.json'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
json 'auto ignorecase';

COPY 1199

Amazon Redshift Database Developer Guide

Load from JSON data using a JSONPaths file

If the JSON data objects don't correspond directly to column names, you can use a JSONPaths file
to map the JSON elements to columns. The order doesn't matter in the JSON source data, but the
order of the JSONPaths file expressions must match the column order. Suppose that you have the
following data file, named category_object_paths.json.

{
 "one": 1,
 "two": "Sports",
 "three": "MLB",
 "four": "Major League Baseball"
}
{
 "three": "NHL",
 "four": "National Hockey League",
 "one": 2,
 "two": "Sports"
}
{
 "two": "Sports",
 "three": "NFL",
 "one": 3,
 "four": "National Football League"
}
{
 "one": 4,
 "two": "Sports",
 "three": "NBA",
 "four": "National Basketball Association"
}
{
 "one": 6,
 "two": "Shows",
 "three": "Musicals",
 "four": "All symphony, concerto, and choir concerts"
}

The following JSONPaths file, named category_jsonpath.json, maps the source data to the
table columns.

{

COPY 1200

Amazon Redshift Database Developer Guide

 "jsonpaths": [
 "$['one']",
 "$['two']",
 "$['three']",
 "$['four']"
]
}

To load from the JSON data file in the previous example, run the following COPY command.

copy category
from 's3://mybucket/category_object_paths.json'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
json 's3://mybucket/category_jsonpath.json';

Load from JSON arrays using a JSONPaths file

To load from JSON data that consists of a set of arrays, you must use a JSONPaths file to
map the array elements to columns. Suppose that you have the following data file, named
category_array_data.json.

[1,"Sports","MLB","Major League Baseball"]
[2,"Sports","NHL","National Hockey League"]
[3,"Sports","NFL","National Football League"]
[4,"Sports","NBA","National Basketball Association"]
[5,"Concerts","Classical","All symphony, concerto, and choir concerts"]

The following JSONPaths file, named category_array_jsonpath.json, maps the source data
to the table columns.

{
 "jsonpaths": [
 "$[0]",
 "$[1]",
 "$[2]",
 "$[3]"
]
}

To load from the JSON data file in the previous example, run the following COPY command.

COPY 1201

Amazon Redshift Database Developer Guide

copy category
from 's3://mybucket/category_array_data.json'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
json 's3://mybucket/category_array_jsonpath.json';

Copy from Avro examples

In the following examples, you load the CATEGORY table with the following data.

CATID CATGROUP CATNAME CATDESC

1 Sports MLB Major League Baseball

2 Sports NHL National Hockey League

3 Sports NFL National Football League

4 Sports NBA National Basketball Association

5 Concerts Classical All symphony, concerto, and choir
concerts

Topics

• Load from Avro data using the 'auto' option

• Load from Avro data using the 'auto ignorecase' option

• Load from Avro data using a JSONPaths file

Load from Avro data using the 'auto' option

To load from Avro data using the 'auto' argument, field names in the Avro schema must match
the column names. When using the 'auto' argument, order doesn't matter. The following shows
the schema for a file named category_auto.avro.

{
 "name": "category",
 "type": "record",
 "fields": [
 {"name": "catid", "type": "int"},

COPY 1202

Amazon Redshift Database Developer Guide

 {"name": "catdesc", "type": "string"},
 {"name": "catname", "type": "string"},
 {"name": "catgroup", "type": "string"},
}

The data in an Avro file is in binary format, so it isn't human-readable. The following shows a JSON
representation of the data in the category_auto.avro file.

{
 "catid": 1,
 "catdesc": "Major League Baseball",
 "catname": "MLB",
 "catgroup": "Sports"
}
{
 "catid": 2,
 "catdesc": "National Hockey League",
 "catname": "NHL",
 "catgroup": "Sports"
}
{
 "catid": 3,
 "catdesc": "National Basketball Association",
 "catname": "NBA",
 "catgroup": "Sports"
}
{
 "catid": 4,
 "catdesc": "All symphony, concerto, and choir concerts",
 "catname": "Classical",
 "catgroup": "Concerts"
}

To load from the Avro data file in the previous example, run the following COPY command.

copy category
from 's3://mybucket/category_auto.avro'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
format as avro 'auto';

COPY 1203

Amazon Redshift Database Developer Guide

Load from Avro data using the 'auto ignorecase' option

To load from Avro data using the 'auto ignorecase' argument, the case of the field names
in the Avro schema does not have to match the case of column names. When using the 'auto
ignorecase' argument, order doesn't matter. The following shows the schema for a file named
category_auto-ignorecase.avro.

{
 "name": "category",
 "type": "record",
 "fields": [
 {"name": "CatID", "type": "int"},
 {"name": "CatDesc", "type": "string"},
 {"name": "CatName", "type": "string"},
 {"name": "CatGroup", "type": "string"},
}

The data in an Avro file is in binary format, so it isn't human-readable. The following shows a JSON
representation of the data in the category_auto-ignorecase.avro file.

{
 "CatID": 1,
 "CatDesc": "Major League Baseball",
 "CatName": "MLB",
 "CatGroup": "Sports"
}
{
 "CatID": 2,
 "CatDesc": "National Hockey League",
 "CatName": "NHL",
 "CatGroup": "Sports"
}
{
 "CatID": 3,
 "CatDesc": "National Basketball Association",
 "CatName": "NBA",
 "CatGroup": "Sports"
}
{
 "CatID": 4,
 "CatDesc": "All symphony, concerto, and choir concerts",
 "CatName": "Classical",

COPY 1204

Amazon Redshift Database Developer Guide

 "CatGroup": "Concerts"
}

To load from the Avro data file in the previous example, run the following COPY command.

copy category
from 's3://mybucket/category_auto-ignorecase.avro'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
format as avro 'auto ignorecase';

Load from Avro data using a JSONPaths file

If the field names in the Avro schema don't correspond directly to column names, you can use
a JSONPaths file to map the schema elements to columns. The order of the JSONPaths file
expressions must match the column order.

Suppose that you have a data file named category_paths.avro that contains the same data as
in the previous example, but with the following schema.

{
 "name": "category",
 "type": "record",
 "fields": [
 {"name": "id", "type": "int"},
 {"name": "desc", "type": "string"},
 {"name": "name", "type": "string"},
 {"name": "group", "type": "string"},
 {"name": "region", "type": "string"}
]
}

The following JSONPaths file, named category_path.avropath, maps the source data to the
table columns.

{
 "jsonpaths": [
 "$['id']",
 "$['group']",
 "$['name']",
 "$['desc']"
]

COPY 1205

Amazon Redshift Database Developer Guide

}

To load from the Avro data file in the previous example, run the following COPY command.

copy category
from 's3://mybucket/category_object_paths.avro'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
format avro 's3://mybucket/category_path.avropath ';

Preparing files for COPY with the ESCAPE option

The following example describes how you might prepare data to "escape" newline characters
before importing the data into an Amazon Redshift table using the COPY command with the
ESCAPE parameter. Without preparing the data to delimit the newline characters, Amazon Redshift
returns load errors when you run the COPY command, because the newline character is normally
used as a record separator.

For example, consider a file or a column in an external table that you want to copy into an Amazon
Redshift table. If the file or column contains XML-formatted content or similar data, you need to
make sure that all of the newline characters (\n) that are part of the content are escaped with the
backslash character (\).

A file or table containing embedded newlines characters provides a relatively easy pattern to
match. Each embedded newline character most likely always follows a > character with potentially
some white space characters (' ' or tab) in between, as you can see in the following example of a
text file named nlTest1.txt.

$ cat nlTest1.txt
<xml start>
<newline characters provide>
<line breaks at the end of each>
<line in content>
</xml>|1000
<xml>
</xml>|2000

With the following example, you can run a text-processing utility to pre-process the source file
and insert escape characters where needed. (The | character is intended to be used as delimiter to
separate column data when copied into an Amazon Redshift table.)

COPY 1206

Amazon Redshift Database Developer Guide

$ sed -e ':a;N;$!ba;s/>[[:space:]]*\n/>\\\n/g' nlTest1.txt > nlTest2.txt

Similarly, you can use Perl to perform a similar operation:

cat nlTest1.txt | perl -p -e 's/>\s*\n/>\\\n/g' > nlTest2.txt

To accommodate loading the data from the nlTest2.txt file into Amazon Redshift, we created a
two-column table in Amazon Redshift. The first column c1, is a character column that holds XML-
formatted content from the nlTest2.txt file. The second column c2 holds integer values loaded
from the same file.

After running the sed command, you can correctly load data from the nlTest2.txt file into an
Amazon Redshift table using the ESCAPE parameter.

Note

When you include the ESCAPE parameter with the COPY command, it escapes a number of
special characters that include the backslash character (including newline).

copy t2 from 's3://mybucket/data/nlTest2.txt'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
escape
delimiter as '|';

select * from t2 order by 2;

c1 | c2
-------------+------
<xml start>
<newline characters provide>
<line breaks at the end of each>
<line in content>
</xml>
| 1000
<xml>
</xml> | 2000
(2 rows)

COPY 1207

Amazon Redshift Database Developer Guide

You can prepare data files exported from external databases in a similar way. For example, with an
Oracle database, you can use the REPLACE function on each affected column in a table that you
want to copy into Amazon Redshift.

SELECT c1, REPLACE(c2, \n',\\n') as c2 from my_table_with_xml

In addition, many database export and extract, transform, load (ETL) tools that routinely process
large amounts of data provide options to specify escape and delimiter characters.

Loading a shapefile into Amazon Redshift

The following examples demonstrate how to load an Esri shapefile using COPY. For more
information about loading shapefiles, see Loading a shapefile into Amazon Redshift.

Loading a shapefile

The following steps show how to ingest OpenStreetMap data from Amazon S3 using the COPY
command. This example assumes that the Norway shapefile archive from the download site of
Geofabrik has been uploaded to a private Amazon S3 bucket in your AWS Region. The .shp, .shx,
and .dbf files must share the same Amazon S3 prefix and file name.

Ingesting data without simplification

The following commands create tables and ingest data that can fit in the maximum geometry
size without any simplification. Open the gis_osm_natural_free_1.shp in your preferred GIS
software and inspect the columns in this layer. By default, either IDENTITY or GEOMETRY columns
are first. When a GEOMETRY column is first, you can create the table as shown following.

CREATE TABLE norway_natural (
 wkb_geometry GEOMETRY,
 osm_id BIGINT,
 code INT,
 fclass VARCHAR,
 name VARCHAR);

Or, when an IDENTITY column is first, you can create the table as shown following.

CREATE TABLE norway_natural_with_id (
 fid INT IDENTITY(1,1),
 wkb_geometry GEOMETRY,

COPY 1208

https://download.geofabrik.de/europe.html
https://download.geofabrik.de/europe.html

Amazon Redshift Database Developer Guide

 osm_id BIGINT,
 code INT,
 fclass VARCHAR,
 name VARCHAR);

Now you can ingest the data using COPY.

COPY norway_natural FROM 's3://bucket_name/shapefiles/norway/
gis_osm_natural_free_1.shp'
FORMAT SHAPEFILE
CREDENTIALS 'aws_iam_role=arn:aws:iam::123456789012:role/MyRoleName';
INFO: Load into table 'norway_natural' completed, 83891 record(s) loaded successfully

Or you can ingest the data as shown following.

COPY norway_natural_with_id FROM 's3://bucket_name/shapefiles/norway/
gis_osm_natural_free_1.shp'
FORMAT SHAPEFILE
CREDENTIALS 'aws_iam_role=arn:aws:iam::123456789012:role/MyRoleName';
INFO: Load into table 'norway_natural_with_id' completed, 83891 record(s) loaded
 successfully.

Ingesting data with simplification

The following commands create a table and try to ingest data that can't fit in the maximum
geometry size without any simplification. Inspect the gis_osm_water_a_free_1.shp shapefile
and create the appropriate table as shown following.

CREATE TABLE norway_water (
 wkb_geometry GEOMETRY,
 osm_id BIGINT,
 code INT,
 fclass VARCHAR,
 name VARCHAR);

When the COPY command runs, it results in an error.

COPY norway_water FROM 's3://bucket_name/shapefiles/norway/gis_osm_water_a_free_1.shp'
FORMAT SHAPEFILE
CREDENTIALS 'aws_iam_role=arn:aws:iam::123456789012:role/MyRoleName';

COPY 1209

Amazon Redshift Database Developer Guide

ERROR: Load into table 'norway_water' failed. Check 'stl_load_errors' system table
 for details.

Querying STL_LOAD_ERRORS shows that the geometry is too large.

SELECT line_number, btrim(colname), btrim(err_reason) FROM stl_load_errors WHERE query
 = pg_last_copy_id();
 line_number | btrim | btrim
-------------+--------------
+---
 1184705 | wkb_geometry | Geometry size: 1513736 is larger than maximum supported
 size: 1048447

To overcome this, the SIMPLIFY AUTO parameter is added to the COPY command to simplify
geometries.

COPY norway_water FROM 's3://bucket_name/shapefiles/norway/gis_osm_water_a_free_1.shp'
FORMAT SHAPEFILE
SIMPLIFY AUTO
CREDENTIALS 'aws_iam_role=arn:aws:iam::123456789012:role/MyRoleName';

INFO: Load into table 'norway_water' completed, 1989196 record(s) loaded successfully.

To view the rows and geometries that were simplified, query SVL_SPATIAL_SIMPLIFY.

SELECT * FROM svl_spatial_simplify WHERE query = pg_last_copy_id();
 query | line_number | maximum_tolerance | initial_size | simplified | final_size |
 final_tolerance
-------+-------------+-------------------+--------------+------------+------------
+----------------------
 20 | 1184704 | -1 | 1513736 | t | 1008808 |
 1.276386653895e-05
 20 | 1664115 | -1 | 1233456 | t | 1023584 |
 6.11707814796635e-06

Using SIMPLIFY AUTO max_tolerance with the tolerance lower than the automatically calculated
ones probably results in an ingestion error. In this case, use MAXERROR to ignore errors.

COPY norway_water FROM 's3://bucket_name/shapefiles/norway/gis_osm_water_a_free_1.shp'
FORMAT SHAPEFILE

COPY 1210

Amazon Redshift Database Developer Guide

SIMPLIFY AUTO 1.1E-05
MAXERROR 2
CREDENTIALS 'aws_iam_role=arn:aws:iam::123456789012:role/MyRoleName';

INFO: Load into table 'norway_water' completed, 1989195 record(s) loaded successfully.
INFO: Load into table 'norway_water' completed, 1 record(s) could not be loaded.
 Check 'stl_load_errors' system table for details.

Query SVL_SPATIAL_SIMPLIFY again to identify the record that COPY didn't manage to load.

SELECT * FROM svl_spatial_simplify WHERE query = pg_last_copy_id();
 query | line_number | maximum_tolerance | initial_size | simplified | final_size |
 final_tolerance
-------+-------------+-------------------+--------------+------------+------------
+-----------------
 29 | 1184704 | 1.1e-05 | 1513736 | f | 0 |
 0
 29 | 1664115 | 1.1e-05 | 1233456 | t | 794432 |
 1.1e-05

In this example, the first record didn’t manage to fit, so the simplified column is showing false.
The second record was loaded within the given tolerance. However, the final size is larger than
using the automatically calculated tolerance without specifying the maximum tolerance.

Loading from a compressed shapefile

Amazon Redshift COPY supports ingesting data from a compressed shapefile. All shapefile
components must have the same Amazon S3 prefix and the same compression suffix. As an
example, suppose that you want to load the data from the previous example. In this case,
the files gis_osm_water_a_free_1.shp.gz, gis_osm_water_a_free_1.dbf.gz, and
gis_osm_water_a_free_1.shx.gz must share the same Amazon S3 directory. The COPY
command requires the GZIP option, and the FROM clause must specify the correct compressed file,
as shown following.

COPY norway_natural FROM 's3://bucket_name/shapefiles/norway/compressed/
gis_osm_natural_free_1.shp.gz'
FORMAT SHAPEFILE
GZIP
CREDENTIALS 'aws_iam_role=arn:aws:iam::123456789012:role/MyRoleName';
INFO: Load into table 'norway_natural' completed, 83891 record(s) loaded successfully.

COPY 1211

Amazon Redshift Database Developer Guide

Loading data into a table with a different column order

If you have a table that doesn't have GEOMETRY as the first column, you can use column mapping
to map columns to the target table. For example, create a table with osm_id specified as a first
column.

CREATE TABLE norway_natural_order (
 osm_id BIGINT,
 wkb_geometry GEOMETRY,
 code INT,
 fclass VARCHAR,
 name VARCHAR);

Then ingest a shapefile using column mapping.

COPY norway_natural_order(wkb_geometry, osm_id, code, fclass, name)
FROM 's3://bucket_name/shapefiles/norway/gis_osm_natural_free_1.shp'
FORMAT SHAPEFILE
CREDENTIALS 'aws_iam_role=arn:aws:iam::123456789012:role/MyRoleName';
INFO: Load into table 'norway_natural_order' completed, 83891 record(s) loaded
 successfully.

Loading data into a table with a geography column

If you have a table that has a GEOGRAPHY column, you first ingest into a GEOMETRY column and
then cast the objects to GEOGRAPHY objects. For example, after you copy your shapefile into a
GEOMETRY column, alter the table to add a column of the GEOGRAPHY data type.

ALTER TABLE norway_natural ADD COLUMN wkb_geography GEOGRAPHY;

Then convert geometries to geographies.

UPDATE norway_natural SET wkb_geography = wkb_geometry::geography;

Optionally, you can drop the GEOMETRY column.

ALTER TABLE norway_natural DROP COLUMN wkb_geometry;

COPY 1212

Amazon Redshift Database Developer Guide

COPY command with the NOLOAD option

To validate data files before you actually load the data, use the NOLOAD option with the COPY
command. Amazon Redshift parses the input file and displays any errors that occur. The following
example uses the NOLOAD option and no rows are actually loaded into the table.

COPY public.zipcode1
FROM 's3://mybucket/mydata/zipcode.csv'
DELIMITER ';'
IGNOREHEADER 1 REGION 'us-east-1'
NOLOAD
CREDENTIALS 'aws_iam_role=arn:aws:iam::123456789012:role/myRedshiftRole';

Warnings:
Load into table 'zipcode1' completed, 0 record(s) loaded successfully.

CREATE DATABASE

Creates a new database.

To create a database, you must be a superuser or have the CREATEDB privilege. To create a
database associated with a zero-ETL integration, you must be a superuser or have both CREATEDB
and CREATEUSER privileges.

You can't run CREATE DATABASE within a transaction block (BEGIN ... END). For more information
about transactions, see Serializable isolation.

Syntax

CREATE DATABASE database_name
[{ [WITH]
 [OWNER [=] db_owner]
 [CONNECTION LIMIT { limit | UNLIMITED }]
 [COLLATE { CASE_SENSITIVE | CASE_INSENSITIVE }]
 [ISOLATION LEVEL { SERIALIZABLE | SNAPSHOT }]
 }
 | { [WITH PERMISSIONS] FROM DATASHARE datashare_name] OF [ACCOUNT account_id]
 NAMESPACE namespace_guid }

CREATE DATABASE 1213

Amazon Redshift Database Developer Guide

 | { FROM { { ARN '<arn>' } { WITH DATA CATALOG SCHEMA '<schema>' | WITH NO DATA
 CATALOG SCHEMA } }
 | { INTEGRATION '<integration_id>'} }
 | { IAM_ROLE {default | 'SESSION' | 'arn:aws:iam::<account-id>:role/<role-name>' } }

Parameters

database_name

Name of the new database. For more information about valid names, see Names and identifiers.

WITH

Optional keyword.

OWNER

Specifies a database owner.

=

Optional character.

db_owner

Username for the database owner.

CONNECTION LIMIT { limit | UNLIMITED }

The maximum number of database connections users are permitted to have open concurrently.
The limit isn't enforced for superusers. Use the UNLIMITED keyword to permit the maximum
number of concurrent connections. A limit on the number of connections for each user might
also apply. For more information, see CREATE USER. The default is UNLIMITED. To view current
connections, query the STV_SESSIONS system view.

Note

If both user and database connection limits apply, an unused connection slot must be
available that is within both limits when a user attempts to connect.

COLLATE { CASE_SENSITIVE | CASE_INSENSITIVE }

A clause that specifies whether string search or comparison is CASE_SENSITIVE or
CASE_INSENSITIVE. The default is CASE_SENSITIVE.

CREATE DATABASE 1214

Amazon Redshift Database Developer Guide

ISOLATION LEVEL { SERIALIZABLE | SNAPSHOT }

A clause that specifies the isolation level used when queries run against a database.

• SERIALIZABLE isolation – Provides full serializability for concurrent transactions. For more
information, see Serializable isolation.

• SNAPSHOT isolation – Provides an isolation level with protection against update and delete
conflicts. This is the default for a database created in a provisioned cluster or serverless
namespace.

You can view which concurrency model your database is running as follows:

• Query the STV_DB_ISOLATION_LEVEL catalog view. For more information, see
STV_DB_ISOLATION_LEVEL.

SELECT * FROM stv_db_isolation_level;

• Query the PG_DATABASE_INFO view.

SELECT datname, datconfig FROM pg_database_info;

The isolation level per database appears next to the key concurrency_model. A value of 1
denotes SNAPSHOT. A value of 2 denotes SERIALIZABLE.

In Amazon Redshift databases, both SERIALIZABLE and SNAPSHOT isolation are types of
serializable isolation levels. That is, dirty reads, non-repeatable reads, and phantom reads are
prevented according to the SQL standard. Both isolation levels guarantee that a transaction
operates on a snapshot of data as it exists when the transaction begins, and that no other
transaction can change that snapshot. However, SNAPSHOT isolation doesn't provide full
serializability, because it doesn't prevent write skew inserts and updates on different table rows.

The following scenario illustrates write skew updates using the SNAPSHOT isolation level. A
table named Numbers contains a column named digits that contains 0 and 1 values. Each
user's UPDATE statement doesn't overlap the other user. However, the 0 and 1 values are
swapped. The SQL they run follows this timeline with these results:

Time User 1
action

User 2 action

1 BEGIN;

CREATE DATABASE 1215

Amazon Redshift Database Developer Guide

Time User 1
action

User 2 action

2 BEGIN;

3 SELECT
*
FROM
Numbers;

digits
-

0
1

4 SELECT * FROM Numbers;

digits

0
1

5 UPDATE
Numbers
SET
digits=0
WHERE
digits=1;

CREATE DATABASE 1216

Amazon Redshift Database Developer Guide

Time User 1
action

User 2 action

6 SELECT
*
FROM
Numbers;

digits
-

0
0

7 COMMIT;

8 Update Numbers SET digits=1 WHERE digits=0;

9 SELECT * FROM Numbers;

digits

1
1

10 COMMIT;

CREATE DATABASE 1217

Amazon Redshift Database Developer Guide

Time User 1
action

User 2 action

11 SELECT
*
FROM
Numbers;

digits
-

1
0

12 SELECT * FROM Numbers;

digits

1
0

If the same scenario is run using serializable isolation, then Amazon Redshift terminates user
2 due to a serializable violation and returns error 1023. For more information, see How to fix
serializable isolation errors. In this case, only user 1 can commit successfully. Not all workloads
require serializable isolation as a requirement, in which case snapshot isolation suffices as the
target isolation level for your database.

FROM ARN '<ARN>'

The AWS Glue database ARN to use to create the database.

{ DATA CATALOG SCHEMA '<schema>' | WITH NO DATA CATALOG SCHEMA }

Note

This parameter is only applicable if your CREATE DATABASE command also uses the
FROM ARN parameter.

CREATE DATABASE 1218

Amazon Redshift Database Developer Guide

Specifies whether to create the database using a schema to help access objects in the AWS Glue
Data Catalog.

FROM INTEGRATION '<integration_id>'

Specifies whether to create the database using a zero-ETL integration identifier. You can
retrieve the integration_id from SVV_INTEGRATION system view. For an example, see
Create databases to receive results of zero-ETL integrations. For more information about
creating databases with zero-ETL integrations, see Creating destination databases in Amazon
Redshift in the Amazon Redshift Management Guide.

IAM_ROLE { default | 'SESSION' | 'arn:aws:iam::<AWS account-id>:role/<role-name>' }

Note

This parameter is only applicable if your CREATE DATABASE command also uses the
FROM ARN parameter.

If you specify an IAM role that is associated with the cluster when running the CREATE
DATABASE command, Amazon Redshift will use the role’s credentials when you run queries on
the database.

Specifying the default keyword means to use the IAM role that's set as the default and
associated with the cluster.

Use 'SESSION' if you connect to your Amazon Redshift cluster using a federated identity and
access the tables from the external schema created using this command. For an example of
using a federated identity, see Using a federated identity to manage Amazon Redshift access to
local resources and Amazon Redshift Spectrum external tables, which explains how to configure
federated identity.

Use the Amazon Resource Name (ARN) for an IAM role that your cluster uses for authentication
and authorization. As a minimum, the IAM role must have permission to perform a LIST
operation on the Amazon S3 bucket to be accessed and a GET operation on the Amazon S3
objects the bucket contains. To learn more about using IAM_ROLE when creating a database
using AWS Glue Data Catalog for datashares, see Working with Lake Formation-managed
datashares as a consumer.

The following shows the syntax for the IAM_ROLE parameter string for a single ARN.

CREATE DATABASE 1219

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.creating-db.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/dg/lake-formation-getting-started-consumer.html
https://docs.aws.amazon.com/redshift/latest/dg/lake-formation-getting-started-consumer.html

Amazon Redshift Database Developer Guide

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-name>'

You can chain roles so that your cluster can assume another IAM role, possibly belonging to
another account. You can chain up to 10 roles. For more information, see Chaining IAM roles in
Amazon Redshift Spectrum.

To this IAM role, attach an IAM permissions policy similar to the following.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource": "arn:aws:secretsmanager:us-west-2:123456789012:secret:my-
rds-secret-VNenFy"
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 }
]
}

For the steps to create an IAM role to use with federated query, see Creating a secret and an
IAM role to use federated queries.

Note

Don't include spaces in the list of chained roles.

CREATE DATABASE 1220

Amazon Redshift Database Developer Guide

The following shows the syntax for chaining three roles.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-1-name>,arn:aws:iam::<aws-
account-id>:role/<role-2-name>,arn:aws:iam::<aws-account-id>:role/<role-3-name>'

Syntax for using CREATE DATABASE with a datashare

The following syntax describes the CREATE DATABASE command used to create databases from a
datashare for sharing data within the same AWS account.

CREATE DATABASE database_name
[[WITH PERMISSIONS] FROM DATASHARE datashare_name] OF [ACCOUNT account_id]
 NAMESPACE namespace_guid

The following syntax describes the CREATE DATABASE command used to create databases from a
datashare for sharing data across AWS accounts.

CREATE DATABASE database_name
[[WITH PERMISSIONS] FROM DATASHARE datashare_name] OF ACCOUNT account_id
 NAMESPACE namespace_guid

Parameters for using CREATE DATABASE with a datashare

FROM DATASHARE

A keyword that indicates where the datashare is located.

datashare_name

The name of the datashare that the consumer database is created on.

WITH PERMISSIONS

Specifies that the database created from the datashare requires object-level permissions to
access individual database objects. Without this clause, users or roles granted the USAGE
permission on the database will automatically have access to all database objects in the
database.

NAMESPACE namespace_guid

A value that specifies the producer namespace that the datashare belongs to.

CREATE DATABASE 1221

Amazon Redshift Database Developer Guide

ACCOUNT account_id

A value that specifies the producer account that the datashare belongs to.

Usage notes for CREATE DATABASE for data sharing

As a database superuser, when you use CREATE DATABASE to create databases from datashares
within the AWS account, specify the NAMESPACE option. The ACCOUNT option is optional. When
you use CREATE DATABASE to create databases from datashares across AWS accounts, specify both
the ACCOUNT and NAMESPACE from the producer.

You can create only one consumer database for one datashare on a consumer cluster. You can't
create multiple consumer databases referring to the same datashare.

CREATE DATABASE from AWS Glue Data Catalog

To create a database using an AWS Glue database ARN, specify the ARN in your CREATE DATABASE
command.

CREATE DATABASE sampledb FROM ARN <glue-database-arn> WITH NO DATA CATALOG SCHEMA;

Optionally, you can also supply a value into the IAM_ROLE parameter. For more information about
the parameter and accepted values, see Parameters.

The following are examples that demonstrate how to create a database from an ARN using an IAM
role.

CREATE DATABASE sampledb FROM ARN <glue-database-arn> WITH NO DATA CATALOG SCHEMA
 IAM_ROLE <iam-role-arn>

CREATE DATABASE sampledb FROM ARN <glue-database-arn> WITH NO DATA CATALOG SCHEMA
 IAM_ROLE default;

You can also create a database using a DATA CATALOG SCHEMA.

CREATE DATABASE sampledb FROM ARN <glue-database-arn> WITH DATA CATALOG SCHEMA
 <sample_schema> IAM_ROLE default;

CREATE DATABASE 1222

https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATABASE.html#r_CREATE_DATABASE-parameters

Amazon Redshift Database Developer Guide

Create databases to receive results of zero-ETL integrations

To create a database using a zero-ETL integration identity, specify the integration_id in your
CREATE DATABASE command.

CREATE DATABASE destination_db_name FROM INTEGRATION 'integration_id';

For example, first, retrieve the integration ids from SVV_INTEGRATION;

SELECT integration_id FROM SVV_INTEGRATION;

Then use one of the integration ids retrieved to create the database that receives zero-ETL
integrations.

CREATE DATABASE sampledb FROM INTEGRATION 'a1b2c3d4-5678-90ab-cdef-EXAMPLE11111';

CREATE DATABASE limits

Amazon Redshift enforces these limits for databases:

• Maximum of 60 user-defined databases per cluster.

• Maximum of 127 bytes for a database name.

• A database name can't be a reserved word.

Database collation

Collation is a set of rules that defines how database engine compares and sorts the character type
data in SQL. Case-insensitive collation is the most commonly used collation. Amazon Redshift uses
case-insensitive collation to facilitate migration from other data warehouse systems. With the
native support of case-insensitive collation, Amazon Redshift continues to use important tuning or
optimization methods, such as distribution keys, sort keys, or range restricted scan.

The COLLATE clause specifies the default collation for all CHAR and VARCHAR columns in the
database. If CASE_INSENSITIVE is specified, all CHAR or VARCHAR columns use case-insensitive
collation. For information about collation, see Collation sequences.

Data inserted or ingested in case-insensitive columns will keep its original case. But all comparison-
based string operations including sorting and grouping are case-insensitive. Pattern matching

CREATE DATABASE 1223

Amazon Redshift Database Developer Guide

operations such as LIKE predicates, similar to, and regular expression functions are also case-
insensitive.

The following SQL operations support applicable collation semantics:

• Comparison operators: =, <>, <, <=, >, >=.

• LIKE operator

• ORDER BY clauses

• GROUP BY clauses

• Aggregate functions that use string comparison, such as MIN and MAX and LISTAGG

• Window functions, such as PARTITION BY clauses and ORDER BY clauses

• Scalar functions greatest() and least(), STRPOS(), REGEXP_COUNT(), REGEXP_REPLACE(),
REGEXP_INSTR(), REGEXP_SUBSTR()

• Distinct clause

• UNION, INTERSECT and EXCEPT

• IN LIST

For external queries, including Amazon Redshift Spectrum and Aurora PostgreSQL federated
queries, collation of VARCHAR or CHAR column is the same as the current database-level collation.

The following example queries a Amazon Redshift Spectrum table:

SELECT ci_varchar FROM spectrum.test_collation
WHERE ci_varchar = 'AMAZON';

ci_varchar

amazon
Amazon
AMAZON
AmaZon
(4 rows)

For information on how to create tables using database collation, see CREATE TABLE.

For information on the COLLATE function, see COLLATE function.

CREATE DATABASE 1224

Amazon Redshift Database Developer Guide

Database collation limitations

The following are limitations when working with database collation in Amazon Redshift:

• All system tables or views, including PG catalog tables and Amazon Redshift system tables are
case-sensitive.

• When consumer database and producer database have different database-level collations,
Amazon Redshift doesn't support cross-database and cross-cluster queries.

• Amazon Redshift doesn't support case-insensitive collation in leader node-only query.

The following example shows an unsupported case-insensitive query and the error that Amazon
Redshift sends:

SELECT collate(usename, 'case_insensitive') FROM pg_user;
ERROR: Case insensitive collation is not supported in leader node only query.

• Amazon Redshift doesn't support interaction between case-sensitive and case-insensitive
columns, such as comparison, function, join, or set operations.

The following examples show errors when case-sensitive and case-insensitive columns interact:

CREATE TABLE test
 (ci_col varchar(10) COLLATE case_insensitive,
 cs_col varchar(10) COLLATE case_sensitive,
 cint int,
 cbigint bigint);

SELECT ci_col = cs_col FROM test;
ERROR: Query with different collations is not supported yet.

SELECT concat(ci_col, cs_col) FROM test;
ERROR: Query with different collations is not supported yet.

SELECT ci_col FROM test UNION SELECT cs_col FROM test;
ERROR: Query with different collations is not supported yet.

SELECT * FROM test a, test b WHERE a.ci_col = b.cs_col;
ERROR: Query with different collations is not supported yet.

CREATE DATABASE 1225

Amazon Redshift Database Developer Guide

Select Coalesce(ci_col, cs_col) from test;
ERROR: Query with different collations is not supported yet.

Select case when cint > 0 then ci_col else cs_col end from test;
ERROR: Query with different collations is not supported yet.

• Amazon Redshift doesn't support collation for SUPER data type. Creating SUPER columns in
case-insensitive databases and interactions between SUPER and case-insensitive columns aren't
supported.

The following example creates a table with the SUPER as the data type in the case-insensitive
database:

CREATE TABLE super_table (a super);
ERROR: SUPER column is not supported in case insensitive database.

The following example queries data with a case-insensitive string comparing with the SUPER
data:

CREATE TABLE test_super_collation
(s super, c varchar(10) COLLATE case_insensitive, i int);

SELECT s = c FROM test_super_collation;
ERROR: Coercing from case insensitive string to SUPER is not supported.

To make these queries work, use the COLLATE function to convert collation of one column to
match the other. For more information, see COLLATE function.

Examples

Creating a database

The following example creates a database named TICKIT and gives ownership to the user DWUSER.

create database tickit
with owner dwuser;

To view details about databases, query the PG_DATABASE_INFO catalog table.

CREATE DATABASE 1226

Amazon Redshift Database Developer Guide

select datname, datdba, datconnlimit
from pg_database_info
where datdba > 1;

 datname | datdba | datconnlimit
-------------+--------+-------------
 admin | 100 | UNLIMITED
 reports | 100 | 100
 tickit | 100 | 100

The following example creates a database named sampledb with SNAPSHOT isolation level.

CREATE DATABASE sampledb ISOLATION LEVEL SNAPSHOT;

The following example creates the database sales_db from the datashare salesshare.

CREATE DATABASE sales_db FROM DATASHARE salesshare OF NAMESPACE
 '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

Database collation examples

Creating a case-insensitive database

The following example creates the sampledb database, creates the T1 table, and inserts data into
the T1 table.

create database sampledb collate case_insensitive;

Connect to the new database that you just created using your SQL client. When using Amazon
Redshift query editor v2, choose the sampledb in the Editor. When using RSQL, use a command
like the following.

\connect sampledb;

CREATE TABLE T1 (
 col1 Varchar(20) distkey sortkey
);

INSERT INTO T1 VALUES ('bob'), ('john'), ('Mary'), ('JOHN'), ('Bob');

CREATE DATABASE 1227

Amazon Redshift Database Developer Guide

Then the query finds results with John.

SELECT * FROM T1 WHERE col1 = 'John';

 col1

 john
 JOHN
(2 row)

Ordering in a case-insensitive order

The following example shows the case-insensitive ordering with table T1. The ordering of Bob and
bob or John and john is nondeterministic because they are equal in case-insensitive column.

SELECT * FROM T1 ORDER BY 1;

 col1

 bob
 Bob
 JOHN
 john
 Mary
(5 rows)

Similarly, the following example shows case-insensitive ordering with the GROUP BY clause. Bob
and bob are equal and belong to the same group. It is nondeterministic which one shows up in the
result.

SELECT col1, count(*) FROM T1 GROUP BY 1;

 col1 | count
 -----+------
 Mary | 1
 bob | 2
 JOHN | 2
(3 rows)

Querying with a window function on case-insensitive columns

The following example queries a window function on a case-insensitive column.

CREATE DATABASE 1228

Amazon Redshift Database Developer Guide

SELECT col1, rank() over (ORDER BY col1) FROM T1;

 col1 | rank
 -----+------
 bob | 1
 Bob | 1
 john | 3
 JOHN | 3
 Mary | 5
(5 rows)

Querying with the DISTINCT keyword

The following example queries the T1 table with the DISTINCT keyword.

SELECT DISTINCT col1 FROM T1;

 col1

 bob
 Mary
 john
(3 rows)

Querying with the UNION clause

The following example shows the results from the UNION of the tables T1 and T2.

CREATE TABLE T2 AS SELECT * FROM T1;

SELECT col1 FROM T1 UNION SELECT col1 FROM T2;

 col1

 john
 bob
 Mary
(3 rows)

CREATE DATABASE 1229

Amazon Redshift Database Developer Guide

CREATE DATASHARE

Creates a new datashare in the current database. The owner of this datashare is the issuer of the
CREATE DATASHARE command.

Amazon Redshift associates each datashare with a single Amazon Redshift database. You can only
add objects from the associated database to a datashare. You can create multiple datashares on
the same Amazon Redshift database.

For information about datashares, see Managing data sharing tasks.

To view information about the datashares, use SHOW DATASHARES.

Required privileges

Following are required privileges for CREATE DATASHARE:

• Superuser

• Users with the CREATE DATASHARE privilege

• Database owner

Syntax

CREATE DATASHARE datashare_name
[[SET] PUBLICACCESSIBLE [=] TRUE | FALSE];

Parameters

datashare_name

The name of the datashare. The datashare name must be unique in the cluster namespace.

[[SET] PUBLICACCESSIBLE]

A clause that specifies whether the datashare can be shared to clusters that are publicly
accessible.

The default value for SET PUBLICACCESSIBLE is FALSE.

CREATE DATASHARE 1230

Amazon Redshift Database Developer Guide

Usage notes

By default, the owner of the datashare only owns the share but not objects within the share.

Only superusers and the database owner can use CREATE DATASHARE and delegate ALTER
privileges to other users or groups.

Examples

The following example creates the datashare salesshare.

CREATE DATASHARE salesshare;

The following example creates the datashare demoshare that AWS Data Exchange manages.

CREATE DATASHARE demoshare SET PUBLICACCESSIBLE TRUE, MANAGEDBY ADX;

CREATE EXTERNAL FUNCTION

Creates a scalar user-defined function (UDF) based on AWS Lambda for Amazon Redshift. For more
information about Lambda user-defined functions, see Creating a scalar Lambda UDF.

Required privileges

Following are required privileges for CREATE EXTERNAL FUNCTION:

• Superuser

• Users with the CREATE [OR REPLACE] EXTERNAL FUNCTION privilege

Syntax

CREATE [OR REPLACE] EXTERNAL FUNCTION external_fn_name ([data_type] [, ...])
RETURNS data_type
{ VOLATILE | STABLE }
LAMBDA 'lambda_fn_name'
IAM_ROLE { default | ‘arn:aws:iam::<AWS account-id>:role/<role-name>’
RETRY_TIMEOUT milliseconds
MAX_BATCH_ROWS count
MAX_BATCH_SIZE size [KB | MB];

CREATE EXTERNAL FUNCTION 1231

Amazon Redshift Database Developer Guide

Parameters

OR REPLACE

A clause that specifies that if a function with the same name and input argument data types,
or signature, as this one already exists, the existing function is replaced. You can only replace
a function with a new function that defines an identical set of data types. You must be a
superuser to replace a function.

If you define a function with the same name as an existing function but a different signature,
you create a new function. In other words, the function name is overloaded. For more
information, see Overloading function names.

external_fn_name

The name of the external function. If you specify a schema name (such as
myschema.myfunction), the function is created using the specified schema. Otherwise, the
function is created in the current schema. For more information about valid names, see Names
and identifiers.

We recommend that you prefix all UDF names with f_. Amazon Redshift reserves the f_ prefix
for UDF names. By using the f_ prefix, you help ensure that your UDF name won't conflict
with any built-in SQL function names for Amazon Redshift now or in the future. For more
information, see Naming UDFs.

data_type

The data type for the input arguments. For more information, see Data types.

RETURNS data_type

The data type of the value returned by the function. The RETURNS data type can be any
standard Amazon Redshift data type. For more information, see Python UDF data types.

VOLATILE | STABLE

Informs the query optimizer about the volatility of the function.

To get the best optimization, label your function with the strictest volatility category that is
valid for it. In order of strictness, beginning with the least strict, the volatility categories are as
follows:

• VOLATILE

• STABLE

CREATE EXTERNAL FUNCTION 1232

Amazon Redshift Database Developer Guide

VOLATILE

Given the same arguments, the function can return different results on successive calls, even
for the rows in a single statement. The query optimizer cannot make assumptions about
the behavior of a volatile function. A query that uses a volatile function must reevaluate the
function for every input.

STABLE

Given the same arguments, the function is guaranteed to return the same results on successive
calls processed within a single statement. The function can return different results when called
in different statements. This category makes it so the optimizer can reduce the number of times
the function is called within a single statement.

Note that if the chosen strictness is not valid for the function, there is a risk that the optimizer
might skip some calls based on this strictness. This can result in an incorrect result set.

The IMMUTABLE clause isn't currently supported for Lambda UDFs.

LAMBDA 'lambda_fn_name'

The name of the function that Amazon Redshift calls.

For steps to create an AWS Lambda function, see Create a Lambda function with the console in
the AWS Lambda Developer Guide.

For information regarding permissions required for the Lambda function, see AWS Lambda
permissions in the AWS Lambda Developer Guide.

IAM_ROLE { default | ‘arn:aws:iam::<AWS account-id>:role/<role-name>’

Use the default keyword to have Amazon Redshift use the IAM role that is set as default and
associated with the cluster when the CREATE EXTERNAL FUNCTION command runs.

Use the Amazon Resource Name (ARN) for an IAM role that your cluster uses for authentication
and authorization. The CREATE EXTERNAL FUNCTION command is authorized to invoke Lambda
functions through this IAM role. If your cluster has an existing IAM role with permissions to
invoke Lambda functions attached, you can substitute your role's ARN. For more information,
see Configuring the authorization parameter for Lambda UDFs.

The following shows the syntax for the IAM_ROLE parameter.

IAM_ROLE 'arn:aws:iam::aws-account-id:role/role-name'

CREATE EXTERNAL FUNCTION 1233

https://docs.aws.amazon.com/lambda/latest/dg/getting-started-create-function.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html

Amazon Redshift Database Developer Guide

RETRY_TIMEOUT milliseconds

The amount of total time in milliseconds that Amazon Redshift uses for the delays in retry
backoffs.

Instead of retrying immediately for any failed queries, Amazon Redshift performs backoffs and
waits for a certain amount of time between retries. Then Amazon Redshift retries the request to
rerun the failed query until the sum of all the delays is equal to or exceeds the RETRY_TIMEOUT
value that you specified. The default value is 20,000 milliseconds.

When a Lambda function is invoked, Amazon Redshift retries for queries that receive errors such
as TooManyRequestsException, EC2ThrottledException, and ServiceException.

You can set the RETRY_TIMEOUT parameter to 0 milliseconds to prevent any retries for a
Lambda UDF.

MAX_BATCH_ROWS count

The maximum number of rows that Amazon Redshift sends in a single batch request for a single
lambda invocation.

This parameter's minimum value is 1. The maximum value is INT_MAX, or 2,147,483,647.

This parameter is optional. The default value is INT_MAX, or 2,147,483,647.

MAX_BATCH_SIZE size [KB | MB]

The maximum size of the data payload that Amazon Redshift sends in a single batch request for
a single lambda invocation.

This parameter's minimum value is 1 KB. The maximum value is 5 MB.

This parameter's default value is 5 MB.

KB and MB are optional. If you don't set the unit of measurement, Amazon Redshift defaults to
using KB.

Usage notes

Consider the following when you create Lambda UDFs:

• The order of Lambda function calls on the input arguments isn't fixed or guaranteed. It might
vary between instances of running queries, depending on the cluster configuration.

CREATE EXTERNAL FUNCTION 1234

Amazon Redshift Database Developer Guide

• The functions are not guaranteed to be applied to each input argument once and only once. The
interaction between Amazon Redshift and AWS Lambda might lead to repetitive calls with the
same inputs.

Examples

Following are examples of using scalar Lambda user-defined functions (UDFs).

Scalar Lambda UDF example using a Node.js Lambda function

The following example creates an external function called exfunc_sum that takes two integers
as input arguments. This function returns the sum as an integer output. The name of the Lambda
function to be called is lambda_sum. The language used for this Lambda function is Node.js 12.x.
Make sure to specify the IAM role. The example uses 'arn:aws:iam::123456789012:user/
johndoe' as the IAM role.

CREATE EXTERNAL FUNCTION exfunc_sum(INT,INT)
RETURNS INT
VOLATILE
LAMBDA 'lambda_sum'
IAM_ROLE 'arn:aws:iam::123456789012:role/Redshift-Exfunc-Test';

The Lambda function takes in the request payload and iterates over each row. All the values in
a single row are added to calculate the sum for that row, which is saved in the response array.
The number of rows in the results array is similar to the number of rows received in the request
payload.

The JSON response payload must have the result data in the 'results' field for it to be recognized
by the external function. The arguments field in the request sent to the Lambda function contains
the data payload. There can be multiple rows in the data payload in case of a batch request.
The following Lambda function iterates over all the rows in the request data payload. It also
individually iterates over all the values within a single row.

exports.handler = async (event) => {
 // The 'arguments' field in the request sent to the Lambda function contains the
 data payload.
 var t1 = event['arguments'];

 // 'len(t1)' represents the number of rows in the request payload.

CREATE EXTERNAL FUNCTION 1235

Amazon Redshift Database Developer Guide

 // The number of results in the response payload should be the same as the number
 of rows received.
 const resp = new Array(t1.length);

 // Iterating over all the rows in the request payload.
 for (const [i, x] of t1.entries())
 {
 var sum = 0;
 // Iterating over all the values in a single row.
 for (const y of x) {
 sum = sum + y;
 }
 resp[i] = sum;
 }
 // The 'results' field should contain the results of the lambda call.
 const response = {
 results: resp
 };
 return JSON.stringify(response);
};

The following example calls the external function with literal values.

select exfunc_sum(1,2);
exfunc_sum

 3
(1 row)

The following example creates a table called t_sum with two columns, c1 and c2, of the integer
data type and inserts two rows of data. Then the external function is called by passing the column
names of this table. The two table rows are sent in a batch request in request payload as a single
Lambda invocation.

CREATE TABLE t_sum(c1 int, c2 int);
INSERT INTO t_sum VALUES (4,5), (6,7);
SELECT exfunc_sum(c1,c2) FROM t_sum;
 exfunc_sum

 9
 13
(2 rows)

CREATE EXTERNAL FUNCTION 1236

Amazon Redshift Database Developer Guide

Scalar Lambda UDF example using the RETRY_TIMEOUT attribute

In the following section, you can find an example of how to use the RETRY_TIMEOUT attribute in
Lambda UDFs.

AWS Lambda functions have concurrency limits that you can set for each function. For more
information on concurrency limits, see Managing concurrency for a Lambda function in the AWS
Lambda Developer Guide and the post Managing AWS Lambda Function Concurrency on the AWS
Compute Blog.

When the number of requests being served by a Lambda UDF exceeds the concurrency limits, the
new requests receive the TooManyRequestsException error. The Lambda UDF retries on this
error until the sum of all the delays between the requests sent to the Lambda function is equal to
or exceeds the RETRY_TIMEOUT value that you set. The default RETRY_TIMEOUT value is 20,000
milliseconds.

The following example uses a Lambda function named exfunc_sleep_3. This function takes in
the request payload, iterates over each row, and converts the input to uppercase. It then sleeps for
3 seconds and returns the result. The language used for this Lambda function is Python 3.8.

The number of rows in the results array is similar to the number of rows received in the request
payload. The JSON response payload must have the result data in the results field for it to be
recognized by the external function. The arguments field in the request sent to the Lambda
function contains the data payload. In the case of a batch request, multiple rows can appear in the
data payload.

The concurrency limit for this function is specifically set to 1 in reserved concurrency to
demonstrate the use of the RETRY_TIMEOUT attribute. When the attribute is set to 1, the Lambda
function can only serve one request at a time.

import json
import time
def lambda_handler(event, context):
 t1 = event['arguments']
 # 'len(t1)' represents the number of rows in the request payload.
 # The number of results in the response payload should be the same as the number of
 rows received.
 resp = [None]*len(t1)

 # Iterating over all rows in the request payload.
 for i, x in enumerate(t1):

CREATE EXTERNAL FUNCTION 1237

https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://aws.amazon.com/blogs/compute/managing-aws-lambda-function-concurrency

Amazon Redshift Database Developer Guide

 # Iterating over all the values in a single row.
 for j, y in enumerate(x):
 resp[i] = y.upper()

 time.sleep(3)
 ret = dict()
 ret['results'] = resp
 ret_json = json.dumps(ret)
 return ret_json

Following, two additional examples illustrate the RETRY_TIMEOUT attribute. They each invoke
a single Lambda UDF. While invoking the Lambda UDF, each example runs the same SQL query
to invoke the Lambda UDF from two concurrent database sessions at the same time. When first
query that invokes the Lambda UDF is being served by the UDF, the second query receives the
TooManyRequestsException error. This result occurs because you specifically set the reserved
concurrency in the UDF to 1. For information on how to set reserved concurrency for Lambda
functions, see Configuring reserved concurrency.

The first example, following, sets the RETRY_TIMEOUT attribute for the Lambda UDF to 0
milliseconds. If the Lambda request receives any exceptions from the Lambda function, Amazon
Redshift doesn't make any retries. This result occurs because the RETRY_TIMEOUT attribute is set
to 0.

CREATE OR REPLACE EXTERNAL FUNCTION exfunc_upper(varchar)
RETURNS varchar
VOLATILE
LAMBDA 'exfunc_sleep_3'
IAM_ROLE 'arn:aws:iam::123456789012:role/Redshift-Exfunc-Test'
RETRY_TIMEOUT 0;

With the RETRY_TIMEOUT set to 0, you can run the following two queries from separate database
sessions to see different results.

The first SQL query that uses the Lambda UDF runs successfully.

select exfunc_upper('Varchar');
 exfunc_upper

 VARCHAR
(1 row)

CREATE EXTERNAL FUNCTION 1238

https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html#configuration-concurrency-reservedconfiguration-concurrency-reserved

Amazon Redshift Database Developer Guide

The second query, which is run from a separate database session at the same time, receives the
TooManyRequestsException error.

select exfunc_upper('Varchar');
ERROR: Rate Exceeded.; Exception: TooManyRequestsException; ShouldRetry: 1
DETAIL:

error: Rate Exceeded.; Exception: TooManyRequestsException; ShouldRetry: 1
code: 32103
context:query: 0
location: exfunc_client.cpp:102
process: padbmaster [pid=26384]

The second example, following, sets the RETRY_TIMEOUT attribute for the Lambda UDF to 3,000
milliseconds. Even if the second query is run concurrently, the Lambda UDF retries until the total
delays is 3,000 milliseconds. Thus, both queries run successfully.

CREATE OR REPLACE EXTERNAL FUNCTION exfunc_upper(varchar)
RETURNS varchar
VOLATILE
LAMBDA 'exfunc_sleep_3'
IAM_ROLE 'arn:aws:iam::123456789012:role/Redshift-Exfunc-Test'
RETRY_TIMEOUT 3000;

With the RETRY_TIMEOUT set to 3,000 milliseconds, you can run the following two queries from
separate database sessions to see the same results.

The first SQL query that runs the Lambda UDF runs successfully.

select exfunc_upper('Varchar');
 exfunc_upper

 VARCHAR
(1 row)

The second query runs concurrently, and the Lambda UDF retries until the total delay is 3,000
milliseconds.

select exfunc_upper('Varchar');
 exfunc_upper

CREATE EXTERNAL FUNCTION 1239

Amazon Redshift Database Developer Guide

 VARCHAR
(1 row)

Scalar Lambda UDF example using a Python Lambda function

The following example creates an external function that is named exfunc_multiplication
and that multiplies numbers and returns an integer. This example incorporates the success and
error_msg fields in the Lambda response. The success field is set to false when there is an
integer overflow in the multiplication result, and the error_msg message is set to Integer
multiplication overflow. The exfunc_multiplication function takes three integers as
input arguments and returns the sum as an integer output.

The name of the Lambda function that is called is lambda_multiplication. The language used
for this Lambda function is Python 3.8. Make sure to specify the IAM role.

CREATE EXTERNAL FUNCTION exfunc_multiplication(int, int, int)
RETURNS INT
VOLATILE
LAMBDA 'lambda_multiplication'
IAM_ROLE 'arn:aws:iam::123456789012:role/Redshift-Exfunc-Test';

The Lambda function takes in the request payload and iterates over each row. All the values in a
single row are multiplied to calculate the result for that row, which is saved in the response list.
This example uses a Boolean success value that is set to true by default. If the multiplication result
for a row has an integer overflow, then the success value is set to false. Then the iteration loop
breaks.

While creating the response payload, if the success value is false, the following Lambda
function adds the error_msg field in the payload. It also sets the error message to Integer
multiplication overflow. If the success value is true, then the result data is added in the
results field. The number of rows in the results array, if any, is similar to the number of rows
received in the request payload.

The arguments field in the request sent to the Lambda function contains the data payload. There
can be multiple rows in the data payload in case of a batch request. The following Lambda function
iterates over all the rows in the request data payload and individually iterates over all the values
within a single row.

import json

CREATE EXTERNAL FUNCTION 1240

Amazon Redshift Database Developer Guide

def lambda_handler(event, context):
 t1 = event['arguments']
 # 'len(t1)' represents the number of rows in the request payload.
 # The number of results in the response payload should be the same as the number of
 rows received.
 resp = [None]*len(t1)

 # By default success is set to 'True'.
 success = True
 # Iterating over all rows in the request payload.
 for i, x in enumerate(t1):
 mul = 1
 # Iterating over all the values in a single row.
 for j, y in enumerate(x):
 mul = mul*y

 # Check integer overflow.
 if (mul >= 9223372036854775807 or mul <= -9223372036854775808):
 success = False
 break
 else:
 resp[i] = mul
 ret = dict()
 ret['success'] = success
 if not success:
 ret['error_msg'] = "Integer multiplication overflow"
 else:
 ret['results'] = resp
 ret_json = json.dumps(ret)

 return ret_json

The following example calls the external function with literal values.

SELECT exfunc_multiplication(8, 9, 2);
 exfunc_multiplication

 144
(1 row)

The following example creates a table named t_multi with three columns, c1, c2, and c3, of the
integer data type. The external function is called by passing the column names of this table. The
data is inserted in such a way to cause integer overflow to show how the error is propagated.

CREATE EXTERNAL FUNCTION 1241

Amazon Redshift Database Developer Guide

CREATE TABLE t_multi (c1 int, c2 int, c3 int);
INSERT INTO t_multi VALUES (2147483647, 2147483647, 4);
SELECT exfunc_multiplication(c1, c2, c3) FROM t_multi;
DETAIL:

 error: Integer multiplication overflow
 code: 32004context:
 context:
 query: 38
 location: exfunc_data.cpp:276
 process: query2_16_38 [pid=30494]

CREATE EXTERNAL SCHEMA

Creates a new external schema in the current database. You can use this external schema to
connect to Amazon RDS for PostgreSQL or Amazon Aurora PostgreSQL-Compatible Edition
databases. You can also create an external schema that references a database in an external data
catalog such as AWS Glue, Athena, or a database in an Apache Hive metastore, such as Amazon
EMR.

The owner of this schema is the issuer of the CREATE EXTERNAL SCHEMA command. To transfer
ownership of an external schema, use ALTER SCHEMA to change the owner. To grant access to the
schema to other users or user groups, use the GRANT command.

You can't use the GRANT or REVOKE commands for permissions on an external table. Instead, grant
or revoke the permissions on the external schema.

Note

If you currently have Redshift Spectrum external tables in the Amazon Athena data catalog,
you can migrate your Athena data catalog to an AWS Glue Data Catalog. To use the AWS
Glue Data Catalog with Redshift Spectrum, you might need to change your AWS Identity
and Access Management (IAM) policies. For more information, see Upgrading to the AWS
Glue Data Catalog in the Athena User Guide.

To view details for external schemas, query the SVV_EXTERNAL_SCHEMAS system view.

CREATE EXTERNAL SCHEMA 1242

https://docs.aws.amazon.com/athena/latest/ug/glue-athena.html#glue-upgrade
https://docs.aws.amazon.com/athena/latest/ug/glue-athena.html#glue-upgrade

Amazon Redshift Database Developer Guide

Syntax

The following syntax describes the CREATE EXTERNAL SCHEMA command used to reference data
using an external data catalog. For more information, see Querying external data using Amazon
Redshift Spectrum.

CREATE EXTERNAL SCHEMA [IF NOT EXISTS] local_schema_name
FROM { [DATA CATALOG] | HIVE METASTORE | POSTGRES | MYSQL | KINESIS | MSK |
 REDSHIFT }
[DATABASE 'database_name']
[SCHEMA 'schema_name']
[REGION 'aws-region']
[URI 'hive_metastore_uri' [PORT port_number]]
IAM_ROLE { default | 'SESSION' | 'arn:aws:iam::<AWS account-id>:role/<role-name>' }
[SECRET_ARN 'ssm-secret-arn']
[AUTHENTICATION { none | iam }]
[CLUSTER_ARN 'arn:aws:kafka:<region>:<AWS account-id>:cluster/msk/<cluster uuid>']
[CATALOG_ROLE { 'SESSION' | 'catalog-role-arn-string' }]
[CREATE EXTERNAL DATABASE IF NOT EXISTS]
[CATALOG_ID 'Amazon Web Services account ID containing Glue or Lake Formation
 database']

The following syntax describes the CREATE EXTERNAL SCHEMA command used to reference data
using a federated query to RDS POSTGRES or Aurora PostgreSQL. You can also create an external
schema that references streaming sources, such as Kinesis Data Streams. For more information, see
Querying data with federated queries in Amazon Redshift.

CREATE EXTERNAL SCHEMA [IF NOT EXISTS] local_schema_name
FROM POSTGRES
DATABASE 'federated_database_name' [SCHEMA 'schema_name']
URI 'hostname' [PORT port_number]
IAM_ROLE { default | 'arn:aws:iam::<AWS account-id>:role/<role-name>' }
SECRET_ARN 'ssm-secret-arn'

The following syntax describes the CREATE EXTERNAL SCHEMA command used to reference data
using a federated query to RDS MySQL or Aurora MySQL. For more information, see Querying data
with federated queries in Amazon Redshift.

CREATE EXTERNAL SCHEMA [IF NOT EXISTS] local_schema_name
FROM MYSQL

CREATE EXTERNAL SCHEMA 1243

Amazon Redshift Database Developer Guide

DATABASE 'federated_database_name'
URI 'hostname' [PORT port_number]
IAM_ROLE { default | 'arn:aws:iam::<AWS account-id>:role/<role-name>' }
SECRET_ARN 'ssm-secret-arn'

The following syntax describes the CREATE EXTERNAL SCHEMA command used to reference data in
a Kinesis stream. For more information, see Streaming ingestion.

CREATE EXTERNAL SCHEMA [IF NOT EXISTS] schema_name
FROM KINESIS
IAM_ROLE { default | 'arn:aws:iam::<AWS account-id>:role/<role-name>' }

The following syntax describes the CREATE EXTERNAL SCHEMA command used to reference the
Amazon Managed Streaming for Apache Kafka cluster and its topics to ingest from. CLUSTER_ARN
specifies the Amazon MSK cluster that you’re reading data from. For more information, see
Streaming ingestion.

CREATE EXTERNAL SCHEMA [IF NOT EXISTS] schema_name
FROM MSK
IAM_ROLE { default | 'arn:aws:iam::<AWS account-id>:role/<role-name>' }
AUTHENTICATION { none | iam }
CLUSTER_ARN 'msk-cluster-arn';

The following syntax describes the CREATE EXTERNAL SCHEMA command used to reference data
using a cross-database query.

CREATE EXTERNAL SCHEMA local_schema_name
FROM REDSHIFT
DATABASE 'redshift_database_name' SCHEMA 'redshift_schema_name'

Parameters

IF NOT EXISTS

A clause that indicates that if the specified schema already exists, the command should make
no changes and return a message that the schema exists, rather than terminating with an error.
This clause is useful when scripting, so the script doesn't fail if CREATE EXTERNAL SCHEMA tries
to create a schema that already exists.

CREATE EXTERNAL SCHEMA 1244

Amazon Redshift Database Developer Guide

local_schema_name

The name of the new external schema. For more information about valid names, see Names and
identifiers.

FROM [DATA CATALOG] | HIVE METASTORE | POSTGRES | MYSQL | KINESIS | MSK | REDSHIFT

A keyword that indicates where the external database is located.

DATA CATALOG indicates that the external database is defined in the Athena data catalog or the
AWS Glue Data Catalog.

If the external database is defined in an external Data Catalog in a different AWS Region, the
REGION parameter is required. DATA CATALOG is the default.

HIVE METASTORE indicates that the external database is defined in an Apache Hive metastore.
If HIVE METASTORE, is specified, URI is required.

POSTGRES indicates that the external database is defined in RDS PostgreSQL or Aurora
PostgreSQL.

MYSQL indicates that the external database is defined in RDS MySQL or Aurora MySQL.

KINESIS indicates that the data source is a stream from Kinesis Data Streams.

MSK indicates that the data source is a topic from Amazon MSK.

FROM REDSHIFT

A keyword that indicates that the database is located in Amazon Redshift.

DATABASE 'redshift_database_name' SCHEMA 'redshift_schema_name'

The name of the Amazon Redshift database.

The redshift_schema_name indicates the schema in Amazon Redshift. The default
redshift_schema_name is public.

DATABASE 'federated_database_name'

A keyword that indicates the name of the external database in a supported PostgreSQL or
MySQL database engine.

[SCHEMA 'schema_name']

The schema_name indicates the schema in a supported PostgreSQL database engine. The
default schema_name is public.

CREATE EXTERNAL SCHEMA 1245

Amazon Redshift Database Developer Guide

You can't specify a SCHEMA when you set up a federated query to a supported MySQL database
engine.

REGION 'aws-region'

If the external database is defined in an Athena data catalog or the AWS Glue Data Catalog,
the AWS Region in which the database is located. This parameter is required if the database is
defined in an external Data Catalog.

URI 'hive_metastore_uri' [PORT port_number]

The hostname URI and port_number of a supported PostgreSQL or MySQL database engine.
The hostname is the head node of the replica set. The endpoint must be reachable (routable)
from the Amazon Redshift cluster. The default PostgreSQL port_number is 5432. The default
MySQL port_number is 3306.

If the database is in a Hive metastore, specify the URI and optionally the port number for the
metastore. The default port number is 9083.

A URI doesn't contain a protocol specification ("http://"). An example valid URI: uri
'172.10.10.10'.

Note

The supported PostgreSQL or MySQL database engine must be in the same VPC as your
Amazon Redshift cluster. Create a security group linking Amazon Redshift and RDS
PostgreSQL or Aurora PostgreSQL.

IAM_ROLE { default | 'SESSION' | 'arn:aws:iam::<AWS account-id>:role/<role-name>' }

Use the default keyword to have Amazon Redshift use the IAM role that is set as default and
associated with the cluster when the CREATE EXTERNAL SCHEMA command runs.

Use 'SESSION' if you connect to your Amazon Redshift cluster using a federated identity and
access the tables from the external schema created using this command. For more information,
see Using a federated identity to manage Amazon Redshift access to local resources and
Amazon Redshift Spectrum external tables, which explains how to configure federated identity.
Note that this configuration, using 'SESSION' in place of the ARN, can be used only if the
schema is created using DATA CATALOG.

CREATE EXTERNAL SCHEMA 1246

https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html

Amazon Redshift Database Developer Guide

Use the Amazon Resource Name (ARN) for an IAM role that your cluster uses for authentication
and authorization. As a minimum, the IAM role must have permission to perform a LIST
operation on the Amazon S3 bucket to be accessed and a GET operation on the Amazon S3
objects the bucket contains.

The following shows the syntax for the IAM_ROLE parameter string for a single ARN.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-name>'

You can chain roles so that your cluster can assume another IAM role, possibly belonging to
another account. You can chain up to 10 roles. For an example of chaining roles, see Chaining
IAM roles in Amazon Redshift Spectrum.

To this IAM role, attach an IAM permissions policy similar to the following.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource": "arn:aws:secretsmanager:us-west-2:123456789012:secret:my-
rds-secret-VNenFy"
 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 }
]
}

CREATE EXTERNAL SCHEMA 1247

Amazon Redshift Database Developer Guide

For the steps to create an IAM role to use with federated query, see Creating a secret and an
IAM role to use federated queries.

Note

Don't include spaces in the list of chained roles.

The following shows the syntax for chaining three roles.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-1-name>,arn:aws:iam::<aws-
account-id>:role/<role-2-name>,arn:aws:iam::<aws-account-id>:role/<role-3-name>'

SECRET_ARN 'ssm-secret-arn'

The Amazon Resource Name (ARN) of a supported PostgreSQL or MySQL database engine
secret created using AWS Secrets Manager. For information about how to create and retrieve an
ARN for a secret, see Creating a Basic Secret and Retrieving the Secret Value Secret in the AWS
Secrets Manager User Guide.

CATALOG_ROLE { 'SESSION' | catalog-role-arn-string}

Use 'SESSION' to connect to your Amazon Redshift cluster using a federated identity for
authentication and authorization to the data catalog. For more information about completing
the steps for federated identity, see Using a federated identity to manage Amazon Redshift
access to local resources and Amazon Redshift Spectrum external tables. Note that the
'SESSION' role can be used only if the schema is created in DATA CATALOG.

Use the Amazon Resource Name ARN for an IAM role that your cluster uses for authentication
and authorization for the data catalog.

If CATALOG_ROLE isn't specified, Amazon Redshift uses the specified IAM_ROLE. The catalog
role must have permission to access the Data Catalog in AWS Glue or Athena. For more
information, see IAM policies for Amazon Redshift Spectrum.

The following shows the syntax for the CATALOG_ROLE parameter string for a single ARN.

CATALOG_ROLE 'arn:aws:iam::<aws-account-id>:role/<catalog-role>'

CREATE EXTERNAL SCHEMA 1248

https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_create-basic-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/manage_retrieve-secret.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html

Amazon Redshift Database Developer Guide

You can chain roles so that your cluster can assume another IAM role, possibly belonging to
another account. You can chain up to 10 roles. For more information, see Chaining IAM roles in
Amazon Redshift Spectrum.

Note

The list of chained roles must not include spaces.

The following shows the syntax for chaining three roles.

CATALOG_ROLE 'arn:aws:iam::<aws-account-id>:role/<catalog-role-1-
name>,arn:aws:iam::<aws-account-id>:role/<catalog-role-2-name>,arn:aws:iam::<aws-
account-id>:role/<catalog-role-3-name>'

CREATE EXTERNAL DATABASE IF NOT EXISTS

A clause that creates an external database with the name specified by the DATABASE argument,
if the specified external database doesn't exist. If the specified external database exists, the
command makes no changes. In this case, the command returns a message that the external
database exists, rather than terminating with an error.

Note

You can't use CREATE EXTERNAL DATABASE IF NOT EXISTS with HIVE METASTORE.
To use CREATE EXTERNAL DATABASE IF NOT EXISTS with a Data Catalog enabled for
AWS Lake Formation, you need CREATE_DATABASE permission on the Data Catalog.

CATALOG_ID 'Amazon Web Services account ID containing Glue or Lake Formation database'

The account id where the data catalog database is stored.

CATALOG_ID can be specified only if you plan to connect to your Amazon Redshift cluster or to
Amazon Redshift Serverless using a federated identity for authentication and authorization to
the data catalog by setting either of the following:

• CATALOG_ROLE to 'SESSION'

• IAM_ROLE to 'SESSION' and 'CATALOG_ROLE' set to its default

CREATE EXTERNAL SCHEMA 1249

Amazon Redshift Database Developer Guide

For more information about completing the steps for federated identity, see Using a federated
identity to manage Amazon Redshift access to local resources and Amazon Redshift Spectrum
external tables.

AUTHENTICATION

The authentication type defined for streaming ingestion. Streaming ingestion with
authentication types works with Amazon Managed Streaming for Apache Kafka. The
AUTHENTICATION types are the following:

• none – Specifies that there is no authentication step.

• iam – Specifies IAM authentication. When you choose this, make sure that the IAM role
has permissions for IAM authentication. For more information about defining the external
schema, see Getting started with streaming ingestion from Amazon Managed Streaming for
Apache Kafka.

CLUSTER_ARN

For streaming ingestion, the cluster identifier for the Amazon Managed Streaming for Apache
Kafka cluster you're streaming from. For more information, see Streaming ingestion.

Usage notes

For limits when using the Athena data catalog, see Athena Limits in the AWS General Reference.

For limits when using the AWS Glue Data Catalog, see AWS Glue Limits in the AWS General
Reference.

These limits don’t apply to a Hive metastore.

There is a maximum of 9,900 schemas per database. For more information, see Quotas and limits
in the Amazon Redshift Management Guide.

To unregister the schema, use the DROP SCHEMA command.

To view details for external schemas, query the following system views:

• SVV_EXTERNAL_SCHEMAS

• SVV_EXTERNAL_TABLES

CREATE EXTERNAL SCHEMA 1250

https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-streaming-ingestion.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#amazon-athena-limits
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html#limits_glue
https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Redshift Database Developer Guide

• SVV_EXTERNAL_COLUMNS

Examples

The following example creates an external schema using a database in a data catalog named
sampledb in the US West (Oregon) Region. Use this example with an Athena or AWS Glue data
catalog.

create external schema spectrum_schema
from data catalog
database 'sampledb'
region 'us-west-2'
iam_role 'arn:aws:iam::123456789012:role/MySpectrumRole';

The following example creates an external schema and creates a new external database named
spectrum_db.

create external schema spectrum_schema
from data catalog
database 'spectrum_db'
iam_role 'arn:aws:iam::123456789012:role/MySpectrumRole'
create external database if not exists;

The following example creates an external schema using a Hive metastore database named
hive_db.

create external schema hive_schema
from hive metastore
database 'hive_db'
uri '172.10.10.10' port 99
iam_role 'arn:aws:iam::123456789012:role/MySpectrumRole';

The following example chains roles to use the role myS3Role for accessing Amazon S3 and uses
myAthenaRole for data catalog access. For more information, see Chaining IAM roles in Amazon
Redshift Spectrum.

create external schema spectrum_schema
from data catalog
database 'spectrum_db'

CREATE EXTERNAL SCHEMA 1251

Amazon Redshift Database Developer Guide

iam_role 'arn:aws:iam::123456789012:role/myRedshiftRole,arn:aws:iam::123456789012:role/
myS3Role'
catalog_role 'arn:aws:iam::123456789012:role/myAthenaRole'
create external database if not exists;

The following example creates an external schema that references an Aurora PostgreSQL database.

CREATE EXTERNAL SCHEMA [IF NOT EXISTS] myRedshiftSchema
FROM POSTGRES
DATABASE 'my_aurora_db' SCHEMA 'my_aurora_schema'
URI 'endpoint to aurora hostname' PORT 5432
IAM_ROLE 'arn:aws:iam::123456789012:role/MyAuroraRole'
SECRET_ARN 'arn:aws:secretsmanager:us-east-2:123456789012:secret:development/
MyTestDatabase-AbCdEf'

The following example creates an external schema to refer to the sales_db imported on the
consumer cluster.

CREATE EXTERNAL SCHEMA sales_schema FROM REDSHIFT DATABASE 'sales_db' SCHEMA 'public';

The following example creates an external schema that references an Aurora MySQL database.

CREATE EXTERNAL SCHEMA [IF NOT EXISTS] myRedshiftSchema
FROM MYSQL
DATABASE 'my_aurora_db'
URI 'endpoint to aurora hostname'
IAM_ROLE 'arn:aws:iam::123456789012:role/MyAuroraRole'
SECRET_ARN 'arn:aws:secretsmanager:us-east-2:123456789012:secret:development/
MyTestDatabase-AbCdEf'

CREATE EXTERNAL TABLE

Creates a new external table in the specified schema. All external tables must be created in an
external schema. Search path isn't supported for external schemas and external tables. For more
information, see CREATE EXTERNAL SCHEMA.

In addition to external tables created using the CREATE EXTERNAL TABLE command, Amazon
Redshift can reference external tables defined in an AWS Glue or AWS Lake Formation catalog or
an Apache Hive metastore. Use the CREATE EXTERNAL SCHEMA command to register an external
database defined in the external catalog and make the external tables available for use in Amazon

CREATE EXTERNAL TABLE 1252

Amazon Redshift Database Developer Guide

Redshift. If the external table exists in an AWS Glue or AWS Lake Formation catalog or Hive
metastore, you don't need to create the table using CREATE EXTERNAL TABLE. To view external
tables, query the SVV_EXTERNAL_TABLES system view.

By running the CREATE EXTERNAL TABLE AS command, you can create an external table based on
the column definition from a query and write the results of that query into Amazon S3. The results
are in Apache Parquet or delimited text format. If the external table has a partition key or keys,
Amazon Redshift partitions new files according to those partition keys and registers new partitions
into the external catalog automatically. For more information about CREATE EXTERNAL TABLE AS,
see Usage notes.

You can query an external table using the same SELECT syntax you use with other Amazon Redshift
tables. You can also use the INSERT syntax to write new files into the location of external table on
Amazon S3. For more information, see INSERT (external table).

To create a view with an external table, include the WITH NO SCHEMA BINDING clause in the
CREATE VIEW statement.

You can't run CREATE EXTERNAL TABLE inside a transaction (BEGIN … END). For more information
about transactions, see Serializable isolation.

Required privileges

To create external tables, you must be the owner of the external schema or a superuser. To transfer
ownership of an external schema, use ALTER SCHEMA to change the owner. Access to external
tables is controlled by access to the external schema. You can't GRANT or REVOKE permissions on
an external table. Instead, grant or revoke USAGE on the external schema.

The Usage notes have additional information about specific permissions for external tables.

Syntax

CREATE EXTERNAL TABLE
external_schema.table_name
(column_name data_type [, …])
[PARTITIONED BY (col_name data_type [, …])]
[{ ROW FORMAT DELIMITED row_format |
 ROW FORMAT SERDE 'serde_name'
 [WITH SERDEPROPERTIES ('property_name' = 'property_value' [, ...])] }]
STORED AS file_format

CREATE EXTERNAL TABLE 1253

Amazon Redshift Database Developer Guide

LOCATION { 's3://bucket/folder/' | 's3://bucket/manifest_file' }
[TABLE PROPERTIES ('property_name'='property_value' [, ...])]

The following is the syntax for CREATE EXTERNAL TABLE AS.

CREATE EXTERNAL TABLE
external_schema.table_name
[PARTITIONED BY (col_name [, …])]
[ROW FORMAT DELIMITED row_format]
STORED AS file_format
LOCATION { 's3://bucket/folder/' }
[TABLE PROPERTIES ('property_name'='property_value' [, ...])]
 AS
 { select_statement }

Parameters

external_schema.table_name

The name of the table to be created, qualified by an external schema name. External tables
must be created in an external schema. For more information, see CREATE EXTERNAL SCHEMA.

The maximum length for the table name is 127 bytes; longer names are truncated to 127 bytes.
You can use UTF-8 multibyte characters up to a maximum of four bytes. Amazon Redshift
enforces a limit of 9,900 tables per cluster, including user-defined temporary tables and
temporary tables created by Amazon Redshift during query processing or system maintenance.
Optionally, you can qualify the table name with the database name. In the following example,
the database name is spectrum_db, the external schema name is spectrum_schema, and the
table name is test.

create external table spectrum_db.spectrum_schema.test (c1 int)
stored as parquet
location 's3://mybucket/myfolder/';

If the database or schema specified doesn't exist, the table isn't created, and the statement
returns an error. You can't create tables or views in the system databases template0,
template1, padb_harvest, or sys:internal.

The table name must be a unique name for the specified schema.

CREATE EXTERNAL TABLE 1254

Amazon Redshift Database Developer Guide

For more information about valid names, see Names and identifiers.

(column_name data_type)

The name and data type of each column being created.

The maximum length for the column name is 127 bytes; longer names are truncated to 127
bytes. You can use UTF-8 multibyte characters up to a maximum of four bytes. You can't specify
column names "$path" or "$size". For more information about valid names, see Names and
identifiers.

By default, Amazon Redshift creates external tables with the pseudocolumns $path
and $size. You can disable creation of pseudocolumns for a session by setting the
spectrum_enable_pseudo_columns configuration parameter to false. For more
information, see Pseudocolumns .

If pseudocolumns are enabled, the maximum number of columns you can define in a single
table is 1,598. If pseudocolumns aren't enabled, the maximum number of columns you can
define in a single table is 1,600.

If you are creating a "wide table," make sure that your list of columns doesn't exceed row-width
boundaries for intermediate results during loads and query processing. For more information,
see Usage notes.

For a CREATE EXTERNAL TABLE AS command, a column list is not required, because columns are
derived from the query.

data_type

The following Data types are supported:

• SMALLINT (INT2)

• INTEGER (INT, INT4)

• BIGINT (INT8)

• DECIMAL (NUMERIC)

• REAL (FLOAT4)

• DOUBLE PRECISION (FLOAT8)

• BOOLEAN (BOOL)

• CHAR (CHARACTER)

CREATE EXTERNAL TABLE 1255

Amazon Redshift Database Developer Guide

• VARCHAR (CHARACTER VARYING)

• VARBYTE (CHARACTER VARYING) – can be used with Parquet and ORC data files, and only
with non-partitioned tables.

• DATE – can be used only with text, Parquet, or ORC data files, or as a partition column.

• TIMESTAMP

For DATE, you can use the formats as described following. For month values represented using
digits, the following formats are supported:

• mm-dd-yyyy For example, 05-01-2017. This is the default.

• yyyy-mm-dd, where the year is represented by more than 2 digits. For example,
2017-05-01.

For month values represented using the three letter abbreviation, the following formats are
supported:

• mmm-dd-yyyy For example, may-01-2017. This is the default.

• dd-mmm-yyyy, where the year is represented by more than 2 digits. For example, 01-
may-2017.

• yyyy-mmm-dd, where the year is represented by more than 2 digits. For example, 2017-
may-01.

For year values that are consistently less than 100, the year is calculated in the following
manner:

• If year is less than 70, the year is calculated as the year plus 2000. For example, the date
05-01-17 in the mm-dd-yyyy format is converted into 05-01-2017.

• If year is less than 100 and greater than 69, the year is calculated as the year plus 1900. For
example the date 05-01-89 in the mm-dd-yyyy format is converted into 05-01-1989.

• For year values represented by two digits, add leading zeroes to represent the year in 4 digits.

Timestamp values in text files must be in the format yyyy-mm-dd HH:mm:ss.SSSSSS, as the
following timestamp value shows: 2017-05-01 11:30:59.000000.

The length of a VARCHAR column is defined in bytes, not characters. For example, a
VARCHAR(12) column can contain 12 single-byte characters or 6 two-byte characters. When you
query an external table, results are truncated to fit the defined column size without returning
an error. For more information, see Storage and ranges.

CREATE EXTERNAL TABLE 1256

Amazon Redshift Database Developer Guide

For best performance, we recommend specifying the smallest column size that fits your data.
To find the maximum size in bytes for values in a column, use the OCTET_LENGTH function. The
following example returns the maximum size of values in the email column.

select max(octet_length(email)) from users;

max

 62

PARTITIONED BY (col_name data_type [, …])

A clause that defines a partitioned table with one or more partition columns. A separate data
directory is used for each specified combination, which can improve query performance in some
circumstances. Partitioned columns don't exist within the table data itself. If you use a value for
col_name that is the same as a table column, you get an error.

After creating a partitioned table, alter the table using an ALTER TABLE … ADD PARTITION
statement to register new partitions to the external catalog. When you add a partition, you
define the location of the subfolder on Amazon S3 that contains the partition data.

For example, if the table spectrum.lineitem_part is defined with PARTITIONED BY
(l_shipdate date), run the following ALTER TABLE command to add a partition.

ALTER TABLE spectrum.lineitem_part ADD PARTITION (l_shipdate='1992-01-29')
LOCATION 's3://spectrum-public/lineitem_partition/l_shipdate=1992-01-29';

If you are using CREATE EXTERNAL TABLE AS, you don't need to run ALTER TABLE...ADD
PARTITION. Amazon Redshift automatically registers new partitions in the external catalog.
Amazon Redshift also automatically writes corresponding data to partitions in Amazon S3
based on the partition key or keys defined in the table.

To view partitions, query the SVV_EXTERNAL_PARTITIONS system view.

Note

For a CREATE EXTERNAL TABLE AS command, you don't need to specify the data type of
the partition column because this column is derived from the query.

CREATE EXTERNAL TABLE 1257

Amazon Redshift Database Developer Guide

ROW FORMAT DELIMITED rowformat

A clause that specifies the format of the underlying data. Possible values for rowformat are as
follows:

• LINES TERMINATED BY 'delimiter'

• FIELDS TERMINATED BY 'delimiter'

Specify a single ASCII character for 'delimiter'. You can specify non-printing ASCII characters
using octal, in the format '\ddd' where d is an octal digit (0–7) up to ‘\177’. The following
example specifies the BEL (bell) character using octal.

ROW FORMAT DELIMITED FIELDS TERMINATED BY '\007'

If ROW FORMAT is omitted, the default format is DELIMITED FIELDS TERMINATED BY '\A' (start
of heading) and LINES TERMINATED BY '\n' (newline).

ROW FORMAT SERDE 'serde_name' , [WITH SERDEPROPERTIES ('property_name' =
'property_value' [, ...])]

A clause that specifies the SERDE format for the underlying data.

'serde_name'

The name of the SerDe. You can specify the following formats:

• org.apache.hadoop.hive.serde2.RegexSerDe

• com.amazonaws.glue.serde.GrokSerDe

• org.apache.hadoop.hive.serde2.OpenCSVSerde

This parameter supports the following SerDe property for OpenCSVSerde:

'wholeFile' = 'true'

Set the wholeFile property to true to properly parse new line characters (\n) within
quoted strings for OpenCSV requests.

• org.openx.data.jsonserde.JsonSerDe

• The JSON SERDE also supports Ion files.

• The JSON must be well-formed.

• Timestamps in Ion and JSON must use ISO8601 format.

CREATE EXTERNAL TABLE 1258

Amazon Redshift Database Developer Guide

• This parameter supports the following SerDe property for JsonSerDe:

'strip.outer.array'='true'

Processes Ion/JSON files containing one very large array enclosed in outer brackets
([…]) as if it contains multiple JSON records within the array.

• com.amazon.ionhiveserde.IonHiveSerDe

The Amazon ION format provides text and binary formats, in addition to data types. For
an external table that references data in ION format, you map each column in the external
table to the corresponding element in the ION format data. For more information, see
Amazon Ion. You also need to specify the input and output formats.

WITH SERDEPROPERTIES ('property_name' = 'property_value' [, ...])]

Optionally, specify property names and values, separated by commas.

If ROW FORMAT is omitted, the default format is DELIMITED FIELDS TERMINATED BY '\A' (start
of heading) and LINES TERMINATED BY '\n' (newline).

STORED AS file_format

The file format for data files.

Valid formats are as follows:

• PARQUET

• RCFILE (for data using ColumnarSerDe only, not LazyBinaryColumnarSerDe)

• SEQUENCEFILE

• TEXTFILE (for text files, including JSON files).

• ORC

• AVRO

• INPUTFORMAT 'input_format_classname' OUTPUTFORMAT 'output_format_classname'

The CREATE EXTERNAL TABLE AS command only supports two file formats, TEXTFILE and
PARQUET.

For INPUTFORMAT and OUTPUTFORMAT, specify a class name, as the following example shows.

'org.apache.hadoop.mapred.TextInputFormat'

CREATE EXTERNAL TABLE 1259

https://amzn.github.io/ion-docs/

Amazon Redshift Database Developer Guide

LOCATION { 's3://bucket/folder/' | 's3://bucket/manifest_file'}

The path to the Amazon S3 bucket or folder that contains the data files or a manifest file that
contains a list of Amazon S3 object paths. The buckets must be in the same AWS Region as the
Amazon Redshift cluster. For a list of supported AWS Regions, see Amazon Redshift Spectrum
considerations.

If the path specifies a bucket or folder, for example 's3://mybucket/custdata/', Redshift
Spectrum scans the files in the specified bucket or folder and any subfolders. Redshift Spectrum
ignores hidden files and files that begin with a period or underscore.

If the path specifies a manifest file, the 's3://bucket/manifest_file' argument must
explicitly reference a single file—for example, 's3://mybucket/manifest.txt'. It can't
reference a key prefix.

The manifest is a text file in JSON format that lists the URL of each file that is to be loaded
from Amazon S3 and the size of the file, in bytes. The URL includes the bucket name and full
object path for the file. The files that are specified in the manifest can be in different buckets,
but all the buckets must be in the same AWS Region as the Amazon Redshift cluster. If a file is
listed twice, the file is loaded twice. The following example shows the JSON for a manifest that
loads three files.

{
 "entries": [
 {"url":"s3://mybucket-alpha/custdata.1", "meta": { "content_length":
 5956875 } },
 {"url":"s3://mybucket-alpha/custdata.2", "meta": { "content_length":
 5997091 } },
 {"url":"s3://mybucket-beta/custdata.1", "meta": { "content_length": 5978675 } }
]
}

You can make the inclusion of a particular file mandatory. To do this, include a mandatory
option at the file level in the manifest. When you query an external table with a mandatory
file that is missing, the SELECT statement fails. Ensure that all files included in the definition
of the external table are present. If they aren't all present, an error appears showing the first
mandatory file that isn't found. The following example shows the JSON for a manifest with the
mandatory option set to true.

{

CREATE EXTERNAL TABLE 1260

Amazon Redshift Database Developer Guide

 "entries": [
 {"url":"s3://mybucket-alpha/custdata.1", "mandatory":true, "meta":
 { "content_length": 5956875 } },
 {"url":"s3://mybucket-alpha/custdata.2", "mandatory":false, "meta":
 { "content_length": 5997091 } },
 {"url":"s3://mybucket-beta/custdata.1", "meta": { "content_length": 5978675 } }
]
}

To reference files created using UNLOAD, you can use the manifest created using UNLOAD with
the MANIFEST parameter. The manifest file is compatible with a manifest file for COPY from
Amazon S3, but uses different keys. Keys that aren't used are ignored.

TABLE PROPERTIES ('property_name'='property_value' [, ...])

A clause that sets the table definition for table properties.

Note

Table properties are case-sensitive.

'compression_type'='value'

A property that sets the type of compression to use if the file name doesn't contain an
extension. If you set this property and there is a file extension, the extension is ignored and
the value set by the property is used. Valid values for compression type are as follows:

• bzip2

• gzip

• none

• snappy

'data_cleansing_enabled'='true / false’

This property sets whether data handling is on for the table. When 'data_cleansing_enabled'
is set to true, data handling is on for the table. When 'data_cleansing_enabled' is set to
false, data handling is off for the table. Following is a list of the table–level data handling
properties controlled by this property:

• column_count_mismatch_handling

• invalid_char_handling

CREATE EXTERNAL TABLE 1261

Amazon Redshift Database Developer Guide

• numeric_overflow_handling

• replacement_char

• surplus_char_handling

For examples, see Data handling examples.

'invalid_char_handling'='value'

Specifies the action to perform when query results contain invalid UTF-8 character values.
You can specify the following actions:

DISABLED

Doesn't perform invalid character handling.

FAIL

Cancels queries that return data containing invalid UTF-8 values.

SET_TO_NULL

Replaces invalid UTF-8 values with null.

DROP_ROW

Replaces each value in the row with null.

REPLACE

Replaces the invalid character with the replacement character you specify using
replacement_char.

'replacement_char'='character’

Specifies the replacement character to use when you set invalid_char_handling to
REPLACE.

'numeric_overflow_handling'='value’

Specifies the action to perform when ORC data contains an integer (for example, BIGINT or
int64) that is larger than the column definition (for example, SMALLINT or int16). You can
specify the following actions:

DISABLED

Invalid character handling is turned off.

CREATE EXTERNAL TABLE 1262

Amazon Redshift Database Developer Guide

FAIL

Cancel the query when the data includes invalid characters.

SET_TO_NULL

Set invalid characters to null.

DROP_ROW

Set each value in the row to null.

'surplus_bytes_handling'='value'

Specifies how to handle data being loaded that exceeds the length of the data type defined
for columns containing VARBYTE data. By default, Redshift Spectrum sets the value to null
for data that exceeds the width of the column.

You can specify the following actions to perform when the query returns data that exceeds
the length of the data type:

SET_TO_NULL

Replaces data that exceeds the column width with null.

DISABLED

Doesn't perform surplus byte handling.

FAIL

Cancels queries that return data exceeding the column width.

DROP_ROW

Drop all rows that contain data exceeding column width.

TRUNCATE

Removes the characters that exceed the maximum number of characters defined for the
column.

'surplus_char_handling'='value'

Specifies how to handle data being loaded that exceeds the length of the data type defined
for columns containing VARCHAR, CHAR, or string data. By default, Redshift Spectrum sets
the value to null for data that exceeds the width of the column.

CREATE EXTERNAL TABLE 1263

Amazon Redshift Database Developer Guide

You can specify the following actions to perform when the query returns data that exceeds
the column width:

SET_TO_NULL

Replaces data that exceeds the column width with null.

DISABLED

Doesn't perform surplus character handling.

FAIL

Cancels queries that return data exceeding the column width.

DROP_ROW

Replaces each value in the row with null.

TRUNCATE

Removes the characters that exceed the maximum number of characters defined for the
column.

'column_count_mismatch_handling'='value’

Identifies if the file contains less or more values for a row than the number of columns
specified in the external table definition. This property is only available for an uncompressed
text file format. You can specify the following actions:

DISABLED

Column count mismatch handling is turned off.

FAIL

Fail the query if the column count mismatch is detected.

SET_TO_NULL

Fill missing values with NULL and ignore the additional values in each row.

DROP_ROW

Drop all rows that contain column count mismatch error from the scan.

'numRows'='row_count'

A property that sets the numRows value for the table definition. To explicitly update an
external table's statistics, set the numRows property to indicate the size of the table.

CREATE EXTERNAL TABLE 1264

Amazon Redshift Database Developer Guide

Amazon Redshift doesn't analyze external tables to generate the table statistics that the
query optimizer uses to generate a query plan. If table statistics aren't set for an external
table, Amazon Redshift generates a query execution plan based on an assumption that
external tables are the larger tables and local tables are the smaller tables.

'skip.header.line.count'='line_count'

A property that sets number of rows to skip at the beginning of each source file.

'serialization.null.format'=' '

A property that specifies Spectrum should return a NULL value when there is an exact match
with the text supplied in a field.

'orc.schema.resolution'='mapping_type'

A property that sets the column mapping type for tables that use ORC data format. This
property is ignored for other data formats.

Valid values for column mapping type are as follows:

• name

• position

If the orc.schema.resolution property is omitted, columns are mapped by name by default. If
orc.schema.resolution is set to any value other than 'name' or 'position', columns are mapped
by position. For more information about column mapping, see Mapping external table
columns to ORC columns.

Note

The COPY command maps to ORC data files only by position. The
orc.schema.resolution table property has no effect on COPY command behavior.

'write.parallel'='on / off’

A property that sets whether CREATE EXTERNAL TABLE AS should write data in parallel. By
default, CREATE EXTERNAL TABLE AS writes data in parallel to multiple files, according to
the number of slices in the cluster. The default option is on. When 'write.parallel' is set to
off, CREATE EXTERNAL TABLE AS writes to one or more data files serially onto Amazon S3.

CREATE EXTERNAL TABLE 1265

Amazon Redshift Database Developer Guide

This table property also applies to any subsequent INSERT statement into the same external
table.

‘write.maxfilesize.mb’=‘size’

A property that sets the maximum size (in MB) of each file written to Amazon S3 by CREATE
EXTERNAL TABLE AS. The size must be a valid integer between 5 and 6200. The default
maximum file size is 6,200 MB. This table property also applies to any subsequent INSERT
statement into the same external table.

‘write.kms.key.id’=‘value’

You can specify an AWS Key Management Service key to enable Server–Side Encryption
(SSE) for Amazon S3 objects, where value is one of the following:

• auto to use the default AWS KMS key stored in the Amazon S3 bucket.

• kms-key that you specify to encrypt data.

select_statement

A statement that inserts one or more rows into the external table by defining any query.
All rows that the query produces are written to Amazon S3 in either text or Parquet format
based on the table definition.

Examples

A collection of examples is available at Examples.

Usage notes

This topic contains usage notes for CREATE EXTERNAL TABLE. You can't view details for Amazon
Redshift Spectrum tables using the same resources that you use for standard Amazon Redshift
tables, such as PG_TABLE_DEF, STV_TBL_PERM, PG_CLASS, or information_schema. If your
business intelligence or analytics tool doesn't recognize Redshift Spectrum external tables,
configure your application to query SVV_EXTERNAL_TABLES and SVV_EXTERNAL_COLUMNS.

CREATE EXTERNAL TABLE AS

In some cases, you might run the CREATE EXTERNAL TABLE AS command on an AWS Glue Data
Catalog, AWS Lake Formation external catalog, or Apache Hive metastore. In such cases, you use an
AWS Identity and Access Management (IAM) role to create the external schema. This IAM role must
have both read and write permissions on Amazon S3.

CREATE EXTERNAL TABLE 1266

Amazon Redshift Database Developer Guide

If you use a Lake Formation catalog, the IAM role must have the permission to create table in the
catalog. In this case, it must also have the data lake location permission on the target Amazon S3
path. This IAM role becomes the owner of the new AWS Lake Formation table.

To ensure that file names are unique, Amazon Redshift uses the following format for the name of
each file uploaded to Amazon S3 by default.

<date>_<time>_<microseconds>_<query_id>_<slice-number>_part_<part-
number>.<format>.

An example is 20200303_004509_810669_1007_0001_part_00.parquet.

Consider the following when running the CREATE EXTERNAL TABLE AS command:

• The Amazon S3 location must be empty.

• Amazon Redshift only supports PARQUET and TEXTFILE formats when using the STORED AS
clause.

• You don't need to define a column definition list. Column names and column data types of the
new external table are derived directly from the SELECT query.

• You don't need to define the data type of the partition column in the PARTITIONED BY clause. If
you specify a partition key, the name of this column must exist in the SELECT query result. When
having multiple partition columns, their order in the SELECT query doesn't matter. Amazon
Redshift uses their order defined in the PARTITIONED BY clause to create the external table.

• Amazon Redshift automatically partitions output files into partition folders based on the
partition key values. By default, Amazon Redshift removes partition columns from the output
files.

• The LINES TERMINATED BY 'delimiter' clause isn't supported.

• The ROW FORMAT SERDE 'serde_name' clause isn't supported.

• The use of manifest files isn't supported. Thus, you can't define the LOCATION clause to a
manifest file on Amazon S3.

• Amazon Redshift automatically updates the 'numRows' table property at the end of the
command.

• The 'compression_type' table property only accepts 'none' or 'snappy' for the PARQUET file
format.

• Amazon Redshift doesn't allow the LIMIT clause in the outer SELECT query. Instead, you can use
a nested LIMIT clause.

CREATE EXTERNAL TABLE 1267

Amazon Redshift Database Developer Guide

• You can use STL_UNLOAD_LOG to track the files that are written to Amazon S3 by each CREATE
EXTERNAL TABLE AS operation.

Permissions to create and query external tables

To create external tables, make sure that you're the owner of the external schema or a superuser.
To transfer ownership of an external schema, use ALTER SCHEMA. The following example changes
the owner of the spectrum_schema schema to newowner.

alter schema spectrum_schema owner to newowner;

To run a Redshift Spectrum query, you need the following permissions:

• Usage permission on the schema

• Permission to create temporary tables in the current database

The following example grants usage permission on the schema spectrum_schema to the
spectrumusers user group.

grant usage on schema spectrum_schema to group spectrumusers;

The following example grants temporary permission on the database spectrumdb to the
spectrumusers user group.

grant temp on database spectrumdb to group spectrumusers;

Pseudocolumns

By default, Amazon Redshift creates external tables with the pseudocolumns $path and $size.
Select these columns to view the path to the data files on Amazon S3 and the size of the data
files for each row returned by a query. The $path and $size column names must be delimited with
double quotation marks. A SELECT * clause doesn't return the pseudocolumns . You must explicitly
include the $path and $size column names in your query, as the following example shows.

select "$path", "$size"
from spectrum.sales_part
where saledate = '2008-12-01';

CREATE EXTERNAL TABLE 1268

Amazon Redshift Database Developer Guide

You can disable creation of pseudocolumns for a session by setting the
spectrum_enable_pseudo_columns configuration parameter to false.

Important

Selecting $size or $path incurs charges because Redshift Spectrum scans the data files
in Amazon S3 to determine the size of the result set. For more information, see Amazon
Redshift Pricing.

Setting data handling options

You can set table parameters to specify input handling for data being queried in external tables,
including:

• Surplus characters in columns containing VARCHAR, CHAR, and string data. For more
information, see the external table property surplus_char_handling.

• Invalid characters in columns containing VARCHAR, CHAR, and string data. For more information,
see the external table property invalid_char_handling.

• Replacement character to use when you specify REPLACE for the external table property
invalid_char_handling.

• Cast overflow handling in columns containing integer and decimal data. For more information,
see the external table property numeric_overflow_handling.

• Surplus_bytes_handling to specify input handling for surplus bytes in columns
containing varbyte data. For more information, see the external table property
surplus_bytes_handling.

Examples

The following example creates a table named SALES in the Amazon Redshift external schema
named spectrum. The data is in tab-delimited text files. The TABLE PROPERTIES clause sets the
numRows property to 170,000 rows.

Depending on the identity you use to run CREATE EXTERNAL TABLE, there may be IAM permissions
that you have to configure. As a best practice, we recommend attaching permissions policies to an
IAM role and then assigning it to users and groups as needed. For more information, see Identity
and access management in Amazon Redshift.

CREATE EXTERNAL TABLE 1269

https://aws.amazon.com/redshift/pricing/
https://aws.amazon.com/redshift/pricing/
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-authentication-access-control.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-authentication-access-control.html

Amazon Redshift Database Developer Guide

create external table spectrum.sales(
salesid integer,
listid integer,
sellerid integer,
buyerid integer,
eventid integer,
saledate date,
qtysold smallint,
pricepaid decimal(8,2),
commission decimal(8,2),
saletime timestamp)
row format delimited
fields terminated by '\t'
stored as textfile
location 's3://redshift-downloads/tickit/spectrum/sales/'
table properties ('numRows'='170000');

The following example creates a table that uses the JsonSerDe to reference data in JSON format.

create external table spectrum.cloudtrail_json (
event_version int,
event_id bigint,
event_time timestamp,
event_type varchar(10),
awsregion varchar(20),
event_name varchar(max),
event_source varchar(max),
requesttime timestamp,
useragent varchar(max),
recipientaccountid bigint)
row format serde 'org.openx.data.jsonserde.JsonSerDe'
with serdeproperties (
'dots.in.keys' = 'true',
'mapping.requesttime' = 'requesttimestamp'
) location 's3://mybucket/json/cloudtrail';

The following CREATE EXTERNAL TABLE AS example creates a nonpartitioned external table. Then
it writes the result of the SELECT query as Apache Parquet to the target Amazon S3 location.

CREATE EXTERNAL TABLE spectrum.lineitem
STORED AS parquet
LOCATION 'S3://mybucket/cetas/lineitem/'

CREATE EXTERNAL TABLE 1270

Amazon Redshift Database Developer Guide

AS SELECT * FROM local_lineitem;

The following example creates a partitioned external table and includes the partition columns in
the SELECT query.

CREATE EXTERNAL TABLE spectrum.partitioned_lineitem
PARTITIONED BY (l_shipdate, l_shipmode)
STORED AS parquet
LOCATION 'S3://mybucket/cetas/partitioned_lineitem/'
AS SELECT l_orderkey, l_shipmode, l_shipdate, l_partkey FROM local_table;

For a list of existing databases in the external data catalog, query the SVV_EXTERNAL_DATABASES
system view.

select eskind,databasename,esoptions from svv_external_databases order by databasename;

eskind | databasename | esoptions
-------+--------------
+--
 1 | default | {"REGION":"us-
west-2","IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"}
 1 | sampledb | {"REGION":"us-
west-2","IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"}
 1 | spectrumdb | {"REGION":"us-
west-2","IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"}

To view details of external tables, query the SVV_EXTERNAL_TABLES and
SVV_EXTERNAL_COLUMNS system views.

The following example queries the SVV_EXTERNAL_TABLES view.

select schemaname, tablename, location from svv_external_tables;

schemaname | tablename | location
-----------+----------------------
+--
spectrum | sales | s3://redshift-downloads/tickit/spectrum/sales
spectrum | sales_part | s3://redshift-downloads/tickit/spectrum/
sales_partition

CREATE EXTERNAL TABLE 1271

Amazon Redshift Database Developer Guide

The following example queries the SVV_EXTERNAL_COLUMNS view.

select * from svv_external_columns where schemaname like 'spectrum%' and tablename
 ='sales';

schemaname | tablename | columnname | external_type | columnnum | part_key
-----------+-----------+------------+---------------+-----------+---------
spectrum | sales | salesid | int | 1 | 0
spectrum | sales | listid | int | 2 | 0
spectrum | sales | sellerid | int | 3 | 0
spectrum | sales | buyerid | int | 4 | 0
spectrum | sales | eventid | int | 5 | 0
spectrum | sales | saledate | date | 6 | 0
spectrum | sales | qtysold | smallint | 7 | 0
spectrum | sales | pricepaid | decimal(8,2) | 8 | 0
spectrum | sales | commission | decimal(8,2) | 9 | 0
spectrum | sales | saletime | timestamp | 10 | 0

To view table partitions, use the following query.

select schemaname, tablename, values, location
from svv_external_partitions
where tablename = 'sales_part';

schemaname | tablename | values | location
-----------+------------+----------------
+---
spectrum | sales_part | ["2008-01-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-01
spectrum | sales_part | ["2008-02-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-02
spectrum | sales_part | ["2008-03-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-03
spectrum | sales_part | ["2008-04-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-04
spectrum | sales_part | ["2008-05-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-05
spectrum | sales_part | ["2008-06-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-06
spectrum | sales_part | ["2008-07-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-07

CREATE EXTERNAL TABLE 1272

Amazon Redshift Database Developer Guide

spectrum | sales_part | ["2008-08-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-08
spectrum | sales_part | ["2008-09-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-09
spectrum | sales_part | ["2008-10-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-10
spectrum | sales_part | ["2008-11-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-11
spectrum | sales_part | ["2008-12-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-12

The following example returns the total size of related data files for an external table.

select distinct "$path", "$size"
 from spectrum.sales_part;

 $path | $size
--+-------
s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01/ | 1616
s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/ | 1444
s3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/ | 1444

Partitioning examples

To create an external table partitioned by date, run the following command.

create external table spectrum.sales_part(
salesid integer,
listid integer,
sellerid integer,
buyerid integer,
eventid integer,
dateid smallint,
qtysold smallint,
pricepaid decimal(8,2),
commission decimal(8,2),
saletime timestamp)
partitioned by (saledate date)
row format delimited
fields terminated by '|'
stored as textfile
location 's3://redshift-downloads/tickit/spectrum/sales_partition/'
table properties ('numRows'='170000');

CREATE EXTERNAL TABLE 1273

Amazon Redshift Database Developer Guide

To add the partitions, run the following ALTER TABLE commands.

alter table spectrum.sales_part
add if not exists partition (saledate='2008-01-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-01/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-02-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-02/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-03-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-03/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-04-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-04/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-05-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-05/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-06-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-06/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-07-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-07/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-08-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-08/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-09-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-09/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-10-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-10/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-11-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-11/';
alter table spectrum.sales_part
add if not exists partition (saledate='2008-12-01')
location 's3://redshift-downloads/tickit/spectrum/sales_partition/saledate=2008-12/';

To select data from the partitioned table, run the following query.

select top 10 spectrum.sales_part.eventid, sum(spectrum.sales_part.pricepaid)
from spectrum.sales_part, event

CREATE EXTERNAL TABLE 1274

Amazon Redshift Database Developer Guide

where spectrum.sales_part.eventid = event.eventid
 and spectrum.sales_part.pricepaid > 30
 and saledate = '2008-12-01'
group by spectrum.sales_part.eventid
order by 2 desc;

eventid | sum
--------+---------
 914 | 36173.00
 5478 | 27303.00
 5061 | 26383.00
 4406 | 26252.00
 5324 | 24015.00
 1829 | 23911.00
 3601 | 23616.00
 3665 | 23214.00
 6069 | 22869.00
 5638 | 22551.00

To view external table partitions, query the SVV_EXTERNAL_PARTITIONS system view.

select schemaname, tablename, values, location from svv_external_partitions
where tablename = 'sales_part';

schemaname | tablename | values | location
-----------+------------+----------------
+--
spectrum | sales_part | ["2008-01-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-01
spectrum | sales_part | ["2008-02-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-02
spectrum | sales_part | ["2008-03-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-03
spectrum | sales_part | ["2008-04-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-04
spectrum | sales_part | ["2008-05-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-05
spectrum | sales_part | ["2008-06-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-06
spectrum | sales_part | ["2008-07-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-07

CREATE EXTERNAL TABLE 1275

Amazon Redshift Database Developer Guide

spectrum | sales_part | ["2008-08-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-08
spectrum | sales_part | ["2008-09-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-09
spectrum | sales_part | ["2008-10-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-10
spectrum | sales_part | ["2008-11-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-11
spectrum | sales_part | ["2008-12-01"] | s3://redshift-downloads/tickit/spectrum/
sales_partition/saledate=2008-12

Row format examples

The following shows an example of specifying the ROW FORMAT SERDE parameters for data files
stored in AVRO format.

create external table spectrum.sales(salesid int, listid int, sellerid int,
 buyerid int, eventid int, dateid int, qtysold int, pricepaid decimal(8,2), comment
 VARCHAR(255))
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
WITH SERDEPROPERTIES ('avro.schema.literal'='{\"namespace\": \"dory.sample\",\"name\":
 \"dory_avro\",\"type\": \"record\", \"fields\": [{\"name\":\"salesid\", \"type\":\"int
\"},
{\"name\":\"listid\", \"type\":\"int\"},
{\"name\":\"sellerid\", \"type\":\"int\"},
{\"name\":\"buyerid\", \"type\":\"int\"},
{\"name\":\"eventid\",\"type\":\"int\"},
{\"name\":\"dateid\",\"type\":\"int\"},
{\"name\":\"qtysold\",\"type\":\"int\"},
{\"name\":\"pricepaid\", \"type\": {\"type\": \"bytes\", \"logicalType\": \"decimal\",
 \"precision\": 8, \"scale\": 2}}, {\"name\":\"comment\",\"type\":\"string\"}]}')
STORED AS AVRO
location 's3://mybucket/avro/sales' ;

The following shows an example of specifying the ROW FORMAT SERDE parameters using RegEx.

create external table spectrum.types(
cbigint bigint,
cbigint_null bigint,
cint int,
cint_null int)
row format serde 'org.apache.hadoop.hive.serde2.RegexSerDe'

CREATE EXTERNAL TABLE 1276

Amazon Redshift Database Developer Guide

with serdeproperties ('input.regex'='([^\\x01]+)\\x01([^\\x01]+)\\x01([^\\x01]+)\
\x01([^\\x01]+)')
stored as textfile
location 's3://mybucket/regex/types';

The following shows an example of specifying the ROW FORMAT SERDE parameters using Grok.

create external table spectrum.grok_log(
timestamp varchar(255),
pid varchar(255),
loglevel varchar(255),
progname varchar(255),
message varchar(255))
row format serde 'com.amazonaws.glue.serde.GrokSerDe'
with serdeproperties ('input.format'='[DFEWI], \\[%{TIMESTAMP_ISO8601:timestamp} #
%{POSINT:pid:int}\\] *(?<loglevel>:DEBUG|FATAL|ERROR|WARN|INFO) -- +%{DATA:progname}:
 %{GREEDYDATA:message}')
stored as textfile
location 's3://mybucket/grok/logs';

The following shows an example of defining an Amazon S3 server access log in an S3 bucket. You
can use Redshift Spectrum to query Amazon S3 access logs.

CREATE EXTERNAL TABLE spectrum.mybucket_s3_logs(
bucketowner varchar(255),
bucket varchar(255),
requestdatetime varchar(2000),
remoteip varchar(255),
requester varchar(255),
requested varchar(255),
operation varchar(255),
key varchar(255),
requesturi_operation varchar(255),
requesturi_key varchar(255),
requesturi_httpprotoversion varchar(255),
httpstatus varchar(255),
errorcode varchar(255),
bytessent bigint,
objectsize bigint,
totaltime varchar(255),
turnaroundtime varchar(255),
referrer varchar(255),
useragent varchar(255),

CREATE EXTERNAL TABLE 1277

Amazon Redshift Database Developer Guide

versionid varchar(255)
)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.RegexSerDe'
WITH SERDEPROPERTIES (
'input.regex' = '([^]*) ([^]*) \\[(.*?)\\] ([^]*) ([^]*) ([^]*) ([^]*) ([^]*)
 \"([^]*)\\s*([^]*)\\s*([^]*)\" (- |[^]*) ([^]*) ([^]*) ([^]*) ([^]*) ([^]*)
 ([^]*) (\"[^\"]*\") ([^]*).*$')
LOCATION 's3://mybucket/s3logs’;

The following shows an example of specifying the ROW FORMAT SERDE parameters for ION
format data.

CREATE EXTERNAL TABLE tbl_name (columns)
ROW FORMAT SERDE 'com.amazon.ionhiveserde.IonHiveSerDe'
STORED AS
INPUTFORMAT 'com.amazon.ionhiveserde.formats.IonInputFormat'
OUTPUTFORMAT 'com.amazon.ionhiveserde.formats.IonOutputFormat'
LOCATION 's3://s3-bucket/prefix'

Data handling examples

The following examples access the file: spi_global_rankings.csv. You can upload the
spi_global_rankings.csv file to an Amazon S3 bucket to try these examples.

The following example creates the external schema schema_spectrum_uddh and database
spectrum_db_uddh. For aws-account-id, enter your AWS account ID and for role-name enter
your Redshift Spectrum role name.

create external schema schema_spectrum_uddh
from data catalog
database 'spectrum_db_uddh'
iam_role 'arn:aws:iam::aws-account-id:role/role-name'
create external database if not exists;

The following example creates the external table soccer_league in the external schema
schema_spectrum_uddh.

CREATE EXTERNAL TABLE schema_spectrum_uddh.soccer_league
(
 league_rank smallint,

CREATE EXTERNAL TABLE 1278

https://s3.amazonaws.com/redshift-downloads/docs-downloads/spi_global_rankings.csv

Amazon Redshift Database Developer Guide

 prev_rank smallint,
 club_name varchar(15),
 league_name varchar(20),
 league_off decimal(6,2),
 league_def decimal(6,2),
 league_spi decimal(6,2),
 league_nspi integer
)
ROW FORMAT DELIMITED
 FIELDS TERMINATED BY ','
 LINES TERMINATED BY '\n\l'
stored as textfile
LOCATION 's3://spectrum-uddh/league/'
table properties ('skip.header.line.count'='1');

Check the number of rows in the soccer_league table.

select count(*) from schema_spectrum_uddh.soccer_league;

The numbers of rows displays.

count
645

The following query displays the top 10 clubs. Because club Barcelona has an invalid character in
the string, a NULL is displayed for the name.

select league_rank,club_name,league_name,league_nspi
from schema_spectrum_uddh.soccer_league
where league_rank between 1 and 10;

league_rank club_name league_name league_nspi
1 Manchester City Barclays Premier Lea 34595
2 Bayern Munich German Bundesliga 34151
3 Liverpool Barclays Premier Lea 33223
4 Chelsea Barclays Premier Lea 32808
5 Ajax Dutch Eredivisie 32790
6 Atletico Madrid Spanish Primera Divi 31517
7 Real Madrid Spanish Primera Divi 31469
8 NULL Spanish Primera Divi 31321
9 RB Leipzig German Bundesliga 31014

CREATE EXTERNAL TABLE 1279

Amazon Redshift Database Developer Guide

10 Paris Saint-Ger French Ligue 1 30929

The following example alters the soccer_league table to specify the
invalid_char_handling, replacement_char, and data_cleansing_enabled external table
properties to insert a question mark (?) as a substitute for unexpected characters.

alter table schema_spectrum_uddh.soccer_league
set table properties
 ('invalid_char_handling'='REPLACE','replacement_char'='?','data_cleansing_enabled'='true');

The following example queries the table soccer_league for teams with a rank from 1 to 10.

select league_rank,club_name,league_name,league_nspi
from schema_spectrum_uddh.soccer_league
where league_rank between 1 and 10;

Because the table properties were altered, the results show the top 10 clubs, with the question
mark (?) replacement character in the eighth row for club Barcelona.

league_rank club_name league_name league_nspi
1 Manchester City Barclays Premier Lea 34595
2 Bayern Munich German Bundesliga 34151
3 Liverpool Barclays Premier Lea 33223
4 Chelsea Barclays Premier Lea 32808
5 Ajax Dutch Eredivisie 32790
6 Atletico Madrid Spanish Primera Divi 31517
7 Real Madrid Spanish Primera Divi 31469
8 Barcel?na Spanish Primera Divi 31321
9 RB Leipzig German Bundesliga 31014
10 Paris Saint-Ger French Ligue 1 30929

The following example alters the soccer_league table to specify the invalid_char_handling
external table properties to drop rows with unexpected characters.

alter table schema_spectrum_uddh.soccer_league
set table properties
 ('invalid_char_handling'='DROP_ROW','data_cleansing_enabled'='true');

The following example queries the table soccer_league for teams with a rank from 1 to 10.

CREATE EXTERNAL TABLE 1280

Amazon Redshift Database Developer Guide

select league_rank,club_name,league_name,league_nspi
from schema_spectrum_uddh.soccer_league
where league_rank between 1 and 10;

The results display the top clubs, not including the eighth row for club Barcelona.

league_rank club_name league_name league_nspi
1 Manchester City Barclays Premier Lea 34595
2 Bayern Munich German Bundesliga 34151
3 Liverpool Barclays Premier Lea 33223
4 Chelsea Barclays Premier Lea 32808
5 Ajax Dutch Eredivisie 32790
6 Atletico Madrid Spanish Primera Divi 31517
7 Real Madrid Spanish Primera Divi 31469
9 RB Leipzig German Bundesliga 31014
10 Paris Saint-Ger French Ligue 1 30929

CREATE EXTERNAL VIEW (preview)

This is prerelease documentation views in Data Catalog for Amazon Redshift, which is
in preview release. The documentation and the feature are both subject to change. We
recommend that you use this feature only with test clusters, and not in production environme
nts. For preview terms and conditions, see Beta and Previews in AWS Service Terms.

You can create an Amazon Redshift cluster in Preview to test new features of Amazon Redshift.
You can't use those features in production or move your Preview cluster to a production cluster or
a cluster on another track. For preview terms and conditions, see Beta and Previews in AWS Service
Terms.

To create a cluster in Preview

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Provisioned clusters dashboard, and choose Clusters. The
clusters for your account in the current AWS Region are listed. A subset of properties of each
cluster is displayed in columns in the list.

CREATE EXTERNAL VIEW (preview) 1281

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

3. A banner displays on the Clusters list page that introduces preview. Choose the button Create
preview cluster to open the create cluster page.

4. Enter properties for your cluster. Choose the Preview track that contains the features you
want to test. We recommend entering a name for the cluster that indicates that it is on a
preview track. Choose options for your cluster, including options labeled as -preview, for the
features you want to test. For general information about creating clusters, see Creating a
cluster in the Amazon Redshift Management Guide.

5. Choose Create cluster to create a cluster in preview.

Note

The preview_2023 track is the most recent preview track available. This track
supports creating clusters with RA3 node types only. Node type DC2 and any older
node type is not supported.

6. When your preview cluster is available, use your SQL client to load and query data.

The Data Catalog views preview feature is available only in the following Regions.

• US East (Ohio) (us-east-2)

• US East (N. Virginia) (us-east-1)

• US West (N. California) (us-west-1)

• Asia Pacific (Tokyo) (ap-northeast-1)

• Europe (Ireland) (eu-west-1)

• Europe (Stockholm) (eu-north-1)

You can also create a preview workgroup to test Data Catalog views. You can't use those features in
production or move your workgroup to another workgroup. For preview terms and conditions, see
Beta and Previews in AWS Service Terms. For instructions on how to create a preview workgroup,
see Creating a preview workgroup.

Creates a view in the Data Catalog. Data Catalog views are a single view schema that works with
other SQL engines such as Amazon Athena and Amazon EMR. You can query the view from your
choice of engine. For more information about Data Catalog views, see Creating Data Catalog views
(preview).

CREATE EXTERNAL VIEW (preview) 1282

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster
https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html
https://docs.aws.amazon.com/redshift/latest/dg/data-catalog-views-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/data-catalog-views-overview.html

Amazon Redshift Database Developer Guide

Syntax

CREATE EXTERNAL VIEW schema_name.view_name [IF NOT EXISTS]
{catalog_name.schema_name.view_name | awsdatacatalog.dbname.view_name |
 external_schema_name.view_name}
AS query_definition;

Parameters

schema_name.view_name

The schema that’s attached to your AWS Glue database, followed by the name of the view.

PROTECTED

Specifies that the CREATE EXTERNAL VIEW command should only complete if the query within
the query_definition can successfully complete.

IF NOT EXISTS

Creates the view if the view doesn’t already exist.

catalog_name.schema_name.view_name | awsdatacatalog.dbname.view_name |
external_schema_name.view_name

The notation of the schema to use when creating the view. You can specify to use the AWS Glue
Data Catalog, a Glue database that you created, or an external schema that you created. See
CREATE DATABASE and CREATE EXTERNAL SCHEMA for more information.

query_definition

The definition of the SQL query that Amazon Redshift runs to alter the view.

Examples

The following example creates a Data Catalog view named
sample_schema.glue_data_catalog_view.

CREATE EXTERNAL PROTECTED VIEW sample_schema.glue_data_catalog_view IF NOT EXISTS
AS SELECT * FROM sample_database.remote_table "remote-table-name";

CREATE FUNCTION

CREATE FUNCTION 1283

https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATABASE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_SCHEMA.html

Amazon Redshift Database Developer Guide

Creates a new scalar user-defined function (UDF) using either a SQL SELECT clause or a Python
program.

For more information and examples, see Creating user-defined functions.

Required privileges

You must have permission by one of the following ways to run CREATE OR REPLACE FUNCTION:

• For CREATE FUNCTION:

• Superuser can use both trusted and untrusted languages to create functions.

• Users with the CREATE [OR REPLACE] FUNCTION privilege can create functions with trusted
languages.

• For REPLACE FUNCTION:

• Superuser

• Users with the CREATE [OR REPLACE] FUNCTION privilege

• Function owner

Syntax

CREATE [OR REPLACE] FUNCTION f_function_name
({ [py_arg_name py_arg_data_type |
sql_arg_data_type } [, ...]])
RETURNS data_type
{ VOLATILE | STABLE | IMMUTABLE }
AS $$
 { python_program | SELECT_clause }
$$ LANGUAGE { plpythonu | sql }

Parameters

OR REPLACE

Specifies that if a function with the same name and input argument data types, or signature, as
this one already exists, the existing function is replaced. You can only replace a function with a
new function that defines an identical set of data types. You must be a superuser to replace a
function.

CREATE FUNCTION 1284

Amazon Redshift Database Developer Guide

If you define a function with the same name as an existing function but a different signature,
you create a new function. In other words, the function name is overloaded. For more
information, see Overloading function names.

f_function_name

The name of the function. If you specify a schema name (such as myschema.myfunction), the
function is created using the specified schema. Otherwise, the function is created in the current
schema. For more information about valid names, see Names and identifiers.

We recommend that you prefix all UDF names with f_. Amazon Redshift reserves the f_ prefix
for UDF names, so by using the f_ prefix, you ensure that your UDF name will not conflict with
any existing or future Amazon Redshift built-in SQL function names. For more information, see
Naming UDFs.

You can define more than one function with the same function name if the data types for
the input arguments are different. In other words, the function name is overloaded. For more
information, see Overloading function names.

py_arg_name py_arg_data_type | sql_arg_data type

For a Python UDF, a list of input argument names and data types. For a SQL UDF, a list of data
types, without argument names. In a Python UDF, refer to arguments using the argument
names. In a SQL UDF, refer to arguments using $1, $2, and so on, based on the order of the
arguments in the argument list.

For a SQL UDF, the input and return data types can be any standard Amazon Redshift data
type. For a Python UDF, the input and return data types can be SMALLINT, INTEGER, BIGINT,
DECIMAL, REAL, DOUBLE PRECISION, BOOLEAN, CHAR, VARCHAR, DATE, or TIMESTAMP. In
addition, Python user-defined functions (UDFs) support a data type of ANYELEMENT. This is
automatically converted to a standard data type based on the data type of the corresponding
argument supplied at runtime. If multiple arguments use ANYELEMENT, they all resolve to
the same data type at runtime, based on the first ANYELEMENT argument in the list. For more
information, see Python UDF data types and Data types.

You can specify a maximum of 32 arguments.

RETURNS data_type

The data type of the value returned by the function. The RETURNS data type can be any
standard Amazon Redshift data type. In addition, Python UDFs can use a data type of
ANYELEMENT, which is automatically converted to a standard data type based on the argument

CREATE FUNCTION 1285

Amazon Redshift Database Developer Guide

supplied at runtime. If you specify ANYELEMENT for the return data type, at least one argument
must use ANYELEMENT. The actual return data type matches the data type supplied for the
ANYELEMENT argument when the function is called. For more information, see Python UDF
data types.

VOLATILE | STABLE | IMMUTABLE

Informs the query optimizer about the volatility of the function.

You will get the best optimization if you label your function with the strictest volatility category
that is valid for it. However, if the category is too strict, there is a risk that the optimizer will
erroneously skip some calls, resulting in an incorrect result set. In order of strictness, beginning
with the least strict, the volatility categories are as follows:

• VOLATILE

• STABLE

• IMMUTABLE

VOLATILE

Given the same arguments, the function can return different results on successive calls, even
for the rows in a single statement. The query optimizer can't make any assumptions about the
behavior of a volatile function, so a query that uses a volatile function must reevaluate the
function for every input row.

STABLE

Given the same arguments, the function is guaranteed to return the same results for all rows
processed within a single statement. The function can return different results when called
in different statements. This category allows the optimizer to optimize multiple calls of the
function within a single statement to a single call for the statement.

IMMUTABLE

Given the same arguments, the function always returns the same result, forever. When a
query calls an IMMUTABLE function with constant arguments, the optimizer pre-evaluates the
function.

AS $$ statement $$

A construct that encloses the statement to be run. The literal keywords AS $$ and $$ are
required.

CREATE FUNCTION 1286

Amazon Redshift Database Developer Guide

Amazon Redshift requires you to enclose the statement in your function by using a format
called dollar quoting. Anything within the enclosure is passed exactly as is. You don't need to
escape any special characters because the contents of the string are written literally.

With dollar quoting, you use a pair of dollar signs ($$) to signify the start and the end of the
statement to run, as shown in the following example.

$$ my statement $$

Optionally, between the dollar signs in each pair, you can specify a string to help identify the
statement. The string that you use must be the same in both the start and the end of the
enclosure pairs. This string is case-sensitive, and it follows the same constraints as an unquoted
identifier except that it can't contain dollar signs. The following example uses the string test.

$test$ my statement $test$

For more information about dollar quoting, see "Dollar-quoted String Constants" under Lexical
Structure in the PostgreSQL documentation.

python_program

A valid executable Python program that returns a value. The statement that you pass in with
the function must conform to indentation requirements as specified in the Style Guide for
Python Code on the Python website. For more information, see Python language support for
UDFs.

SQL_clause

A SQL SELECT clause.

The SELECT clause can't include any of the following types of clauses:

• FROM

• INTO

• WHERE

• GROUP BY

• ORDER BY

• LIMIT

CREATE FUNCTION 1287

https://www.postgresql.org/docs/9.4/static/sql-syntax-lexical.html
https://www.postgresql.org/docs/9.4/static/sql-syntax-lexical.html
https://www.python.org/dev/peps/pep-0008/#indentation
https://www.python.org/dev/peps/pep-0008/#indentation

Amazon Redshift Database Developer Guide

LANGUAGE { plpythonu | sql }

For Python, specify plpythonu. For SQL, specify sql. You must have permission for usage on
language for SQL or plpythonu. For more information, see UDF security and privileges.

Usage notes

Nested functions

You can call another SQL user-defined function (UDF) from within a SQL UDF. The nested function
must exist when you run the CREATE FUNCTION command. Amazon Redshift doesn't track
dependencies for UDFs, so if you drop the nested function, Amazon Redshift doesn't return an
error. However, the UDF will fail if the nested function doesn't exist. For example, the following
function calls the f_sql_greater function in the SELECT clause.

create function f_sql_commission (float, float)
 returns float
stable
as $$
 select f_sql_greater ($1, $2)
$$ language sql;

UDF security and privileges

To create a UDF, you must have permission for usage on language for SQL or plpythonu (Python).
By default, USAGE ON LANGUAGE SQL is granted to PUBLIC. However, you must explicitly grant
USAGE ON LANGUAGE PLPYTHONU to specific users or groups.

To revoke usage for SQL, first revoke usage from PUBLIC. Then grant usage on SQL only to the
specific users or groups permitted to create SQL UDFs. The following example revokes usage on
SQL from PUBLIC then grants usage to the user group udf_devs.

revoke usage on language sql from PUBLIC;
grant usage on language sql to group udf_devs;

To run a UDF, you must have execute permission for each function. By default, execute permission
for new UDFs is granted to PUBLIC. To restrict usage, revoke execute permission from PUBLIC for
the function. Then grant the privilege to specific individuals or groups.

CREATE FUNCTION 1288

Amazon Redshift Database Developer Guide

The following example revokes execute permission on function f_py_greater from PUBLIC then
grants usage to the user group udf_devs.

revoke execute on function f_py_greater(a float, b float) from PUBLIC;
grant execute on function f_py_greater(a float, b float) to group udf_devs;

Superusers have all privileges by default.

For more information, see GRANT and REVOKE.

Examples

Scalar Python UDF example

The following example creates a Python UDF that compares two integers and returns the larger
value.

create function f_py_greater (a float, b float)
 returns float
stable
as $$
 if a > b:
 return a
 return b
$$ language plpythonu;

The following example queries the SALES table and calls the new f_py_greater function to
return either COMMISSION or 20 percent of PRICEPAID, whichever is greater.

select f_py_greater (commission, pricepaid*0.20) from sales;

Scalar SQL UDF example

The following example creates a function that compares two numbers and returns the larger value.

create function f_sql_greater (float, float)
 returns float
stable
as $$
 select case when $1 > $2 then $1
 else $2

CREATE FUNCTION 1289

Amazon Redshift Database Developer Guide

 end
$$ language sql;

The following query calls the new f_sql_greater function to query the SALES table and returns
either COMMISSION or 20 percent of PRICEPAID, whichever is greater.

select f_sql_greater (commission, pricepaid*0.20) from sales;

CREATE GROUP

Defines a new user group. Only a superuser can create a group.

Syntax

CREATE GROUP group_name
[[WITH] [USER username] [, ...]]

Parameters

group_name

Name of the new user group. Group names beginning with two underscores are reserved
for Amazon Redshift internal use. For more information about valid names, see Names and
identifiers.

WITH

Optional syntax to indicate additional parameters for CREATE GROUP.

USER

Add one or more users to the group.

username

Name of the user to add to the group.

Examples

The following example creates a user group named ADMIN_GROUP with a two users, ADMIN1 and
ADMIN2.

CREATE GROUP 1290

Amazon Redshift Database Developer Guide

create group admin_group with user admin1, admin2;

CREATE IDENTITY PROVIDER

Defines a new identity provider. Only a superuser can create an identity provider.

Syntax

CREATE IDENTITY PROVIDER identity_provider_name TYPE type_name
NAMESPACE namespace_name
[PARAMETERS parameter_string]
[APPLICATION_ARN arn]
[IAM_ROLE iam_role]

Parameters

identity_provider_name

Name of the new identity provider. For more information about valid names, see Names and
identifiers.

type_name

The identity provider to interface with. Azure is currently the only supported identity provider.

namespace_name

The namespace. This is a unique, shorthand identifier for the identity provider directory.

parameter_string

A string containing a properly formatted JSON object that contains parameters and values
required for the identity provider.

arn

The Amazon resource name (ARN) for an IAM Identity Center managed application. This
parameter is applicable only when the identity-provider type is AWSIDC.

iam_role

The IAM role that provides permissions to make the connection to IAM Identity Center. This
parameter is applicable only when the identity-provider type is AWSIDC.

CREATE IDENTITY PROVIDER 1291

Amazon Redshift Database Developer Guide

Examples

The following example creates an identity provider named oauth_standard, with a TYPE azure, to
establish communication with Microsoft Azure Active Directory (AD).

CREATE IDENTITY PROVIDER oauth_standard TYPE azure
NAMESPACE 'aad'
PARAMETERS '{"issuer":"https://sts.windows.net/2sdfdsf-d475-420d-b5ac-667adad7c702/",
"client_id":"87f4aa26-78b7-410e-bf29-57b39929ef9a",
"client_secret":"BUAH~ewrqewrqwerUUY^%tHe1oNZShoiU7",
"audience":["https://analysis.windows.net/powerbi/connector/AmazonRedshift"]
}'

You can connect an IAM Identity Center managed application with an existing provisioned cluster
or Amazon Redshift Serverless workgroup. This gives you the ability to manage access to a Redshift
database through IAM Identity Center. To do so, run a SQL command like the following sample. You
have to be a database administrator.

CREATE IDENTITY PROVIDER "redshift-idc-app" TYPE AWSIDC
NAMESPACE 'awsidc'
APPLICATION_ARN 'arn:aws:sso::123456789012:application/ssoins-12345f67fe123d4/apl-
a0b0a12dc123b1a4'
IAM_ROLE 'arn:aws:iam::123456789012:role/MyRedshiftRole';

The application ARN in this case identifies the managed application to connect to. You can find it
by running SELECT * FROM SVV_IDENTITY_PROVIDERS;.

For more information about using CREATE IDENTITY PROVIDER, including additional examples, see
Native identity provider (IdP) federation for Amazon Redshift. For more information about setting
up a connection to IAM Identity Center from Redshift, see Connect Redshift with IAM Identity
Center to give users a single sign-on experience.

CREATE LIBRARY

Installs a Python library, which is available for users to incorporate when creating a user-defined
function (UDF) with the CREATE FUNCTION command. The total size of user-installed libraries can't
exceed 100 MB.

CREATE LIBRARY can't be run inside a transaction block (BEGIN … END). For more information
about transactions, see Serializable isolation.

CREATE LIBRARY 1292

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-native-idp.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-idp-connect.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-idp-connect.html

Amazon Redshift Database Developer Guide

Amazon Redshift supports Python version 2.7. For more information, see www.python.org.

For more information, see Importing custom Python library modules.

Required privileges

Following are required privileges for CREATE LIBRARY:

• Superuser

• Users with the CREATE LIBRARY privilege or with the privilege of the specified language

Syntax

CREATE [OR REPLACE] LIBRARY library_name LANGUAGE plpythonu
FROM
{ 'https://file_url'
| 's3://bucketname/file_name'
authorization
 [REGION [AS] 'aws_region']
 IAM_ROLE { default | ‘arn:aws:iam::<AWS account-id>:role/<role-name>’ }
}

Parameters

OR REPLACE

Specifies that if a library with the same name as this one already exists, the existing library
is replaced. REPLACE commits immediately. If a UDF that depends on the library is running
concurrently, the UDF might fail or return unexpected results, even if the UDF is running within
a transaction. You must be the owner or a superuser to replace a library.

library_name

The name of the library to be installed. You can't create a library that contains a module with
the same name as a Python Standard Library module or an Amazon Redshift preinstalled
Python module. If an existing user-installed library uses the same Python package as the library
to be installed, you must drop the existing library before installing the new library. For more
information, see Python language support for UDFs.

CREATE LIBRARY 1293

https://www.python.org/

Amazon Redshift Database Developer Guide

LANGUAGE plpythonu

The language to use. Python (plpythonu) is the only supported language. Amazon Redshift
supports Python version 2.7. For more information, see www.python.org.

FROM

The location of the library file. You can specify an Amazon S3 bucket and object name, or you
can specify a URL to download the file from a public website. The library must be packaged in
the form of a .zip file. For more information, see Building and Installing Python Modules in
the Python documentation.

https://file_url

The URL to download the file from a public website. The URL can contain up to three redirects.
The following is an example of a file URL.

'https://www.example.com/pylib.zip'

s3://bucket_name/file_name

The path to a single Amazon S3 object that contains the library file. The following is an example
of an Amazon S3 object path.

's3://mybucket/my-pylib.zip'

If you specify an Amazon S3 bucket, you must also provide credentials for an AWS user that has
permission to download the file.

Important

If the Amazon S3 bucket doesn't reside in the same AWS Region as your Amazon
Redshift cluster, you must use the REGION option to specify the AWS Region in which
the data is located. The value for aws_region must match an AWS Region listed in the
table in the REGION parameter description for the COPY command.

authorization

A clause that indicates the method your cluster uses for authentication and authorization to
access the Amazon S3 bucket that contains the library file. Your cluster must have permission to
access the Amazon S3 with the LIST and GET actions.

CREATE LIBRARY 1294

https://www.python.org/
https://docs.python.org/2/library/distutils.html?highlight=distutils#module-distutils

Amazon Redshift Database Developer Guide

The syntax for authorization is the same as for the COPY command authorization. For more
information, see Authorization parameters.

IAM_ROLE { default | ‘arn:aws:iam::<AWS account-id>:role/<role-name>’

Use the default keyword to have Amazon Redshift use the IAM role that is set as default and
associated with the cluster when the CREATE LIBRARY command runs.

Use the Amazon Resource Name (ARN) for an IAM role that your cluster uses for
authentication and authorization. If you specify IAM_ROLE, you can't use ACCESS_KEY_ID and
SECRET_ACCESS_KEY, SESSION_TOKEN, or CREDENTIALS.

Optionally, if the Amazon S3 bucket uses server-side encryption, provide the encryption key
in the credentials-args string. If you use temporary security credentials, provide the temporary
token in the credentials-args string.

For more information, see Temporary security credentials.

REGION [AS] aws_region

The AWS Region where the Amazon S3 bucket is located. REGION is required when the
Amazon S3 bucket isn't in the same AWS Region as the Amazon Redshift cluster. The value for
aws_region must match an AWS Region listed in the table in the REGION parameter description
for the COPY command.

By default, CREATE LIBRARY assumes that the Amazon S3 bucket is located in the same AWS
Region as the Amazon Redshift cluster.

Examples

The following two examples install the urlparse Python module, which is packaged in a file named
urlparse3-1.0.3.zip.

The following command installs a UDF library named f_urlparse from a package that has been
uploaded to an Amazon S3 bucket located in the US East Region.

create library f_urlparse
language plpythonu
from 's3://mybucket/urlparse3-1.0.3.zip'
credentials 'aws_iam_role=arn:aws:iam::<aws-account-id>:role/<role-name>'

CREATE LIBRARY 1295

https://docs.python.org/2/library/urlparse.html#module-urlparse

Amazon Redshift Database Developer Guide

region as 'us-east-1';

The following example installs a library named f_urlparse from a library file on a website.

create library f_urlparse
language plpythonu
from 'https://example.com/packages/urlparse3-1.0.3.zip';

CREATE MASKING POLICY

Creates a new dynamic data masking policy to obfuscate data of a given format. For more
information on dynamic data masking, see Dynamic data masking.

Superusers and users or roles that have the sys:secadmin role can create a masking policy.

Syntax

CREATE MASKING POLICY
 policy_name [IF NOT EXISTS]
 WITH (input_columns)
 USING (masking_expression);

Parameters

policy_name

The name of the masking policy. The masking policy can't have the same name as another
masking policy that already exists in the database.

input_columns

A tuple of column names in the format (col1 type, col2 type ...).

Column names are used as the input for the masking expression. Column names don't have
to match the names of the columns being masked, but the input and output data types must
match.

masking_expression

The SQL expression used to transform the target columns. It can be written using data
manipulation functions such as String manipulation functions, or in conjunction with user-

CREATE MASKING POLICY 1296

Amazon Redshift Database Developer Guide

defined functions written in SQL, Python, or with AWS Lambda. You can include a tuple of
column expressions for masking policies that have multiple outputs. If you use a constant as
your masking expression, you must explicitly cast it to a type that matches the input type.

You must have the USAGE permission on any user-defined functions that you use in the
masking expression.

CREATE MATERIALIZED VIEW

Creates a materialized view based on one or more Amazon Redshift tables. You can also base
materialized views on external tables created using Spectrum or federated query. For information
about Spectrum, see Querying external data using Amazon Redshift Spectrum. For information
about federated query, see Querying data with federated queries in Amazon Redshift.

Syntax

CREATE MATERIALIZED VIEW mv_name
[BACKUP { YES | NO }]
[table_attributes]
[AUTO REFRESH { YES | NO }]
AS query

Parameters

BACKUP

A clause that specifies whether the materialized view is included in automated and manual
cluster snapshots, which are stored in Amazon S3.

The default value for BACKUP is YES.

You can specify BACKUP NO to save processing time when creating snapshots and restoring
from snapshots, and to reduce the amount of storage required in Amazon S3.

Note

The BACKUP NO setting has no effect on automatic replication of data to other nodes
within the cluster, so tables with BACKUP NO specified are restored in a node failure.

CREATE MATERIALIZED VIEW 1297

Amazon Redshift Database Developer Guide

table_attributes

A clause that specifies how the data in the materialized view is distributed, including the
following:

• The distribution style for the materialized view, in the format DISTSTYLE { EVEN | ALL
| KEY }. If you omit this clause, the distribution style is EVEN. For more information, see
Distribution styles.

• The distribution key for the materialized view, in the format DISTKEY (
distkey_identifier). For more information, see Designating distribution styles.

• The sort key for the materialized view, in the format SORTKEY (column_name
[, ...]). For more information, see Working with sort keys.

AS query

A valid SELECT statement that defines the materialized view and its content. The result set
from the query defines the columns and rows of the materialized view. For information about
limitations when creating materialized views, see Limitations.

Furthermore, specific SQL language constructs used in the query determines whether the
materialized view can be incrementally or fully refreshed. For information about the refresh
method, see REFRESH MATERIALIZED VIEW. For information about the limitations for
incremental refresh, see Limitations for incremental refresh.

If the query contains an SQL command that doesn't support incremental refresh, Amazon
Redshift displays a message indicating that the materialized view will use a full refresh. The
message may or may not be displayed, depending on the SQL client application. Check the
state column of the STV_MV_INFO to see the refresh type used by a materialized view.

AUTO REFRESH

A clause that defines whether the materialized view should be automatically refreshed
with latest changes from its base tables. The default value is NO. For more information, see
Refreshing a materialized view.

Usage notes

To create a materialized view, you must have the following privileges:

• CREATE privileges for a schema.

CREATE MATERIALIZED VIEW 1298

Amazon Redshift Database Developer Guide

• Table-level or column-level SELECT privilege on the base tables to create a materialized view. If
you have column-level privileges on specific columns, you can create a materialized view on only
those columns.

Incremental refresh for materialized views in a datashare

Amazon Redshift supports automatic and incremental refresh for materialized views in a consumer
datashare when the base tables are shared. Incremental refresh is an operation where Amazon
Redshift identifies changes in the base table or tables that happened after the previous refresh
and updates only the corresponding records in the materialized view. This runs more quickly than a
full refresh and improves workload performance. You don't have to change your materialized-view
definition to take advantage of incremental refresh.

There are a couple limitations to note for taking advantage of incremental refresh with a
materialized view:

• The materialized view must reference only one database, either local or remote.

• Incremental refresh is available only on new materialized views. Therefore, you must drop
existing materialized views and recreate them for incremental refresh to occur.

For more information about creating materialized views in a datashare, see Working with views in
Amazon Redshift data sharing, which contains several query examples.

DDL updates to materialized views or base tables

When using materialized views in Amazon Redshift, follow these usage notes for data definition
language (DDL) updates to materialized views or base tables.

• You can add columns to a base table without affecting any materialized views that reference the
base table.

• Some operations can leave the materialized view in a state that can't be refreshed at all.
Examples are operations such as renaming or dropping a column, changing the type of a column,
and changing the name of a schema. Such materialized views can be queried but can't be
refreshed. In this case, you must drop and recreate the materialized view.

• In general, you can't alter a materialized view's definition (its SQL statement).

• You can't rename a materialized view.

CREATE MATERIALIZED VIEW 1299

https://docs.aws.amazon.com/redshift/latest/dg/share_datashare.html#datashare-views
https://docs.aws.amazon.com/redshift/latest/dg/share_datashare.html#datashare-views

Amazon Redshift Database Developer Guide

Limitations

You can't define a materialized view that references or includes any of the following:

• Standard views, or system tables and views.

• Temporary tables.

• User-defined functions.

• The ORDER BY, LIMIT, or OFFSET clause.

• late-binding references to base tables. In other words, any base tables or related columns
referenced in the defining SQL query of the materialized view must exist and must be valid.

• Leader node-only functions: CURRENT_SCHEMA, CURRENT_SCHEMAS,
HAS_DATABASE_PRIVILEGE, HAS_SCHEMA_PRIVILEGE, HAS_TABLE_PRIVILEGE.

• You can't use the AUTO REFRESH YES option when the materialized view definition includes
mutable functions or external schemas. You also can't use it when you define a materialized view
on another materialized view.

• You don't have to manually run ANALYZE on materialized views. This happens currently only via
AUTO ANALYZE. For more information, see Analyzing tables.

Examples

The following example creates a materialized view from three base tables that are joined and
aggregated. Each row represents a category with the number of tickets sold. When you query
the tickets_mv materialized view, you directly access the precomputed data in the tickets_mv
materialized view.

CREATE MATERIALIZED VIEW tickets_mv AS
 select catgroup,
 sum(qtysold) as sold
 from category c, event e, sales s
 where c.catid = e.catid
 and e.eventid = s.eventid
 group by catgroup;

The following example creates a materialized view similar to the previous example and uses the
aggregate function MAX().

CREATE MATERIALIZED VIEW tickets_mv_max AS

CREATE MATERIALIZED VIEW 1300

Amazon Redshift Database Developer Guide

 select catgroup,
 max(qtysold) as sold
 from category c, event e, sales s
 where c.catid = e.catid
 and e.eventid = s.eventid
 group by catgroup;

SELECT name, state FROM STV_MV_INFO;

The following example uses a UNION ALL clause to join the Amazon Redshift public_sales table
and the Redshift Spectrum spectrum.sales table to create a material view mv_sales_vw. For
information about the CREATE EXTERNAL TABLE command for Amazon Redshift Spectrum, see
CREATE EXTERNAL TABLE. The Redshift Spectrum external table references the data on Amazon
S3.

CREATE MATERIALIZED VIEW mv_sales_vw as
select salesid, qtysold, pricepaid, commission, saletime from public.sales
union all
select salesid, qtysold, pricepaid, commission, saletime from spectrum.sales

The following example creates a materialized view mv_fq based on a federated query external
table. For information about federated query, see CREATE EXTERNAL SCHEMA.

CREATE MATERIALIZED VIEW mv_fq as select firstname, lastname from apg.mv_fq_example;

select firstname, lastname from mv_fq;
 firstname | lastname
-----------+----------
 John | Day
 Jane | Doe
(2 rows)

The following example shows the definition of a materialized view.

SELECT pg_catalog.pg_get_viewdef('mv_sales_vw'::regclass::oid, true);

pg_get_viewdef

create materialized view mv_sales_vw as select a from t;

CREATE MATERIALIZED VIEW 1301

Amazon Redshift Database Developer Guide

The following sample shows how to set AUTO REFRESH in the materialized view definition and also
specifies a DISTSTYLE. First, create a simple base table.

CREATE TABLE baseball_table (ball int, bat int);

Then, create a materialized view.

CREATE MATERIALIZED VIEW mv_baseball DISTSTYLE ALL AUTO REFRESH YES AS SELECT ball AS
 baseball FROM baseball_table;

Now you can query the mv_baseball materialized view. To check if AUTO REFRESH is turned on for
a materialized view, see STV_MV_INFO.

The following sample creates a materialized view that references a source table in another
database. It assumes that the database containing the source table, database_A, is in the same
cluster or workgroup as your materialized view, which you create in database_B. (You can
substitute your own databases for the sample.) First, create a table in database_A called cities,
with a cityname column. Make the column's data type a VARCHAR. After you create the source
table, run the following command in database_B to create a materialized view whose source is
your cities table. Make sure to specify the source table's database and schema in the FROM clause:

CREATE MATERIALIZED VIEW cities_mv AS
SELECT cityname
FROM database_A.public.cities;

Query the materialized view you created. The query retrieves records whose original source is
the cities table in database_A:

select * from cities_mv;

When you run the SELECT statement, cities_mv returns the records. Records are refreshed from
the source table only when a REFRESH statement is run. Also, note that you can't update records
directly in the materialized view. For information about refreshing the data in a materialized view,
see REFRESH MATERIALIZED VIEW.

For details about materialized view overview and SQL commands used to refresh and drop
materialized views, see the following topics:

• Creating materialized views in Amazon Redshift

CREATE MATERIALIZED VIEW 1302

Amazon Redshift Database Developer Guide

• REFRESH MATERIALIZED VIEW

• DROP MATERIALIZED VIEW

CREATE MODEL

Topics

• Prerequisites

• Required privileges

• Cost control

• Full CREATE MODEL

• Parameters

• Usage notes

• Use cases

Prerequisites

Before you use the CREATE MODEL statement, complete the prerequisites in Cluster setup for using
Amazon Redshift ML. The following is a high-level summary of the prerequisites.

• Create an Amazon Redshift cluster with the AWS Management Console or the AWS Command
Line Interface (AWS CLI).

• Attach the AWS Identity and Access Management (IAM) policy while creating the cluster.

• To allow Amazon Redshift and SageMaker to assume the role to interact with other services, add
the appropriate trust policy to the IAM role.

For details for the IAM role, trust policy, and other prerequisites, see Cluster setup for using
Amazon Redshift ML.

Following, you can find different use cases for the CREATE MODEL statement.

• Simple CREATE MODEL

• CREATE MODEL with user guidance

• CREATE XGBoost models with AUTO OFF

• Bring your own model (BYOM) - local inference

CREATE MODEL 1303

Amazon Redshift Database Developer Guide

• CREATE MODEL with K-MEANS

• Full CREATE MODEL

Required privileges

Following are required privileges for CREATE MODEL:

• Superuser

• Users with the CREATE MODEL privilege

• Roles with the GRANT CREATE MODEL privilege

Cost control

Amazon Redshift ML uses existing cluster resources to create prediction models, so you don’t have
to pay additional costs. However, you might have additional costs if you need to resize your cluster
or want to train your models. Amazon Redshift ML uses Amazon SageMaker to train models, which
does have an additional associated cost. There are ways to control additional costs, such as limiting
the maximum amount of time training can take or by limiting the number of training examples
used to train your model. For more information, see Costs for using Amazon Redshift ML.

Full CREATE MODEL

The following summarizes the basic options of the full CREATE MODEL syntax.

Full CREATE MODEL syntax

The following is the full syntax of the CREATE MODEL statement.

Important

When creating a model using the CREATE MODEL statement, follow the order of the
keywords in the syntax following.

CREATE MODEL model_name
 FROM { table_name | (select_statement) | 'job_name' }
 [TARGET column_name]
 FUNCTION function_name (data_type [, ...])
 [RETURNS super]

CREATE MODEL 1304

https://docs.aws.amazon.com/redshift/latest/dg/cost.html

Amazon Redshift Database Developer Guide

 IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>' }
 [AUTO ON / OFF]
 -- default is AUTO ON
 [MODEL_TYPE { XGBOOST | MLP | LINEAR_LEARNER | KMEANS | FORECAST }]
 -- not required for non AUTO OFF case, default is the list of all supported types
 -- required for AUTO OFF
 [PROBLEM_TYPE (REGRESSION | BINARY_CLASSIFICATION | MULTICLASS_CLASSIFICATION)]
 -- not supported when AUTO OFF
 [OBJECTIVE ('MSE' | 'Accuracy' | 'F1' | 'F1_Macro' | 'AUC' |
 'reg:squarederror' | 'reg:squaredlogerror'| 'reg:logistic'|
 'reg:pseudohubererror' | 'reg:tweedie' | 'binary:logistic' |
 'binary:hinge',
 'multi:softmax' | 'RMSE' | 'WAPE' | 'MAPE' | 'MASE' |
 'AverageWeightedQuantileLoss')]
 -- for AUTO ON: first 5 are valid
 -- for AUTO OFF: 6-13 are valid
 -- for FORECAST: 14-18 are valid
 [PREPROCESSORS 'string']
 -- required for AUTO OFF, when it has to be 'none'
 -- optional for AUTO ON
 [HYPERPARAMETERS { DEFAULT | DEFAULT EXCEPT (Key 'value' (,...)) }]
 -- support XGBoost hyperparameters, except OBJECTIVE
 -- required and only allowed for AUTO OFF
 -- default NUM_ROUND is 100
 -- NUM_CLASS is required if objective is multi:softmax (only possible for AUTO
 OFF)
 [SETTINGS (
 S3_BUCKET 'bucket', |
 -- required
 TAGS 'string', |
 -- optional
 KMS_KEY_ID 'kms_string', |
 -- optional
 S3_GARBAGE_COLLECT on / off, |
 -- optional, defualt is on.
 MAX_CELLS integer, |
 -- optional, default is 1,000,000
 MAX_RUNTIME integer (, ...) |
 -- optional, default is 5400 (1.5 hours)
 HORIZON integer, |
 -- required if creating a forecast model
 FREQUENCY integer, |
 -- required if creating a forecast model
 PERCENTILES string

CREATE MODEL 1305

Amazon Redshift Database Developer Guide

 -- optional if creating a forecast model
)]

Parameters

model_name

The name of the model. The model name in a schema must be unique.

FROM { table_name | (select_query) | 'job_name'}

The table_name or the query that specifies the training data. They can either be an existing
table in the system, or an Amazon Redshift-compatible SELECT query enclosed with
parentheses, that is (). There must be at least two columns in the query result.

TARGET column_name

The name of the column that becomes the prediction target. The column must exist in the
FROM clause.

FUNCTION function_name (data_type [, ...])

The name of the function to be created and the data types of the input arguments. You can
provide the schema name of a schema in your database instead of a function name.

RETURNS SUPER (preview)

The type of data to be returned from the model. The returned SUPER data type is applicable
only to remote BYOM models.

IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>' }

Use the default keyword to have Amazon Redshift use the IAM role that is set as default and
associated with the cluster when the CREAT MODEL command runs. Alternatively, you can
specify an ARN of an IAM role to use that role.

[AUTO ON / OFF]

Turns on or off CREATE MODEL automatic discovery of preprocessor, algorithm, and hyper-
parameters selection. Specifying on when creating a Forecast model indicates to use an
AutoPredictor, where Amazon Forecast applies the optimal combinations of algorithms to each
time series in your dataset.

CREATE MODEL 1306

Amazon Redshift Database Developer Guide

MODEL_TYPE { XGBOOST | MLP | LINEAR_LEARNER | KMEANS | FORECAST }

(Optional) Specifies the model type. You can specify if you want to train a model of a specific
model type, such as XGBoost, multilayer perceptron (MLP), KMEANS, or Linear Learner,
which are all algorithms that Amazon SageMaker Autopilot supports. If you don't specify the
parameter, then all supported model types are searched during training for the best model. You
can also create a forecast model in Redshift ML to create accurate time-series forecasts.

PROBLEM_TYPE (REGRESSION | BINARY_CLASSIFICATION | MULTICLASS_CLASSIFICATION)

(Optional) Specifies the problem type. If you know the problem type, you can restrict Amazon
Redshift to only search of the best model of that specific model type. If you don't specify this
parameter, a problem type is discovered during the training, based on your data.

OBJECTIVE ('MSE' | 'Accuracy' | 'F1' | 'F1Macro' | 'AUC' | 'reg:squarederror' | 'reg:squaredlogerror'
| 'reg:logistic' | 'reg:pseudohubererror' | 'reg:tweedie' | 'binary:logistic' | 'binary:hinge' |
'multi:softmax' | 'RMSE' | 'WAPE' | 'MAPE' | 'MASE' | 'AverageWeightedQuantileLoss')

(Optional) Specifies the name of the objective metric used to measure the predictive quality of
a machine learning system. This metric is optimized during training to provide the best estimate
for model parameter values from data. If you don't specify a metric explicitly, the default
behavior is to automatically use MSE: for regression, F1: for binary classification, Accuracy:
for multiclass classification. For more information about objectives, see AutoMLJobObjective
in the Amazon SageMaker API Reference and Learning task parametersin the XGBOOST
documentation. The values RMSE, WAPE, MAPE, MASE, and AverageWeightedQuantileLoss are
only applicable to Forecast models. For more information, see the CreateAutoPredictor API
operation.

PREPROCESSORS 'string'

(Optional) Specifies certain combinations of preprocessors to certain sets of columns. The
format is a list of columnSets, and the appropriate transforms to be applied to each set of
columns. Amazon Redshift applies all the transformers in a specific transformers list to all
columns in the corresponding ColumnSet. For example, to apply OneHotEncoder with Imputer
to columns t1 and t2, use the sample command following.

CREATE MODEL customer_churn
FROM customer_data
TARGET 'Churn'
FUNCTION predict_churn
IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>' }

CREATE MODEL 1307

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html
https://xgboost.readthedocs.io/en/latest/parameter.html#learning-task-parameters
https://docs.aws.amazon.com/forecast/latest/dg/API_CreateAutoPredictor.html#forecast-CreateAutoPredictor-request-OptimizationMetric

Amazon Redshift Database Developer Guide

PROBLEM_TYPE BINARY_CLASSIFICATION
OBJECTIVE 'F1'
PREPROCESSORS '[
...
 {"ColumnSet": [
 "t1",
 "t2"
],
 "Transformers": [
 "OneHotEncoder",
 "Imputer"
]
 },
 {"ColumnSet": [
 "t3"
],
 "Transformers": [
 "OneHotEncoder"
]
 },
 {"ColumnSet": [
 "temp"
],
 "Transformers": [
 "Imputer",
 "NumericPassthrough"
]
 }
]'
SETTINGS (
 S3_BUCKET 'bucket'
)

HYPERPARAMETERS { DEFAULT | DEFAULT EXCEPT (key ‘value’ (,..)) }

Specifies whether the default XGBoost parameters are used or overridden by user-specified
values. The values must be enclosed with single quotes. Following are examples of parameters
for XGBoost and their defaults.

CREATE MODEL 1308

Amazon Redshift Database Developer Guide

Parameter
name

Parameter value Default
value

Notes

num_class Integer Required
for
Multiclas
s
classific
ation.

N/A

num_round Integer 100 N/A

tree_meth
od

String Auto N/A

max_depth Integer 6 [0 , 10]

min_child
_weight

Float 1 MinValue: 0, MaxValue: 120

subsample Float 1 MinValue: 0.5, MaxValue: 1

gamma Float 0 MinValue: 0, MaxValue: 5

alpha Float 0 MinValue: 0, MaxValue: 1000

eta Float 0.3 MinValue: 0.1, MaxValue: 0.5

colsample
_byleve

Float 1 MinValue: 0.1, MaxValue: 1

colsample
_bynode

Float 1 MinValue: 0.1, MaxValue: 1

colsample
_bytree

Float 1 MinValue: 0.5, MaxValue: 1

lambda Float 1 MinValue: 0, MaxValue: 1000

CREATE MODEL 1309

Amazon Redshift Database Developer Guide

Parameter
name

Parameter value Default
value

Notes

max_delta
_step

Integer 0 [0, 10]

SETTINGS (S3_BUCKET 'bucket', | TAGS 'string', | KMS_KEY_ID 'kms_string' , |
S3_GARBAGE_COLLECT on / off, | MAX_CELLS integer , | MAX_RUNTIME (,...) , | HORIZON integer, |
FREQUENCY forecast_frequency, | PERCENTILES array of strings)

S3_BUCKET clause specifies the Amazon S3 location that is used to store intermediate results.

(Optional) The TAGS parameter is a comma-separated list of key-value pairs that you can use
to tag resources created in Amazon SageMaker; and Amazon Forecast. Tags help you organize
resources and allocate costs. Values in the pair are optional, so you can create tags by using
the format key=value or just by creating a key. For more information about tags in Amazon
Redshift, see Tagging overview.

(Optional) KMS_KEY_ID specifies if Amazon Redshift uses server-side encryption with an AWS
KMS key to protect data at rest. Data in transit is protected with Secure Sockets Layer (SSL).

(Optional) S3_GARBAGE_COLLECT { ON | OFF } specifies whether Amazon Redshift performs
garbage collection on the resulting datasets used to train models and the models. If set to OFF,
the resulting datasets used to train models and the models remains in Amazon S3 and can be
used for other purposes. If set to ON, Amazon Redshift deletes the artifacts in Amazon S3 after
the training completes. The default is ON.

(Optional) MAX_CELLS specifies the number of cells in the training data. This value is the
product of the number of records (in the training query or table) times the number of columns.
The default is 1,000,000.

(Optional) MAX_RUNTIME specifies the maximum amount of time to train. Training jobs often
complete sooner depending on dataset size. This specifies the maximum amount of time the
training should take. The default is 5,400 (90 minutes).

HORIZON specifies the maximum number of predictions the forecast model can return. Once
the model is trained, you can't change this integer. This parameter is required if training a
forecast model.

CREATE MODEL 1310

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-tagging.html

Amazon Redshift Database Developer Guide

FREQUENCY specifies how granular in time units you want the forecasts to be. Available options
are Y | M | W | D | H | 30min | 15min | 10min | 5min | 1min. This parameter is
required if training a forecast model.

(Optional) PERCENTILES is a comma-delimited string that specifies the forecast types used to
train a predictor. Forecast types can be quantiles from 0.01 to 0.99, in increments of 0.01 or
higher. You can also specify the mean forecast with mean. You can specify a maximum of five
forecast types.

Usage notes

When using CREATE MODEL, consider the following:

• The CREATE MODEL statement operates in an asynchronous mode and returns upon the export
of training data to Amazon S3. The remaining steps of training in Amazon SageMaker occur in
the background. While training is in progress, the corresponding inference function is visible but
can't be run. You can query STV_ML_MODEL_INFO to see the state of training.

• The training can run for up to 90 minutes in the background, by default in the Auto model and
can be extended. To cancel the training, simply run the DROP MODEL command.

• The Amazon Redshift cluster that you use to create the model and the Amazon S3 bucket that is
used to stage the training data and model artifacts must be in the same AWS Region.

• During the model training, Amazon Redshift and SageMaker store intermediate artifacts in the
Amazon S3 bucket that you provide. By default, Amazon Redshift performs garbage collection at
the end of the CREATE MODEL operation. Amazon Redshift removes those objects from Amazon
S3. To retain those artifacts on Amazon S3, set the S3_GARBAGE COLLECT OFF option.

• You must use at least 500 rows in the training data provided in the FROM clause.

• You can only specify up to 256 feature (input) columns in the FROM { table_name |
(select_query) } clause when using the CREATE MODEL statement.

• For AUTO ON, the column types that you can use as the training set are SMALLINT, INTEGER,
BIGINT, DECIMAL, REAL, DOUBLE, BOOLEAN, CHAR, VARCHAR, DATE, TIME, TIMETZ, TIMESTAMP,
and TIMESTAMPTZ. For AUTO OFF, the column types that you can use as the training set are
SMALLINT, INTEGER, BIGINT, DECIMAL, REAL, DOUBLE, and BOOLEAN.

• You can't use DECIMAL, DATE, TIME, TIMETZ, TIMESTAMP, TIMESTAMPTZ, GEOMETRY,
GEOGRAPHY, HLLSKETCH, SUPER, or VARBYTE as the target column type.

• To improve model accuracy, do one of the following:

CREATE MODEL 1311

Amazon Redshift Database Developer Guide

• Add as many relevant columns in the CREATE MODEL command as possible when you specify
the training data in the FROM clause.

• Use a larger value for MAX_RUNTIME and MAX_CELLS. Larger values for this parameter
increase the cost of training a model.

• The CREATE MODEL statement execution returns as soon as the training data is computed and
exported to the Amazon S3 bucket. After that point, you can check the status of the training
using the SHOW MODEL command. When a model being trained in the background fails, you can
check the error using SHOW MODEL. You can't retry a failed model. Use DROP MODEL to remove
a failed model and recreate a new model. For more information about SHOW MODEL, see SHOW
MODEL.

• Local BYOM supports the same kind of models that Amazon Redshift ML supports for non-BYOM
cases. Amazon Redshift supports plain XGBoost (using XGBoost version 1.0 or later), KMEANS
models without preprocessors, and XGBOOST/MLP/Linear Learner models trained by trained
by Amazon SageMaker Autopilot. It supports the latter with preprocessors that Autopilot has
specified that are also supported by Amazon SageMaker Neo.

• If your Amazon Redshift cluster has enhanced routing enabled for your virtual private cloud
(VPC), make sure to create an Amazon S3 VPC endpoint and an SageMaker VPC endpoint for the
VPC that your cluster is in. Doing this enables the traffic to run through your VPC between these
services during CREATE MODEL. For more information, see SageMaker Clarify Job Amazon VPC
Subnets and Security Groups.

Use cases

The following use cases demonstrate how to use CREATE MODEL to suit your needs.

Simple CREATE MODEL

The following summarizes the basic options of the CREATE MODEL syntax.

Simple CREATE MODEL syntax

CREATE MODEL model_name
 FROM { table_name | (select_query) }
 TARGET column_name
 FUNCTION prediction_function_name
 IAM_ROLE { default }
 SETTINGS (
 S3_BUCKET 'bucket',

CREATE MODEL 1312

https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-vpc.html#clarify-vpc-job
https://docs.aws.amazon.com/sagemaker/latest/dg/clarify-vpc.html#clarify-vpc-job

Amazon Redshift Database Developer Guide

 [MAX_CELLS integer]
)

Simple CREATE MODEL parameters

model_name

The name of the model. The model name in a schema must be unique.

FROM { table_name | (select_query) }

The table_name or the query that specifies the training data. They can either be an existing
table in the system, or an Amazon Redshift-compatible SELECT query enclosed with
parentheses, that is (). There must be at least two columns in the query result.

TARGET column_name

The name of the column that becomes the prediction target. The column must exist in the
FROM clause.

FUNCTION prediction_function_name

A value that specifies the name of the Amazon Redshift machine learning function to be
generated by the CREATE MODEL and used to make predictions using this model. The function
is created in the same schema as the model object and can be overloaded.

Amazon Redshift machine learning supports models, such as Xtreme Gradient Boosted tree
(XGBoost) models for regression and classification.

IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>' }

Use the default keyword to have Amazon Redshift use the IAM role that is set as default and
associated with the cluster when the CREAT MODEL command runs. Alternatively, you can
specify the ARN of an IAM role to use that role.

S3_BUCKET 'bucket'

The name of the Amazon S3 bucket that you previously created used to share training data and
artifacts between Amazon Redshift and SageMaker. Amazon Redshift creates a subfolder in this
bucket prior to unload of the training data. When training is complete, Amazon Redshift deletes
the created subfolder and its contents.

MAX_CELLS integer

The maximum number of cells to export from the FROM clause. The default is 1,000,000.

CREATE MODEL 1313

Amazon Redshift Database Developer Guide

The number of cells is the product of the number of rows in the training data (produced by the
FROM clause table or query) times the number of columns. If the number of cells in the training
data are more than that specified by the max_cells parameter, CREATE MODEL downsamples
the FROM clause training data to reduce the size of the training set below MAX_CELLS. Allowing
larger training datasets can produce higher accuracy but also can mean the model takes longer
to train and costs more.

For information about costs of using Amazon Redshift, see Costs for using Amazon Redshift ML.

For more information about costs associated with various cell numbers and free trial details, see
Amazon Redshift pricing.

CREATE MODEL with user guidance

Following, you can find a description of options for CREATE MODEL in addition to the options
described in Simple CREATE MODEL.

By default, CREATE MODEL searches for the best combination of preprocessing and model for your
specific dataset. You might want additional control or introduce additional domain knowledge
(such as problem type or objective) over your model. In a customer churn scenario, if the outcome
“customer is not active” is rare, then the F1 objective is often preferred to the accuracy objective.
Because high accuracy models might predict “customer is active” all the time, this results in high
accuracy but little business value. For information about F1 objective, see AutoMLJobObjective in
the Amazon SageMaker API Reference.

Then the CREATE MODEL follows your suggestions on the specified aspects, such as the objective.
At the same time, the CREATE MODEL automatically discovers the best preprocessors and the best
hyperparameters.

CREATE MODEL with user guidance syntax

CREATE MODEL offers more flexibility on the aspects that you can specify and the aspects that
Amazon Redshift automatically discovers.

CREATE MODEL model_name
 FROM { table_name | (select_statement) }
 TARGET column_name
 FUNCTION function_name
 IAM_ROLE { default }
 [MODEL_TYPE { XGBOOST | MLP | LINEAR_LEARNER}]
 [PROBLEM_TYPE (REGRESSION | BINARY_CLASSIFICATION | MULTICLASS_CLASSIFICATION)]

CREATE MODEL 1314

https://aws.amazon.com/redshift/pricing
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html

Amazon Redshift Database Developer Guide

 [OBJECTIVE ('MSE' | 'Accuracy' | 'F1' | 'F1Macro' | 'AUC')]
 SETTINGS (
 S3_BUCKET 'bucket', |
 S3_GARBAGE_COLLECT { ON | OFF }, |
 KMS_KEY_ID 'kms_key_id', |
 MAX_CELLS integer, |
 MAX_RUNTIME integer (, ...)
)

CREATE MODEL with user guidance parameters

MODEL_TYPE { XGBOOST | MLP | LINEAR_LEARNER }

(Optional) Specifies the model type. You can specify if you want to train a model of a specific
model type, such as XGBoost, multilayer perceptron (MLP), or Linear Learner, which are all
algorithms that Amazon SageMaker Autopilot supports. If you don't specify the parameter, then
all supported model types are searched during training for the best model.

PROBLEM_TYPE (REGRESSION | BINARY_CLASSIFICATION | MULTICLASS_CLASSIFICATION)

(Optional) Specifies the problem type. If you know the problem type, you can restrict Amazon
Redshift to only search of the best model of that specific model type. If you don't specify this
parameter, a problem type is discovered during the training, based on your data.

OBJECTIVE ('MSE' | 'Accuracy' | 'F1' | 'F1Macro' | 'AUC')

(Optional) Specifies the name of the objective metric used to measure the predictive quality of
a machine learning system. This metric is optimized during training to provide the best estimate
for model parameter values from data. If you don't specify a metric explicitly, the default
behavior is to automatically use MSE: for regression, F1: for binary classification, Accuracy: for
multiclass classification. For more information about objectives, see AutoMLJobObjective in the
Amazon SageMaker API Reference.

MAX_CELLS integer

(Optional) Specifies the number of cells in the training data. This value is the product of the
number of records (in the training query or table) times the number of columns. The default is
1,000,000.

MAX_RUNTIME integer

(Optional) Specifies the maximum amount of time to train. Training jobs often complete sooner
depending on dataset size. This specifies the maximum amount of time the training should
take. The default is 5,400 (90 minutes).

CREATE MODEL 1315

https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_AutoMLJobObjective.html

Amazon Redshift Database Developer Guide

S3_GARBAGE_COLLECT { ON | OFF }

(Optional) Specifies whether Amazon Redshift performs garbage collection on the resulting
datasets used to train models and the models. If set to OFF, the resulting datasets used to train
models and the models remains in Amazon S3 and can be used for other purposes. If set to ON,
Amazon Redshift deletes the artifacts in Amazon S3 after the training completes. The default is
ON.

KMS_KEY_ID 'kms_key_id'

(Optional) Specifies if Amazon Redshift uses server-side encryption with an AWS KMS key to
protect data at rest. Data in transit is protected with Secure Sockets Layer (SSL).

PREPROCESSORS 'string'

(Optional) Specifies certain combinations of preprocessors to certain sets of columns. The
format is a list of columnSets, and the appropriate transforms to be applied to each set of
columns. Amazon Redshift applies all the transformers in a specific transformers list to all
columns in the corresponding ColumnSet. For example, to apply OneHotEncoder with Imputer
to columns t1 and t2, use the sample command following.

CREATE MODEL customer_churn
FROM customer_data
TARGET 'Churn'
FUNCTION predict_churn
IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>' }
PROBLEM_TYPE BINARY_CLASSIFICATION
OBJECTIVE 'F1'
PREPROCESSORS '[
...
{"ColumnSet": [
 "t1",
 "t2"
],
 "Transformers": [
 "OneHotEncoder",
 "Imputer"
]
},
{"ColumnSet": [
 "t3"
],
 "Transformers": [

CREATE MODEL 1316

Amazon Redshift Database Developer Guide

 "OneHotEncoder"
]
},
{"ColumnSet": [
 "temp"
],
 "Transformers": [
 "Imputer",
 "NumericPassthrough"
]
}
]'
SETTINGS (
S3_BUCKET 'bucket'
)

Amazon Redshift supports the following transformers:

• OneHotEncoder – Typically used to encode a discrete value into a binary vector with one nonzero
value. This transformer is suitable for many machine learning models.

• OrdinalEncoder – Encodes discrete values into a single integer. This transformer is suitable for
certain machine learning models, such as MLP and Linear Learner.

• NumericPassthrough – Passes input as is into the model.

• Imputer – Fills in missing values and not a number (NaN) values.

• ImputerWithIndicator – Fills in missing values and NaN values. This transformer also creates an
indicator of whether any values were missing and filled in.

• Normalizer – Normalizes values, which can improve the performance of many machine learning
algorithms.

• DateTimeVectorizer – Creates a vector embedding, representing a column of datetime data type
that can be used in machine learning models.

• PCA – Projects the data into a lower dimensional space to reduce the number of features while
keeping as much information as possible.

• StandardScaler – Standardizes features by removing the mean and scaling to unit variance.

• MinMax – Transforms features by scaling each feature to a given range.

CREATE MODEL 1317

Amazon Redshift Database Developer Guide

Amazon Redshift ML stores the trained transformers, and automatically applies them as part of the
prediction query. You don't need to specify them when generating predictions from your model.

CREATE XGBoost models with AUTO OFF

The AUTO OFF CREATE MODEL has generally different objectives from the default CREATE MODEL.

As an advanced user who already knows the model type that you want and hyperparameters to use
when training these models, you can use CREATE MODEL with AUTO OFF to turn off the CREATE
MODEL automatic discovery of preprocessors and hyperparameters. To do so, you explicitly specify
the model type. XGBoost is currently the only model type supported when AUTO is set to OFF. You
can specify hyperparameters. Amazon Redshift uses default values for any hyperparameters that
you specified.

CREATE XGBoost models with AUTO OFF syntax

CREATE MODEL model_name
 FROM { table_name | (select_statement) }
 TARGET column_name
 FUNCTION function_name
 IAM_ROLE { default }
 AUTO OFF
 MODEL_TYPE XGBOOST
 OBJECTIVE { 'reg:squarederror' | 'reg:squaredlogerror' | 'reg:logistic' |
 'reg:pseudohubererror' | 'reg:tweedie' | 'binary:logistic' |
 'binary:hinge' |
 'multi:softmax' | 'rank:pairwise' | 'rank:ndcg' }
 HYPERPARAMETERS DEFAULT EXCEPT (
 NUM_ROUND '10',
 ETA '0.2',
 NUM_CLASS '10',
 (, ...)
)
 PREPROCESSORS 'none'
 SETTINGS (
 S3_BUCKET 'bucket', |
 S3_GARBAGE_COLLECT { ON | OFF }, |
 KMS_KEY_ID 'kms_key_id', |
 MAX_CELLS integer, |
 MAX_RUNTIME integer (, ...)
)

CREATE MODEL 1318

Amazon Redshift Database Developer Guide

CREATE XGBoost models with AUTO OFF parameters

AUTO OFF

Turns off CREATE MODEL automatic discovery of preprocessor, algorithm, and hyper-
parameters selection.

MODEL_TYPE XGBOOST

Specifies to use XGBOOST to train the model.

OBJECTIVE str

Specifies an objective recognized by the algorithm. Amazon Redshift supports reg:squarederror,
reg:squaredlogerror, reg:logistic, reg:pseudohubererror, reg:tweedie, binary:logistic,
binary:hinge, multi:softmax. For more information about these objectives, see Learning task
parameters in the XGBoost documentation.

HYPERPARAMETERS { DEFAULT | DEFAULT EXCEPT (key ‘value’ (,..)) }

Specifies whether the default XGBoost parameters are used or overridden by user-specified
values. The values must be enclosed with single quotes. Following are examples of parameters
for XGBoost and their defaults.

Parameter
name

Parameter value Default
value

Notes

num_class Integer Required
for
Multiclas
s
classific
ation.

N/A

num_round Integer 100 N/A

tree_meth
od

String Auto N/A

max_depth Integer 6 [0 , 10]

CREATE MODEL 1319

https://xgboost.readthedocs.io/en/latest/parameter.html#learning-task-parameters
https://xgboost.readthedocs.io/en/latest/parameter.html#learning-task-parameters

Amazon Redshift Database Developer Guide

Parameter
name

Parameter value Default
value

Notes

min_child
_weight

Float 1 MinValue: 0, MaxValue: 120

subsample Float 1 MinValue: 0.5, MaxValue: 1

gamma Float 0 MinValue: 0, MaxValue: 5

alpha Float 0 MinValue: 0, MaxValue: 1000

eta Float 0.3 MinValue: 0.1, MaxValue: 0.5

colsample
_byleve

Float 1 MinValue: 0.1, MaxValue: 1

colsample
_bynode

Float 1 MinValue: 0.1, MaxValue: 1

colsample
_bytree

Float 1 MinValue: 0.5, MaxValue: 1

lambda Float 1 MinValue: 0, MaxValue: 1000

max_delta
_step

Integer 0 [0, 10]

The following example prepares data for XGBoost.

DROP TABLE IF EXISTS abalone_xgb;

 CREATE TABLE abalone_xgb (
 length_val float,
 diameter float,
 height float,
 whole_weight float,
 shucked_weight float,
 viscera_weight float,
 shell_weight float,

CREATE MODEL 1320

Amazon Redshift Database Developer Guide

 rings int,
 record_number int);

 COPY abalone_xgb
 FROM 's3://redshift-downloads/redshift-ml/abalone_xg/'
 REGION 'us-east-1'
 IAM_ROLE default
 IGNOREHEADER 1 CSV;

The following example creates an XGBoost model with specified advanced options, such as
MODEL_TYPE, OBJECTIVE, and PREPROCESSORS.

DROP MODEL abalone_xgboost_multi_predict_age;

 CREATE MODEL abalone_xgboost_multi_predict_age
 FROM (SELECT length_val,
 diameter,
 height,
 whole_weight,
 shucked_weight,
 viscera_weight,
 shell_weight,
 rings
 FROM abalone_xgb WHERE record_number < 2500)
 TARGET rings FUNCTION ml_fn_abalone_xgboost_multi_predict_age
 IAM_ROLE default
 AUTO OFF
 MODEL_TYPE XGBOOST
 OBJECTIVE 'multi:softmax'
 PREPROCESSORS 'none'
 HYPERPARAMETERS DEFAULT EXCEPT (NUM_ROUND '100', NUM_CLASS '30')
 SETTINGS (S3_BUCKET 'your-bucket');

The following example uses an inference query to predict the age of the fish with a record number
greater than 2500. It uses the function ml_fn_abalone_xgboost_multi_predict_age created from
the above command.

select ml_fn_abalone_xgboost_multi_predict_age(length_val,
 diameter,
 height,
 whole_weight,
 shucked_weight,

CREATE MODEL 1321

Amazon Redshift Database Developer Guide

 viscera_weight,
 shell_weight)+1.5 as age
from abalone_xgb where record_number > 2500;

Bring your own model (BYOM) - local inference

Amazon Redshift ML supports using bring your own model (BYOM) for local inference.

The following summarizes the options for the CREATE MODEL syntax for BYOM. You can use a
model trained outside of Amazon Redshift with Amazon SageMaker for in-database inference
locally in Amazon Redshift.

CREATE MODEL syntax for local inference

The following describes the CREATE MODEL syntax for local inference.

CREATE MODEL model_name
 FROM ('job_name' | 's3_path')
 FUNCTION function_name (data_type [, ...])
 RETURNS data_type
 IAM_ROLE { default }
 [SETTINGS (
 S3_BUCKET 'bucket', | --required
 KMS_KEY_ID 'kms_string') --optional
];

Amazon Redshift currently only supports pretrained XGBoost, MLP, and Linear Learner models for
BYOM. You can import SageMaker Autopilot and models directly trained in Amazon SageMaker for
local inference using this path.

CREATE MODEL parameters for local inference

model_name

The name of the model. The model name in a schema must be unique.

FROM ('job_name' | 's3_path')

The job_name uses an Amazon SageMaker job name as the input. The job name can either be
an Amazon SageMaker training job name or an Amazon SageMaker Autopilot job name. The job
must be created in the same AWS account that owns the Amazon Redshift cluster. To find the
job name, launch Amazon SageMaker. In the Training dropdown menu, choose Training jobs.

CREATE MODEL 1322

Amazon Redshift Database Developer Guide

The 's3_path' specifies the S3 location of the .tar.gz model artifacts file that is to be used when
creating the model.

FUNCTION function_name (data_type [, ...])

The name of the function to be created and the data types of the input arguments. You can
provide a schema name.

RETURNS data_type

The data type of the value returned by the function.

IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>'}

Use the default keyword to have Amazon Redshift use the IAM role that is set as default and
associated with the cluster when the CREATE MODEL command runs.

Use the Amazon Resource Name (ARN) for an IAM role that your cluster uses for authentication
and authorization.

SETTINGS (S3_BUCKET 'bucket', | KMS_KEY_ID 'kms_string')

The S3_BUCKET clause specifies the Amazon S3 location that is used to store intermediate
results.

(Optional) The KMS_KEY_ID clause specifies if Amazon Redshift uses server-side encryption
with an AWS KMS key to protect data at rest. Data in transit is protected with Secure Sockets
Layer (SSL).

For more information, see CREATE MODEL with user guidance.

CREATE MODEL for local inference example

The following example creates a model that has been previously trained in Amazon SageMaker,
outside of Amazon Redshift. Because the model type is supported by Amazon Redshift ML for local
inference, the following CREATE MODEL creates a function that can be used locally in Amazon
Redshift. You can provide a SageMaker training job name.

CREATE MODEL customer_churn
 FROM 'training-job-customer-churn-v4'
 FUNCTION customer_churn_predict (varchar, int, float, float)
 RETURNS int
 IAM_ROLE default

CREATE MODEL 1323

Amazon Redshift Database Developer Guide

 SETTINGS (S3_BUCKET 'your-bucket');

After the model is created, you can use the function customer_churn_predict with the specified
argument types to make predictions.

Bring your own model (BYOM) - remote inference

Amazon Redshift ML also supports using bring your own model (BYOM) for remote inference.

The following summarizes the options for the CREATE MODEL syntax for BYOM.

This is prerelease documentation for the SUPER data type for input to BYOM models in
Amazon Redshift ML, which is in preview release. The documentation and the feature are
both subject to change. We recommend that you use this feature only with test clusters,
and not in production environments. For preview terms and conditions, see Beta and
Previews in AWS Service Terms.

Specifying to use the SUPER data type as input data and the returned data type indicates that you
want to create a large language model (LLM) hosted in Amazon SageMaker JumpStart. Creating
LLMs is curently available only as a preview feature. This preview is available in the following AWS
Regions.

• US East (Ohio) (us-east-2)

• US East (N. Virginia) (us-east-1)

• Asia Pacific (Tokyo) (ap-northeast-1)

• Europe (Ireland) (eu-west-1)

• Europe (Stockholm) (eu-north-1)

You can create an Amazon Redshift cluster in Preview to test new features of Amazon Redshift.
You can't use those features in production or move your Preview cluster to a production cluster or
a cluster on another track. For preview terms and conditions, see Beta and Previews in AWS Service
Terms.

To create a cluster in Preview

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

CREATE MODEL 1324

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

2. On the navigation menu, choose Provisioned clusters dashboard, and choose Clusters. The
clusters for your account in the current AWS Region are listed. A subset of properties of each
cluster is displayed in columns in the list.

3. A banner displays on the Clusters list page that introduces preview. Choose the button Create
preview cluster to open the create cluster page.

4. Enter properties for your cluster. Choose the Preview track that contains the features you
want to test. We recommend entering a name for the cluster that indicates that it is on a
preview track. Choose options for your cluster, including options labeled as -preview, for the
features you want to test. For general information about creating clusters, see Creating a
cluster in the Amazon Redshift Management Guide.

5. Choose Create cluster to create a cluster in preview.

Note

The preview_2023 track is the most recent preview track available. This track
supports creating clusters with RA3 node types only. Node type DC2 and any older
node type is not supported.

6. When your preview cluster is available, use your SQL client to load and query data.

You can also create a preview workgroup to create an LLM. You can't use those features in
production or move your workgroup to another workgroup. For preview terms and conditions, see
Beta and Previews in AWS Service Terms. For instructions on how to create a preview workgroup,
see Creating a preview workgroup.

CREATE MODEL syntax for remote inference

The following describes the CREATE MODEL syntax for remote inference.

CREATE MODEL model_name
 FUNCTION function_name (data_type [, ...])
 RETURNS data_type
 SAGEMAKER 'endpoint_name'[:'model_name']
 IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>' }

CREATE MODEL 1325

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster
https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html

Amazon Redshift Database Developer Guide

CREATE MODEL parameters for remote inference

model_name

The name of the model. The model name in a schema must be unique.

FUNCTION fn_name ([data_type] [, ...])

The name of the function and the data types of the input arguments. See Data types for
all of the supported data types. Geography, geometry, and hllsketch aren't supported.
Specifying to use the SUPER data type as input data and the returned data type indicates that
you want to create a large language model (LLM) hosted in Amazon SageMaker JumpStart.

Alternatively, you can specify to use just the SUPER data type as the input data without also
using it as the returned data type. Using SUPER data type as input is available only as a preview
feature.

You can also provide a schema name instead of a function name.

RETURNS data_type

The data type of the value returned by the function. See Data types for all of the supported
data types. Geography, geometry, and hllsketch aren't supported. Specifying to use the
SUPER data type as input data and the returned data type indicates that you want to create a
large language model (LLM) hosted in Amazon SageMaker JumpStart.

Alternatively, you can specify to use just the SUPER data type as the returned data type without
also using it as input data.

SAGEMAKER 'endpoint_name'[:'model_name']

The name of the Amazon SageMaker endpoint. If the endpoint name points to a multimodel
endpoint, add the name of the model to use. The endpoint must be hosted in the same AWS
Region as the Amazon Redshift cluster. To find your endpoint, launch Amazon SageMaker. In the
Inference dropdown menu, choose Endpoints.

IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>'}

Use the default keyword to have Amazon Redshift use the IAM role that is set as default and
associated with the cluster when the CREATE MODEL command runs. Alternatively, you can
specify the ARN of an IAM role to use that role.

CREATE MODEL 1326

https://docs.aws.amazon.com/redshift/latest/dg/c_Supported_data_types.html
https://docs.aws.amazon.com/redshift/latest/dg/c_Supported_data_types.html

Amazon Redshift Database Developer Guide

When the model is deployed to a SageMaker endpoint, SageMaker creates the information of the
model in Amazon Redshift. It then performs inference through the external function. You can use
the SHOW MODEL command to view the model information on your Amazon Redshift cluster.

CREATE MODEL for remote inference usage notes

Before using CREATE MODEL for remote inference, consider the following:

• BYOM models can only support one argument if you're using SUPER data type as input data, and
the returned output must also be SUPER data type.

• The model must accept inputs in the format of comma-separated values (CSV) through a content
type of text/CSV in SageMaker. Only applicable if you're not using the SUPER data type as input.

• The endpoint must be hosted by the same AWS account that owns the Amazon Redshift cluster.

• The outputs of models must be a single value of the type specified on creating the function, in
the format of comma-separated values (CSV) through a content type of text/CSV in SageMaker.
Varchar data types shouldn't be in quotes, and each output must be in a new line. Only
applicable if you specified that the model shouldn't return the SUPER data type.

• Models accept nulls as empty strings.

• Make sure either that the Amazon SageMaker endpoint has enough resources to accommodate
inference calls from Amazon Redshift or that the Amazon SageMaker endpoint can be
automatically scaled.

• When the returned type is SUPER, the model output must be JSON and the application/
jsonlines content type.

• When both the input and output types are SUPER, the model must accept and return JSON
through the content type application/json.

CREATE MODEL for remote inference example

The following example creates a model that uses a SageMaker endpoint to make predictions. Make
sure that the endpoint is running to make predictions and specify its name in the CREATE MODEL
command.

CREATE MODEL remote_customer_churn
 FUNCTION remote_fn_customer_churn_predict (varchar, int, float, float)
 RETURNS int
 SAGEMAKER 'customer-churn-endpoint'
 IAM_ROLE default;

CREATE MODEL 1327

Amazon Redshift Database Developer Guide

The following example creates a large language model model (LLM) by using the SUPER data type
as input data and outputs the SUPER data type. LLMs are hosted in SageMaker Jumpstart.

CREATE MODEL sample_super_data_model
FUNCTION sample_super_data_model_predict(super)
RETURNS super
SAGEMAKER 'sample_super_data_model_endpoint'
IAM_ROLE default;

CREATE MODEL with K-MEANS

Amazon Redshift supports the K-Means algorithm that groups data that isn't labeled. This
algorithm solves clustering problems where you want to discover groupings in the data.
Unclassified data is grouped and partitioned based on its similarities and differences.

CREATE MODEL with K-MEANS syntax

CREATE MODEL model_name
 FROM { table_name | (select_statement) }
 FUNCTION function_name
 IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>' }
 AUTO OFF
 MODEL_TYPE KMEANS
 PREPROCESSORS 'string'
 HYPERPARAMETERS DEFAULT EXCEPT (K 'val' [, ...])
 SETTINGS (
 S3_BUCKET 'bucket',
 KMS_KEY_ID 'kms_string', |
 -- optional
 S3_GARBAGE_COLLECT on / off, |
 -- optional
 MAX_CELLS integer, |
 -- optional
 MAX_RUNTIME integer
 -- optional);

CREATE MODEL with K-MEANS parameters

AUTO OFF

Turns off CREATE MODEL automatic discovery of preprocessor, algorithm, and hyper-
parameters selection.

CREATE MODEL 1328

Amazon Redshift Database Developer Guide

MODEL_TYPE KMEANS

Specifies to use KMEANS to train the model.

PREPROCESSORS 'string'

Specifies certain combinations of preprocessors to certain sets of columns. The format is
a list of columnSets, and the appropriate transforms to be applied to each set of columns.
Amazon Redshift supports 3 K-Means preprocessors, namely StandardScaler, MinMax, and
NumericPassthrough. If you don't want to apply any preprocessing for K-Means, choose
NumericPassthrough explicitly as a transformer. For more information about supported
transformers, see CREATE MODEL with user guidance parameters.

The K-Means algorithm uses Euclidean distance to calculate similarity. Preprocessing the data
ensures that the features of the model stay on the same scale and produce reliable results.

HYPERPARAMETERS DEFAULT EXCEPT (K 'val' [, ...])

Specifies whether the K-Means parameters are used. You must specify the K parameter when
using the K-Means algorithm. For more information, see K-Means Hyperparameters in the
Amazon SageMaker Developer Guide

The following example prepares data for K-Means.

CREATE MODEL customers_clusters
FROM customers
FUNCTION customers_cluster
IAM_ROLE default
AUTO OFF
MODEL_TYPE KMEANS
PREPROCESSORS '[
{
 "ColumnSet": ["*"],
 "Transformers": ["NumericPassthrough"]
}
]'
HYPERPARAMETERS DEFAULT EXCEPT (K '5')
SETTINGS (S3_BUCKET 'bucket');

select customer_id, customers_cluster(...) from customers;
customer_id | customers_cluster

CREATE MODEL 1329

https://docs.aws.amazon.com/sagemaker/latest/dg/k-means-api-config.html

Amazon Redshift Database Developer Guide

12345 1
12346 2
12347 4
12348 0

CREATE MODEL with Forecast

Forecast models in Redshift ML use Amazon Forecast to create accurate time-series forecasts.
Doing so lets you use historical data over a time period to make predictions about future events.
Common use cases of Amazon Forecast include using retail product data to decide how to price
inventory, manufacturing quantity data to predict how much of one item to order, and web traffic
data to forecast how much traffic a web server might receive.

Quota limits from Amazon Forecast are enforced in Amazon Redshift forecast models. For example,
the maximum number of forecasts is 100, but it's adjustable. Dropping a forecast model doesn’t
automatically delete the associated resources in Amazon Forecast. If you delete a Redshift cluster,
all associated models are dropped as well.

Note that Forecast models are currently only available in the following Regions:

• US East (Ohio) (us-east-2)

• US East (N. Virginia) (us-east-1)

• US West (Oregon) (us-west-2)

• Asia Pacific (Mumbai) (ap-south-1)

• Asia Pacific (Seoul) (ap-northeast-2)

• Asia Pacific (Singapore) (ap-southeast-1)

• Asia Pacific (Sydney) (ap-southeast-2)

• Asia Pacific (Tokyo) (ap-northeast-1)

• Europe (Frankfurt) (eu-central-1)

• Europe (Ireland) (eu-west-1)

CREATE MODEL with Forecast syntax

CREATE [OR REPLACE] MODEL forecast_model_name
FROM { table_name | (select_query) }
TARGET column_name
IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>'}

CREATE MODEL 1330

https://docs.aws.amazon.com/forecast/latest/dg/limits.html

Amazon Redshift Database Developer Guide

AUTO ON
MODEL_TYPE FORECAST
SETTINGS (
 S3_BUCKET 'bucket',
 HORIZON integer,
 FREQUENCY forecast_frequency
 [PERCENTILES '0.1', '0.5', '0.9']

CREATE MODEL with Forecast parameters

forecast_model_name

The name of the model. The model name must be unique.

FROM { table_name | (select_query) }

The table_name or the query that specifies the training data. This can either be an existing table
in the system, or an Amazon Redshift compatible SELECT query enclosed with parentheses. The
table or query result must have at least three columns: (1) a varchar column that specifies the
name of the time-series. Each dataset can have multiple time-series; (2) a datetime column;
and (3) the target column to predict. This target column must be either an int or a float. If
you supply a dataset that has more than three columns, Amazon Redshift assumes that all
additional columns are part of a related time series. Note that related time series must be of
type int or float. For more information about related time series, see Using Related Time Series
Datasets.

TARGET column_name

The name of the column that becomes the prediction target. The column must exist in the
FROM clause.

IAM_ROLE { default | 'arn:aws:iam::<account-id>:role/<role-name>' }

Use the default keyword to have Amazon Redshift use the IAM role that is set as default and
associated with the cluster when the CREAT MODEL command runs. Alternatively, you can
specify an ARN of an IAM role to use that role.

AUTO ON

Turns on the CREATE MODEL automatic discovery of algorithm and hyper-parameters selection.
Specifying on when creating a Forecast model indicates to use a Forecast AutoPredictor, where
Amazon Forecast applies the optimal combinations of algorithms to each time series in your
dataset.

CREATE MODEL 1331

https://docs.aws.amazon.com/forecast/latest/dg/related-time-series-datasets.html
https://docs.aws.amazon.com/forecast/latest/dg/related-time-series-datasets.html

Amazon Redshift Database Developer Guide

MODEL_TYPE FORECAST

Specifies to use FORECAST to train the model.

S3_BUCKET 'bucket'

The name of the Amazon Simple Storage Service bucket that you previously created and that’s
used to share training data and artifacts between Amazon Redshift and Amazon Forecast.
Amazon Redshift creates a subfolder in this bucket before unloading the training data. When
training is complete, Amazon Redshift deletes the created subfolder and its contents.

HORIZON integer

The maximum number of predictions the forecast model can return. Once the model is trained,
you can't change this integer.

FREQUENCY forecast_frequency

Specifies how granular you want the forecasts to be. Available options are Y | M | W | D
| H | 30min | 15min | 10min | 5min | 1min. Required if you’re training a forecast
model.

PERCENTILES string

A comma-delimited string that specifies the forecast types used to train a predictor. Forecast
types can be quantiles from 0.01 to 0.99, by increments of 0.01 or higher. You can also specify
the mean forecast with mean. You can specify a maximum of five forecast types.

The following example demonstrates how to create a simple forecast model.

CREATE MODEL forecast_example
FROM forecast_electricity_
TARGET target
IAM_ROLE 'arn:aws:iam::<account-id>:role/<role-name>'
AUTO ON
MODEL_TYPE FORECAST
SETTINGS (S3_BUCKET 'redshift-ml-bucket',
 HORIZON 24,
 FREQUENCY 'H',
 PERCENTILES '0.25,0.50,0.75,mean',
 S3_GARBAGE_COLLECT OFF);

After you create the forecast model, you can create a new table with the prediction data.

CREATE MODEL 1332

Amazon Redshift Database Developer Guide

CREATE TABLE forecast_model_results as SELECT Forecast(forecast_example)

You can then query the new table to get predictions.

SELECT * FROM forecast_model_results

CREATE PROCEDURE

Creates a new stored procedure or replaces an existing procedure for the current database.

For more information and examples, see Creating stored procedures in Amazon Redshift.

Required privileges

You must have permission by one of the following ways to run CREATE OR REPLACE PROCEDURE:

• For CREATE PROCEDURE:

• Superuser

• Users with CREATE and USAGE privilege on the schema where the stored procedure is created

• For REPLACE PROCEDURE:

• Superuser

• Procedure owner

Syntax

CREATE [OR REPLACE] PROCEDURE sp_procedure_name
 ([[argname] [argmode] argtype [, ...]])
[NONATOMIC]
AS $$
 procedure_body
$$ LANGUAGE plpgsql
[{ SECURITY INVOKER | SECURITY DEFINER }]
[SET configuration_parameter { TO value | = value }]

CREATE PROCEDURE 1333

Amazon Redshift Database Developer Guide

Parameters

OR REPLACE

A clause that specifies that if a procedure with the same name and input argument data types,
or signature, as this one already exists, the existing procedure is replaced. You can only replace a
procedure with a new procedure that defines an identical set of data types.

If you define a procedure with the same name as an existing procedure, but a different
signature, you create a new procedure. In other words, the procedure name is overloaded. For
more information, see Overloading procedure names.

sp_procedure_name

The name of the procedure. If you specify a schema name (such as myschema.myprocedure),
the procedure is created in the specified schema. Otherwise, the procedure is created in the
current schema. For more information about valid names, see Names and identifiers.

We recommend that you prefix all stored procedure names with sp_. Amazon Redshift reserves
the sp_ prefix for stored procedure names. By using the sp_ prefix, you ensure that your stored
procedure name doesn't conflict with any existing or future Amazon Redshift built-in stored
procedure or function names. For more information, see Naming stored procedures.

You can define more than one procedure with the same name if the data types for the input
arguments, or signatures, are different. In other words, in this case the procedure name is
overloaded. For more information, see Overloading procedure names

[argname] [argmode] argtype

A list of argument names, argument modes, and data types. Only the data type is required.
Name and mode are optional and their position can be switched.

The argument mode can be IN, OUT, or INOUT. The default is IN.

You can use OUT and INOUT arguments to return one or more values from a procedure call.
When there are OUT or INOUT arguments, the procedure call returns one result row containing
n columns, where n is the total number of OUT or INOUT arguments.

INOUT arguments are input and output arguments at the same time. Input arguments include
both IN and INOUT arguments, and output arguments include both OUT and INOUT arguments.

OUT arguments aren't specified as part of the CALL statement. Specify INOUT arguments in the
stored procedure CALL statement. INOUT arguments can be useful when passing and returning

CREATE PROCEDURE 1334

Amazon Redshift Database Developer Guide

values from a nested call, and also when returning a refcursor. For more information on
refcursor types, see Cursors.

The argument data types can be any standard Amazon Redshift data type. In addition, an
argument data type can be refcursor.

You can specify a maximum of 32 input arguments and 32 output arguments.

AS $$ procedure_body $$

A construct that encloses the procedure to be run. The literal keywords AS $$ and $$ are
required.

Amazon Redshift requires you to enclose the statement in your procedure by using a format
called dollar quoting. Anything within the enclosure is passed exactly as is. You don't need to
escape any special characters because the contents of the string are written literally.

With dollar quoting, you use a pair of dollar signs ($$) to signify the start and the end of the
statement to run, as shown in the following example.

$$ my statement $$

Optionally, between the dollar signs in each pair, you can specify a string to help identify the
statement. The string that you use must be the same in both the start and the end of the
enclosure pairs. This string is case-sensitive, and it follows the same constraints as an unquoted
identifier except that it can't contain dollar signs. The following example uses the string test.

$test$ my statement $test$

This syntax is also useful for nested dollar quoting. For more information about dollar quoting,
see "Dollar-quoted String Constants" under Lexical Structure in the PostgreSQL documentation.

procedure_body

A set of valid PL/pgSQL statements. PL/pgSQL statements augment SQL commands with
procedural constructs, including looping and conditional expressions, to control logical flow.
Most SQL commands can be used in the procedure body, including data modification language
(DML) such as COPY, UNLOAD and INSERT, and data definition language (DDL) such as CREATE
TABLE. For more information, see PL/pgSQL language reference.

CREATE PROCEDURE 1335

https://www.postgresql.org/docs/9.0/sql-syntax-lexical.html

Amazon Redshift Database Developer Guide

LANGUAGE plpgsql

A language value. Specify plpgsql. You must have permission for usage on language to use
plpgsql. For more information, see GRANT.

NONATOMIC

Creates the stored procedure in a nonatomic transaction mode. NONATOMIC mode
automatically commits the statements inside the procedure. Additionally, when an error occurs
inside the NONATOMIC procedure, the error is not re-thrown if it is handled by an exception
block. For more information, see Managing transactions and RAISE.

When you define a stored procedure as NONATOMIC, consider the following:

• When you nest stored procedure calls, all the procedures must be created in the same
transaction mode.

• The SECURITY DEFINER option and SET configuration_parameter option are not
supported when creating a procedure in NONATOMIC mode.

• Any cursor that is opened (explicitly or implicitly) is closed automatically when an implicit
commit is processed. Therefore, you must open an explicit transaction before beginning a
cursor loop to ensure that any SQL within the loop's iteration is not implicitly committed.

SECURITY INVOKER | SECURITY DEFINER

The SECURITY DEFINER option is not supported when NONATOMIC is specified.

The security mode for the procedure determines the procedure's access privileges at runtime.
The procedure must have permission to access the underlying database objects.

For SECURITY INVOKER mode, the procedure uses the privileges of the user calling the
procedure. The user must have explicit permissions on the underlying database objects. The
default is SECURITY INVOKER.

For SECURITY DEFINER mode, the procedure uses the privileges of the procedure owner. The
procedure owner is defined as the user that owns the procedure at run time, not necessarily the
user that initially defined the procedure. The user calling the procedure needs execute privilege
on the procedure, but doesn't need any privileges on the underlying objects.

SET configuration_parameter { TO value | = value }

These options are not supported when NONATOMIC is specified.

CREATE PROCEDURE 1336

Amazon Redshift Database Developer Guide

The SET clause causes the specified configuration_parameter to be set to the specified
value when the procedure is entered. This clause then restores configuration_parameter to
its earlier value when the procedure exits.

Usage notes

If a stored procedure was created using the SECURITY DEFINER option, when invoking the
CURRENT_USER function from within the stored procedure, Amazon Redshift returns the user
name of the owner of the stored procedure.

Examples

Note

If when running these examples you encounter an error similar to:

ERROR: 42601: [Amazon](500310) unterminated dollar-quoted string at or near "$$

See Overview of stored procedures in Amazon Redshift.

The following example creates a procedure with two input parameters.

CREATE OR REPLACE PROCEDURE test_sp1(f1 int, f2 varchar(20))
AS $$
DECLARE
 min_val int;
BEGIN
 DROP TABLE IF EXISTS tmp_tbl;
 CREATE TEMP TABLE tmp_tbl(id int);
 INSERT INTO tmp_tbl values (f1),(10001),(10002);
 SELECT INTO min_val MIN(id) FROM tmp_tbl;
 RAISE INFO 'min_val = %, f2 = %', min_val, f2;
END;
$$ LANGUAGE plpgsql;

Note

When you write stored procedures, we recommend a best practice for securing sensitive
values:

CREATE PROCEDURE 1337

Amazon Redshift Database Developer Guide

Don't hard code any sensitive information in stored procedure logic. For example, don't
assign a user password in a CREATE USER statement in the body of a stored procedure. This
poses a security risk, because hard-coded values can be recorded as schema metadata in
catalog tables. Instead, pass sensitive values, such as passwords, as arguments to the stored
procedure, by means of parameters.
For more information about stored procedures, see CREATE PROCEDURE and Creating
stored procedures in Amazon Redshift. For more information about catalog tables, see
System catalog tables.

The following example creates a procedure with one IN parameter, one OUT parameter, and one
INOUT parameter.

CREATE OR REPLACE PROCEDURE test_sp2(f1 IN int, f2 INOUT varchar(256), out_var OUT
 varchar(256))
AS $$
DECLARE
 loop_var int;
BEGIN
 IF f1 is null OR f2 is null THEN
 RAISE EXCEPTION 'input cannot be null';
 END IF;
 DROP TABLE if exists my_etl;
 CREATE TEMP TABLE my_etl(a int, b varchar);
 FOR loop_var IN 1..f1 LOOP
 insert into my_etl values (loop_var, f2);
 f2 := f2 || '+' || f2;
 END LOOP;
 SELECT INTO out_var count(*) from my_etl;
END;
$$ LANGUAGE plpgsql;

CREATE RLS POLICY

Creates a new row-level security policy to provide granular access to database objects.

Superusers and users or roles that have the sys:secadmin role can create a policy.

Syntax

CREATE RLS POLICY policy_name

CREATE RLS POLICY 1338

https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_PROCEDURE.html
https://docs.aws.amazon.com/redshift/latest/dg/stored-procedure-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/stored-procedure-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/c_intro_catalog_views.html

Amazon Redshift Database Developer Guide

[WITH (column_name data_type [, ...]) [[AS] relation_alias]]
USING (using_predicate_exp)

Parameters

policy_name

The name of the policy.

WITH (column_name data_type [, ...])

Specifies the column_name and data_type referenced to the columns of tables to which the
policy is attached.

You can omit the WITH clause only when the RLS policy doesn't reference any columns of tables
to which the policy is attached.

AS relation_alias

Specifies an optional alias for the table that the RLS policy will be attached to.

USING (using_predicate_exp)

Specifies a filter that is applied to the WHERE clause of the query. Amazon Redshift applies a
policy predicate before the query-level user predicates. For example, current_user = ‘joe’
and price > 10 limits Joe to see only records with the price greater than $10.

Usage notes

When working with the CREATE RLS POLICY statement, observe the following:

• Amazon Redshift supports filters that can be part of a WHERE clause of a query.

• All policies being attached to a table must have been created with the same table alias.

• You don't require SELECT permission on lookup tables. When you create a policy, Amazon
Redshift grants the SELECT permission on the lookup table for the respective policy. A lookup
table is a table object used inside a policy definition.

• Amazon Redshift row-level security doesn't support the following object types inside a policy
definition: catalog tables, cross-database relations, external tables, regular views, late-binding
views, tables with RLS policies turned on, and temporary tables.

CREATE RLS POLICY 1339

Amazon Redshift Database Developer Guide

Examples

The following SQL statements create the tables, users, and roles for the CREATE RLS POLICY
example.

-- Create users and roles reference in the policy statements.
CREATE ROLE analyst;

CREATE ROLE consumer;

CREATE USER bob WITH PASSWORD 'Name_is_bob_1';

CREATE USER alice WITH PASSWORD 'Name_is_alice_1';

CREATE USER joe WITH PASSWORD 'Name_is_joe_1';

GRANT ROLE sys:secadmin TO bob;

GRANT ROLE analyst TO alice;

GRANT ROLE consumer TO joe;

GRANT ALL ON TABLE tickit_category_redshift TO PUBLIC;

The following example creates a policy called policy_concerts.

CREATE RLS POLICY policy_concerts
WITH (catgroup VARCHAR(10))
USING (catgroup = 'Concerts');

CREATE ROLE

Creates a new custom role that is a collection of permissions. For a list of Amazon Redshift system-
defined roles, see the section called “Amazon Redshift system-defined roles”. Query SVV_ROLES to
view the currently created roles in your cluster or workgroup.

There is a quota of the number of roles that can be created. For more information, see Quotas and
limits in Amazon Redshift in the Amazon Redshift Management Guide.

Required permissions

Following are the required privileges for CREATE ROLE.

CREATE ROLE 1340

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html
https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Redshift Database Developer Guide

• Superuser

• Users with the CREATE ROLE privilege

Syntax

CREATE ROLE role_name
[EXTERNALID external_id]

Parameters

role_name

The name of the role. The role name must be unique and can't be the same as any user names.
A role name can't be a reserved word.

A superuser or regular user with the CREATE ROLE privilege can create roles. A user that is not
a superuser but that has been granted USAGE to the role WITH GRANT OPTION and ALTER
privilege can grant this role to anyone.

EXTERNALID external_id

The identifier for the role, which is associated with an identity provider. For more information,
see Native identity provider (IdP) federation for Amazon Redshift.

Examples

The following example creates a role sample_role1.

CREATE ROLE sample_role1;

The following example creates a role sample_role1, with an external ID that is associated with an
identity provider.

CREATE ROLE sample_role1 EXTERNALID "ABC123";

CREATE SCHEMA

Defines a new schema for the current database.

CREATE SCHEMA 1341

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-native-idp.html

Amazon Redshift Database Developer Guide

Required privileges

Following are required privileges for CREATE SCHEMA:

• Superuser

• Users with the CREATE SCHEMA privilege

Syntax

CREATE SCHEMA [IF NOT EXISTS] schema_name [AUTHORIZATION username]
 [QUOTA {quota [MB | GB | TB] | UNLIMITED}] [schema_element [...]

CREATE SCHEMA AUTHORIZATION username[QUOTA {quota [MB | GB | TB] | UNLIMITED}]
 [schema_element [...]]

Parameters

IF NOT EXISTS

Clause that indicates that if the specified schema already exists, the command should make no
changes and return a message that the schema exists, rather than terminating with an error.

This clause is useful when scripting, so the script doesn’t fail if CREATE SCHEMA tries to create a
schema that already exists.

schema_name

Name of the new schema. The schema name can't be PUBLIC. For more information about valid
names, see Names and identifiers.

Note

The list of schemas in the search_path configuration parameter determines the
precedence of identically named objects when they are referenced without schema
names.

AUTHORIZATION

Clause that gives ownership to a specified user.

CREATE SCHEMA 1342

Amazon Redshift Database Developer Guide

username

Name of the schema owner.

schema_element

Definition for one or more objects to be created within the schema.

QUOTA

The maximum amount of disk space that the specified schema can use. This space is the
collective disk usage. It includes all permanent tables, materialized views under the specified
schema, and duplicate copies of all tables with ALL distribution on each compute node. The
schema quota doesn't take into account temporary tables created as part of a temporary
namespace or schema.

To view the configured schema quotas, see SVV_SCHEMA_QUOTA_STATE.

To view the records where schema quotas were exceeded, see
STL_SCHEMA_QUOTA_VIOLATIONS.

Amazon Redshift converts the selected value to megabytes. Gigabytes is the default unit of
measurement when you don't specify a value.

You must be a database superuser to set and change a schema quota. A user that is not a
superuser but that has CREATE SCHEMA permission can create a schema with a defined quota.
When you create a schema without defining a quota, the schema has an unlimited quota. When
you set the quota below the current value used by the schema, Amazon Redshift doesn't allow
further ingestion until you free disk space. A DELETE statement deletes data from a table and
disk space is freed up only when VACUUM runs.

Amazon Redshift checks each transaction for quota violations before committing the
transaction. Amazon Redshift checks the size (the disk space used by all tables in a schema) of
each modified schema against the set quota. Because the quota violation check occurs at the
end of a transaction, the size limit can exceed the quota temporarily within a transaction before
it's committed. When a transaction exceeds the quota, Amazon Redshift stops the transaction,
prohibits subsequent ingestions, and reverts all the changes until you free disk space. Due to
background VACUUM and internal cleanup, it is possible that a schema isn't full by the time that
you check the schema after a canceled transaction.

As an exception, Amazon Redshift disregards the quota violation and commits transactions in
certain cases. Amazon Redshift does this for transactions that consist solely of one or more of

CREATE SCHEMA 1343

Amazon Redshift Database Developer Guide

the following statements where there isn't an INSERT or COPY ingestion statement in the same
transaction:

• DELETE

• TRUNCATE

• VACUUM

• DROP TABLE

• ALTER TABLE APPEND only when moving data from the full schema to another non-full
schema

UNLIMITED

Amazon Redshift imposes no limit to the growth of the total size of the schema.

Limits

Amazon Redshift enforces the following limits for schemas.

• There is a maximum of 9900 schemas per database.

Examples

The following example creates a schema named US_SALES and gives ownership to the user
DWUSER.

create schema us_sales authorization dwuser;

The following example creates a schema named US_SALES, gives ownership to the user DWUSER,
and sets the quota to 50 GB.

create schema us_sales authorization dwuser QUOTA 50 GB;

To view the new schema, query the PG_NAMESPACE catalog table as shown following.

select nspname as schema, usename as owner
from pg_namespace, pg_user
where pg_namespace.nspowner = pg_user.usesysid
and pg_user.usename ='dwuser';

 schema | owner

CREATE SCHEMA 1344

Amazon Redshift Database Developer Guide

----------+----------
 us_sales | dwuser
(1 row)

The following example either creates the US_SALES schema, or does nothing and returns a
message if it already exists.

create schema if not exists us_sales;

CREATE TABLE

Creates a new table in the current database. You define a list of columns, which each hold data of a
distinct type. The owner of the table is the issuer of the CREATE TABLE command.

Required privileges

Following are required privileges for CREATE TABLE:

• Superuser

• Users with the CREATE TABLE privilege

Syntax

CREATE [[LOCAL] { TEMPORARY | TEMP }] TABLE
[IF NOT EXISTS] table_name
({ column_name data_type [column_attributes] [column_constraints]
 | table_constraints
 | LIKE parent_table [{ INCLUDING | EXCLUDING } DEFAULTS] }
 [, ...])
[BACKUP { YES | NO }]
[table_attributes]

where column_attributes are:
 [DEFAULT default_expr]
 [IDENTITY (seed, step)]
 [GENERATED BY DEFAULT AS IDENTITY (seed, step)]
 [ENCODE encoding]
 [DISTKEY]
 [SORTKEY]
 [COLLATE CASE_SENSITIVE | COLLATE CASE_INSENSITIVE]

CREATE TABLE 1345

Amazon Redshift Database Developer Guide

and column_constraints are:
 [{ NOT NULL | NULL }]
 [{ UNIQUE | PRIMARY KEY }]
 [REFERENCES reftable [(refcolumn)]]

and table_constraints are:
 [UNIQUE (column_name [, ...])]
 [PRIMARY KEY (column_name [, ...])]
 [FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn)]

and table_attributes are:
 [DISTSTYLE { AUTO | EVEN | KEY | ALL }]
 [DISTKEY (column_name)]
 [[COMPOUND | INTERLEAVED] SORTKEY (column_name [,...]) | [SORTKEY AUTO]]
 [ENCODE AUTO]

Parameters

LOCAL

Optional. Although this keyword is accepted in the statement, it has no effect in Amazon
Redshift.

TEMPORARY | TEMP

Keyword that creates a temporary table that is visible only within the current session. The table
is automatically dropped at the end of the session in which it is created. The temporary table
can have the same name as a permanent table. The temporary table is created in a separate,
session-specific schema. (You can't specify a name for this schema.) This temporary schema
becomes the first schema in the search path, so the temporary table takes precedence over
the permanent table unless you qualify the table name with the schema name to access the
permanent table. For more information about schemas and precedence, see search_path.

Note

By default, database users have permission to create temporary tables by their
automatic membership in the PUBLIC group. To deny this privilege to a user, revoke the
TEMP privilege from the PUBLIC group, and then explicitly grant the TEMP privilege
only to specific users or groups of users.

CREATE TABLE 1346

Amazon Redshift Database Developer Guide

IF NOT EXISTS

Clause that indicates that if the specified table already exists, the command should make no
changes and return a message that the table exists, rather than stopping with an error. Note
that the existing table might be nothing like the one that would have been created; only the
table name is compared.

This clause is useful when scripting, so the script doesn’t fail if CREATE TABLE tries to create a
table that already exists.

table_name

Name of the table to be created.

Important

If you specify a table name that begins with '# ', the table is created as a temporary
table. The following is an example:

create table #newtable (id int);

You also reference the table with the '# '. For example:

select * from #newtable;

The maximum length for the table name is 127 bytes; longer names are truncated to 127 bytes.
You can use UTF-8 multibyte characters up to a maximum of four bytes. Amazon Redshift
enforces a quota of the number of tables per cluster by node type, including user-defined
temporary tables and temporary tables created by Amazon Redshift during query processing or
system maintenance. Optionally, the table name can be qualified with the database and schema
name. In the following example, the database name is tickit, the schema name is public,
and the table name is test.

create table tickit.public.test (c1 int);

If the database or schema doesn't exist, the table isn't created, and the statement returns
an error. You can't create tables or views in the system databases template0, template1,
padb_harvest , or sys:internal.

CREATE TABLE 1347

Amazon Redshift Database Developer Guide

If a schema name is given, the new table is created in that schema (assuming the creator has
access to the schema). The table name must be a unique name for that schema. If no schema
is specified, the table is created by using the current database schema. If you are creating a
temporary table, you can't specify a schema name, because temporary tables exist in a special
schema.

Multiple temporary tables with the same name can exist at the same time in the same database
if they are created in separate sessions because the tables are assigned to different schemas.
For more information about valid names, see Names and identifiers.

column_name

Name of a column to be created in the new table. The maximum length for the column name is
127 bytes; longer names are truncated to 127 bytes. You can use UTF-8 multibyte characters up
to a maximum of four bytes. The maximum number of columns you can define in a single table
is 1,600. For more information about valid names, see Names and identifiers.

Note

If you are creating a "wide table," take care that your list of columns doesn't exceed row-
width boundaries for intermediate results during loads and query processing. For more
information, see Usage notes.

data_type

Data type of the column being created. For CHAR and VARCHAR columns, you can use the MAX
keyword instead of declaring a maximum length. MAX sets the maximum length to 4,096 bytes
for CHAR or 65535 bytes for VARCHAR. The maximum size of a GEOMETRY object is 1,048,447
bytes.

For information about the data types that Amazon Redshift supports, see Data types.

DEFAULT default_expr

Clause that assigns a default data value for the column. The data type of default_expr must
match the data type of the column. The DEFAULT value must be a variable-free expression.
Subqueries, cross-references to other columns in the current table, and user-defined functions
aren't allowed.

CREATE TABLE 1348

Amazon Redshift Database Developer Guide

The default_expr expression is used in any INSERT operation that doesn't specify a value for the
column. If no default value is specified, the default value for the column is null.

If a COPY operation with a defined column list omits a column that has a DEFAULT value, the
COPY command inserts the value of default_expr.

IDENTITY(seed, step)

Clause that specifies that the column is an IDENTITY column. An IDENTITY column contains
unique autogenerated values. The data type for an IDENTITY column must be either INT or
BIGINT.

When you add rows using an INSERT or INSERT INTO [tablename] VALUES() statement,
these values start with the value specified as seed and increment by the number specified as
step.

When you load the table using an INSERT INTO [tablename] SELECT * FROM or COPY
statement, the data is loaded in parallel and distributed to the node slices. To be sure that
the identity values are unique, Amazon Redshift skips a number of values when creating the
identity values. Identity values are unique, but the order might not match the order in the
source files.

GENERATED BY DEFAULT AS IDENTITY(seed, step)

Clause that specifies that the column is a default IDENTITY column and enables you to
automatically assign a unique value to the column. The data type for an IDENTITY column must
be either INT or BIGINT. When you add rows without values, these values start with the value
specified as seed and increment by the number specified as step. For information about how
values are generated, see IDENTITY .

Also, during INSERT, UPDATE, or COPY you can provide a value without EXPLICIT_IDS. Amazon
Redshift uses that value to insert into the identity column instead of using the system-
generated value. The value can be a duplicate, a value less than the seed, or a value between
step values. Amazon Redshift doesn't check the uniqueness of values in the column. Providing a
value doesn't affect the next system-generated value.

Note

If you require uniqueness in the column, don't add a duplicate value. Instead, add a
unique value that is less than the seed or between step values.

CREATE TABLE 1349

Amazon Redshift Database Developer Guide

Keep in mind the following about default identity columns:

• Default identity columns are NOT NULL. NULL can't be inserted.

• To insert a generated value into a default identity column, use the keyword DEFAULT.

INSERT INTO tablename (identity-column-name) VALUES (DEFAULT);

• Overriding values of a default identity column doesn't affect the next generated value.

• You can't add a default identity column with the ALTER TABLE ADD COLUMN statement.

• You can append a default identity column with the ALTER TABLE APPEND statement.

ENCODE encoding

The compression encoding for a column. ENCODE AUTO is the default for tables. Amazon
Redshift automatically manages compression encoding for all columns in the table. If you
specify compression encoding for any column in the table, the table is no longer set to ENCODE
AUTO. Amazon Redshift no longer automatically manages compression encoding for all
columns in the table. You can specify the ENCODE AUTO option for the table to enable Amazon
Redshift to automatically manage compression encoding for all columns in the table.

Amazon Redshift automatically assigns an initial compression encoding to columns for which
you don't specify compression encoding as follows:

• All columns in temporary tables are assigned RAW compression by default.

• Columns that are defined as sort keys are assigned RAW compression.

• Columns that are defined as BOOLEAN, REAL, DOUBLE PRECISION, GEOMETRY, or
GEOGRAPHY data type are assigned RAW compression.

• Columns that are defined as SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIME, TIMETZ,
TIMESTAMP, or TIMESTAMPTZ are assigned AZ64 compression.

• Columns that are defined as CHAR, VARCHAR, or VARBYTE are assigned LZO compression.

Note

If you don't want a column to be compressed, explicitly specify RAW encoding.

The following compression encodings (p. 64) are supported:

• AZ64

CREATE TABLE 1350

Amazon Redshift Database Developer Guide

• BYTEDICT

• DELTA

• DELTA32K

• LZO

• MOSTLY8

• MOSTLY16

• MOSTLY32

• RAW (no compression)

• RUNLENGTH

• TEXT255

• TEXT32K

• ZSTD

DISTKEY

Keyword that specifies that the column is the distribution key for the table. Only one column in
a table can be the distribution key. You can use the DISTKEY keyword after a column name or as
part of the table definition by using the DISTKEY (column_name) syntax. Either method has the
same effect. For more information, see the DISTSTYLE parameter later in this topic.

The data type of a distribution key column can be: BOOLEAN, REAL, DOUBLE PRECISION,
SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIME, TIMETZ, TIMESTAMP, or TIMESTAMPTZ,
CHAR, or VARCHAR.

SORTKEY

Keyword that specifies that the column is the sort key for the table. When data is loaded into
the table, the data is sorted by one or more columns that are designated as sort keys. You
can use the SORTKEY keyword after a column name to specify a single-column sort key, or
you can specify one or more columns as sort key columns for the table by using the SORTKEY
(column_name [, ...]) syntax. Only compound sort keys are created with this syntax.

You can define a maximum of 400 SORTKEY columns per table.

The data type of a sort key column can be: BOOLEAN, REAL, DOUBLE PRECISION, SMALLINT,
INTEGER, BIGINT, DECIMAL, DATE, TIME, TIMETZ, TIMESTAMP, or TIMESTAMPTZ, CHAR, or
VARCHAR.

CREATE TABLE 1351

Amazon Redshift Database Developer Guide

COLLATE CASE_SENSITIVE | COLLATE CASE_INSENSITIVE

A clause that specifies whether string search or comparison on the column is CASE_SENSITIVE
or CASE_INSENSITIVE. The default value is the same as the current case sensitivity configuration
of the database.

To find the database collation information, use the following command:

SELECT db_collation();

db_collation

 case_sensitive
(1 row)

NOT NULL | NULL

NOT NULL specifies that the column isn't allowed to contain null values. NULL, the default,
specifies that the column accepts null values. IDENTITY columns are declared NOT NULL by
default.

UNIQUE

Keyword that specifies that the column can contain only unique values. The behavior of the
unique table constraint is the same as that for column constraints, with the additional capability
to span multiple columns. To define a unique table constraint, use the UNIQUE (column_name
[, ...]) syntax.

Important

Unique constraints are informational and aren't enforced by the system.

PRIMARY KEY

Keyword that specifies that the column is the primary key for the table. Only one column can
be defined as the primary key by using a column definition. To define a table constraint with a
multiple-column primary key, use the PRIMARY KEY (column_name [, ...]) syntax.

Identifying a column as the primary key provides metadata about the design of the schema. A
primary key implies that other tables can rely on this set of columns as a unique identifier for
rows. One primary key can be specified for a table, whether as a column constraint or a table

CREATE TABLE 1352

Amazon Redshift Database Developer Guide

constraint. The primary key constraint should name a set of columns that is different from other
sets of columns named by any unique constraint defined for the same table.

PRIMARY KEY columns are also defined as NOT NULL.

Important

Primary key constraints are informational only. They aren't enforced by the system, but
they are used by the planner.

References reftable [(refcolumn)]

Clause that specifies a foreign key constraint, which implies that the column must contain
only values that match values in the referenced column of some row of the referenced table.
The referenced columns should be the columns of a unique or primary key constraint in the
referenced table.

Important

Foreign key constraints are informational only. They aren't enforced by the system, but
they are used by the planner.

LIKE parent_table [{ INCLUDING | EXCLUDING } DEFAULTS]

A clause that specifies an existing table from which the new table automatically copies
column names, data types, and NOT NULL constraints. The new table and the parent table
are decoupled, and any changes made to the parent table aren't applied to the new table.
Default expressions for the copied column definitions are copied only if INCLUDING DEFAULTS
is specified. The default behavior is to exclude default expressions, so that all columns of the
new table have null defaults.

Tables created with the LIKE option don't inherit primary and foreign key constraints.
Distribution style, sort keys, BACKUP, and NULL properties are inherited by LIKE tables, but you
can't explicitly set them in the CREATE TABLE ... LIKE statement.

BACKUP { YES | NO }

A clause that specifies whether the table should be included in automated and manual cluster
snapshots. For tables, such as staging tables, that don't contain critical data, specify BACKUP

CREATE TABLE 1353

Amazon Redshift Database Developer Guide

NO to save processing time when creating snapshots and restoring from snapshots and to
reduce storage space on Amazon Simple Storage Service. The BACKUP NO setting has no affect
on automatic replication of data to other nodes within the cluster, so tables with BACKUP NO
specified are restored in a node failure. The default is BACKUP YES.

DISTSTYLE { AUTO | EVEN | KEY | ALL }

Keyword that defines the data distribution style for the whole table. Amazon Redshift
distributes the rows of a table to the compute nodes according to the distribution style
specified for the table. The default is AUTO.

The distribution style that you select for tables affects the overall performance of your
database. For more information, see Working with data distribution styles. Possible distribution
styles are as follows:

• AUTO: Amazon Redshift assigns an optimal distribution style based on the table data. For
example, if AUTO distribution style is specified, Amazon Redshift initially assigns the ALL
distribution style to a small table. When the table grows larger, Amazon Redshift might
change the distribution style to KEY, choosing the primary key (or a column of the composite
primary key) as the DISTKEY. If the table grows larger and none of the columns are suitable
to be the DISTKEY, Amazon Redshift changes the distribution style to EVEN. The change in
distribution style occurs in the background with minimal impact to user queries.

To view the distribution style applied to a table, query the PG_CLASS system catalog table.
For more information, see Viewing distribution styles.

• EVEN: The data in the table is spread evenly across the nodes in a cluster in a round-robin
distribution. Row IDs are used to determine the distribution, and roughly the same number of
rows are distributed to each node.

• KEY: The data is distributed by the values in the DISTKEY column. When you set the
joining columns of joining tables as distribution keys, the joining rows from both tables are
collocated on the compute nodes. When data is collocated, the optimizer can perform joins
more efficiently. If you specify DISTSTYLE KEY, you must name a DISTKEY column, either
for the table or as part of the column definition. For more information, see the DISTKEY
parameter earlier in this topic.

• ALL: A copy of the entire table is distributed to every node. This distribution style ensures
that all the rows required for any join are available on every node, but it multiplies storage
requirements and increases the load and maintenance times for the table. ALL distribution
can improve execution time when used with certain dimension tables where KEY distribution

CREATE TABLE 1354

Amazon Redshift Database Developer Guide

isn't appropriate, but performance improvements must be weighed against maintenance
costs.

DISTKEY (column_name)

Constraint that specifies the column to be used as the distribution key for the table. You can
use the DISTKEY keyword after a column name or as part of the table definition, by using the
DISTKEY (column_name) syntax. Either method has the same effect. For more information, see
the DISTSTYLE parameter earlier in this topic.

[COMPOUND | INTERLEAVED] SORTKEY (column_name [,...]) | [SORTKEY AUTO]

Specifies one or more sort keys for the table. When data is loaded into the table, the data is
sorted by the columns that are designated as sort keys. You can use the SORTKEY keyword after
a column name to specify a single-column sort key, or you can specify one or more columns as
sort key columns for the table by using the SORTKEY (column_name [, ...]) syntax.

You can optionally specify COMPOUND or INTERLEAVED sort style. If you specify SORTKEY with
columns the default is COMPOUND. For more information, see Working with sort keys.

If you don't specify any sort keys options, the default is AUTO.

You can define a maximum of 400 COMPOUND SORTKEY columns or 8 INTERLEAVED SORTKEY
columns per table.

AUTO

Specifies that Amazon Redshift assigns an optimal sort key based on the table data. For
example, if AUTO sort key is specified, Amazon Redshift initially assigns no sort key to
a table. If Amazon Redshift determines that a sort key will improve the performance of
queries, then Amazon Redshift might change the sort key of your table. The actual sorting
of the table is done by automatic table sort. For more information, see Automatic table sort.

Amazon Redshift doesn't modify tables that have existing sort or distribution keys. With one
exception, if a table has a distribution key that has never been used in a JOIN, then the key
might be changed if Amazon Redshift determines there is a better key.

To view the sort key of a table, query the SVV_TABLE_INFO system catalog view. For more
information, see SVV_TABLE_INFO. To view the Amazon Redshift Advisor recommendations
for tables, query the SVV_ALTER_TABLE_RECOMMENDATIONS system catalog view. For
more information, see SVV_ALTER_TABLE_RECOMMENDATIONS. To view the actions taken

CREATE TABLE 1355

Amazon Redshift Database Developer Guide

by Amazon Redshift, query the SVL_AUTO_WORKER_ACTION system catalog view. For more
information, see SVL_AUTO_WORKER_ACTION.

COMPOUND

Specifies that the data is sorted using a compound key made up of all of the listed columns,
in the order they are listed. A compound sort key is most useful when a query scans rows
according to the order of the sort columns. The performance benefits of sorting with a
compound key decrease when queries rely on secondary sort columns. You can define a
maximum of 400 COMPOUND SORTKEY columns per table.

INTERLEAVED

Specifies that the data is sorted using an interleaved sort key. A maximum of eight columns
can be specified for an interleaved sort key.

An interleaved sort gives equal weight to each column, or subset of columns, in the sort
key, so queries don't depend on the order of the columns in the sort key. When a query
uses one or more secondary sort columns, interleaved sorting significantly improves
query performance. Interleaved sorting carries a small overhead cost for data loading and
vacuuming operations.

Important

Don’t use an interleaved sort key on columns with monotonically increasing
attributes, such as identity columns, dates, or timestamps.

ENCODE AUTO

Enables Amazon Redshift to automatically adjust the encoding type for all columns in the table
to optimize query performance. ENCODE AUTO preserves the initial encode types that you
specify in creating the table. Then, if Amazon Redshift determines that a new encoding type
can improve query performance, Amazon Redshift can change the encoding type of the table
columns. ENCODE AUTO is the default if you don't specify an encoding type on any column in
the table.

UNIQUE (column_name [,...])

Constraint that specifies that a group of one or more columns of a table can contain only
unique values. The behavior of the unique table constraint is the same as that for column
constraints, with the additional capability to span multiple columns. In the context of unique

CREATE TABLE 1356

Amazon Redshift Database Developer Guide

constraints, null values aren't considered equal. Each unique table constraint must name a set
of columns that is different from the set of columns named by any other unique or primary key
constraint defined for the table.

Important

Unique constraints are informational and aren't enforced by the system.

PRIMARY KEY (column_name [,...])

Constraint that specifies that a column or a number of columns of a table can contain only
unique (nonduplicate) non-null values. Identifying a set of columns as the primary key also
provides metadata about the design of the schema. A primary key implies that other tables can
rely on this set of columns as a unique identifier for rows. One primary key can be specified for
a table, whether as a single column constraint or a table constraint. The primary key constraint
should name a set of columns that is different from other sets of columns named by any unique
constraint defined for the same table.

Important

Primary key constraints are informational only. They aren't enforced by the system, but
they are used by the planner.

FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn)]

Constraint that specifies a foreign key constraint, which requires that a group of one or more
columns of the new table must only contain values that match values in the referenced column
or columns of some row of the referenced table. If refcolumn is omitted, the primary key of
reftable is used. The referenced columns must be the columns of a unique or primary key
constraint in the referenced table.

Important

Foreign key constraints are informational only. They aren't enforced by the system, but
they are used by the planner.

CREATE TABLE 1357

Amazon Redshift Database Developer Guide

Usage notes

Uniqueness, primary key, and foreign key constraints are informational only; they are not enforced
by Amazon Redshift when you populate a table. For example, if you insert data into a table with
dependencies, the insert can succeed even if it violates the constraint. Nonetheless, primary keys
and foreign keys are used as planning hints and they should be declared if your ETL process or
some other process in your application enforces their integrity. For information about how to drop
a table with dependencies, see DROP TABLE.

Limits and quotas

Consider the following limits when you create a table.

• There is a limit for the maximum number of tables in a cluster by node type. For more
information, see Limits in the Amazon Redshift Management Guide.

• The maximum number of characters for a table name is 127.

• The maximum number of columns you can define in a single table is 1,600.

• The maximum number of SORTKEY columns you can define in a single table is 400.

Summary of column-level settings and table-level settings

Several attributes and settings can be set at the column level or at the table level. In some cases,
setting an attribute or constraint at the column level or at the table level has the same effect. In
other cases, they produce different results.

The following list summarizes column-level and table-level settings:

DISTKEY

There is no difference in effect whether set at the column level or at the table level.

If DISTKEY is set, either at the column level or at the table level, DISTSTYLE must be set to KEY
or not set at all. DISTSTYLE can be set only at the table level.

SORTKEY

If set at the column level, SORTKEY must be a single column. If SORTKEY is set at the table
level, one or more columns can make up a compound or interleaved composite sort key.

CREATE TABLE 1358

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Redshift Database Developer Guide

COLLATE CASE_SENSITIVE | COLLATE CASE_INSENSITIVE

Amazon Redshift doesn't support altering case-sensitivity configuration for a column. When you
append a new column to the table, Amazon Redshift uses the default value for case-sensitivity.
Amazon Redshift doesn't support the COLLATE key word when appending a new column.

For information on how to create databases using database collation, see CREATE DATABASE.

For information on the COLLATE function, see COLLATE function.

UNIQUE

At the column level, one or more keys can be set to UNIQUE; the UNIQUE constraint applies to
each column individually. If UNIQUE is set at the table level, one or more columns can make up
a composite UNIQUE constraint.

PRIMARY KEY

If set at the column level, PRIMARY KEY must be a single column. If PRIMARY KEY is set at the
table level, one or more columns can make up a composite primary key .

FOREIGN KEY

There is no difference in effect whether FOREIGN KEY is set at the column level or at the table
level. At the column level, the syntax is simply REFERENCES reftable [(refcolumn)].

Distribution of incoming data

When the hash distribution scheme of the incoming data matches that of the target table, no
physical distribution of the data is actually necessary when the data is loaded. For example, if a
distribution key is set for the new table and the data is being inserted from another table that is
distributed on the same key column, the data is loaded in place, using the same nodes and slices.
However, if the source and target tables are both set to EVEN distribution, data is redistributed into
the target table.

Wide tables

You might be able to create a very wide table but be unable to perform query processing, such
as INSERT or SELECT statements, on the table. The maximum width of a table with fixed width
columns, such as CHAR, is 64KB - 1 (or 65535 bytes). If a table includes VARCHAR columns, the
table can have a larger declared width without returning an error because VARCHARS columns

CREATE TABLE 1359

Amazon Redshift Database Developer Guide

don't contribute their full declared width to the calculated query-processing limit. The effective
query-processing limit with VARCHAR columns will vary based on a number of factors.

If a table is too wide for inserting or selecting, you receive the following error.

ERROR: 8001
DETAIL: The combined length of columns processed in the SQL statement
exceeded the query-processing limit of 65535 characters (pid:7627)

Examples

For examples that show how to use the CREATE TABLE command, see the Examples topic.

Examples

The following examples demonstrate various column and table attributes in Amazon Redshift
CREATE TABLE statements. For more information about CREATE TABLE, including parameter
definitions, see CREATE TABLE.

Many of the examples use tables and data from the TICKIT sample data set. For more information,
see Sample database.

You can prefix the table name with the database name and schema name in a CREATE TABLE
command. For instance, dev_database.public.sales. The database name must be the
database you are connected to. Any attempt to create database objects in another database fails
with and invalid-operation error.

Create a table with a distribution key, a compound sort key, and compression

The following example creates a SALES table in the TICKIT database with compression defined for
several columns. LISTID is declared as the distribution key, and LISTID and SELLERID are declared
as a multicolumn compound sort key. Primary key and foreign key constraints are also defined for
the table. Prior to creating the table in the example, you might need to add a UNIQUE constraint to
each column referenced by a foreign key, if constraints don't exist.

create table sales(
salesid integer not null,
listid integer not null,
sellerid integer not null,

CREATE TABLE 1360

https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

Amazon Redshift Database Developer Guide

buyerid integer not null,
eventid integer not null encode mostly16,
dateid smallint not null,
qtysold smallint not null encode mostly8,
pricepaid decimal(8,2) encode delta32k,
commission decimal(8,2) encode delta32k,
saletime timestamp,
primary key(salesid),
foreign key(listid) references listing(listid),
foreign key(sellerid) references users(userid),
foreign key(buyerid) references users(userid),
foreign key(dateid) references date(dateid))
distkey(listid)
compound sortkey(listid,sellerid);

The results follow:

schemaname | tablename | column | type | encoding | distkey
 | sortkey | notnull
-----------+-----------+------------+-----------------------------+----------+---------
+---------+--------
public | sales | salesid | integer | lzo | false
 | 0 | true
public | sales | listid | integer | none | true
 | 1 | true
public | sales | sellerid | integer | none | false
 | 2 | true
public | sales | buyerid | integer | lzo | false
 | 0 | true
public | sales | eventid | integer | mostly16 | false
 | 0 | true
public | sales | dateid | smallint | lzo | false
 | 0 | true
public | sales | qtysold | smallint | mostly8 | false
 | 0 | true
public | sales | pricepaid | numeric(8,2) | delta32k | false
 | 0 | false
public | sales | commission | numeric(8,2) | delta32k | false
 | 0 | false
public | sales | saletime | timestamp without time zone | lzo | false
 | 0 | false

The following example creates table t1 with a case-insensitive column col1.

CREATE TABLE 1361

Amazon Redshift Database Developer Guide

create table T1 (
 col1 Varchar(20) collate case_insensitive
);

insert into T1 values ('bob'), ('john'), ('Tom'), ('JOHN'), ('Bob');

Query the table:

select * from T1 where col1 = 'John';

col1

 john
 JOHN
(2 rows)

Create a table using an interleaved sort key

The following example creates the CUSTOMER table with an interleaved sort key.

create table customer_interleaved (
 c_custkey integer not null,
 c_name varchar(25) not null,
 c_address varchar(25) not null,
 c_city varchar(10) not null,
 c_nation varchar(15) not null,
 c_region varchar(12) not null,
 c_phone varchar(15) not null,
 c_mktsegment varchar(10) not null)
diststyle all
interleaved sortkey (c_custkey, c_city, c_mktsegment);

Create a table using IF NOT EXISTS

The following example either creates the CITIES table, or does nothing and returns a message if it
already exists:

create table if not exists cities(
cityid integer not null,
city varchar(100) not null,
state char(2) not null);

CREATE TABLE 1362

Amazon Redshift Database Developer Guide

Create a table with ALL distribution

The following example creates the VENUE table with ALL distribution.

create table venue(
venueid smallint not null,
venuename varchar(100),
venuecity varchar(30),
venuestate char(2),
venueseats integer,
primary key(venueid))
diststyle all;

Create a Table with EVEN distribution

The following example creates a table called MYEVENT with three columns.

create table myevent(
eventid int,
eventname varchar(200),
eventcity varchar(30))
diststyle even;

The table is distributed evenly and isn't sorted. The table has no declared DISTKEY or SORTKEY
columns.

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'myevent';

 column | type | encoding | distkey | sortkey
-----------+------------------------+----------+---------+---------
 eventid | integer | lzo | f | 0
 eventname | character varying(200) | lzo | f | 0
 eventcity | character varying(30) | lzo | f | 0
(3 rows)

Create a temporary table that is LIKE another table

The following example creates a temporary table called TEMPEVENT, which inherits its columns
from the EVENT table.

create temp table tempevent(like event);

CREATE TABLE 1363

Amazon Redshift Database Developer Guide

This table also inherits the DISTKEY and SORTKEY attributes of its parent table:

select "column", type, encoding, distkey, sortkey
 from pg_table_def where tablename = 'tempevent';

 column | type | encoding | distkey | sortkey
-----------+-----------------------------+----------+---------+---------
 eventid | integer | none | t | 1
 venueid | smallint | none | f | 0
 catid | smallint | none | f | 0
 dateid | smallint | none | f | 0
 eventname | character varying(200) | lzo | f | 0
 starttime | timestamp without time zone | bytedict | f | 0
(6 rows)

Create a table with an IDENTITY column

The following example creates a table named VENUE_IDENT, which has an IDENTITY column
named VENUEID. This column starts with 0 and increments by 1 for each record. VENUEID is also
declared as the primary key of the table.

create table venue_ident(venueid bigint identity(0, 1),
venuename varchar(100),
venuecity varchar(30),
venuestate char(2),
venueseats integer,
primary key(venueid));

Create a table with a default IDENTITY column

The following example creates a table named t1. This table has an IDENTITY column named
hist_id and a default IDENTITY column named base_id.

CREATE TABLE t1(
 hist_id BIGINT IDENTITY NOT NULL, /* Cannot be overridden */
 base_id BIGINT GENERATED BY DEFAULT AS IDENTITY NOT NULL, /* Can be overridden */
 business_key varchar(10) ,
 some_field varchar(10)
);

Inserting a row into the table shows that both hist_id and base_id values are generated.

CREATE TABLE 1364

Amazon Redshift Database Developer Guide

INSERT INTO T1 (business_key, some_field) values ('A','MM');

SELECT * FROM t1;

 hist_id | base_id | business_key | some_field
---------+---------+--------------+------------
 1 | 1 | A | MM

Inserting a second row shows that the default value for base_id is generated.

INSERT INTO T1 (base_id, business_key, some_field) values (DEFAULT, 'B','MNOP');

SELECT * FROM t1;

 hist_id | base_id | business_key | some_field
---------+---------+--------------+------------
 1 | 1 | A | MM
 2 | 2 | B | MNOP

Inserting a third row shows that the value for base_id doesn't need to be unique.

INSERT INTO T1 (base_id, business_key, some_field) values (2,'B','MNNN');

SELECT * FROM t1;

 hist_id | base_id | business_key | some_field
---------+---------+--------------+------------
 1 | 1 | A | MM
 2 | 2 | B | MNOP
 3 | 2 | B | MNNN

Create a table with DEFAULT column values

The following example creates a CATEGORYDEF table that declares default values for each column:

create table categorydef(
catid smallint not null default 0,
catgroup varchar(10) default 'Special',
catname varchar(10) default 'Other',

CREATE TABLE 1365

Amazon Redshift Database Developer Guide

catdesc varchar(50) default 'Special events',
primary key(catid));

insert into categorydef values(default,default,default,default);

select * from categorydef;

 catid | catgroup | catname | catdesc
-------+----------+---------+----------------
 0 | Special | Other | Special events
(1 row)

DISTSTYLE, DISTKEY, and SORTKEY options

The following example shows how the DISTKEY, SORTKEY, and DISTSTYLE options work. In this
example, COL1 is the distribution key; therefore, the distribution style must be either set to KEY or
not set. By default, the table has no sort key and so isn't sorted:

create table t1(col1 int distkey, col2 int) diststyle key;

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 't1';

column | type | encoding | distkey | sortkey
-------+---------+----------+---------+---------
col1 | integer | az64 | t | 0
col2 | integer | az64 | f | 0

In the following example, the same column is defined as the distribution key and the sort key.
Again, the distribution style must be either set to KEY or not set.

create table t2(col1 int distkey sortkey, col2 int);

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 't2';

column | type | encoding | distkey | sortkey
-------+---------+----------+---------+---------
col1 | integer | none | t | 1

CREATE TABLE 1366

Amazon Redshift Database Developer Guide

col2 | integer | az64 | f | 0

In the following example, no column is set as the distribution key, COL2 is set as the sort key, and
the distribution style is set to ALL:

create table t3(col1 int, col2 int sortkey) diststyle all;

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 't3';

Column | Type | Encoding | DistKey | SortKey
-------+---------+----------+---------+--------
col1 | integer | az64 | f | 0
col2 | integer | none | f | 1

In the following example, the distribution style is set to EVEN and no sort key is defined explicitly;
therefore the table is distributed evenly but isn't sorted.

create table t4(col1 int, col2 int) diststyle even;

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 't4';

 column | type |encoding | distkey | sortkey
--------+---------+---------+---------+--------
col1 | integer | az64 | f | 0
col2 | integer | az64 | f | 0

Create a table with the ENCODE AUTO option

The following example creates the table t1 with automatic compression encoding. ENCODE AUTO
is the default for tables when you don't specify an encoding type for any column.

create table t1(c0 int, c1 varchar);

The following example creates the table t2 with automatic compression encoding by specifying
ENCODE AUTO.

create table t2(c0 int, c1 varchar) encode auto;

CREATE TABLE 1367

Amazon Redshift Database Developer Guide

The following example creates the table t3 with automatic compression encoding by specifying
ENCODE AUTO. Column c0 is defined with an initial encoding type of DELTA. Amazon Redshift can
change the encoding if another encoding provides better query performance.

create table t3(c0 int encode delta, c1 varchar) encode auto;

The following example creates the table t4 with automatic compression encoding by specifying
ENCODE AUTO. Column c0 is defined with an initial encoding of DELTA, and column c1 is defined
with an initial encoding of LZO. Amazon Redshift can change these encodings if other encodings
provide better query performance.

create table t4(c0 int encode delta, c1 varchar encode lzo) encode auto;

CREATE TABLE AS

Topics

• Syntax

• Parameters

• CTAS usage notes

• CTAS examples

Creates a new table based on a query. The owner of this table is the user that issues the command.

The new table is loaded with data defined by the query in the command. The table columns have
names and data types associated with the output columns of the query. The CREATE TABLE AS
(CTAS) command creates a new table and evaluates the query to load the new table.

Syntax

CREATE [[LOCAL] { TEMPORARY | TEMP }]
TABLE table_name
[(column_name [, ...])]
[BACKUP { YES | NO }]
[table_attributes]
AS query

where table_attributes are:
[DISTSTYLE { AUTO | EVEN | ALL | KEY }]

CREATE TABLE AS 1368

Amazon Redshift Database Developer Guide

[DISTKEY(distkey_identifier)]
[[COMPOUND | INTERLEAVED] SORTKEY(column_name [, ...])]

Parameters

LOCAL

Although this optional keyword is accepted in the statement, it has no effect in Amazon
Redshift.

TEMPORARY | TEMP

Creates a temporary table. A temporary table is automatically dropped at the end of the session
in which it was created.

table_name

The name of the table to be created.

Important

If you specify a table name that begins with '# ', the table is created as a temporary
table. For example:

create table #newtable (id) as select * from oldtable;

The maximum table name length is 127 bytes; longer names are truncated to 127 bytes.
Amazon Redshift enforces a quota of the number of tables per cluster by node type. The table
name can be qualified with the database and schema name, as the following table shows.

create table tickit.public.test (c1) as select * from oldtable;

In this example, tickit is the database name and public is the schema name. If the database
or schema doesn't exist, the statement returns an error.

If a schema name is given, the new table is created in that schema (assuming the creator has
access to the schema). The table name must be a unique name for that schema. If no schema
is specified, the table is created using the current database schema. If you are creating a
temporary table, you can't specify a schema name, since temporary tables exist in a special
schema.

CREATE TABLE AS 1369

Amazon Redshift Database Developer Guide

Multiple temporary tables with the same name are allowed to exist at the same time in the
same database if they are created in separate sessions. These tables are assigned to different
schemas.

column_name

The name of a column in the new table. If no column names are provided, the column names
are taken from the output column names of the query. Default column names are used for
expressions. For more information about valid names, see Names and identifiers.

BACKUP { YES | NO }

A clause that specifies whether the table should be included in automated and manual cluster
snapshots. For tables, such as staging tables, that won't contain critical data, specify BACKUP
NO to save processing time when creating snapshots and restoring from snapshots and to
reduce storage space on Amazon Simple Storage Service. The BACKUP NO setting has no effect
on automatic replication of data to other nodes within the cluster, so tables with BACKUP NO
specified are restored in the event of a node failure. The default is BACKUP YES.

DISTSTYLE { AUTO | EVEN | KEY | ALL }

Defines the data distribution style for the whole table. Amazon Redshift distributes the rows
of a table to the compute nodes according the distribution style specified for the table. The
default is DISTSTYLE AUTO.

The distribution style that you select for tables affects the overall performance of your
database. For more information, see Working with data distribution styles.

• AUTO: Amazon Redshift assigns an optimal distribution style based on the table data. To view
the distribution style applied to a table, query the PG_CLASS system catalog table. For more
information, see Viewing distribution styles.

• EVEN: The data in the table is spread evenly across the nodes in a cluster in a round-robin
distribution. Row IDs are used to determine the distribution, and roughly the same number of
rows are distributed to each node. This is the default distribution method.

• KEY: The data is distributed by the values in the DISTKEY column. When you set the
joining columns of joining tables as distribution keys, the joining rows from both tables are
collocated on the compute nodes. When data is collocated, the optimizer can perform joins
more efficiently. If you specify DISTSTYLE KEY, you must name a DISTKEY column.

• ALL: A copy of the entire table is distributed to every node. This distribution style ensures
that all the rows required for any join are available on every node, but it multiplies storage
requirements and increases the load and maintenance times for the table. ALL distribution

CREATE TABLE AS 1370

Amazon Redshift Database Developer Guide

can improve execution time when used with certain dimension tables where KEY distribution
isn't appropriate, but performance improvements must be weighed against maintenance
costs.

DISTKEY (column)

Specifies a column name or positional number for the distribution key. Use the name specified
in either the optional column list for the table or the select list of the query. Alternatively, use
a positional number, where the first column selected is 1, the second is 2, and so on. Only one
column in a table can be the distribution key:

• If you declare a column as the DISTKEY column, DISTSTYLE must be set to KEY or not set at
all.

• If you don't declare a DISTKEY column, you can set DISTSTYLE to EVEN.

• If you don't specify DISTKEY or DISTSTYLE, CTAS determines the distribution style for
the new table based on the query plan for the SELECT clause. For more information, see
Inheritance of column and table attributes.

You can define the same column as the distribution key and the sort key; this approach tends to
accelerate joins when the column in question is a joining column in the query.

[COMPOUND | INTERLEAVED] SORTKEY (column_name [, ...])

Specifies one or more sort keys for the table. When data is loaded into the table, the data is
sorted by the columns that are designated as sort keys.

You can optionally specify COMPOUND or INTERLEAVED sort style. The default is COMPOUND.
For more information, see Working with sort keys.

You can define a maximum of 400 COMPOUND SORTKEY columns or 8 INTERLEAVED SORTKEY
columns per table.

If you don't specify SORTKEY, CTAS determines the sort keys for the new table based on the
query plan for the SELECT clause. For more information, see Inheritance of column and table
attributes.

COMPOUND

Specifies that the data is sorted using a compound key made up of all of the listed columns,
in the order they are listed. A compound sort key is most useful when a query scans rows
according to the order of the sort columns. The performance benefits of sorting with a
compound key decrease when queries rely on secondary sort columns. You can define a
maximum of 400 COMPOUND SORTKEY columns per table.

CREATE TABLE AS 1371

Amazon Redshift Database Developer Guide

INTERLEAVED

Specifies that the data is sorted using an interleaved sort key. A maximum of eight columns
can be specified for an interleaved sort key.

An interleaved sort gives equal weight to each column, or subset of columns, in the sort
key, so queries don't depend on the order of the columns in the sort key. When a query
uses one or more secondary sort columns, interleaved sorting significantly improves
query performance. Interleaved sorting carries a small overhead cost for data loading and
vacuuming operations.

AS query

Any query (SELECT statement) that Amazon Redshift supports.

CTAS usage notes

Limits

Amazon Redshift enforces a quota of the number of tables per cluster by node type.

The maximum number of characters for a table name is 127.

The maximum number of columns you can define in a single table is 1,600.

Inheritance of column and table attributes

CREATE TABLE AS (CTAS) tables don't inherit constraints, identity columns, default column values,
or the primary key from the table that they were created from.

You can't specify column compression encodings for CTAS tables. Amazon Redshift automatically
assigns compression encoding as follows:

• Columns that are defined as sort keys are assigned RAW compression.

• Columns that are defined as BOOLEAN, REAL, DOUBLE PRECISION, GEOMETRY, or GEOGRAPHY
data type are assigned RAW compression.

• Columns that are defined as SMALLINT, INTEGER, BIGINT, DECIMAL, DATE, TIME, TIMETZ,
TIMESTAMP, or TIMESTAMPTZ are assigned AZ64 compression.

• Columns that are defined as CHAR, VARCHAR, or VARBYTE are assigned LZO compression.

For more information, see Compression encodings and Data types.

CREATE TABLE AS 1372

Amazon Redshift Database Developer Guide

To explicitly assign column encodings, use CREATE TABLE.

CTAS determines distribution style and sort key for the new table based on the query plan for the
SELECT clause.

For complex queries, such as queries that include joins, aggregations, an order by clause, or a limit
clause, CTAS makes a best effort to choose the optimal distribution style and sort key based on the
query plan.

Note

For best performance with large datasets or complex queries, we recommend testing using
typical datasets.

You can often predict which distribution key and sort key CTAS chooses by examining the query
plan to see which columns, if any, the query optimizer chooses for sorting and distributing data. If
the top node of the query plan is a simple sequential scan from a single table (XN Seq Scan), then
CTAS generally uses the source table's distribution style and sort key. If the top node of the query
plan is anything other a sequential scan (such as XN Limit, XN Sort, XN HashAggregate, and so on),
CTAS makes a best effort to choose the optimal distribution style and sort key based on the query
plan.

For example, suppose you create five tables using the following types of SELECT clauses:

• A simple select statement

• A limit clause

• An order by clause using LISTID

• An order by clause using QTYSOLD

• A SUM aggregate function with a group by clause.

The following examples show the query plan for each CTAS statement.

explain create table sales1_simple as select listid, dateid, qtysold from sales;
 QUERY PLAN
--
 XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=8)
(1 row)

CREATE TABLE AS 1373

Amazon Redshift Database Developer Guide

explain create table sales2_limit as select listid, dateid, qtysold from sales limit
 100;
 QUERY PLAN
--
 XN Limit (cost=0.00..1.00 rows=100 width=8)
 -> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=8)
(2 rows)

explain create table sales3_orderbylistid as select listid, dateid, qtysold from sales
 order by listid;
 QUERY PLAN
--
 XN Sort (cost=1000000016724.67..1000000017155.81 rows=172456 width=8)
 Sort Key: listid
 -> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=8)
(3 rows)

explain create table sales4_orderbyqty as select listid, dateid, qtysold from sales
 order by qtysold;
 QUERY PLAN
--
 XN Sort (cost=1000000016724.67..1000000017155.81 rows=172456 width=8)
 Sort Key: qtysold
 -> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=8)
(3 rows)

explain create table sales5_groupby as select listid, dateid, sum(qtysold) from sales
 group by listid, dateid;
 QUERY PLAN
--
 XN HashAggregate (cost=3017.98..3226.75 rows=83509 width=8)
 -> XN Seq Scan on sales (cost=0.00..1724.56 rows=172456 width=8)
(2 rows)

To view the distribution key and sort key for each table, query the PG_TABLE_DEF system catalog
table, as shown following.

select * from pg_table_def where tablename like 'sales%';

CREATE TABLE AS 1374

Amazon Redshift Database Developer Guide

 tablename | column | distkey | sortkey
----------------------+------------+---------+---------
 sales | salesid | f | 0
 sales | listid | t | 0
 sales | sellerid | f | 0
 sales | buyerid | f | 0
 sales | eventid | f | 0
 sales | dateid | f | 1
 sales | qtysold | f | 0
 sales | pricepaid | f | 0
 sales | commission | f | 0
 sales | saletime | f | 0
 sales1_simple | listid | t | 0
 sales1_simple | dateid | f | 1
 sales1_simple | qtysold | f | 0
 sales2_limit | listid | f | 0
 sales2_limit | dateid | f | 0
 sales2_limit | qtysold | f | 0
 sales3_orderbylistid | listid | t | 1
 sales3_orderbylistid | dateid | f | 0
 sales3_orderbylistid | qtysold | f | 0
 sales4_orderbyqty | listid | t | 0
 sales4_orderbyqty | dateid | f | 0
 sales4_orderbyqty | qtysold | f | 1
 sales5_groupby | listid | f | 0
 sales5_groupby | dateid | f | 0
 sales5_groupby | sum | f | 0

The following table summarizes the results. For simplicity, we omit cost, rows, and width details
from the explain plan.

Table CTAS SELECT statement Explain plan top
node

Dist key Sort key

S1_SIMPLE select listid,
dateid, qtysold from
sales

XN Seq Scan on
sales ...

LISTID DATEID

CREATE TABLE AS 1375

Amazon Redshift Database Developer Guide

Table CTAS SELECT statement Explain plan top
node

Dist key Sort key

S2_LIMIT select listid,
dateid, qtysold from
sales limit 100

XN Limit ... None
(EVEN)

None

S3_ORDER_
BY_LISTID

select listid,
dateid, qtysold
from sales order by
listid

XN Sort ...

Sort Key: listid

LISTID LISTID

S4_ORDER_
BY_QTY

select listid,
dateid, qtysold
from sales order by
qtysold

XN Sort ...

Sort Key:
qtysold

LISTID QTYSOLD

S5_GROUP_
BY

select listid,
dateid, sum(qtyso
ld) from sales
group by listid,
dateid

XN HashAggre
gate ...

None
(EVEN)

None

You can explicitly specify distribution style and sort key in the CTAS statement. For example, the
following statement creates a table using EVEN distribution and specifies SALESID as the sort key.

create table sales_disteven
diststyle even
sortkey (salesid)
as
select eventid, venueid, dateid, eventname
from event;

Compression encoding

ENCODE AUTO is used as the default for tables. Amazon Redshift automatically manages
compression encoding for all columns in the table.

CREATE TABLE AS 1376

Amazon Redshift Database Developer Guide

Distribution of incoming data

When the hash distribution scheme of the incoming data matches that of the target table, no
physical distribution of the data is actually necessary when the data is loaded. For example, if a
distribution key is set for the new table and the data is being inserted from another table that is
distributed on the same key column, the data is loaded in place, using the same nodes and slices.
However, if the source and target tables are both set to EVEN distribution, data is redistributed into
the target table.

Automatic ANALYZE operations

Amazon Redshift automatically analyzes tables that you create with CTAS commands. You do not
need to run the ANALYZE command on these tables when they are first created. If you modify
them, you should analyze them in the same way as other tables.

CTAS examples

The following example creates a table called EVENT_BACKUP for the EVENT table:

create table event_backup as select * from event;

The resulting table inherits the distribution and sort keys from the EVENT table.

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'event_backup';

column | type | encoding | distkey | sortkey
----------+-----------------------------+----------+---------+--------
catid | smallint | none | false | 0
dateid | smallint | none | false | 1
eventid | integer | none | true | 0
eventname | character varying(200) | none | false | 0
starttime | timestamp without time zone | none | false | 0
venueid | smallint | none | false | 0

The following command creates a new table called EVENTDISTSORT by selecting four columns
from the EVENT table. The new table is distributed by EVENTID and sorted by EVENTID and
DATEID:

create table eventdistsort
distkey (1)

CREATE TABLE AS 1377

Amazon Redshift Database Developer Guide

sortkey (1,3)
as
select eventid, venueid, dateid, eventname
from event;

The result is as follows:

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'eventdistsort';

column | type | encoding | distkey | sortkey
---------+------------------------+----------+---------+-------
eventid | integer | none | t | 1
venueid | smallint | none | f | 0
dateid | smallint | none | f | 2
eventname | character varying(200)| none | f | 0

You could create exactly the same table by using column names for the distribution and sort keys.
For example:

create table eventdistsort1
distkey (eventid)
sortkey (eventid, dateid)
as
select eventid, venueid, dateid, eventname
from event;

The following statement applies even distribution to the table but doesn't define an explicit sort
key.

create table eventdisteven
diststyle even
as
select eventid, venueid, dateid, eventname
from event;

The table doesn't inherit the sort key from the EVENT table (EVENTID) because EVEN distribution is
specified for the new table. The new table has no sort key and no distribution key.

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'eventdisteven';

CREATE TABLE AS 1378

Amazon Redshift Database Developer Guide

column | type | encoding | distkey | sortkey
----------+------------------------+----------+---------+---------
eventid | integer | none | f | 0
venueid | smallint | none | f | 0
dateid | smallint | none | f | 0
eventname | character varying(200) | none | f | 0

The following statement applies even distribution and defines a sort key:

create table eventdistevensort diststyle even sortkey (venueid)
as select eventid, venueid, dateid, eventname from event;

The resulting table has a sort key but no distribution key.

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'eventdistevensort';

column | type | encoding | distkey | sortkey
----------+------------------------+----------+---------+-------
eventid | integer | none | f | 0
venueid | smallint | none | f | 1
dateid | smallint | none | f | 0
eventname | character varying(200) | none | f | 0

The following statement redistributes the EVENT table on a different key column from the
incoming data, which is sorted on the EVENTID column, and defines no SORTKEY column;
therefore the table isn't sorted.

create table venuedistevent distkey(venueid)
as select * from event;

The result is as follows:

select "column", type, encoding, distkey, sortkey
from pg_table_def where tablename = 'venuedistevent';

 column | type | encoding | distkey | sortkey
----------+-----------------------------+----------+---------+-------
eventid | integer | none | f | 0
venueid | smallint | none | t | 0

CREATE TABLE AS 1379

Amazon Redshift Database Developer Guide

catid | smallint | none | f | 0
dateid | smallint | none | f | 0
eventname | character varying(200) | none | f | 0
starttime | timestamp without time zone | none | f | 0

CREATE USER

Creates a new database user. Database users can retrieve data, run commands, and perform other
actions in a database, depending on their privileges and roles. You must be a database superuser to
run this command.

Required privileges

Following are required privileges for CREATE USER:

• Superuser

• Users with the CREATE USER privilege

Syntax

CREATE USER name [WITH]
PASSWORD { 'password' | 'md5hash' | 'sha256hash' | DISABLE }
[option [...]]

where option can be:

CREATEDB | NOCREATEDB
| CREATEUSER | NOCREATEUSER
| SYSLOG ACCESS { RESTRICTED | UNRESTRICTED }
| IN GROUP groupname [, ...]
| VALID UNTIL 'abstime'
| CONNECTION LIMIT { limit | UNLIMITED }
| SESSION TIMEOUT limit
| EXTERNALID external_id

Parameters

name

The name of the user to create. The user name can't be PUBLIC. For more information about
valid names, see Names and identifiers.

CREATE USER 1380

Amazon Redshift Database Developer Guide

WITH

Optional keyword. WITH is ignored by Amazon Redshift

PASSWORD { 'password' | 'md5hash' | 'sha256hash' | DISABLE }

Sets the user's password.

By default, users can change their own passwords, unless the password is disabled. To disable a
user's password, specify DISABLE. When a user's password is disabled, the password is deleted
from the system and the user can log on only using temporary AWS Identity and Access
Management (IAM) user credentials. For more information, see Using IAM Authentication to
Generate Database User Credentials. Only a superuser can enable or disable passwords. You
can't disable a superuser's password. To enable a password, run ALTER USER and specify a
password.

You can specify the password in clear text, as an MD5 hash string, or as a SHA256 hash string.

Note

When you launch a new cluster using the AWS Management Console, AWS CLI, or
Amazon Redshift API, you must supply a clear text password for the initial database
user. You can change the password later by using ALTER USER.

For clear text, the password must meet the following constraints:

• It must be 8 to 64 characters in length.

• It must contain at least one uppercase letter, one lowercase letter, and one number.

• It can use any ASCII characters with ASCII codes 33–126, except ' (single quotation mark),
" (double quotation mark), \, /, or @.

As a more secure alternative to passing the CREATE USER password parameter as clear text, you
can specify an MD5 hash of a string that includes the password and user name.

Note

When you specify an MD5 hash string, the CREATE USER command checks for a valid
MD5 hash string, but it doesn't validate the password portion of the string. It is possible

CREATE USER 1381

https://docs.aws.amazon.com/redshift/latest/mgmt/generating-user-credentials.html
https://docs.aws.amazon.com/redshift/latest/mgmt/generating-user-credentials.html

Amazon Redshift Database Developer Guide

in this case to create a password, such as an empty string, that you can't use to log on to
the database.

To specify an MD5 password, follow these steps:

1. Concatenate the password and user name.

For example, for password ez and user user1, the concatenated string is ezuser1.

2. Convert the concatenated string into a 32-character MD5 hash string. You can use any MD5
utility to create the hash string. The following example uses the Amazon Redshift MD5
function and the concatenation operator (||) to return a 32-character MD5-hash string.

select md5('ez' || 'user1');

md5

153c434b4b77c89e6b94f12c5393af5b

3. Concatenate 'md5' in front of the MD5 hash string and provide the concatenated string as
the md5hash argument.

create user user1 password 'md5153c434b4b77c89e6b94f12c5393af5b';

4. Log on to the database using the sign-in credentials.

For this example, log on as user1 with password ez.

Another secure alternative is to specify an SHA-256 hash of a password string; or you can
provide your own valid SHA-256 digest and 256-bit salt that was used to create the digest.

• Digest – The output of a hashing function.

• Salt – Randomly generated data that is combined with the password to help reduce patterns
in the hashing function output.

'sha256|Mypassword'

'sha256|digest|256-bit-salt'

CREATE USER 1382

Amazon Redshift Database Developer Guide

In the following example, Amazon Redshift generates and manages the salt.

CREATE USER admin PASSWORD 'sha256|Mypassword1';

In the following example, a valid SHA-256 digest and 256-bit salt that was used to create the
digest are supplied.

To specify a password and hash it with your own salt, follow these steps:

1. Create a 256-bit salt. You can obtain a salt by using any hexadecimal string
generator to generate a string 64 characters long. For this example, the salt is
c721bff5d9042cf541ff7b9d48fa8a6e545c19a763e3710151f9513038b0f6c6.

2. Use the FROM_HEX function to convert your salt to binary. This is because the SHA2 function
requires the binary representation of the salt. See the following statement.

SELECT
 FROM_HEX('c721bff5d9042cf541ff7b9d48fa8a6e545c19a763e3710151f9513038b0f6c6');

3. Use the CONCAT function to append your salt to your password. For this example, the
password is Mypassword1. See the following statement.

SELECT
 CONCAT('Mypassword1',FROM_HEX('c721bff5d9042cf541ff7b9d48fa8a6e545c19a763e3710151f9513038b0f6c6'));

4. Use the SHA2 function to create a digest from your password and salt combination. See the
following statement.

SELECT
 SHA2(CONCAT('Mypassword1',FROM_HEX('c721bff5d9042cf541ff7b9d48fa8a6e545c19a763e3710151f9513038b0f6c6')),
 0);

5. Using the digest and salt from the previous steps, create the user. See the following
statement.

CREATE USER admin PASSWORD 'sha256|
821708135fcc42eb3afda85286dee0ed15c2c461d000291609f77eb113073ec2|
c721bff5d9042cf541ff7b9d48fa8a6e545c19a763e3710151f9513038b0f6c6';

6. Log on to the database using the sign-in credentials.

For this example, log on as admin with password Mypassword1.

CREATE USER 1383

Amazon Redshift Database Developer Guide

If you set a password in plain text without specifying the hashing function, then an MD5 digest
is generated using the username as the salt.

CREATEDB | NOCREATEDB

The CREATEDB option allows the new user to create databases. The default is NOCREATEDB.

CREATEUSER | NOCREATEUSER

The CREATEUSER option creates a superuser with all database privileges, including CREATE
USER. The default is NOCREATEUSER. For more information, see superuser.

SYSLOG ACCESS { RESTRICTED | UNRESTRICTED }

A clause that specifies the level of access the user has to the Amazon Redshift system tables
and views.

Regular users who have the SYSLOG ACCESS RESTRICTED permission can see only the rows
generated by that user in user-visible system tables and views. The default is RESTRICTED.

Regular users who have the SYSLOG ACCESS UNRESTRICTED permission can see all rows in
user-visible system tables and views, including rows generated by another user. UNRESTRICTED
doesn't give a regular user access to superuser-visible tables. Only superusers can see
superuser-visible tables.

Note

Giving a user unrestricted access to system tables gives the user visibility to data
generated by other users. For example, STL_QUERY and STL_QUERYTEXT contain the
full text of INSERT, UPDATE, and DELETE statements, which might contain sensitive
user-generated data.

All rows in SVV_TRANSACTIONS are visible to all users.

For more information, see Visibility of data in system tables and views.

IN GROUP groupname

Specifies the name of an existing group that the user belongs to. Multiple group names may be
listed.

CREATE USER 1384

Amazon Redshift Database Developer Guide

VALID UNTIL abstime

The VALID UNTIL option sets an absolute time after which the user's password is no longer
valid. By default the password has no time limit.

CONNECTION LIMIT { limit | UNLIMITED }

The maximum number of database connections the user is permitted to have open
concurrently. The limit isn't enforced for superusers. Use the UNLIMITED keyword to permit
the maximum number of concurrent connections. A limit on the number of connections for
each database might also apply. For more information, see CREATE DATABASE. The default is
UNLIMITED. To view current connections, query the STV_SESSIONS system view.

Note

If both user and database connection limits apply, an unused connection slot must be
available that is within both limits when a user attempts to connect.

SESSION TIMEOUT limit

The maximum time in seconds that a session remains inactive or idle. The range is 60 seconds
(one minute) to 1,728,000 seconds (20 days). If no session timeout is set for the user, the cluster
setting applies. For more information, see Quotas and limits in Amazon Redshift in the Amazon
Redshift Management Guide.

When you set the session timeout, it's applied to new sessions only.

To view information about active user sessions, including the start time, user name, and session
timeout, query the STV_SESSIONS system view. To view information about user-session history,
query the STL_SESSIONS view. To retrieve information about database users, including session-
timeout values, query the SVL_USER_INFO view.

EXTERNALID external_id

The identifier for the user, which is associated with an identity provider. The user must have
their password disabled. For more information, see Native identity provider (IdP) federation for
Amazon Redshift.

CREATE USER 1385

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-native-idp.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-native-idp.html

Amazon Redshift Database Developer Guide

Usage notes

By default, all users have CREATE and USAGE privileges on the PUBLIC schema. To disallow users
from creating objects in the PUBLIC schema of a database, use the REVOKE command to remove
that privilege.

When using IAM authentication to create database user credentials, you might want to create a
superuser that is able to log on only using temporary credentials. You can't disable a superuser's
password, but you can create an unknown password using a randomly generated MD5 hash string.

create user iam_superuser password 'md5A1234567890123456780123456789012' createuser;

The case of a username enclosed in double quotation marks is always preserved regardless of
the setting of the enable_case_sensitive_identifier configuration option. For more
information, see enable_case_sensitive_identifier.

Examples

The following command creates a user named dbuser, with the password "abcD1234", database
creation privileges, and a connection limit of 30.

create user dbuser with password 'abcD1234' createdb connection limit 30;

Query the PG_USER_INFO catalog table to view details about a database user.

select * from pg_user_info;

 usename | usesysid | usecreatedb | usesuper | usecatupd | passwd | valuntil |
 useconfig | useconnlimit
-----------+----------+-------------+----------+-----------+----------+----------
+-----------+-------------
 rdsdb | 1 | true | true | true | ******** | infinity |
 |
 adminuser | 100 | true | true | false | ******** | |
 | UNLIMITED
 dbuser | 102 | true | false | false | ******** | |
 | 30

In the following example, the account password is valid until June 10, 2017.

CREATE USER 1386

Amazon Redshift Database Developer Guide

create user dbuser with password 'abcD1234' valid until '2017-06-10';

The following example creates a user with a case-sensitive password that contains special
characters.

create user newman with password '@AbC4321!';

To use a backslash ('\') in your MD5 password, escape the backslash with a backslash in your source
string. The following example creates a user named slashpass with a single backslash ('\') as the
password.

select md5('\\'||'slashpass');

md5

0c983d1a624280812631c5389e60d48c

Create a user with the md5 password.

create user slashpass password 'md50c983d1a624280812631c5389e60d48c';

The following example creates a user named dbuser with an idle-session timeout set to 120
seconds.

CREATE USER dbuser password 'abcD1234' SESSION TIMEOUT 120;

The following example creates a user named bob. The namespace is myco_aad. This is only a
sample. To run the command successfully, you must have a registered identity provider. For more
information, see Native identity provider (IdP) federation for Amazon Redshift.

CREATE USER myco_aad:bob EXTERNALID "ABC123" PASSWORD DISABLE;

CREATE VIEW

Creates a view in a database. The view isn't physically materialized; the query that defines the view
is run every time the view is referenced in a query. To create a view with an external table, include
the WITH NO SCHEMA BINDING clause.

CREATE VIEW 1387

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-native-idp.html

Amazon Redshift Database Developer Guide

To create a standard view, you need access to the underlying tables, or to underlying views. To
query a standard view, you need select permissions for the view itself, but you don't need select
permissions for the underlying tables. In a case where you create a view that references a table
or view in another schema, or if you create a view that references a materialized view, you need
usage permissions. To query a late binding view, you need select permissions for the late binding
view itself. You should also make sure the owner of the late binding view has select privileges to
the referenced objects (tables, views, or user-defined functions). For more information about late-
binding Views, see Usage notes.

Required privileges

Following are required privileges for CREATE VIEW:

• For CREATE VIEW:

• Superuser

• Users with the CREATE [OR REPLACE] VIEW privilege

• For REPLACE VIEW:

• Superuser

• Users with the CREATE [OR REPLACE] VIEW privilege

• View owner

Syntax

CREATE [OR REPLACE] VIEW name [(column_name [, ...])] AS query
[WITH NO SCHEMA BINDING]

Parameters

OR REPLACE

If a view of the same name already exists, the view is replaced. You can only replace a view with
a new query that generates the identical set of columns, using the same column names and
data types. CREATE OR REPLACE VIEW locks the view for reads and writes until the operation
completes.

When a view is replaced, its other properties such as ownership and granted privileges are
preserved.

CREATE VIEW 1388

Amazon Redshift Database Developer Guide

name

The name of the view. If a schema name is given (such as myschema.myview) the view is
created using the specified schema. Otherwise, the view is created in the current schema. The
view name must be different from the name of any other view or table in the same schema.

If you specify a view name that begins with '# ', the view is created as a temporary view that is
visible only in the current session.

For more information about valid names, see Names and identifiers. You can't create tables or
views in the system databases template0, template1, padb_harvest, or sys:internal.

column_name

Optional list of names to be used for the columns in the view. If no column names are given, the
column names are derived from the query. The maximum number of columns you can define in
a single view is 1,600.

query

A query (in the form of a SELECT statement) that evaluates to a table. This table defines the
columns and rows in the view.

WITH NO SCHEMA BINDING

Clause that specifies that the view isn't bound to the underlying database objects, such as
tables and user-defined functions. As a result, there is no dependency between the view and the
objects it references. You can create a view even if the referenced objects don't exist. Because
there is no dependency, you can drop or alter a referenced object without affecting the view.
Amazon Redshift doesn't check for dependencies until the view is queried. To view details about
late-binding views, run the PG_GET_LATE_BINDING_VIEW_COLS function.

When you include the WITH NO SCHEMA BINDING clause, tables and views referenced in the
SELECT statement must be qualified with a schema name. The schema must exist when the
view is created, even if the referenced table doesn't exist. For example, the following statement
returns an error.

create view myevent as select eventname from event
with no schema binding;

The following statement runs successfully.

create view myevent as select eventname from public.event

CREATE VIEW 1389

Amazon Redshift Database Developer Guide

with no schema binding;

Note

You can't update, insert into, or delete from a view.

Usage notes

Late-binding views

A late-binding view doesn't check the underlying database objects, such as tables and other views,
until the view is queried. As a result, you can alter or drop the underlying objects without dropping
and recreating the view. If you drop underlying objects, queries to the late-binding view will fail. If
the query to the late-binding view references columns in the underlying object that aren't present,
the query will fail.

If you drop and then re-create a late-binding view's underlying table or view, the new object is
created with default access permissions. You might need to grant permissions to the underlying
objects for users who will query the view.

To create a late-binding view, include the WITH NO SCHEMA BINDING clause. The following
example creates a view with no schema binding.

create view event_vw as select * from public.event
with no schema binding;

select * from event_vw limit 1;

eventid | venueid | catid | dateid | eventname | starttime
--------+---------+-------+--------+---------------+--------------------
 2 | 306 | 8 | 2114 | Boris Godunov | 2008-10-15 20:00:00

The following example shows that you can alter an underlying table without recreating the view.

alter table event rename column eventname to title;

select * from event_vw limit 1;

CREATE VIEW 1390

Amazon Redshift Database Developer Guide

eventid | venueid | catid | dateid | title | starttime
--------+---------+-------+--------+---------------+--------------------
 2 | 306 | 8 | 2114 | Boris Godunov | 2008-10-15 20:00:00

You can reference Amazon Redshift Spectrum external tables only in a late-binding view. One
application of late-binding views is to query both Amazon Redshift and Redshift Spectrum tables.
For example, you can use the UNLOAD command to archive older data to Amazon S3. Then, create
a Redshift Spectrum external table that references the data on Amazon S3 and create a view that
queries both tables. The following example uses a UNION ALL clause to join the Amazon Redshift
SALES table and the Redshift Spectrum SPECTRUM.SALES table.

create view sales_vw as
select * from public.sales
union all
select * from spectrum.sales
with no schema binding;

For more information about creating Redshift Spectrum external tables, including the
SPECTRUM.SALES table, see Getting started with Amazon Redshift Spectrum.

When you create a standard view from a late-binding view, the standard view’s definition contains
the definition of the late-binding view at the time the standard view was made. The late-binding
view’s dependency isn't tracked, so changes to the late-binding view aren't tracked in the standard
view.

To update the standard view to refer to the latest definition of the late-binding view, run CREATE
OR REPLACE VIEW with the initial view definition you used to create the standard view.

See the following example of creating a standard view from a late-binding view.

create view sales_vw_lbv as
select * from public.sales
with no schema binding;

show view sales_vw_lbv;
 Show View DDL statement
--
 create view sales_vw_lbv as select * from public.sales with no schema binding;
(1 row)

CREATE VIEW 1391

Amazon Redshift Database Developer Guide

create view sales_vw as
select * from sales_vw_lbv;

show view sales_vw;
 Show View DDL statement

 SELECT sales_vw_lbv.price, sales_vw_lbv."region" FROM (SELECT sales.price,
 sales."region" FROM sales) sales_vw_lbv;
(1 row)

Note that the late-binding view as shown in the DDL statement for the standard view is defined
when the standard view is created, and won’t update with any changes you make to the late-
binding view afterward.

Examples

The example commands use a sample set of objects and data called the TICKIT database. For more
information, see Sample database.

The following command creates a view called myevent from a table called EVENT.

create view myevent as select eventname from event
where eventname = 'LeAnn Rimes';

The following command creates a view called myuser from a table called USERS.

create view myuser as select lastname from users;

The following command creates or replaces a view called myuser from a table called USERS.

create or replace view myuser as select lastname from users;

The following example creates a view with no schema binding.

create view myevent as select eventname from public.event
with no schema binding;

DEALLOCATE

Deallocates a prepared statement.

DEALLOCATE 1392

https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

Amazon Redshift Database Developer Guide

Syntax

DEALLOCATE [PREPARE] plan_name

Parameters

PREPARE

This keyword is optional and is ignored.

plan_name

The name of the prepared statement to deallocate.

Usage Notes

DEALLOCATE is used to deallocate a previously prepared SQL statement. If you don't explicitly
deallocate a prepared statement, it is deallocated when the current session ends. For more
information on prepared statements, see PREPARE.

See Also

EXECUTE, PREPARE

DECLARE

Defines a new cursor. Use a cursor to retrieve a few rows at a time from the result set of a larger
query.

When the first row of a cursor is fetched, the entire result set is materialized on the leader node,
in memory or on disk, if needed. Because of the potential negative performance impact of using
cursors with large result sets, we recommend using alternative approaches whenever possible. For
more information, see Performance considerations when using cursors.

You must declare a cursor within a transaction block. Only one cursor at a time can be open per
session.

For more information, see FETCH, CLOSE.

DECLARE 1393

Amazon Redshift Database Developer Guide

Syntax

DECLARE cursor_name CURSOR FOR query

Parameters

cursor_name

Name of the new cursor.

query

A SELECT statement that populates the cursor.

DECLARE CURSOR usage notes

If your client application uses an ODBC connection and your query creates a result set that is too
large to fit in memory, you can stream the result set to your client application by using a cursor.
When you use a cursor, the entire result set is materialized on the leader node, and then your client
can fetch the results incrementally.

Note

To enable cursors in ODBC for Microsoft Windows, enable the Use Declare/Fetch option in
the ODBC DSN you use for Amazon Redshift. We recommend setting the ODBC cache size,
using the Cache Size field in the ODBC DSN options dialog, to 4,000 or greater on multi-
node clusters to minimize round trips. On a single-node cluster, set Cache Size to 1,000.

Because of the potential negative performance impact of using cursors, we recommend using
alternative approaches whenever possible. For more information, see Performance considerations
when using cursors.

Amazon Redshift cursors are supported with the following limitations:

• Only one cursor at a time can be open per session.

• Cursors must be used within a transaction (BEGIN … END).

• The maximum cumulative result set size for all cursors is constrained based on the cluster node
type. If you need larger result sets, you can resize to an XL or 8XL node configuration.

DECLARE 1394

Amazon Redshift Database Developer Guide

For more information, see Cursor constraints.

Cursor constraints

When the first row of a cursor is fetched, the entire result set is materialized on the leader node. If
the result set doesn't fit in memory, it is written to disk as needed. To protect the integrity of the
leader node, Amazon Redshift enforces constraints on the size of all cursor result sets, based on the
cluster's node type.

The following table shows the maximum total result set size for each cluster node type. Maximum
result set sizes are in megabytes.

Node type Maximum result set per cluster (MB)

RA3 16XL multiple nodes 14400000

DC2 Large single node 8000

DC2 Large multiple nodes 192000

DC2 8XL multiple nodes 3200000

RA3 4XL multiple nodes 3200000

RA3 XLPLUS multiple nodes 1000000

RA3 XLPLUS single node 64000

Amazon Redshift Serverless 150000

To view the active cursor configuration for a cluster, query the STV_CURSOR_CONFIGURATION
system table as a superuser. To view the state of active cursors, query the STV_ACTIVE_CURSORS
system table. Only the rows for a user's own cursors are visible to the user, but a superuser can
view all cursors.

Performance considerations when using cursors

Because cursors materialize the entire result set on the leader node before beginning to return
results to the client, using cursors with very large result sets can have a negative impact on

DECLARE 1395

Amazon Redshift Database Developer Guide

performance. We strongly recommend against using cursors with very large result sets. In some
cases, such as when your application uses an ODBC connection, cursors might be the only feasible
solution. If possible, we recommend using these alternatives:

• Use UNLOAD to export a large table. When you use UNLOAD, the compute nodes work in
parallel to transfer the data directly to data files on Amazon Simple Storage Service. For more
information, see Unloading data.

• Set the JDBC fetch size parameter in your client application. If you use a JDBC connection and
you are encountering client-side out-of-memory errors, you can enable your client to retrieve
result sets in smaller batches by setting the JDBC fetch size parameter. For more information, see
Setting the JDBC fetch size parameter.

DECLARE CURSOR examples

The following example declares a cursor named LOLLAPALOOZA to select sales information for the
Lollapalooza event, and then fetches rows from the result set using the cursor:

-- Begin a transaction

begin;

-- Declare a cursor

declare lollapalooza cursor for
select eventname, starttime, pricepaid/qtysold as costperticket, qtysold
from sales, event
where sales.eventid = event.eventid
and eventname='Lollapalooza';

-- Fetch the first 5 rows in the cursor lollapalooza:

fetch forward 5 from lollapalooza;

 eventname | starttime | costperticket | qtysold
--------------+---------------------+---------------+---------
 Lollapalooza | 2008-05-01 19:00:00 | 92.00000000 | 3
 Lollapalooza | 2008-11-15 15:00:00 | 222.00000000 | 2
 Lollapalooza | 2008-04-17 15:00:00 | 239.00000000 | 3
 Lollapalooza | 2008-04-17 15:00:00 | 239.00000000 | 4
 Lollapalooza | 2008-04-17 15:00:00 | 239.00000000 | 1
(5 rows)

DECLARE 1396

Amazon Redshift Database Developer Guide

-- Fetch the next row:

fetch next from lollapalooza;

 eventname | starttime | costperticket | qtysold
--------------+---------------------+---------------+---------
 Lollapalooza | 2008-10-06 14:00:00 | 114.00000000 | 2

-- Close the cursor and end the transaction:

close lollapalooza;
commit;

The following example loops over a refcursor with all the results from a table:

CREATE TABLE tbl_1 (a int, b int);
INSERT INTO tbl_1 values (1, 2),(3, 4);

CREATE OR REPLACE PROCEDURE sp_cursor_loop() AS $$
DECLARE
 target record;
 curs1 cursor for select * from tbl_1;
BEGIN
 OPEN curs1;
 LOOP
 fetch curs1 into target;
 exit when not found;
 RAISE INFO 'a %', target.a;
 END LOOP;
 CLOSE curs1;
END;
$$ LANGUAGE plpgsql;

CALL sp_cursor_loop();

SELECT message
 from svl_stored_proc_messages
 where querytxt like 'CALL sp_cursor_loop()%';

 message

 a 1

DECLARE 1397

Amazon Redshift Database Developer Guide

 a 3

DELETE

Deletes rows from tables.

Note

The maximum size for a single SQL statement is 16 MB.

Syntax

[WITH [RECURSIVE] common_table_expression [, common_table_expression , ...]]
DELETE [FROM] { table_name | materialized_view_name }
 [{ USING } table_name, ...]
 [WHERE condition]

Parameters

WITH clause

Optional clause that specifies one or more common-table-expressions. See WITH clause.

FROM

The FROM keyword is optional, except when the USING clause is specified. The statements
delete from event; and delete event; are equivalent operations that remove all of the
rows from the EVENT table.

Note

To delete all the rows from a table, TRUNCATE the table. TRUNCATE is much more
efficient than DELETE and doesn't require a VACUUM and ANALYZE. However, be aware
that TRUNCATE commits the transaction in which it is run.

table_name

A temporary or persistent table. Only the owner of the table or a user with DELETE privilege on
the table may delete rows from the table.

DELETE 1398

Amazon Redshift Database Developer Guide

Consider using the TRUNCATE command for fast unqualified delete operations on large tables;
see TRUNCATE.

Note

After deleting a large number of rows from a table:

• Vacuum the table to reclaim storage space and re-sort rows.

• Analyze the table to update statistics for the query planner.

materialized_view_name

A materialized view. The DELETE statement works on a materialized view used for Streaming
ingestion. Only the owner of the materialized view or a user with DELETE privilege on the
materialized view may delete rows from it.

You can't run DELETE on a materialized view for streaming ingestion with a row-level security
(RLS) policy that doesn't have the IGNORE RLS permission granted to the user. There is
an exception to this: If the user performing the DELETE has IGNORE RLS granted, it runs
successfully. For more information, see RLS policy ownership and management.

USING table_name, ...

The USING keyword is used to introduce a table list when additional tables are referenced in the
WHERE clause condition. For example, the following statement deletes all of the rows from the
EVENT table that satisfy the join condition over the EVENT and SALES tables. The SALES table
must be explicitly named in the FROM list:

delete from event using sales where event.eventid=sales.eventid;

If you repeat the target table name in the USING clause, the DELETE operation runs a self-join.
You can use a subquery in the WHERE clause instead of the USING syntax as an alternative way
to write the same query.

WHERE condition

Optional clause that limits the deletion of rows to those that match the condition. For example,
the condition can be a restriction on a column, a join condition, or a condition based on the
result of a query. The query can reference tables other than the target of the DELETE command.
For example:

DELETE 1399

https://docs.aws.amazon.com/redshift/latest/dg/t_rls_ownership.html

Amazon Redshift Database Developer Guide

delete from t1
where col1 in(select col2 from t2);

If no condition is specified, all of the rows in the table are deleted.

Examples

Delete all of the rows from the CATEGORY table:

delete from category;

Delete rows with CATID values between 0 and 9 from the CATEGORY table:

delete from category
where catid between 0 and 9;

Delete rows from the LISTING table whose SELLERID values don't exist in the SALES table:

delete from listing
where listing.sellerid not in(select sales.sellerid from sales);

The following two queries both delete one row from the CATEGORY table, based on a join to the
EVENT table and an additional restriction on the CATID column:

delete from category
using event
where event.catid=category.catid and category.catid=9;

delete from category
where catid in
(select category.catid from category, event
where category.catid=event.catid and category.catid=9);

The following query deletes all rows from the mv_cities materialized view. The materialized view
name in this example is a sample:

delete from mv_cities;

DELETE 1400

Amazon Redshift Database Developer Guide

DESC DATASHARE

Displays a list of the database objects within a datashare that are added to it using ALTER
DATASHARE. Amazon Redshift displays the names, databases, schemas, and types of tables, views,
and functions.

Additional information about datashare objects can be found by using system views. For more
information, see SVV_DATASHARE_OBJECTS and SVV_DATASHARES.

Syntax

DESC DATASHARE datashare_name [OF [ACCOUNT account_id] NAMESPACE namespace_guid]

Parameters

datashare_name

The name of the datashare .

NAMESPACE namespace_guid

A value that specifies the namespace that the datashare uses. When you run DESC DATAHSARE
as a consumer cluster administrator, specify the NAMESPACE parameter to view inbound
datashares.

ACCOUNT account_id

A value that specifies the account that the datashare belongs to.

Usage Notes

As a consumer account administrator, when you run DESC DATASHARE to see inbound datashares
within the AWS account, specify the NAMESPACE option. When you run DESC DATASHARE to see
inbound datashares across AWS accounts, specify the ACCOUNT and NAMESPACE options.

Examples

The following example displays the information for outbound datashares on a producer cluster.

DESC DATASHARE salesshare;

DESC DATASHARE 1401

https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_DATASHARE_OBJECTS.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_DATASHARES.html

Amazon Redshift Database Developer Guide

producer_account | producer_namespace | share_type | share_name |
 object_type | object_name | include_new
-----------------+---------------------------------------+-------------+--------------
+-------------+------------------------------+--------------
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare |
 TABLE | public.tickit_sales_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | OUTBOUND | salesshare |
 SCHEMA | public | t

The following example displays the information for inbound datashares on a consumer cluster.

DESC DATASHARE salesshare of ACCOUNT '123456789012' NAMESPACE
 '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

 producer_account | producer_namespace | share_type | share_name |
 object_type | object_name | include_new
------------------+--------------------------------------+------------+------------
+-------------+------------------------------+--------------
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare |
 table | public.tickit_sales_redshift |
 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | INBOUND | salesshare |
 schema | public |
(2 rows)

DESC IDENTITY PROVIDER

Displays information about an identity provider. Only a superuser can describe an identity provider.

Syntax

DESC IDENTITY PROVIDER identity_provider_name

Parameters

identity_provider_name

The name of the identity provider.

Example

The following example displays information about the identity provider.

DESC IDENTITY PROVIDER 1402

Amazon Redshift Database Developer Guide

DESC IDENTITY PROVIDER azure_idp;

Sample output.

 uid | name | type | instanceid | namespc |

 params

 | enabled
--------+-----------+-------+--------------------------------------+---------
+---
+---------
 126692 | azure_idp | azure | e40d4bb2-7670-44ae-bfb8-5db013221d73 | aad |
 {"issuer":"https://login.microsoftonline.com/e40d4bb2-7670-44ae-bfb8-5db013221d73/
v2.0", "client_id":"871c010f-5e61-4fb1-83ac-98610a7e9110", "client_secret":'',
 "audience":["https://analysis.windows.net/powerbi/connector/AmazonRedshift", "https://
analysis.windows.net/powerbi/connector/AWSRDS"]} | t
(1 row)

DETACH MASKING POLICY

Detaches an already attached dynamic data masking policy from a column. For more information
on dynamic data masking, see Dynamic data masking.

Superusers and users or roles that have the sys:secadmin role can detach a masking policy.

Syntax

DETACH MASKING POLICY policy_name
 ON { table_name }
 (output_column_names)
 FROM { user_name | ROLE role_name | PUBLIC };

Parameters

policy_name

The name of the masking policy to detach.

table_name

The name of the table to detach the masking policy from.

DETACH MASKING POLICY 1403

Amazon Redshift Database Developer Guide

output_column_names

The names of the columns to which the masking policy was attached.

user_name

The name of the user to whom the masking policy was attached.

You can only set one of user_name, role_name, and PUBLIC in a single DETACH MASKING
POLICY statement.

role_name

The name of the role to which the masking policy was attached.

You can only set one of user_name, role_name, and PUBLIC in a single DETACH MASKING
POLICY statement.

PUBLIC

Shows that the policy was attached to all users in the table.

You can only set one of user_name, role_name, and PUBLIC in a single DETACH MASKING
POLICY statement.

DETACH RLS POLICY

Detach a row-level security policy on a table from one or more users or roles.

Superusers and users or roles that have the sys:secadmin role can detach a policy.

Syntax

DETACH RLS POLICY policy_name ON [TABLE] table_name [, ...]
FROM { user_name | ROLE role_name | PUBLIC } [, ...]

Parameters

policy_name

The name of the policy.

DETACH RLS POLICY 1404

Amazon Redshift Database Developer Guide

ON [TABLE] table_name [, ...]

The table or view that the row-level security policy is detached from.

FROM { user_name | ROLE role_name | PUBLIC} [, ...]

Specifies whether the policy is detached from one or more specified users or roles.

Usage notes

When working with the DETACH RLS POLICY statement, observe the following:

• You can detach a policy from a relation, user, role, or public.

Examples

The following example detaches a policy on a table from a role.

DETACH RLS POLICY policy_concerts ON tickit_category_redshift FROM ROLE analyst, ROLE
 dbadmin;

DROP DATABASE

Drops a database.

You can't run DROP DATABASE within a transaction block (BEGIN ... END). For more information
about transactions, see Serializable isolation.

Syntax

DROP DATABASE database_name

Parameters

database_name

Name of the database to be dropped. You can't drop the dev, padb_harvest, template0,
template1, or sys:internal databases, and you can't drop the current database.

To drop an external database, drop the external schema. For more information, see DROP
SCHEMA.

DROP DATABASE 1405

Amazon Redshift Database Developer Guide

DROP DATABASE usage notes

When using the DROP DATABASE statement, consider the following:

• In general, we recommend that you don't drop a database that contains an AWS Data Exchange
datashare using the DROP DATABASE statement. If you do, the AWS accounts that have access
to the datashare lose access. Performing this type of alteration can breach data product terms in
AWS Data Exchange.

The following example shows an error when a database that contains an AWS Data Exchange
datashare is dropped.

DROP DATABASE test_db;
ERROR: Drop of database test_db that contains ADX-managed datashare(s)
 requires session variable datashare_break_glass_session_var to be set to value
 'ce8d280c10ad41'

To allow dropping the database, set the following variable and run the DROP DATABASE
statement again.

SET datashare_break_glass_session_var to 'ce8d280c10ad41';

DROP DATABASE test_db;

In this case, Amazon Redshift generates a random one-time value to set the session variable to
allow DROP DATABASE for a database that contains an AWS Data Exchange datashare.

Examples

The following example drops a database named TICKIT_TEST:

drop database tickit_test;

DROP DATASHARE

Drops a datashare. This command isn't reversible.

Only a superuser or the datashare owner can drop a datashare.

DROP DATASHARE 1406

Amazon Redshift Database Developer Guide

Required privileges

Following are required privileges for DROP DATASHARE:

• Superuser

• Users with the DROP DATASHARE privilege

• Datashare owner

Syntax

DROP DATASHARE datashare_name;

Parameters

datashare_name

The name of the datashare to be dropped.

DROP DATASHARE usage notes

When using the DROP DATASHARE statement, consider the following:

• In general, we recommend that you don't drop an AWS Data Exchange datashare using the DROP
DATASHARE statement. If you do, the AWS accounts that have access to the datashare lose
access. Performing this type of alteration can breach data product terms in AWS Data Exchange.

The following example shows an error when an AWS Data Exchange datashare is dropped.

DROP DATASHARE salesshare;
ERROR: Drop of ADX-managed datashare salesshare requires session variable
 datashare_break_glass_session_var to be set to value '620c871f890c49'

To allow dropping an AWS Data Exchange datashare, set the following variable and run the
DROP DATASHARE statement again.

SET datashare_break_glass_session_var to '620c871f890c49';

DROP DATASHARE 1407

Amazon Redshift Database Developer Guide

DROP DATASHARE salesshare;

In this case, Amazon Redshift generates a random one-time value to set the session variable to
allow DROP DATASHARE for an AWS Data Exchange datashare.

Examples

The following example drops a datashare named salesshare.

DROP DATASHARE salesshare;

DROP EXTERNAL VIEW (preview)

This is prerelease documentation views in Data Catalog for Amazon Redshift, which is
in preview release. The documentation and the feature are both subject to change. We
recommend that you use this feature only with test clusters, and not in production environme
nts. For preview terms and conditions, see Beta and Previews in AWS Service Terms.

You can create an Amazon Redshift cluster in Preview to test new features of Amazon Redshift.
You can't use those features in production or move your Preview cluster to a production cluster or
a cluster on another track. For preview terms and conditions, see Beta and Previews in AWS Service
Terms.

To create a cluster in Preview

1. Sign in to the AWS Management Console and open the Amazon Redshift console at https://
console.aws.amazon.com/redshiftv2/.

2. On the navigation menu, choose Provisioned clusters dashboard, and choose Clusters. The
clusters for your account in the current AWS Region are listed. A subset of properties of each
cluster is displayed in columns in the list.

3. A banner displays on the Clusters list page that introduces preview. Choose the button Create
preview cluster to open the create cluster page.

4. Enter properties for your cluster. Choose the Preview track that contains the features you
want to test. We recommend entering a name for the cluster that indicates that it is on a
preview track. Choose options for your cluster, including options labeled as -preview, for the

DROP EXTERNAL VIEW (preview) 1408

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/
https://console.aws.amazon.com/redshiftv2/
https://console.aws.amazon.com/redshiftv2/

Amazon Redshift Database Developer Guide

features you want to test. For general information about creating clusters, see Creating a
cluster in the Amazon Redshift Management Guide.

5. Choose Create cluster to create a cluster in preview.

Note

The preview_2023 track is the most recent preview track available. This track
supports creating clusters with RA3 node types only. Node type DC2 and any older
node type is not supported.

6. When your preview cluster is available, use your SQL client to load and query data.

The Data Catalog views preview feature is available only in the following Regions.

• US East (Ohio) (us-east-2)

• US East (N. Virginia) (us-east-1)

• US West (N. California) (us-west-1)

• Asia Pacific (Tokyo) (ap-northeast-1)

• Europe (Ireland) (eu-west-1)

• Europe (Stockholm) (eu-north-1)

You can also create a preview workgroup to test Data Catalog views. You can't use those features in
production or move your workgroup to another workgroup. For preview terms and conditions, see
Beta and Previews in AWS Service Terms. For instructions on how to create a preview workgroup,
see https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html.

Drops an external view from the database. Dropping an external view removes it from all SQL
engines the view is associated with, such as Amazon Athena and Amazon EMR Spark. This
command can't be reversed. For more information about Data Catalog views, see Creating Data
Catalog views (preview).

Syntax

DROP EXTERNAL VIEW schema_name.view_name [IF EXISTS]
{catalog_name.schema_name.view_name | awsdatacatalog.dbname.view_name |
 external_schema_name.view_name}

DROP EXTERNAL VIEW (preview) 1409

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster
https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#create-cluster
https://aws.amazon.com/service-terms/
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html
https://docs.aws.amazon.com/redshift/latest/dg/glue-data-catalog-views-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/glue-data-catalog-views-overview.html

Amazon Redshift Database Developer Guide

Parameters

schema_name.view_name

The schema that’s attached to your AWS Glue database, followed by the name of the view.

IF EXISTS

Drops the view only if it exists.

catalog_name.schema_name.view_name | awsdatacatalog.dbname.view_name |
external_schema_name.view_name

The notation of the schema to use when dropping the view. You can specify to use the AWS
Glue Data Catalog, a Glue database that you created, or an external schema that you created.
See CREATE DATABASE and CREATE EXTERNAL SCHEMA for more information.

query_definition

The definition of the SQL query that Amazon Redshift runs to alter the view.

Examples

The following example drops a Data Catalog view named sample_schema.glue_data_catalog_view.

DROP EXTERNAL VIEW sample_schema.glue_data_catalog_view IF EXISTS

DROP FUNCTION

Removes a user-defined function (UDF) from the database. The function's signature, or list of
argument data types, must be specified because multiple functions can exist with the same name
but different signatures. You can't drop an Amazon Redshift built-in function.

This command isn't reversible.

Required privileges

Following are required privileges for DROP FUNCTION:

• Superuser

• Users with the DROP FUNCTION privilege

• Function owner

DROP FUNCTION 1410

https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATABASE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_SCHEMA.html

Amazon Redshift Database Developer Guide

Syntax

DROP FUNCTION name
([arg_name] arg_type [, ...])
[CASCADE | RESTRICT]

Parameters

name

The name of the function to be removed.

arg_name

The name of an input argument. DROP FUNCTION ignores argument names, because only the
argument data types are needed to determine the function's identity.

arg_type

The data type of the input argument. You can supply a comma-separated list with a maximum
of 32 data types.

CASCADE

Keyword specifying to automatically drop objects that depend on the function, such as views.

To create a view that isn't dependent on a function, include the WITH NO SCHEMA BINDING
clause in the view definition. For more information, see CREATE VIEW.

RESTRICT

Keyword specifying that if any objects depend on the function, do not drop the function and
return a message. This action is the default.

Examples

The following example drops the function named f_sqrt:

drop function f_sqrt(int);

To remove a function that has dependencies, use the CASCADE option, as shown in the following
example:

DROP FUNCTION 1411

Amazon Redshift Database Developer Guide

drop function f_sqrt(int)cascade;

DROP GROUP

Deletes a user group. This command isn't reversible. This command doesn't delete the individual
users in a group.

See DROP USER to delete an individual user.

Syntax

DROP GROUP name

Parameter

name

Name of the user group to delete.

Example

The following example deletes the guests user group:

DROP GROUP guests;

You can't drop a group if the group has any privileges on an object. If you attempt to drop such a
group, you will receive the following error.

ERROR: group "guests" can't be dropped because the group has a privilege on some object

If the group has privileges for an object, you must revoke the privileges before dropping the group.
To find the objects that the guests group has privileges for, use the following example. For more
information about the metadata view used in the example, see SVV_RELATION_PRIVILEGES.

SELECT DISTINCT namespace_name, relation_name, identity_name, identity_type
FROM svv_relation_privileges
WHERE identity_type='group' AND identity_name='guests';

+----------------+---------------+---------------+---------------+

DROP GROUP 1412

https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_RELATION_PRIVILEGES.html

Amazon Redshift Database Developer Guide

| namespace_name | relation_name | identity_name | identity_type |
+----------------+---------------+---------------+---------------+
| public | table1 | guests | group |
+----------------+---------------+---------------+---------------+
| public | table2 | guests | group |
+----------------+---------------+---------------+---------------+

The following example revokes all privileges on all tables in the public schema from the guests
user group, and then drops the group.

REVOKE ALL ON ALL TABLES IN SCHEMA public FROM GROUP guests;
DROP GROUP guests;

DROP IDENTITY PROVIDER

Deletes an identity provider. This command isn't reversible. Only a superuser can drop an identity
provider.

Syntax

DROP IDENTITY PROVIDER identity_provider_name [CASCADE]

Parameters

identity_provider_name

Name of the identity provider to delete.

CASCADE

Deletes users and roles attached to the identity provider, when it is deleted.

Example

The following example deletes the oauth_provider identity provider.

DROP IDENTITY PROVIDER oauth_provider;

If you drop the identity provider, some users may not be able to log in or use client tools
configured to use the identity provider.

DROP IDENTITY PROVIDER 1413

Amazon Redshift Database Developer Guide

DROP LIBRARY

Removes a custom Python library from the database. Only the library owner or a superuser can
drop a library.

DROP LIBRARY can't be run inside a transaction block (BEGIN … END). For more information about
transactions, see Serializable isolation.

This command isn't reversible. The DROP LIBRARY command commits immediately. If a UDF that
depends on the library is running concurrently, the UDF might fail, even if the UDF is running
within a transaction.

For more information, see CREATE LIBRARY.

Required privileges

Following are required privileges for DROPLIBRARY:

• Superuser

• Users with the DROP LIBRARY privilege

• Library owner

Syntax

DROP LIBRARY library_name

Parameters

library_name

The name of the library.

DROP MASKING POLICY

Drops a dynamic data masking policy from all databases. You can't drop a masking policy that's still
attached to one or more tables. For more information on dynamic data masking, see Dynamic data
masking.

DROP LIBRARY 1414

Amazon Redshift Database Developer Guide

Superusers and users or roles that have the sys:secadmin role can drop a masking policy.

Syntax

DROP MASKING POLICY policy_name;

Parameters

policy_name

The name of the masking policy to drop.

DROP MODEL

Removes a model from the database. Only the model owner or a superuser can drop a model.

DROP MODEL also deletes all the associated prediction function that is derived from this model,
all Amazon Redshift artifacts related to the model, and all Amazon S3 data related to the model.
While the model is still being trained in Amazon SageMaker, DROP MODEL will cancel those
operations.

This command isn't reversible. The DROP MODEL command commits immediately.

Required permissions

Following are required permissions for DROP MODEL:

• Superuser

• Users with the DROP MODEL permission

• Model owner

• Schema owner

Syntax

DROP MODEL [IF EXISTS] model_name

DROP MODEL 1415

Amazon Redshift Database Developer Guide

Parameters

IF EXISTS

A clause that indicates that if the specified schema already exists, the command should make
no changes and return a message that the schema exists.

model_name

The name of the model. The model name in a schema must be unique.

Examples

The following example drops the model demo_ml.customer_churn.

DROP MODEL demo_ml.customer_churn

DROP MATERIALIZED VIEW

Removes a materialized view.

For more information about materialized views, see Creating materialized views in Amazon
Redshift.

Syntax

DROP MATERIALIZED VIEW [IF EXISTS] mv_name [CASCADE | RESTRICT]

Parameters

IF EXISTS

A clause that specifies to check if the named materialized view exists. If the materialized view
doesn't exist, then the DROP MATERIALIZED VIEW command returns an error message.
This clause is useful when scripting, to keep the script from failing if you drop a nonexistent
materialized view.

mv_name

The name of the materialized view to be dropped.

DROP MATERIALIZED VIEW 1416

Amazon Redshift Database Developer Guide

CASCADE

A clause that indicates to automatically drop objects that the materialized view depends on,
such as other views.

RESTRICT

A clause that indicates to not drop the materialized view if any objects depend on it. This is the
default.

Usage Notes

Only the owner of a materialized view can use DROP MATERIALIZED VIEW on that view. A
superuser or a user who has specifically been granted DROP privileges can be exceptions to this.

When you write a drop statement for a materialized view and a view with a matching name exists,
it results in an error that instructs you to use DROP VIEW. An error occurs even in a case where you
use DROP MATERIALIZED VIEW IF EXISTS.

Example

The following example drops the tickets_mv materialized view.

DROP MATERIALIZED VIEW tickets_mv;

DROP PROCEDURE

Drops a procedure. To drop a procedure, both the procedure name and input argument data types
(signature), are required. Optionally, you can include the full argument data types, including OUT
arguments. To find the signature for a procedure, use the SHOW PROCEDURE command. For more
information about procedure signatures, see PG_PROC_INFO.

Required privileges

Following are required privileges for DROP PROCEDURE:

• Superuser

• Users with the DROP PROCEDURE privilege

• Procedure owner

DROP PROCEDURE 1417

Amazon Redshift Database Developer Guide

Syntax

DROP PROCEDURE sp_name ([[argname] [argmode] argtype [, ...]])

Parameters

sp_name

The name of the procedure to be removed.

argname

The name of an input argument. DROP PROCEDURE ignores argument names, because only the
argument data types are needed to determine the procedure's identity.

argmode

The mode of an argument, which can be IN, OUT, or INOUT. OUT arguments are optional
because they aren't used to identify a stored procedure.

argtype

The data type of the input argument. For a list of the supported data types, see Data types.

Examples

The following example drops a stored procedure named quarterly_revenue.

DROP PROCEDURE quarterly_revenue(volume INOUT bigint, at_price IN numeric,result OUT
 int);

DROP RLS POLICY

Drops a row-level security policy for all tables in all databases.

Superusers and users or roles that have the sys:secadmin role can drop a policy.

Syntax

DROP RLS POLICY [IF EXISTS] policy_name [CASCADE | RESTRICT]

DROP RLS POLICY 1418

Amazon Redshift Database Developer Guide

Parameters

IF EXISTS

A clause that indicates if the specified policy already exists.

policy_name

The name of the policy.

CASCADE

A clause that indicates to automatically detach the policy from all attached tables before
dropping the policy.

RESTRICT

A clause that indicates not to drop the policy when it is attached to some tables. This is the
default.

Examples

The following example drops the row-level security policy.

DROP RLS POLICY policy_concerts;

DROP ROLE

Removes a role from a database. Only the role owner who either created the role, a user with the
WITH ADMIN option, or a superuser can drop a role.

You can't drop a role that is granted to a user or another role that is dependent on this role.

Required privileges

Following are the required privileges for DROP ROLE:

• Superuser

• Role owner who is either the user that created the role or a user that has been granted the role
with the WITH ADMIN OPTION privilege.

DROP ROLE 1419

Amazon Redshift Database Developer Guide

Syntax

DROP ROLE role_name [FORCE | RESTRICT]

Parameters

role_name

The name of the role.

[FORCE | RESTRICT]

The default setting is RESTRICT. Amazon Redshift throws an error when you try to drop a role
that has inherited another role. Use FORCE to remove all role assignments, if any exists.

Examples

The following example drops the role sample_role.

DROP ROLE sample_role FORCE;

The following example attempts to drop the role sample_role1 that has been granted to a user
with the default RESTRICT option.

CREATE ROLE sample_role1;
GRANT sample_role1 TO user1;
DROP ROLE sample_role1;
ERROR: cannot drop this role since it has been granted on a user

To successfully drop the sample_role1 that has been granted to a user, use the FORCE option.

DROP ROLE sample_role1 FORCE;

The following example attempts to drop the role sample_role2 that has another role dependent on
it with the default RESTRICT option.

CREATE ROLE sample_role1;
CREATE ROLE sample_role2;

DROP ROLE 1420

Amazon Redshift Database Developer Guide

GRANT sample_role1 TO sample_role2;
DROP ROLE sample_role2;
ERROR: cannot drop this role since it depends on another role

To successfully drop the sample_role2 that has another role dependent on it, use the FORCE
option.

DROP ROLE sample_role2 FORCE;

DROP SCHEMA

Deletes a schema. For an external schema, you can also drop the external database associated with
the schema. This command isn't reversible.

Required privileges

Following are required privileges for DROP SCHEMA:

• Superuser

• Schema owner

• Users with the DROP SCHEMA privilege

Syntax

DROP SCHEMA [IF EXISTS] name [, ...]
[DROP EXTERNAL DATABASE]
[CASCADE | RESTRICT]

Parameters

IF EXISTS

Clause that indicates that if the specified schema doesn’t exist, the command should make no
changes and return a message that the schema doesn't exist, rather than terminating with an
error.

This clause is useful when scripting, so the script doesn’t fail if DROP SCHEMA runs against a
nonexistent schema.

DROP SCHEMA 1421

Amazon Redshift Database Developer Guide

name

Names of the schemas to drop. You can specify multiple schema names separated by commas.

DROP EXTERNAL DATABASE

Clause that indicates that if an external schema is dropped, drop the external database
associated with the external schema, if one exists. If no external database exists, the command
returns a message stating that no external database exists. If multiple external schemas are
dropped, all databases associated with the specified schemas are dropped.

If an external database contains dependent objects such as tables, include the CASCADE option
to drop the dependent objects as well.

When you drop an external database, the database is also dropped for any other external
schemas associated with the database. Tables defined in other external schemas using the
database are also dropped.

DROP EXTERNAL DATABASE doesn't support external databases stored in a HIVE metastore.

CASCADE

Keyword that indicates to automatically drop all objects in the schema. If DROP EXTERNAL
DATABASE is specified, all objects in the external database are also dropped.

RESTRICT

Keyword that indicates not to drop a schema or external database if it contains any objects. This
action is the default.

Example

The following example deletes a schema named S_SALES. This example uses RESTRICT as a safety
mechanism so that the schema isn't deleted if it contains any objects. In this case, you need to
delete the schema objects before deleting the schema.

drop schema s_sales restrict;

The following example deletes a schema named S_SALES and all objects that depend on that
schema.

drop schema s_sales cascade;

DROP SCHEMA 1422

Amazon Redshift Database Developer Guide

The following example either drops the S_SALES schema if it exists, or does nothing and returns a
message if it doesn't.

drop schema if exists s_sales;

The following example deletes an external schema named S_SPECTRUM and the external database
associated with it. This example uses RESTRICT so that the schema and database aren't deleted if
they contain any objects. In this case, you need to delete the dependent objects before deleting the
schema and the database.

drop schema s_spectrum drop external database restrict;

The following example deletes multiple schemas and the external databases associated with them,
along with any dependent objects.

drop schema s_sales, s_profit, s_revenue drop external database cascade;

DROP TABLE

Removes a table from a database.

If you are trying to empty a table of rows, without removing the table, use the DELETE or
TRUNCATE command.

DROP TABLE removes constraints that exist on the target table. Multiple tables can be removed
with a single DROP TABLE command.

DROP TABLE with an external table can't be run inside a transaction (BEGIN … END). For more
information about transactions, see Serializable isolation.

To find an example where the DROP privilege is granted to a group, see GRANT Examples.

Required privileges

Following are required privileges for DROP TABLE:

• Superuser

• Users with the DROP TABLE privilege

• Table owner with the USAGE privilege on the schema

DROP TABLE 1423

Amazon Redshift Database Developer Guide

Syntax

DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Parameters

IF EXISTS

Clause that indicates that if the specified table doesn’t exist, the command should make no
changes and return a message that the table doesn't exist, rather than terminating with an
error.

This clause is useful when scripting, so the script doesn’t fail if DROP TABLE runs against a
nonexistent table.

name

Name of the table to drop.

CASCADE

Clause that indicates to automatically drop objects that depend on the table, such as views.

To create a view that isn't dependent on other database objects, such as views and tables,
include the WITH NO SCHEMA BINDING clause in the view definition. For more information, see
CREATE VIEW.

RESTRICT

Clause that indicates not to drop the table if any objects depend on it. This action is the default.

Examples

Dropping a table with no dependencies

The following example creates and drops a table called FEEDBACK that has no dependencies:

create table feedback(a int);

drop table feedback;

If a table contains columns that are referenced by views or other tables, Amazon Redshift displays
a message such as the following.

DROP TABLE 1424

Amazon Redshift Database Developer Guide

Invalid operation: cannot drop table feedback because other objects depend on it

Dropping two tables simultaneously

The following command set creates a FEEDBACK table and a BUYERS table and then drops both
tables with a single command:

create table feedback(a int);

create table buyers(a int);

drop table feedback, buyers;

Dropping a table with a dependency

The following steps show how to drop a table called FEEDBACK using the CASCADE switch.

First, create a simple table called FEEDBACK using the CREATE TABLE command:

create table feedback(a int);

Next, use the CREATE VIEW command to create a view called FEEDBACK_VIEW that relies on the
table FEEDBACK:

create view feedback_view as select * from feedback;

The following example drops the table FEEDBACK and also drops the view FEEDBACK_VIEW,
because FEEDBACK_VIEW is dependent on the table FEEDBACK:

drop table feedback cascade;

Viewing the dependencies for a table

To return the dependencies for your table, use the following example. Replace my_schema and
my_table with your own schema and table.

SELECT dependent_ns.nspname as dependent_schema
, dependent_view.relname as dependent_view
, source_ns.nspname as source_schema
, source_table.relname as source_table
, pg_attribute.attname as column_name

DROP TABLE 1425

Amazon Redshift Database Developer Guide

FROM pg_depend
JOIN pg_rewrite ON pg_depend.objid = pg_rewrite.oid
JOIN pg_class as dependent_view ON pg_rewrite.ev_class = dependent_view.oid
JOIN pg_class as source_table ON pg_depend.refobjid = source_table.oid
JOIN pg_attribute ON pg_depend.refobjid = pg_attribute.attrelid
 AND pg_depend.refobjsubid = pg_attribute.attnum
JOIN pg_namespace dependent_ns ON dependent_ns.oid = dependent_view.relnamespace
JOIN pg_namespace source_ns ON source_ns.oid = source_table.relnamespace
WHERE
source_ns.nspname = 'my_schema'
AND source_table.relname = 'my_table'
AND pg_attribute.attnum > 0
ORDER BY 1,2
LIMIT 10;

To drop my_table and its dependencies, use the following example. This example also returns all
dependencies for the table that has been dropped.

DROP TABLE my_table CASCADE;

SELECT dependent_ns.nspname as dependent_schema
, dependent_view.relname as dependent_view
, source_ns.nspname as source_schema
, source_table.relname as source_table
, pg_attribute.attname as column_name
FROM pg_depend
JOIN pg_rewrite ON pg_depend.objid = pg_rewrite.oid
JOIN pg_class as dependent_view ON pg_rewrite.ev_class = dependent_view.oid
JOIN pg_class as source_table ON pg_depend.refobjid = source_table.oid
JOIN pg_attribute ON pg_depend.refobjid = pg_attribute.attrelid
 AND pg_depend.refobjsubid = pg_attribute.attnum
JOIN pg_namespace dependent_ns ON dependent_ns.oid = dependent_view.relnamespace
JOIN pg_namespace source_ns ON source_ns.oid = source_table.relnamespace
WHERE
source_ns.nspname = 'my_schema'
AND source_table.relname = 'my_table'
AND pg_attribute.attnum > 0
ORDER BY 1,2
LIMIT 10;

+------------------+----------------+---------------+--------------+-------------+
| dependent_schema | dependent_view | source_schema | source_table | column_name |
+------------------+----------------+---------------+--------------+-------------+

DROP TABLE 1426

Amazon Redshift Database Developer Guide

Dropping a table Using IF EXISTS

The following example either drops the FEEDBACK table if it exists, or does nothing and returns a
message if it doesn't:

drop table if exists feedback;

DROP USER

Drops a user from a database. Multiple users can be dropped with a single DROP USER command.
You must be a database superuser or have the DROP USER permission to run this command.

Syntax

DROP USER [IF EXISTS] name [, ...]

Parameters

IF EXISTS

Clause that indicates that if the specified user doesn’t exist, the command should make no
changes and return a message that the user doesn't exist, rather than terminating with an error.

This clause is useful when scripting, so the script doesn’t fail if DROP USER runs against a
nonexistent user.

name

Name of the user to remove. You can specify multiple users, with a comma separating each user
name from the next.

Usage notes

You can't drop the user named rdsdb or the administrator user of the database which is typically
named awsuser or admin.

You can't drop a user if the user owns any database object, such as a schema, database, table, or
view, or if the user has any privileges on a database, table, column, or group. If you attempt to drop
such a user, you receive one of the following errors.

DROP USER 1427

Amazon Redshift Database Developer Guide

ERROR: user "username" can't be dropped because the user owns some object [SQL
 State=55006]

ERROR: user "username" can't be dropped because the user has a privilege on some object
 [SQL State=55006]

For detailed instructions on how to find the objects owned by a database user, see How do I resolve
the "user cannot be dropped" error in Amazon Redshift? in Knowledge Center.

Note

Amazon Redshift checks only the current database before dropping a user. DROP USER
doesn't return an error if the user owns database objects or has any privileges on objects in
another database. If you drop a user that owns objects in another database, the owner for
those objects is changed to 'unknown'.

If a user owns an object, first drop the object or change its ownership to another user before
dropping the original user. If the user has privileges for an object, first revoke the privileges before
dropping the user. The following example shows dropping an object, changing ownership, and
revoking privileges before dropping the user.

drop database dwdatabase;
alter schema dw owner to dwadmin;
revoke all on table dwtable from dwuser;
drop user dwuser;

Examples

The following example drops a user called paulo:

drop user paulo;

The following example drops two users, paulo and martha:

drop user paulo, martha;

The following example drops the user paulo if it exists, or does nothing and returns a message if it
doesn't:

DROP USER 1428

https://repost.aws/knowledge-center/redshift-user-cannot-be-dropped
https://repost.aws/knowledge-center/redshift-user-cannot-be-dropped

Amazon Redshift Database Developer Guide

drop user if exists paulo;

DROP VIEW

Removes a view from the database. Multiple views can be dropped with a single DROP VIEW
command. This command isn't reversible.

Required privileges

Following are required privileges for DROP VIEW:

• Superuser

• Users with the DROP VIEW privilege

• View owner

Syntax

DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Parameters

IF EXISTS

Clause that indicates that if the specified view doesn’t exist, the command should make no
changes and return a message that the view doesn't exist, rather than terminating with an error.

This clause is useful when scripting, so the script doesn’t fail if DROP VIEW runs against a
nonexistent view.

name

Name of the view to be removed.

CASCADE

Clause that indicates to automatically drop objects that depend on the view, such as other
views.

DROP VIEW 1429

Amazon Redshift Database Developer Guide

To create a view that isn't dependent on other database objects, such as views and tables,
include the WITH NO SCHEMA BINDING clause in the view definition. For more information, see
CREATE VIEW.

Note that if you include CASCADE and the count of database objects dropped runs to ten
or more, it's possible that your database client won't list all of the dropped objects in the
summary results. This is typically because SQL client tools have default limitations on the
results returned.

RESTRICT

Clause that indicates not to drop the view if any objects depend on it. This action is the default.

Examples

The following example drops the view called event:

drop view event;

To remove a view that has dependencies, use the CASCADE option. For example, say we start with a
table called EVENT. We then create the eventview view of the EVENT table, using the CREATE VIEW
command, as shown in the following example:

create view eventview as
select dateid, eventname, catid
from event where catid = 1;

Now, we create a second view called myeventview, that is based on the first view eventview:

create view myeventview as
select eventname, catid
from eventview where eventname <> ' ';

At this point, two views have been created: eventview and myeventview.

The myeventview view is a child view witheventview as its parent.

To delete the eventview view, the obvious command to use is the following:

drop view eventview;

DROP VIEW 1430

Amazon Redshift Database Developer Guide

Notice that if you run this command in this case, you get the following error:

drop view eventview;
ERROR: can't drop view eventview because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

To remedy this, run the following command (as suggested in the error message):

drop view eventview cascade;

Both eventview and myeventview have now been dropped successfully.

The following example either drops the eventview view if it exists, or does nothing and returns a
message if it doesn't:

drop view if exists eventview;

END

Commits the current transaction. Performs exactly the same function as the COMMIT command.

See COMMIT for more detailed documentation.

Syntax

END [WORK | TRANSACTION]

Parameters

WORK

Optional keyword.

TRANSACTION

Optional keyword; WORK and TRANSACTION are synonyms.

Examples

The following examples all end the transaction block and commit the transaction:

END 1431

Amazon Redshift Database Developer Guide

end;

end work;

end transaction;

After any of these commands, Amazon Redshift ends the transaction block and commits the
changes.

EXECUTE

Runs a previously prepared statement.

Syntax

EXECUTE plan_name [(parameter [, ...])]

Parameters

plan_name

Name of the prepared statement to be run.

parameter

The actual value of a parameter to the prepared statement. This must be an expression yielding
a value of a type compatible with the data type specified for this parameter position in the
PREPARE command that created the prepared statement.

Usage notes

EXECUTE is used to run a previously prepared statement. Because prepared statements only exist
for the duration of a session, the prepared statement must have been created by a PREPARE
statement run earlier in the current session.

If the previous PREPARE statement specified some parameters, a compatible set of parameters
must be passed to the EXECUTE statement, or else Amazon Redshift returns an error. Unlike
functions, prepared statements aren't overloaded based on the type or number of specified
parameters; the name of a prepared statement must be unique within a database session.

EXECUTE 1432

Amazon Redshift Database Developer Guide

When an EXECUTE command is issued for the prepared statement, Amazon Redshift may
optionally revise the query execution plan (to improve performance based on the specified
parameter values) before running the prepared statement. Also, for each new execution of a
prepared statement, Amazon Redshift may revise the query execution plan again based on the
different parameter values specified with the EXECUTE statement. To examine the query execution
plan that Amazon Redshift has chosen for any given EXECUTE statements, use the EXPLAIN
command.

For examples and more information on the creation and usage of prepared statements, see
PREPARE.

See also

DEALLOCATE, PREPARE

EXPLAIN

Displays the execution plan for a query statement without running the query. For information
about the query analysis workflow, see Query analysis workflow.

Syntax

EXPLAIN [VERBOSE] query

Parameters

VERBOSE

Displays the full query plan instead of just a summary.

query

Query statement to explain. The query can be a SELECT, INSERT, CREATE TABLE AS, UPDATE, or
DELETE statement.

Usage notes

EXPLAIN performance is sometimes influenced by the time it takes to create temporary tables. For
example, a query that uses the common subexpression optimization requires temporary tables to

EXPLAIN 1433

Amazon Redshift Database Developer Guide

be created and analyzed in order to return the EXPLAIN output. The query plan depends on the
schema and statistics of the temporary tables. Therefore, the EXPLAIN command for this type of
query might take longer to run than expected.

You can use EXPLAIN only for the following commands:

• SELECT

• SELECT INTO

• CREATE TABLE AS

• INSERT

• UPDATE

• DELETE

The EXPLAIN command will fail if you use it for other SQL commands, such as data definition
language (DDL) or database operations.

The EXPLAIN output relative unit costs are used by Amazon Redshift to choose a query plan.
Amazon Redshift compares the sizes of various resource estimates to determine the plan.

Query planning and execution steps

The execution plan for a specific Amazon Redshift query statement breaks down execution and
calculation of a query into a discrete sequence of steps and table operations that eventually
produce a final result set for the query. For information about query planning, see Query
processing.

The following table provides a summary of steps that Amazon Redshift can use in developing an
execution plan for any query a user submits for execution.

EXPLAIN operators Query execution
steps

Description

SCAN:

Sequential Scan scan Amazon Redshift relation scan or table scan
operator or step. Scans whole table sequentia
lly from beginning to end; also evaluates
query constraints for every row (Filter) if

EXPLAIN 1434

Amazon Redshift Database Developer Guide

EXPLAIN operators Query execution
steps

Description

specified with WHERE clause. Also used to run
INSERT, UPDATE, and DELETE statements.

JOINS: Amazon Redshift uses different join operators based on the physical design of the tables
being joined, the location of the data required for the join, and specific attributes of the query
itself. Subquery Scan -- Subquery scan and append are used to run UNION queries.

Nested Loop nloop Least optimal join; mainly used for cross-joins
(Cartesian products; without a join condition)
and some inequality joins.

Hash Join hjoin Also used for inner joins and left and right
outer joins and typically faster than a nested
loop join. Hash Join reads the outer table,
hashes the joining column, and finds matches
in the inner hash table. Step can spill to disk.
(Inner input of hjoin is hash step which can be
disk-based.)

Merge Join mjoin Also used for inner joins and outer joins (for
join tables that are both distributed and
sorted on the joining columns). Typically the
fastest Amazon Redshift join algorithm, not
including other cost considerations.

AGGREGATION: Operators and steps used for queries that involve aggregate functions and
GROUP BY operations.

Aggregate aggr Operator/step for scalar aggregate functions.

HashAggregate aggr Operator/step for grouped aggregate
functions. Can operate from disk by virtue of
hash table spilling to disk.

EXPLAIN 1435

Amazon Redshift Database Developer Guide

EXPLAIN operators Query execution
steps

Description

GroupAggregate aggr Operator sometimes chosen for grouped
aggregate queries if the Amazon Redshift
configuration setting for force_hash_grouping
setting is off.

SORT: Operators and steps used when queries have to sort or merge result sets.

Sort sort Sort performs the sorting specified by the
ORDER BY clause as well as other operations
such as UNIONs and joins. Can operate from
disk.

Merge merge Produces final sorted results of a query based
on intermediate sorted results derived from
operations performed in parallel.

EXCEPT, INTERSECT, and UNION operations:

SetOp Except [Distinct] hjoin Used for EXCEPT queries. Can operate from
disk based on virtue of fact that input hash
can be disk-based.

Hash Intersect [Distinct] hjoin Used for INTERSECT queries. Can operate
from disk based on virtue of fact that input
hash can be disk-based.

Append [All |Distinct] save Append used with Subquery Scan to
implement UNION and UNION ALL queries.
Can operate from disk based on virtue of
"save".

Miscellaneous/Other:

EXPLAIN 1436

Amazon Redshift Database Developer Guide

EXPLAIN operators Query execution
steps

Description

Hash hash Used for inner joins and left and right outer
joins (provides input to a hash join). The Hash
operator creates the hash table for the inner
table of a join. (The inner table is the table
that is checked for matches and, in a join of
two tables, is usually the smaller of the two.)

Limit limit Evaluates the LIMIT clause.

Materialize save Materialize rows for input to nested loop joins
and some merge joins. Can operate from disk.

-- parse Used to parse textual input data during a
load.

-- project Used to rearrange columns and compute
expressions, that is, project data.

Result -- Run scalar functions that don't involve any
table access.

-- return Return rows to the leader or client.

Subplan -- Used for certain subqueries.

Unique unique Eliminates duplicates from SELECT DISTINCT
and UNION queries.

Window window Compute aggregate and ranking window
functions. Can operate from disk.

Network Operations:

Network (Broadcast) bcast Broadcast is also an attribute of Join Explain
operators and steps.

EXPLAIN 1437

Amazon Redshift Database Developer Guide

EXPLAIN operators Query execution
steps

Description

Network (Distribute) dist Distribute rows to compute nodes for parallel
processing by data warehouse cluster.

Network (Send to
Leader)

return Sends results back to the leader for further
processing.

DML Operations (operators that modify data):

Insert (using Result) insert Inserts data.

Delete (Scan + Filter) delete Deletes data. Can operate from disk.

Update (Scan + Filter) delete, insert Implemented as delete and Insert.

Using EXPLAIN for RLS

If a query contains a table that is subject to row-level security (RLS) policies, EXPLAIN displays a
special RLS SecureScan node. Amazon Redshift also logs the same node type to the STL_EXPLAIN
system table. EXPLAIN doesn't reveal the RLS predicate that applies to dim_tbl. The RLS
SecureScan node type serves as an indicator that the execution plan contains additional operations
that are invisible to the current user.

The following example illustrates an RLS SecureScan node.

EXPLAIN
SELECT D.cint
FROM fact_tbl F INNER JOIN dim_tbl D ON F.k_dim = D.k
WHERE F.k_dim / 10 > 0;
 QUERY PLAN
--
 XN Hash Join DS_DIST_ALL_NONE (cost=0.08..0.25 rows=1 width=4)
 Hash Cond: ("outer".k_dim = "inner"."k")
 -> *XN* *RLS SecureScan f (cost=0.00..0.14 rows=2 width=4)*
 Filter: ((k_dim / 10) > 0)
 -> XN Hash (cost=0.07..0.07 rows=2 width=8)
 -> XN Seq Scan on dim_tbl d (cost=0.00..0.07 rows=2 width=8)
 Filter: (("k" / 10) > 0)

EXPLAIN 1438

Amazon Redshift Database Developer Guide

To enable full investigation of query plans that are subject to RLS, Amazon Redshift offers the
EXPLAIN RLS system permissions. Users that have been granted this permission can inspect
complete query plans that also include RLS predicates.

The following example illustrates an additional Seq Scan below the RLS SecureScan node also
includes the RLS policy predicate (k_dim > 1).

EXPLAIN SELECT D.cint
FROM fact_tbl F INNER JOIN dim_tbl D ON F.k_dim = D.k
WHERE F.k_dim / 10 > 0;
 QUERY PLAN

 XN Hash Join DS_DIST_ALL_NONE (cost=0.08..0.25 rows=1 width=4)
 Hash Cond: ("outer".k_dim = "inner"."k")
 *-> XN RLS SecureScan f (cost=0.00..0.14 rows=2 width=4)
 Filter: ((k_dim / 10) > 0)*
 -> *XN* *Seq Scan on fact_tbl rls_table (cost=0.00..0.06 rows=5 width=8)
 Filter: (k_dim > 1)*
 -> XN Hash (cost=0.07..0.07 rows=2 width=8)
 -> XN Seq Scan on dim_tbl d (cost=0.00..0.07 rows=2 width=8)
 Filter: (("k" / 10) > 0)

While the EXPLAIN RLS permission is granted to a user, Amazon Redshift logs the full query
plan including RLS predicates in the STL_EXPLAIN system table. Queries that are run while this
permission is not granted will be logged without RLS internals. Granting or removing the EXPLAIN
RLS permission won't change what Amazon Redshift has logged to STL_EXPLAIN for previous
queries.

AWS Lake Formation-RLS protected Redshift relations

The following example illustrates an LF SecureScan node, which you can use to view Lake
Formation-RLS relations.

EXPLAIN
SELECT *
FROM lf_db.public.t_share
WHERE a > 1;
QUERY PLAN

XN LF SecureScan t_share (cost=0.00..0.02 rows=2 width=11)
(2 rows)

EXPLAIN 1439

Amazon Redshift Database Developer Guide

Examples

Note

For these examples, the sample output might vary depending on Amazon Redshift
configuration.

The following example returns the query plan for a query that selects the EVENTID, EVENTNAME,
VENUEID, and VENUENAME from the EVENT and VENUE tables:

explain
select eventid, eventname, event.venueid, venuename
from event, venue
where event.venueid = venue.venueid;

 QUERY PLAN
--
XN Hash Join DS_DIST_OUTER (cost=2.52..58653620.93 rows=8712 width=43)
Hash Cond: ("outer".venueid = "inner".venueid)
-> XN Seq Scan on event (cost=0.00..87.98 rows=8798 width=23)
-> XN Hash (cost=2.02..2.02 rows=202 width=22)
-> XN Seq Scan on venue (cost=0.00..2.02 rows=202 width=22)
(5 rows)

The following example returns the query plan for the same query with verbose output:

explain verbose
select eventid, eventname, event.venueid, venuename
from event, venue
where event.venueid = venue.venueid;

 QUERY PLAN
--
{HASHJOIN
:startup_cost 2.52
:total_cost 58653620.93
:plan_rows 8712
:plan_width 43
:best_pathkeys <>

EXPLAIN 1440

Amazon Redshift Database Developer Guide

:dist_info DS_DIST_OUTER
:dist_info.dist_keys (
TARGETENTRY
{
VAR
:varno 2
:varattno 1
...

XN Hash Join DS_DIST_OUTER (cost=2.52..58653620.93 rows=8712 width=43)
Hash Cond: ("outer".venueid = "inner".venueid)
-> XN Seq Scan on event (cost=0.00..87.98 rows=8798 width=23)
-> XN Hash (cost=2.02..2.02 rows=202 width=22)
-> XN Seq Scan on venue (cost=0.00..2.02 rows=202 width=22)
(519 rows)

The following example returns the query plan for a CREATE TABLE AS (CTAS) statement:

explain create table venue_nonulls as
select * from venue
where venueseats is not null;

QUERY PLAN

XN Seq Scan on venue (cost=0.00..2.02 rows=187 width=45)
Filter: (venueseats IS NOT NULL)
(2 rows)

FETCH

Retrieves rows using a cursor. For information about declaring a cursor, see DECLARE.

FETCH retrieves rows based on the current position within the cursor. When a cursor is created, it
is positioned before the first row. After a FETCH, the cursor is positioned on the last row retrieved.
If FETCH runs off the end of the available rows, such as following a FETCH ALL, the cursor is left
positioned after the last row.

FORWARD 0 fetches the current row without moving the cursor; that is, it fetches the most recently
fetched row. If the cursor is positioned before the first row or after the last row, no row is returned.

When the first row of a cursor is fetched, the entire result set is materialized on the leader node,
in memory or on disk, if needed. Because of the potential negative performance impact of using

FETCH 1441

Amazon Redshift Database Developer Guide

cursors with large result sets, we recommend using alternative approaches whenever possible. For
more information, see Performance considerations when using cursors.

For more information, see DECLARE, CLOSE.

Syntax

FETCH [NEXT | ALL | {FORWARD [count | ALL] }] FROM cursor

Parameters

NEXT

Fetches the next row. This is the default.

ALL

Fetches all remaining rows. (Same as FORWARD ALL.) ALL isn't supported for single-node
clusters.

FORWARD [count | ALL]

Fetches the next count rows, or all remaining rows. FORWARD 0 fetches the current row. For
single-node clusters, the maximum value for count is 1000. FORWARD ALL isn't supported for
single-node clusters.

cursor

Name of the new cursor.

FETCH example

The following example declares a cursor named LOLLAPALOOZA to select sales information for the
Lollapalooza event, and then fetches rows from the result set using the cursor:

-- Begin a transaction

begin;

-- Declare a cursor

declare lollapalooza cursor for

FETCH 1442

Amazon Redshift Database Developer Guide

select eventname, starttime, pricepaid/qtysold as costperticket, qtysold
from sales, event
where sales.eventid = event.eventid
and eventname='Lollapalooza';

-- Fetch the first 5 rows in the cursor lollapalooza:

fetch forward 5 from lollapalooza;

 eventname | starttime | costperticket | qtysold
--------------+---------------------+---------------+---------
 Lollapalooza | 2008-05-01 19:00:00 | 92.00000000 | 3
 Lollapalooza | 2008-11-15 15:00:00 | 222.00000000 | 2
 Lollapalooza | 2008-04-17 15:00:00 | 239.00000000 | 3
 Lollapalooza | 2008-04-17 15:00:00 | 239.00000000 | 4
 Lollapalooza | 2008-04-17 15:00:00 | 239.00000000 | 1
(5 rows)

-- Fetch the next row:

fetch next from lollapalooza;

 eventname | starttime | costperticket | qtysold
--------------+---------------------+---------------+---------
 Lollapalooza | 2008-10-06 14:00:00 | 114.00000000 | 2

-- Close the cursor and end the transaction:

close lollapalooza;
commit;

GRANT

Defines access permissions for a user or role.

Permissions include access options such as being able to read data in tables and views, write data,
create tables, and drop tables. Use this command to give specific permissions for a table, database,
schema, function, procedure, language, or column. To revoke permissions from a database object,
use the REVOKE command.

Permissions also include the following datashare producer access options:

• Granting datashare access to consumer namespaces and accounts.

GRANT 1443

Amazon Redshift Database Developer Guide

• Granting permission to alter a datashare by adding or removing objects from the datashare.

• Granting permission to share a datashare by adding or removing consumer namespaces from the
datashare.

Datashare consumer access options are as follows:

• Granting users full access to databases created from a datashare or to external schemas that
point to such databases.

• Granting users object-level permissions on databases created from a datashare like you can for
local database objects. To grant this level of permission, you must use the WITH PERMISSIONS
clause when creating a database from the datashare. For more information, see CREATE
DATABASE.

For more information about datashare permissions, see Sharing datashares.

You can also grant roles to manage database permissions and control what users can do relative
to your data. By defining roles and assigning roles to users, you can limit the the actions those
users can take, such as limiting users to only the CREATE TABLE and INSERT commands. For more
information about the CREATE ROLE command, see the section called “CREATE ROLE”. Amazon
Redshift has some system-defined roles that you can also use to grant specific permissions to your
users. For more information, see the section called “Amazon Redshift system-defined roles”.

You can only GRANT or REVOKE USAGE permissions on an external schema to database users
and user groups that use the ON SCHEMA syntax. When using ON EXTERNAL SCHEMA with AWS
Lake Formation, you can only GRANT and REVOKE permissions to an AWS Identity and Access
Management (IAM) role. For the list of permissions, see the syntax.

For stored procedures, the only permission that you can grant is EXECUTE.

You can't run GRANT (on an external resource) within a transaction block (BEGIN ... END). For more
information about transactions, see Serializable isolation.

To see which permissions users have been granted for a database, use HAS_DATABASE_PRIVILEGE.
To see which permissions users have been granted for a schema, use HAS_SCHEMA_PRIVILEGE. To
see which permissions users have been granted for a table, use HAS_TABLE_PRIVILEGE.

Syntax

GRANT 1444

Amazon Redshift Database Developer Guide

GRANT { { SELECT | INSERT | UPDATE | DELETE | DROP | REFERENCES | ALTER | TRUNCATE }
 [,...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...] | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO { username [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

GRANT { { CREATE | TEMPORARY | TEMP | ALTER } [,...] | ALL [PRIVILEGES] }
 ON DATABASE db_name [, ...]
 TO { username [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

GRANT { { CREATE | USAGE | ALTER } [,...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 TO { username [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTION function_name ([[argname] argtype [, ...]]) [, ...] | ALL
 FUNCTIONS IN SCHEMA schema_name [, ...] }
 TO { username [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { PROCEDURE procedure_name ([[argname] argtype [, ...]]) [, ...] | ALL
 PROCEDURES IN SCHEMA schema_name [, ...] }
 TO { username [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

GRANT USAGE
 ON LANGUAGE language_name [, ...]
 TO { username [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

Granting column-level permissions for tables

The following is the syntax for column-level permissions on Amazon Redshift tables and views.

GRANT { { SELECT | UPDATE } (column_name [, ...]) [, ...] | ALL [PRIVILEGES]
 (column_name [,...]) }
 ON { [TABLE] table_name [, ...] }

 TO { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]

GRANT 1445

Amazon Redshift Database Developer Guide

Granting ASSUMEROLE permissions

The following is the syntax for the ASSUMEROLE permissions granted to users and groups with
a specified role. To begin using the ASSUMEROLE privilege, see Usage notes for granting the
ASSUMEROLE permission.

GRANT ASSUMEROLE
 ON { 'iam_role' [, ...] | default | ALL }
 TO { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
 FOR { ALL | COPY | UNLOAD | EXTERNAL FUNCTION | CREATE MODEL } [, ...]

Granting permissions for Redshift Spectrum integration with Lake Formation

The following is the syntax for Redshift Spectrum integration with Lake Formation.

GRANT { SELECT | ALL [PRIVILEGES] } (column_list)
 ON EXTERNAL TABLE schema_name.table_name
 TO { IAM_ROLE iam_role } [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | ALTER | DROP | DELETE | INSERT } [, ...] | ALL [PRIVILEGES] }
 ON EXTERNAL TABLE schema_name.table_name [, ...]
 TO { { IAM_ROLE iam_role } [, ...] | PUBLIC } [WITH GRANT OPTION]

GRANT { { CREATE | ALTER | DROP } [, ...] | ALL [PRIVILEGES] }
 ON EXTERNAL SCHEMA schema_name [, ...]
 TO { IAM_ROLE iam_role } [, ...] [WITH GRANT OPTION]

Granting datashare permissions

Producer-side datashare permissions

The following is the syntax for using GRANT to grant ALTER or SHARE permissions to a user or role.
The user can alter the datashare with the ALTER permission, or grant usage to a consumer with the
SHARE permission. ALTER and SHARE are the only permissions that you can grant on a datashare
to users and roles.

GRANT { ALTER | SHARE } ON DATASHARE datashare_name
 TO { username [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

The following is the syntax for using GRANT for datashare usage permissions on Amazon Redshift.
You grant access to a datashare to a consumer using the USAGE permission. You can't grant this

GRANT 1446

Amazon Redshift Database Developer Guide

permission to users or user groups. This permission also doesn't support the WITH GRANT OPTION
for the GRANT statement. Only users or user groups with the SHARE permission previously granted
to them FOR the datashare can run this type of GRANT statement.

GRANT USAGE
 ON DATASHARE datashare_name
 TO NAMESPACE 'namespaceGUID' | ACCOUNT 'accountnumber' [VIA DATA CATALOG]

The following is an example of how to grant usage of a datashare to a Lake Formation account.

GRANT USAGE ON DATASHARE salesshare TO ACCOUNT '123456789012' VIA DATA CATALOG;

Consumer-side datashare permissions

The following is the syntax for GRANT data-sharing usage permissions on a specific database or
schema created from a datashare.

Further permissions required for consumers to access a database created from a datashare vary
depending on whether or not the CREATE DATABASE command used to create the database from
the datashare used the WITH PERMISSIONS clause. For more information about the CREATE
DATABASE command and WITH PERMISSIONS clause, see CREATE DATABASE.

Databases created without using the WITH PERMISSIONS clause

When you grant USAGE on a database created from a datashare without the WITH PERMISSIONS
clause, you don't need to grant permissions separately on the objects in the shared database.
Entities granted usage on databases created from datashares without the WITH PERMISSIONS
clause automatically have access to all objects in the database.

Databases created using the WITH PERMISSIONS clause

When you grant USAGE on a database where the shared database was created from a datashare
with the WITH PERMISSIONS clause, consumer-side identities must still be granted the relevant
permissions for database objects in the shared database in order to access them, just as you would
grant permissions for local database objects. To grant permissions to objects in a database created
from a datashare, use the three-part syntax database_name.schema_name.object_name. To
grant permissions to objects in an external schema pointing to a shared schema within the shared
database, use the two-part syntax schema_name.object_name.

GRANT USAGE ON { DATABASE shared_database_name [, ...] | SCHEMA shared_schema}

GRANT 1447

Amazon Redshift Database Developer Guide

 TO { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]

Granting scoped permissions

Scoped permissions let you grant permissions to a user or role on all objects of a type within a
database or schema. Users and roles with scoped permissions have the specified permissions on all
current and future objects within the database or schema.

The following is the syntax for granting scoped permissions to users and roles. For more
information about scoped permissions, see Scoped permissions.

GRANT { CREATE | USAGE | ALTER } [,...] | ALL [PRIVILEGES] }
FOR SCHEMAS IN
DATABASE db_name
TO { username [WITH GRANT OPTION] | ROLE role_name } [, ...]

GRANT
{ { SELECT | INSERT | UPDATE | DELETE | DROP | ALTER | TRUNCATE | REFERENCES }
 [, ...] } | ALL [PRIVILEGES] } }
FOR TABLES IN
{SCHEMA schema_name [DATABASE db_name] | DATABASE db_name }
TO { username [WITH GRANT OPTION] | ROLE role_name} [, ...]

GRANT { EXECUTE | ALL [PRIVILEGES] }
FOR FUNCTIONS IN
{SCHEMA schema_name [DATABASE db_name] | DATABASE db_name }
TO { username [WITH GRANT OPTION] | ROLE role_name | } [, ...]

GRANT { EXECUTE | ALL [PRIVILEGES] }
FOR PROCEDURES IN
{SCHEMA schema_name [DATABASE db_name] | DATABASE db_name }
TO { username [WITH GRANT OPTION] | ROLE role_name | } [, ...]

GRANT USAGE
FOR LANGUAGES IN
{DATABASE db_name}
TO { username [WITH GRANT OPTION] | ROLE role_name } [, ...]

Note that scoped permissions don’t distinguish between permissions for functions and for
procedures. For example, the following statement grants bob the EXECUTE permission for both
functions and procedures in the schema Sales_schema.

GRANT 1448

Amazon Redshift Database Developer Guide

GRANT EXECUTE FOR FUNCTIONS IN SCHEMA Sales_schema TO bob;

Granting machine learning permissions

The following is the syntax for machine learning model permissions on Amazon Redshift.

GRANT CREATE MODEL
 TO { username [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON MODEL model_name [, ...]

 TO { username [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

Granting role permissions

The following is the syntax for granting role permissions on Amazon Redshift.

GRANT { ROLE role_name } [, ...] TO { { user_name [WITH ADMIN OPTION] } |
 ROLE role_name }[, ...]

The following is the syntax for granting system permissions to roles on Amazon Redshift.

GRANT
 {
 { CREATE USER | DROP USER | ALTER USER |
 CREATE SCHEMA | DROP SCHEMA |
 ALTER DEFAULT PRIVILEGES |
 ACCESS CATALOG |
 CREATE TABLE | DROP TABLE | ALTER TABLE |
 CREATE OR REPLACE FUNCTION | CREATE OR REPLACE EXTERNAL FUNCTION |
 DROP FUNCTION |
 CREATE OR REPLACE PROCEDURE | DROP PROCEDURE |
 CREATE OR REPLACE VIEW | DROP VIEW |
 CREATE MODEL | DROP MODEL |
 CREATE DATASHARE | ALTER DATASHARE | DROP DATASHARE |
 CREATE LIBRARY | DROP LIBRARY |
 CREATE ROLE | DROP ROLE |
 TRUNCATE TABLE

GRANT 1449

Amazon Redshift Database Developer Guide

 VACUUM | ANALYZE | CANCEL }[, ...]
 }
 | { ALL [PRIVILEGES] }
TO { ROLE role_name } [, ...]

Granting explain permissions for row-level security policy filters

The following is the syntax for granting permissions to explain the row-level security policy filters
of a query in the EXPLAIN plan. You can revoke the privilege using the REVOKE statement.

GRANT EXPLAIN RLS TO ROLE rolename

The following is the syntax for granting permissions to bypass row-level security policies for a
query.

GRANT IGNORE RLS TO ROLE rolename

Granting permissions for RLS lookup tables to a policy object

The following is the syntax for granting permissions to the specified row-level security policy.

GRANT SELECT ON [TABLE] table_name [, ...]
TO RLS POLICY policy_name [, ...]

Parameters

SELECT

Grants permission to select data from a table or view using a SELECT statement. The SELECT
permission is also required to reference existing column values for UPDATE or DELETE
operations.

INSERT

Grants permission to load data into a table using an INSERT statement or a COPY statement.

UPDATE

Grants permission to update a table column using an UPDATE statement. UPDATE operations
also require the SELECT permission, because they must reference table columns to determine
which rows to update, or to compute new values for columns.

GRANT 1450

Amazon Redshift Database Developer Guide

DELETE

Grants permission to delete a data row from a table. DELETE operations also require the SELECT
permission, because they must reference table columns to determine which rows to delete.

DROP

Grants permission to drop a table. This permission applies in Amazon Redshift and in an AWS
Glue Data Catalog that is enabled for Lake Formation.

REFERENCES

Grants permission to create a foreign key constraint. You need to grant this permission on both
the referenced table and the referencing table; otherwise, the user can't create the constraint.

ALTER

Depending on the database object, grants the following permissions to the user or user group:

• For tables, ALTER grants permission to alter a table or view. For more information, see ALTER
TABLE.

• For databases, ALTER grants permission to alter a database. For more information, see ALTER
DATABASE.

• For schemas, ALTER grants permission to alter a schema. For more information, see ALTER
SCHEMA.

• For external tables, ALTER grants permission to alter a table in an AWS Glue Data Catalog
that is enabled for Lake Formation. This permission only applies when using Lake Formation.

TRUNCATE

Grants permission to truncate a table. Without this permission, only the owner of a table or a
superuser can truncate a table. For more information about the TRUNCATE command, see the
section called “TRUNCATE”.

ALL [PRIVILEGES]

Grants all available permissions at once to the specified user or user group. The PRIVILEGES
keyword is optional.

GRANT ALL ON SCHEMA doesn't grant CREATE permissions for external schemas.

You can grant the ALL permission to a table in an AWS Glue Data Catalog that is enabled for
Lake Formation. In this case, individual permissions (such as SELECT, ALTER, and so on) are
recorded in the Data Catalog.

GRANT 1451

Amazon Redshift Database Developer Guide

ASSUMEROLE

Grants permission to run COPY, UNLOAD, EXTERNAL FUNCTION, and CREATE MODEL
commands to users, roles, or groups with a specified role. The user, role, or group assumes that
role when running the specified command. To begin using the ASSUMEROLE permission, see
Usage notes for granting the ASSUMEROLE permission.

ON [TABLE] table_name

Grants the specified permissions on a table or a view. The TABLE keyword is optional. You can
list multiple tables and views in one statement.

ON ALL TABLES IN SCHEMA schema_name

Grants the specified permissions on all tables and views in the referenced schema.

(column_name [,...]) ON TABLE table_name

Grants the specified permissions to users, groups, or PUBLIC on the specified columns of the
Amazon Redshift table or view.

(column_list) ON EXTERNAL TABLE schema_name.table_name

Grants the specified permissions to an IAM role on the specified columns of the Lake Formation
table in the referenced schema.

ON EXTERNAL TABLE schema_name.table_name

Grants the specified permissions to an IAM role on the specified Lake Formation tables in the
referenced schema.

ON EXTERNAL SCHEMA schema_name

Grants the specified permissions to an IAM role on the referenced schema.

ON iam_role

Grants the specified permissions to an IAM role.

TO username

Indicates the user receiving the permissions.

TO IAM_ROLE iam_role

Indicates the IAM role receiving the permissions.

GRANT 1452

Amazon Redshift Database Developer Guide

WITH GRANT OPTION

Indicates that the user receiving the permissions can in turn grant the same permissions to
others. WITH GRANT OPTION can't be granted to a group or to PUBLIC.

ROLE role_name

Grants the permissions to a role.

GROUP group_name

Grants the permissions to a user group. Can be a comma-separated list to specify multiple user
groups.

PUBLIC

Grants the specified permissions to all users, including users created later. PUBLIC represents
a group that always includes all users. An individual user's permissions consist of the sum of
permissions granted to PUBLIC, permissions granted to any groups that the user belongs to,
and any permissions granted to the user individually.

Granting PUBLIC to a Lake Formation EXTERNAL TABLE results in granting the permission to
the Lake Formation everyone group.

CREATE

Depending on the database object, grants the following permissions to the user or user group:

• For databases, CREATE allows users to create schemas within the database.

• For schemas, CREATE allows users to create objects within a schema. To rename an object, the
user must have the CREATE permission and own the object to be renamed.

• CREATE ON SCHEMA isn't supported for Amazon Redshift Spectrum external schemas. To
grant usage of external tables in an external schema, grant USAGE ON SCHEMA to the users
that need access. Only the owner of an external schema or a superuser is permitted to create
external tables in the external schema. To transfer ownership of an external schema, use
ALTER SCHEMA to change the owner.

TEMPORARY | TEMP

Grants the permission to create temporary tables in the specified database. To run Amazon
Redshift Spectrum queries, the database user must have permission to create temporary tables
in the database.

GRANT 1453

Amazon Redshift Database Developer Guide

Note

By default, users are granted permission to create temporary tables by their automatic
membership in the PUBLIC group. To remove the permission for any users to create
temporary tables, revoke the TEMP permission from the PUBLIC group. Then explicitly
grant the permission to create temporary tables to specific users or groups of users.

ON DATABASE db_name

Grants the specified permissions on a database.

USAGE

Grants USAGE permission on a specific schema, which makes objects in that schema accessible
to users. Specific actions on these objects must be granted separately (for example, SELECT or
UPDATE permission on tables) for local Amazon Redshift schemas. By default, all users have
CREATE and USAGE permission on the PUBLIC schema.

When you grant USAGE to external schemas using ON SCHEMA syntax, you don't need to
grant actions separately on the objects in the external schema. The corresponding catalog
permissions control granular permissions on the external schema objects.

ON SCHEMA schema_name

Grants the specified permissions on a schema.

GRANT CREATE ON SCHEMA and the CREATE permission in GRANT ALL ON SCHEMA aren't
supported for Amazon Redshift Spectrum external schemas. To grant usage of external tables
in an external schema, grant USAGE ON SCHEMA to the users that need access. Only the owner
of an external schema or a superuser is permitted to create external tables in the external
schema. To transfer ownership of an external schema, use ALTER SCHEMA to change the owner.

EXECUTE ON ALL FUNCTIONS IN SCHEMA schema_name

Grants the specified permissions on all functions in the referenced schema.

Amazon Redshift doesn't support GRANT or REVOKE statements for pg_proc builtin entries
defined in pg_catalog namespace.

GRANT 1454

Amazon Redshift Database Developer Guide

EXECUTE ON PROCEDURE procedure_name

Grants the EXECUTE permission on a specific stored procedure. Because stored procedure
names can be overloaded, you must include the argument list for the procedure. For more
information, see Naming stored procedures.

EXECUTE ON ALL PROCEDURES IN SCHEMA schema_name

Grants the specified permissions on all stored procedures in the referenced schema.

USAGE ON LANGUAGE language_name

Grants the USAGE permission on a language.

The USAGE ON LANGUAGE permission is required to create user-defined functions (UDFs)
by running the CREATE FUNCTION command. For more information, see UDF security and
privileges.

The USAGE ON LANGUAGE permission is required to create stored procedures by running the
CREATE PROCEDURE command. For more information, see Security and privileges for stored
procedures .

For Python UDFs, use plpythonu. For SQL UDFs, use sql. For stored procedures, use plpgsql.

FOR { ALL | COPY | UNLOAD | EXTERNAL FUNCTION | CREATE MODEL } [, ...]

Specifies the SQL command for which the permission is granted. You can specify ALL to grant
the permission on the COPY, UNLOAD, EXTERNAL FUNCTION, and CREATE MODEL statements.
This clause applies only to granting the ASSUMEROLE permission.

ALTER

Grants the ALTER permission to users to add or remove objects from a datashare, or to set the
property PUBLICACCESSIBLE. For more information, see ALTER DATASHARE.

SHARE

Grants pemrissions to users and user groups to add data consumers to a datashare. This
permission is required to enable the particular consumer (account or namespace) to access the
datashare from their clusters. The consumer can be the same or a different AWS account, with
the same or a different cluster namespace as specified by a globally unique identifier (GUID).

GRANT 1455

Amazon Redshift Database Developer Guide

ON DATASHARE datashare_name

Grants the specified permissions on the referenced datashare. For information about consumer
access control granularity, see Sharing data at different levels in Amazon Redshift.

USAGE

When USAGE is granted to a consumer account or namespace within the same account, the
specific consumer account or namespace within the account can access the datashare and the
objects of the datashare in read-only fashion.

TO NAMESPACE 'clusternamespace GUID'

Indicates a namespace in the same account where consumers can receive the specified
permissions to the datashare. Namespaces use a 128-bit alphanumeric GUID.

TO ACCOUNT 'accountnumber' [VIA DATA CATALOG]

Indicates the number of another account whose consumers can receive the specified
permissions to the datashare. Specifying ‘VIA DATA CATALOG’ indicates that you are granting
usage of the datashare to a Lake Formation account. Omitting this parameter means you're
granting usage to an account that owns the cluster.

ON DATABASE shared_database_name> [, ...]

Grants the specified usage permissions on the specified database that is created in the specified
datashare.

ON SCHEMA shared_schema

Grants the specified permissions on the specified schema that is created in the specified
datashare.

FOR { SCHEMAS | TABLES | FUNCTIONS | PROCEDURES | LANGUAGES } IN

Specifies the database objects to grant permission to. The parameters following IN define the
scope of the granted permission.

CREATE MODEL

Grants the CREATE MODEL permission to specific users or user groups.

ON MODEL model_name

Grants the EXECUTE permission on a specific model.

GRANT 1456

Amazon Redshift Database Developer Guide

ACCESS CATALOG

Grants the permission to view relevant metadata of objects that the role has access to.

{ role } [, ...]

The role to be granted to another role, a user, or PUBLIC.

PUBLIC represents a group that always includes all users. An individual user's permissions
consist of the sum of permissions granted to PUBLIC, permissions granted to any groups that
the user belongs to, and any permissions granted to the user individually.

TO { { user_name [WITH ADMIN OPTION] } | role }[, ...]

Grants the specified role to a specified user with the WITH ADMIN OPTION, another role, or
PUBLIC.

The WITH ADMIN OPTION clause provides the administration options for all the granted roles
to all the grantees.

EXPLAIN RLS TO ROLE rolename

Grants the permission to explain the row-level security policy filters of a query in the EXPLAIN
plan to a role.

IGNORE RLS TO ROLE rolename

Grants the permission to bypass row-level security policies for a query to a role.

Usage notes

To learn more about the usage notes for GRANT, see the section called “Usage notes”.

Examples

For examples of how to use GRANT, see the section called “Examples”.

Usage notes

To grant privileges on an object, you must meet one of the following criteria:

• Be the object owner.

GRANT 1457

Amazon Redshift Database Developer Guide

• Be a superuser.

• Have a grant privilege for that object and privilege.

For example, the following command enables the user HR both to perform SELECT commands on
the employees table and to grant and revoke the same privilege for other users.

grant select on table employees to HR with grant option;

HR can't grant privileges for any operation other than SELECT, or on any other table than
employees.

As another example, the following command enables the user HR both to perform ALTER
commands on the employees table and to grant and revoke the same privilege for other users.

grant ALTER on table employees to HR with grant option;

HR can't grant privileges for any operation other than ALTER, or on any other table than
employees.

Having privileges granted on a view doesn't imply having privileges on the underlying tables.
Similarly, having privileges granted on a schema doesn't imply having privileges on the tables in
the schema. Instead, grant access to the underlying tables explicitly.

To grant privileges to an AWS Lake Formation table, the IAM role associated with the table's
external schema must have permission to grant privileges to the external table. The following
example creates an external schema with an associated IAM role myGrantor. The IAM role
myGrantor has the permission to grant permissions to others. The GRANT command uses the
permission of the IAM role myGrantor that is associated with the external schema to grant
permission to the IAM role myGrantee.

create external schema mySchema
from data catalog
database 'spectrum_db'
iam_role 'arn:aws:iam::123456789012:role/myGrantor'
create external database if not exists;

grant select
on external table mySchema.mytable

GRANT 1458

Amazon Redshift Database Developer Guide

to iam_role 'arn:aws:iam::123456789012:role/myGrantee';

If you GRANT ALL privileges to an IAM role, individual privileges are granted in the related Lake
Formation–enabled Data Catalog. For example, the following GRANT ALL results in the granted
individual privileges (SELECT, ALTER, DROP, DELETE, and INSERT) showing in the Lake Formation
console.

grant all
on external table mySchema.mytable
to iam_role 'arn:aws:iam::123456789012:role/myGrantee';

Superusers can access all objects regardless of GRANT and REVOKE commands that set object
privileges.

Usage notes for column-level access control

The following usage notes apply to column-level privileges on Amazon Redshift tables and views.
These notes describe tables; the same notes apply to views unless we explicitly note an exception.

• For an Amazon Redshift table, you can grant only the SELECT and UPDATE privileges at the
column level. For an Amazon Redshift view, you can grant only the SELECT privilege at the
column level.

• The ALL keyword is a synonym for SELECT and UPDATE privileges combined when used in the
context of a column-level GRANT on a table.

• If you don't have the SELECT privilege on all columns in a table, performing a SELECT * operation
returns only those columns that you have access to. When using a view, a SELECT * operation
attempts to access all columns in the view. If you do not have permission to access all columns,
these queries fail with a permission denied error.

• SELECT * doesn't expand to only accessible columns in the following cases:

• You can't create a regular view with only accessible columns using SELECT *.

• You can't create a materialized view with only accessible columns using SELECT *.

• If you have SELECT or UPDATE privilege on a table or view and add a column, you still have the
same privileges on the table or view and thus all its columns.

• Only a table's owner or a superuser can grant column-level privileges.

• The WITH GRANT OPTION clause isn't supported for column-level privileges.

• You can't hold the same privilege at both the table level and the column level. For example, the
user data_scientist can't have both SELECT privilege on the table employee and SELECT

GRANT 1459

Amazon Redshift Database Developer Guide

privilege on the column employee.department. Consider the following results when granting
the same privilege to a table and a column within the table:

• If a user has a table-level privilege on a table, then granting the same privilege at the column
level has no effect.

• If a user has a table-level privilege on a table, then revoking the same privilege for one or
more columns of the table returns an error. Instead, revoke the privilege at the table level.

• If a user has a column-level privilege, then granting the same privilege at the table level
returns an error.

• If a user has a column-level privilege, then revoking the same privilege at the table level
revokes both column and table privileges for all columns on the table.

• You can't grant column-level privileges on late-binding views.

• To create a materialized view, you must have table-level SELECT privilege on the base tables.
Even if you have column-level privileges on specific columns, you can't create a materialized view
on only those columns. However, you can grant SELECT privilege to columns of a materialized
view, similar to regular views.

• To look up grants of column-level privileges, use the PG_ATTRIBUTE_INFO view.

Usage notes for granting the ASSUMEROLE permission

The following usage notes apply to granting the ASSUMEROLE permission in Amazon Redshift.

You use the ASSUMEROLE permission to control IAM role access permissions for database users,
roles, or groups on commands such as COPY, UNLOAD, EXTERNAL FUNCTION, or CREATE MODEL.
After you grant the ASSUMEROLE permission to a user, role, or group for an IAM role, the user, role,
or group can assume that role when running the command. The ASSUMEROLE permission enables
you to grant access to the appropriate commands as required.

Only a database superuser can grant or revoke the ASSUMEROLE permission for users, roles, and
groups. A superuser always retains the ASSUMEROLE permission.

To enable the use of the ASSUMEROLE permission for users, roles, and groups, a superuser
performs the following two actions:

• Run the following statement once on the cluster:

revoke assumerole on all from public for all;

GRANT 1460

Amazon Redshift Database Developer Guide

• Grant the ASSUMEROLE permission to users, roles, and groups for the appropriate commands.

You can specify role chaining in the ON clause when granting the ASSUMEROLE permission. You
use commas to separate roles in a role chain, for example, Role1,Role2,Role3. If role chaining
was specified when granting the ASSUMEROLE permission, you must specify the role chain when
performing operations granted by the ASSUMEROLE permission. You can't specify individual roles
within the role chain when performing operations granted by the ASSUMEROLE permission. For
example, if a user, role, or group is granted the role chain Role1,Role2,Role3, you can't specify
only Role1 to perform operations.

If a user attempts to perform a COPY, UNLOAD, EXTERNAL FUNCTION, or CREATE MODEL
operation and hasn't been granted the ASSUMEROLE permission, a message similar to the
following appears.

ERROR: User awsuser does not have ASSUMEROLE permission on IAM role
 "arn:aws:iam::123456789012:role/RoleA" for COPY

To list users that have been granted access to IAM roles and commands through the ASSUMEROLE
permission, see HAS_ASSUMEROLE_PRIVILEGE. To list IAM roles and command permissions
that have been granted to a user that you specify, see PG_GET_IAM_ROLE_BY_USER. To list
users, roles, and groups that have been granted access to an IAM role that you specify, see
PG_GET_GRANTEE_BY_IAM_ROLE.

Usage notes for granting machine learning permissions

You can't directly grant or revoke permissions related to an ML function. An ML function
belongs to an ML model and permissions are controlled through the model. Instead, you can
grant permissions related to the ML model. The following example demonstrates how to grant
permisisons to all users to run the ML function associated with the model customer_churn.

GRANT EXECUTE ON MODEL customer_churn TO PUBLIC;

You can also grant all permissions to to a user for the ML model customer_churn.

GRANT ALL on MODEL customer_churn TO ml_user;

Granting the EXECUTE permission related to an ML function will fail if there is an ML function
in the schema, even if that ML function already has the EXECUTE permission through GRANT

GRANT 1461

Amazon Redshift Database Developer Guide

EXECUTE ON MODEL. We recommend using a separate schema when using the CREATE MODEL
command to keep the ML functions in a separate schema by themselves. The following example
demonstrates how to do so.

CREATE MODEL ml_schema.customer_churn
FROM customer_data
TARGET churn
FUNCTION ml_schema.customer_churn_prediction
IAM_ROLE default
SETTINGS (
 S3_BUCKET 'your-s3-bucket'
);

Examples

The following example grants the SELECT privilege on the SALES table to the user fred.

grant select on table sales to fred;

The following example grants the SELECT privilege on all tables in the QA_TICKIT schema to the
user fred.

grant select on all tables in schema qa_tickit to fred;

The following example grants all schema privileges on the schema QA_TICKIT to the user group
QA_USERS. Schema privileges are CREATE and USAGE. USAGE grants users access to the objects
in the schema, but doesn't grant privileges such as INSERT or SELECT on those objects. Grant
privileges on each object separately.

create group qa_users;
grant all on schema qa_tickit to group qa_users;

The following example grants all privileges on the SALES table in the QA_TICKIT schema to all
users in the group QA_USERS.

grant all on table qa_tickit.sales to group qa_users;

The following example grants all privileges on the SALES table in the QA_TICKIT schema to all
users in the groups QA_USERS and RO_USERS.

GRANT 1462

Amazon Redshift Database Developer Guide

grant all on table qa_tickit.sales to group qa_users, group ro_users;

The following example grants the DROP privilege on the SALES table in the QA_TICKIT schema to
all users in the group QA_USERS.

grant drop on table qa_tickit.sales to group qa_users;>

The following sequence of commands shows how access to a schema doesn't grant privileges on a
table in the schema.

create user schema_user in group qa_users password 'Abcd1234';
create schema qa_tickit;
create table qa_tickit.test (col1 int);
grant all on schema qa_tickit to schema_user;

set session authorization schema_user;
select current_user;

current_user

schema_user
(1 row)

select count(*) from qa_tickit.test;

ERROR: permission denied for relation test [SQL State=42501]

set session authorization dw_user;
grant select on table qa_tickit.test to schema_user;
set session authorization schema_user;
select count(*) from qa_tickit.test;

count

0
(1 row)

GRANT 1463

Amazon Redshift Database Developer Guide

The following sequence of commands shows how access to a view doesn't imply access to its
underlying tables. The user called VIEW_USER can't select from the DATE table, although this user
has been granted all privileges on VIEW_DATE.

create user view_user password 'Abcd1234';
create view view_date as select * from date;
grant all on view_date to view_user;
set session authorization view_user;
select current_user;

current_user

view_user
(1 row)

select count(*) from view_date;

count

365
(1 row)

select count(*) from date;

ERROR: permission denied for relation date

The following example grants SELECT privilege on the cust_name and cust_phone columns of
the cust_profile table to the user user1.

grant select(cust_name, cust_phone) on cust_profile to user1;

The following example grants SELECT privilege on the cust_name and cust_phone columns and
UPDATE privilege on the cust_contact_preference column of the cust_profile table to the
sales_group group.

GRANT 1464

Amazon Redshift Database Developer Guide

grant select(cust_name, cust_phone), update(cust_contact_preference) on cust_profile to
 group sales_group;

The following example shows the usage of the ALL keyword to grant both SELECT and UPDATE
privileges on three columns of the table cust_profile to the sales_admin group.

grant ALL(cust_name, cust_phone,cust_contact_preference) on cust_profile to group
 sales_admin;

The following example grants the SELECT privilege on the cust_name column of the
cust_profile_vw view to the user2 user.

grant select(cust_name) on cust_profile_vw to user2;

Examples of granting access to datashares

The following examples show GRANT datasharing usage permissions on a specific database or
schema created from a datashare.

In the following example, a producer-side admin grants the USAGE permission on the salesshare
datashare to the specified namespace.

GRANT USAGE ON DATASHARE salesshare TO NAMESPACE
 '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

In the following example, a consumer-side admin grants the USAGE permission on the sales_db
to Bob.

GRANT USAGE ON DATABASE sales_db TO Bob;

In the following example, a consumer-side admin grants the GRANT USAGE permission on the
sales_schema schema to the Analyst_role role. sales_schema is an external schema that
points to sales_db.

GRANT USAGE ON SCHEMA sales_schema TO ROLE Analyst_role;

At this point, Bob and Analyst_role can access all database objects in sales_schema and
sales_db.

GRANT 1465

Amazon Redshift Database Developer Guide

The following example shows granting additional object-level permission for objects in a shared
database. These extra permissions are only necessary if the CREATE DATABASE command that was
used to create the shared database used the WITH PERMISSIONS clause. If the CREATE DATABASE
command didn’t use WITH PERMISSIONS, granting USAGE on the shared database grants full
access to all objects in that database.

GRANT SELECT ON sales_db.sales_schema.tickit_sales_redshift to Bob;

Examples of granting scoped permissions

The following example grants usage for all current and future schemas in the Sales_db database
to the Sales role.

GRANT USAGE FOR SCHEMAS IN DATABASE Sales_db TO ROLE Sales;

The following example grants the SELECT permission for all current and future tables in the
Sales_db database to the user alice, and also gives alice the permission to grant scoped
permissions on tables in Sales_db to other users.

GRANT SELECT FOR TABLES IN DATABASE Sales_db TO alice WITH GRANT OPTION;

The following example grants the EXECUTE permission for functions in the Sales_schema schema
to the user bob.

GRANT EXECUTE FOR FUNCTIONS IN SCHEMA Sales_schema TO bob;

The following example grants all permissions for all tables in the ShareDb database’s
ShareSchema schema to the Sales role. When specifying the schema, you can specify the
schema’s database using the two-part format database.schema.

GRANT ALL FOR TABLES IN SCHEMA ShareDb.ShareSchema TO ROLE Sales;

The following example is the same as the preceding one. You can specify the database using the
DATABASE keyword instead of using a two-part format.

GRANT ALL FOR TABLES IN SCHEMA ShareSchema DATABASE ShareDb TO ROLE Sales;

GRANT 1466

Amazon Redshift Database Developer Guide

Examples of granting the ASSUMEROLE privilege

The following are examples of granting the ASSUMEROLE privilege.

The following example shows the REVOKE statement that a superuser runs once on the cluster to
enable the use of the ASSUMEROLE privilege for users and groups. Then, the superuser grants the
ASSUMEROLE privilege to users and groups for the appropriate commands. For information on
enabling the use of the ASSUMEROLE privilege for users and groups, see Usage notes for granting
the ASSUMEROLE permission.

revoke assumerole on all from public for all;

The following example grants the ASSUMEROLE privilege to the user reg_user1 for the IAM role
Redshift-S3-Read to perform COPY operations.

grant assumerole on 'arn:aws:iam::123456789012:role/Redshift-S3-Read'
to reg_user1 for copy;

The following example grants the ASSUMEROLE privilege to the user reg_user1 for the IAM role
chain RoleA, RoleB to perform UNLOAD operations.

grant assumerole
on 'arn:aws:iam::123456789012:role/RoleA,arn:aws:iam::210987654321:role/RoleB'
to reg_user1
for unload;

The following is an example of the UNLOAD command using the IAM role chain RoleA, RoleB.

unload ('select * from venue limit 10')
to 's3://companyb/redshift/venue_pipe_'
iam_role 'arn:aws:iam::123456789012:role/RoleA,arn:aws:iam::210987654321:role/RoleB';

The following example grants the ASSUMEROLE privilege to the user reg_user1 for the IAM role
Redshift-Exfunc to create external functions.

grant assumerole on 'arn:aws:iam::123456789012:role/Redshift-Exfunc'
to reg_user1 for external function;

The following example grants the ASSUMEROLE privilege to the user reg_user1 for the IAM role
Redshift-model to create machine learning models.

GRANT 1467

Amazon Redshift Database Developer Guide

grant assumerole on 'arn:aws:iam::123456789012:role/Redshift-ML'
to reg_user1 for create model;

Examples of granting the ROLE privileges

The following example grants sample_role1 to user1.

CREATE ROLE sample_role1;
GRANT ROLE sample_role1 TO user1;

The following example grants sample_role1 to user1 with the WITH ADMIN OPTION, sets the
current session for user1, and user1 grants sample_role1 to user2.

GRANT ROLE sample_role1 TO user1 WITH ADMIN OPTION;
SET SESSION AUTHORIZATION user1;
GRANT ROLE sample_role1 TO user2;

The following example grants sample_role1 to sample_role2.

GRANT ROLE sample_role1 TO ROLE sample_role2;

The following example grants sample_role2 to sample_role3 and sample_role4. Then it attempts
to grants sample_role3 to sample_role1.

GRANT ROLE sample_role2 TO ROLE sample_role3;
GRANT ROLE sample_role3 TO ROLE sample_role2;
ERROR: cannot grant this role, a circular dependency was detected between these roles

The following example grants the CREATE USER system privileges to sample_role1.

GRANT CREATE USER TO ROLE sample_role1;

The following example grants the system-defined role sys:dba to user1.

GRANT ROLE sys:dba TO user1;

The following example attempts to grant sample_role3 in a circular dependency to sample_role2.

GRANT 1468

Amazon Redshift Database Developer Guide

CREATE ROLE sample_role3;
GRANT ROLE sample_role2 TO ROLE sample_role3;
GRANT ROLE sample_role3 TO ROLE sample_role2; -- fail
ERROR: cannot grant this role, a circular dependency was detected between these roles

INSERT

Topics

• Syntax

• Parameters

• Usage notes

• INSERT examples

Inserts new rows into a table. You can insert a single row with the VALUES syntax, multiple
rows with the VALUES syntax, or one or more rows defined by the results of a query (INSERT
INTO...SELECT).

Note

We strongly encourage you to use the COPY command to load large amounts of data.
Using individual INSERT statements to populate a table might be prohibitively slow.
Alternatively, if your data already exists in other Amazon Redshift database tables, use
INSERT INTO SELECT or CREATE TABLE AS to improve performance. For more information
about using the COPY command to load tables, see Loading data.

Note

The maximum size for a single SQL statement is 16 MB.

Syntax

INSERT INTO table_name [(column [, ...])]
{DEFAULT VALUES |
VALUES ({ expression | DEFAULT } [, ...])

INSERT 1469

Amazon Redshift Database Developer Guide

[, ({ expression | DEFAULT } [, ...])
[, ...]] |
query }

Parameters

table_name

A temporary or persistent table. Only the owner of the table or a user with INSERT privilege
on the table can insert rows. If you use the query clause to insert rows, you must have SELECT
privilege on the tables named in the query.

Note

Use INSERT (external table) to insert results of a SELECT query into existing tables on
external catalog. For more information, see INSERT (external table).

column

You can insert values into one or more columns of the table. You can list the target column
names in any order. If you don't specify a column list, the values to be inserted must correspond
to the table columns in the order in which they were declared in the CREATE TABLE statement.
If the number of values to be inserted is less than the number of columns in the table, the first
n columns are loaded.

Either the declared default value or a null value is loaded into any column that isn't listed
(implicitly or explicitly) in the INSERT statement.

DEFAULT VALUES

If the columns in the table were assigned default values when the table was created, use these
keywords to insert a row that consists entirely of default values. If any of the columns don't
have default values, nulls are inserted into those columns. If any of the columns are declared
NOT NULL, the INSERT statement returns an error.

VALUES

Use this keyword to insert one or more rows, each row consisting of one or more values. The
VALUES list for each row must align with the column list. To insert multiple rows, use a comma

INSERT 1470

Amazon Redshift Database Developer Guide

delimiter between each list of expressions. Do not repeat the VALUES keyword. All VALUES lists
for a multiple-row INSERT statement must contain the same number of values.

expression

A single value or an expression that evaluates to a single value. Each value must be compatible
with the data type of the column where it is being inserted. If possible, a value whose data type
doesn't match the column's declared data type is automatically converted to a compatible data
type. For example:

• A decimal value 1.1 is inserted into an INT column as 1.

• A decimal value 100.8976 is inserted into a DEC(5,2) column as 100.90.

You can explicitly convert a value to a compatible data type by including type cast syntax in the
expression. For example, if column COL1 in table T1 is a CHAR(3) column:

insert into t1(col1) values('Incomplete'::char(3));

This statement inserts the value Inc into the column.

For a single-row INSERT VALUES statement, you can use a scalar subquery as an expression. The
result of the subquery is inserted into the appropriate column.

Note

Subqueries aren't supported as expressions for multiple-row INSERT VALUES
statements.

DEFAULT

Use this keyword to insert the default value for a column, as defined when the table was
created. If no default value exists for a column, a null is inserted. You can't insert a default value
into a column that has a NOT NULL constraint if that column doesn't have an explicit default
value assigned to it in the CREATE TABLE statement.

query

Insert one or more rows into the table by defining any query. All of the rows that the query
produces are inserted into the table. The query must return a column list that is compatible
with the columns in the table, but the column names don't have to match.

INSERT 1471

Amazon Redshift Database Developer Guide

Usage notes

Note

We strongly encourage you to use the COPY command to load large amounts of data.
Using individual INSERT statements to populate a table might be prohibitively slow.
Alternatively, if your data already exists in other Amazon Redshift database tables, use
INSERT INTO SELECT or CREATE TABLE AS to improve performance. For more information
about using the COPY command to load tables, see Loading data.

The data format for the inserted values must match the data format specified by the CREATE
TABLE definition.

After inserting a large number of new rows into a table:

• Vacuum the table to reclaim storage space and re-sort rows.

• Analyze the table to update statistics for the query planner.

When values are inserted into DECIMAL columns and they exceed the specified scale, the loaded
values are rounded up as appropriate. For example, when a value of 20.259 is inserted into a
DECIMAL(8,2) column, the value that is stored is 20.26.

You can insert into a GENERATED BY DEFAULT AS IDENTITY column. You can update columns
defined as GENERATED BY DEFAULT AS IDENTITY with values that you supply. For more
information, see GENERATED BY DEFAULT AS IDENTITY.

INSERT examples

The CATEGORY table in the TICKIT database contains the following rows:

 catid | catgroup | catname | catdesc
-------+----------+-----------+--
 1 | Sports | MLB | Major League Baseball
 2 | Sports | NHL | National Hockey League
 3 | Sports | NFL | National Football League
 4 | Sports | NBA | National Basketball Association
 5 | Sports | MLS | Major League Soccer
 6 | Shows | Musicals | Musical theatre
 7 | Shows | Plays | All non-musical theatre

INSERT 1472

Amazon Redshift Database Developer Guide

 8 | Shows | Opera | All opera and light opera
 9 | Concerts | Pop | All rock and pop music concerts
 10 | Concerts | Jazz | All jazz singers and bands
 11 | Concerts | Classical | All symphony, concerto, and choir concerts
(11 rows)

Create a CATEGORY_STAGE table with a similar schema to the CATEGORY table but define default
values for the columns:

create table category_stage
(catid smallint default 0,
catgroup varchar(10) default 'General',
catname varchar(10) default 'General',
catdesc varchar(50) default 'General');

The following INSERT statement selects all of the rows from the CATEGORY table and inserts them
into the CATEGORY_STAGE table.

insert into category_stage
(select * from category);

The parentheses around the query are optional.

This command inserts a new row into the CATEGORY_STAGE table with a value specified for each
column in order:

insert into category_stage values
(12, 'Concerts', 'Comedy', 'All stand-up comedy performances');

You can also insert a new row that combines specific values and default values:

insert into category_stage values
(13, 'Concerts', 'Other', default);

Run the following query to return the inserted rows:

select * from category_stage
where catid in(12,13) order by 1;

 catid | catgroup | catname | catdesc
-------+----------+---------+----------------------------------

INSERT 1473

Amazon Redshift Database Developer Guide

 12 | Concerts | Comedy | All stand-up comedy performances
 13 | Concerts | Other | General
(2 rows)

The following examples show some multiple-row INSERT VALUES statements. The first example
inserts specific CATID values for two rows and default values for the other columns in both rows.

insert into category_stage values
(14, default, default, default),
(15, default, default, default);

select * from category_stage where catid in(14,15) order by 1;
 catid | catgroup | catname | catdesc
-------+----------+---------+---------
 14 | General | General | General
 15 | General | General | General
(2 rows)

The next example inserts three rows with various combinations of specific and default values:

insert into category_stage values
(default, default, default, default),
(20, default, 'Country', default),
(21, 'Concerts', 'Rock', default);

select * from category_stage where catid in(0,20,21) order by 1;
 catid | catgroup | catname | catdesc
-------+----------+---------+---------
 0 | General | General | General
 20 | General | Country | General
 21 | Concerts | Rock | General
(3 rows)

The first set of VALUES in this example produces the same results as specifying DEFAULT VALUES
for a single-row INSERT statement.

The following examples show INSERT behavior when a table has an IDENTITY column. First, create
a new version of the CATEGORY table, then insert rows into it from CATEGORY:

create table category_ident
(catid int identity not null,
catgroup varchar(10) default 'General',

INSERT 1474

Amazon Redshift Database Developer Guide

catname varchar(10) default 'General',
catdesc varchar(50) default 'General');

insert into category_ident(catgroup,catname,catdesc)
select catgroup,catname,catdesc from category;

Note that you can't insert specific integer values into the CATID IDENTITY column. IDENTITY
column values are automatically generated.

The following example demonstrates that subqueries can't be used as expressions in multiple-row
INSERT VALUES statements:

insert into category(catid) values
((select max(catid)+1 from category)),
((select max(catid)+2 from category));

ERROR: can't use subqueries in multi-row VALUES

The following example shows an insert into a temporary table populated with data from the
venue table using the WITH SELECT clause. For more information about the venue table, see
Sample database.

First, create the temporary table #venuetemp.

CREATE TABLE #venuetemp AS SELECT * FROM venue;

List the rows in the #venuetemp table.

SELECT * FROM #venuetemp ORDER BY venueid;

venueid | venuename | venuecity | venuestate| venueseats
--------+--------------------------+------------+-----------+------------
1 Toyota Park Bridgeview IL 0
2 Columbus Crew Stadium Columbus OH 0
3 RFK Stadium Washington DC 0
4 CommunityAmerica Ballpark Kansas City KS 0
5 Gillette Stadium Foxborough MA 68756
...

Insert 10 duplicate rows in the #venuetemp table using the WITH SELECT clause.

INSERT 1475

Amazon Redshift Database Developer Guide

INSERT INTO #venuetemp (WITH venuecopy AS (SELECT * FROM venue) SELECT * FROM venuecopy
 ORDER BY 1 LIMIT 10);

List the rows in the #venuetemp table.

SELECT * FROM #venuetemp ORDER BY venueid;

venueid | venuename | venuecity | venuestate| venueseats
--------+--------------------------+------------+-----------+------------
1 Toyota Park Bridgeview IL 0
1 Toyota Park Bridgeview IL 0
2 Columbus Crew Stadium Columbus OH 0
2 Columbus Crew Stadium Columbus OH 0
3 RFK Stadium Washington DC 0
3 RFK Stadium Washington DC 0
4 CommunityAmerica Ballpark Kansas City KS 0
4 CommunityAmerica Ballpark Kansas City KS 0
5 Gillette Stadium Foxborough MA 68756
5 Gillette Stadium Foxborough MA 68756
...

INSERT (external table)

Inserts the results of a SELECT query into existing external tables on external catalog such as for
AWS Glue, AWS Lake Formation, or an Apache Hive metastore. Use the same AWS Identity and
Access Management (IAM) role used for the CREATE EXTERNAL SCHEMA command to interact with
external catalogs and Amazon S3.

For nonpartitioned tables, the INSERT (external table) command writes data to the Amazon S3
location defined in the table, based on the specified table properties and file format.

For partitioned tables, INSERT (external table) writes data to the Amazon S3 location according to
the partition key specified in the table. It also automatically registers new partitions in the external
catalog after the INSERT operation completes.

You can't run INSERT (external table) within a transaction block (BEGIN ... END). For more
information about transactions, see Serializable isolation.

Syntax

INSERT INTO external_schema.table_name

INSERT (external table) 1476

Amazon Redshift Database Developer Guide

{ select_statement }

Parameters

external_schema.table_name

The name of an existing external schema and a target external table to insert into.

select_statement

A statement that inserts one or more rows into the external table by defining any query. All of
the rows that the query produces are written to Amazon S3 in either text or Parquet format
based on the table definition. The query must return a column list that is compatible with the
column data types in the external table. However, the column names don't have to match.

Usage notes

The number of columns in the SELECT query must be the same as the sum of data columns and
partition columns. The location and the data type of each data column must match that of the
external table. The location of partition columns must be at the end of the SELECT query, in the
same order they were defined in CREATE EXTERNAL TABLE command. The column names don't
have to match.

In some cases, you might want to run the INSERT (external table) command on an AWS Glue Data
Catalog or a Hive metastore. In the case of AWS Glue, the IAM role used to create the external
schema must have both read and write permissions on Amazon S3 and AWS Glue. If you use an
AWS Lake Formation catalog, this IAM role becomes the owner of the new Lake Formation table.
This IAM role must at least have the following permissions:

• SELECT, INSERT, UPDATE permission on the external table

• Data location permission on the Amazon S3 path of the external table

To ensure that file names are unique, Amazon Redshift uses the following format for the name of
each file uploaded to Amazon S3 by default.

<date>_<time>_<microseconds>_<query_id>_<slice-number>_part_<part-
number>.<format>.

An example is 20200303_004509_810669_1007_0001_part_00.parquet.

INSERT (external table) 1477

Amazon Redshift Database Developer Guide

Consider the following when running the INSERT (external table) command:

• External tables that have a format other than PARQUET or TEXTFILE aren't supported.

• This command supports existing table properties such as 'write.parallel', 'write.maxfilesize.mb',
'compression_type’, and 'serialization.null.format'. To update those values, run the ALTER TABLE
SET TABLE PROPERTIES command.

• The 'numRows’ table property is automatically updated toward the end of the INSERT operation.
The table property must be defined or added to the table already if it wasn't created by CREATE
EXTERNAL TABLE AS operation.

• The LIMIT clause isn't supported in the outer SELECT query. Instead, use a nested LIMIT clause.

• You can use the STL_UNLOAD_LOG table to track the files that got written to Amazon S3 by
each INSERT (external table) operation.

• Amazon Redshift supports only Amazon S3 standard encryption for INSERT (external table).

INSERT (external table) examples

The following example inserts the results of the SELECT statement into the external table.

INSERT INTO spectrum.lineitem
SELECT * FROM local_lineitem;

The following example inserts the results of the SELECT statement into a partitioned external
table using static partitioning. The partition columns are hardcoded in the SELECT statement. The
partition columns must be at the end of the query.

INSERT INTO spectrum.customer
SELECT name, age, gender, 'May', 28 FROM local_customer;

The following example inserts the results of the SELECT statement into a partitioned external table
using dynamic partitioning. The partition columns aren't hardcoded. Data is automatically added to
the existing partition folders, or to new folders if a new partition is added.

INSERT INTO spectrum.customer
SELECT name, age, gender, month, day FROM local_customer;

INSERT (external table) 1478

Amazon Redshift Database Developer Guide

LOCK

Restricts access to a database table. This command is only meaningful when it is run inside a
transaction block.

The LOCK command obtains a table-level lock in "ACCESS EXCLUSIVE" mode, waiting if necessary
for any conflicting locks to be released. Explicitly locking a table in this way causes reads and writes
on the table to wait when they are attempted from other transactions or sessions. An explicit table
lock created by one user temporarily prevents another user from selecting data from that table or
loading data into it. The lock is released when the transaction that contains the LOCK command
completes.

Less restrictive table locks are acquired implicitly by commands that refer to tables, such as write
operations. For example, if a user tries to read data from a table while another user is updating
the table, the data that is read will be a snapshot of the data that has already been committed. (In
some cases, queries will stop if they violate serializable isolation rules.) See Managing concurrent
write operations.

Some DDL operations, such as DROP TABLE and TRUNCATE, create exclusive locks. These
operations prevent data reads.

If a lock conflict occurs, Amazon Redshift displays an error message to alert the user who started
the transaction in conflict. The transaction that received the lock conflict is stopped. Every time a
lock conflict occurs, Amazon Redshift writes an entry to the STL_TR_CONFLICT table.

Syntax

LOCK [TABLE] table_name [, ...]

Parameters

TABLE

Optional keyword.

table_name

Name of the table to lock. You can lock more than one table by using a comma-delimited list of
table names. You can't lock views.

LOCK 1479

Amazon Redshift Database Developer Guide

Example

begin;

lock event, sales;

...

MERGE

Conditionally merges rows from a source table into a target table. Traditionally, this can only be
achieved by using multiple insert, update or delete statements separately. For more information on
the operations that MERGE lets you combine, see UPDATE, DELETE, and INSERT.

Syntax

MERGE INTO target_table
USING source_table [[AS] alias]
ON match_condition
[WHEN MATCHED THEN { UPDATE SET col_name = { expr } [,...] | DELETE }
WHEN NOT MATCHED THEN INSERT [(col_name [,...])] VALUES ({ expr } [, ...]) |
REMOVE DUPLICATES]

Parameters

target_table

The temporary or permanent table that the MERGE statement merges into.

source_table

The temporary or permanent table supplying the rows to merge into target_table. source_table
can also be a Spectrum table. source_table can't be a view or a subquery.

alias

The temporary alternative name for source_table.

This parameter is optional. Preceding alias with AS is also optional.

match_condition

Specifies equal predicates between the source table column and target table column that are
used to determine whether the rows in source_table can be matched with rows in target_table.

MERGE 1480

https://docs.aws.amazon.com/redshift/latest/dg/r_UPDATE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_DELETE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_INSERT_30.html

Amazon Redshift Database Developer Guide

If the condition is met, MERGE runs matched_clause for that row. Otherwise MERGE runs
not_matched_clause for that row.

WHEN MATCHED

Specifies the action to be run when the match condition between a source row and a target row
evaluates to True. You can specify either an UPDATE action or a DELETE action.

UPDATE

Updates the matched row in target_table. Only values in the col_name you specify are updated.

DELETE

Deletes the matched row in target_table.

WHEN NOT MATCHED

Specifies the action to be run when the match condition is evaluated to False or Unknown. You
can only specify the INSERT insert action for this clause.

INSERT

Inserts one row into target_table. The target col_name can be listed in any order. If you don’t
provide any col_name values, the default order is all the table’s columns in their declared order.

col_name

One or more column names that you want to modify. Don't include the table name when
specifying the target column.

expr

The expression defining the new value for col_name.

REMOVE DUPLICATES

Specifies that the MERGE command runs in simplified mode. Simplified mode has the following
requirements:

• target_table and source_table must have the same number of columns and compatible
column types.

• Omit the WHEN clause and the UPDATE and INSERT clauses from your MERGE command.

• Use the REMOVE DUPLICATES clause in your MERGE command.

In simplified mode, MERGE does the following:

MERGE 1481

Amazon Redshift Database Developer Guide

• Rows in target_table that have a match in source_table are updated to match the values in
source_table.

• Rows in source_table that don't have a match in target_table are inserted into target_table.

• When multiple rows in target_table match the same row in source_table, the duplicate rows
are removed. Amazon Redshift keeps one row and updates it. Duplicate rows that don’t
match a row in source_table remain unchanged.

Using REMOVE DUPLICATES gives better performance than using WHEN MATCHED and WHEN
NOT MATCHED. We recommend using REMOVE DUPLICATES if target_table and source_table are
compatible and you don't need to preserve duplicate rows in target_table.

Usage notes

• To run MERGE statements, you must be the owner of both source_table and target_table, or
have the SELECT permission for those tables. Additionally, you must have UPDATE, DELETE,
and INSERT permissions for target_table depending on the operations included in your MERGE
statement.

• target_table can't be a system table, catalog table, or external table.

• source_table and target_table can't be the same table.

• You can't use the WITH clause in a MERGE statement.

• Rows in target_table can't match multiple rows in source_table.

Consider the following example:

CREATE TABLE target (id INT, name CHAR(10));
CREATE TABLE source (id INT, name CHAR(10));

INSERT INTO target VALUES (1, 'Bob'), (2, 'John');
INSERT INTO source VALUES (1, 'Tony'), (1, 'Alice'), (3, 'Bill');

MERGE INTO target USING source ON target.id = source.id
WHEN MATCHED THEN UPDATE SET id = source.id, name = source.name
WHEN NOT MATCHED THEN INSERT VALUES (source.id, source.name);
ERROR: Found multiple matches to update the same tuple.

MERGE INTO target USING source ON target.id = source.id
WHEN MATCHED THEN DELETE
WHEN NOT MATCHED THEN INSERT VALUES (source.id, source.name);

MERGE 1482

Amazon Redshift Database Developer Guide

ERROR: Found multiple matches to update the same tuple.

In both MERGE statements, the operation fails because there are multiple rows in the source
table with an ID value of 1.

• match_condition and expr can't partially reference SUPER type columns. For example, if your
SUPER type object is an array or a structure, you can't use individual elements of that column for
match_condition or expr, but you can use the entire column.

Consider the following example:

CREATE TABLE IF NOT EXISTS target (key INT, value SUPER);
CREATE TABLE IF NOT EXISTS source (key INT, value SUPER);

INSERT INTO target VALUES (1, JSON_PARSE('{"key": 88}'));
INSERT INTO source VALUES (1, ARRAY(1, 'John')), (2, ARRAY(2, 'Bill'));

MERGE INTO target USING source ON target.key = source.key
WHEN matched THEN UPDATE SET value = source.value[0]
WHEN NOT matched THEN INSERT VALUES (source.key, source.value[0]);
ERROR: Partial reference of SUPER column is not supported in MERGE statement.

For more information on the SUPER type, see SUPER type.

• If source_table is large, defining the join columns from both target_table and source_table as the
distribution keys can improve performance.

• To use the REMOVE DUPLICATES clause, you need SELECT, INSERT, and DELETE permissions for
target_table.

Examples

The following example creates two tables, then runs a MERGE operation on them, updating
matching rows in the target table and inserting rows that don't match. Then it inserts another
value into the source table and runs another MERGE operation, this time deleting matching rows
and inserting the new row from the source table.

First create and populate the source and target tables.

CREATE TABLE target (id INT, name CHAR(10));
CREATE TABLE source (id INT, name CHAR(10));

MERGE 1483

https://docs.aws.amazon.com/redshift/latest/dg/r_SUPER_type.html

Amazon Redshift Database Developer Guide

INSERT INTO target VALUES (101, 'Bob'), (102, 'John'), (103, 'Susan');
INSERT INTO source VALUES (102, 'Tony'), (103, 'Alice'), (104, 'Bill');

SELECT * FROM target;
 id | name
-----+------------
 101 | Bob
 102 | John
 103 | Susan
(3 rows)

SELECT * FROM source;
 id | name
-----+------------
 102 | Tony
 103 | Alice
 104 | Bill
(3 rows)

Next, merge the source table into the target table, updating the target table with matching rows
and insert rows from the source table that have no match.

MERGE INTO target USING source ON target.id = source.id
WHEN MATCHED THEN UPDATE SET id = source.id, name = source.name
WHEN NOT MATCHED THEN INSERT VALUES (source.id, source.name);

SELECT * FROM target;
 id | name
-----+------------
 101 | Bob
 102 | Tony
 103 | Alice
 104 | Bill
(4 rows)

Note that the rows with id values of 102 and 103 are updated to match the name values from the
target table. Also, a new row with an id value of 104 and name value of Bill is inserted into the
target table.

Next, insert a new row into the source table.

INSERT INTO source VALUES (105, 'David');

MERGE 1484

Amazon Redshift Database Developer Guide

SELECT * FROM source;
 id | name
-----+------------
 102 | Tony
 103 | Alice
 104 | Bill
 105 | David
(4 rows)

Finally, run a merge operation deleting matching rows in the target table, and inserting rows that
don't match.

MERGE INTO target USING source ON target.id = source.id
WHEN MATCHED THEN DELETE
WHEN NOT MATCHED THEN INSERT VALUES (source.id, source.name);

SELECT * FROM target;
 id | name
-----+------------
 101 | Bob
 105 | David
(2 rows)

The rows with id values 102, 103, and 104 are deleted from the target table, and a new row with
an id value of 105 and name value of David is inserted into the target table.

The following example shows a MERGE command using the REMOVE DUPLICATES clause.

CREATE TABLE target (id INT, name CHAR(10));
CREATE TABLE source (id INT, name CHAR(10));

INSERT INTO target VALUES (30, 'Tony'), (11, 'Alice'), (23, 'Bill');
INSERT INTO source VALUES (23, 'David'), (22, 'Clarence');

MERGE INTO target USING source ON target.id = source.id REMOVE DUPLICATES;

SELECT * FROM target;
id | name
---+------------
30 | Tony
11 | Alice
23 | David

MERGE 1485

Amazon Redshift Database Developer Guide

22 | Clarence
(4 rows)

The following example shows a MERGE command using the REMOVE DUPLICATES clause, removing
duplicate rows from target_table if they have matching rows in source_table.

CREATE TABLE target (id INT, name CHAR(10));
CREATE TABLE source (id INT, name CHAR(10));

INSERT INTO target VALUES (30, 'Tony'), (30, 'Daisy'), (11, 'Alice'), (23, 'Bill'),
 (23, 'Nikki');
INSERT INTO source VALUES (23, 'David'), (22, 'Clarence');

MERGE INTO target USING source ON target.id = source.id REMOVE DUPLICATES;

SELECT * FROM target;
id | name
---+------------
30 | Tony
30 | Daisy
11 | Alice
23 | David
22 | Clarence
(5 rows)

After MERGE runs, there's only one row with an ID value of 23 in target_table. Because there was
no row in source_table with the ID value 30, the two duplicate rows with ID values of 30 remain in
target_table.

See also

INSERT, UPDATE, DELETE

PREPARE

Prepare a statement for execution.

PREPARE creates a prepared statement. When the PREPARE statement is run, the specified
statement (SELECT, INSERT, UPDATE, or DELETE) is parsed, rewritten, and planned. When an
EXECUTE command is then issued for the prepared statement, Amazon Redshift may optionally
revise the query execution plan (to improve performance based on the specified parameter values)
before running the prepared statement.

PREPARE 1486

Amazon Redshift Database Developer Guide

Syntax

PREPARE plan_name [(datatype [, ...])] AS statement

Parameters

plan_name

An arbitrary name given to this particular prepared statement. It must be unique within a single
session and is subsequently used to run or deallocate a previously prepared statement.

datatype

The data type of a parameter to the prepared statement. To refer to the parameters in the
prepared statement itself, use $1, $2, and so on.

statement

Any SELECT, INSERT, UPDATE, or DELETE statement.

Usage notes

Prepared statements can take parameters: values that are substituted into the statement when it
is run. To include parameters in a prepared statement, supply a list of data types in the PREPARE
statement, and, in the statement to be prepared itself, refer to the parameters by position using
the notation $1, $2, ... When running the statement, specify the actual values for these parameters
in the EXECUTE statement. For more details, see EXECUTE.

Prepared statements only last for the duration of the current session. When the session ends, the
prepared statement is discarded, so it must be re-created before being used again. This also means
that a single prepared statement can't be used by multiple simultaneous database clients; however,
each client can create its own prepared statement to use. The prepared statement can be manually
removed using the DEALLOCATE command.

Prepared statements have the largest performance advantage when a single session is being used
to run a large number of similar statements. As mentioned, for each new execution of a prepared
statement, Amazon Redshift may revise the query execution plan to improve performance based
on the specified parameter values. To examine the query execution plan that Amazon Redshift has
chosen for any specific EXECUTE statements, use the EXPLAIN command.

PREPARE 1487

Amazon Redshift Database Developer Guide

For more information on query planning and the statistics collected by Amazon Redshift for query
optimization, see the ANALYZE command.

Examples

Create a temporary table, prepare INSERT statement and then run it:

DROP TABLE IF EXISTS prep1;
CREATE TABLE prep1 (c1 int, c2 char(20));
PREPARE prep_insert_plan (int, char)
AS insert into prep1 values ($1, $2);
EXECUTE prep_insert_plan (1, 'one');
EXECUTE prep_insert_plan (2, 'two');
EXECUTE prep_insert_plan (3, 'three');
DEALLOCATE prep_insert_plan;

Prepare a SELECT statement and then run it:

PREPARE prep_select_plan (int)
AS select * from prep1 where c1 = $1;
EXECUTE prep_select_plan (2);
EXECUTE prep_select_plan (3);
DEALLOCATE prep_select_plan;

See also

DEALLOCATE, EXECUTE

REFRESH MATERIALIZED VIEW

Refreshes a materialized view.

When you create a materialized view, its contents reflect the state of the underlying database
table or tables at that time. The data in the materialized view remains unchanged, even
when applications make changes to the data in the underlying tables. To update the data in a
materialized view, you can use the REFRESH MATERIALIZED VIEW statement at any time. When
you use this statement, Amazon Redshift identifies changes that have taken place in the base table
or tables, and then applies those changes to the materialized view.

For more information about materialized views, see Creating materialized views in Amazon
Redshift.

REFRESH MATERIALIZED VIEW 1488

Amazon Redshift Database Developer Guide

Syntax

REFRESH MATERIALIZED VIEW mv_name

Parameters

mv_name

The name of the materialized view to be refreshed.

Usage notes

Only the owner of a materialized view can perform a REFRESH MATERIALIZED VIEW operation
on that materialized view. Furthermore, the owner must have SELECT privilege on the underlying
base tables to successfully run REFRESH MATERIALIZED VIEW.

The REFRESH MATERIALIZED VIEW command runs as a transaction of its own. Amazon Redshift
transaction semantics are followed to determine what data from base tables is visible to the
REFRESH command, or when the changes made by the REFRESH command are made visible to
other transactions running in Amazon Redshift.

• For incremental materialized views, REFRESH MATERIALIZED VIEW uses only those base
table rows that are already committed. Therefore, if the refresh operation runs after a data
manipulation language (DML) statement in the same transaction, then changes of that DML
statement aren't visible to refresh.

• For a full refresh of a materialized view, REFRESH MATERIALIZED VIEW sees all base table rows
visible to the refresh transaction, according to usual Amazon Redshift transaction semantics.

• Depending on the input argument type, Amazon Redshift still supports incremental refresh
for materialized views for the following functions with specific input argument types: DATE
(timestamp), DATE_PART (date, time, interval, time-tz), DATE_TRUNC (timestamp, interval).

• Incremental refresh is supported on a materialized view where the base table is in a datashare.

Some operations in Amazon Redshift interact with materialized views. Some of these operations
might force a REFRESH MATERIALIZED VIEW operation to fully recompute the materialized
view even though the query defining the materialized view only uses the SQL features eligible for
incremental refresh. For example:

REFRESH MATERIALIZED VIEW 1489

Amazon Redshift Database Developer Guide

• Background vacuum operations might be blocked if materialized views aren't refreshed. After
an internally defined threshold period, a vacuum operation is allowed to run. When this vacuum
operation happens, any dependent materialized views are marked for recomputation upon the
next refresh (even if they are incremental). For information about VACUUM, see VACUUM. For
more information about events and state changes, see STL_MV_STATE.

• Some user-initiated operations on base tables force a materialized view to be fully recomputed
next time that a REFRESH operation is run. Examples of such operations are a manually invoked
VACUUM, a classic resize, an ALTER DISTKEY operation, an ALTER SORTKEY operation, and a
truncate operation. For more information about events and state changes, see STL_MV_STATE.

Incremental refresh for materialized views in a datashare

Amazon Redshift supports automatic and incremental refresh for materialized views in a consumer
datashare when the base tables are shared. Incremental refresh is an operation where Amazon
Redshift identifies changes in the base table or tables that happened after the previous refresh and
updates only the corresponding records in the materialized view. For more information about this
behavior, see CREATE MATERIALIZED VIEW.

Limitations for incremental refresh

Amazon Redshift currently doesn't support incremental refresh for materialized views that are
defined with a query using any of the following SQL elements:

• OUTER JOIN (RIGHT, LEFT, or FULL).

• Set operations: UNION, INTERSECT, EXCEPT, MINUS.

• UNION ALL when it occurs in a subquery and an aggregate function or a GROUP BY clause is
present in the query.

• Aggregate functions: MEDIAN, PERCENTILE_CONT, LISTAGG, STDDEV_SAMP, STDDEV_POP,
APPROXIMATE COUNT, APPROXIMATE PERCENTILE, and bitwise aggregate functions.

Note

The COUNT, SUM, MIN, MAX, and AVG aggregate functions are supported.

• DISTINCT aggregate functions, such as DISTINCT COUNT, DISTINCT SUM, and so on.

• Window functions.

REFRESH MATERIALIZED VIEW 1490

https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-create-sql-command.html#mv_CREATE_MARTERIALIZED_VIEW_datashare

Amazon Redshift Database Developer Guide

• A query that uses temporary tables for query optimization, such as optimizing common
subexpressions.

• Subqueries

• External tables referencing the following formats in the query that defines the materialized view.

• Delta Lake

• Hudi

Incremental refresh is supported for materialized views defined using external tables referencing
other formats on the preview track. For more information about setting up Preview clusters,
see Creating a preview cluster in the Amazon Redshift Management Guide. For information
about setting up Preview workgroups, see Creating a preview workgroup in the Amazon Redshift
Management Guide.

• Mutable functions, such as date-time functions, RANDOM and non-STABLE user-defined
functions.

• For limitations regarding incremental refresh for zero-ETL integrations, see Considerations when
using zero-ETL integrations with Amazon Redshift.

For more information about materialized-view limitations, including the effect of background
operations like VACUUM on materialized-view refresh operations, see Usage notes.

Examples

The following example refreshes the tickets_mv materialized view.

REFRESH MATERIALIZED VIEW tickets_mv;

RESET

Restores the value of a configuration parameter to its default value.

You can reset either a single specified parameter or all parameters at once. To set a parameter to
a specific value, use the SET command. To display the current value of a parameter, use the SHOW
command.

Syntax

RESET { parameter_name | ALL }

RESET 1491

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-clusters-console.html#cluster-preview
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-workgroup-preview.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl.reqs-lims.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl.reqs-lims.html

Amazon Redshift Database Developer Guide

The following statement sets the value of a session context variable to NULL.

RESET { variable_name | ALL }

Parameters

parameter_name

Name of the parameter to reset. See Modifying the server configuration for more
documentation about parameters.

ALL

Resets all runtime parameters, including all the session context variables.

variable

The name of the variable to reset. If the value to RESET is a session context variable, Amazon
Redshift sets it to NULL.

Examples

The following example resets the query_group parameter to its default value:

reset query_group;

The following example resets all runtime parameters to their default values.

reset all;

The following example resets the context variable.

RESET app_context.user_id;

REVOKE

Removes access permissions, such as permissions to create, drop, or update tables, from a user or
role.

You can only GRANT or REVOKE USAGE permissions on an external schema to database users and
roles using the ON SCHEMA syntax. When using ON EXTERNAL SCHEMA with AWS Lake Formation,

REVOKE 1492

Amazon Redshift Database Developer Guide

you can only GRANT and REVOKE permissions to an AWS Identity and Access Management (IAM)
role. For the list of permissions, see the syntax.

For stored procedures, USAGE ON LANGUAGE plpgsql permissions are granted to PUBLIC by
default. EXECUTE ON PROCEDURE permission is granted only to the owner and superusers by
default.

Specify in the REVOKE command the permissions that you want to remove. To give permissions,
use the GRANT command.

Syntax

REVOKE [GRANT OPTION FOR]
{ { SELECT | INSERT | UPDATE | DELETE | DROP | REFERENCES | ALTER | TRUNCATE } [,...] |
 ALL [PRIVILEGES] }
ON { [TABLE] table_name [, ...] | ALL TABLES IN SCHEMA schema_name [, ...] }
FROM { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
[RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { CREATE | TEMPORARY | TEMP | ALTER } [,...] | ALL [PRIVILEGES] }
ON DATABASE db_name [, ...]
FROM { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
[RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { CREATE | USAGE | ALTER } [,...] | ALL [PRIVILEGES] }
ON SCHEMA schema_name [, ...]
FROM { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
[RESTRICT]

REVOKE [GRANT OPTION FOR]
EXECUTE
 ON FUNCTION function_name ([[argname] argtype [, ...]]) [, ...]
 FROM { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
[RESTRICT]

REVOKE [GRANT OPTION FOR]
{ { EXECUTE } [,...] | ALL [PRIVILEGES] }

REVOKE 1493

Amazon Redshift Database Developer Guide

 ON PROCEDURE procedure_name ([[argname] argtype [, ...]]) [, ...]
 FROM { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
[RESTRICT]

REVOKE [GRANT OPTION FOR]
USAGE
 ON LANGUAGE language_name [, ...]
 FROM { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
[RESTRICT]

Revoking column-level permissions for tables

The following is the syntax for column-level permissions on Amazon Redshift tables and views.

REVOKE { { SELECT | UPDATE } (column_name [, ...]) [, ...] | ALL [PRIVILEGES]
 (column_name [,...]) }
 ON { [TABLE] table_name [, ...] }
 FROM { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
 [RESTRICT]

Revoking ASSUMEROLE permissions

The following is the syntax to revoke the ASSUMEROLE permission from users and groups with a
specified role.

REVOKE ASSUMEROLE
 ON { 'iam_role' [, ...] | default | ALL }
 FROM { user_name | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
 FOR { ALL | COPY | UNLOAD | EXTERNAL FUNCTION | CREATE MODEL }

Revoking permissions for Redshift Spectrum for Lake Formation

The following is the syntax for Redshift Spectrum integration with Lake Formation.

REVOKE [GRANT OPTION FOR]
{ SELECT | ALL [PRIVILEGES] } (column_list)
 ON EXTERNAL TABLE schema_name.table_name
 FROM { IAM_ROLE iam_role } [, ...]

REVOKE [GRANT OPTION FOR]
{ { SELECT | ALTER | DROP | DELETE | INSERT } [, ...] | ALL [PRIVILEGES] }

REVOKE 1494

Amazon Redshift Database Developer Guide

 ON EXTERNAL TABLE schema_name.table_name [, ...]
 FROM { { IAM_ROLE iam_role } [, ...] | PUBLIC }

REVOKE [GRANT OPTION FOR]
{ { CREATE | ALTER | DROP } [, ...] | ALL [PRIVILEGES] }
 ON EXTERNAL SCHEMA schema_name [, ...]
 FROM { IAM_ROLE iam_role } [, ...]

Revoking datashare permissions

Producer-side datashare permissions

The following is the syntax for using REVOKE to remove ALTER or SHARE permissions from a user
or role. The user whose permissions have been revoked can no longer alter the datashare, or grant
usage to a consumer.

REVOKE { ALTER | SHARE } ON DATASHARE datashare_name
 FROM { username [WITH GRANT OPTION] | ROLE role_name | GROUP group_name | PUBLIC }
 [, ...]

The following is the syntax for using REVOKE to remove a consumer’s access to a datashare.

REVOKE USAGE
 ON DATASHARE datashare_name
 FROM NAMESPACE 'namespaceGUID' [, ...] | ACCOUNT 'accountnumber' [VIA DATA CATALOG]
 [, ...]

The following is an example of revoking usage of a datashare from a Lake Formation account.

REVOKE USAGE ON DATASHARE salesshare FROM ACCOUNT '123456789012' VIA DATA CATALOG;

Consumer-side datashare permissions

The following is the REVOKE syntax for data-sharing usage permissions on a specific database or
schema created from a datashare. Revoking usage permission from a database created with the
WITH PERMISSIONS clause doesn't revoke any additional permissions you granted a user or role,
including object-level permissions granted for underlying objects. If you re-grant usage permission
to that user or role, they will retain all additional permissions that they had before you revoked
usage.

REVOKE USAGE ON { DATABASE shared_database_name [, ...] | SCHEMA shared_schema}

REVOKE 1495

Amazon Redshift Database Developer Guide

 FROM { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]

Revoking scoped permissions

Scoped permissions let you grant permissions to a user or role on all objects of a type within a
database or schema. Users and roles with scoped permissions have the specified permissions on all
current and future objects within the database or schema.

The following is the syntax for revoking scoped permissions from users and roles. For more
information about scoped permissions, see Scoped permissions.

REVOKE [GRANT OPTION]
{ CREATE | USAGE | ALTER } [,...] | ALL [PRIVILEGES] }
FOR SCHEMAS IN
DATABASE db_name
FROM { username | ROLE role_name } [, ...]

REVOKE [GRANT OPTION]
{ { SELECT | INSERT | UPDATE | DELETE | DROP | ALTER | TRUNCATE | REFERENCES }
 [, ...] } | ALL [PRIVILEGES] } }
FOR TABLES IN
{SCHEMA schema_name [DATABASE db_name] | DATABASE db_name }
FROM { username] | ROLE role_name} [, ...]

REVOKE [GRANT OPTION] { EXECUTE | ALL [PRIVILEGES] }
FOR FUNCTIONS IN
{SCHEMA schema_name [DATABASE db_name] | DATABASE db_name }
FROM { username | ROLE role_name | } [, ...]

REVOKE [GRANT OPTION] { EXECUTE | ALL [PRIVILEGES] }
FOR PROCEDURES IN
{SCHEMA schema_name [DATABASE db_name] | DATABASE db_name }
FROM { username | ROLE role_name | } [, ...]

REVOKE [GRANT OPTION] USAGE
FOR LANGUAGES IN
{DATABASE db_name}
FROM { username | ROLE role_name } [, ...]

Note that scoped permissions don’t distinguish between permissions for functions and for
procedures. For example, the following statement revokes EXECUTE permissions for both functions
and procedures from bob in the schema Sales_schema.

REVOKE 1496

Amazon Redshift Database Developer Guide

REVOKE EXECUTE FOR FUNCTIONS IN SCHEMA Sales_schema FROM bob;

Revoking machine learning permissions

The following is the syntax for machine learning model permissions on Amazon Redshift.

REVOKE [GRANT OPTION FOR]
 CREATE MODEL FROM { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
 [RESTRICT]

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON MODEL model_name [, ...]

 FROM { username | ROLE role_name | GROUP group_name | PUBLIC } [, ...]
 [RESTRICT]

Revoking role permissions

The following is the syntax for revoking role permissions on Amazon Redshift.

REVOKE [ADMIN OPTION FOR] { ROLE role_name } [, ...] FROM { user_name } [, ...]

REVOKE { ROLE role_name } [, ...] FROM { ROLE role_name } [, ...]

The following is the syntax for revoking system permissions to roles on Amazon Redshift.

REVOKE
 {
 { CREATE USER | DROP USER | ALTER USER |
 CREATE SCHEMA | DROP SCHEMA |
 ALTER DEFAULT PRIVILEGES |
 ACCESS CATALOG |
 CREATE TABLE | DROP TABLE | ALTER TABLE |
 CREATE OR REPLACE FUNCTION | CREATE OR REPLACE EXTERNAL FUNCTION |
 DROP FUNCTION |
 CREATE OR REPLACE PROCEDURE | DROP PROCEDURE |
 CREATE OR REPLACE VIEW | DROP VIEW |
 CREATE MODEL | DROP MODEL |
 CREATE DATASHARE | ALTER DATASHARE | DROP DATASHARE |
 CREATE LIBRARY | DROP LIBRARY |

REVOKE 1497

Amazon Redshift Database Developer Guide

 CREATE ROLE | DROP ROLE
 TRUNCATE TABLE
 VACUUM | ANALYZE | CANCEL }[, ...]
 }
 | { ALL [PRIVILEGES] }
FROM { ROLE role_name } [, ...]

Revoking explain permissions for row-level security policy filters

The following is the syntax for revoking permissions to explain the row-level security policy filters
of a query in the EXPLAIN plan. You can revoke the privilege using the REVOKE statement.

REVOKE EXPLAIN RLS FROM ROLE rolename

The following is the syntax for granting permissions to bypass row-level security policies for a
query.

REVOKE IGNORE RLS FROM ROLE rolename

The following is the syntax for revoking permissions from the specified row-level security policy.

REVOKE SELECT ON [TABLE] table_name [, ...]
 FROM RLS POLICY policy_name [, ...]

Parameters

GRANT OPTION FOR

Revokes only the option to grant a specified permission to other users and doesn't revoke the
permission itself. You can't revoke GRANT OPTION from a group or from PUBLIC.

SELECT

Revokes the permission to select data from a table or a view using a SELECT statement.

INSERT

Revokes the permission to load data into a table using an INSERT statement or a COPY
statement.

UPDATE

Revokes the permission to update a table column using an UPDATE statement.

REVOKE 1498

Amazon Redshift Database Developer Guide

DELETE

Revokes the permission to delete a data row from a table.

REFERENCES

Revokes the permission to create a foreign key constraint. You should revoke this permission on
both the referenced table and the referencing table.

TRUNCATE

Revokes the permission to truncate a table. Without this permission, only the owner of a table
or a superuser can truncate a table. For more information about the TRUNCATE command, see
the section called “TRUNCATE”.

ALL [PRIVILEGES]

Revokes all available permissions at once from the specified user or group. The PRIVILEGES
keyword is optional.

ALTER

Depending on the database object, revokes the following permissions from the user or user
group:

• For tables, ALTER revokes permission to alter a table or view. For more information, see
ALTER TABLE.

• For databases, ALTER revokes permission to alter a database. For more information, see
ALTER DATABASE.

• For schemas, ALTER grants revokes to alter a schema. For more information, see ALTER
SCHEMA.

• For external tables, ALTER revokes permission to alter a table in an AWS Glue Data Catalog
that is enabled for Lake Formation. This permission only applies when using Lake Formation.

DROP

Revokes permission to drop a table. This permission applies in Amazon Redshift and in an AWS
Glue Data Catalog that is enabled for Lake Formation.

ASSUMEROLE

Revokes the permission to run COPY, UNLOAD, EXTERNAL FUNCTION, or CREATE MODEL
commands from users, roles, or groups with a specified role.

REVOKE 1499

Amazon Redshift Database Developer Guide

ON [TABLE] table_name

Revokes the specified permissions on a table or a view. The TABLE keyword is optional.

ON ALL TABLES IN SCHEMA schema_name

Revokes the specified permissions on all tables in the referenced schema.

(column_name [,...]) ON TABLE table_name

Revokes the specified permissions from users, groups, or PUBLIC on the specified columns of
the Amazon Redshift table or view.

(column_list) ON EXTERNAL TABLE schema_name.table_name

Revokes the specified permissions from an IAM role on the specified columns of the Lake
Formation table in the referenced schema.

ON EXTERNAL TABLE schema_name.table_name

Revokes the specified permissions from an IAM role on the specified Lake Formation tables in
the referenced schema.

ON EXTERNAL SCHEMA schema_name

Revokes the specified permissions from an IAM role on the referenced schema.

FROM IAM_ROLE iam_role

Indicates the IAM role losing the permissions.

ROLE role_name

Revokes the permissions from the specified role.

GROUP group_name

Revokes the permissions from the specified user group.

PUBLIC

Revokes the specified permissions from all users. PUBLIC represents a group that always
includes all users. An individual user's permissions consist of the sum of permissions granted
to PUBLIC, permissions granted to any groups that the user belongs to, and any permissions
granted to the user individually.

REVOKE 1500

Amazon Redshift Database Developer Guide

Revoking PUBLIC from a Lake Formation external table results in revoking the permission from
the Lake Formation everyone group.

CREATE

Depending on the database object, revokes the following permissions from the user or group:

• For databases, using the CREATE clause for REVOKE prevents users from creating schemas
within the database.

• For schemas, using the CREATE clause for REVOKE prevents users from creating objects
within a schema. To rename an object, the user must have the CREATE permission and own
the object to be renamed.

Note

By default, all users have CREATE and USAGE permissions on the PUBLIC schema.

TEMPORARY | TEMP

Revokes the permission to create temporary tables in the specified database.

Note

By default, users are granted permission to create temporary tables by their automatic
membership in the PUBLIC group. To remove the permission for any users to create
temporary tables, revoke the TEMP permission from the PUBLIC group and then
explicitly grant the permission to create temporary tables to specific users or groups of
users.

ON DATABASE db_name

Revokes the permissions on the specified database.

USAGE

Revokes USAGE permissions on objects within a specific schema, which makes these objects
inaccessible to users. Specific actions on these objects must be revoked separately (such as the
EXECUTE permission on functions).

REVOKE 1501

Amazon Redshift Database Developer Guide

Note

By default, all users have CREATE and USAGE permissions on the PUBLIC schema.

ON SCHEMA schema_name

Revokes the permissions on the specified schema. You can use schema permissions to control
the creation of tables; the CREATE permission for a database only controls the creation of
schemas.

RESTRICT

Revokes only those permissions that the user directly granted. This behavior is the default.

EXECUTE ON PROCEDURE procedure_name

Revokes the EXECUTE permission on a specific stored procedure. Because stored procedure
names can be overloaded, you must include the argument list for the procedure. For more
information, see Naming stored procedures.

EXECUTE ON ALL PROCEDURES IN SCHEMA procedure_name

Revokes the specified permissions on all procedures in the referenced schema.

USAGE ON LANGUAGE language_name

Revokes the USAGE permission on a language. For Python user-defined functions (UDFs), use
plpythonu. For SQL UDFs, use sql. For stored procedures, use plpgsql.

To create a UDF, you must have permission for usage on language for SQL or plpythonu
(Python). By default, USAGE ON LANGUAGE SQL is granted to PUBLIC. However, you must
explicitly grant USAGE ON LANGUAGE PLPYTHONU to specific users or groups.

To revoke usage for SQL, first revoke usage from PUBLIC. Then grant usage on SQL only to the
specific users or groups permitted to create SQL UDFs. The following example revokes usage on
SQL from PUBLIC then grants usage to the user group udf_devs.

revoke usage on language sql from PUBLIC;
grant usage on language sql to group udf_devs;

For more information, see UDF security and privileges.

REVOKE 1502

Amazon Redshift Database Developer Guide

To revoke usage for stored procedures, first revoke usage from PUBLIC. Then grant usage on
plpgsql only to the specific users or groups permitted to create stored procedures. For more
information, see Security and privileges for stored procedures .

FOR { ALL | COPY | UNLOAD | EXTERNAL FUNCTION | CREATE MODEL } [, ...]

Specifes the SQL command for which the permission is revoked. You can specify ALL to revoke
the permission on the COPY, UNLOAD, EXTERNAL FUNCTION, and CREATE MODEL statements.
This clause applies only to revoking the ASSUMEROLE permission.

ALTER

Revokes the ALTER permission for users or user groups that allows those that don't own a
datashare to alter the datashare. This permission is required to add or remove objects from
a datashare, or to set the property PUBLICACCESSIBLE. For more information, see ALTER
DATASHARE.

SHARE

Revokes permissions for users and user groups to add consumers to a datashare. Revoking this
permissionis required to stop the particular consumer from accessing the datashare from its
clusters.

ON DATASHARE datashare_name

Grants the specified permissions on the referenced datashare.

FROM username

Indicates the user losing the permissions.

FROM GROUP group_name

Indicates the user group losing the permissions.

WITH GRANT OPTION

Indicates that the user losing the permissions can in turn revoke the same permissions for
others. You can't revoke WITH GRANT OPTION for a group or for PUBLIC.

USAGE

When USAGE is revoked for a consumer account or namespace within the same account, the
specified consumer account or namespace within an account can't access the datashare and the
objects of the datashare in read-only fashion.

Revoking the USAGE permission revokes the access to a datashare from consumers.

REVOKE 1503

Amazon Redshift Database Developer Guide

FROM NAMESPACE 'clusternamespace GUID'

Indicates the namespace in the same account that has consumers losing the permissions to the
datashare. Namespaces use a 128-bit alphanumeric globally unique identifier (GUID).

FROM ACCOUNT 'accountnumber' [VIA DATA CATALOG]

Indicates the account number of another account that has the consumers losing the permissions
to the datashare. Specifying ‘VIA DATA CATALOG’ indicates that you are revoking usage of the
datashare from a Lake Formation account. Omitting the account number means that you're
revoking from the account that owns the cluster.

ON DATABASE shared_database_name> [, ...]

Revokes the specified usage permissions on the specified database that was created in the
specified datashare.

ON SCHEMA shared_schema

Revokes the specified permissions on the specified schema that was created in the specified
datashare.

FOR { SCHEMAS | TABLES | FUNCTIONS | PROCEDURES | LANGUAGES } IN

Specifies the database objects to revoke permission from. The parameters following IN define
the scope of the revoked permission.

CREATE MODEL

Revokes the CREATE MODEL permission to create machine learning models in the specified
database.

ON MODEL model_name

Revokes the EXECUTE permission for a specific model.

ACCESS CATALOG

Revokes the permission to view relevant metadata of objects that the role has access to.

[ADMIN OPTION FOR] { role } [, ...]

The role that you revoke from a specified user that has the WITH ADMIN OPTION.

FROM { role } [, ...]

The role that you revoke the specified role from.

REVOKE 1504

Amazon Redshift Database Developer Guide

Usage notes

To learn more about the usage notes for REVOKE, see the section called “Usage notes”.

Examples

For examples of how to use REVOKE, see the section called “Examples”.

Usage notes

To revoke privileges from an object, you must meet one of the following criteria:

• Be the object owner.

• Be a superuser.

• Have a grant privilege for that object and privilege.

For example, the following command enables the user HR both to perform SELECT commands
on the employees table and to grant and revoke the same privilege for other users.

grant select on table employees to HR with grant option;

HR can't revoke privileges for any operation other than SELECT, or on any other table than
employees.

Superusers can access all objects regardless of GRANT and REVOKE commands that set object
privileges.

PUBLIC represents a group that always includes all users. By default all members of PUBLIC have
CREATE and USAGE privileges on the PUBLIC schema. To restrict any user's permissions on the
PUBLIC schema, you must first revoke all permissions from PUBLIC on the PUBLIC schema, then
grant privileges to specific users or groups. The following example controls table creation privileges
in the PUBLIC schema.

revoke create on schema public from public;

To revoke privileges from a Lake Formation table, the IAM role associated with the table's external
schema must have permission to revoke privileges to the external table. The following example
creates an external schema with an associated IAM role myGrantor. IAM role myGrantor has the

REVOKE 1505

Amazon Redshift Database Developer Guide

permission to revoke permissions from others. The REVOKE command uses the permission of the
IAM role myGrantor that is associated with the external schema to revoke permission to the IAM
role myGrantee.

create external schema mySchema
from data catalog
database 'spectrum_db'
iam_role 'arn:aws:iam::123456789012:role/myGrantor'
create external database if not exists;

revoke select
on external table mySchema.mytable
from iam_role 'arn:aws:iam::123456789012:role/myGrantee';

Note

If the IAM role also has the ALL permission in an AWS Glue Data Catalog that is enabled for
Lake Formation, the ALL permission isn't revoked. Only the SELECT permission is revoked.
You can view the Lake Formation permissions in the Lake Formation console.

Usage notes for revoking the ASSUMEROLE permission

The following usage notes apply to revoking the ASSUMEROLE privilege in Amazon Redshift.

Only a database superuser can revoke the ASSUMEROLE privilege for users and groups. A superuser
always retains the ASSUMEROLE privilege.

To enable the use of the ASSUMEROLE privilege for users and groups, a superuser runs the
following statement once on the cluster. Before granting the ASSUMEROLE privilege to users and
groups, a superuser must run the following statement once on the cluster.

revoke assumerole on all from public for all;

Usage notes for revoking machine learning permissions

You can't directly grant or revoke permissions related to an ML function. An ML function belongs
to an ML model and permissions are controlled through the model. Instead, you can revoke

REVOKE 1506

Amazon Redshift Database Developer Guide

permissions related to the ML model. The following example demonstrates how to revoke the run
permisison from all users associated with the model customer_churn.

REVOKE EXECUTE ON MODEL customer_churn FROM PUBLIC;

You can also revoke all permissions from a user for the ML model customer_churn.

REVOKE ALL on MODEL customer_churn FROM ml_user;

Granting or revoking the EXECUTE permission related to an ML function will fail if there is an ML
function in the schema, even if that ML function already has the EXECUTE permission through
GRANT EXECUTE ON MODEL. We recommend using a separate schema when using the CREATE
MODEL command to keep the ML functions in a separate schema by themselves. The following
example demonstrates how to do so.

CREATE MODEL ml_schema.customer_churn
FROM customer_data
TARGET churn
FUNCTION ml_schema.customer_churn_prediction
IAM_ROLE default
SETTINGS (
 S3_BUCKET 'your-s3-bucket'
);

Examples

The following example revokes INSERT privileges on the SALES table from the GUESTS user group.
This command prevents members of GUESTS from being able to load data into the SALES table by
using the INSERT command.

revoke insert on table sales from group guests;

The following example revokes the SELECT privilege on all tables in the QA_TICKIT schema from
the user fred.

revoke select on all tables in schema qa_tickit from fred;

The following example revokes the privilege to select from a view for user bobr.

REVOKE 1507

Amazon Redshift Database Developer Guide

revoke select on table eventview from bobr;

The following example revokes the privilege to create temporary tables in the TICKIT database
from all users.

revoke temporary on database tickit from public;

The following example revokes SELECT privilege on the cust_name and cust_phone columns of
the cust_profile table from the user user1.

revoke select(cust_name, cust_phone) on cust_profile from user1;

The following example revokes SELECT privilege on the cust_name and cust_phone columns and
UPDATE privilege on the cust_contact_preference column of the cust_profile table from
the sales_group group.

revoke select(cust_name, cust_phone), update(cust_contact_preference) on cust_profile
 from group sales_group;

The following example shows the usage of the ALL keyword to revoke both SELECT and UPDATE
privileges on three columns of the table cust_profile from the sales_admin group.

revoke ALL(cust_name, cust_phone,cust_contact_preference) on cust_profile from group
 sales_admin;

The following example revokes the SELECT privilege on the cust_name column of the
cust_profile_vw view from the user2 user.

revoke select(cust_name) on cust_profile_vw from user2;

Examples of revoking the USAGE permission from databases created from datashares

The following example revokes access to the salesshare datashare from the from the
13b8833d-17c6-4f16-8fe4-1a018f5ed00d namespace.

REVOKE USAGE ON DATASHARE salesshare FROM NAMESPACE
 '13b8833d-17c6-4f16-8fe4-1a018f5ed00d';

REVOKE 1508

Amazon Redshift Database Developer Guide

The following example revokes the USAGE permission on the sales_db from Bob.

REVOKE USAGE ON DATABASE sales_db FROM Bob;

The following example REVOKE USAGE permission on the sales_schema from the
Analyst_role.

REVOKE USAGE ON SCHEMA sales_schema FROM ROLE Analyst_role;

Examples of revoking scoped permissions

The following example revokes usage for all current and future schemas in the Sales_db database
from the Sales role.

REVOKE USAGE FOR SCHEMAS IN DATABASE Sales_db FROM ROLE Sales;

The following example revokes the ability to grant the SELECT permission for all current and
future tables in the Sales_db database from the user alice. alice retains access to all tables in
Sales_db.

REVOKE GRANT OPTION SELECT FOR TABLES IN DATABASE Sales_db FROM alice;

The following example revokes the EXECUTE permission for functions in the Sales_schema
schema from the user bob.

REVOKE EXECUTE FOR FUNCTIONS IN SCHEMA Sales_schema FROM bob;

The following example revokes all permissions for all tables in the ShareDb database’s
ShareSchema schema from the Sales role. When specifying the schema, you can also specify the
schema’s database using the two-part format database.schema.

REVOKE ALL FOR TABLES IN SCHEMA ShareDb.ShareSchema FROM ROLE Sales;

The following example is the same as the preceding one. You can specify the schema’s database
using the DATABASE keyword instead of using a two-part format.

REVOKE ALL FOR TABLES IN SCHEMA ShareSchema DATABASE ShareDb FROM ROLE Sales;

REVOKE 1509

Amazon Redshift Database Developer Guide

Examples of revoking the ASSUMEROLE privilege

The following are examples of revoking the ASSUMEROLE privilege.

A superuser must enable the use of the ASSUMEROLE privilege for users and groups by running the
following statement once on the cluster:

revoke assumerole on all from public for all;

The following statement revokes the ASSUMEROLE privilege from user reg_user1 on all roles for all
operations.

revoke assumerole on all from reg_user1 for all;

Examples of revoking the ROLE privilege

The following example revokes the sample_role1 from to sample_role2.

CREATE ROLE sample_role2;
GRANT ROLE sample_role1 TO ROLE sample_role2;
REVOKE ROLE sample_role1 FROM ROLE sample_role2;

The following example revokes system privileges from user1.

GRANT ROLE sys:DBA TO user1;
REVOKE ROLE sys:DBA FROM user1;

The following example revokes sample_role1 and sample_role2 from user1.

CREATE ROLE sample_role1;
CREATE ROLE sample_role2;
GRANT ROLE sample_role1, ROLE sample_role2 TO user1;
REVOKE ROLE sample_role1, ROLE sample_role2 FROM user1;

The following example revokes sample_role2 with the ADMIN OPTION from user1.

GRANT ROLE sample_role2 TO user1 WITH ADMIN OPTION;
REVOKE ADMIN OPTION FOR ROLE sample_role2 FROM user1;
REVOKE ROLE sample_role2 FROM user1;

REVOKE 1510

Amazon Redshift Database Developer Guide

The following example revokes sample_role1 and sample_role2 from sample_role5.

CREATE ROLE sample_role5;
GRANT ROLE sample_role1, ROLE sample_role2 TO ROLE sample_role5;
REVOKE ROLE sample_role1, ROLE sample_role2 FROM ROLE sample_role5;

The following example revokes the CREATE SCHEMA and DROP SCHEMA system privileges to
sample_role1.

GRANT CREATE SCHEMA, DROP SCHEMA TO ROLE sample_role1;
REVOKE CREATE SCHEMA, DROP SCHEMA FROM ROLE sample_role1;

ROLLBACK

Stops the current transaction and discards all updates made by that transaction.

This command performs the same function as the ABORT command.

Syntax

ROLLBACK [WORK | TRANSACTION]

Parameters

WORK

Optional keyword. This keyword isn't supported within a stored procedure.

TRANSACTION

Optional keyword. WORK and TRANSACTION are synonyms. Neither is supported within a
stored procedure.

For information about using ROLLBACK within a stored procedure, see Managing transactions.

Example

The following example creates a table then starts a transaction where data is inserted into the
table. The ROLLBACK command then rolls back the data insertion to leave the table empty.

The following command creates an example table called MOVIE_GROSS:

ROLLBACK 1511

Amazon Redshift Database Developer Guide

create table movie_gross(name varchar(30), gross bigint);

The next set of commands starts a transaction that inserts two data rows into the table:

begin;

insert into movie_gross values ('Raiders of the Lost Ark', 23400000);

insert into movie_gross values ('Star Wars', 10000000);

Next, the following command selects the data from the table to show that it was successfully
inserted:

select * from movie_gross;

The command output shows that both rows successfully inserted:

name | gross
-------------------------+----------
Raiders of the Lost Ark | 23400000
Star Wars | 10000000
(2 rows)

This command now rolls back the data changes to where the transaction began:

rollback;

Selecting data from the table now shows an empty table:

select * from movie_gross;

name | gross
------+-------
(0 rows)

SELECT

Returns rows from tables, views, and user-defined functions.

SELECT 1512

Amazon Redshift Database Developer Guide

Note

The maximum size for a single SQL statement is 16 MB.

Syntax

[WITH with_subquery [, ...]]
SELECT
[TOP number | [ALL | DISTINCT]
* | expression [AS output_name] [, ...]]
[FROM table_reference [, ...]]
[WHERE condition]
[[START WITH expression] CONNECT BY expression]
[GROUP BY expression [, ...]]
[HAVING condition]
[QUALIFY condition]
[{ UNION | ALL | INTERSECT | EXCEPT | MINUS } query]
[ORDER BY expression [ASC | DESC]]
[LIMIT { number | ALL }]
[OFFSET start]

Topics

• WITH clause

• SELECT list

• FROM clause

• WHERE clause

• GROUP BY clause

• HAVING clause

• QUALIFY clause

• UNION, INTERSECT, and EXCEPT

• ORDER BY clause

• CONNECT BY clause

• Subquery examples

• Correlated subqueries

SELECT 1513

Amazon Redshift Database Developer Guide

WITH clause

A WITH clause is an optional clause that precedes the SELECT list in a query. The WITH clause
defines one or more common_table_expressions. Each common table expression (CTE) defines a
temporary table, which is similar to a view definition. You can reference these temporary tables
in the FROM clause. They're used only while the query they belong to runs. Each CTE in the WITH
clause specifies a table name, an optional list of column names, and a query expression that
evaluates to a table (a SELECT statement). When you reference the temporary table name in the
FROM clause of the same query expression that defines it, the CTE is recursive.

WITH clause subqueries are an efficient way of defining tables that can be used throughout the
execution of a single query. In all cases, the same results can be achieved by using subqueries in
the main body of the SELECT statement, but WITH clause subqueries may be simpler to write and
read. Where possible, WITH clause subqueries that are referenced multiple times are optimized as
common subexpressions; that is, it may be possible to evaluate a WITH subquery once and reuse its
results. (Note that common subexpressions aren't limited to those defined in the WITH clause.)

Syntax

[WITH [RECURSIVE] common_table_expression [, common_table_expression , ...]]

where common_table_expression can be either non-recursive or recursive. Following is the non-
recursive form:

CTE_table_name [(column_name [, ...])] AS (query)

Following is the recursive form of common_table_expression:

CTE_table_name (column_name [, ...]) AS (recursive_query)

Parameters

RECURSIVE

Keyword that identifies the query as a recursive CTE. This keyword is required if any
common_table_expression defined in the WITH clause is recursive. You can only specify the
RECURSIVE keyword once, immediately following the WITH keyword, even when the WITH
clause contains multiple recursive CTEs. In general, a recursive CTE is a UNION ALL subquery
with two parts.

SELECT 1514

Amazon Redshift Database Developer Guide

common_table_expression

Defines a temporary table that you can reference in the FROM clause and is used only during
the execution of the query to which it belongs.

CTE_table_name

A unique name for a temporary table that defines the results of a WITH clause subquery. You
can't use duplicate names within a single WITH clause. Each subquery must be given a table
name that can be referenced in the FROM clause.

column_name

A list of output column names for the WITH clause subquery, separated by commas. The
number of column names specified must be equal to or less than the number of columns
defined by the subquery. For a CTE that is non-recursive, the column_name clause is optional.
For a recursive CTE, the column_name list is required.

query

Any SELECT query that Amazon Redshift supports. See SELECT.

recursive_query

A UNION ALL query that consists of two SELECT subqueries:

• The first SELECT subquery doesn't have a recursive reference to the same CTE_table_name.
It returns a result set that is the initial seed of the recursion. This part is called the initial
member or seed member.

• The second SELECT subquery references the same CTE_table_name in its FROM clause. This
is called the recursive member. The recursive_query contains a WHERE condition to end the
recursive_query.

Usage notes

You can use a WITH clause in the following SQL statements:

• SELECT

• SELECT INTO

• CREATE TABLE AS

• CREATE VIEW

• DECLARE

SELECT 1515

Amazon Redshift Database Developer Guide

• EXPLAIN

• INSERT INTO...SELECT

• PREPARE

• UPDATE (within a WHERE clause subquery. You can't define a recursive CTE in the subquery. The
recursive CTE must precede the UPDATE clause.)

• DELETE

If the FROM clause of a query that contains a WITH clause doesn't reference any of the tables
defined by the WITH clause, the WITH clause is ignored and the query runs as normal.

A table defined by a WITH clause subquery can be referenced only in the scope of the SELECT
query that the WITH clause begins. For example, you can reference such a table in the FROM clause
of a subquery in the SELECT list, WHERE clause, or HAVING clause. You can't use a WITH clause in
a subquery and reference its table in the FROM clause of the main query or another subquery. This
query pattern results in an error message of the form relation table_name doesn't exist
for the WITH clause table.

You can't specify another WITH clause inside a WITH clause subquery.

You can't make forward references to tables defined by WITH clause subqueries. For example, the
following query returns an error because of the forward reference to table W2 in the definition of
table W1:

with w1 as (select * from w2), w2 as (select * from w1)
select * from sales;
ERROR: relation "w2" does not exist

A WITH clause subquery may not consist of a SELECT INTO statement; however, you can use a
WITH clause in a SELECT INTO statement.

Recursive common table expressions

A recursive common table expression (CTE) is a CTE that references itself. A recursive CTE is useful in
querying hierarchical data, such as organization charts that show reporting relationships between
employees and managers. See Example: Recursive CTE.

Another common use is a multilevel bill of materials, when a product consists of many components
and each component itself also consists of other components or subassemblies.

SELECT 1516

Amazon Redshift Database Developer Guide

Be sure to limit the depth of recursion by including a WHERE clause in the second SELECT subquery
of the recursive query. For an example, see Example: Recursive CTE. Otherwise, an error can occur
similar to the following:

• Recursive CTE out of working buffers.

• Exceeded recursive CTE max rows limit, please add correct CTE termination
predicates or change the max_recursion_rows parameter.

Note

max_recursion_rows is a parameter setting the maximum number of rows a recursive
CTE can return in order to prevent infinite recursion loops. We recommend against
changing this to a larger value than the default. This prevents infinite recursion problems in
your queries from taking up excessive space in your cluster.

You can specify a sort order and limit on the result of the recursive CTE. You can include group by
and distinct options on the final result of the recursive CTE.

You can't specify a WITH RECURSIVE clause inside a subquery. The recursive_query member can't
include an order by or limit clause.

Examples

The following example shows the simplest possible case of a query that contains a WITH clause.
The WITH query named VENUECOPY selects all of the rows from the VENUE table. The main query
in turn selects all of the rows from VENUECOPY. The VENUECOPY table exists only for the duration
of this query.

with venuecopy as (select * from venue)
select * from venuecopy order by 1 limit 10;

 venueid | venuename | venuecity | venuestate | venueseats
---------+----------------------------+-----------------+------------+------------
1 | Toyota Park | Bridgeview | IL | 0
2 | Columbus Crew Stadium | Columbus | OH | 0
3 | RFK Stadium | Washington | DC | 0
4 | CommunityAmerica Ballpark | Kansas City | KS | 0
5 | Gillette Stadium | Foxborough | MA | 68756

SELECT 1517

Amazon Redshift Database Developer Guide

6 | New York Giants Stadium | East Rutherford | NJ | 80242
7 | BMO Field | Toronto | ON | 0
8 | The Home Depot Center | Carson | CA | 0
9 | Dick's Sporting Goods Park | Commerce City | CO | 0
v 10 | Pizza Hut Park | Frisco | TX | 0
(10 rows)

The following example shows a WITH clause that produces two tables, named VENUE_SALES and
TOP_VENUES. The second WITH query table selects from the first. In turn, the WHERE clause of the
main query block contains a subquery that constrains the TOP_VENUES table.

with venue_sales as
(select venuename, venuecity, sum(pricepaid) as venuename_sales
from sales, venue, event
where venue.venueid=event.venueid and event.eventid=sales.eventid
group by venuename, venuecity),

top_venues as
(select venuename
from venue_sales
where venuename_sales > 800000)

select venuename, venuecity, venuestate,
sum(qtysold) as venue_qty,
sum(pricepaid) as venue_sales
from sales, venue, event
where venue.venueid=event.venueid and event.eventid=sales.eventid
and venuename in(select venuename from top_venues)
group by venuename, venuecity, venuestate
order by venuename;

 venuename | venuecity | venuestate | venue_qty | venue_sales
------------------------+---------------+------------+-----------+-------------
August Wilson Theatre | New York City | NY | 3187 | 1032156.00
Biltmore Theatre | New York City | NY | 2629 | 828981.00
Charles Playhouse | Boston | MA | 2502 | 857031.00
Ethel Barrymore Theatre | New York City | NY | 2828 | 891172.00
Eugene O'Neill Theatre | New York City | NY | 2488 | 828950.00
Greek Theatre | Los Angeles | CA | 2445 | 838918.00
Helen Hayes Theatre | New York City | NY | 2948 | 978765.00
Hilton Theatre | New York City | NY | 2999 | 885686.00
Imperial Theatre | New York City | NY | 2702 | 877993.00

SELECT 1518

Amazon Redshift Database Developer Guide

Lunt-Fontanne Theatre | New York City | NY | 3326 | 1115182.00
Majestic Theatre | New York City | NY | 2549 | 894275.00
Nederlander Theatre | New York City | NY | 2934 | 936312.00
Pasadena Playhouse | Pasadena | CA | 2739 | 820435.00
Winter Garden Theatre | New York City | NY | 2838 | 939257.00
(14 rows)

The following two examples demonstrate the rules for the scope of table references based on
WITH clause subqueries. The first query runs, but the second fails with an expected error. The first
query has WITH clause subquery inside the SELECT list of the main query. The table defined by the
WITH clause (HOLIDAYS) is referenced in the FROM clause of the subquery in the SELECT list:

select caldate, sum(pricepaid) as daysales,
(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)
from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales
from sales join date on sales.dateid=date.dateid
where caldate in('2008-12-25','2008-12-31')
group by caldate
order by caldate;

caldate | daysales | dec25sales
-----------+----------+------------
2008-12-25 | 70402.00 | 70402.00
2008-12-31 | 12678.00 | 70402.00
(2 rows)

The second query fails because it attempts to reference the HOLIDAYS table in the main query as
well as in the SELECT list subquery. The main query references are out of scope.

select caldate, sum(pricepaid) as daysales,
(with holidays as (select * from date where holiday ='t')
select sum(pricepaid)
from sales join holidays on sales.dateid=holidays.dateid
where caldate='2008-12-25') as dec25sales
from sales join holidays on sales.dateid=holidays.dateid
where caldate in('2008-12-25','2008-12-31')
group by caldate
order by caldate;

ERROR: relation "holidays" does not exist

SELECT 1519

Amazon Redshift Database Developer Guide

Example: Recursive CTE

The following is an example of a recursive CTE that returns the employees who report directly or
indirectly to John. The recursive query contains a WHERE clause to limit the depth of recursion to
less than 4 levels.

--create and populate the sample table
 create table employee (
 id int,
 name varchar (20),
 manager_id int
);

 insert into employee(id, name, manager_id) values
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),
(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);

--run the recursive query
 with recursive john_org(id, name, manager_id, level) as
(select id, name, manager_id, 1 as level
 from employee
 where name = 'John'
 union all
 select e.id, e.name, e.manager_id, level + 1 as next_level
 from employee e, john_org j
 where e.manager_id = j.id and level < 4
)
 select distinct id, name, manager_id from john_org order by manager_id;

Following is the result of the query.

 id name manager_id

SELECT 1520

Amazon Redshift Database Developer Guide

 ------+-----------+--------------
 101 John 100
 102 Jorge 101
 103 Kwaku 101
 110 Liu 101
 201 Sofía 102
 106 Mateo 102
 110 Nikki 103
 104 Paulo 103
 105 Richard 103
 120 Saanvi 104
 200 Shirley 104
 205 Zhang 104

Following is an organization chart for John's department.

SELECT list

Topics

• Syntax

SELECT 1521

Amazon Redshift Database Developer Guide

• Parameters

• Usage notes

• Examples

The SELECT list names the columns, functions, and expressions that you want the query to return.
The list represents the output of the query.

For more information about SQL functions, see SQL functions reference. For more information
about expressions, see Conditional expressions.

Syntax

SELECT
[TOP number]
[ALL | DISTINCT] * | expression [AS column_alias] [, ...]

Parameters

TOP number

TOP takes a positive integer as its argument, which defines the number of rows that are
returned to the client. The behavior with the TOP clause is the same as the behavior with the
LIMIT clause. The number of rows that is returned is fixed, but the set of rows isn't. To return a
consistent set of rows, use TOP or LIMIT in conjunction with an ORDER BY clause.

ALL

A redundant keyword that defines the default behavior if you don't specify DISTINCT. SELECT
ALL * means the same as SELECT * (select all rows for all columns and retain duplicates).

DISTINCT

Option that eliminates duplicate rows from the result set, based on matching values in one or
more columns.

Note

If your application allows invalid foreign keys or primary keys, it can cause queries to
return incorrect results. For example, a SELECT DISTINCT query might return duplicate

SELECT 1522

Amazon Redshift Database Developer Guide

rows if the primary key column doesn't contain all unique values. For more information,
see Defining table constraints.

* (asterisk)

Returns the entire contents of the table (all columns and all rows).

expression

An expression formed from one or more columns that exist in the tables referenced by the
query. An expression can contain SQL functions. For example:

avg(datediff(day, listtime, saletime))

AS column_alias

A temporary name for the column that is used in the final result set. The AS keyword is
optional. For example:

avg(datediff(day, listtime, saletime)) as avgwait

If you don't specify an alias for an expression that isn't a simple column name, the result set
applies a default name to that column.

Note

The alias is recognized right after it is defined in the target list. You can use an alias
in other expressions defined after it in the same target list. The following example
illustrates this.

select clicks / impressions as probability, round(100 * probability, 1) as
 percentage from raw_data;

The benefit of the lateral alias reference is you don't need to repeat the aliased
expression when building more complex expressions in the same target list. When
Amazon Redshift parses this type of reference, it just inlines the previously defined

SELECT 1523

https://docs.aws.amazon.com/redshift/latest/dg/t_Defining_constraints.html

Amazon Redshift Database Developer Guide

aliases. If there is a column with the same name defined in the FROM clause as the
previously aliased expression, the column in the FROM clause takes priority. For example,
in the above query if there is a column named 'probability' in table raw_data, the
'probability' in the second expression in the target list refers to that column instead of
the alias name 'probability'.

Usage notes

TOP is a SQL extension; it provides an alternative to the LIMIT behavior. You can't use TOP and
LIMIT in the same query.

Examples

The following example returns 10 rows from the SALES table. Though the query uses the TOP
clause, it still returns an unpredictable set of rows because no ORDER BY clause is specified,

select top 10 *
from sales;

The following query is functionally equivalent, but uses a LIMIT clause instead of a TOP clause:

select *
from sales
limit 10;

The following example returns the first 10 rows from the SALES table using the TOP clause,
ordered by the QTYSOLD column in descending order.

select top 10 qtysold, sellerid
from sales
order by qtysold desc, sellerid;

qtysold | sellerid
--------+----------
8 | 518
8 | 520
8 | 574
8 | 718
8 | 868

SELECT 1524

Amazon Redshift Database Developer Guide

8 | 2663
8 | 3396
8 | 3726
8 | 5250
8 | 6216
(10 rows)

The following example returns the first two QTYSOLD and SELLERID values from the SALES table,
ordered by the QTYSOLD column:

select top 2 qtysold, sellerid
from sales
order by qtysold desc, sellerid;

qtysold | sellerid
--------+----------
8 | 518
8 | 520
(2 rows)

The following example shows the list of distinct category groups from the CATEGORY table:

select distinct catgroup from category
order by 1;

catgroup

Concerts
Shows
Sports
(3 rows)

--the same query, run without distinct
select catgroup from category
order by 1;

catgroup

Concerts
Concerts
Concerts
Shows
Shows

SELECT 1525

Amazon Redshift Database Developer Guide

Shows
Sports
Sports
Sports
Sports
Sports
(11 rows)

The following example returns the distinct set of week numbers for December 2008. Without the
DISTINCT clause, the statement would return 31 rows, or one for each day of the month.

select distinct week, month, year
from date
where month='DEC' and year=2008
order by 1, 2, 3;

week | month | year
-----+-------+------
49 | DEC | 2008
50 | DEC | 2008
51 | DEC | 2008
52 | DEC | 2008
53 | DEC | 2008
(5 rows)

FROM clause

The FROM clause in a query lists the table references (tables, views, and subqueries) that data is
selected from. If multiple table references are listed, the tables must be joined, using appropriate
syntax in either the FROM clause or the WHERE clause. If no join criteria are specified, the system
processes the query as a cross-join (Cartesian product).

Topics

• Syntax

• Parameters

• Usage notes

• PIVOT and UNPIVOT examples

• JOIN examples

SELECT 1526

Amazon Redshift Database Developer Guide

Syntax

FROM table_reference [, ...]

where table_reference is one of the following:

with_subquery_table_name [table_alias]
table_name [*] [table_alias]
(subquery) [table_alias]
table_reference [NATURAL] join_type table_reference
 [ON join_condition | USING (join_column [, ...])]
table_reference PIVOT (
 aggregate(expr) [[AS] aggregate_alias]
 FOR column_name IN (expression [AS] in_alias [, ...])
) [table_alias]
table_reference UNPIVOT [INCLUDE NULLS | EXCLUDE NULLS] (
 value_column_name
 FOR name_column_name IN (column_reference [[AS]
 in_alias] [, ...])
) [table_alias]
UNPIVOT expression AS value_alias [AT attribute_alias]

The optional table_alias can be used to give temporary names to tables and complex table
references and, if desired, their columns as well, like the following:

[AS] alias [(column_alias [, ...])]

Parameters

with_subquery_table_name

A table defined by a subquery in the WITH clause.

table_name

Name of a table or view.

alias

Temporary alternative name for a table or view. An alias must be supplied for a table derived
from a subquery. In other table references, aliases are optional. The AS keyword is always
optional. Table aliases provide a convenient shortcut for identifying tables in other parts of a
query, such as the WHERE clause. For example:

SELECT 1527

Amazon Redshift Database Developer Guide

select * from sales s, listing l
where s.listid=l.listid

column_alias

Temporary alternative name for a column in a table or view.

subquery

A query expression that evaluates to a table. The table exists only for the duration of the query
and is typically given a name or alias. However, an alias isn't required. You can also define
column names for tables that derive from subqueries. Naming column aliases is important
when you want to join the results of subqueries to other tables and when you want to select or
constrain those columns elsewhere in the query.

A subquery may contain an ORDER BY clause, but this clause may have no effect if a LIMIT or
OFFSET clause isn't also specified.

NATURAL

Defines a join that automatically uses all pairs of identically named columns in the two tables
as the joining columns. No explicit join condition is required. For example, if the CATEGORY and
EVENT tables both have columns named CATID, a natural join of those tables is a join over their
CATID columns.

Note

If a NATURAL join is specified but no identically named pairs of columns exist in the
tables to be joined, the query defaults to a cross-join.

join_type

Specify one of the following types of join:

• [INNER] JOIN

• LEFT [OUTER] JOIN

• RIGHT [OUTER] JOIN

• FULL [OUTER] JOIN

• CROSS JOIN

SELECT 1528

Amazon Redshift Database Developer Guide

Cross-joins are unqualified joins; they return the Cartesian product of the two tables.

Inner and outer joins are qualified joins. They are qualified either implicitly (in natural joins);
with the ON or USING syntax in the FROM clause; or with a WHERE clause condition.

An inner join returns matching rows only, based on the join condition or list of joining columns.
An outer join returns all of the rows that the equivalent inner join would return plus non-
matching rows from the "left" table, "right" table, or both tables. The left table is the first-
listed table, and the right table is the second-listed table. The non-matching rows contain NULL
values to fill the gaps in the output columns.

ON join_condition

Type of join specification where the joining columns are stated as a condition that follows the
ON keyword. For example:

sales join listing
on sales.listid=listing.listid and sales.eventid=listing.eventid

USING (join_column [, ...])

Type of join specification where the joining columns are listed in parentheses. If multiple joining
columns are specified, they are delimited by commas. The USING keyword must precede the list.
For example:

sales join listing
using (listid,eventid)

PIVOT

Rotates output from rows to columns, for the purpose of representing tabular data in a format
that is easy to read. Output is represented horizontally across multiple columns. PIVOT is similar
to a GROUP BY query with an aggregation, using an aggregate expression to specify an output
format. However, in contrast to GROUP BY, the results are returned in columns instead of rows.

For examples that show how to query with PIVOT and UNPIVOT, see PIVOT and UNPIVOT
examples.

UNPIVOT

Rotating columns into rows with UNPIVOT – The operator transforms result columns, from an
input table or query results, into rows, to make the output easier to read. UNPIVOT combines

SELECT 1529

Amazon Redshift Database Developer Guide

the data of its input columns into two result columns: a name column and a value column. The
name column contains column names from the input, as row entries. The value column contains
values from the input columns, such as results of an aggregation. For example, the counts of
items in various categories.

Object unpivoting with UNPIVOT (SUPER) – You can perform object unpivoting, where expression
is a SUPER expression referring to another FROM clause item. For more information, see Object
unpivoting. It also has examples that show how to query semistructured data, such as data
that's JSON-formatted.

Usage notes

Joining columns must have comparable data types.

A NATURAL or USING join retains only one of each pair of joining columns in the intermediate
result set.

A join with the ON syntax retains both joining columns in its intermediate result set.

See also WITH clause.

PIVOT and UNPIVOT examples

PIVOT and UNPIVOT are parameters in the FROM clause that rotate query output from rows to
columns and columns to rows, respectively. They represent tabular query results in a format that's
easy to read. The following examples use test data and queries to show how to use them.

For more information about these and other parameters, see FROM clause.

PIVOT examples

Set up the sample table and data and use them to run the subsequent example queries.

CREATE TABLE part (
 partname varchar,
 manufacturer varchar,
 quality int,
 price decimal(12, 2)
);

INSERT INTO part VALUES ('prop', 'local parts co', 2, 10.00);

SELECT 1530

https://docs.aws.amazon.com/redshift/latest/dg/r_FROM_clause30.html

Amazon Redshift Database Developer Guide

INSERT INTO part VALUES ('prop', 'big parts co', NULL, 9.00);
INSERT INTO part VALUES ('prop', 'small parts co', 1, 12.00);

INSERT INTO part VALUES ('rudder', 'local parts co', 1, 2.50);
INSERT INTO part VALUES ('rudder', 'big parts co', 2, 3.75);
INSERT INTO part VALUES ('rudder', 'small parts co', NULL, 1.90);

INSERT INTO part VALUES ('wing', 'local parts co', NULL, 7.50);
INSERT INTO part VALUES ('wing', 'big parts co', 1, 15.20);
INSERT INTO part VALUES ('wing', 'small parts co', NULL, 11.80);

PIVOT on partname with an AVG aggregation on price.

SELECT *
FROM (SELECT partname, price FROM part) PIVOT (
 AVG(price) FOR partname IN ('prop', 'rudder', 'wing')
);

The query results in the following output.

 prop | rudder | wing
---------+----------+---------
 10.33 | 2.71 | 11.50

In the previous example, the results are transformed into columns. The following example shows a
GROUP BY query that returns the average prices in rows, rather than in columns.

SELECT partname, avg(price)
FROM (SELECT partname, price FROM part)
WHERE partname IN ('prop', 'rudder', 'wing')
GROUP BY partname;

The query results in the following output.

 partname | avg
----------+-------
 prop | 10.33
 rudder | 2.71
 wing | 11.50

A PIVOT example with manufacturer as an implicit column.

SELECT 1531

Amazon Redshift Database Developer Guide

SELECT *
FROM (SELECT quality, manufacturer FROM part) PIVOT (
 count(*) FOR quality IN (1, 2, NULL)
);

The query results in the following output.

 manufacturer | 1 | 2 | null
-------------------+----+----+------
 local parts co | 1 | 1 | 1
 big parts co | 1 | 1 | 1
 small parts co | 1 | 0 | 2

Input table columns that are not referenced in the PIVOT definition are added implicitly to the
result table. This is the case for the manufacturer column in the previous example. The example
also shows that NULL is a valid value for the IN operator.

PIVOT in the above example returns similar information as the following query, which includes
GROUP BY. The difference is that PIVOT returns the value 0 for column 2 and the manufacturer
small parts co. The GROUP BY query does not contain a corresponding row. In most cases,
PIVOT inserts NULL if a row doesn't have input data for a given column. However, the count
aggregate doesn't return NULL and 0 is the default value.

SELECT manufacturer, quality, count(*)
FROM (SELECT quality, manufacturer FROM part)
WHERE quality IN (1, 2) OR quality IS NULL
GROUP BY manufacturer, quality
ORDER BY manufacturer;

The query results in the following output.

 manufacturer | quality | count
---------------------+---------+-------
 big parts co | | 1
 big parts co | 2 | 1
 big parts co | 1 | 1
 local parts co | 2 | 1
 local parts co | 1 | 1
 local parts co | | 1
 small parts co | 1 | 1

SELECT 1532

Amazon Redshift Database Developer Guide

 small parts co | | 2

The PIVOT operator accepts optional aliases on the aggregate expression and on each value for the
IN operator. Use aliases to customize the column names. If there is no aggregate alias, only the
IN list aliases are used. Otherwise, the aggregate alias is appended to the column name with an
underscore to separate the names.

SELECT *
FROM (SELECT quality, manufacturer FROM part) PIVOT (
 count(*) AS count FOR quality IN (1 AS high, 2 AS low, NULL AS na)
);

The query results in the following output.

 manufacturer | high_count | low_count | na_count
-------------------+-------------+-----------+----------
 local parts co | 1 | 1 | 1
 big parts co | 1 | 1 | 1
 small parts co | 1 | 0 | 2

Set up the following sample table and data and use them to run the subsequent example queries.
The data represents booking dates for a collection of hotels.

CREATE TABLE bookings (
 booking_id int,
 hotel_code char(8),
 booking_date date,
 price decimal(12, 2)
);

INSERT INTO bookings VALUES (1, 'FOREST_L', '02/01/2023', 75.12);
INSERT INTO bookings VALUES (2, 'FOREST_L', '02/02/2023', 75.00);
INSERT INTO bookings VALUES (3, 'FOREST_L', '02/04/2023', 85.54);

INSERT INTO bookings VALUES (4, 'FOREST_L', '02/08/2023', 75.00);
INSERT INTO bookings VALUES (5, 'FOREST_L', '02/11/2023', 75.00);
INSERT INTO bookings VALUES (6, 'FOREST_L', '02/14/2023', 90.00);

INSERT INTO bookings VALUES (7, 'FOREST_L', '02/21/2023', 60.00);
INSERT INTO bookings VALUES (8, 'FOREST_L', '02/22/2023', 85.00);
INSERT INTO bookings VALUES (9, 'FOREST_L', '02/27/2023', 90.00);

SELECT 1533

Amazon Redshift Database Developer Guide

INSERT INTO bookings VALUES (10, 'DESERT_S', '02/01/2023', 98.00);
INSERT INTO bookings VALUES (11, 'DESERT_S', '02/02/2023', 75.00);
INSERT INTO bookings VALUES (12, 'DESERT_S', '02/04/2023', 85.00);

INSERT INTO bookings VALUES (13, 'DESERT_S', '02/05/2023', 75.00);
INSERT INTO bookings VALUES (14, 'DESERT_S', '02/06/2023', 34.00);
INSERT INTO bookings VALUES (15, 'DESERT_S', '02/09/2023', 85.00);

INSERT INTO bookings VALUES (16, 'DESERT_S', '02/12/2023', 23.00);
INSERT INTO bookings VALUES (17, 'DESERT_S', '02/13/2023', 76.00);
INSERT INTO bookings VALUES (18, 'DESERT_S', '02/14/2023', 85.00);

INSERT INTO bookings VALUES (19, 'OCEAN_WV', '02/01/2023', 98.00);
INSERT INTO bookings VALUES (20, 'OCEAN_WV', '02/02/2023', 75.00);
INSERT INTO bookings VALUES (21, 'OCEAN_WV', '02/04/2023', 85.00);

INSERT INTO bookings VALUES (22, 'OCEAN_WV', '02/06/2023', 75.00);
INSERT INTO bookings VALUES (23, 'OCEAN_WV', '02/09/2023', 34.00);
INSERT INTO bookings VALUES (24, 'OCEAN_WV', '02/12/2023', 85.00);

INSERT INTO bookings VALUES (25, 'OCEAN_WV', '02/13/2023', 23.00);
INSERT INTO bookings VALUES (26, 'OCEAN_WV', '02/14/2023', 76.00);
INSERT INTO bookings VALUES (27, 'OCEAN_WV', '02/16/2023', 85.00);

INSERT INTO bookings VALUES (28, 'CITY_BLD', '02/01/2023', 98.00);
INSERT INTO bookings VALUES (29, 'CITY_BLD', '02/02/2023', 75.00);
INSERT INTO bookings VALUES (30, 'CITY_BLD', '02/04/2023', 85.00);

INSERT INTO bookings VALUES (31, 'CITY_BLD', '02/12/2023', 75.00);
INSERT INTO bookings VALUES (32, 'CITY_BLD', '02/13/2023', 34.00);
INSERT INTO bookings VALUES (33, 'CITY_BLD', '02/17/2023', 85.00);

INSERT INTO bookings VALUES (34, 'CITY_BLD', '02/22/2023', 23.00);
INSERT INTO bookings VALUES (35, 'CITY_BLD', '02/23/2023', 76.00);
INSERT INTO bookings VALUES (36, 'CITY_BLD', '02/24/2023', 85.00);

In this sample query, booking records are tallied to give a total for each week. The end date for
each week becomes a column name.

SELECT * FROM
 (SELECT
 booking_id,

SELECT 1534

Amazon Redshift Database Developer Guide

 (date_trunc('week', booking_date::date) + '5 days'::interval)::date as enddate,
 hotel_code AS "hotel code"
FROM bookings
) PIVOT (
 count(booking_id) FOR enddate IN ('2023-02-04','2023-02-11','2023-02-18')
);

The query results in the following output.

 hotel code | 2023-02-04 | 2023-02-11 | 2023-02-18
------------+-------------+------------+----------
 FOREST_L | 3 | 2 | 1
 DESERT_S | 4 | 3 | 2
 OCEAN_WV | 3 | 3 | 3
 CITY_BLD | 3 | 1 | 2

Amazon Redshift doesn't support CROSSTAB to pivot on multiple columns. But you can change row
data to columns, in a similar manner to an aggregation with PIVOT, with a query like the following.
This uses the same booking sample data as the previous example.

SELECT
 booking_date,
 MAX(CASE WHEN hotel_code = 'FOREST_L' THEN 'forest is booked' ELSE '' END) AS
 FOREST_L,
 MAX(CASE WHEN hotel_code = 'DESERT_S' THEN 'desert is booked' ELSE '' END) AS
 DESERT_S,
 MAX(CASE WHEN hotel_code = 'OCEAN_WV' THEN 'ocean is booked' ELSE '' END) AS
 OCEAN_WV
FROM bookings
GROUP BY booking_date
ORDER BY booking_date asc;

The sample query results in booking dates listed next to short phrases that indicate which hotels
are booked.

 booking_date | forest_l | desert_s | ocean_wv
---------------+------------------+------------------+--------------------
 2023-02-01 | forest is booked | desert is booked | ocean is booked
 2023-02-02 | forest is booked | desert is booked | ocean is booked
 2023-02-04 | forest is booked | desert is booked | ocean is booked
 2023-02-05 | | desert is booked |

SELECT 1535

Amazon Redshift Database Developer Guide

 2023-02-06 | | desert is booked |

The following are usage notes for PIVOT:

• PIVOT can be applied to tables, sub-queries, and common table expressions (CTEs). PIVOT
cannot be applied to any JOIN expressions, recursive CTEs, PIVOT, or UNPIVOT expressions. Also
not supported are SUPER unnested expressions and Redshift Spectrum nested tables.

• PIVOT supports the COUNT, SUM, MIN, MAX, and AVG aggregate functions.

• The PIVOT aggregate expression has to be a call of a supported aggregate function. Complex
expressions on top of the aggregate are not supported. The aggregate arguments cannot
contain references to tables other than the PIVOT input table. Correlated references to a parent
query are also not supported. The aggregate argument may contain sub-queries. These can be
correlated internally or on the PIVOT input table.

• The PIVOT IN list values cannot be column references or sub-queries. Each value must be type
compatible with the FOR column reference.

• If the IN list values do not have aliases, PIVOT generates default column names. For constant
IN values such as ‘abc’ or 5 the default column name is the constant itself. For any complex
expression, the column name is a standard Amazon Redshift default name such as ?column?.

UNPIVOT examples

Set up the sample data and use it to run the subsequent examples.

CREATE TABLE count_by_color (quality varchar, red int, green int, blue int);

INSERT INTO count_by_color VALUES ('high', 15, 20, 7);
INSERT INTO count_by_color VALUES ('normal', 35, NULL, 40);
INSERT INTO count_by_color VALUES ('low', 10, 23, NULL);

UNPIVOT on input columns red, green, and blue.

SELECT *
FROM (SELECT red, green, blue FROM count_by_color) UNPIVOT (
 cnt FOR color IN (red, green, blue)
);

The query results in the following output.

SELECT 1536

Amazon Redshift Database Developer Guide

 color | cnt
-------+-----
 red | 15
 red | 35
 red | 10
 green | 20
 green | 23
 blue | 7
 blue | 40

By default, NULL values in the input column are skipped and do not yield a result row.

The following example shows UNPIVOT with INCLUDE NULLS.

SELECT *
FROM (
 SELECT red, green, blue
 FROM count_by_color
) UNPIVOT INCLUDE NULLS (
 cnt FOR color IN (red, green, blue)
);

The following is the resulting output.

 color | cnt
-------+-----
 red | 15
 red | 35
 red | 10
 green | 20
 green |
 green | 23
 blue | 7
 blue | 40
 blue |

If the INCLUDING NULLS parameter is set, NULL input values generate result rows.

The following query shows UNPIVOT with quality as an implicit column.

SELECT *
FROM count_by_color UNPIVOT (

SELECT 1537

Amazon Redshift Database Developer Guide

 cnt FOR color IN (red, green, blue)
);

The query results in the following output.

 quality | color | cnt
---------+-------+-----
 high | red | 15
 normal | red | 35
 low | red | 10
 high | green | 20
 low | green | 23
 high | blue | 7
 normal | blue | 40

Columns of the input table that are not referenced in the UNPIVOT definition are added implicitly
to the result table. In the example, this is the case for the quality column.

The following example shows UNPIVOT with aliases for values in the IN list.

SELECT *
FROM count_by_color UNPIVOT (
 cnt FOR color IN (red AS r, green AS g, blue AS b)
);

The previous query results in the following output.

 quality | color | cnt
---------+-------+-----
 high | r | 15
 normal | r | 35
 low | r | 10
 high | g | 20
 low | g | 23
 high | b | 7
 normal | b | 40

The UNPIVOT operator accepts optional aliases on each IN list value. Each alias provides
customization of the data in each value column.

The following are usage notes for UNPIVOT.

SELECT 1538

Amazon Redshift Database Developer Guide

• UNPIVOT can be applied to tables, sub-queries, and common table expressions (CTEs). UNPIVOT
cannot be applied to any JOIN expressions, recursive CTEs, PIVOT, or UNPIVOT expressions. Also
not supported are SUPER unnested expressions and Redshift Spectrum nested tables.

• The UNPIVOT IN list must contain only input table column references. The IN list columns must
have a common type that they are all compatible with. The UNPIVOT value column has this
common type. The UNPIVOT name column is of type VARCHAR.

• If an IN list value does not have an alias, UNPIVOT uses the column name as a default value.

JOIN examples

A SQL JOIN clause is used to combine the data from two or more tables based on common
fields. The results might or might not change depending on the join method specified. For more
information about the syntax of a JOIN clause, see Parameters.

The following examples use data from the TICKIT sample data. For more information about the
database schema, see Sample database. To learn how to load sample data, see Loading data in the
Amazon Redshift Getting Started Guide.

The following query is an inner join (without the JOIN keyword) between the LISTING table and
SALES table, where the LISTID from the LISTING table is between 1 and 5. This query matches
LISTID column values in the LISTING table (the left table) and SALES table (the right table). The
results show that LISTID 1, 4, and 5 match the criteria.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing, sales
where listing.listid = sales.listid
and listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

The following query is a left outer join. Left and right outer joins retain values from one of the
joined tables when no match is found in the other table. The left and right tables are the first and
second tables listed in the syntax. NULL values are used to fill the "gaps" in the result set. This

SELECT 1539

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-create-sample-db.html

Amazon Redshift Database Developer Guide

query matches LISTID column values in the LISTING table (the left table) and the SALES table (the
right table). The results show that LISTIDs 2 and 3 did not result in any sales.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing left outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 2 | NULL | NULL
 3 | NULL | NULL
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

The following query is a right outer join. This query matches LISTID column values in the LISTING
table (the left table) and the SALES table (the right table). The results show that LISTIDs 1, 4, and 5
match the criteria.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing right outer join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

The following query is a full join. Full joins retain values from the joined tables when no match
is found in the other table. The left and right tables are the first and second tables listed in the
syntax. NULL values are used to fill the "gaps" in the result set. This query matches LISTID column
values in the LISTING table (the left table) and the SALES table (the right table). The results show
that LISTIDs 2 and 3 did not result in any sales.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid

SELECT 1540

Amazon Redshift Database Developer Guide

where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 2 | NULL | NULL
 3 | NULL | NULL
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

The following query is a full join. This query matches LISTID column values in the LISTING table
(the left table) and the SALES table (the right table). Only rows that do not result in any sales
(LISTIDs 2 and 3) are in the results.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from listing full join sales on sales.listid = listing.listid
where listing.listid between 1 and 5
and (listing.listid IS NULL or sales.listid IS NULL)
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 2 | NULL | NULL
 3 | NULL | NULL

The following example is an inner join with the ON clause. In this case, NULL rows are not returned.

select listing.listid, sum(pricepaid) as price, sum(commission) as comm
from sales join listing
on sales.listid=listing.listid and sales.eventid=listing.eventid
where listing.listid between 1 and 5
group by 1
order by 1;

listid | price | comm
-------+--------+--------
 1 | 728.00 | 109.20
 4 | 76.00 | 11.40
 5 | 525.00 | 78.75

SELECT 1541

Amazon Redshift Database Developer Guide

The following query is a cross join or Cartesian join of the LISTING table and the SALES table with a
predicate to limit the results. This query matches LISTID column values in the SALES table and the
LISTING table for LISTIDs 1, 2, 3, 4, and 5 in both tables. The results show that 20 rows match the
criteria.

select sales.listid as sales_listid, listing.listid as listing_listid
from sales cross join listing
where sales.listid between 1 and 5
and listing.listid between 1 and 5
order by 1,2;

sales_listid | listing_listid
-------------+---------------
1 | 1
1 | 2
1 | 3
1 | 4
1 | 5
4 | 1
4 | 2
4 | 3
4 | 4
4 | 5
5 | 1
5 | 1
5 | 2
5 | 2
5 | 3
5 | 3
5 | 4
5 | 4
5 | 5
5 | 5

The following example is a natural join between two tables. In this case, the columns listid, sellerid,
eventid, and dateid have identical names and data types in both tables and so are used as the join
columns. The results are limited to five rows.

select listid, sellerid, eventid, dateid, numtickets
from listing natural join sales
order by 1
limit 5;

SELECT 1542

Amazon Redshift Database Developer Guide

listid | sellerid | eventid | dateid | numtickets
-------+-----------+---------+--------+-----------
113 | 29704 | 4699 | 2075 | 22
115 | 39115 | 3513 | 2062 | 14
116 | 43314 | 8675 | 1910 | 28
118 | 6079 | 1611 | 1862 | 9
163 | 24880 | 8253 | 1888 | 14

The following example is a join between two tables with the USING clause. In this case, the
columns listid and eventid are used as the join columns. The results are limited to five rows.

select listid, listing.sellerid, eventid, listing.dateid, numtickets
from listing join sales
using (listid, eventid)
order by 1
limit 5;

listid | sellerid | eventid | dateid | numtickets
-------+----------+---------+--------+-----------
1 | 36861 | 7872 | 1850 | 10
4 | 8117 | 4337 | 1970 | 8
5 | 1616 | 8647 | 1963 | 4
5 | 1616 | 8647 | 1963 | 4
6 | 47402 | 8240 | 2053 | 18

The following query is an inner join of two subqueries in the FROM clause. The query finds the
number of sold and unsold tickets for different categories of events (concerts and shows). The
FROM clause subqueries are table subqueries; they can return multiple columns and rows.

select catgroup1, sold, unsold
from
(select catgroup, sum(qtysold) as sold
from category c, event e, sales s
where c.catid = e.catid and e.eventid = s.eventid
group by catgroup) as a(catgroup1, sold)
join
(select catgroup, sum(numtickets)-sum(qtysold) as unsold
from category c, event e, sales s, listing l
where c.catid = e.catid and e.eventid = s.eventid
and s.listid = l.listid
group by catgroup) as b(catgroup2, unsold)

SELECT 1543

Amazon Redshift Database Developer Guide

on a.catgroup1 = b.catgroup2
order by 1;

catgroup1 | sold | unsold
----------+--------+--------
Concerts | 195444 |1067199
Shows | 149905 | 817736

WHERE clause

The WHERE clause contains conditions that either join tables or apply predicates to columns in
tables. Tables can be inner-joined by using appropriate syntax in either the WHERE clause or the
FROM clause. Outer join criteria must be specified in the FROM clause.

Syntax

[WHERE condition]

condition

Any search condition with a Boolean result, such as a join condition or a predicate on a table
column. The following examples are valid join conditions:

sales.listid=listing.listid
sales.listid<>listing.listid

The following examples are valid conditions on columns in tables:

catgroup like 'S%'
venueseats between 20000 and 50000
eventname in('Jersey Boys','Spamalot')
year=2008
length(catdesc)>25
date_part(month, caldate)=6

Conditions can be simple or complex; for complex conditions, you can use parentheses to isolate
logical units. In the following example, the join condition is enclosed by parentheses.

where (category.catid=event.catid) and category.catid in(6,7,8)

SELECT 1544

Amazon Redshift Database Developer Guide

Usage notes

You can use aliases in the WHERE clause to reference select list expressions.

You can't restrict the results of aggregate functions in the WHERE clause; use the HAVING clause
for this purpose.

Columns that are restricted in the WHERE clause must derive from table references in the FROM
clause.

Example

The following query uses a combination of different WHERE clause restrictions, including a join
condition for the SALES and EVENT tables, a predicate on the EVENTNAME column, and two
predicates on the STARTTIME column.

select eventname, starttime, pricepaid/qtysold as costperticket, qtysold
from sales, event
where sales.eventid = event.eventid
and eventname='Hannah Montana'
and date_part(quarter, starttime) in(1,2)
and date_part(year, starttime) = 2008
order by 3 desc, 4, 2, 1 limit 10;

eventname | starttime | costperticket | qtysold
----------------+---------------------+-------------------+---------
Hannah Montana | 2008-06-07 14:00:00 | 1706.00000000 | 2
Hannah Montana | 2008-05-01 19:00:00 | 1658.00000000 | 2
Hannah Montana | 2008-06-07 14:00:00 | 1479.00000000 | 1
Hannah Montana | 2008-06-07 14:00:00 | 1479.00000000 | 3
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 1
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 2
Hannah Montana | 2008-06-07 14:00:00 | 1163.00000000 | 4
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 1
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 2
Hannah Montana | 2008-05-01 19:00:00 | 497.00000000 | 4
(10 rows)

Oracle-Style outer joins in the WHERE clause

For Oracle compatibility, Amazon Redshift supports the Oracle outer-join operator (+) in WHERE
clause join conditions. This operator is intended for use only in defining outer-join conditions; don't
try to use it in other contexts. Other uses of this operator are silently ignored in most cases.

SELECT 1545

Amazon Redshift Database Developer Guide

An outer join returns all of the rows that the equivalent inner join would return, plus non-matching
rows from one or both tables. In the FROM clause, you can specify left, right, and full outer joins. In
the WHERE clause, you can specify left and right outer joins only.

To outer join tables TABLE1 and TABLE2 and return non-matching rows from TABLE1 (a left outer
join), specify TABLE1 LEFT OUTER JOIN TABLE2 in the FROM clause or apply the (+) operator
to all joining columns from TABLE2 in the WHERE clause. For all rows in TABLE1 that have no
matching rows in TABLE2, the result of the query contains nulls for any select list expressions that
contain columns from TABLE2.

To produce the same behavior for all rows in TABLE2 that have no matching rows in TABLE1,
specify TABLE1 RIGHT OUTER JOIN TABLE2 in the FROM clause or apply the (+) operator to all
joining columns from TABLE1 in the WHERE clause.

Basic syntax

[WHERE {
[table1.column1 = table2.column1(+)]
[table1.column1(+) = table2.column1]
}

The first condition is equivalent to:

from table1 left outer join table2
on table1.column1=table2.column1

The second condition is equivalent to:

from table1 right outer join table2
on table1.column1=table2.column1

Note

The syntax shown here covers the simple case of an equijoin over one pair of joining
columns. However, other types of comparison conditions and multiple pairs of joining
columns are also valid.

For example, the following WHERE clause defines an outer join over two pairs of columns. The (+)
operator must be attached to the same table in both conditions:

SELECT 1546

Amazon Redshift Database Developer Guide

where table1.col1 > table2.col1(+)
and table1.col2 = table2.col2(+)

Usage notes

Where possible, use the standard FROM clause OUTER JOIN syntax instead of the (+) operator in
the WHERE clause. Queries that contain the (+) operator are subject to the following rules:

• You can only use the (+) operator in the WHERE clause, and only in reference to columns from
tables or views.

• You can't apply the (+) operator to expressions. However, an expression can contain columns that
use the (+) operator. For example, the following join condition returns a syntax error:

event.eventid*10(+)=category.catid

However, the following join condition is valid:

event.eventid(+)*10=category.catid

• You can't use the (+) operator in a query block that also contains FROM clause join syntax.

• If two tables are joined over multiple join conditions, you must use the (+) operator in all or none
of these conditions. A join with mixed syntax styles runs as an inner join, without warning.

• The (+) operator doesn't produce an outer join if you join a table in the outer query with a table
that results from an inner query.

• To use the (+) operator to outer-join a table to itself, you must define table aliases in the FROM
clause and reference them in the join condition:

select count(*)
from event a, event b
where a.eventid(+)=b.catid;

count

8798
(1 row)

• You can't combine a join condition that contains the (+) operator with an OR condition or an IN
condition. For example:

SELECT 1547

Amazon Redshift Database Developer Guide

select count(*) from sales, listing
where sales.listid(+)=listing.listid or sales.salesid=0;
ERROR: Outer join operator (+) not allowed in operand of OR or IN.

• In a WHERE clause that outer-joins more than two tables, the (+) operator can be applied only
once to a given table. In the following example, the SALES table can't be referenced with the (+)
operator in two successive joins.

select count(*) from sales, listing, event
where sales.listid(+)=listing.listid and sales.dateid(+)=date.dateid;
ERROR: A table may be outer joined to at most one other table.

• If the WHERE clause outer-join condition compares a column from TABLE2 with a constant, apply
the (+) operator to the column. If you don't include the operator, the outer-joined rows from
TABLE1, which contain nulls for the restricted column, are eliminated. See the Examples section
below.

Examples

The following join query specifies a left outer join of the SALES and LISTING tables over their
LISTID columns:

select count(*)
from sales, listing
where sales.listid = listing.listid(+);

count

172456
(1 row)

The following equivalent query produces the same result but uses FROM clause join syntax:

select count(*)
from sales left outer join listing on sales.listid = listing.listid;

count

172456
(1 row)

SELECT 1548

Amazon Redshift Database Developer Guide

The SALES table doesn't contain records for all listings in the LISTING table because not all listings
result in sales. The following query outer-joins SALES and LISTING and returns rows from LISTING
even when the SALES table reports no sales for a given list ID. The PRICE and COMM columns,
derived from the SALES table, contain nulls in the result set for those non-matching rows.

select listing.listid, sum(pricepaid) as price,
sum(commission) as comm
from listing, sales
where sales.listid(+) = listing.listid and listing.listid between 1 and 5
group by 1 order by 1;

listid | price | comm
--------+--------+--------
1 | 728.00 | 109.20
2 | |
3 | |
4 | 76.00 | 11.40
5 | 525.00 | 78.75
(5 rows)

Note that when the WHERE clause join operator is used, the order of the tables in the FROM clause
doesn't matter.

An example of a more complex outer join condition in the WHERE clause is the case where the
condition consists of a comparison between two table columns and a comparison with a constant:

where category.catid=event.catid(+) and eventid(+)=796;

Note that the (+) operator is used in two places: first in the equality comparison between the tables
and second in the comparison condition for the EVENTID column. The result of this syntax is the
preservation of the outer-joined rows when the restriction on EVENTID is evaluated. If you remove
the (+) operator from the EVENTID restriction, the query treats this restriction as a filter, not as
part of the outer-join condition. In turn, the outer-joined rows that contain nulls for EVENTID are
eliminated from the result set.

Here is a complete query that illustrates this behavior:

select catname, catgroup, eventid
from category, event
where category.catid=event.catid(+) and eventid(+)=796;

SELECT 1549

Amazon Redshift Database Developer Guide

catname | catgroup | eventid
-----------+----------+---------
Classical | Concerts |
Jazz | Concerts |
MLB | Sports |
MLS | Sports |
Musicals | Shows | 796
NBA | Sports |
NFL | Sports |
NHL | Sports |
Opera | Shows |
Plays | Shows |
Pop | Concerts |
(11 rows)

The equivalent query using FROM clause syntax is as follows:

select catname, catgroup, eventid
from category left join event
on category.catid=event.catid and eventid=796;

If you remove the second (+) operator from the WHERE clause version of this query, it returns only
1 row (the row where eventid=796).

select catname, catgroup, eventid
from category, event
where category.catid=event.catid(+) and eventid=796;

catname | catgroup | eventid
-----------+----------+---------
Musicals | Shows | 796
(1 row)

GROUP BY clause

The GROUP BY clause identifies the grouping columns for the query. Grouping columns must be
declared when the query computes aggregates with standard functions such as SUM, AVG, and
COUNT. For more information, see Aggregate functions.

Syntax

GROUP BY group_by_clause [, ...]

SELECT 1550

Amazon Redshift Database Developer Guide

group_by_clause := {
 expr |
 GROUPING SETS (() | group_by_clause [, ...]) |
 ROLLUP (expr [, ...]) |
 CUBE (expr [, ...])
 }

Parameters

expr

The list of columns or expressions must match the list of non-aggregate expressions in the
select list of the query. For example, consider the following simple query.

select listid, eventid, sum(pricepaid) as revenue,
count(qtysold) as numtix
from sales
group by listid, eventid
order by 3, 4, 2, 1
limit 5;

listid | eventid | revenue | numtix
-------+---------+---------+--------
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

In this query, the select list consists of two aggregate expressions. The first uses the SUM
function and the second uses the COUNT function. The remaining two columns, LISTID and
EVENTID, must be declared as grouping columns.

Expressions in the GROUP BY clause can also reference the select list by using ordinal numbers.
For example, the previous example could be abbreviated as follows.

select listid, eventid, sum(pricepaid) as revenue,
count(qtysold) as numtix
from sales
group by 1,2

SELECT 1551

Amazon Redshift Database Developer Guide

order by 3, 4, 2, 1
limit 5;

listid | eventid | revenue | numtix
-------+---------+---------+--------
89397 | 47 | 20.00 | 1
106590 | 76 | 20.00 | 1
124683 | 393 | 20.00 | 1
103037 | 403 | 20.00 | 1
147685 | 429 | 20.00 | 1
(5 rows)

GROUPING SETS/ROLLUP/CUBE

You can use the aggregation extensions GROUPING SETS, ROLLUP, and CUBE to perform
the work of multiple GROUP BY operations in a single statement. For more information on
aggregation extensions and related functions, see Aggregation extensions.

Aggregation extensions

Amazon Redshift supports aggregation extensions to do the work of multiple GROUP BY
operations in a single statement.

The examples for aggregation extensions use the orders table, which holds sales data for an
electronics company. You can create orders with the following.

CREATE TABLE ORDERS (
 ID INT,
 PRODUCT CHAR(20),
 CATEGORY CHAR(20),
 PRE_OWNED CHAR(1),
 COST DECIMAL
);

INSERT INTO ORDERS VALUES
 (0, 'laptop', 'computers', 'T', 1000),
 (1, 'smartphone', 'cellphones', 'T', 800),
 (2, 'smartphone', 'cellphones', 'T', 810),
 (3, 'laptop', 'computers', 'F', 1050),
 (4, 'mouse', 'computers', 'F', 50);

SELECT 1552

Amazon Redshift Database Developer Guide

GROUPING SETS

Computes one or more grouping sets in a single statement. A grouping set is the set of a single
GROUP BY clause, a set of 0 or more columns by which you can group a query's result set. GROUP
BY GROUPING SETS is equivalent to running a UNION ALL query on one result set grouped by
different columns. For example, GROUP BY GROUPING SETS((a), (b)) is equivalent to GROUP BY a
UNION ALL GROUP BY b.

The following example returns the cost of the order table's products grouped according to both the
products' categories and the kind of products sold.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY GROUPING SETS(category, product);

 category | product | total
----------------------+----------------------+-------
 computers | | 2100
 cellphones | | 1610
 | laptop | 2050
 | smartphone | 1610
 | mouse | 50

(5 rows)

ROLLUP

Assumes a hierarchy where preceding columns are considered the parents of subsequent columns.
ROLLUP groups data by the provided columns, returning extra subtotal rows representing the
totals throughout all levels of grouping columns, in addition to the grouped rows. For example,
you can use GROUP BY ROLLUP((a), (b)) to return a result set grouped first by a, then by b while
assuming that b is a subsection of a. ROLLUP also returns a row with the whole result set without
grouping columns.

GROUP BY ROLLUP((a), (b)) is equivalent to GROUP BY GROUPING SETS((a,b), (a), ()).

The following example returns the cost of the order table's products grouped first by category and
then product, with product as a subdivision of category.

SELECT category, product, sum(cost) as total

SELECT 1553

Amazon Redshift Database Developer Guide

FROM orders
GROUP BY ROLLUP(category, product) ORDER BY 1,2;

 category | product | total
----------------------+----------------------+-------
 cellphones | smartphone | 1610
 cellphones | | 1610
 computers | laptop | 2050
 computers | mouse | 50
 computers | | 2100
 | | 3710
(6 rows)

CUBE

Groups data by the provided columns, returning extra subtotal rows representing the totals
throughout all levels of grouping columns, in addition to the grouped rows. CUBE returns the same
rows as ROLLUP, while adding additional subtotal rows for every combination of grouping column
not covered by ROLLUP. For example, you can use GROUP BY CUBE ((a), (b)) to return a result set
grouped first by a, then by b while assuming that b is a subsection of a, then by b alone. CUBE also
returns a row with the whole result set without grouping columns.

GROUP BY CUBE((a), (b)) is equivalent to GROUP BY GROUPING SETS((a, b), (a), (b), ()).

The following example returns the cost of the order table's products grouped first by category and
then product, with product as a subdivision of category. Unlike the preceding example for ROLLUP,
the statement returns results for every combination of grouping column.

SELECT category, product, sum(cost) as total
FROM orders
GROUP BY CUBE(category, product) ORDER BY 1,2;

 category | product | total
----------------------+----------------------+-------
 cellphones | smartphone | 1610
 cellphones | | 1610
 computers | laptop | 2050
 computers | mouse | 50
 computers | | 2100
 | laptop | 2050
 | mouse | 50
 | smartphone | 1610

SELECT 1554

Amazon Redshift Database Developer Guide

 | | 3710
(9 rows)

GROUPING/GROUPING_ID functions

ROLLUP and CUBE add NULL values to the result set to indicate subtotal rows. For example,
GROUP BY ROLLUP((a), (b)) returns one or more rows that have a value of NULL in the b grouping
column to indicate they are subtotals of fields in the a grouping column. These NULL values serve
only to satisfy the format of returning tuples.

When you run GROUP BY operations with ROLLUP and CUBE on relations that store NULL values
themselves, this can produce result sets with rows that appear to have identical grouping columns.
Returning to the previous example, if the b grouping column contains a stored NULL value, GROUP
BY ROLLUP((a), (b)) returns a row with a value of NULL in the b grouping column that isn't a
subtotal.

To distinguish between NULL values created by ROLLUP and CUBE, and the NULL values stored in
the tables themselves, you can use the GROUPING function, or its alias GROUPING_ID. GROUPING
takes a single grouping set as its argument, and for each row in the result set returns a 0 or 1
bit value corresponding to the grouping column in that position, and then converts that value
into an integer. If the value in that position is a NULL value created by an aggregation extension,
GROUPING returns 1. It returns 0 for all other values, including stored NULL values.

For example, GROUPING(category, product) can return the following values for a given row,
depending on the grouping column values for that row. For the purposes of this example, all NULL
values in the table are NULL values created by an aggregation extension.

category column product column GROUPING function
bit value

Decimal value

not NULL not NULL 00 0

not NULL NULL 01 1

NULL not NULL 10 2

NULL NULL 11 3

GROUPING functions appear in the SELECT list portion of the query in the following format.

SELECT 1555

Amazon Redshift Database Developer Guide

SELECT ... [GROUPING(expr)...] ...
 GROUP BY ... {CUBE | ROLLUP| GROUPING SETS} (expr) ...

The following example is the same as the preceding example for CUBE, but with the addition of
GROUPING functions for its grouping sets.

SELECT category, product,
 GROUPING(category) as grouping0,
 GROUPING(product) as grouping1,
 GROUPING(category, product) as grouping2,
 sum(cost) as total
FROM orders
GROUP BY CUBE(category, product) ORDER BY 3,1,2;

 category | product | grouping0 | grouping1 | grouping2 |
 total
----------------------+----------------------+-----------+-----------+-----------
+-------
 cellphones | smartphone | 0 | 0 | 0 |
 1610
 cellphones | | 0 | 1 | 1 |
 1610
 computers | laptop | 0 | 0 | 0 |
 2050
 computers | mouse | 0 | 0 | 0 |
 50
 computers | | 0 | 1 | 1 |
 2100
 | laptop | 1 | 0 | 2 |
 2050
 | mouse | 1 | 0 | 2 |
 50
 | smartphone | 1 | 0 | 2 |
 1610
 | | 1 | 1 | 3 |
 3710
(9 rows)

Partial ROLLUP and CUBE

You can run ROLLUP and CUBE operations with only a portion of the subtotals.

SELECT 1556

Amazon Redshift Database Developer Guide

The syntax for partial ROLLUP and CUBE operations is as follows.

GROUP BY expr1, { ROLLUP | CUBE }(expr2, [, ...])

Here, the GROUP BY clause only creates subtotal rows at the level of expr2 and onwards.

The following examples show partial ROLLUP and CUBE operations on the orders table, grouping
first by whether a product is pre-owned and then running ROLLUP and CUBE on the category and
product columns.

SELECT pre_owned, category, product,
 GROUPING(category, product, pre_owned) as group_id,
 sum(cost) as total
FROM orders
GROUP BY pre_owned, ROLLUP(category, product) ORDER BY 4,1,2,3;

 pre_owned | category | product | group_id | total
-----------+----------------------+----------------------+----------+-------
 F | computers | laptop | 0 | 1050
 F | computers | mouse | 0 | 50
 T | cellphones | smartphone | 0 | 1610
 T | computers | laptop | 0 | 1000
 F | computers | | 2 | 1100
 T | cellphones | | 2 | 1610
 T | computers | | 2 | 1000
 F | | | 6 | 1100
 T | | | 6 | 2610
(9 rows)

SELECT pre_owned, category, product,
 GROUPING(category, product, pre_owned) as group_id,
 sum(cost) as total
FROM orders
GROUP BY pre_owned, CUBE(category, product) ORDER BY 4,1,2,3;

 pre_owned | category | product | group_id | total
-----------+----------------------+----------------------+----------+-------
 F | computers | laptop | 0 | 1050
 F | computers | mouse | 0 | 50
 T | cellphones | smartphone | 0 | 1610
 T | computers | laptop | 0 | 1000
 F | computers | | 2 | 1100
 T | cellphones | | 2 | 1610

SELECT 1557

Amazon Redshift Database Developer Guide

 T | computers | | 2 | 1000
 F | | laptop | 4 | 1050
 F | | mouse | 4 | 50
 T | | laptop | 4 | 1000
 T | | smartphone | 4 | 1610
 F | | | 6 | 1100
 T | | | 6 | 2610
(13 rows)

Since the pre-owned column isn't included in the ROLLUP and CUBE operations, there's no grand
total row that includes all other rows.

Concatenated grouping

You can concatenate multiple GROUPING SETS/ROLLUP/CUBE clauses to calculate different levels
of subtotals. Concatenated groupings return the Cartesian product of the provided grouping sets.

The syntax for concatenating GROUPING SETS/ROLLUP/CUBE clauses is as follows.

GROUP BY {ROLLUP|CUBE|GROUPING SETS}(expr1[, ...]),
 {ROLLUP|CUBE|GROUPING SETS}(expr1[, ...])[, ...]

Consider the following example to see how a small concatenated grouping can produce a large
final result set.

SELECT pre_owned, category, product,
 GROUPING(category, product, pre_owned) as group_id,
 sum(cost) as total
FROM orders
GROUP BY CUBE(category, product), GROUPING SETS(pre_owned, ())
ORDER BY 4,1,2,3;

 pre_owned | category | product | group_id | total
-----------+----------------------+----------------------+----------+-------
 F | computers | laptop | 0 | 1050
 F | computers | mouse | 0 | 50
 T | cellphones | smartphone | 0 | 1610
 T | computers | laptop | 0 | 1000
 | cellphones | smartphone | 1 | 1610
 | computers | laptop | 1 | 2050
 | computers | mouse | 1 | 50
 F | computers | | 2 | 1100
 T | cellphones | | 2 | 1610

SELECT 1558

Amazon Redshift Database Developer Guide

 T | computers | | 2 | 1000
 | cellphones | | 3 | 1610
 | computers | | 3 | 2100
 F | | laptop | 4 | 1050
 F | | mouse | 4 | 50
 T | | laptop | 4 | 1000
 T | | smartphone | 4 | 1610
 | | laptop | 5 | 2050
 | | mouse | 5 | 50
 | | smartphone | 5 | 1610
 F | | | 6 | 1100
 T | | | 6 | 2610
 | | | 7 | 3710
(22 rows)

Nested grouping

You can use GROUPING SETS/ROLLUP/CUBE operations as your GROUPING SETS expr to form a
nested grouping. The sub grouping inside nested GROUPING SETS is flattened.

The syntax for nested grouping is as follows.

GROUP BY GROUPING SETS({ROLLUP|CUBE|GROUPING SETS}(expr[, ...])[, ...])

Consider the following example.

SELECT category, product, pre_owned,
 GROUPING(category, product, pre_owned) as group_id,
 sum(cost) as total
FROM orders
GROUP BY GROUPING SETS(ROLLUP(category), CUBE(product, pre_owned))
ORDER BY 4,1,2,3;

 category | product | pre_owned | group_id | total
----------------------+----------------------+-----------+----------+-------
 cellphones | | | 3 | 1610
 computers | | | 3 | 2100
 | laptop | F | 4 | 1050
 | laptop | T | 4 | 1000
 | mouse | F | 4 | 50
 | smartphone | T | 4 | 1610
 | laptop | | 5 | 2050
 | mouse | | 5 | 50

SELECT 1559

Amazon Redshift Database Developer Guide

 | smartphone | | 5 | 1610
 | | F | 6 | 1100
 | | T | 6 | 2610
 | | | 7 | 3710
 | | | 7 | 3710
(13 rows)

Note that because both ROLLUP(category) and CUBE(product, pre_owned) contain the grouping
set (), the row representing the grand total is duplicated.

Usage notes

• The GROUP BY clause supports up to 64 grouping sets. In the case of ROLLUP and CUBE, or
some combination of GROUPING SETS, ROLLUP, and CUBE, this limitation applies to the implied
number of grouping sets. For example, GROUP BY CUBE((a), (b)) counts as 4 grouping sets, not 2.

• You can't use constants as grouping columns when using aggregation extensions.

• You can't make a grouping set that contains duplicate columns.

HAVING clause

The HAVING clause applies a condition to the intermediate grouped result set that a query returns.

Syntax

[HAVING condition]

For example, you can restrict the results of a SUM function:

having sum(pricepaid) >10000

The HAVING condition is applied after all WHERE clause conditions are applied and GROUP BY
operations are completed.

The condition itself takes the same form as any WHERE clause condition.

Usage notes

• Any column that is referenced in a HAVING clause condition must be either a grouping column or
a column that refers to the result of an aggregate function.

• In a HAVING clause, you can't specify:

SELECT 1560

Amazon Redshift Database Developer Guide

• An ordinal number that refers to a select list item. Only the GROUP BY and ORDER BY clauses
accept ordinal numbers.

Examples

The following query calculates total ticket sales for all events by name, then eliminates events
where the total sales were less than $800,000. The HAVING condition is applied to the results of
the aggregate function in the select list: sum(pricepaid).

select eventname, sum(pricepaid)
from sales join event on sales.eventid = event.eventid
group by 1
having sum(pricepaid) > 800000
order by 2 desc, 1;

eventname | sum
-----------------+-----------
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00
Legally Blonde | 804583.00

The following query calculates a similar result set. In this case, however, the HAVING condition is
applied to an aggregate that isn't specified in the select list: sum(qtysold). Events that did not
sell more than 2,000 tickets are eliminated from the final result.

select eventname, sum(pricepaid)
from sales join event on sales.eventid = event.eventid
group by 1
having sum(qtysold) >2000
order by 2 desc, 1;

eventname | sum
-----------------+-----------
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00

SELECT 1561

Amazon Redshift Database Developer Guide

Legally Blonde | 804583.00
Chicago | 790993.00
Spamalot | 714307.00

The following query calculates total ticket sales for all events by name, then eliminates events
where the total sales were less than $800,000. The HAVING condition is applied to the results of
the aggregate function in the select list using the alias pp for sum(pricepaid).

select eventname, sum(pricepaid) as pp
from sales join event on sales.eventid = event.eventid
group by 1
having pp > 800000
order by 2 desc, 1;

eventname | pp
-----------------+-----------
Mamma Mia! | 1135454.00
Spring Awakening | 972855.00
The Country Girl | 910563.00
Macbeth | 862580.00
Jersey Boys | 811877.00
Legally Blonde | 804583.00

QUALIFY clause

The QUALIFY clause filters results of a previously computed window function according to
user‑specified search conditions. You can use the clause to apply filtering conditions to the result of
a window function without using a subquery.

It is similar to the HAVING clause, which applies a condition to further filters rows from a WHERE
clause. The difference between QUALIFY and HAVING is that filtered results from the QUALIFY
clause could be based on the result of running window functions on the data. You can use both the
QUALIFY and HAVING clauses in one query.

Syntax

QUALIFY condition

SELECT 1562

https://docs.aws.amazon.com/redshift/latest/dg/r_HAVING_clause.html

Amazon Redshift Database Developer Guide

Note

If you're using the QUALIFY clause directly after the FROM clause, the FROM relation name
must have an alias specified before the QUALIFY clause.

Examples

The examples in this section use the sample data below.

create table store_sales (ss_sold_date date, ss_sold_time time,
 ss_item text, ss_sales_price float);
insert into store_sales values ('2022-01-01', '09:00:00', 'Product 1', 100.0),
 ('2022-01-01', '11:00:00', 'Product 2', 500.0),
 ('2022-01-01', '15:00:00', 'Product 3', 20.0),
 ('2022-01-01', '17:00:00', 'Product 4', 1000.0),
 ('2022-01-01', '18:00:00', 'Product 5', 30.0),
 ('2022-01-02', '10:00:00', 'Product 6', 5000.0),
 ('2022-01-02', '16:00:00', 'Product 7', 5.0);

The following example demonstrates how to find the two most expensive items sold after 12:00
each day.

SELECT *
FROM store_sales ss
WHERE ss_sold_time > time '12:00:00'
QUALIFY row_number()
OVER (PARTITION BY ss_sold_date ORDER BY ss_sales_price DESC) <= 2

 ss_sold_date | ss_sold_time | ss_item | ss_sales_price
--------------+--------------+-----------+----------------
 2022-01-01 | 17:00:00 | Product 4 | 1000
 2022-01-01 | 18:00:00 | Product 5 | 30
 2022-01-02 | 16:00:00 | Product 7 | 5

You can then find the last item sold each day.

SELECT *
FROM store_sales ss
QUALIFY last_value(ss_item)
OVER (PARTITION BY ss_sold_date ORDER BY ss_sold_time ASC

SELECT 1563

Amazon Redshift Database Developer Guide

 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) = ss_item;

ss_sold_date | ss_sold_time | ss_item | ss_sales_price
--------------+--------------+-----------+----------------
 2022-01-01 | 18:00:00 | Product 5 | 30
 2022-01-02 | 16:00:00 | Product 7 | 5

The following example returns the same records as the previous query, the last item sold each day,
but it doesn't use the QUALIFY clause.

SELECT * FROM (
 SELECT *,
 last_value(ss_item)
 OVER (PARTITION BY ss_sold_date ORDER BY ss_sold_time ASC
 ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) ss_last_item
 FROM store_sales ss
)
WHERE ss_last_item = ss_item;

 ss_sold_date | ss_sold_time | ss_item | ss_sales_price | ss_last_item
--------------+--------------+-----------+----------------+--------------
 2022-01-02 | 16:00:00 | Product 7 | 5 | Product 7
 2022-01-01 | 18:00:00 | Product 5 | 30 | Product 5

UNION, INTERSECT, and EXCEPT

Topics

• Syntax

• Parameters

• Order of evaluation for set operators

• Usage notes

• Example UNION queries

• Example UNION ALL query

• Example INTERSECT queries

• Example EXCEPT query

The UNION, INTERSECT, and EXCEPT set operators are used to compare and merge the results of
two separate query expressions. For example, if you want to know which users of a website are

SELECT 1564

Amazon Redshift Database Developer Guide

both buyers and sellers but their user names are stored in separate columns or tables, you can find
the intersection of these two types of users. If you want to know which website users are buyers but
not sellers, you can use the EXCEPT operator to find the difference between the two lists of users. If
you want to build a list of all users, regardless of role, you can use the UNION operator.

Syntax

query
{ UNION [ALL] | INTERSECT | EXCEPT | MINUS }
query

Parameters

query

A query expression that corresponds, in the form of its select list, to a second query expression
that follows the UNION, INTERSECT, or EXCEPT operator. The two expressions must contain
the same number of output columns with compatible data types; otherwise, the two result
sets can't be compared and merged. Set operations don't allow implicit conversion between
different categories of data types; for more information, see Type compatibility and conversion.

You can build queries that contain an unlimited number of query expressions and link them
with UNION, INTERSECT, and EXCEPT operators in any combination. For example, the following
query structure is valid, assuming that the tables T1, T2, and T3 contain compatible sets of
columns:

select * from t1
union
select * from t2
except
select * from t3
order by c1;

UNION

Set operation that returns rows from two query expressions, regardless of whether the rows
derive from one or both expressions.

SELECT 1565

Amazon Redshift Database Developer Guide

INTERSECT

Set operation that returns rows that derive from two query expressions. Rows that aren't
returned by both expressions are discarded.

EXCEPT | MINUS

Set operation that returns rows that derive from one of two query expressions. To qualify for
the result, rows must exist in the first result table but not the second. MINUS and EXCEPT are
exact synonyms.

ALL

The ALL keyword retains any duplicate rows that are produced by UNION. The default behavior
when the ALL keyword isn't used is to discard these duplicates. INTERSECT ALL, EXCEPT ALL,
and MINUS ALL aren't supported.

Order of evaluation for set operators

The UNION and EXCEPT set operators are left-associative. If parentheses aren't specified to
influence the order of precedence, a combination of these set operators is evaluated from left
to right. For example, in the following query, the UNION of T1 and T2 is evaluated first, then the
EXCEPT operation is performed on the UNION result:

select * from t1
union
select * from t2
except
select * from t3
order by c1;

The INTERSECT operator takes precedence over the UNION and EXCEPT operators when a
combination of operators is used in the same query. For example, the following query evaluates
the intersection of T2 and T3, then union the result with T1:

select * from t1
union
select * from t2
intersect
select * from t3
order by c1;

SELECT 1566

Amazon Redshift Database Developer Guide

By adding parentheses, you can enforce a different order of evaluation. In the following case, the
result of the union of T1 and T2 is intersected with T3, and the query is likely to produce a different
result.

(select * from t1
union
select * from t2)
intersect
(select * from t3)
order by c1;

Usage notes

• The column names returned in the result of a set operation query are the column names
(or aliases) from the tables in the first query expression. Because these column names are
potentially misleading, in that the values in the column derive from tables on either side of the
set operator, you might want to provide meaningful aliases for the result set.

• A query expression that precedes a set operator should not contain an ORDER BY clause. An
ORDER BY clause produces meaningful sorted results only when it is used at the end of a query
that contains set operators. In this case, the ORDER BY clause applies to the final results of all of
the set operations. The outermost query can also contain standard LIMIT and OFFSET clauses.

• When set operator queries return decimal results, the corresponding result columns are
promoted to return the same precision and scale. For example, in the following query, where
T1.REVENUE is a DECIMAL(10,2) column and T2.REVENUE is a DECIMAL(8,4) column, the decimal
result is promoted to DECIMAL(12,4):

select t1.revenue union select t2.revenue;

The scale is 4 because that is the maximum scale of the two columns. The precision is 12 because
T1.REVENUE requires 8 digits to the left of the decimal point (12 - 4 = 8). This type promotion
ensures that all values from both sides of the UNION fit in the result. For 64-bit values, the
maximum result precision is 19 and the maximum result scale is 18. For 128-bit values, the
maximum result precision is 38 and the maximum result scale is 37.

If the resulting data type exceeds Amazon Redshift precision and scale limits, the query returns
an error.

• For set operations, two rows are treated as identical if, for each corresponding pair of columns,
the two data values are either equal or both NULL. For example, if tables T1 and T2 both contain

SELECT 1567

Amazon Redshift Database Developer Guide

one column and one row, and that row is NULL in both tables, an INTERSECT operation over
those tables returns that row.

Example UNION queries

In the following UNION query, rows in the SALES table are merged with rows in the LISTING table.
Three compatible columns are selected from each table; in this case, the corresponding columns
have the same names and data types.

The final result set is ordered by the first column in the LISTING table and limited to the 5 rows
with the highest LISTID value.

select listid, sellerid, eventid from listing
union select listid, sellerid, eventid from sales
order by listid, sellerid, eventid desc limit 5;

listid | sellerid | eventid
--------+----------+---------
1 | 36861 | 7872
2 | 16002 | 4806
3 | 21461 | 4256
4 | 8117 | 4337
5 | 1616 | 8647
(5 rows)

The following example shows how you can add a literal value to the output of a UNION query so
you can see which query expression produced each row in the result set. The query identifies rows
from the first query expression as "B" (for buyers) and rows from the second query expression as
"S" (for sellers).

The query identifies buyers and sellers for ticket transactions that cost $10,000 or more. The only
difference between the two query expressions on either side of the UNION operator is the joining
column for the SALES table.

select listid, lastname, firstname, username,
pricepaid as price, 'S' as buyorsell
from sales, users
where sales.sellerid=users.userid
and pricepaid >=10000
union
select listid, lastname, firstname, username, pricepaid,

SELECT 1568

Amazon Redshift Database Developer Guide

'B' as buyorsell
from sales, users
where sales.buyerid=users.userid
and pricepaid >=10000
order by 1, 2, 3, 4, 5;

listid | lastname | firstname | username | price | buyorsell
--------+----------+-----------+----------+-----------+-----------
209658 | Lamb | Colette | VOR15LYI | 10000.00 | B
209658 | West | Kato | ELU81XAA | 10000.00 | S
212395 | Greer | Harlan | GXO71KOC | 12624.00 | S
212395 | Perry | Cora | YWR73YNZ | 12624.00 | B
215156 | Banks | Patrick | ZNQ69CLT | 10000.00 | S
215156 | Hayden | Malachi | BBG56AKU | 10000.00 | B
(6 rows)

The following example uses a UNION ALL operator because duplicate rows, if found, need to be
retained in the result. For a specific series of event IDs, the query returns 0 or more rows for each
sale associated with each event, and 0 or 1 row for each listing of that event. Event IDs are unique
to each row in the LISTING and EVENT tables, but there might be multiple sales for the same
combination of event and listing IDs in the SALES table.

The third column in the result set identifies the source of the row. If it comes from the SALES table,
it is marked "Yes" in the SALESROW column. (SALESROW is an alias for SALES.LISTID.) If the row
comes from the LISTING table, it is marked "No" in the SALESROW column.

In this case, the result set consists of three sales rows for listing 500, event 7787. In other words,
three different transactions took place for this listing and event combination. The other two
listings, 501 and 502, did not produce any sales, so the only row that the query produces for these
list IDs comes from the LISTING table (SALESROW = 'No').

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union all
select eventid, listid, 'No'
from listing
where listid in(500,501,502)
order by listid asc;

eventid | listid | salesrow
---------+--------+----------

SELECT 1569

Amazon Redshift Database Developer Guide

7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No
(6 rows)

If you run the same query without the ALL keyword, the result retains only one of the sales
transactions.

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union
select eventid, listid, 'No'
from listing
where listid in(500,501,502)
order by listid asc;

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No
(4 rows)

Example UNION ALL query

The following example uses a UNION ALL operator because duplicate rows, if found, need to be
retained in the result. For a specific series of event IDs, the query returns 0 or more rows for each
sale associated with each event, and 0 or 1 row for each listing of that event. Event IDs are unique
to each row in the LISTING and EVENT tables, but there might be multiple sales for the same
combination of event and listing IDs in the SALES table.

The third column in the result set identifies the source of the row. If it comes from the SALES table,
it is marked "Yes" in the SALESROW column. (SALESROW is an alias for SALES.LISTID.) If the row
comes from the LISTING table, it is marked "No" in the SALESROW column.

In this case, the result set consists of three sales rows for listing 500, event 7787. In other words,
three different transactions took place for this listing and event combination. The other two

SELECT 1570

Amazon Redshift Database Developer Guide

listings, 501 and 502, did not produce any sales, so the only row that the query produces for these
list IDs comes from the LISTING table (SALESROW = 'No').

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union all
select eventid, listid, 'No'
from listing
where listid in(500,501,502)
order by listid asc;

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
7787 | 500 | Yes
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No
(6 rows)

If you run the same query without the ALL keyword, the result retains only one of the sales
transactions.

select eventid, listid, 'Yes' as salesrow
from sales
where listid in(500,501,502)
union
select eventid, listid, 'No'
from listing
where listid in(500,501,502)
order by listid asc;

eventid | listid | salesrow
---------+--------+----------
7787 | 500 | No
7787 | 500 | Yes
6473 | 501 | No
5108 | 502 | No
(4 rows)

SELECT 1571

Amazon Redshift Database Developer Guide

Example INTERSECT queries

Compare the following example with the first UNION example. The only difference between the
two examples is the set operator that is used, but the results are very different. Only one of the
rows is the same:

235494 | 23875 | 8771

This is the only row in the limited result of 5 rows that was found in both tables.

select listid, sellerid, eventid from listing
intersect
select listid, sellerid, eventid from sales
order by listid desc, sellerid, eventid
limit 5;

listid | sellerid | eventid
--------+----------+---------
235494 | 23875 | 8771
235482 | 1067 | 2667
235479 | 1589 | 7303
235476 | 15550 | 793
235475 | 22306 | 7848
(5 rows)

The following query finds events (for which tickets were sold) that occurred at venues in both
New York City and Los Angeles in March. The difference between the two query expressions is the
constraint on the VENUECITY column.

select distinct eventname from event, sales, venue
where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='Los Angeles'
intersect
select distinct eventname from event, sales, venue
where event.eventid=sales.eventid and event.venueid=venue.venueid
and date_part(month,starttime)=3 and venuecity='New York City'
order by eventname asc;

eventname

A Streetcar Named Desire
Dirty Dancing

SELECT 1572

Amazon Redshift Database Developer Guide

Electra
Running with Annalise
Hairspray
Mary Poppins
November
Oliver!
Return To Forever
Rhinoceros
South Pacific
The 39 Steps
The Bacchae
The Caucasian Chalk Circle
The Country Girl
Wicked
Woyzeck
(16 rows)

Example EXCEPT query

The CATEGORY table in the TICKIT database contains the following 11 rows:

 catid | catgroup | catname | catdesc
-------+----------+-----------+--
 1 | Sports | MLB | Major League Baseball
 2 | Sports | NHL | National Hockey League
 3 | Sports | NFL | National Football League
 4 | Sports | NBA | National Basketball Association
 5 | Sports | MLS | Major League Soccer
 6 | Shows | Musicals | Musical theatre
 7 | Shows | Plays | All non-musical theatre
 8 | Shows | Opera | All opera and light opera
 9 | Concerts | Pop | All rock and pop music concerts
 10 | Concerts | Jazz | All jazz singers and bands
 11 | Concerts | Classical | All symphony, concerto, and choir concerts
(11 rows)

Assume that a CATEGORY_STAGE table (a staging table) contains one additional row:

 catid | catgroup | catname | catdesc
-------+----------+-----------+--
1 | Sports | MLB | Major League Baseball
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League

SELECT 1573

Amazon Redshift Database Developer Guide

4 | Sports | NBA | National Basketball Association
5 | Sports | MLS | Major League Soccer
6 | Shows | Musicals | Musical theatre
7 | Shows | Plays | All non-musical theatre
8 | Shows | Opera | All opera and light opera
9 | Concerts | Pop | All rock and pop music concerts
10 | Concerts | Jazz | All jazz singers and bands
11 | Concerts | Classical | All symphony, concerto, and choir concerts
12 | Concerts | Comedy | All stand up comedy performances
(12 rows)

Return the difference between the two tables. In other words, return rows that are in the
CATEGORY_STAGE table but not in the CATEGORY table:

select * from category_stage
except
select * from category;

catid | catgroup | catname | catdesc
-------+----------+---------+----------------------------------
12 | Concerts | Comedy | All stand up comedy performances
(1 row)

The following equivalent query uses the synonym MINUS.

select * from category_stage
minus
select * from category;

catid | catgroup | catname | catdesc
-------+----------+---------+----------------------------------
12 | Concerts | Comedy | All stand up comedy performances
(1 row)

If you reverse the order of the SELECT expressions, the query returns no rows.

ORDER BY clause

Topics

• Syntax

• Parameters

SELECT 1574

Amazon Redshift Database Developer Guide

• Usage notes

• Examples with ORDER BY

The ORDER BY clause sorts the result set of a query.

Syntax

[ORDER BY expression [ASC | DESC]]
[NULLS FIRST | NULLS LAST]
[LIMIT { count | ALL }]
[OFFSET start]

Parameters

expression

Expression that defines the sort order of the query result set, typically by specifying one or
more columns in the select list. Results are returned based on binary UTF-8 ordering. You can
also specify the following:

• Columns that aren't in the select list

• Expressions formed from one or more columns that exist in the tables referenced by the
query

• Ordinal numbers that represent the position of select list entries (or the position of columns
in the table if no select list exists)

• Aliases that define select list entries

When the ORDER BY clause contains multiple expressions, the result set is sorted according to
the first expression, then the second expression is applied to rows that have matching values
from the first expression, and so on.

ASC | DESC

Option that defines the sort order for the expression, as follows:

• ASC: ascending (for example, low to high for numeric values and 'A' to 'Z' for character
strings). If no option is specified, data is sorted in ascending order by default.

• DESC: descending (high to low for numeric values; 'Z' to 'A' for strings).

SELECT 1575

Amazon Redshift Database Developer Guide

NULLS FIRST | NULLS LAST

Option that specifies whether NULL values should be ordered first, before non-null values, or
last, after non-null values. By default, NULL values are sorted and ranked last in ASC ordering,
and sorted and ranked first in DESC ordering.

LIMIT number | ALL

Option that controls the number of sorted rows that the query returns. The LIMIT number must
be a positive integer; the maximum value is 2147483647.

LIMIT 0 returns no rows. You can use this syntax for testing purposes: to check that a query runs
(without displaying any rows) or to return a column list from a table. An ORDER BY clause is
redundant if you are using LIMIT 0 to return a column list. The default is LIMIT ALL.

OFFSET start

Option that specifies to skip the number of rows before start before beginning to return rows.
The OFFSET number must be a positive integer; the maximum value is 2147483647. When
used with the LIMIT option, OFFSET rows are skipped before starting to count the LIMIT rows
that are returned. If the LIMIT option isn't used, the number of rows in the result set is reduced
by the number of rows that are skipped. The rows skipped by an OFFSET clause still have to be
scanned, so it might be inefficient to use a large OFFSET value.

Usage notes

Note the following expected behavior with ORDER BY clauses:

• NULL values are considered "higher" than all other values. With the default ascending sort order,
NULL values sort at the end. To change this behavior, use the NULLS FIRST option.

• When a query doesn't contain an ORDER BY clause, the system returns result sets with no
predictable ordering of the rows. The same query run twice might return the result set in a
different order.

• The LIMIT and OFFSET options can be used without an ORDER BY clause; however, to return a
consistent set of rows, use these options in conjunction with ORDER BY.

• In any parallel system like Amazon Redshift, when ORDER BY doesn't produce a unique ordering,
the order of the rows is nondeterministic. That is, if the ORDER BY expression produces duplicate
values, the return order of those rows might vary from other systems or from one run of Amazon
Redshift to the next.

SELECT 1576

Amazon Redshift Database Developer Guide

• Amazon Redshift doesn't support string literals in ORDER BY clauses.

Examples with ORDER BY

Return all 11 rows from the CATEGORY table, ordered by the second column, CATGROUP. For
results that have the same CATGROUP value, order the CATDESC column values by the length of
the character string. Then order by columns CATID and CATNAME.

select * from category order by 2, length(catdesc), 1, 3;

catid | catgroup | catname | catdesc
------+----------+-----------+--
10 | Concerts | Jazz | All jazz singers and bands
9 | Concerts | Pop | All rock and pop music concerts
11 | Concerts | Classical | All symphony, concerto, and choir conce
6 | Shows | Musicals | Musical theatre
7 | Shows | Plays | All non-musical theatre
8 | Shows | Opera | All opera and light opera
5 | Sports | MLS | Major League Soccer
1 | Sports | MLB | Major League Baseball
2 | Sports | NHL | National Hockey League
3 | Sports | NFL | National Football League
4 | Sports | NBA | National Basketball Association
(11 rows)

Return selected columns from the SALES table, ordered by the highest QTYSOLD values. Limit the
result to the top 10 rows:

select salesid, qtysold, pricepaid, commission, saletime from sales
order by qtysold, pricepaid, commission, salesid, saletime desc
limit 10;

salesid | qtysold | pricepaid | commission | saletime
--------+---------+-----------+------------+---------------------
15401 | 8 | 272.00 | 40.80 | 2008-03-18 06:54:56
61683 | 8 | 296.00 | 44.40 | 2008-11-26 04:00:23
90528 | 8 | 328.00 | 49.20 | 2008-06-11 02:38:09
74549 | 8 | 336.00 | 50.40 | 2008-01-19 12:01:21
130232 | 8 | 352.00 | 52.80 | 2008-05-02 05:52:31
55243 | 8 | 384.00 | 57.60 | 2008-07-12 02:19:53
16004 | 8 | 440.00 | 66.00 | 2008-11-04 07:22:31
489 | 8 | 496.00 | 74.40 | 2008-08-03 05:48:55

SELECT 1577

Amazon Redshift Database Developer Guide

4197 | 8 | 512.00 | 76.80 | 2008-03-23 11:35:33
16929 | 8 | 568.00 | 85.20 | 2008-12-19 02:59:33
(10 rows)

Return a column list and no rows by using LIMIT 0 syntax:

select * from venue limit 0;
venueid | venuename | venuecity | venuestate | venueseats
---------+-----------+-----------+------------+------------
(0 rows)

CONNECT BY clause

The CONNECT BY clause specifies the relationship between rows in a hierarchy. You can use
CONNECT BY to select rows in a hierarchical order by joining the table to itself and processing the
hierarchical data. For example, you can use it to recursively loop through an organization chart and
list data.

Hierarchical queries process in the following order:

1. If the FROM clause has a join, it is processed first.

2. The CONNECT BY clause is evaluated.

3. The WHERE clause is evaluated.

Syntax

[START WITH start_with_conditions]
CONNECT BY connect_by_conditions

Note

While START and CONNECT are not reserved words, use delimited identifiers (double
quotation marks) or AS if you're using START and CONNECT as table aliases in your query
to avoid failure at runtime.

SELECT COUNT(*)
FROM Employee "start"
CONNECT BY PRIOR id = manager_id

SELECT 1578

Amazon Redshift Database Developer Guide

START WITH name = 'John'

SELECT COUNT(*)
FROM Employee AS start
CONNECT BY PRIOR id = manager_id
START WITH name = 'John'

Parameters

start_with_conditions

Conditions that specify the root row(s) of the hierarchy

connect_by_conditions

Conditions that specify the relationship between parent rows and child rows of the hierarchy. At
least one condition must be qualified with the unary operator used to refer to the parent row.

PRIOR column = expression
-- or
expression > PRIOR column

Operators

You can use the following operators in a CONNECT BY query.

LEVEL

Pseudocolumn that returns the current row level in the hierarchy. Returns 1 for the root row, 2
for the child of the root row, and so on.

PRIOR

Unary operator that evaluates the expression for the parent row of the current row in the
hierarchy.

Examples

The following example is a CONNECT BY query that returns the number of employees that report
directly or indirectly to John, no deeper than 4 levels.

SELECT id, name, manager_id

SELECT 1579

Amazon Redshift Database Developer Guide

FROM employee
WHERE LEVEL < 4
START WITH name = 'John'
CONNECT BY PRIOR id = manager_id;

Following is the result of the query.

id name manager_id
------+----------+--------------
 101 John 100
 102 Jorge 101
 103 Kwaku 101
 110 Liu 101
 201 Sofía 102
 106 Mateo 102
 110 Nikki 103
 104 Paulo 103
 105 Richard 103
 120 Saanvi 104
 200 Shirley 104
 205 Zhang 104

Table definition for this example:

CREATE TABLE employee (
 id INT,
 name VARCHAR(20),
 manager_id INT
);

Following are the rows inserted into the table.

INSERT INTO employee(id, name, manager_id) VALUES
(100, 'Carlos', null),
(101, 'John', 100),
(102, 'Jorge', 101),
(103, 'Kwaku', 101),
(110, 'Liu', 101),
(106, 'Mateo', 102),
(110, 'Nikki', 103),
(104, 'Paulo', 103),
(105, 'Richard', 103),

SELECT 1580

Amazon Redshift Database Developer Guide

(120, 'Saanvi', 104),
(200, 'Shirley', 104),
(201, 'Sofía', 102),
(205, 'Zhang', 104);

Following is an organization chart for John's department.

Subquery examples

The following examples show different ways in which subqueries fit into SELECT queries. See JOIN
examples for another example of the use of subqueries.

SELECT list subquery

The following example contains a subquery in the SELECT list. This subquery is scalar: it returns
only one column and one value, which is repeated in the result for each row that is returned from
the outer query. The query compares the Q1SALES value that the subquery computes with sales
values for two other quarters (2 and 3) in 2008, as defined by the outer query.

select qtr, sum(pricepaid) as qtrsales,
(select sum(pricepaid)

SELECT 1581

Amazon Redshift Database Developer Guide

from sales join date on sales.dateid=date.dateid
where qtr='1' and year=2008) as q1sales
from sales join date on sales.dateid=date.dateid
where qtr in('2','3') and year=2008
group by qtr
order by qtr;

qtr | qtrsales | q1sales
-------+-------------+-------------
2 | 30560050.00 | 24742065.00
3 | 31170237.00 | 24742065.00
(2 rows)

WHERE clause subquery

The following example contains a table subquery in the WHERE clause. This subquery produces
multiple rows. In this case, the rows contain only one column, but table subqueries can contain
multiple columns and rows, just like any other table.

The query finds the top 10 sellers in terms of maximum tickets sold. The top 10 list is restricted by
the subquery, which removes users who live in cities where there are ticket venues. This query can
be written in different ways; for example, the subquery could be rewritten as a join within the main
query.

select firstname, lastname, city, max(qtysold) as maxsold
from users join sales on users.userid=sales.sellerid
where users.city not in(select venuecity from venue)
group by firstname, lastname, city
order by maxsold desc, city desc
limit 10;

firstname | lastname | city | maxsold
-----------+-----------+----------------+---------
Noah | Guerrero | Worcester | 8
Isadora | Moss | Winooski | 8
Kieran | Harrison | Westminster | 8
Heidi | Davis | Warwick | 8
Sara | Anthony | Waco | 8
Bree | Buck | Valdez | 8
Evangeline | Sampson | Trenton | 8
Kendall | Keith | Stillwater | 8
Bertha | Bishop | Stevens Point | 8
Patricia | Anderson | South Portland | 8

SELECT 1582

Amazon Redshift Database Developer Guide

(10 rows)

WITH clause subqueries

See WITH clause.

Correlated subqueries

The following example contains a correlated subquery in the WHERE clause; this kind of subquery
contains one or more correlations between its columns and the columns produced by the outer
query. In this case, the correlation is where s.listid=l.listid. For each row that the outer
query produces, the subquery is run to qualify or disqualify the row.

select salesid, listid, sum(pricepaid) from sales s
where qtysold=
(select max(numtickets) from listing l
where s.listid=l.listid)
group by 1,2
order by 1,2
limit 5;

salesid | listid | sum
--------+--------+----------
 27 | 28 | 111.00
 81 | 103 | 181.00
 142 | 149 | 240.00
 146 | 152 | 231.00
 194 | 210 | 144.00
(5 rows)

Correlated subquery patterns that are not supported

The query planner uses a query rewrite method called subquery decorrelation to optimize several
patterns of correlated subqueries for execution in an MPP environment. A few types of correlated
subqueries follow patterns that Amazon Redshift can't decorrelate and doesn't support. Queries
that contain the following correlation references return errors:

• Correlation references that skip a query block, also known as "skip-level correlation references."
For example, in the following query, the block containing the correlation reference and the
skipped block are connected by a NOT EXISTS predicate:

select event.eventname from event

SELECT 1583

Amazon Redshift Database Developer Guide

where not exists
(select * from listing
where not exists
(select * from sales where event.eventid=sales.eventid));

The skipped block in this case is the subquery against the LISTING table. The correlation
reference correlates the EVENT and SALES tables.

• Correlation references from a subquery that is part of an ON clause in an outer query:

select * from category
left join event
on category.catid=event.catid and eventid =
(select max(eventid) from sales where sales.eventid=event.eventid);

The ON clause contains a correlation reference from SALES in the subquery to EVENT in the
outer query.

• Null-sensitive correlation references to an Amazon Redshift system table. For example:

select attrelid
from stv_locks sl, pg_attribute
where sl.table_id=pg_attribute.attrelid and 1 not in
(select 1 from pg_opclass where sl.lock_owner = opcowner);

• Correlation references from within a subquery that contains a window function.

select listid, qtysold
from sales s
where qtysold not in
(select sum(numtickets) over() from listing l where s.listid=l.listid);

• References in a GROUP BY column to the results of a correlated subquery. For example:

select listing.listid,
(select count (sales.listid) from sales where sales.listid=listing.listid) as list
from listing
group by list, listing.listid;

• Correlation references from a subquery with an aggregate function and a GROUP BY clause,
connected to the outer query by an IN predicate. (This restriction doesn't apply to MIN and MAX
aggregate functions.) For example:

SELECT 1584

Amazon Redshift Database Developer Guide

select * from listing where listid in
(select sum(qtysold)
from sales
where numtickets>4
group by salesid);

SELECT INTO

Selects rows defined by any query and inserts them into a new table. You can specify whether to
create a temporary or a persistent table.

Syntax

[WITH with_subquery [, ...]]
SELECT
[TOP number] [ALL | DISTINCT]
* | expression [AS output_name] [, ...]
INTO [TEMPORARY | TEMP] [TABLE] new_table
[FROM table_reference [, ...]]
[WHERE condition]
[GROUP BY expression [, ...]]
[HAVING condition [, ...]]
[{ UNION | INTERSECT | { EXCEPT | MINUS } } [ALL] query]
[ORDER BY expression
[ASC | DESC]
[LIMIT { number | ALL }]
[OFFSET start]

For details about the parameters of this command, see SELECT.

Examples

Select all of the rows from the EVENT table and create a NEWEVENT table:

select * into newevent from event;

Select the result of an aggregate query into a temporary table called PROFITS:

select username, lastname, sum(pricepaid-commission) as profit
into temp table profits

SELECT INTO 1585

Amazon Redshift Database Developer Guide

from sales, users
where sales.sellerid=users.userid
group by 1, 2
order by 3 desc;

SET

Sets the value of a server configuration parameter. Use the SET command to override a setting for
the duration of the current session or transaction only.

Use the RESET command to return a parameter to its default value.

You can change the server configuration parameters in several ways. For more information, see
Modifying the server configuration.

Syntax

SET { [SESSION | LOCAL]
{ SEED | parameter_name } { TO | = }
{ value | 'value' | DEFAULT } |
SEED TO value }

The following statement sets the value of a session context variable.

SET { [SESSION | LOCAL]
variable_name { TO | = }
{ value | 'value' }

Parameters

SESSION

Specifies that the setting is valid for the current session. Default value.

variable_name

Specifies the name of the context variable set for the session.

The naming convention is a two-part name separated by a dot, for example identifier.identifier.
Only one dot separator is allowed. Use an identifier that follows the standard identifier rules for
Amazon Redshift For more information, see Names and identifiers. Delimited identifiers aren't
allowed.

SET 1586

Amazon Redshift Database Developer Guide

LOCAL

Specifies that the setting is valid for the current transaction.

SEED TO value

Sets an internal seed to be used by the RANDOM function for random number generation.

SET SEED takes a numeric value between 0 and 1, and multiplies this number by (231-1) for use
with the RANDOM function function. If you use SET SEED before making multiple RANDOM
calls, RANDOM generates numbers in a predictable sequence.

parameter_name

Name of the parameter to set. See Modifying the server configuration for information about
parameters.

value

New parameter value. Use single quotation marks to set the value to a specific string. If using
SET SEED, this parameter contains the SEED value.

DEFAULT

Sets the parameter to the default value.

Examples

Changing a parameter for the current session

The following example sets the datestyle:

set datestyle to 'SQL,DMY';

Setting a query group for workload management

If query groups are listed in a queue definition as part of the cluster's WLM configuration, you can
set the QUERY_GROUP parameter to a listed query group name. Subsequent queries are assigned
to the associated query queue. The QUERY_GROUP setting remains in effect for the duration of the
session or until a RESET QUERY_GROUP command is encountered.

This example runs two queries as part of the query group 'priority', then resets the query group.

set query_group to 'priority';

SET 1587

Amazon Redshift Database Developer Guide

select tbl, count(*)from stv_blocklist;
select query, elapsed, substring from svl_qlog order by query desc limit 5;
reset query_group;

For more information, see Implementing workload management.

Change the default identity namespace for the session

A database user can set default_identity_namespace. This sample shows how to use SET
SESSION to override the setting for the duration of the current session and then show the new
identity provider value. This is used most commonly when you are using an identity provider with
Redshift and IAM Identity Center. For more information about using an identity provider with
Redshift, see Connect Redshift with IAM Identity Center to give users a single sign-on experience.

SET SESSION default_identity_namespace = 'MYCO';

SHOW default_identity_namespace;

After running the command, you can run a GRANT statement or a CREATE statement like the
following:

GRANT SELECT ON TABLE mytable TO alice;

GRANT UPDATE ON TABLE mytable TO salesrole;

CREATE USER bob password 'md50c983d1a624280812631c5389e60d48c';

In this instance, the effect of setting the default identity namespace is equivalent to prefixing
each identity with the namespace. In this example, alice is replaced with MYCO:alice. For more
information about settings that pertain to Redshift configuration with IAM Identity Center, see
ALTER SYSTEM and ALTER IDENTITY PROVIDER.

Setting a label for a group of queries

The QUERY_GROUP parameter defines a label for one or more queries that are run in the same
session after a SET command. In turn, this label is logged when queries are run and can be used
to constrain results returned from the STL_QUERY and STV_INFLIGHT system tables and the
SVL_QLOG view.

show query_group;

SET 1588

https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-idp-connect.html

Amazon Redshift Database Developer Guide

query_group

unset
(1 row)

set query_group to '6 p.m.';

show query_group;
query_group

6 p.m.
(1 row)

select * from sales where salesid=500;
salesid | listid | sellerid | buyerid | eventid | dateid | ...
---------+--------+----------+---------+---------+--------+-----
500 | 504 | 3858 | 2123 | 5871 | 2052 | ...
(1 row)

reset query_group;

select query, trim(label) querygroup, pid, trim(querytxt) sql
from stl_query
where label ='6 p.m.';
query | querygroup | pid | sql
-------+------------+-------+--
57 | 6 p.m. | 30711 | select * from sales where salesid=500;
(1 row)

Query group labels are a useful mechanism for isolating individual queries or groups of queries
that are run as part of scripts. You don't need to identify and track queries by their IDs; you can
track them by their labels.

Setting a seed value for random number generation

The following example uses the SEED option with SET to cause the RANDOM function to generate
numbers in a predictable sequence.

First, return three RANDOM integers without setting the SEED value first:

select cast (random() * 100 as int);
int4

SET 1589

Amazon Redshift Database Developer Guide

6
(1 row)

select cast (random() * 100 as int);
int4

68
(1 row)

select cast (random() * 100 as int);
int4

56
(1 row)

Now, set the SEED value to .25, and return three more RANDOM numbers:

set seed to .25;

select cast (random() * 100 as int);
int4

21
(1 row)

select cast (random() * 100 as int);
int4

79
(1 row)

select cast (random() * 100 as int);
int4

12
(1 row)

Finally, reset the SEED value to .25, and verify that RANDOM returns the same results as the
previous three calls:

set seed to .25;

SET 1590

Amazon Redshift Database Developer Guide

select cast (random() * 100 as int);
int4

21
(1 row)

select cast (random() * 100 as int);
int4

79
(1 row)

select cast (random() * 100 as int);
int4

12
(1 row)

The following example sets a customized context variable.

SET app_context.user_id TO 123;
SET app_context.user_id TO 'sample_variable_value';

SET SESSION AUTHORIZATION

Sets the user name for the current session.

You can use the SET SESSION AUTHORIZATION command, for example, to test database access
by temporarily running a session or transaction as an unprivileged user. You must be a database
superuser to run this command.

Syntax

SET [LOCAL] SESSION AUTHORIZATION { user_name | DEFAULT }

Parameters

LOCAL

Specifies that the setting is valid for the current transaction. Omitting this parameter specifies
that the setting is valid for the current session.

SET SESSION AUTHORIZATION 1591

Amazon Redshift Database Developer Guide

user_name

Name of the user to set. The user name may be written as an identifier or a string literal.

DEFAULT

Sets the session user name to the default value.

Examples

The following example sets the user name for the current session to dwuser:

SET SESSION AUTHORIZATION 'dwuser';

The following example sets the user name for the current transaction to dwuser:

SET LOCAL SESSION AUTHORIZATION 'dwuser';

This example sets the user name for the current session to the default user name:

SET SESSION AUTHORIZATION DEFAULT;

SET SESSION CHARACTERISTICS

This command is deprecated.

SHOW

Displays the current value of a server configuration parameter. This value may be specific to
the current session if a SET command is in effect. For a list of configuration parameters, see
Configuration reference.

Syntax

SHOW { parameter_name | ALL }

The following statement displays the current value of a session context variable. If the variable
doesn't exist, Amazon Redshift throws an error.

SET SESSION CHARACTERISTICS 1592

Amazon Redshift Database Developer Guide

SHOW variable_name

Parameters

parameter_name

Displays the current value of the specified parameter.

ALL

Displays the current values of all of the parameters.

variable_name

Displays the current value of the specified variable.

Examples

The following example displays the value for the query_group parameter:

show query_group;

query_group

unset
(1 row)

The following example displays a list of all parameters and their values:

show all;
name | setting
--------------------+--------------
datestyle | ISO, MDY
extra_float_digits | 0
query_group | unset
search_path | $user,public
statement_timeout | 0

The following example displays the current value of the specified variable.

SHOW app_context.user_id;

SHOW 1593

Amazon Redshift Database Developer Guide

SHOW COLUMNS

Shows a list of columns in a table, along with some column attributes.

Each output row consists of a comma-separated list of database name, schema name, table
name, column name, ordinal position, column default, is nullable, data type, character maximum
length, numeric precision, and remarks. For more information about these attributes, see
SVV_ALL_COLUMNS.

If more than 10,000 columns would result from the SHOW COLUMNS command, then an error is
returned.

Syntax

SHOW COLUMNS FROM TABLE database_name.schema_name.table_name [LIKE 'filter_pattern']
 [LIMIT row_limit]

Parameters

database_name

The name of the database that contains the tables to list.

To show tables in an AWS Glue Data Catalog, specify (awsdatacatalog) as the database name,
and ensure the system configuration data_catalog_auto_mount is set to true. For more
information, see ALTER SYSTEM.

schema_name

The name of the schema that contains the tables to list.

To show AWS Glue Data Catalog tables, provide the AWS Glue database name as the schema
name.

table_name

The name of the table that contains the columns to list.

filter_pattern

A valid UTF-8 character expression with a pattern to match table names. The LIKE option
performs a case-sensitive match that supports the following pattern-matching metacharacters:

SHOW COLUMNS 1594

Amazon Redshift Database Developer Guide

Metacharacter Description

% Matches any sequence of zero or more characters.

_ Matches any single character.

If filter_pattern does not contain metacharacters, then the pattern only represents the string
itself; in that case LIKE acts the same as the equals operator.

row_limit

The maximum number of rows to return. The row_limit can be 0–10,000.

Examples

Following example shows the columns in the Amazon Redshift database named dev that are in
schema public and table tb.

SHOW COLUMNS FROM TABLE dev.public.tb;

 database_name | schema_name | table_name | column_name | ordinal_position
 | column_default | is_nullable | data_type | character_maximum_length |
 numeric_precision | remarks
---------------+-------------+------------+-------------+------------------
+----------------+-------------+-----------+--------------------------
+-------------------+---------
 dev | public | tb | col | 1 |
 | YES | integer | | 32 |

Following example shows the tables in the AWS Glue Data Catalog database named
awsdatacatalog that are in schema batman and table nation. Output is limited to 2 rows.

SHOW COLUMNS FROM TABLE awsdatacatalog.batman.nation LIMIT 2;

 database_name | schema_name | table_name | column_name | ordinal_position
 | column_default | is_nullable | data_type | character_maximum_length |
 numeric_precision | remarks
----------------+-------------+------------+-------------+------------------
+----------------+-------------+-----------+--------------------------
+-------------------+---------

SHOW COLUMNS 1595

Amazon Redshift Database Developer Guide

 awsdatacatalog | batman | nation | n_nationkey | 1 |
 | | integer | | |
 awsdatacatalog | batman | nation | n_name | 2 |
 | | character | | |

SHOW EXTERNAL TABLE

Shows the definition of an external table, including table attributes and column attributes. You can
use the output of the SHOW EXTERNAL TABLE statement to recreate the table.

For more information about external table creation, see CREATE EXTERNAL TABLE.

Syntax

SHOW EXTERNAL TABLE [external_database].external_schema.table_name [PARTITION]

Parameters

external_database

The name of the associated external database. This parameter is optional.

external_schema

The name of the associated external schema.

table_name

The name of the table to show.

PARTITION

Displays ALTER TABLE statements to add partitions to the table definition.

Examples

The following examples are based on an external table defined as follows:

CREATE EXTERNAL TABLE my_schema.alldatatypes_parquet_test_partitioned (
 csmallint smallint,
 cint int,
 cbigint bigint,

SHOW EXTERNAL TABLE 1596

Amazon Redshift Database Developer Guide

 cfloat float4,
 cdouble float8,
 cchar char(10),
 cvarchar varchar(255),
 cdecimal_small decimal(18,9),
 cdecimal_big decimal(30,15),
 ctimestamp TIMESTAMP,
 cboolean boolean,
 cstring varchar(16383)
)
PARTITIONED BY (cdate date, ctime TIMESTAMP)
STORED AS PARQUET
LOCATION 's3://mybucket-test-copy/alldatatypes_parquet_partitioned';

Following is an example of the SHOW EXTERNAL TABLE command and output for the table
my_schema.alldatatypes_parquet_test_partitioned.

SHOW EXTERNAL TABLE my_schema.alldatatypes_parquet_test_partitioned;

"CREATE EXTERNAL TABLE my_schema.alldatatypes_parquet_test_partitioned (
 csmallint smallint,
 cint int,
 cbigint bigint,
 cfloat float4,
 cdouble float8,
 cchar char(10),
 cvarchar varchar(255),
 cdecimal_small decimal(18,9),
 cdecimal_big decimal(30,15),
 ctimestamp timestamp,
 cboolean boolean,
 cstring varchar(16383)
)
PARTITIONED BY (cdate date, ctime timestamp)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 's3://mybucket-test-copy/alldatatypes_parquet_partitioned';"

Following is an example of the SHOW EXTERNAL TABLE command and output for the same table,
but with the database also specified in the parameter.

SHOW EXTERNAL TABLE 1597

Amazon Redshift Database Developer Guide

SHOW EXTERNAL TABLE my_database.my_schema.alldatatypes_parquet_test_partitioned;

"CREATE EXTERNAL TABLE my_database.my_schema.alldatatypes_parquet_test_partitioned (
 csmallint smallint,
 cint int,
 cbigint bigint,
 cfloat float4,
 cdouble float8,
 cchar char(10),
 cvarchar varchar(255),
 cdecimal_small decimal(18,9),
 cdecimal_big decimal(30,15),
 ctimestamp timestamp,
 cboolean boolean,
 cstring varchar(16383)
)
PARTITIONED BY (cdate date, ctime timestamp)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 's3://mybucket-test-copy/alldatatypes_parquet_partitioned';"

Following is an example of the SHOW EXTERNAL TABLE command and output when using the
PARTITION parameter. The output contains ALTER TABLE statements to add partitions to the table
definition.

SHOW EXTERNAL TABLE my_schema.alldatatypes_parquet_test_partitioned PARTITION;

"CREATE EXTERNAL TABLE my_schema.alldatatypes_parquet_test_partitioned (
 csmallint smallint,
 cint int,
 cbigint bigint,
 cfloat float4,
 cdouble float8,
 cchar char(10),
 cvarchar varchar(255),
 cdecimal_small decimal(18,9),
 cdecimal_big decimal(30,15),
 ctimestamp timestamp,
 cboolean boolean,
 cstring varchar(16383)

SHOW EXTERNAL TABLE 1598

Amazon Redshift Database Developer Guide

)
PARTITIONED BY (cdate date)
ROW FORMAT SERDE 'org.apache.hadoop.hive.ql.io.parquet.serde.ParquetHiveSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.parquet.MapredParquetOutputFormat'
LOCATION 's3://mybucket-test-copy/alldatatypes_parquet_partitioned';
ALTER TABLE my_schema.alldatatypes_parquet_test_partitioned ADD IF NOT
 EXISTS PARTITION (cdate='2021-01-01') LOCATION 's3://mybucket-test-copy/
alldatatypes_parquet_partitioned2/cdate=2021-01-01';
ALTER TABLE my_schema.alldatatypes_parquet_test_partitioned ADD IF NOT
 EXISTS PARTITION (cdate='2021-01-02') LOCATION 's3://mybucket-test-copy/
alldatatypes_parquet_partitioned2/cdate=2021-01-02';"

SHOW DATABASES

Displays databases from a specified account ID.

Syntax

SHOW DATABASES FROM
DATA CATALOG [ACCOUNT '<id1>', '<id2>', ...]
[LIKE '<expression>']
[IAM_ROLE default | 'SESSION' | 'arn:aws:iam::<account-id>:role/<role-name>']

Parameters

ACCOUNT '<id1>', '<id2>', ...

The AWS Glue Data Catalog accounts from which to list databases. Omitting this parameter
indicates that Amazon Redshift should show the databases from the account that owns the
cluster.

LIKE '<expression>'

Filters the list of databases to those that match the expression that you specify. This parameter
supports patterns that use the wildcard characters % (percent) and _ (underscore).

IAM_ROLE default | 'SESSION' | 'arn:aws:iam::<account-id>:role/<role-name>'

If you specify an IAM role that is associated with the cluster when running the SHOW
DATABASES command, Amazon Redshift will use the role’s credentials when you run queries on
the database.

SHOW DATABASES 1599

Amazon Redshift Database Developer Guide

Specifying the default keyword means to use the IAM role that's set as the default and
associated with the cluster.

Use 'SESSION' if you connect to your Amazon Redshift cluster using a federated identity
and access the tables from the external database created using the the section called “CREATE
DATABASE” command. For an example of using a federated identity, see Using a federated
identity to manage Amazon Redshift access to local resources and Amazon Redshift Spectrum
external tables, which explains how to configure federated identity.

Use the Amazon Resource Name (ARN) for an IAM role that your cluster uses for authentication
and authorization. As a minimum, the IAM role must have permission to perform a LIST
operation on the Amazon S3 bucket to be accessed and a GET operation on the Amazon S3
objects the bucket contains. To learn more about databases created from the AWS Glue Data
Catalog for datashares and using IAM_ROLE, see Working with Lake Formation-managed
datashares as a consumer.

The following shows the syntax for the IAM_ROLE parameter string for a single ARN.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-name>'

You can chain roles so that your cluster can assume another IAM role, possibly belonging to
another account. You can chain up to 10 roles. For more information, see Chaining IAM roles in
Amazon Redshift Spectrum.

To this IAM role, attach an IAM permissions policy similar to the following.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AccessSecret",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetResourcePolicy",
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret",
 "secretsmanager:ListSecretVersionIds"
],
 "Resource": "arn:aws:secretsmanager:us-west-2:123456789012:secret:my-
rds-secret-VNenFy"

SHOW DATABASES 1600

https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/mgmt/authorization-fas-spectrum.html
https://docs.aws.amazon.com/redshift/latest/dg/lake-formation-getting-started-consumer.html
https://docs.aws.amazon.com/redshift/latest/dg/lake-formation-getting-started-consumer.html

Amazon Redshift Database Developer Guide

 },
 {
 "Sid": "VisualEditor1",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 }
]
}

For the steps to create an IAM role to use with federated query, see Creating a secret and an
IAM role to use federated queries.

Note

Don't include spaces in the list of chained roles.

The following shows the syntax for chaining three roles.

IAM_ROLE 'arn:aws:iam::<aws-account-id>:role/<role-1-name>,arn:aws:iam::<aws-
account-id>:role/<role-2-name>,arn:aws:iam::<aws-account-id>:role/<role-3-name>'

Examples

The following example displays all of the Data Catalog databases from the account ID
123456789012.

SHOW DATABASES FROM DATA CATALOG ACCOUNT '123456789012'

 catalog_id | database_name | database_arn
 | type | target_database
 | location | parameters
--------------+---------------+--
+--------------
+--
+----------+------------

SHOW DATABASES 1601

Amazon Redshift Database Developer Guide

 123456789012 | database1 | arn:aws:glue:us-east-1:123456789012:database/database1
 | Data Catalog |
 | |
 123456789012 | database2 | arn:aws:glue:us-east-1:123456789012:database/database2
 | Data Catalog | arn:aws:redshift:us-
east-1:123456789012:datashare:035c45ea-61ce-86f0-8b75-19ac6102c3b7/database2 |
 |

The following are examples that demonstrate how to display all of the Data Catalog databases
from the account ID 123456789012 while using an IAM role's credentials.

SHOW DATABASES FROM DATA CATALOG ACCOUNT '123456789012' IAM_ROLE default;

SHOW DATABASES FROM DATA CATALOG ACCOUNT '123456789012' IAM_ROLE <iam-role-arn>;

SHOW MODEL

Shows useful information about a machine learning model, including its status, the parameters
used to create it and the prediction function with its input argument types. You can use the
information from the SHOW MODEL to recreate the model. If base tables have changed, running
CREATE MODEL with the same SQL statement results in a different model. The information
returned by the SHOW MODEL is different for the model owner and a user with the EXECUTE
privilege. SHOW MODEL shows different outputs when a model is trained from Amazon Redshift or
when the model is a BYOM model.

Syntax

SHOW MODEL (ALL | model_name)

Parameters

ALL

Returns all the models that the user can use and their schemas.

model_name

The name of the model. The model name in a schema must be unique.

SHOW MODEL 1602

Amazon Redshift Database Developer Guide

Usage notes

The SHOW MODEL command returns the following:

• The model name.

• The schema where the model was created.

• The owner of the model.

• The model creation time.

• The status of the model, such as READY, TRAINING, or FAILED.

• The reason message for a failed model.

• The validation error if model has finished training.

• The estimated cost needed to derive the model for a non-BYOM approach. Only the owner of the
model can view this information.

• A list of user-specified parameters and their values, specifically the following:

• The specified TARGET column.

• The model type, AUTO or XGBoost.

• The problem type, such as REGRESSION, BINARY_CLASSIFICATION,
MULTICLASS_CLASSIFICATION. This parameter is specific to AUTO.

• The name of the Amazon SageMaker training job or the Amazon SageMaker Autopilot job that
created the model. You can use this job name to find more information about the model on
Amazon SageMaker.

• The objective, such as MSE, F1, Accuracy. This parameter is specific to AUTO.

• The name of the created function.

• The type of inference, local or remote.

• The prediction function input arguments.

• The prediction function input argument types for models that aren't bring your own model
(BYOM).

• The return type of the prediction function. This parameter is specific to BYOM.

• The name of the Amazon SageMaker endpoint for a BYOM model with remote inference.

• The IAM role. Only the owner of the model can see this.

• The S3 bucket used. Only the owner of the model can see this.

• The AWS KMS key, if one was provided. Only the owner of the model can see this.

• The maximum time that the model can run.

SHOW MODEL 1603

Amazon Redshift Database Developer Guide

• If the model type is not AUTO, then Amazon Redshift also shows the list of hyperparameters
provided and their values.

You can also view some of the information provided by SHOW MODEL in other catalog tables, such
as pg_proc. Amazon Redshift returns information about the prediction function that is registered
in pg_proc catalog table. This information includes the input argument names and their types
for the prediction function. Amazon Redshift returns the same information in the SHOW MODEL
command.

SELECT * FROM pg_proc WHERE proname ILIKE '%<function_name>%';

Examples

The following example shows the show model output.

SHOW MODEL ALL;

Schema Name | Model Name
------------+---------------
 public | customer_churn

The owner of the customer_churn can see the following output. A user with only the EXECUTE
privilege can't see the IAM role, the Amazon S3 bucket, and the estimated cost of the mode.

SHOW MODEL customer_churn;

 Key | Value
---------------------------+-----------------------------------
 Model Name | customer_churn
 Schema Name | public
 Owner | 'owner'
 Creation Time | Sat, 15.01.2000 14:45:20
 Model State | READY
 validation:F1 | 0.855
 Estimated Cost | 5.7
 |
 TRAINING DATA: |
 Table | customer_data
 Target Column | CHURN
 |
 PARAMETERS: |

SHOW MODEL 1604

Amazon Redshift Database Developer Guide

 Model Type | auto
 Problem Type | binary_classification
 Objective | f1
 Function Name | predict_churn
 Function Parameters | age zip average_daily_spend average_daily_cases
 Function Parameter Types | int int float float
 IAM Role | 'iam_role'
 KMS Key | 'kms_key'
 Max Runtime | 36000

SHOW DATASHARES

Displays the inbound and outbound shares in a cluster either from the same account or across
accounts. If you don't specify a datashare name, then Amazon Redshift displays all datashares in all
databases in the cluster. Users who have the ALTER and SHARE privileges can see the shares that
they have privileges for.

Syntax

SHOW DATASHARES [LIKE 'namepattern']

Parameters

LIKE

An optional clause that compares the specified name pattern to the description of the
datashare. When this clause is used, Amazon Redshift displays only the datashares with names
that match the specified name pattern.

namepattern

The name of the datashare requested or part of the name to be matched using wildcard
characters.

Examples

The following example displays the inbound and outbound shares in a cluster.

SHOW DATASHARES;
SHOW DATASHARES LIKE 'sales%';

SHOW DATASHARES 1605

Amazon Redshift Database Developer Guide

share_name | share_owner | source_database | consumer_database | share_type |
 createdate | is_publicaccessible | share_acl | producer_account |
 producer_namespace
-------------+-------------+-----------------+-------------------+------------
+---------------------+---------------------+-----------+------------------
+---------------------------------------
'salesshare' | 100 | dev | | outbound
 | 2020-12-09 01:22:54.| False | | 123456789012 |
 13b8833d-17c6-4f16-8fe4-1a018f5ed00d

SHOW PROCEDURE

Shows the definition of a given stored procedure, including its signature. You can use the output of
a SHOW PROCEDURE to recreate the stored procedure.

Syntax

SHOW PROCEDURE sp_name [([[argname] [argmode] argtype [, ...]])]

Parameters

sp_name

The name of the procedure to show.

[argname] [argmode] argtype

Input argument types to identify the stored procedure. Optionally, you can include the full
argument data types, including OUT arguments. This part is optional if the name of the stored
procedure is unique (that is, not overloaded).

Examples

The following example shows the definition of the procedure test_spl2.

show procedure test_sp2(int, varchar);
 Stored Procedure Definition
--
CREATE OR REPLACE PROCEDURE public.test_sp2(f1 integer, INOUT f2 character varying, OUT
 character varying)
LANGUAGE plpgsql
AS $_$

SHOW PROCEDURE 1606

Amazon Redshift Database Developer Guide

DECLARE
out_var alias for $3;
loop_var int;
BEGIN
IF f1 is null OR f2 is null THEN
RAISE EXCEPTION 'input cannot be null';
END IF;
CREATE TEMP TABLE etl(a int, b varchar);
FOR loop_var IN 1..f1 LOOP
insert into etl values (loop_var, f2);
f2 := f2 || '+' || f2;
END LOOP;
SELECT INTO out_var count(*) from etl;
END;
$_$

(1 row)

SHOW SCHEMAS

Shows a list of schemas in a database, along with some schema attributes.

Each output row consists of database name, schema name, schema owner, schema type, schema
ACL, source database, and schema option. For more information about these attributes, see
SVV_ALL_SCHEMAS.

If more than 10,000 schemas can result from the SHOW SCHEMAS command, then an error is
returned.

Syntax

SHOW SCHEMAS FROM DATABASE database_name [LIKE 'filter_pattern'] [LIMIT row_limit]

Parameters

database_name

The name of the database that contains the tables to list.

To show tables in an AWS Glue Data Catalog, specify (awsdatacatalog) as the database name,
and ensure the system configuration data_catalog_auto_mount is set to true. For more
information, see ALTER SYSTEM.

SHOW SCHEMAS 1607

Amazon Redshift Database Developer Guide

filter_pattern

A valid UTF-8 character expression with a pattern to match schema names. The LIKE option
performs a case-sensitive match that supports the following pattern-matching metacharacters:

Metacharacter Description

% Matches any sequence of zero or more characters.

_ Matches any single character.

If filter_pattern does not contain metacharacters, then the pattern only represents the string
itself; in that case LIKE acts the same as the equals operator.

row_limit

The maximum number of rows to return. The row_limit can be 0–10,000.

Examples

Following example shows the schemas from the Amazon Redshift database named dev .

SHOW SCHEMAS FROM DATABASE dev;

 database_name | schema_name | schema_owner | schema_type | schema_acl
 | source_database | schema_option
---------------+----------------------+--------------+-------------
+-----------------------------+-----------------+---------------
 dev | pg_automv | 1 | local |
 | |
 dev | pg_catalog | 1 | local | jpuser=UC/
jpuser~=U/jpuser | |
 dev | public | 1 | local | jpuser=UC/
jpuser~=UC/jpuser | |
 dev | information_schema | 1 | local | jpuser=UC/
jpuser~=U/jpuser | |
 dev | schemad79cd6d93bf043 | 1 | local |
 | |

Following example shows the schemas in the AWS Glue Data Catalog database named
awsdatacatalog. The maximum number of output rows is 5.

SHOW SCHEMAS 1608

Amazon Redshift Database Developer Guide

SHOW SCHEMAS FROM DATABASE awsdatacatalog LIMIT 5;

 database_name | schema_name | schema_owner | schema_type | schema_acl |
 source_database | schema_option
----------------+----------------------+--------------+-------------+------------
+-----------------+---------------
 awsdatacatalog | 000_too_many_glue_db | | EXTERNAL | |
 |
 awsdatacatalog | 123_default | | EXTERNAL | |
 |
 awsdatacatalog | adhoc | | EXTERNAL | |
 |
 awsdatacatalog | all_shapes_10mb | | EXTERNAL | |
 |
 awsdatacatalog | all_shapes_1g | | EXTERNAL | |
 |

SHOW TABLE

Shows the definition of a table, including table attributes, table constraints, column attributes, and
column constraints. You can use the output of the SHOW TABLE statement to recreate the table.

For more information on table creation, see CREATE TABLE.

Syntax

SHOW TABLE [schema_name.]table_name

Parameters

schema_name

(Optional) The name of the related schema.

table_name

The name of the table to show.

Examples

Following is an example of the SHOW TABLE output for the table sales.

SHOW TABLE 1609

Amazon Redshift Database Developer Guide

show table sales;

CREATE TABLE public.sales (
salesid integer NOT NULL ENCODE az64,
listid integer NOT NULL ENCODE az64 distkey,
sellerid integer NOT NULL ENCODE az64,
buyerid integer NOT NULL ENCODE az64,
eventid integer NOT NULL ENCODE az64,
dateid smallint NOT NULL,
qtysold smallint NOT NULL ENCODE az64,
pricepaid numeric(8,2) ENCODE az64,
commission numeric(8,2) ENCODE az64,
saletime timestamp without time zone ENCODE az64
)
DISTSTYLE KEY SORTKEY (dateid);

Following is an example of the SHOW TABLE output for the table category in the schema
public.

show table public.category;

CREATE TABLE public.category (
catid smallint NOT NULL distkey,
catgroup character varying(10) ENCODE lzo,
catname character varying(10) ENCODE lzo,
catdesc character varying(50) ENCODE lzo
) DISTSTYLE KEY SORTKEY (catid);

The following example creates table foo with a primary key.

create table foo(a int PRIMARY KEY, b int);

The SHOW TABLE results display the create statement with all properties of the foo table.

show table foo;

CREATE TABLE public.foo (a integer NOT NULL ENCODE az64, b integer ENCODE az64,
 PRIMARY KEY (a)) DISTSTYLE AUTO;

SHOW TABLE 1610

Amazon Redshift Database Developer Guide

SHOW TABLES

Shows a list of tables in a schema, along with some table attributes.

Each output row consists of database name, schema name, table name, table type, table ACL, and
remarks. For more information about these attributes, see SVV_ALL_TABLES.

If more than 10,000 tables would result from the SHOW TABLES command, then an error is
returned.

Syntax

SHOW TABLES FROM SCHEMA database_name.schema_name [LIKE 'filter_pattern']
 [LIMIT row_limit]

Parameters

database_name

The name of the database that contains the tables to list.

To show tables in an AWS Glue Data Catalog, specify (awsdatacatalog) as the database name,
and ensure the system configuration data_catalog_auto_mount is set to true. For more
information, see ALTER SYSTEM.

schema_name

The name of the schema that contains the tables to list.

To show AWS Glue Data Catalog tables, provide the AWS Glue database name as the schema
name.

filter_pattern

A valid UTF-8 character expression with a pattern to match table names. The LIKE option
performs a case-sensitive match that supports the following pattern-matching metacharacters:

Metacharacter Description

% Matches any sequence of zero or more characters.

_ Matches any single character.

SHOW TABLES 1611

Amazon Redshift Database Developer Guide

If filter_pattern does not contain metacharacters, then the pattern only represents the string
itself; in that case LIKE acts the same as the equals operator.

row_limit

The maximum number of rows to return. The row_limit can be 0–10,000.

Examples

Following example shows the tables in the Amazon Redshift database named dev that are in
schema public.

SHOW TABLES FROM SCHEMA dev.public;

 database_name | schema_name | table_name | table_type | table_acl | remarks
---------------+-------------+------------+------------+-----------+---------
 dev | public | tb | TABLE | |
 dev | public | tb2 | TABLE | |
 dev | public | tb3 | TABLE | |

Following example shows the tables in the AWS Glue Data Catalog database named
awsdatacatalog that are in schema batman.

SHOW TABLES FROM SCHEMA awsdatacatalog.batman;

 database_name | schema_name | table_name | table_type | table_acl | remarks
----------------+-------------+------------------+------------+-----------+---------
 awsdatacatalog | batman | nation | EXTERNAL | |
 awsdatacatalog | batman | part | EXTERNAL | |
 awsdatacatalog | batman | partsupp | EXTERNAL | |
 awsdatacatalog | batman | region | EXTERNAL | |
 awsdatacatalog | batman | supplier | EXTERNAL | |
 awsdatacatalog | batman | automount_nation | EXTERNAL | |

SHOW VIEW

Shows the definition of a view, including for materialized views and late-binding views. You can use
the output of the SHOW VIEW statement to recreate the view.

SHOW VIEW 1612

Amazon Redshift Database Developer Guide

Syntax

SHOW VIEW [schema_name.]view_name

Parameters

schema_name

(Optional) The name of the related schema.

view_name

The name of the view to show.

Examples

Following is the view definition for the view LA_Venues_v.

create view LA_Venues_v as select * from venue where venuecity='Los Angeles';

Following is an example of the SHOW VIEW command and output for the view defined preceding.

show view LA_Venues_v;

SELECT venue.venueid,
venue.venuename,
venue.venuecity,
venue.venuestate,
venue.venueseats
FROM venue WHERE ((venue.venuecity)::text = 'Los Angeles'::text);

Following is the view definition for the view public.Sports_v in the schema public.

create view public.Sports_v as select * from category where catgroup='Sports';

Following is an example of the SHOW VIEW command and output for the view defined preceding.

show view public.Sports_v;

SHOW VIEW 1613

Amazon Redshift Database Developer Guide

SELECT category.catid,
category.catgroup,
category.catname,
category.catdesc
FROM category WHERE ((category.catgroup)::text = 'Sports'::text);

START TRANSACTION

Synonym of the BEGIN function.

See BEGIN.

TRUNCATE

Deletes all of the rows from a table without doing a table scan: this operation is a faster alternative
to an unqualified DELETE operation. To run a TRUNCATE command, you must be have the
TRUNCATE TABLE permission, be the owner of the table, or a superuser. To grant permissions to
truncate a table, use the GRANT command.

TRUNCATE is much more efficient than DELETE and doesn't require a VACUUM and ANALYZE.
However, be aware that TRUNCATE commits the transaction in which it is run.

Syntax

TRUNCATE [TABLE] table_name

The command also works on a materialized view.

TRUNCATE materialized_view_name

Parameters

TABLE

Optional keyword.

table_name

A temporary or persistent table. Only the owner of the table or a superuser may truncate it.

START TRANSACTION 1614

Amazon Redshift Database Developer Guide

You can truncate any table, including tables that are referenced in foreign-key constraints.

You don't need to vacuum a table after truncating it.

materialized_view_name

A materialized view.

You can truncate a materialized view that is used for Streaming ingestion.

Usage notes

The TRUNCATE command commits the transaction in which it is run; therefore, you can't roll back
a TRUNCATE operation, and a TRUNCATE command may commit other operations when it commits
itself.

Examples

Use the TRUNCATE command to delete all of the rows from the CATEGORY table:

truncate category;

Attempt to roll back a TRUNCATE operation:

begin;

truncate date;

rollback;

select count(*) from date;
count

0
(1 row)

The DATE table remains empty after the ROLLBACK command because the TRUNCATE command
committed automatically.

The following example uses the TRUNCATE command to delete all of the rows from a materialized
view.

TRUNCATE 1615

Amazon Redshift Database Developer Guide

truncate my_materialized_view;

It deletes all records in the materialized view and leaves the materialized view and its schema
intact. In the query, the materialized view name is a sample.

UNLOAD

Unloads the result of a query to one or more text, JSON, or Apache Parquet files on Amazon S3,
using Amazon S3 server-side encryption (SSE-S3). You can also specify server-side encryption
with an AWS Key Management Service key (SSE-KMS) or client-side encryption with a customer
managed key.

By default, the format of the unloaded file is pipe-delimited (|) text.

You can manage the size of files on Amazon S3, and by extension the number of files, by setting
the MAXFILESIZE parameter. Ensure that the S3 IP ranges are added to your allow list. To learn
more about the required S3 IP ranges, see Network isolation.

You can unload the result of an Amazon Redshift query to your Amazon S3 data lake in Apache
Parquet, an efficient open columnar storage format for analytics. Parquet format is up to 2x faster
to unload and consumes up to 6x less storage in Amazon S3, compared with text formats. This
enables you to save data transformation and enrichment you have done in Amazon S3 into your
Amazon S3 data lake in an open format. You can then analyze your data with Redshift Spectrum
and other AWS services such as Amazon Athena, Amazon EMR, and Amazon SageMaker.

For more information and example scenarios about using the UNLOAD command, see Unloading
data.

Required privileges and permissions

For the UNLOAD command to succeed, at least SELECT privilege on the data in the database is
needed, along with permission to write to the Amazon S3 location. The permissions needed are
similar to the COPY command. For information about COPY command permissions, see Permissions
to access other AWS Resources.

Syntax

UNLOAD ('select-statement')

UNLOAD 1616

https://docs.aws.amazon.com/redshift/latest/mgmt/security-network-isolation.html#network-isolation

Amazon Redshift Database Developer Guide

TO 's3://object-path/name-prefix'
authorization
[option, ...]

where authorization is
IAM_ROLE { default | 'arn:aws:iam::<AWS account-id-1>:role/<role-
name>[,arn:aws:iam::<AWS account-id-2>:role/<role-name>][,...]' }

where option is
| [FORMAT [AS]] CSV | PARQUET | JSON
| PARTITION BY (column_name [, ...]) [INCLUDE]
| MANIFEST [VERBOSE]
| HEADER
| DELIMITER [AS] 'delimiter-char'
| FIXEDWIDTH [AS] 'fixedwidth-spec'
| ENCRYPTED [AUTO]
| BZIP2
| GZIP
| ZSTD
| ADDQUOTES
| NULL [AS] 'null-string'
| ESCAPE
| ALLOWOVERWRITE
| CLEANPATH
| PARALLEL [{ ON | TRUE } | { OFF | FALSE }]
| MAXFILESIZE [AS] max-size [MB | GB]
| ROWGROUPSIZE [AS] size [MB | GB]
| REGION [AS] 'aws-region' }
| EXTENSION 'extension-name'

Parameters

('select-statement')

A SELECT query. The results of the query are unloaded. In most cases, it is worthwhile to unload
data in sorted order by specifying an ORDER BY clause in the query. This approach saves the
time required to sort the data when it is reloaded.

The query must be enclosed in single quotation marks as shown following:

('select * from venue order by venueid')

UNLOAD 1617

Amazon Redshift Database Developer Guide

Note

If your query contains quotation marks (for example to enclose literal values), put the
literal between two sets of single quotation marks—you must also enclose the query
between single quotation marks:

('select * from venue where venuestate=''NV''')

TO 's3://object-path/name-prefix'

The full path, including bucket name, to the location on Amazon S3 where Amazon Redshift
writes the output file objects, including the manifest file if MANIFEST is specified. The
object names are prefixed with name-prefix. If you use PARTITION BY, a forward slash (/) is
automatically added to the end of the name-prefix value if needed. For added security, UNLOAD
connects to Amazon S3 using an HTTPS connection. By default, UNLOAD writes one or more
files per slice. UNLOAD appends a slice number and part number to the specified name prefix as
follows:

<object-path>/<name-prefix><slice-number>_part_<part-number>.

If MANIFEST is specified, the manifest file is written as follows:

<object_path>/<name_prefix>manifest.

If PARALLEL is specified OFF, the data files are written as follows:

<object_path>/<name_prefix><part-number>.

UNLOAD automatically creates encrypted files using Amazon S3 server-side encryption (SSE),
including the manifest file if MANIFEST is used. The COPY command automatically reads
server-side encrypted files during the load operation. You can transparently download server-
side encrypted files from your bucket using either the Amazon S3 console or API. For more
information, see Protecting Data Using Server-Side Encryption.

To use Amazon S3 client-side encryption, specify the ENCRYPTED option.

UNLOAD 1618

https://docs.aws.amazon.com/AmazonS3/latest/dev/serv-side-encryption.html

Amazon Redshift Database Developer Guide

Important

REGION is required when the Amazon S3 bucket isn't in the same AWS Region as the
Amazon Redshift database.

authorization

The UNLOAD command needs authorization to write data to Amazon S3. The UNLOAD
command uses the same parameters the COPY command uses for authorization. For more
information, see Authorization parameters in the COPY command syntax reference.

IAM_ROLE { default | 'arn:aws:iam::<AWS account-id-1>:role/<role-name>'

Use the default keyword to have Amazon Redshift use the IAM role that is set as default and
associated with the cluster when the UNLOAD command runs.

Use the Amazon Resource Name (ARN) for an IAM role that your cluster uses for
authentication and authorization. If you specify IAM_ROLE, you can't use ACCESS_KEY_ID and
SECRET_ACCESS_KEY, SESSION_TOKEN, or CREDENTIALS. The IAM_ROLE can be chained. For
more information, see Chaining IAM roles in the Amazon Redshift Management Guide.

[FORMAT [AS]] CSV | PARQUET | JSON

Keywords to specify the unload format to override the default format.

When CSV, unloads to a text file in CSV format using a comma (,) character as the default
delimiter. If a field contains delimiters, double quotation marks, newline characters, or carriage
returns, then the field in the unloaded file is enclosed in double quotation marks. A double
quotation mark within a data field is escaped by an additional double quotation mark. When
zero rows are unloaded, Amazon Redshift might write empty Amazon S3 objects.

When PARQUET, unloads to a file in Apache Parquet version 1.0 format. By default, each row
group is compressed using SNAPPY compression. For more information about Apache Parquet
format, see Parquet.

When JSON, unloads to a JSON file with each line containing a JSON object, representing a
full record in the query result. Amazon Redshift supports writing nested JSON when the query
result contains SUPER columns. To create a valid JSON object, the name of each column in the
query must be unique. In the JSON file, boolean values are unloaded as t or f, and NULL values

UNLOAD 1619

https://docs.aws.amazon.com/redshift/latest/mgmt/authorizing-redshift-service.html#authorizing-redshift-service-chaining-roles
https://parquet.apache.org/

Amazon Redshift Database Developer Guide

are unloaded as null. When zero rows are unloaded, Amazon Redshift does not write Amazon
S3 objects.

The FORMAT and AS keywords are optional. You can't use CSV with FIXEDWIDTH or
ADDQUOTES. You can't use PARQUET with DELIMITER, FIXEDWIDTH, ADDQUOTES, ESCAPE,
NULL AS, HEADER, GZIP, BZIP2, or ZSTD. PARQUET with ENCRYPTED is only supported with
server-side encryption with an AWS Key Management Service key (SSE-KMS). You can't use
JSON with DELIMITER, HEADER, FIXEDWIDTH, ADDQUOTES, ESCAPE, or NULL AS.

PARTITION BY (column_name [, ...]) [INCLUDE]

Specifies the partition keys for the unload operation. UNLOAD automatically partitions output
files into partition folders based on the partition key values, following the Apache Hive
convention. For example, a Parquet file that belongs to the partition year 2019 and the month
September has the following prefix: s3://my_bucket_name/my_prefix/year=2019/
month=September/000.parquet.

The value for column_name must be a column in the query results being unloaded.

If you specify PARTITION BY with the INCLUDE option, partition columns aren't removed from
the unloaded files.

Amazon Redshift doesn't support string literals in PARTITION BY clauses.

MANIFEST [VERBOSE]

Creates a manifest file that explicitly lists details for the data files that are created by the
UNLOAD process. The manifest is a text file in JSON format that lists the URL of each file that
was written to Amazon S3.

If MANIFEST is specified with the VERBOSE option, the manifest includes the following details:

• The column names and data types, and for CHAR, VARCHAR, or NUMERIC data types,
dimensions for each column. For CHAR and VARCHAR data types, the dimension is the length.
For a DECIMAL or NUMERIC data type, the dimensions are precision and scale.

• The row count unloaded to each file. If the HEADER option is specified, the row count
includes the header line.

• The total file size of all files unloaded and the total row count unloaded to all files. If the
HEADER option is specified, the row count includes the header lines.

• The author. Author is always "Amazon Redshift".

UNLOAD 1620

Amazon Redshift Database Developer Guide

You can specify VERBOSE only following MANIFEST.

The manifest file is written to the same Amazon S3 path prefix as the unload files in the
format <object_path_prefix>manifest. For example, if UNLOAD specifies the Amazon
S3 path prefix 's3://mybucket/venue_', the manifest file location is 's3://mybucket/
venue_manifest'.

HEADER

Adds a header line containing column names at the top of each output file. Text transformation
options, such as CSV, DELIMITER, ADDQUOTES, and ESCAPE, also apply to the header line. You
can't use HEADER with FIXEDWIDTH.

DELIMITER AS 'delimiter_character'

Specifies a single ASCII character that is used to separate fields in the output file, such as a pipe
character (|), a comma (,), or a tab (\t). The default delimiter for text files is a pipe character.
The default delimiter for CSV files is a comma character. The AS keyword is optional. You can't
use DELIMITER with FIXEDWIDTH. If the data contains the delimiter character, you need to
specify the ESCAPE option to escape the delimiter, or use ADDQUOTES to enclose the data in
double quotation marks. Alternatively, specify a delimiter that isn't contained in the data.

FIXEDWIDTH 'fixedwidth_spec'

Unloads the data to a file where each column width is a fixed length, rather than separated by
a delimiter. The fixedwidth_spec is a string that specifies the number of columns and the width
of the columns. The AS keyword is optional. Because FIXEDWIDTH doesn't truncate data, the
specification for each column in the UNLOAD statement needs to be at least as long as the
length of the longest entry for that column. The format for fixedwidth_spec is shown below:

'colID1:colWidth1,colID2:colWidth2, ...'

You can't use FIXEDWIDTH with DELIMITER or HEADER.

ENCRYPTED [AUTO]

Specifies that the output files on Amazon S3 are encrypted using Amazon S3 server-side
encryption or client-side encryption. If MANIFEST is specified, the manifest file is also
encrypted. For more information, see Unloading encrypted data files. If you don't specify the
ENCRYPTED parameter, UNLOAD automatically creates encrypted files using Amazon S3 server-
side encryption with AWS-managed encryption keys (SSE-S3).

UNLOAD 1621

Amazon Redshift Database Developer Guide

For ENCRYPTED, you might want to unload to Amazon S3 using server-side encryption with
an AWS KMS key (SSE-KMS). If so, use the KMS_KEY_ID parameter to provide the key ID. You
can't use the CREDENTIALS parameter with the KMS_KEY_ID parameter. If you run an UNLOAD
command for data using KMS_KEY_ID, you can then do a COPY operation for the same data
without specifying a key.

To unload to Amazon S3 using client-side encryption with a customer-supplied symmetric
key, provide the key in one of two ways. To provide the key, use the MASTER_SYMMETRIC_KEY
parameter or the master_symmetric_key portion of a CREDENTIALS credential string. If you
unload data using a root symmetric key, make sure that you supply the same key when you
perform a COPY operation for the encrypted data.

UNLOAD doesn't support Amazon S3 server-side encryption with a customer-supplied key (SSE-
C).

If ENCRYPTED AUTO is used, the UNLOAD command fetches the default AWS KMS encryption
key on the target Amazon S3 bucket property and encrypts the files written to Amazon S3
with the AWS KMS key. If the bucket doesn't have the default AWS KMS encryption key,
UNLOAD automatically creates encrypted files using Amazon Redshift server-side encryption
with AWS-managed encryption keys (SSE-S3). You can't use this option with KMS_KEY_ID,
MASTER_SYMMETRIC_KEY, or CREDENTIALS that contains master_symmetric_key.

KMS_KEY_ID 'key-id'

Specifies the key ID for an AWS Key Management Service (AWS KMS) key to be used to encrypt
data files on Amazon S3. For more information, see What is AWS Key Management Service?
If you specify KMS_KEY_ID, you must specify the ENCRYPTED parameter also. If you specify
KMS_KEY_ID, you can't authenticate using the CREDENTIALS parameter. Instead, use either
IAM_ROLE or ACCESS_KEY_ID and SECRET_ACCESS_KEY.

MASTER_SYMMETRIC_KEY 'root_key'

Specifies the root symmetric key to be used to encrypt data files on Amazon S3. If you specify
MASTER_SYMMETRIC_KEY, you must specify the ENCRYPTED parameter also. You can't use
MASTER_SYMMETRIC_KEY with the CREDENTIALS parameter. For more information, see
Loading encrypted data files from Amazon S3.

BZIP2

Unloads data to one or more bzip2-compressed files per slice. Each resulting file is appended
with a .bz2 extension.

UNLOAD 1622

https://docs.aws.amazon.com/kms/latest/developerguide/overview.html

Amazon Redshift Database Developer Guide

GZIP

Unloads data to one or more gzip-compressed files per slice. Each resulting file is appended
with a .gz extension.

ZSTD

Unloads data to one or more Zstandard-compressed files per slice. Each resulting file is
appended with a .zst extension.

ADDQUOTES

Places quotation marks around each unloaded data field, so that Amazon Redshift can unload
data values that contain the delimiter itself. For example, if the delimiter is a comma, you could
unload and reload the following data successfully:

 "1","Hello, World"

Without the added quotation marks, the string Hello, World would be parsed as two
separate fields.

Some output formats do not support ADDQUOTES.

If you use ADDQUOTES, you must specify REMOVEQUOTES in the COPY if you reload the data.

NULL AS 'null-string'

Specifies a string that represents a null value in unload files. If this option is used, all output
files contain the specified string in place of any null values found in the selected data. If this
option isn't specified, null values are unloaded as:

• Zero-length strings for delimited output

• Whitespace strings for fixed-width output

If a null string is specified for a fixed-width unload and the width of an output column is less
than the width of the null string, the following behavior occurs:

• An empty field is output for non-character columns

• An error is reported for character columns

Unlike other data types where a user-defined string represents a null value, Amazon Redshift
exports the SUPER data columns using the JSON format and represents it as null as determined

UNLOAD 1623

Amazon Redshift Database Developer Guide

by the JSON format. As a result, SUPER data columns ignore the NULL [AS] option used in
UNLOAD commands.

ESCAPE

For CHAR and VARCHAR columns in delimited unload files, an escape character (\) is placed
before every occurrence of the following characters:

• Linefeed: \n

• Carriage return: \r

• The delimiter character specified for the unloaded data.

• The escape character: \

• A quotation mark character: " or ' (if both ESCAPE and ADDQUOTES are specified in the
UNLOAD command).

Important

If you loaded your data using a COPY with the ESCAPE option, you must also specify
the ESCAPE option with your UNLOAD command to generate the reciprocal output file.
Similarly, if you UNLOAD using the ESCAPE option, you need to use ESCAPE when you
COPY the same data.

ALLOWOVERWRITE

By default, UNLOAD fails if it finds files that it would possibly overwrite. If ALLOWOVERWRITE
is specified, UNLOAD overwrites existing files, including the manifest file.

CLEANPATH

The CLEANPATH option removes existing files located in the Amazon S3 path specified in the
TO clause before unloading files to the specified location.

If you include the PARTITION BY clause, existing files are removed only from the partition
folders to receive new files generated by the UNLOAD operation.

You must have the s3:DeleteObject permission on the Amazon S3 bucket. For information,
see Policies and Permissions in Amazon S3 in the Amazon Simple Storage Service User Guide.
Files that you remove by using the CLEANPATH option are permanently deleted and can't be
recovered.

UNLOAD 1624

https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-policy-language-overview.html

Amazon Redshift Database Developer Guide

You can't specify the CLEANPATH option if you specify the ALLOWOVERWRITE option.

PARALLEL

By default, UNLOAD writes data in parallel to multiple files, according to the number of slices
in the cluster. The default option is ON or TRUE. If PARALLEL is OFF or FALSE, UNLOAD writes
to one or more data files serially, sorted absolutely according to the ORDER BY clause, if one is
used. The maximum size for a data file is 6.2 GB. So, for example, if you unload 13.4 GB of data,
UNLOAD creates the following three files.

s3://mybucket/key000 6.2 GB
s3://mybucket/key001 6.2 GB
s3://mybucket/key002 1.0 GB

Note

The UNLOAD command is designed to use parallel processing. We recommend leaving
PARALLEL enabled for most cases, especially if the files are used to load tables using a
COPY command.

MAXFILESIZE [AS] max-size [MB | GB]

Specifies the maximum size of files that UNLOAD creates in Amazon S3. Specify a decimal value
between 5 MB and 6.2 GB. The AS keyword is optional. The default unit is MB. If MAXFILESIZE
isn't specified, the default maximum file size is 6.2 GB. The size of the manifest file, if one is
used, isn't affected by MAXFILESIZE.

ROWGROUPSIZE [AS] size [MB | GB]

Specifies the size of row groups. Choosing a larger size can reduce the number of row groups,
reducing the amount of network communication. Specify an integer value between 32 MB and
128 MB. The AS keyword is optional. The default unit is MB.

If ROWGROUPSIZE isn't specified, the default size is 32 MB. To use this parameter, the storage
format must be Parquet and the node type must be ra3.4xlarge, ra3.16xlarge, or dc2.8xlarge.

REGION [AS] 'aws-region'

Specifies the AWS Region where the target Amazon S3 bucket is located. REGION is required for
UNLOAD to an Amazon S3 bucket that isn't in the same AWS Region as the Amazon Redshift
database.

UNLOAD 1625

Amazon Redshift Database Developer Guide

The value for aws_region must match an AWS Region listed in the Amazon Redshift regions and
endpoints table in the AWS General Reference.

By default, UNLOAD assumes that the target Amazon S3 bucket is located in the same AWS
Region as the Amazon Redshift database.

EXTENSION 'extension-name'

Specifies the file extension to append to the names of the unloaded files. Amazon Redshift
doesn't run any validation, so you must verify that the specified file extension is correct. If
you're using a compression method such as GZIP, you still have to specify .gz in the extension
parameter. If you don't provide any extension, Amazon Redshift doesn't add anything to
the filename. If you specify a compression method without providing an extension, Amazon
Redshift only adds the compression method's extension to the filename.

Usage notes

Using ESCAPE for all delimited text UNLOAD operations

When you UNLOAD using a delimiter, your data can include that delimiter or any of the characters
listed in the ESCAPE option description. In this case, you must use the ESCAPE option with the
UNLOAD statement. If you don't use the ESCAPE option with the UNLOAD, subsequent COPY
operations using the unloaded data might fail.

Important

We strongly recommend that you always use ESCAPE with both UNLOAD and COPY
statements. The exception is if you are certain that your data doesn't contain any delimiters
or other characters that might need to be escaped.

Loss of floating-point precision

You might encounter loss of precision for floating-point data that is successively unloaded and
reloaded.

Limit clause

The SELECT query can't use a LIMIT clause in the outer SELECT. For example, the following
UNLOAD statement fails.

UNLOAD 1626

https://docs.aws.amazon.com/general/latest/gr/rande.html#redshift_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#redshift_region

Amazon Redshift Database Developer Guide

unload ('select * from venue limit 10')
to 's3://mybucket/venue_pipe_' iam_role 'arn:aws:iam::0123456789012:role/
MyRedshiftRole';

Instead, use a nested LIMIT clause, as in the following example.

unload ('select * from venue where venueid in
(select venueid from venue order by venueid desc limit 10)')
to 's3://mybucket/venue_pipe_' iam_role 'arn:aws:iam::0123456789012:role/
MyRedshiftRole';

You can also populate a table using SELECT…INTO or CREATE TABLE AS using a LIMIT clause, then
unload from that table.

Unloading a column of the GEOMETRY data type

You can only unload GEOMETRY columns to text or CSV format. You can't unload GEOMETRY
data with the FIXEDWIDTH option. The data is unloaded in the hexadecimal form of the extended
well-known binary (EWKB) format. If the size of the EWKB data is more than 4 MB, then a warning
occurs because the data can't later be loaded into a table.

Unloading the HLLSKETCH data type

You can only unload HLLSKETCH columns to text or CSV format. You can't unload HLLSKETCH data
with the FIXEDWIDTH option. The data is unloaded in the Base64 format for dense HyperLogLog
sketches or in the JSON format for sparse HyperLogLog sketches. For more information, see
HyperLogLog functions.

The following example exports a table containing HLLSKETCH columns into a file.

CREATE TABLE a_table(an_int INT, b_int INT);
INSERT INTO a_table VALUES (1,1), (2,1), (3,1), (4,1), (1,2), (2,2), (3,2), (4,2),
 (5,2), (6,2);

CREATE TABLE hll_table (sketch HLLSKETCH);
INSERT INTO hll_table select hll_create_sketch(an_int) from a_table group by b_int;

UNLOAD ('select * from hll_table') TO 's3://mybucket/unload/'
IAM_ROLE 'arn:aws:iam::0123456789012:role/MyRedshiftRole' NULL AS 'null' ALLOWOVERWRITE
 CSV;

UNLOAD 1627

Amazon Redshift Database Developer Guide

Unloading a column of the VARBYTE data type

You can only unload VARBYTE columns to text or CSV format. The data is unloaded in the
hexadecimal form. You can't unload VARBYTE data with the FIXEDWIDTH option. The ADDQUOTES
option of UNLOAD to a CSV is not supported. A VARBYTE column can't be a PARTITIONED BY
column.

FORMAT AS PARQUET clause

Be aware of these considerations when using FORMAT AS PARQUET:

• Unload to Parquet doesn't use file level compression. Each row group is compressed with
SNAPPY.

• If MAXFILESIZE isn't specified, the default maximum file size is 6.2 GB. You can use MAXFILESIZE
to specify a file size of 5 MB–6.2 GB. The actual file size is approximated when the file is being
written, so it might not be exactly equal to the number you specify.

To maximize scan performance, Amazon Redshift tries to create Parquet files that contain
equally sized 32-MB row groups. The MAXFILESIZE value that you specify is automatically
rounded down to the nearest multiple of 32 MB. For example, if you specify MAXFILESIZE 200
MB, then each Parquet file unloaded is approximately 192 MB (32 MB row group x 6 = 192 MB).

• If a column uses TIMESTAMPTZ data format, only the timestamp values are unloaded. The time
zone information isn't unloaded.

• Don't specify file name prefixes that begin with underscore (_) or period (.) characters. Redshift
Spectrum treats files that begin with these characters as hidden files and ignores them.

PARTITION BY clause

Be aware of these considerations when using PARTITION BY:

• Partition columns aren't included in the output file.

• Make sure to include partition columns in the SELECT query used in the UNLOAD statement.
You can specify any number of partition columns in the UNLOAD command. However, there is a
limitation that there should be at least one nonpartition column to be part of the file.

• If the partition key value is null, Amazon Redshift automatically unloads that data into a default
partition called partition_column=__HIVE_DEFAULT_PARTITION__.

• The UNLOAD command doesn't make any calls to an external catalog. To register your new
partitions to be part of your existing external table, use a separate ALTER TABLE ... ADD

UNLOAD 1628

Amazon Redshift Database Developer Guide

PARTITION ... command. Or you can run a CREATE EXTERNAL TABLE command to register the
unloaded data as a new external table. You can also use an AWS Glue crawler to populate your
Data Catalog. For more information, see Defining Crawlers in the AWS Glue Developer Guide.

• If you use the MANIFEST option, Amazon Redshift generates only one manifest file in the root
Amazon S3 folder.

• The column data types that you can use as the partition key are SMALLINT, INTEGER, BIGINT,
DECIMAL, REAL, BOOLEAN, CHAR, VARCHAR, DATE, and TIMESTAMP.

Using the ASSUMEROLE privilege to grant access to an IAM role for UNLOAD operations

To provide access for specific users and groups to an IAM role for UNLOAD operations, a superuser
can grant the ASSUMEROLE privilege on an IAM role to users and groups. For information, see
GRANT.

UNLOAD doesn't support Amazon S3 access point aliases

You can't use Amazon S3 access point aliases with the UNLOAD command.

Examples

For examples that show how to use the UNLOAD command, see UNLOAD examples.

UNLOAD examples

These examples demonstrate various parameters of the UNLOAD command. The TICKIT sample
data is used in many of the examples. For more information, see Sample database.

Note

These examples contain line breaks for readability. Do not include line breaks or spaces in
your credentials-args string.

Unload VENUE to a pipe-delimited file (default delimiter)

The following example unloads the VENUE table and writes the data to s3://mybucket/
unload/:

unload ('select * from venue')

UNLOAD 1629

https://docs.aws.amazon.com/glue/latest/dg/add-crawler.html

Amazon Redshift Database Developer Guide

to 's3://mybucket/unload/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

By default, UNLOAD writes one or more files per slice. Assuming a two-node cluster with two slices
per node, the previous example creates these files in mybucket:

unload/0000_part_00
unload/0001_part_00
unload/0002_part_00
unload/0003_part_00

To better differentiate the output files, you can include a prefix in the location. The following
example unloads the VENUE table and writes the data to s3://mybucket/unload/
venue_pipe_:

unload ('select * from venue')
to 's3://mybucket/unload/venue_pipe_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

The result is these four files in the unload folder, again assuming four slices.

venue_pipe_0000_part_00
venue_pipe_0001_part_00
venue_pipe_0002_part_00
venue_pipe_0003_part_00

Unload LINEITEM table to partitioned Parquet files

The following example unloads the LINEITEM table in Parquet format, partitioned by the
l_shipdate column.

unload ('select * from lineitem')
to 's3://mybucket/lineitem/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
PARQUET
PARTITION BY (l_shipdate);

Assuming four slices, the resulting Parquet files are dynamically partitioned into various folders.

UNLOAD 1630

Amazon Redshift Database Developer Guide

s3://mybucket/lineitem/l_shipdate=1992-01-02/0000_part_00.parquet
 0001_part_00.parquet
 0002_part_00.parquet
 0003_part_00.parquet
s3://mybucket/lineitem/l_shipdate=1992-01-03/0000_part_00.parquet
 0001_part_00.parquet
 0002_part_00.parquet
 0003_part_00.parquet
s3://mybucket/lineitem/l_shipdate=1992-01-04/0000_part_00.parquet
 0001_part_00.parquet
 0002_part_00.parquet
 0003_part_00.parquet
...

Note

In some cases, the UNLOAD command used the INCLUDE option as shown in the following
SQL statement.

unload ('select * from lineitem')
to 's3://mybucket/lineitem/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
PARQUET
PARTITION BY (l_shipdate) INCLUDE;

In these cases, the l_shipdate column is also in the data in the Parquet files. Otherwise,
the l_shipdate column data isn't in the Parquet files.

Unload the VENUE table to a JSON file

The following example unloads the VENUE table and writes the data in JSON format to s3://
mybucket/unload/.

unload ('select * from venue')
to 's3://mybucket/unload/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
JSON;

Following are sample rows from the VENUE table.

UNLOAD 1631

Amazon Redshift Database Developer Guide

venueid | venuename | venuecity | venuestate | venueseats
--------+----------------------------+-----------------+------------+-----------
 1 | Pinewood Racetrack | Akron | OH | 0
 2 | Columbus "Crew" Stadium | Columbus | OH | 0
 4 | Community, Ballpark, Arena | Kansas City | KS | 0

After unloading to JSON, the format of the file is similar to the following.

{"venueid":1,"venuename":"Pinewood
 Racetrack","venuecity":"Akron","venuestate":"OH","venueseats":0}
{"venueid":2,"venuename":"Columbus \"Crew\" Stadium
 ","venuecity":"Columbus","venuestate":"OH","venueseats":0}
{"venueid":4,"venuename":"Community, Ballpark, Arena","venuecity":"Kansas
 City","venuestate":"KS","venueseats":0}

Unload VENUE to a CSV file

The following example unloads the VENUE table and writes the data in CSV format to s3://
mybucket/unload/.

unload ('select * from venue')
to 's3://mybucket/unload/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
CSV;

Suppose that the VENUE table contains the following rows.

venueid | venuename | venuecity | venuestate | venueseats
--------+----------------------------+-----------------+------------+-----------
 1 | Pinewood Racetrack | Akron | OH | 0
 2 | Columbus "Crew" Stadium | Columbus | OH | 0
 4 | Community, Ballpark, Arena | Kansas City | KS | 0

The unload file looks similar to the following.

1,Pinewood Racetrack,Akron,OH,0
2,"Columbus ""Crew"" Stadium",Columbus,OH,0
4,"Community, Ballpark, Arena",Kansas City,KS,0

UNLOAD 1632

Amazon Redshift Database Developer Guide

Unload VENUE to a CSV file using a delimiter

The following example unloads the VENUE table and writes the data in CSV format using the
pipe character (|) as the delimiter. The unloaded file is written to s3://mybucket/unload/. The
VENUE table in this example contains the pipe character in the value of the first row (Pinewood
Race|track). It does this to show that the value in the result is enclosed in double quotation
marks. A double quotation mark is escaped by a double quotation mark, and the entire field is
enclosed in double quotation marks.

unload ('select * from venue')
to 's3://mybucket/unload/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
CSV DELIMITER AS '|';

Suppose that the VENUE table contains the following rows.

venueid | venuename | venuecity | venuestate | venueseats
--------+----------------------------+-----------------+------------+-------------
 1 | Pinewood Race|track | Akron | OH | 0
 2 | Columbus "Crew" Stadium | Columbus | OH | 0
 4 | Community, Ballpark, Arena | Kansas City | KS | 0

The unload file looks similar to the following.

1|"Pinewood Race|track"|Akron|OH|0
2|"Columbus ""Crew"" Stadium"|Columbus|OH|0
4|Community, Ballpark, Arena|Kansas City|KS|0

Unload VENUE with a manifest file

To create a manifest file, include the MANIFEST option. The following example unloads the VENUE
table and writes a manifest file along with the data files to s3://mybucket/venue_pipe_:

Important

If you unload files with the MANIFEST option, you should use the MANIFEST option with
the COPY command when you load the files. If you use the same prefix to load the files
and don't specify the MANIFEST option, COPY fails because it assumes the manifest file is a
data file.

UNLOAD 1633

Amazon Redshift Database Developer Guide

unload ('select * from venue')
to 's3://mybucket/venue_pipe_' iam_role 'arn:aws:iam::0123456789012:role/
MyRedshiftRole'
manifest;

The result is these five files:

s3://mybucket/venue_pipe_0000_part_00
s3://mybucket/venue_pipe_0001_part_00
s3://mybucket/venue_pipe_0002_part_00
s3://mybucket/venue_pipe_0003_part_00
s3://mybucket/venue_pipe_manifest

The following shows the contents of the manifest file.

{
 "entries": [
 {"url":"s3://mybucket/tickit/venue_0000_part_00"},
 {"url":"s3://mybucket/tickit/venue_0001_part_00"},
 {"url":"s3://mybucket/tickit/venue_0002_part_00"},
 {"url":"s3://mybucket/tickit/venue_0003_part_00"}
]
}

Unload VENUE with MANIFEST VERBOSE

When you specify the MANIFEST VERBOSE option, the manifest file includes the following sections:

• The entries section lists Amazon S3 path, file size, and row count for each file.

• The schema section lists the column names, data types, and dimension for each column.

• The meta section shows the total file size and row count for all files.

The following example unloads the VENUE table using the MANIFEST VERBOSE option.

unload ('select * from venue')
to 's3://mybucket/unload_venue_folder/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
manifest verbose;

UNLOAD 1634

Amazon Redshift Database Developer Guide

The following shows the contents of the manifest file.

{
 "entries": [
 {"url":"s3://mybucket/venue_pipe_0000_part_00", "meta": { "content_length": 32295,
 "record_count": 10 }},
 {"url":"s3://mybucket/venue_pipe_0001_part_00", "meta": { "content_length": 32771,
 "record_count": 20 }},
 {"url":"s3://mybucket/venue_pipe_0002_part_00", "meta": { "content_length": 32302,
 "record_count": 10 }},
 {"url":"s3://mybucket/venue_pipe_0003_part_00", "meta": { "content_length": 31810,
 "record_count": 15 }}
],
 "schema": {
 "elements": [
 {"name": "venueid", "type": { "base": "integer" }},
 {"name": "venuename", "type": { "base": "character varying", 25 }},
 {"name": "venuecity", "type": { "base": "character varying", 25 }},
 {"name": "venuestate", "type": { "base": "character varying", 25 }},
 {"name": "venueseats", "type": { "base": "character varying", 25 }}
]
 },
 "meta": {
 "content_length": 129178,
 "record_count": 55
 },
 "author": {
 "name": "Amazon Redshift",
 "version": "1.0.0"
 }
}

Unload VENUE with a header

The following example unloads VENUE with a header row.

unload ('select * from venue where venueseats > 75000')
to 's3://mybucket/unload/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
header
parallel off;

The following shows the contents of the output file with a header row.

UNLOAD 1635

Amazon Redshift Database Developer Guide

venueid|venuename|venuecity|venuestate|venueseats
6|New York Giants Stadium|East Rutherford|NJ|80242
78|INVESCO Field|Denver|CO|76125
83|FedExField|Landover|MD|91704
79|Arrowhead Stadium|Kansas City|MO|79451

Unload VENUE to smaller files

By default, the maximum file size is 6.2 GB. If the unload data is larger than 6.2 GB, UNLOAD
creates a new file for each 6.2 GB data segment. To create smaller files, include the MAXFILESIZE
parameter. Assuming the size of the data in the previous example was 20 GB, the following
UNLOAD command creates 20 files, each 1 GB in size.

unload ('select * from venue')
to 's3://mybucket/unload/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
maxfilesize 1 gb;

Unload VENUE serially

To unload serially, specify PARALLEL OFF. UNLOAD then writes one file at a time, up to a maximum
of 6.2 GB per file.

The following example unloads the VENUE table and writes the data serially to s3://mybucket/
unload/.

unload ('select * from venue')
to 's3://mybucket/unload/venue_serial_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
parallel off;

The result is one file named venue_serial_000.

If the unload data is larger than 6.2 GB, UNLOAD creates a new file for each 6.2 GB data segment.
The following example unloads the LINEORDER table and writes the data serially to s3://
mybucket/unload/.

unload ('select * from lineorder')
to 's3://mybucket/unload/lineorder_serial_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'

UNLOAD 1636

Amazon Redshift Database Developer Guide

parallel off gzip;

The result is the following series of files.

lineorder_serial_0000.gz
lineorder_serial_0001.gz
lineorder_serial_0002.gz
lineorder_serial_0003.gz

To better differentiate the output files, you can include a prefix in the location. The following
example unloads the VENUE table and writes the data to s3://mybucket/venue_pipe_:

unload ('select * from venue')
to 's3://mybucket/unload/venue_pipe_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

The result is these four files in the unload folder, again assuming four slices.

venue_pipe_0000_part_00
venue_pipe_0001_part_00
venue_pipe_0002_part_00
venue_pipe_0003_part_00

Load VENUE from unload files

To load a table from a set of unload files, simply reverse the process by using a COPY command.
The following example creates a new table, LOADVENUE, and loads the table from the data files
created in the previous example.

create table loadvenue (like venue);

copy loadvenue from 's3://mybucket/venue_pipe_' iam_role
 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

If you used the MANIFEST option to create a manifest file with your unload files, you can load the
data using the same manifest file. You do so with a COPY command with the MANIFEST option.
The following example loads data using a manifest file.

copy loadvenue

UNLOAD 1637

Amazon Redshift Database Developer Guide

from 's3://mybucket/venue_pipe_manifest' iam_role 'arn:aws:iam::0123456789012:role/
MyRedshiftRole'
manifest;

Unload VENUE to encrypted files

The following example unloads the VENUE table to a set of encrypted files using an AWS KMS key.
If you specify a manifest file with the ENCRYPTED option, the manifest file is also encrypted. For
more information, see Unloading encrypted data files.

unload ('select * from venue')
to 's3://mybucket/venue_encrypt_kms'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
kms_key_id '1234abcd-12ab-34cd-56ef-1234567890ab'
manifest
encrypted;

The following example unloads the VENUE table to a set of encrypted files using a root symmetric
key.

unload ('select * from venue')
to 's3://mybucket/venue_encrypt_cmk'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
master_symmetric_key 'EXAMPLEMASTERKEYtkbjk/OpCwtYSx/M4/t7DMCDIK722'
encrypted;

Load VENUE from encrypted files

To load tables from a set of files that were created by using UNLOAD with the ENCRYPT option,
reverse the process by using a COPY command. With that command, use the ENCRYPTED option
and specify the same root symmetric key that was used for the UNLOAD command. The following
example loads the LOADVENUE table from the encrypted data files created in the previous
example.

create table loadvenue (like venue);

copy loadvenue
from 's3://mybucket/venue_encrypt_manifest'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
master_symmetric_key 'EXAMPLEMASTERKEYtkbjk/OpCwtYSx/M4/t7DMCDIK722'
manifest

UNLOAD 1638

Amazon Redshift Database Developer Guide

encrypted;

Unload VENUE data to a tab-delimited file

unload ('select venueid, venuename, venueseats from venue')
to 's3://mybucket/venue_tab_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter as '\t';

The output data files look like this:

1 Toyota Park Bridgeview IL 0
2 Columbus Crew Stadium Columbus OH 0
3 RFK Stadium Washington DC 0
4 CommunityAmerica Ballpark Kansas City KS 0
5 Gillette Stadium Foxborough MA 68756
...

Unload VENUE to a fixed-width data file

unload ('select * from venue')
to 's3://mybucket/venue_fw_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
fixedwidth as 'venueid:3,venuename:39,venuecity:16,venuestate:2,venueseats:6';

The output data files look like the following.

1 Toyota Park Bridgeview IL0
2 Columbus Crew Stadium Columbus OH0
3 RFK Stadium Washington DC0
4 CommunityAmerica BallparkKansas City KS0
5 Gillette Stadium Foxborough MA68756
...

Unload VENUE to a set of tab-delimited GZIP-compressed files

unload ('select * from venue')
to 's3://mybucket/venue_tab_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter as '\t'
gzip;

UNLOAD 1639

Amazon Redshift Database Developer Guide

Unload VENUE to a GZIP-compressed text file

unload ('select * from venue')
to 's3://mybucket/venue_tab_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
extension 'txt.gz'
gzip;

Unload data that contains a delimiter

This example uses the ADDQUOTES option to unload comma-delimited data where some of the
actual data fields contain a comma.

First, create a table that contains quotation marks.

create table location (id int, location char(64));

insert into location values (1,'Phoenix, AZ'),(2,'San Diego, CA'),(3,'Chicago, IL');

Then, unload the data using the ADDQUOTES option.

unload ('select id, location from location')
to 's3://mybucket/location_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
delimiter ',' addquotes;

The unloaded data files look like this:

1,"Phoenix, AZ"
2,"San Diego, CA"
3,"Chicago, IL"
...

Unload the results of a join query

The following example unloads the results of a join query that contains a window function.

unload ('select venuecity, venuestate, caldate, pricepaid,
sum(pricepaid) over(partition by venuecity, venuestate
order by caldate rows between 3 preceding and 3 following) as winsum
from sales join date on sales.dateid=date.dateid
join event on event.eventid=sales.eventid

UNLOAD 1640

Amazon Redshift Database Developer Guide

join venue on event.venueid=venue.venueid
order by 1,2')
to 's3://mybucket/tickit/winsum'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

The output files look like this:

Atlanta|GA|2008-01-04|363.00|1362.00
Atlanta|GA|2008-01-05|233.00|2030.00
Atlanta|GA|2008-01-06|310.00|3135.00
Atlanta|GA|2008-01-08|166.00|8338.00
Atlanta|GA|2008-01-11|268.00|7630.00
...

Unload using NULL AS

UNLOAD outputs null values as empty strings by default. The following examples show how to use
NULL AS to substitute a text string for nulls.

For these examples, we add some null values to the VENUE table.

update venue set venuestate = NULL
where venuecity = 'Cleveland';

Select from VENUE where VENUESTATE is null to verify that the columns contain NULL.

select * from venue where venuestate is null;

 venueid | venuename | venuecity | venuestate | venueseats
---------+--------------------------+-----------+------------+------------
 22 | Quicken Loans Arena | Cleveland | | 0
 101 | Progressive Field | Cleveland | | 43345
 72 | Cleveland Browns Stadium | Cleveland | | 73200

Now, UNLOAD the VENUE table using the NULL AS option to replace null values with the character
string 'fred'.

unload ('select * from venue')
to 's3://mybucket/nulls/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
null as 'fred';

UNLOAD 1641

Amazon Redshift Database Developer Guide

The following sample from the unload file shows that null values were replaced with fred. It turns
out that some values for VENUESEATS were also null and were replaced with fred. Even though
the data type for VENUESEATS is integer, UNLOAD converts the values to text in the unload files,
and then COPY converts them back to integer. If you are unloading to a fixed-width file, the NULL
AS string must not be larger than the field width.

248|Charles Playhouse|Boston|MA|0
251|Paris Hotel|Las Vegas|NV|fred
258|Tropicana Hotel|Las Vegas|NV|fred
300|Kennedy Center Opera House|Washington|DC|0
306|Lyric Opera House|Baltimore|MD|0
308|Metropolitan Opera|New York City|NY|0
 5|Gillette Stadium|Foxborough|MA|5
 22|Quicken Loans Arena|Cleveland|fred|0
101|Progressive Field|Cleveland|fred|43345
...

To load a table from the unload files, use a COPY command with the same NULL AS option.

Note

If you attempt to load nulls into a column defined as NOT NULL, the COPY command fails.

create table loadvenuenulls (like venue);

copy loadvenuenulls from 's3://mybucket/nulls/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
null as 'fred';

To verify that the columns contain null, not just empty strings, select from LOADVENUENULLS and
filter for null.

select * from loadvenuenulls where venuestate is null or venueseats is null;

 venueid | venuename | venuecity | venuestate | venueseats
---------+--------------------------+-----------+------------+------------
 72 | Cleveland Browns Stadium | Cleveland | | 73200
 253 | Mirage Hotel | Las Vegas | NV |
 255 | Venetian Hotel | Las Vegas | NV |

UNLOAD 1642

Amazon Redshift Database Developer Guide

 22 | Quicken Loans Arena | Cleveland | | 0
 101 | Progressive Field | Cleveland | | 43345
 251 | Paris Hotel | Las Vegas | NV |

...

You can UNLOAD a table that contains nulls using the default NULL AS behavior and then COPY
the data back into a table using the default NULL AS behavior; however, any non-numeric fields
in the target table contain empty strings, not nulls. By default UNLOAD converts nulls to empty
strings (white space or zero-length). COPY converts empty strings to NULL for numeric columns,
but inserts empty strings into non-numeric columns. The following example shows how to perform
an UNLOAD followed by a COPY using the default NULL AS behavior.

unload ('select * from venue')
to 's3://mybucket/nulls/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole' allowoverwrite;

truncate loadvenuenulls;
copy loadvenuenulls from 's3://mybucket/nulls/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole';

In this case, when you filter for nulls, only the rows where VENUESEATS contained nulls.
Where VENUESTATE contained nulls in the table (VENUE), VENUESTATE in the target table
(LOADVENUENULLS) contains empty strings.

select * from loadvenuenulls where venuestate is null or venueseats is null;

 venueid | venuename | venuecity | venuestate | venueseats
---------+--------------------------+-----------+------------+------------
 253 | Mirage Hotel | Las Vegas | NV |
 255 | Venetian Hotel | Las Vegas | NV |
 251 | Paris Hotel | Las Vegas | NV |
...

To load empty strings to non-numeric columns as NULL, include the EMPTYASNULL or
BLANKSASNULL options. It's OK to use both.

unload ('select * from venue')
to 's3://mybucket/nulls/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole' allowoverwrite;

UNLOAD 1643

Amazon Redshift Database Developer Guide

truncate loadvenuenulls;
copy loadvenuenulls from 's3://mybucket/nulls/'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole' EMPTYASNULL;

To verify that the columns contain NULL, not just whitespace or empty strings, select from
LOADVENUENULLS and filter for null.

select * from loadvenuenulls where venuestate is null or venueseats is null;

 venueid | venuename | venuecity | venuestate | venueseats
---------+--------------------------+-----------+------------+------------
 72 | Cleveland Browns Stadium | Cleveland | | 73200
 253 | Mirage Hotel | Las Vegas | NV |
 255 | Venetian Hotel | Las Vegas | NV |
 22 | Quicken Loans Arena | Cleveland | | 0
 101 | Progressive Field | Cleveland | | 43345
 251 | Paris Hotel | Las Vegas | NV |
 ...

Unload using ALLOWOVERWRITE parameter

By default, UNLOAD doesn't overwrite existing files in the destination bucket. For example, if you
run the same UNLOAD statement twice without modifying the files in the destination bucket,
the second UNLOAD fails. To overwrite the existing files, including the manifest file, specify the
ALLOWOVERWRITE option.

unload ('select * from venue')
to 's3://mybucket/venue_pipe_'
iam_role 'arn:aws:iam::0123456789012:role/MyRedshiftRole'
manifest allowoverwrite;

Unload EVENT table using PARALLEL and MANIFEST parameters

You can UNLOAD a table in parallel and generate a manifest file. The Amazon S3 data files are all
created at the same level and names are suffixed with the pattern 0000_part_00. The manifest
file is at the same folder level as the data files and suffixed with the text manifest. The following
SQL unloads the EVENT table and creates files with the base name parallel

unload ('select * from mytickit1.event')
to 's3://my-s3-bucket-name/parallel'

UNLOAD 1644

Amazon Redshift Database Developer Guide

iam_role 'arn:aws:iam::123456789012:role/MyRedshiftRole'
parallel on
manifest;

The Amazon S3 files listing is similar to the following.

 Name Last modified Size
 parallel0000_part_00 - August 2, 2023, 14:54:39 (UTC-07:00) 52.1 KB
 parallel0001_part_00 - August 2, 2023, 14:54:39 (UTC-07:00) 53.4 KB
 parallel0002_part_00 - August 2, 2023, 14:54:39 (UTC-07:00) 52.1 KB
 parallel0003_part_00 - August 2, 2023, 14:54:39 (UTC-07:00) 51.1 KB
 parallel0004_part_00 - August 2, 2023, 14:54:39 (UTC-07:00) 54.6 KB
 parallel0005_part_00 - August 2, 2023, 14:54:39 (UTC-07:00) 53.4 KB
 parallel0006_part_00 - August 2, 2023, 14:54:39 (UTC-07:00) 54.1 KB
 parallel0007_part_00 - August 2, 2023, 14:54:39 (UTC-07:00) 55.9 KB
 parallelmanifest - August 2, 2023, 14:54:39 (UTC-07:00) 886.0 B

The parallelmanifest file content is similar to the following.

{
 "entries": [
 {"url":"s3://my-s3-bucket-name/parallel0000_part_00", "meta": { "content_length":
 53316 }},
 {"url":"s3://my-s3-bucket-name/parallel0001_part_00", "meta": { "content_length":
 54704 }},
 {"url":"s3://my-s3-bucket-name/parallel0002_part_00", "meta": { "content_length":
 53326 }},
 {"url":"s3://my-s3-bucket-name/parallel0003_part_00", "meta": { "content_length":
 52356 }},
 {"url":"s3://my-s3-bucket-name/parallel0004_part_00", "meta": { "content_length":
 55933 }},
 {"url":"s3://my-s3-bucket-name/parallel0005_part_00", "meta": { "content_length":
 54648 }},
 {"url":"s3://my-s3-bucket-name/parallel0006_part_00", "meta": { "content_length":
 55436 }},
 {"url":"s3://my-s3-bucket-name/parallel0007_part_00", "meta": { "content_length":
 57272 }}
]
}

UNLOAD 1645

Amazon Redshift Database Developer Guide

Unload EVENT table using PARALLEL OFF and MANIFEST parameters

You can UNLOAD a table serially (PARALLEL OFF) and generate a manifest file. The Amazon S3
data files are all created at the same level and names are suffixed with the pattern 0000. The
manifest file is at the same folder level as the data files and suffixed with the text manifest.

unload ('select * from mytickit1.event')
to 's3://my-s3-bucket-name/serial'
iam_role 'arn:aws:iam::123456789012:role/MyRedshiftRole'
parallel off
manifest;

The Amazon S3 files listing is similar to the following.

 Name Last modified Size
 serial0000 - August 2, 2023, 15:54:39 (UTC-07:00) 426.7 KB
 serialmanifest - August 2, 2023, 15:54:39 (UTC-07:00) 120.0 B

The serialmanifest file content is similar to the following.

{
 "entries": [
 {"url":"s3://my-s3-bucket-name/serial000", "meta": { "content_length": 436991 }}
]
}

Unload EVENT table using PARTITION BY and MANIFEST parameters

You can UNLOAD a table by partition and generate a manifest file. A new folder is created in
Amazon S3 with child partition folders, and the data files in the child folders with a name pattern
similar to 0000_par_00. The manifest file is at the same folder level as the child folders with the
name manifest.

unload ('select * from mytickit1.event')
to 's3://my-s3-bucket-name/partition'
iam_role 'arn:aws:iam::123456789012:role/MyRedshiftRole'
partition by (eventname)
manifest;

UNLOAD 1646

Amazon Redshift Database Developer Guide

The Amazon S3 files listing is similar to the following.

 Name Type Last modified Size

 partition Folder

In the partition folder are child folders with the partition name and the manifest file. Shown
following is the bottom of the list of folders in the partition folder, similar to the following.

 Name Type Last modified Size

 ...
 eventname=Zucchero/ Folder
 eventname=Zumanity/ Folder
 eventname=ZZ Top/ Folder
 manifest - August 2, 2023, 15:54:39 (UTC-07:00) 467.6 KB

In the eventname=Zucchero/ folder are the data files similar to the following.

 Name Last modified Size
 0000_part_00 - August 2, 2023, 15:59:19 (UTC-07:00) 70.0 B
 0001_part_00 - August 2, 2023, 15:59:16 (UTC-07:00) 106.0 B
 0002_part_00 - August 2, 2023, 15:59:15 (UTC-07:00) 70.0 B
 0004_part_00 - August 2, 2023, 15:59:17 (UTC-07:00) 141.0 B
 0006_part_00 - August 2, 2023, 15:59:16 (UTC-07:00) 35.0 B
 0007_part_00 - August 2, 2023, 15:59:19 (UTC-07:00) 108.0 B

The bottom of the manifest file content is similar to the following.

{
 "entries": [
 ...
 {"url":"s3://my-s3-bucket-name/partition/eventname=Zucchero/0007_part_00", "meta":
 { "content_length": 108 }},
 {"url":"s3://my-s3-bucket-name/partition/eventname=Zumanity/0007_part_00", "meta":
 { "content_length": 72 }}
]

UNLOAD 1647

Amazon Redshift Database Developer Guide

}

Unload EVENT table using MAXFILESIZE, ROWGROUPSIZE, and MANIFEST parameters

You can UNLOAD a table in parallel and generate a manifest file. The Amazon S3 data files are all
created at the same level and names are suffixed with the pattern 0000_part_00. The generated
Parquet data files are limited to 256 MB and row group size 128 MB. The manifest file is at the
same folder level as the data files and suffixed with manifest.

unload ('select * from mytickit1.event')
to 's3://my-s3-bucket-name/eventsize'
iam_role 'arn:aws:iam::123456789012:role/MyRedshiftRole'
maxfilesize 256 MB
rowgroupsize 128 MB
parallel on
parquet
manifest;

The Amazon S3 files listing is similar to the following.

 Name Type Last modified Size
 eventsize0000_part_00.parquet parquet August 2, 2023, 17:35:21 (UTC-07:00) 24.5 KB
 eventsize0001_part_00.parquet parquet August 2, 2023, 17:35:21 (UTC-07:00) 24.8 KB
 eventsize0002_part_00.parquet parquet August 2, 2023, 17:35:21 (UTC-07:00) 24.4 KB
 eventsize0003_part_00.parquet parquet August 2, 2023, 17:35:21 (UTC-07:00) 24.0 KB
 eventsize0004_part_00.parquet parquet August 2, 2023, 17:35:21 (UTC-07:00) 25.3 KB
 eventsize0005_part_00.parquet parquet August 2, 2023, 17:35:21 (UTC-07:00) 24.8 KB
 eventsize0006_part_00.parquet parquet August 2, 2023, 17:35:21 (UTC-07:00) 25.0 KB
 eventsize0007_part_00.parquet parquet August 2, 2023, 17:35:21 (UTC-07:00) 25.6 KB
 eventsizemanifest - August 2, 2023, 17:35:21 (UTC-07:00) 958.0 B

The eventsizemanifest file content is similar to the following.

{
 "entries": [
 {"url":"s3://my-s3-bucket-name/eventsize0000_part_00.parquet", "meta":
 { "content_length": 25130 }},
 {"url":"s3://my-s3-bucket-name/eventsize0001_part_00.parquet", "meta":
 { "content_length": 25428 }},

UNLOAD 1648

Amazon Redshift Database Developer Guide

 {"url":"s3://my-s3-bucket-name/eventsize0002_part_00.parquet", "meta":
 { "content_length": 25025 }},
 {"url":"s3://my-s3-bucket-name/eventsize0003_part_00.parquet", "meta":
 { "content_length": 24554 }},
 {"url":"s3://my-s3-bucket-name/eventsize0004_part_00.parquet", "meta":
 { "content_length": 25918 }},
 {"url":"s3://my-s3-bucket-name/eventsize0005_part_00.parquet", "meta":
 { "content_length": 25362 }},
 {"url":"s3://my-s3-bucket-name/eventsize0006_part_00.parquet", "meta":
 { "content_length": 25647 }},
 {"url":"s3://my-s3-bucket-name/eventsize0007_part_00.parquet", "meta":
 { "content_length": 26256 }}
]
}

UPDATE

Topics

• Syntax

• Parameters

• Usage notes

• Examples of UPDATE statements

Updates values in one or more table columns when a condition is satisfied.

Note

The maximum size for a single SQL statement is 16 MB.

Syntax

[WITH [RECURSIVE] common_table_expression [, common_table_expression , ...]]
 UPDATE table_name [[AS] alias] SET column = { expression | DEFAULT }
 [,...]

[FROM fromlist]
[WHERE condition]

UPDATE 1649

Amazon Redshift Database Developer Guide

Parameters

WITH clause

Optional clause that specifies one or more common-table-expressions. See WITH clause.

table_name

A temporary or persistent table. Only the owner of the table or a user with UPDATE privilege on
the table may update rows. If you use the FROM clause or select from tables in an expression
or condition, you must have SELECT privilege on those tables. You can't give the table an alias
here; however, you can specify an alias in the FROM clause.

Note

Amazon Redshift Spectrum external tables are read-only. You can't UPDATE an external
table.

alias

Temporary alternative name for a target table. Aliases are optional. The AS keyword is always
optional.

SET column =

One or more columns that you want to modify. Columns that aren't listed retain their current
values. Do not include the table name in the specification of a target column. For example,
UPDATE tab SET tab.col = 1 is invalid.

expression

An expression that defines the new value for the specified column.

DEFAULT

Updates the column with the default value that was assigned to the column in the CREATE
TABLE statement.

FROM tablelist

You can update a table by referencing information in other tables. List these other tables in
the FROM clause or use a subquery as part of the WHERE condition. Tables listed in the FROM

UPDATE 1650

Amazon Redshift Database Developer Guide

clause can have aliases. If you need to include the target table of the UPDATE statement in the
list, use an alias.

WHERE condition

Optional clause that restricts updates to rows that match a condition. When the condition
returns true, the specified SET columns are updated. The condition can be a simple predicate
on a column or a condition based on the result of a subquery.

You can name any table in the subquery, including the target table for the UPDATE.

Usage notes

After updating a large number of rows in a table:

• Vacuum the table to reclaim storage space and re-sort rows.

• Analyze the table to update statistics for the query planner.

Left, right, and full outer joins aren't supported in the FROM clause of an UPDATE statement; they
return the following error:

ERROR: Target table must be part of an equijoin predicate

If you need to specify an outer join, use a subquery in the WHERE clause of the UPDATE statement.

If your UPDATE statement requires a self-join to the target table, you need to specify the join
condition, as well as the WHERE clause criteria that qualify rows for the update operation. In
general, when the target table is joined to itself or another table, a best practice is to use a
subquery that clearly separates the join conditions from the criteria that qualify rows for updates.

UPDATE queries with multiple matches per row throw an error when the configuration
parameter error_on_nondeterministic_update is set to true. For more information, see
error_on_nondeterministic_update.

You can update a GENERATED BY DEFAULT AS IDENTITY column. Columns defined as GENERATED
BY DEFAULT AS IDENTITY can be updated with values you supply. For more information, see
GENERATED BY DEFAULT AS IDENTITY.

UPDATE 1651

Amazon Redshift Database Developer Guide

Examples of UPDATE statements

For more information about the tables used in the following examples, see Sample database.

The CATEGORY table in the TICKIT database contains the following rows:

+-------+----------+-----------+--+
| catid | catgroup | catname | catdesc |
+-------+----------+-----------+--+
5	Sports	MLS	Major League Soccer
11	Concerts	Classical	All symphony, concerto, and choir concerts
1	Sports	MLB	Major League Baseball
6	Shows	Musicals	Musical theatre
3	Sports	NFL	National Football League
8	Shows	Opera	All opera and light opera
2	Sports	NHL	National Hockey League
9	Concerts	Pop	All rock and pop music concerts
4	Sports	NBA	National Basketball Association
7	Shows	Plays	All non-musical theatre
10	Concerts	Jazz	All jazz singers and bands
+-------+----------+-----------+--+

Updating a table based on a range of values

Update the CATGROUP column based on a range of values in the CATID column.

UPDATE category
SET catgroup='Theatre'
WHERE catid BETWEEN 6 AND 8;

SELECT * FROM category
WHERE catid BETWEEN 6 AND 8;

+-------+----------+----------+---------------------------+
| catid | catgroup | catname | catdesc |
+-------+----------+----------+---------------------------+
6	Theatre	Musicals	Musical theatre
7	Theatre	Plays	All non-musical theatre
8	Theatre	Opera	All opera and light opera
+-------+----------+----------+---------------------------+

Updating a table based on a current value

UPDATE 1652

Amazon Redshift Database Developer Guide

Update the CATNAME and CATDESC columns based on their current CATGROUP value:

UPDATE category
SET catdesc=default, catname='Shows'
WHERE catgroup='Theatre';

SELECT * FROM category
WHERE catname='Shows';

+-------+----------+---------+---------+
| catid | catgroup | catname | catdesc |
+-------+----------+---------+---------+
6	Theatre	Shows	NULL
7	Theatre	Shows	NULL
8	Theatre	Shows	NULL
+-------+----------+---------+---------+)

In this case, the CATDESC column was set to null because no default value was defined when the
table was created.

Run the following commands to set the CATEGORY table data back to the original values:

TRUNCATE category;

COPY category
FROM 's3://redshift-downloads/tickit/category_pipe.txt'
DELIMITER '|'
IGNOREHEADER 1
REGION 'us-east-1'
IAM_ROLE default;

Updating a table based on the result of a WHERE clause subquery

Update the CATEGORY table based on the result of a subquery in the WHERE clause:

UPDATE category
SET catdesc='Broadway Musical'
WHERE category.catid IN
(SELECT category.catid FROM category
JOIN event ON category.catid = event.catid
JOIN venue ON venue.venueid = event.venueid
JOIN sales ON sales.eventid = event.eventid

UPDATE 1653

Amazon Redshift Database Developer Guide

WHERE venuecity='New York City' AND catname='Musicals');

View the updated table:

SELECT * FROM category ORDER BY catid;

+-------+----------+-----------+--+
| catid | catgroup | catname | catdesc |
+-------+----------+-----------+--+
2	Sports	NHL	National Hockey League
3	Sports	NFL	National Football League
4	Sports	NBA	National Basketball Association
5	Sports	MLS	Major League Soccer
6	Shows	Musicals	Broadway Musical
7	Shows	Plays	All non-musical theatre
8	Shows	Opera	All opera and light opera
9	Concerts	Pop	All rock and pop music concerts
10	Concerts	Jazz	All jazz singers and bands
11	Concerts	Classical	All symphony, concerto, and choir concerts
+-------+----------+-----------+--+

Updating a table based on the result of a WITH clause subquery

To update the CATEGORY table based on the result of a subquery using the WITH clause, use the
following example.

WITH u1 as (SELECT catid FROM event ORDER BY catid DESC LIMIT 1)
UPDATE category SET catid='200' FROM u1 WHERE u1.catid=category.catid;

SELECT * FROM category ORDER BY catid DESC LIMIT 1;

+-------+----------+---------+---------------------------------+
| catid | catgroup | catname | catdesc |
+-------+----------+---------+---------------------------------+
| 200 | Concerts | Pop | All rock and pop music concerts |
+-------+----------+---------+---------------------------------+

Updating a table based on the result of a join condition

Update the original 11 rows in the CATEGORY table based on matching CATID rows in the EVENT
table:

UPDATE 1654

Amazon Redshift Database Developer Guide

UPDATE category SET catid=100
FROM event
WHERE event.catid=category.catid;

SELECT * FROM category ORDER BY catid;

+-------+----------+-----------+--+
| catid | catgroup | catname | catdesc |
+-------+----------+-----------+--+
2	Sports	NHL	National Hockey League
3	Sports	NFL	National Football League
4	Sports	NBA	National Basketball Association
5	Sports	MLS	Major League Soccer
10	Concerts	Jazz	All jazz singers and bands
11	Concerts	Classical	All symphony, concerto, and choir concerts
100	Concerts	Pop	All rock and pop music concerts
100	Shows	Plays	All non-musical theatre
100	Shows	Opera	All opera and light opera
100	Shows	Musicals	Broadway Musical
+-------+----------+-----------+--+

Note that the EVENT table is listed in the FROM clause and the join condition to the target table is
defined in the WHERE clause. Only four rows qualified for the update. These four rows are the rows
whose CATID values were originally 6, 7, 8, and 9; only those four categories are represented in the
EVENT table:

SELECT DISTINCT catid FROM event;

+-------+
| catid |
+-------+
| 6 |
| 7 |
| 8 |
| 9 |
+-------+

Update the original 11 rows in the CATEGORY table by extending the previous example and adding
another condition to the WHERE clause. Because of the restriction on the CATGROUP column, only
one row qualifies for the update (although four rows qualify for the join).

UPDATE 1655

Amazon Redshift Database Developer Guide

UPDATE category SET catid=100
FROM event
WHERE event.catid=category.catid
AND catgroup='Concerts';

SELECT * FROM category WHERE catid=100;

+-------+----------+---------+---------------------------------+
| catid | catgroup | catname | catdesc |
+-------+----------+---------+---------------------------------+
| 100 | Concerts | Pop | All rock and pop music concerts |
+-------+----------+---------+---------------------------------+

An alternative way to write this example is as follows:

UPDATE category SET catid=100
FROM event JOIN category cat ON event.catid=cat.catid
WHERE cat.catgroup='Concerts';

The advantage to this approach is that the join criteria are clearly separated from any other criteria
that qualify rows for the update. Note the use of the alias CAT for the CATEGORY table in the
FROM clause.

Updates with outer joins in the FROM clause

The previous example showed an inner join specified in the FROM clause of an UPDATE statement.
The following example returns an error because the FROM clause does not support outer joins to
the target table:

UPDATE category SET catid=100
FROM event LEFT JOIN category cat ON event.catid=cat.catid
WHERE cat.catgroup='Concerts';
ERROR: Target table must be part of an equijoin predicate

If the outer join is required for the UPDATE statement, you can move the outer join syntax into a
subquery:

UPDATE category SET catid=100
FROM
(SELECT event.catid FROM event LEFT JOIN category cat ON event.catid=cat.catid)
 eventcat

UPDATE 1656

Amazon Redshift Database Developer Guide

WHERE category.catid=eventcat.catid
AND catgroup='Concerts';

Updates with columns from another table in the SET clause

To update the listing table in the TICKIT sample database with values from the sales table, use the
following example.

SELECT listid, numtickets FROM listing WHERE sellerid = 1 ORDER BY 1 ASC LIMIT 5;

+--------+------------+
| listid | numtickets |
+--------+------------+
100423	4
108334	24
117150	4
135915	20
205927	6
+--------+------------+

UPDATE listing
SET numtickets = sales.sellerid
FROM sales
WHERE sales.sellerid = 1 AND listing.sellerid = sales.sellerid;

SELECT listid, numtickets FROM listing WHERE sellerid = 1 ORDER BY 1 ASC LIMIT 5;

+--------+------------+
| listid | numtickets |
+--------+------------+
100423	1
108334	1
117150	1
135915	1
205927	1
+--------+------------+

VACUUM

Re-sorts rows and reclaims space in either a specified table or all tables in the current database.

VACUUM 1657

Amazon Redshift Database Developer Guide

Note

Only users with the necessary table permissions can effectively vacuum a table. If VACUUM
is run without the necessary table permissions, the operation completes successfully but
has no effect. For a list of valid table permissions to effectively run VACUUM, see the
following Required privileges section.

Amazon Redshift automatically sorts data and runs VACUUM DELETE in the background. This
lessens the need to run the VACUUM command. For more information, see Vacuuming tables.

By default, VACUUM skips the sort phase for any table where more than 95 percent of the table's
rows are already sorted. Skipping the sort phase can significantly improve VACUUM performance.
To change the default sort or delete threshold for a single table, include the table name and the
TO threshold PERCENT parameter when you run VACUUM.

Users can access tables while they are being vacuumed. You can perform queries and write
operations while a table is being vacuumed, but when data manipulation language (DML)
commands and a vacuum run concurrently, both might take longer. If you run UPDATE and DELETE
statements during a vacuum, system performance might be reduced. VACUUM DELETE temporarily
blocks update and delete operations.

Amazon Redshift automatically performs a DELETE ONLY vacuum in the background. Automatic
vacuum operation pauses when users run data definition language (DDL) operations, such as ALTER
TABLE.

Note

The Amazon Redshift VACUUM command syntax and behavior are substantially different
from the PostgreSQL VACUUM operation. For example, the default VACUUM operation
in Amazon Redshift is VACUUM FULL, which reclaims disk space and re-sorts all rows. In
contrast, the default VACUUM operation in PostgreSQL simply reclaims space and makes it
available for reuse.

For more information, see Vacuuming tables.

VACUUM 1658

Amazon Redshift Database Developer Guide

Required privileges

Following are required privileges for VACUUM:

• Superuser

• Users with the VACUUM privilege

• Table owner

• Database owner whom the table is shared to

Syntax

VACUUM [FULL | SORT ONLY | DELETE ONLY | REINDEX | RECLUSTER]
[[table_name] [TO threshold PERCENT] [BOOST]]

Parameters

FULL

Sorts the specified table (or all tables in the current database) and reclaims disk space occupied
by rows that were marked for deletion by previous UPDATE and DELETE operations. VACUUM
FULL is the default.

A full vacuum doesn't perform a reindex for interleaved tables. To reindex interleaved tables
followed by a full vacuum, use the VACUUM REINDEX option.

By default, VACUUM FULL skips the sort phase for any table that is already at least 95 percent
sorted. If VACUUM is able to skip the sort phase, it performs a DELETE ONLY and reclaims
space in the delete phase such that at least 95 percent of the remaining rows aren't marked for
deletion.

If the sort threshold isn't met (for example, if 90 percent of rows are sorted) and VACUUM
performs a full sort, then it also performs a complete delete operation, recovering space from
100 percent of deleted rows.

You can change the default vacuum threshold only for a single table. To change the default
vacuum threshold for a single table, include the table name and the TO threshold PERCENT
parameter.

VACUUM 1659

Amazon Redshift Database Developer Guide

SORT ONLY

Sorts the specified table (or all tables in the current database) without reclaiming space freed
by deleted rows. This option is useful when reclaiming disk space isn't important but re-sorting
new rows is important. A SORT ONLY vacuum reduces the elapsed time for vacuum operations
when the unsorted region doesn't contain a large number of deleted rows and doesn't span
the entire sorted region. Applications that don't have disk space constraints but do depend on
query optimizations associated with keeping table rows sorted can benefit from this kind of
vacuum.

By default, VACUUM SORT ONLY skips any table that is already at least 95 percent sorted.
To change the default sort threshold for a single table, include the table name and the TO
threshold PERCENT parameter when you run VACUUM.

DELETE ONLY

Amazon Redshift automatically performs a DELETE ONLY vacuum in the background, so you
rarely, if ever, need to run a DELETE ONLY vacuum.

A VACUUM DELETE reclaims disk space occupied by rows that were marked for deletion by
previous UPDATE and DELETE operations, and compacts the table to free up the consumed
space. A DELETE ONLY vacuum operation doesn't sort table data.

This option reduces the elapsed time for vacuum operations when reclaiming disk space is
important but re-sorting new rows isn't important. This option can also be useful when your
query performance is already optimal, and re-sorting rows to optimize query performance isn't
a requirement.

By default, VACUUM DELETE ONLY reclaims space such that at least 95 percent of the
remaining rows aren't marked for deletion. To change the default delete threshold for a
single table, include the table name and the TO threshold PERCENT parameter when you run
VACUUM.

Some operations, such as ALTER TABLE APPEND, can cause tables to be fragmented. When
you use the DELETE ONLY clause the vacuum operation reclaims space from fragmented
tables. The same threshold value of 95 percent applies to the defragmentation operation.

REINDEX tablename

Analyzes the distribution of the values in interleaved sort key columns, then performs a full
VACUUM operation. If REINDEX is used, a table name is required.

VACUUM 1660

Amazon Redshift Database Developer Guide

VACUUM REINDEX takes significantly longer than VACUUM FULL because it makes an additional
pass to analyze the interleaved sort keys. The sort and merge operation can take longer for
interleaved tables because the interleaved sort might need to rearrange more rows than a
compound sort.

If a VACUUM REINDEX operation terminates before it completes, the next VACUUM resumes the
reindex operation before performing the full vacuum operation.

VACUUM REINDEX isn't supported with TO threshold PERCENT.

table_name

The name of a table to vacuum. If you don't specify a table name, the vacuum operation applies
to all tables in the current database. You can specify any permanent or temporary user-created
table. The command isn't meaningful for other objects, such as views and system tables.

If you include the TO threshold PERCENT parameter, a table name is required.

RECLUSTER tablename

Sorts the portions of the table that are unsorted. Portions of the table that are already sorted
by automatic table sort are left intact. This command doesn't merge the newly sorted data
with the sorted region. It also doesn't reclaim all space that is marked for deletion. When this
command completes, the table might not appear fully sorted, as indicated by the unsorted
field in SVV_TABLE_INFO.

We recommend that you use VACUUM RECLUSTER for large tables with frequent ingestion and
queries that access only the most recent data.

VACUUM RECLUSTER isn't supported with TO threshold PERCENT. If RECLUSTER is used, a table
name is required.

VACUUM RECLUSTER isn't supported on tables with interleaved sort keys and tables with ALL
distribution style.

table_name

The name of a table to vacuum. You can specify any permanent or temporary user-created
table. The command isn't meaningful for other objects, such as views and system tables.

TO threshold PERCENT

A clause that specifies the threshold above which VACUUM skips the sort phase and the target
threshold for reclaiming space in the delete phase. The sort threshold is the percentage of

VACUUM 1661

Amazon Redshift Database Developer Guide

total rows that are already in sort order for the specified table prior to vacuuming. The delete
threshold is the minimum percentage of total rows not marked for deletion after vacuuming.

Because VACUUM re-sorts the rows only when the percent of sorted rows in a table is less than
the sort threshold, Amazon Redshift can often reduce VACUUM times significantly. Similarly,
when VACUUM isn't constrained to reclaim space from 100 percent of rows marked for deletion,
it is often able to skip rewriting blocks that contain only a few deleted rows.

For example, if you specify 75 for threshold, VACUUM skips the sort phase if 75 percent or
more of the table's rows are already in sort order. For the delete phase, VACUUMS sets a target
of reclaiming disk space such that at least 75 percent of the table's rows aren't marked for
deletion following the vacuum. The threshold value must be an integer between 0 and 100. The
default is 95. If you specify a value of 100, VACUUM always sorts the table unless it's already
fully sorted and reclaims space from all rows marked for deletion. If you specify a value of 0,
VACUUM never sorts the table and never reclaims space.

If you include the TO threshold PERCENT parameter, you must also specify a table name. If a
table name is omitted, VACUUM fails.

You can't use the TO threshold PERCENT parameter with REINDEX.

BOOST

Runs the VACUUM command with additional resources, such as memory and disk space,
as they're available. With the BOOST option, VACUUM operates in one window and blocks
concurrent deletes and updates for the duration of the VACUUM operation. Running with the
BOOST option contends for system resources, which might affect query performance. Run the
VACUUM BOOST when the load on the system is light, such as during maintenance operations.

Consider the following when using the BOOST option:

• When BOOST is specified, the table_name value is required.

• BOOST isn't supported with REINDEX.

• BOOST is ignored with DELETE ONLY.

Usage notes

For most Amazon Redshift applications, a full vacuum is recommended. For more information, see
Vacuuming tables.

Before running a vacuum operation, note the following behavior:

VACUUM 1662

Amazon Redshift Database Developer Guide

• You can't run VACUUM within a transaction block (BEGIN ... END). For more information about
transactions, see Serializable isolation.

• You can run only one VACUUM command on a cluster at any given time. If you attempt to run
multiple vacuum operations concurrently, Amazon Redshift returns an error.

• Some amount of table growth might occur when tables are vacuumed. This behavior is expected
when there are no deleted rows to reclaim or the new sort order of the table results in a lower
ratio of data compression.

• During vacuum operations, some degree of query performance degradation is expected. Normal
performance resumes as soon as the vacuum operation is complete.

• Concurrent write operations proceed during vacuum operations, but we don’t recommend
performing write operations while vacuuming. It's more efficient to complete write operations
before running the vacuum. Also, any data that is written after a vacuum operation has been
started can't be vacuumed by that operation. In this case, a second vacuum operation is
necessary.

• A vacuum operation might not be able to start if a load or insert operation is already in progress.
Vacuum operations temporarily require exclusive access to tables in order to start. This exclusive
access is required briefly, so vacuum operations don't block concurrent loads and inserts for any
significant period of time.

• Vacuum operations are skipped when there is no work to do for a particular table; however, there
is some overhead associated with discovering that the operation can be skipped. If you know that
a table is pristine or doesn't meet the vacuum threshold, don't run a vacuum operation against it.

• A DELETE ONLY vacuum operation on a small table might not reduce the number of blocks used
to store the data, especially when the table has a large number of columns or the cluster uses a
large number of slices per node. These vacuum operations add one block per column per slice to
account for concurrent inserts into the table, and there is potential for this overhead to outweigh
the reduction in block count from the reclaimed disk space. For example, if a 10-column table on
an 8-node cluster occupies 1000 blocks before a vacuum, the vacuum doesn't reduce the actual
block count unless more than 80 blocks of disk space are reclaimed because of deleted rows.
(Each data block uses 1 MB.)

Automatic vacuum operations pause if any of the following conditions are met:

• A user runs a data definition language (DDL) operation, such as ALTER TABLE, that requires an
exclusive lock on a table that automatic vacuum is currently working on.

• A user triggers VACUUM on any table in the cluster (only one VACUUM can run at a time).

VACUUM 1663

Amazon Redshift Database Developer Guide

• A period of high cluster load.

Examples

Reclaim space and database and re-sort rows in all tables based on the default 95 percent vacuum
threshold.

vacuum;

Reclaim space and re-sort rows in the SALES table based on the default 95 percent threshold.

vacuum sales;

Always reclaim space and re-sort rows in the SALES table.

vacuum sales to 100 percent;

Re-sort rows in the SALES table only if fewer than 75 percent of rows are already sorted.

 vacuum sort only sales to 75 percent;

Reclaim space in the SALES table such that at least 75 percent of the remaining rows aren't marked
for deletion following the vacuum.

vacuum delete only sales to 75 percent;

Reindex and then vacuum the LISTING table.

vacuum reindex listing;

The following command returns an error.

vacuum reindex listing to 75 percent;

Recluster and then vacuum the LISTING table.

vacuum recluster listing;

VACUUM 1664

Amazon Redshift Database Developer Guide

Recluster and then vacuum the LISTING table with the BOOST option.

vacuum recluster listing boost;

SQL functions reference

Topics

• Leader node–only functions

• Compute node–only functions

• Aggregate functions

• Array functions

• Bit-wise aggregate functions

• Conditional expressions

• Data type formatting functions

• Date and time functions

• Hash functions

• HyperLogLog functions

• JSON functions

• Machine learning functions

• Math functions

• Object functions

• Spatial functions

• String functions

• SUPER type information functions

• VARBYTE functions and operators

• Window functions

• System administration functions

• System information functions

Amazon Redshift supports a number of functions that are extensions to the SQL standard, as well
as standard aggregate functions, scalar functions, and window functions.

SQL functions reference 1665

Amazon Redshift Database Developer Guide

Note

Amazon Redshift is based on PostgreSQL. Amazon Redshift and PostgreSQL have a number
of very important differences that you must be aware of as you design and develop your
data warehouse applications. For more information about how Amazon Redshift SQL
differs from PostgreSQL, see Amazon Redshift and PostgreSQL.

Leader node–only functions

Some Amazon Redshift queries are distributed and run on the compute nodes; other queries run
exclusively on the leader node.

The leader node distributes SQL to the compute nodes when a query references user-created
tables or system tables (tables with an STL or STV prefix and system views with an SVL or SVV
prefix). A query that references only catalog tables (tables with a PG prefix, such as PG_TABLE_DEF)
or that does not reference any tables, runs exclusively on the leader node.

Some Amazon Redshift SQL functions are supported only on the leader node and are not
supported on the compute nodes. A query that uses a leader-node function must run exclusively
on the leader node, not on the compute nodes, or it will return an error.

The documentation for each leader-node only function includes a note stating that the function
will return an error if it references user-defined tables or Amazon Redshift system tables.

For more information, see SQL functions supported on the leader node.

The following SQL functions are leader-node only functions and are not supported on the compute
nodes:

System information functions

• CURRENT_SCHEMA

• CURRENT_SCHEMAS

• HAS_DATABASE_PRIVILEGE

• HAS_SCHEMA_PRIVILEGE

• HAS_TABLE_PRIVILEGE

String functions

Leader node–only functions 1666

Amazon Redshift Database Developer Guide

• SUBSTR

Math functions

• FACTORIAL()

The following leader-node only functions are deprecated and are no longer supported:

Date functions

• AGE

• CURRENT_TIME

• CURRENT_TIMESTAMP

• LOCALTIME

• ISFINITE

• NOW

String functions

• GETBIT

• GET_BYTE

• SET_BIT

• SET_BYTE

• TO_ASCII

Compute node–only functions

Some Amazon Redshift queries must run only on the compute nodes. If a query references a user-
created table, the SQL runs on the compute nodes.

A query that references only catalog tables (tables with a PG prefix, such as PG_TABLE_DEF) or that
does not reference any tables, runs exclusively on the leader node.

If a query that uses a compute-node function doesn't reference a user-defined table or Amazon
Redshift system table returns the following error.

Compute node–only functions 1667

Amazon Redshift Database Developer Guide

[Amazon](500310) Invalid operation: One or more of the used functions must be applied
 on at least one user created table.

The documentation for each compute-node only function includes a note stating that the function
will return an error if the query doesn't references a user-defined table or Amazon Redshift system
table.

The following SQL functions are compute-node only functions:

• LISTAGG

• MEDIAN

• PERCENTILE_CONT

• PERCENTILE_DISC and APPROXIMATE PERCENTILE_DISC

Aggregate functions

Topics

• ANY_VALUE function

• APPROXIMATE PERCENTILE_DISC function

• AVG function

• COUNT function

• LISTAGG function

• MAX function

• MEDIAN function

• MIN function

• PERCENTILE_CONT function

• STDDEV_SAMP and STDDEV_POP functions

• SUM function

• VAR_SAMP and VAR_POP functions

Aggregate functions compute a single result value from a set of input values.

SELECT statements using aggregate functions can include two optional clauses: GROUP BY and
HAVING. The syntax for these clauses is as follows (using the COUNT function as an example):

Aggregate functions 1668

Amazon Redshift Database Developer Guide

SELECT count (*) expression FROM table_reference
WHERE condition [GROUP BY expression] [HAVING condition]

The GROUP BY clause aggregates and groups results by the unique values in a specified column
or columns. The HAVING clause restricts the results returned to rows where a particular aggregate
condition is true, such as count (*) > 1. The HAVING clause is used in the same way as WHERE to
restrict rows based on the value of a column. For an example of these additional clauses, see the
COUNT.

Aggregate functions don't accept nested aggregate functions or window functions as arguments.

ANY_VALUE function

The ANY_VALUE function returns any value from the input expression values nondeterministically.
This function returns NULL if the input expression doesn't result in any rows being returned. The
function can also return NULL if there are NULL values in the input expression.

Syntax

ANY_VALUE([DISTINCT | ALL] expression)

Arguments

DISTINCT | ALL

Specify either DISTINCT or ALL to return any value from the input expression values. The
DISTINCT argument has no effect and is ignored.

expression

The target column or expression on which the function operates. The expression is one of the
following data types:

• SMALLINT

• INTEGER

• BIGINT

• DECIMAL

• REAL

• DOUBLE PRECISON

Aggregate functions 1669

Amazon Redshift Database Developer Guide

• BOOLEAN

• CHAR

• VARCHAR

• DATE

• TIMESTAMP

• TIMESTAMPTZ

• TIME

• TIMETZ

• INTERVAL YEAR TO MONTH

• INTERVAL DAY TO SECOND

• VARBYTE

• SUPER

• HLLSKETCH

• GEOMETRY

• GEOGRAPHY

Returns

Returns the same data type as expression.

Usage notes

If a statement that specifies the ANY_VALUE function for a column also includes a second column
reference, the second column must appear in a GROUP BY clause or be included in an aggregate
function.

Examples

The examples use the event table that is created in Step 4: Load sample data from Amazon S3
in the Amazon Redshift Getting Started Guide. The following example returns an instance of any
dateid where the eventname is Eagles.

select any_value(dateid) as dateid, eventname from event where eventname ='Eagles'
 group by eventname;

Aggregate functions 1670

https://docs.aws.amazon.com/redshift/latest/gsg/rs-gsg-create-sample-db.html

Amazon Redshift Database Developer Guide

Following are the results.

dateid | eventname
-------+---------------
 1878 | Eagles

The following example returns an instance of any dateid where the eventname is Eagles or Cold
War Kids.

select any_value(dateid) as dateid, eventname from event where eventname in('Eagles',
 'Cold War Kids') group by eventname;

Following are the results.

dateid | eventname
-------+---------------
 1922 | Cold War Kids
 1878 | Eagles

APPROXIMATE PERCENTILE_DISC function

APPROXIMATE PERCENTILE_DISC is an inverse distribution function that assumes a discrete
distribution model. It takes a percentile value and a sort specification and returns an element from
the given set. Approximation enables the function to run much faster, with a low relative error of
around 0.5 percent.

For a given percentile value, APPROXIMATE PERCENTILE_DISC uses a quantile summary algorithm
to approximate the discrete percentile of the expression in the ORDER BY clause. APPROXIMATE
PERCENTILE_DISC returns the value with the smallest cumulative distribution value (with respect
to the same sort specification) that is greater than or equal to percentile.

APPROXIMATE PERCENTILE_DISC is a compute-node only function. The function returns an error if
the query doesn't reference a user-defined table or Amazon Redshift system table.

Syntax

APPROXIMATE PERCENTILE_DISC (percentile)
WITHIN GROUP (ORDER BY expr)

Aggregate functions 1671

Amazon Redshift Database Developer Guide

Arguments

percentile

Numeric constant between 0 and 1. Nulls are ignored in the calculation.

WITHIN GROUP (ORDER BY expr)

Clause that specifies numeric or date/time values to sort and compute the percentile over.

Returns

The same data type as the ORDER BY expression in the WITHIN GROUP clause.

Usage notes

If the APPROXIMATE PERCENTILE_DISC statement includes a GROUP BY clause, the result set is
limited. The limit varies based on node type and the number of nodes. If the limit is exceeded, the
function fails and returns the following error.

GROUP BY limit for approximate percentile_disc exceeded.

If you need to evaluate more groups than the limit permits, consider using PERCENTILE_CONT
function.

Examples

The following example returns the number of sales, total sales, and fiftieth percentile value for the
top 10 dates.

select top 10 date.caldate,
count(totalprice), sum(totalprice),
approximate percentile_disc(0.5)
within group (order by totalprice)
from listing
join date on listing.dateid = date.dateid
group by date.caldate
order by 3 desc;

caldate | count | sum | percentile_disc
-----------+-------+------------+----------------
2008-01-07 | 658 | 2081400.00 | 2020.00

Aggregate functions 1672

Amazon Redshift Database Developer Guide

2008-01-02 | 614 | 2064840.00 | 2178.00
2008-07-22 | 593 | 1994256.00 | 2214.00
2008-01-26 | 595 | 1993188.00 | 2272.00
2008-02-24 | 655 | 1975345.00 | 2070.00
2008-02-04 | 616 | 1972491.00 | 1995.00
2008-02-14 | 628 | 1971759.00 | 2184.00
2008-09-01 | 600 | 1944976.00 | 2100.00
2008-07-29 | 597 | 1944488.00 | 2106.00
2008-07-23 | 592 | 1943265.00 | 1974.00

AVG function

The AVG function returns the average (arithmetic mean) of the input expression values. The AVG
function works with numeric values and ignores NULL values.

Syntax

AVG ([DISTINCT | ALL] expression)

Arguments

expression

The target column or expression that the function operates on. The expression is one of the
following data types:

• SMALLINT

• INTEGER

• BIGINT

• NUMERIC

• DECIMAL

• REAL

• DOUBLE PRECISON

• SUPER

DISTINCT | ALL

With the argument DISTINCT, the function eliminates all duplicate values from the specified
expression before calculating the average. With the argument ALL, the function retains all
duplicate values from the expression for calculating the average. ALL is the default.

Aggregate functions 1673

Amazon Redshift Database Developer Guide

Data types

The argument types supported by the AVG function are SMALLINT, INTEGER, BIGINT, NUMERIC,
DECIMAL, REAL, DOUBLE PRECISION, and SUPER.

The return types supported by the AVG function are:

• BIGINT for any integer type argument

• DOUBLE PRECISION for a floating point argument

• Returns the same data type as expression for any other argument type.

The default precision for an AVG function result with a NUMERIC or DECIMAL argument is 38. The
scale of the result is the same as the scale of the argument. For example, an AVG of a DEC(5,2)
column returns a DEC(38,2) data type.

Examples

Find the average quantity sold per transaction from the SALES table:

select avg(qtysold)from sales;

avg

2
(1 row)

Find the average total price listed for all listings:

select avg(numtickets*priceperticket) as avg_total_price from listing;

avg_total_price

3034.41
(1 row)

Find the average price paid, grouped by month in descending order:

select avg(pricepaid) as avg_price, month
from sales, date

Aggregate functions 1674

Amazon Redshift Database Developer Guide

where sales.dateid = date.dateid
group by month
order by avg_price desc;

avg_price | month
-----------+-------
659.34 | MAR
655.06 | APR
645.82 | JAN
643.10 | MAY
642.72 | JUN
642.37 | SEP
640.72 | OCT
640.57 | DEC
635.34 | JUL
635.24 | FEB
634.24 | NOV
632.78 | AUG
(12 rows)

COUNT function

The COUNT function counts the rows defined by the expression.

The COUNT function has the following variations.

• COUNT (*) counts all the rows in the target table whether they include nulls or not.

• COUNT (expression) computes the number of rows with non-NULL values in a specific column or
expression.

• COUNT (DISTINCT expression) computes the number of distinct non-NULL values in a column or
expression.

• APPROXIMATE COUNT DISTINCT approximates the number of distinct non-NULL values in a
column or expression.

Syntax

COUNT(* | expression)

COUNT ([DISTINCT | ALL] expression)

Aggregate functions 1675

Amazon Redshift Database Developer Guide

APPROXIMATE COUNT (DISTINCT expression)

Arguments

expression

The target column or expression that the function operates on. The COUNT function supports
all argument data types.

DISTINCT | ALL

With the argument DISTINCT, the function eliminates all duplicate values from the specified
expression before doing the count. With the argument ALL, the function retains all duplicate
values from the expression for counting. ALL is the default.

APPROXIMATE

When used with APPROXIMATE, a COUNT DISTINCT function uses a HyperLogLog algorithm
to approximate the number of distinct non-NULL values in a column or expression. Queries
that use the APPROXIMATE keyword run much faster, with a low relative error of around
2%. Approximation is warranted for queries that return a large number of distinct values, in
the millions or more per query, or per group, if there is a group by clause. For smaller sets
of distinct values, in the thousands, approximation might be slower than a precise count.
APPROXIMATE can only be used with COUNT DISTINCT.

Return type

The COUNT function returns BIGINT.

Examples

Count all of the users from the state of Florida:

select count(*) from users where state='FL';

count

510

Count all of the event names from the EVENT table:

Aggregate functions 1676

Amazon Redshift Database Developer Guide

select count(eventname) from event;

count

8798

Count all of the event names from the EVENT table:

select count(all eventname) from event;

count

8798

Count all of the unique venue IDs from the EVENT table:

select count(distinct venueid) as venues from event;

venues

204

Count the number of times each seller listed batches of more than four tickets for sale. Group the
results by seller ID:

select count(*), sellerid from listing
where numtickets > 4
group by sellerid
order by 1 desc, 2;

count | sellerid
------+----------
12 | 6386
11 | 17304
11 | 20123
11 | 25428
...

The following examples compare the return values and execution times for COUNT and
APPROXIMATE COUNT.

Aggregate functions 1677

Amazon Redshift Database Developer Guide

select count(distinct pricepaid) from sales;

count

 4528

Time: 48.048 ms

select approximate count(distinct pricepaid) from sales;

count

 4553

Time: 21.728 ms

LISTAGG function

For each group in a query, the LISTAGG aggregate function orders the rows for that group
according to the ORDER BY expression, then concatenates the values into a single string.

LISTAGG is a compute node-only function. The function returns an error if the query doesn't
reference a user-defined table or Amazon Redshift system table. For more information, see
Querying the catalog tables.

Syntax

LISTAGG([DISTINCT] aggregate_expression [, 'delimiter'])
[WITHIN GROUP (ORDER BY order_list)]

Arguments

DISTINCT

A clause that eliminates duplicate values from the specified expression before concatenating.
Trailing spaces are ignored. For example, the strings 'a' and 'a ' are treated as duplicates.
LISTAGG uses the first value encountered. For more information, see Significance of trailing
blanks.

Aggregate functions 1678

Amazon Redshift Database Developer Guide

aggregate_expression

Any valid expression, such as a column name, that provides the values to aggregate. NULL
values and empty strings are ignored.

delimiter

The string constant to separate the concatenated values. The default is NULL.

WITHIN GROUP (ORDER BY order_list)

A clause that specifies the sort order of the aggregated values.

Returns

VARCHAR(MAX). If the result set is larger than the maximum VARCHAR size, LISTAGG returns the
following error:

Invalid operation: Result size exceeds LISTAGG limit

Usage notes

• If a statement includes multiple LISTAGG functions that use WITHIN GROUP clauses, each
WITHIN GROUP clause must use the same ORDER BY values.

For example, the following statement returns an error.

SELECT LISTAGG(sellerid)
WITHIN GROUP (ORDER BY dateid) AS sellers,
LISTAGG(dateid)
WITHIN GROUP (ORDER BY sellerid) AS dates
FROM sales;

The following statements runs successfully.

SELECT LISTAGG(sellerid)
WITHIN GROUP (ORDER BY dateid) AS sellers,
LISTAGG(dateid)
WITHIN GROUP (ORDER BY dateid) AS dates
FROM sales;

SELECT LISTAGG(sellerid)

Aggregate functions 1679

Amazon Redshift Database Developer Guide

WITHIN GROUP (ORDER BY dateid) AS sellers,
LISTAGG(dateid) AS dates
FROM sales;

Examples

The following example aggregates seller IDs, ordered by seller ID.

SELECT LISTAGG(sellerid, ', ')
WITHIN GROUP (ORDER BY sellerid)
FROM sales
WHERE eventid = 4337;

listagg

--
380, 380, 1178, 1178, 1178, 2731, 8117, 12905, 32043, 32043, 32043, 32432, 32432,
 38669, 38750, 41498, 45676, 46324, 47188, 47188, 48294

The following example uses DISTINCT to return a list of unique seller IDs.

SELECT LISTAGG(DISTINCT sellerid, ', ')
WITHIN GROUP (ORDER BY sellerid)
FROM sales
WHERE eventid = 4337;

listagg

380, 1178, 2731, 8117, 12905, 32043, 32432, 38669, 38750, 41498, 45676, 46324, 47188,
 48294

The following example aggregates seller IDs in date order.

SELECT LISTAGG(sellerid, ', ')
WITHIN GROUP (ORDER BY dateid)
FROM sales
WHERE eventid = 4337;

 listagg

Aggregate functions 1680

Amazon Redshift Database Developer Guide

 41498, 47188, 47188, 1178, 1178, 1178, 380, 45676, 46324, 48294, 32043, 32043, 32432,
 12905, 8117, 38750, 2731, 32432, 32043, 380, 38669

The following example returns a pipe-separated list of sales dates for the buyer with an ID of 660.

SELECT LISTAGG(
 (SELECT caldate FROM date WHERE date.dateid=sales.dateid), ' | '
)
WITHIN GROUP (ORDER BY sellerid DESC, salesid ASC)
FROM sales
WHERE buyerid = 660;

 listagg

2008-07-16 | 2008-07-09 | 2008-01-01 | 2008-10-26

The following example returns a comma-separated list of sales IDs for the buyer IDs 660, 661, and
662.

SELECT buyerid,
LISTAGG(salesid,', ')
WITHIN GROUP (ORDER BY salesid) AS sales_id
FROM sales
WHERE buyerid BETWEEN 660 AND 662
GROUP BY buyerid
ORDER BY buyerid;

buyerid | sales_id
--------+---
660 | 32872, 33095, 33514, 34548
661 | 19951, 20517, 21695, 21931
662 | 3318, 3823, 4215, 51980, 53202, 55908, 57832, 171603

MAX function

The MAX function returns the maximum value in a set of rows. DISTINCT or ALL might be used but
do not affect the result.

Syntax

MAX ([DISTINCT | ALL] expression)

Aggregate functions 1681

Amazon Redshift Database Developer Guide

Arguments

expression

The target column or expression that the function operates on. The expression is one of the
following data types:

• SMALLINT

• INTEGER

• BIGINT

• DECIMAL

• REAL

• DOUBLE PRECISON

• CHAR

• VARCHAR

• DATE

• TIMESTAMP

• TIMESTAMPTZ

• TIME

• TIMETZ

• VARBYTE

• SUPER

DISTINCT | ALL

With the argument DISTINCT, the function eliminates all duplicate values from the specified
expression before calculating the maximum. With the argument ALL, the function retains all
duplicate values from the expression for calculating the maximum. ALL is the default.

Data types

Returns the same data type as expression. The Boolean equivalent of the MIN function is the
BOOL_AND function, and the Boolean equivalent of MAX is the BOOL_OR function.

Examples

Find the highest price paid from all sales:

Aggregate functions 1682

Amazon Redshift Database Developer Guide

select max(pricepaid) from sales;

max

12624.00
(1 row)

Find the highest price paid per ticket from all sales:

select max(pricepaid/qtysold) as max_ticket_price
from sales;

max_ticket_price

2500.00000000
(1 row)

MEDIAN function

Calculates the median value for the range of values. NULL values in the range are ignored.

MEDIAN is an inverse distribution function that assumes a continuous distribution model.

MEDIAN is a special case of PERCENTILE_CONT.

MEDIAN is a compute-node only function. The function returns an error if the query doesn't
reference a user-defined table or Amazon Redshift system table.

Syntax

MEDIAN(median_expression)

Arguments

median_expression

The target column or expression that the function operates on.

Data types

The return type is determined by the data type of median_expression. The following table shows
the return type for each median_expression data type.

Aggregate functions 1683

Amazon Redshift Database Developer Guide

Input type Return type

INT2, INT4, INT8, NUMERIC, DECIMAL DECIMAL

FLOAT, DOUBLE DOUBLE

DATE DATE

TIMESTAMP TIMESTAMP

TIMESTAMPTZ TIMESTAMPTZ

Usage notes

If the median_expression argument is a DECIMAL data type defined with the maximum precision of
38 digits, it is possible that MEDIAN will return either an inaccurate result or an error. If the return
value of the MEDIAN function exceeds 38 digits, the result is truncated to fit, which causes a loss of
precision. If, during interpolation, an intermediate result exceeds the maximum precision, a numeric
overflow occurs and the function returns an error. To avoid these conditions, we recommend either
using a data type with lower precision or casting the median_expression argument to a lower
precision.

If a statement includes multiple calls to sort-based aggregate functions (LISTAGG,
PERCENTILE_CONT, or MEDIAN), they must all use the same ORDER BY values. Note that MEDIAN
applies an implicit order by on the expression value.

For example, the following statement returns an error.

SELECT TOP 10 salesid, SUM(pricepaid),
PERCENTILE_CONT(0.6) WITHIN GROUP(ORDER BY salesid),
MEDIAN(pricepaid)
FROM sales
GROUP BY salesid, pricepaid;

An error occurred when executing the SQL command:
SELECT TOP 10 salesid, SUM(pricepaid),
PERCENTILE_CONT(0.6) WITHIN GROUP(ORDER BY salesid),
MEDIAN(pricepaid)
FROM sales
GROUP BY salesid, pricepaid;

Aggregate functions 1684

Amazon Redshift Database Developer Guide

ERROR: within group ORDER BY clauses for aggregate functions must be the same

The following statement runs successfully.

SELECT TOP 10 salesid, SUM(pricepaid),
PERCENTILE_CONT(0.6) WITHIN GROUP(ORDER BY salesid),
MEDIAN(salesid)
FROM sales
GROUP BY salesid, pricepaid;

Examples

The following examples use the TICKIT sample database. For more information, see Sample
database.

The following example shows that MEDIAN produces the same results as PERCENTILE_CONT(0.5).

SELECT TOP 10 DISTINCT sellerid, qtysold,
PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY qtysold),
MEDIAN(qtysold)
FROM sales
GROUP BY sellerid, qtysold;

+----------+---------+-----------------+--------+
| sellerid | qtysold | percentile_cont | median |
+----------+---------+-----------------+--------+
2	2	2	2
26	1	1	1
33	1	1	1
38	1	1	1
43	1	1	1
48	2	2	2
48	3	3	3
77	4	4	4
85	4	4	4
95	2	2	2
+----------+---------+-----------------+--------+

The following example finds the median quantity sold for each sellerid.

SELECT sellerid,

Aggregate functions 1685

Amazon Redshift Database Developer Guide

MEDIAN(qtysold)
FROM sales
GROUP BY sellerid
ORDER BY sellerid
LIMIT 10;

+----------+--------+
| sellerid | median |
+----------+--------+
1	1.5
2	2
3	2
4	2
5	1
6	1
7	1.5
8	1
9	4
12	2
+----------+--------+

To verify the results of the previous query for the first sellerid, use the following example.

SELECT qtysold
FROM sales
WHERE sellerid=1;

+---------+
| qtysold |
+---------+
| 2 |
| 1 |
+---------+

MIN function

The MIN function returns the minimum value in a set of rows. DISTINCT or ALL might be used but
do not affect the result.

Syntax

MIN ([DISTINCT | ALL] expression)

Aggregate functions 1686

Amazon Redshift Database Developer Guide

Arguments

expression

The target column or expression that the function operates on. The expression is one of the
following data types:

• SMALLINT

• INTEGER

• BIGINT

• DECIMAL

• REAL

• DOUBLE PRECISON

• CHAR

• VARCHAR

• DATE

• TIMESTAMP

• TIMESTAMPTZ

• TIME

• TIMETZ

• VARBYTE

• SUPER

DISTINCT | ALL

With the argument DISTINCT, the function eliminates all duplicate values from the specified
expression before calculating the minimum. With the argument ALL, the function retains all
duplicate values from the expression for calculating the minimum. ALL is the default.

Data types

Returns the same data type as expression. The Boolean equivalent of the MIN function is
BOOL_AND function, and the Boolean equivalent of MAX is BOOL_OR function.

Examples

Find the lowest price paid from all sales:

Aggregate functions 1687

Amazon Redshift Database Developer Guide

select min(pricepaid) from sales;

min

20.00
(1 row)

Find the lowest price paid per ticket from all sales:

select min(pricepaid/qtysold)as min_ticket_price
from sales;

min_ticket_price

20.00000000
(1 row)

PERCENTILE_CONT function

PERCENTILE_CONT is an inverse distribution function that assumes a continuous distribution
model. It takes a percentile value and a sort specification, and returns an interpolated value that
would fall into the given percentile value with respect to the sort specification.

PERCENTILE_CONT computes a linear interpolation between values after ordering them. Using the
percentile value (P) and the number of not null rows (N) in the aggregation group, the function
computes the row number after ordering the rows according to the sort specification. This row
number (RN) is computed according to the formula RN = (1+ (P*(N-1)). The final result of
the aggregate function is computed by linear interpolation between the values from rows at row
numbers CRN = CEILING(RN) and FRN = FLOOR(RN).

The final result will be as follows.

If (CRN = FRN = RN) then the result is (value of expression from row at RN)

Otherwise the result is as follows:

(CRN - RN) * (value of expression for row at FRN) + (RN - FRN) * (value of
expression for row at CRN).

PERCENTILE_CONT is a compute-node only function. The function returns an error if the query
doesn't reference a user-defined table or Amazon Redshift system table.

Aggregate functions 1688

Amazon Redshift Database Developer Guide

Syntax

PERCENTILE_CONT(percentile)
WITHIN GROUP(ORDER BY expr)

Arguments

percentile

Numeric constant between 0 and 1. NULL values are ignored in the calculation.

expr

Specifies numeric or date/time values to sort and compute the percentile over.

Returns

The return type is determined by the data type of the ORDER BY expression in the WITHIN GROUP
clause. The following table shows the return type for each ORDER BY expression data type.

Input type Return type

INT2, INT4, INT8, NUMERIC, DECIMAL DECIMAL

FLOAT, DOUBLE DOUBLE

DATE DATE

TIMESTAMP TIMESTAMP

TIMESTAMPTZ TIMESTAMPTZ

Usage notes

If the ORDER BY expression is a DECIMAL data type defined with the maximum precision of 38
digits, it is possible that PERCENTILE_CONT will return either an inaccurate result or an error. If
the return value of the PERCENTILE_CONT function exceeds 38 digits, the result is truncated to
fit, which causes a loss of precision.. If, during interpolation, an intermediate result exceeds the
maximum precision, a numeric overflow occurs and the function returns an error. To avoid these

Aggregate functions 1689

Amazon Redshift Database Developer Guide

conditions, we recommend either using a data type with lower precision or casting the ORDER BY
expression to a lower precision.

If a statement includes multiple calls to sort-based aggregate functions (LISTAGG,
PERCENTILE_CONT, or MEDIAN), they must all use the same ORDER BY values. Note that MEDIAN
applies an implicit order by on the expression value.

For example, the following statement returns an error.

SELECT TOP 10 salesid, SUM(pricepaid),
PERCENTILE_CONT(0.6) WITHIN GROUP(ORDER BY salesid),
MEDIAN(pricepaid)
FROM sales
GROUP BY salesid, pricepaid;

An error occurred when executing the SQL command:
SELECT TOP 10 salesid, SUM(pricepaid),
PERCENTILE_CONT(0.6) WITHIN GROUP(ORDER BY salesid),
MEDIAN(pricepaid)
FROM sales
GROUP BY salesid, pricepaid;

ERROR: within group ORDER BY clauses for aggregate functions must be the same

The following statement runs successfully.

SELECT TOP 10 salesid, SUM(pricepaid),
PERCENTILE_CONT(0.6) WITHIN GROUP(ORDER BY salesid),
MEDIAN(salesid)
FROM sales
GROUP BY salesid, pricepaid;

Examples

The following examples use the TICKIT sample database. For more information, see Sample
database.

The following example shows that PERCENTILE_CONT(0.5) produces the same results as MEDIAN.

SELECT TOP 10 DISTINCT sellerid, qtysold,
PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY qtysold),
MEDIAN(qtysold)

Aggregate functions 1690

Amazon Redshift Database Developer Guide

FROM sales
GROUP BY sellerid, qtysold;

+----------+---------+-----------------+--------+
| sellerid | qtysold | percentile_cont | median |
+----------+---------+-----------------+--------+
2	2	2	2
26	1	1	1
33	1	1	1
38	1	1	1
43	1	1	1
48	2	2	2
48	3	3	3
77	4	4	4
85	4	4	4
95	2	2	2
+----------+---------+-----------------+--------+

The following example finds PERCENTILE_CONT(0.5) and PERCENTILE_CONT(0.75) for the quantity
sold for each sellerid in the SALES table.

SELECT sellerid,
PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY qtysold) as pct_05,
PERCENTILE_CONT(0.75) WITHIN GROUP(ORDER BY qtysold) as pct_075
FROM sales
GROUP BY sellerid
ORDER BY sellerid
LIMIT 10;

+----------+--------+---------+
| sellerid | pct_05 | pct_075 |
+----------+--------+---------+
1	1.5	1.75
2	2	2.25
3	2	3
4	2	2
5	1	1.5
6	1	1
7	1.5	1.75
8	1	1
9	4	4
12	2	3.25
+----------+--------+---------+

Aggregate functions 1691

Amazon Redshift Database Developer Guide

To verify the results of the previous query for the first sellerid, use the following example.

SELECT qtysold
FROM sales
WHERE sellerid=1;

+---------+
| qtysold |
+---------+
| 2 |
| 1 |
+---------+

STDDEV_SAMP and STDDEV_POP functions

The STDDEV_SAMP and STDDEV_POP functions return the sample and population standard
deviation of a set of numeric values (integer, decimal, or floating-point). The result of the
STDDEV_SAMP function is equivalent to the square root of the sample variance of the same set of
values.

STDDEV_SAMP and STDDEV are synonyms for the same function.

Syntax

STDDEV_SAMP | STDDEV ([DISTINCT | ALL] expression)
STDDEV_POP ([DISTINCT | ALL] expression)

The expression must have an integer, decimal, or floating point data type. Regardless of the data
type of the expression, the return type of this function is a double precision number.

Note

Standard deviation is calculated using floating point arithmetic, which might result in slight
imprecision.

Usage notes

When the sample standard deviation (STDDEV or STDDEV_SAMP) is calculated for an expression
that consists of a single value, the result of the function is NULL not 0.

Aggregate functions 1692

Amazon Redshift Database Developer Guide

Examples

The following query returns the average of the values in the VENUESEATS column of the VENUE
table, followed by the sample standard deviation and population standard deviation of the same
set of values. VENUESEATS is an INTEGER column. The scale of the result is reduced to 2 digits.

select avg(venueseats),
cast(stddev_samp(venueseats) as dec(14,2)) stddevsamp,
cast(stddev_pop(venueseats) as dec(14,2)) stddevpop
from venue;

avg | stddevsamp | stddevpop
-------+------------+-----------
17503 | 27847.76 | 27773.20
(1 row)

The following query returns the sample standard deviation for the COMMISSION column in the
SALES table. COMMISSION is a DECIMAL column. The scale of the result is reduced to 10 digits.

select cast(stddev(commission) as dec(18,10))
from sales;

stddev

130.3912659086
(1 row)

The following query casts the sample standard deviation for the COMMISSION column as an
integer.

select cast(stddev(commission) as integer)
from sales;

stddev

130
(1 row)

The following query returns both the sample standard deviation and the square root of the sample
variance for the COMMISSION column. The results of these calculations are the same.

Aggregate functions 1693

Amazon Redshift Database Developer Guide

select
cast(stddev_samp(commission) as dec(18,10)) stddevsamp,
cast(sqrt(var_samp(commission)) as dec(18,10)) sqrtvarsamp
from sales;

stddevsamp | sqrtvarsamp
----------------+----------------
130.3912659086 | 130.3912659086
(1 row)

SUM function

The SUM function returns the sum of the input column or expression values. The SUM function
works with numeric values and ignores NULL values.

Syntax

SUM ([DISTINCT | ALL] expression)

Arguments

expression

The target column or expression that the function operates on. The expression is one of the
following data types:

• SMALLINT

• INTEGER

• BIGINT

• NUMERIC

• DECIMAL

• REAL

• DOUBLE PRECISON

• SUPER

DISTINCT | ALL

With the argument DISTINCT, the function eliminates all duplicate values from the specified
expression before calculating the sum. With the argument ALL, the function retains all duplicate
values from the expression for calculating the sum. ALL is the default.

Aggregate functions 1694

Amazon Redshift Database Developer Guide

Data types

The argument types supported by the SUM function are SMALLINT, INTEGER, BIGINT, NUMERIC,
DECIMAL, REAL, DOUBLE PRECISION, and SUPER.

The return types supported by the SUM function are

• BIGINT for BIGINT, SMALLINT, and INTEGER arguments

• NUMERIC for NUMERIC arguments

• DOUBLE PRECISION for floating point arguments

• Returns the same data type as expression for any other argument type.

The default precision for a SUM function result with a NUMERIC or DECIMAL argument is 38. The
scale of the result is the same as the scale of the argument. For example, a SUM of a DEC(5,2)
column returns a DEC(38,2) data type.

Examples

Find the sum of all commissions paid from the SALES table:

select sum(commission) from sales;

sum

16614814.65
(1 row)

Find the number of seats in all venues in the state of Florida:

select sum(venueseats) from venue
where venuestate = 'FL';

sum

250411
(1 row)

Find the number of seats sold in May:

select sum(qtysold) from sales, date

Aggregate functions 1695

Amazon Redshift Database Developer Guide

where sales.dateid = date.dateid and date.month = 'MAY';

sum

32291
(1 row)

VAR_SAMP and VAR_POP functions

The VAR_SAMP and VAR_POP functions return the sample and population variance of a set of
numeric values (integer, decimal, or floating-point). The result of the VAR_SAMP function is
equivalent to the squared sample standard deviation of the same set of values.

VAR_SAMP and VARIANCE are synonyms for the same function.

Syntax

VAR_SAMP | VARIANCE ([DISTINCT | ALL] expression)
VAR_POP ([DISTINCT | ALL] expression)

The expression must have an integer, decimal, or floating-point data type. Regardless of the data
type of the expression, the return type of this function is a double precision number.

Note

The results of these functions might vary across data warehouse clusters, depending on the
configuration of the cluster in each case.

Usage notes

When the sample variance (VARIANCE or VAR_SAMP) is calculated for an expression that consists of
a single value, the result of the function is NULL not 0.

Examples

The following query returns the rounded sample and population variance of the NUMTICKETS
column in the LISTING table.

select avg(numtickets),
round(var_samp(numtickets)) varsamp,
round(var_pop(numtickets)) varpop

Aggregate functions 1696

Amazon Redshift Database Developer Guide

from listing;

avg | varsamp | varpop
-----+---------+--------
10 | 54 | 54
(1 row)

The following query runs the same calculations but casts the results to decimal values.

select avg(numtickets),
cast(var_samp(numtickets) as dec(10,4)) varsamp,
cast(var_pop(numtickets) as dec(10,4)) varpop
from listing;

avg | varsamp | varpop
-----+---------+---------
10 | 53.6291 | 53.6288
(1 row)

Array functions

Following, you can find a description for the array functions for SQL that Amazon Redshift
supports to access and manipulate arrays.

Topics

• array function

• array_concat function

• array_flatten function

• get_array_length function

• split_to_array function

• subarray function

array function

Creates an array of the SUPER data type.

Syntax

ARRAY([expr1] [, expr2 [, ...]])

Array functions 1697

Amazon Redshift Database Developer Guide

Argument

expr1, expr2

Expressions of any Amazon Redshift data type except date and time types, since Amazon
Redshift doesn't cast the date and time types to the SUPER data type. The arguments don't
need to be of the same data type.

Return type

The array function returns the SUPER data type.

Example

The following examples show an array of numeric values and an array of different data types.

--an array of numeric values
select array(1,50,null,100);
 array

 [1,50,null,100]
(1 row)

--an array of different data types
select array(1,'abc',true,3.14);
 array

 [1,"abc",true,3.14]
(1 row)

array_concat function

The array_concat function concatenates two arrays to create an array that contains all the elements
in the first array followed by all the elements in the second array. The two arguments must be valid
arrays.

Syntax

array_concat(super_expr1, super_expr2)

Array functions 1698

Amazon Redshift Database Developer Guide

Arguments

super_expr1

The value that specifies the first of the two arrays to concatenate.

super_expr2

The value that specifies the second of the two arrays to concatenate.

Return type

The array_concat function returns a SUPER data value.

Example

The following examples shows concatenation of two arrays of the same type and concatenation of
two arrays of different types.

-- concatenating two arrays
SELECT ARRAY_CONCAT(ARRAY(10001,10002),ARRAY(10003,10004));
 array_concat

 [10001,10002,10003,10004]
(1 row)

-- concatenating two arrays of different types
SELECT ARRAY_CONCAT(ARRAY(10001,10002),ARRAY('ab','cd'));
 array_concat

 [10001,10002,"ab","cd"]
(1 row)

array_flatten function

Merges multiple arrays into a single array of SUPER type.

Syntax

array_flatten(super_expr1,super_expr2,..)

Array functions 1699

Amazon Redshift Database Developer Guide

Arguments

super_expr1,super_expr2

A valid SUPER expression of array form.

Return type

The array_flatten function returns a SUPER data value.

Example

The following example shows an array_flatten function.

SELECT ARRAY_FLATTEN(ARRAY(ARRAY(1,2,3,4),ARRAY(5,6,7,8),ARRAY(9,10)));
 array_flatten

 [1,2,3,4,5,6,7,8,9,10]
(1 row)

get_array_length function

Returns the length of the specified array. The GET_ARRAY_LENGTH function returns the length of a
SUPER array given an object or array path.

Syntax

get_array_length(super_expr)

Arguments

super_expr

A valid SUPER expression of array form.

Return type

The get_array_length function returns a BIGINT.

Example

The following example shows a get_array_length function.

Array functions 1700

Amazon Redshift Database Developer Guide

SELECT GET_ARRAY_LENGTH(ARRAY(1,2,3,4,5,6,7,8,9,10));
 get_array_length

 10
(1 row)

split_to_array function

Uses a delimiter as an optional parameter. If no delimiter is present, then the default is a comma.

Syntax

split_to_array(string,delimiter)

Arguments

string

The input string to be split.

delimiter

An optional value on which the input string will be split. The default is a comma.

Return type

The split_to_array function returns a SUPER data value.

Example

The following example show a split_to_array function.

SELECT SPLIT_TO_ARRAY('12|345|6789', '|');
 split_to_array

 ["12","345","6789"]
(1 row)

subarray function

Manipulates arrays to return a subset of the input arrays.

Array functions 1701

Amazon Redshift Database Developer Guide

Syntax

SUBARRAY(super_expr, start_position, length)

Arguments

super_expr

A valid SUPER expression in array form.

start_position

The position within the array to begin the extraction, starting at index position 0. A negative
position counts backward from the end of the array.

length

The number of elements to extract (the length of the substring).

Return type

The subarray function returns a SUPER data value.

Examples

The following is an example of a subarray function.

 SELECT SUBARRAY(ARRAY('a', 'b', 'c', 'd', 'e', 'f'), 2, 3);
 subarray

 ["c","d","e"]
(1 row)

Bit-wise aggregate functions

Bit-wise aggregate functions compute bit operations to perform aggregation of integer columns
and columns that can be converted or rounded to integer values.

Topics

• Using NULLs in bit-wise aggregations

• DISTINCT support for bit-wise aggregations

Bit-wise aggregate functions 1702

Amazon Redshift Database Developer Guide

• Overview examples for bit-wise functions

• BIT_AND function

• BIT_OR function

• BOOL_AND function

• BOOL_OR function

Using NULLs in bit-wise aggregations

When you apply a bit-wise function to a column that is nullable, any NULL values are eliminated
before the function result is calculated. If no rows qualify for aggregation, the bit-wise function
returns NULL. The same behavior applies to regular aggregate functions. Following is an example.

select sum(venueseats), bit_and(venueseats) from venue
where venueseats is null;

sum | bit_and
------+---------
null | null
(1 row)

DISTINCT support for bit-wise aggregations

As other aggregate functions do, bit-wise functions support the DISTINCT keyword.

However, using DISTINCT with these functions has no impact on the results. The first instance of
a value is sufficient to satisfy bit-wise AND or OR operations. It makes no difference if duplicate
values are present in the expression being evaluated.

Because the DISTINCT processing is likely to incur some query execution overhead, we recommend
that you don't use DISTINCT with bit-wise functions.

Overview examples for bit-wise functions

Following, you can find some overview examples demonstrating how to work with the bit-wise
functions. You can also find specific code examples with each function description.

Examples for the bit-wise functions are based on the TICKIT sample database. The USERS table
in the TICKIT sample database contains several Boolean columns that indicate whether each user

Bit-wise aggregate functions 1703

Amazon Redshift Database Developer Guide

is known to like different types of events, such as sports, theatre, opera, and so on. An example
follows.

select userid, username, lastname, city, state,
likesports, liketheatre
from users limit 10;

userid | username | lastname | city | state | likesports | liketheatre
-------+----------+-----------+--------------+-------+------------+-------------
1 | JSG99FHE | Taylor | Kent | WA | t | t
9 | MSD36KVR | Watkins | Port Orford | MD | t | f

Assume that a new version of the USERS table is built in a different way. In this new version, a
single integer column that defines (in binary form) eight types of events that each user likes or
dislikes. In this design, each bit position represents a type of event. A user who likes all eight types
has all eight bits set to 1 (as in the first row of the following table). A user who doesn't like any of
these events has all eight bits set to 0 (see the second row). A user who likes only sports and jazz is
represented in the third row following.

 SPORTS THEATRE JAZZ OPERA ROCK VEGAS BROADWAYCLASSICAL

User 1 1 1 1 1 1 1 1 1

User 2 0 0 0 0 0 0 0 0

User 3 1 0 1 0 0 0 0 0

In the database table, these binary values can be stored in a single LIKES column as integers, as
shown following.

User Binary value Stored value (integer)

User 1 11111111 255

User 2 00000000 0

User 3 10100000 160

Bit-wise aggregate functions 1704

Amazon Redshift Database Developer Guide

BIT_AND function

The BIT_AND function runs bit-wise AND operations on all of the values in a single integer column
or expression. This function aggregates each bit of each binary value that corresponds to each
integer value in the expression.

The BIT_AND function returns a result of 0 if none of the bits is set to 1 across all of the values. If
one or more bits is set to 1 across all values, the function returns an integer value. This integer is
the number that corresponds to the binary value for the those bits.

For example, a table contains four integer values in a column: 3, 7, 10, and 22. These integers are
represented in binary form as follows:

Integer Binary value

3 11

7 111

10 1010

22 10110

A BIT_AND operation on this dataset finds that all bits are set to 1 in the second-to-last position
only. The result is a binary value of 00000010, which represents the integer value 2. Therefore, the
BIT_AND function returns 2.

Syntax

BIT_AND ([DISTINCT | ALL] expression)

Arguments

expression

The target column or expression that the function operates on. This expression must have an
INT, INT2, or INT8 data type. The function returns an equivalent INT, INT2, or INT8 data type.

Bit-wise aggregate functions 1705

Amazon Redshift Database Developer Guide

DISTINCT | ALL

With the argument DISTINCT, the function eliminates all duplicate values for the specified
expression before calculating the result. With the argument ALL, the function retains all
duplicate values. ALL is the default. For more information, see DISTINCT support for bit-wise
aggregations.

Examples

Given that meaningful business information is stored in integer columns, you can use bit-wise
functions to extract and aggregate that information. The following query applies the BIT_AND
function to the LIKES column in a table called USERLIKES and groups the results by the CITY
column.

select city, bit_and(likes) from userlikes group by city
order by city;
city | bit_and
--------------+---------
Los Angeles | 0
Sacramento | 0
San Francisco | 0
San Jose | 64
Santa Barbara | 192
(5 rows)

You can interpret these results as follows:

• The integer value 192 for Santa Barbara translates to the binary value 11000000. In other
words, all users in this city like sports and theatre, but not all users like any other type of event.

• The integer 64 translates to 01000000. So, for users in San Jose, the only type of event that they
all like is theatre.

• The values of 0 for the other three cities indicate that no "likes" are shared by all users in those
cities.

BIT_OR function

The BIT_OR function runs bit-wise OR operations on all of the values in a single integer column or
expression. This function aggregates each bit of each binary value that corresponds to each integer
value in the expression.

Bit-wise aggregate functions 1706

Amazon Redshift Database Developer Guide

For example, suppose that your table contains four integer values in a column: 3, 7, 10, and 22.
These integers are represented in binary form as follows.

Integer Binary value

3 11

7 111

10 1010

22 10110

If you apply the BIT_OR function to the set of integer values, the operation looks for any value in
which a 1 is found in each position. In this case, a 1 exists in the last five positions for at least one
of the values, yielding a binary result of 00011111; therefore, the function returns 31 (or 16 + 8
+ 4 + 2 + 1).

Syntax

BIT_OR ([DISTINCT | ALL] expression)

Arguments

expression

The target column or expression that the function operates on. This expression must have an
INT, INT2, or INT8 data type. The function returns an equivalent INT, INT2, or INT8 data type.

DISTINCT | ALL

With the argument DISTINCT, the function eliminates all duplicate values for the specified
expression before calculating the result. With the argument ALL, the function retains all
duplicate values. ALL is the default. For more information, see DISTINCT support for bit-wise
aggregations.

Example

The following query applies the BIT_OR function to the LIKES column in a table called USERLIKES
and groups the results by the CITY column.

Bit-wise aggregate functions 1707

Amazon Redshift Database Developer Guide

select city, bit_or(likes) from userlikes group by city
order by city;
city | bit_or
--------------+--------
Los Angeles | 127
Sacramento | 255
San Francisco | 255
San Jose | 255
Santa Barbara | 255
(5 rows)

For four of the cities listed, all of the event types are liked by at least one user (255=11111111).
For Los Angeles, all of the event types except sports are liked by at least one user
(127=01111111).

BOOL_AND function

The BOOL_AND function operates on a single Boolean or integer column or expression. This
function applies similar logic to the BIT_AND and BIT_OR functions. For this function, the return
type is a Boolean value (true or false).

If all values in a set are true, the BOOL_AND function returns true (t). If any value is false, the
function returns false (f).

Syntax

BOOL_AND ([DISTINCT | ALL] expression)

Arguments

expression

The target column or expression that the function operates on. This expression must have a
BOOLEAN or integer data type. The return type of the function is BOOLEAN.

DISTINCT | ALL

With the argument DISTINCT, the function eliminates all duplicate values for the specified
expression before calculating the result. With the argument ALL, the function retains all
duplicate values. ALL is the default. For more information, see DISTINCT support for bit-wise
aggregations.

Bit-wise aggregate functions 1708

Amazon Redshift Database Developer Guide

Examples

You can use the Boolean functions against either Boolean expressions or integer expressions. For
example, the following query return results from the standard USERS table in the TICKIT database,
which has several Boolean columns.

The BOOL_AND function returns false for all five rows. Not all users in each of those states likes
sports.

select state, bool_and(likesports) from users
group by state order by state limit 5;

state | bool_and
------+---------
AB | f
AK | f
AL | f
AZ | f
BC | f
(5 rows)

BOOL_OR function

The BOOL_OR function operates on a single Boolean or integer column or expression. This function
applies similar logic to the BIT_AND and BIT_OR functions. For this function, the return type is a
Boolean value (true, false, or NULL).

If one or more values in a set is true, the BOOL_OR function returns true (t). If all values in a set
are false, the function returns false (f). NULL can be returned if the value is unknown.

Syntax

BOOL_OR ([DISTINCT | ALL] expression)

Arguments

expression

The target column or expression that the function operates on. This expression must have a
BOOLEAN or integer data type. The return type of the function is BOOLEAN.

Bit-wise aggregate functions 1709

Amazon Redshift Database Developer Guide

DISTINCT | ALL

With the argument DISTINCT, the function eliminates all duplicate values for the specified
expression before calculating the result. With the argument ALL, the function retains all
duplicate values. ALL is the default. See DISTINCT support for bit-wise aggregations.

Examples

You can use the Boolean functions with either Boolean expressions or integer expressions. For
example, the following query return results from the standard USERS table in the TICKIT database,
which has several Boolean columns.

The BOOL_OR function returns true for all five rows. At least one user in each of those states likes
sports.

select state, bool_or(likesports) from users
group by state order by state limit 5;

state | bool_or
------+--------
AB | t
AK | t
AL | t
AZ | t
BC | t
(5 rows)

The following example returns NULL.

SELECT BOOL_OR(NULL = '123')
 bool_or

NULL

Conditional expressions

Topics

• CASE conditional expression

• DECODE function

• GREATEST and LEAST functions

Conditional expressions 1710

Amazon Redshift Database Developer Guide

• NVL and COALESCE functions

• NVL2 function

• NULLIF function

Amazon Redshift supports some conditional expressions that are extensions to the SQL standard.

CASE conditional expression

The CASE expression is a conditional expression, similar to if/then/else statements found in other
languages. CASE is used to specify a result when there are multiple conditions. Use CASE where a
SQL expression is valid, such as in a SELECT command.

There are two types of CASE expressions: simple and searched.

• In simple CASE expressions, an expression is compared with a value. When a match is found, the
specified action in the THEN clause is applied. If no match is found, the action in the ELSE clause
is applied.

• In searched CASE expressions, each CASE is evaluated based on a Boolean expression, and the
CASE statement returns the first matching CASE. If no match is found among the WHEN clauses,
the action in the ELSE clause is returned.

Syntax

Simple CASE statement used to match conditions:

CASE expression
 WHEN value THEN result
 [WHEN...]
 [ELSE result]
END

Searched CASE statement used to evaluate each condition:

CASE
 WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

Conditional expressions 1711

Amazon Redshift Database Developer Guide

Arguments

expression

A column name or any valid expression.

value

Value that the expression is compared with, such as a numeric constant or a character string.

result

The target value or expression that is returned when an expression or Boolean condition is
evaluated. The data types of all the result expressions must be convertible to a single output
type.

condition

A Boolean expression that evaluates to true or false. If condition is true, the value of the CASE
expression is the result that follows the condition, and the remainder of the CASE expression
is not processed. If condition is false, any subsequent WHEN clauses are evaluated. If no WHEN
condition results are true, the value of the CASE expression is the result of the ELSE clause. If
the ELSE clause is omitted and no condition is true, the result is null.

Examples

The following examples use the VENUE table and SALES table from the sample TICKIT data. For
more information, see Sample database.

Use a simple CASE expression to replace New York City with Big Apple in a query against the
VENUE table. Replace all other city names with other.

select venuecity,
 case venuecity
 when 'New York City'
 then 'Big Apple' else 'other'
 end
from venue
order by venueid desc;

venuecity | case
-----------------+-----------
Los Angeles | other
New York City | Big Apple

Conditional expressions 1712

Amazon Redshift Database Developer Guide

San Francisco | other
Baltimore | other
...

Use a searched CASE expression to assign group numbers based on the PRICEPAID value for
individual ticket sales:

select pricepaid,
 case when pricepaid <10000 then 'group 1'
 when pricepaid >10000 then 'group 2'
 else 'group 3'
 end
from sales
order by 1 desc;

pricepaid | case
----------+---------
12624 | group 2
10000 | group 3
10000 | group 3
9996 | group 1
9988 | group 1
...

DECODE function

A DECODE expression replaces a specific value with either another specific value or a default value,
depending on the result of an equality condition. This operation is equivalent to the operation of a
simple CASE expression or an IF-THEN-ELSE statement.

Syntax

DECODE (expression, search, result [, search, result]... [,default])

This type of expression is useful for replacing abbreviations or codes that are stored in tables with
meaningful business values that are needed for reports.

Parameters

expression

The source of the value that you want to compare, such as a column in a table.

Conditional expressions 1713

Amazon Redshift Database Developer Guide

search

The target value that is compared against the source expression, such as a numeric value or a
character string. The search expression must evaluate to a single fixed value. You cannot specify
an expression that evaluates to a range of values, such as age between 20 and 29; you need
to specify separate search/result pairs for each value that you want to replace.

The data type of all instances of the search expression must be the same or compatible. The
expression and search parameters must also be compatible.

result

The replacement value that query returns when the expression matches the search value. You
must include at least one search/result pair in the DECODE expression.

The data types of all instances of the result expression must be the same or compatible. The
result and default parameters must also be compatible.

default

An optional default value that is used for cases when the search condition fails. If you do not
specify a default value, the DECODE expression returns NULL.

Usage notes

If the expression value and the search value are both NULL, the DECODE result is the corresponding
result value. For an illustration of this use of the function, see the Examples section.

When used this way, DECODE is similar to NVL2 function, but there are some differences. For a
description of these differences, see the NVL2 usage notes.

Examples

When the value 2008-06-01 exists in the caldate column of datetable, the following example
replaces it with June 1st, 2008. The example replaces all other caldate values with NULL.

select decode(caldate, '2008-06-01', 'June 1st, 2008')
from datetable where month='JUN' order by caldate;

case

June 1st, 2008

Conditional expressions 1714

Amazon Redshift Database Developer Guide

...
(30 rows)

The following example uses a DECODE expression to convert the five abbreviated CATNAME
columns in the CATEGORY table to full names and convert other values in the column to Unknown.

select catid, decode(catname,
'NHL', 'National Hockey League',
'MLB', 'Major League Baseball',
'MLS', 'Major League Soccer',
'NFL', 'National Football League',
'NBA', 'National Basketball Association',
'Unknown')
from category
order by catid;

catid | case
-------+---------------------------------
1 | Major League Baseball
2 | National Hockey League
3 | National Football League
4 | National Basketball Association
5 | Major League Soccer
6 | Unknown
7 | Unknown
8 | Unknown
9 | Unknown
10 | Unknown
11 | Unknown
(11 rows)

Use a DECODE expression to find venues in Colorado and Nevada with NULL in the VENUESEATS
column; convert the NULLs to zeroes. If the VENUESEATS column is not NULL, return 1 as the
result.

select venuename, venuestate, decode(venueseats,null,0,1)
from venue
where venuestate in('NV','CO')
order by 2,3,1;

venuename | venuestate | case
------------------------------+----------------+-----------

Conditional expressions 1715

Amazon Redshift Database Developer Guide

Coors Field | CO | 1
Dick's Sporting Goods Park | CO | 1
Ellie Caulkins Opera House | CO | 1
INVESCO Field | CO | 1
Pepsi Center | CO | 1
Ballys Hotel | NV | 0
Bellagio Hotel | NV | 0
Caesars Palace | NV | 0
Harrahs Hotel | NV | 0
Hilton Hotel | NV | 0
...
(20 rows)

GREATEST and LEAST functions

Returns the largest or smallest value from a list of any number of expressions.

Syntax

GREATEST (value [, ...])
LEAST (value [, ...])

Parameters

expression_list

A comma-separated list of expressions, such as column names. The expressions must all be
convertible to a common data type. NULL values in the list are ignored. If all of the expressions
evaluate to NULL, the result is NULL.

Returns

Returns the greatest (for GREATEST) or least (for LEAST) value from the provided list of
expressions.

Example

The following example returns the highest value alphabetically for firstname or lastname.

select firstname, lastname, greatest(firstname,lastname) from users
where userid < 10

Conditional expressions 1716

Amazon Redshift Database Developer Guide

order by 3;

 firstname | lastname | greatest
-----------+-----------+-----------
 Lars | Ratliff | Ratliff
 Reagan | Hodge | Reagan
 Colton | Roy | Roy
 Barry | Roy | Roy
 Tamekah | Juarez | Tamekah
 Rafael | Taylor | Taylor
 Victor | Hernandez | Victor
 Vladimir | Humphrey | Vladimir
 Mufutau | Watkins | Watkins
(9 rows)

NVL and COALESCE functions

Returns the value of the first expression that isn't null in a series of expressions. When a non-null
value is found, the remaining expressions in the list aren't evaluated.

NVL is identical to COALESCE. They are synonyms. This topic explains the syntax and contains
examples for both.

Syntax

NVL(expression, expression, ...)

The syntax for COALESCE is the same:

COALESCE(expression, expression, ...)

If all expressions are null, the result is null.

These functions are useful when you want to return a secondary value when a primary value is
missing or null. For example, a query might return the first of three available phone numbers: cell,
home, or work. The order of the expressions in the function determines the order of evaluation.

Arguments

expression

An expression, such as a column name, to be evaluated for null status.

Conditional expressions 1717

Amazon Redshift Database Developer Guide

Return type

Amazon Redshift determines the data type of the returned value based on the input expressions. If
the data types of the input expressions don't have a common type, then an error is returned.

Examples

If the list contains integer expressions, the function returns an integer.

SELECT COALESCE(NULL, 12, NULL);

coalesce

12

This example, which is the same as the previous example, except that it uses NVL, returns the same
result.

SELECT NVL(NULL, 12, NULL);

coalesce

12

The following example returns a string type.

SELECT COALESCE(NULL, 'Amazon Redshift', NULL);

coalesce

Amazon Redshift

The following example results in an error because the data types vary in the expression list. In this
case, there is both a string type and a number type in the list.

SELECT COALESCE(NULL, 'Amazon Redshift', 12);
ERROR: invalid input syntax for integer: "Amazon Redshift"

For this example, you create a table with START_DATE and END_DATE columns, insert rows that
include null values, then apply an NVL expression to the two columns.

Conditional expressions 1718

Amazon Redshift Database Developer Guide

create table datetable (start_date date, end_date date);
insert into datetable values ('2008-06-01','2008-12-31');
insert into datetable values (null,'2008-12-31');
insert into datetable values ('2008-12-31',null);

select nvl(start_date, end_date)
from datetable
order by 1;

coalesce

2008-06-01
2008-12-31
2008-12-31

The default column name for an NVL expression is COALESCE. The following query returns the
same results:

select coalesce(start_date, end_date)
from datetable
order by 1;

For the following example queries, you create a table with sample hotel-booking information and
insert several rows. Some records contain null values.

create table booking_info (booking_id int, booking_code character(8), check_in date,
 check_out date, funds_collected numeric(12,2));

Insert the following sample data. Some records don't have a check_out date or
funds_collected amount.

insert into booking_info values (1, 'OCEAN_WV', '2023-02-01','2023-02-03',100.00);
insert into booking_info values (2, 'OCEAN_WV', '2023-04-22','2023-04-26',120.00);
insert into booking_info values (3, 'DSRT_SUN', '2023-03-13','2023-03-16',125.00);
insert into booking_info values (4, 'DSRT_SUN', '2023-06-01','2023-06-03',140.00);
insert into booking_info values (5, 'DSRT_SUN', '2023-07-10',null,null);
insert into booking_info values (6, 'OCEAN_WV', '2023-08-15',null,null);

The following query returns a list of dates. If the check_out date isn't available, it lists the
check_in date.

Conditional expressions 1719

Amazon Redshift Database Developer Guide

select coalesce(check_out, check_in)
from booking_info
order by booking_id;

The results are the following. Note that the last two records show the check_in date.

coalesce

2023-02-03
2023-04-26
2023-03-16
2023-06-03
2023-07-10
2023-08-15

If you expect a query to return null values for certain functions or columns, you can use an NVL
expression to replace the nulls with some other value. For example, aggregate functions, such
as SUM, return null values instead of zeroes when they have no rows to evaluate. You can use an
NVL expression to replace these null values with 700.0. Instead of 485, the result of summing the
funds_collected is 1885 because two rows that have null are replaced with 700.

select sum(nvl(funds_collected, 700.0)) as sumresult from booking_info;

sumresult

 1885

NVL2 function

Returns one of two values based on whether a specified expression evaluates to NULL or NOT
NULL.

Syntax

NVL2 (expression, not_null_return_value, null_return_value)

Arguments

expression

An expression, such as a column name, to be evaluated for null status.

Conditional expressions 1720

Amazon Redshift Database Developer Guide

not_null_return_value

The value returned if expression evaluates to NOT NULL. The not_null_return_value value must
either have the same data type as expression or be implicitly convertible to that data type.

null_return_value

The value returned if expression evaluates to NULL. The null_return_value value must either
have the same data type as expression or be implicitly convertible to that data type.

Return type

The NVL2 return type is determined as follows:

• If either not_null_return_value or null_return_value is null, the data type of the not-null
expression is returned.

If both not_null_return_value and null_return_value are not null:

• If not_null_return_value and null_return_value have the same data type, that data type is
returned.

• If not_null_return_value and null_return_value have different numeric data types, the smallest
compatible numeric data type is returned.

• If not_null_return_value and null_return_value have different datetime data types, a timestamp
data type is returned.

• If not_null_return_value and null_return_value have different character data types, the data type
of not_null_return_value is returned.

• If not_null_return_value and null_return_value have mixed numeric and non-numeric data types,
the data type of not_null_return_value is returned.

Important

In the last two cases where the data type of not_null_return_value is returned,
null_return_value is implicitly cast to that data type. If the data types are incompatible, the
function fails.

Conditional expressions 1721

Amazon Redshift Database Developer Guide

Usage notes

DECODE function can be used in a similar way to NVL2 when the expression and search parameters
are both null. The difference is that for DECODE, the return will have both the value and the data
type of the result parameter. In contrast, for NVL2, the return will have the value of either the
not_null_return_value or null_return_value parameter, whichever is selected by the function, but
will have the data type of not_null_return_value.

For example, assuming column1 is NULL, the following queries will return the same value.
However, the DECODE return value data type will be INTEGER and the NVL2 return value data type
will be VARCHAR.

select decode(column1, null, 1234, '2345');
select nvl2(column1, '2345', 1234);

Example

The following example modifies some sample data, then evaluates two fields to provide
appropriate contact information for users:

update users set email = null where firstname = 'Aphrodite' and lastname = 'Acevedo';

select (firstname + ' ' + lastname) as name,
nvl2(email, email, phone) AS contact_info
from users
where state = 'WA'
and lastname like 'A%'
order by lastname, firstname;

name contact_info
--------------------+---
Aphrodite Acevedo (906) 632-4407
Caldwell Acevedo Nunc.sollicitudin@Duisac.ca
Quinn Adams vel@adipiscingligulaAenean.com
Kamal Aguilar quis@vulputaterisusa.com
Samson Alexander hendrerit.neque@indolorFusce.ca
Hall Alford ac.mattis@vitaediamProin.edu
Lane Allen et.netus@risusDonec.org
Xander Allison ac.facilisis.facilisis@Infaucibus.com
Amaya Alvarado dui.nec.tempus@eudui.edu
Vera Alvarez at.arcu.Vestibulum@pellentesque.edu
Yetta Anthony enim.sit@risus.org

Conditional expressions 1722

Amazon Redshift Database Developer Guide

Violet Arnold ad.litora@at.com
August Ashley consectetuer.euismod@Phasellus.com
Karyn Austin ipsum.primis.in@Maurisblanditenim.org
Lucas Ayers at@elitpretiumet.com

NULLIF function

Syntax

The NULLIF expression compares two arguments and returns null if the arguments are equal. If
they are not equal, the first argument is returned. This expression is the inverse of the NVL or
COALESCE expression.

NULLIF (expression1, expression2)

Arguments

expression1, expression2

The target columns or expressions that are compared. The return type is the same as the type
of the first expression. The default column name of the NULLIF result is the column name of the
first expression.

Examples

In the following example, the query returns the string first because the arguments are not equal.

SELECT NULLIF('first', 'second');

case

first

In the following example, the query returns NULL because the string literal arguments are equal.

SELECT NULLIF('first', 'first');

case

NULL

Conditional expressions 1723

Amazon Redshift Database Developer Guide

In the following example, the query returns 1 because the integer arguments are not equal.

SELECT NULLIF(1, 2);

case

1

In the following example, the query returns NULL because the integer arguments are equal.

SELECT NULLIF(1, 1);

case

NULL

In the following example, the query returns null when the LISTID and SALESID values match:

select nullif(listid,salesid), salesid
from sales where salesid<10 order by 1, 2 desc;

listid | salesid
--------+---------
 4 | 2
 5 | 4
 5 | 3
 6 | 5
 10 | 9
 10 | 8
 10 | 7
 10 | 6
 | 1
(9 rows)

You can use NULLIF to ensure that empty strings are always returned as nulls. In the example
below, the NULLIF expression returns either a null value or a string that contains at least one
character.

insert into category
values(0,'','Special','Special');

Conditional expressions 1724

Amazon Redshift Database Developer Guide

select nullif(catgroup,'') from category
where catdesc='Special';

catgroup

null
(1 row)

NULLIF ignores trailing blanks. If a string is not empty but contains blanks, NULLIF still returns null:

create table nulliftest(c1 char(2), c2 char(2));

insert into nulliftest values ('a','a ');

insert into nulliftest values ('b','b');

select nullif(c1,c2) from nulliftest;
c1

null
null
(2 rows)

Data type formatting functions

Topics

• CAST function

• CONVERT function

• TO_CHAR

• TO_DATE function

• TO_NUMBER

• TEXT_TO_INT_ALT

• TEXT_TO_NUMERIC_ALT

• Datetime format strings

• Numeric format strings

• Teradata-style formatting characters for numeric data

Data type formatting functions 1725

Amazon Redshift Database Developer Guide

Data type formatting functions provide an easy way to convert values from one data type to
another. For each of these functions, the first argument is always the value to be formatted and
the second argument contains the template for the new format. Amazon Redshift supports several
data type formatting functions.

CAST function

The CAST function converts one data type to another compatible data type. For instance, you
can convert a string to a date, or a numeric type to a string. CAST performs a runtime conversion,
which means that the conversion doesn't change a value's data type in a source table. It's changed
only in the context of the query.

The CAST function is very similar to the section called “CONVERT”, in that they both convert one
data type to another, but they are called differently.

Certain data types require an explicit conversion to other data types using the CAST or CONVERT
function. Other data types can be converted implicitly, as part of another command, without using
CAST or CONVERT. See Type compatibility and conversion.

Syntax

Use either of these two equivalent syntax forms to cast expressions from one data type to another.

CAST (expression AS type)
expression :: type

Arguments

expression

An expression that evaluates to one or more values, such as a column name or a literal.
Converting null values returns nulls. The expression cannot contain blank or empty strings.

type

One of the supported Data types.

Return type

CAST returns the data type specified by the type argument.

Data type formatting functions 1726

Amazon Redshift Database Developer Guide

Note

Amazon Redshift returns an error if you try to perform a problematic conversion, such as a
DECIMAL conversion that loses precision, like the following:

select 123.456::decimal(2,1);

or an INTEGER conversion that causes an overflow:

select 12345678::smallint;

Examples

Some of the examples use the sample TICKIT database. For more information about setting up
sample data, see Load data.

The following two queries are equivalent. They both cast a decimal value to an integer:

select cast(pricepaid as integer)
from sales where salesid=100;

pricepaid

162
(1 row)

select pricepaid::integer
from sales where salesid=100;

pricepaid

162
(1 row)

The following produces a similar result. It doesn't require sample data to run:

select cast(162.00 as integer) as pricepaid;

pricepaid

Data type formatting functions 1727

https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html
https://docs.aws.amazon.com/redshift/latest/gsg/cm-dev-t-load-sample-data.html

Amazon Redshift Database Developer Guide

162
(1 row)

In this example, the values in a timestamp column are cast as dates, which results in removing the
time from each result:

select cast(saletime as date), salesid
from sales order by salesid limit 10;

 saletime | salesid
-----------+---------
2008-02-18 | 1
2008-06-06 | 2
2008-06-06 | 3
2008-06-09 | 4
2008-08-31 | 5
2008-07-16 | 6
2008-06-26 | 7
2008-07-10 | 8
2008-07-22 | 9
2008-08-06 | 10
(10 rows)

If you didn't use CAST as illustrated in the previous sample, the results would include the time:
2008-02-18 02:36:48.

The following query casts variable character data to a date. It doesn't require sample data to run.

select cast('2008-02-18 02:36:48' as date) as mysaletime;

mysaletime

2008-02-18
(1 row)

In this example, the values in a date column are cast as timestamps:

select cast(caldate as timestamp), dateid
from date order by dateid limit 10;

 caldate | dateid

Data type formatting functions 1728

Amazon Redshift Database Developer Guide

--------------------+--------
2008-01-01 00:00:00 | 1827
2008-01-02 00:00:00 | 1828
2008-01-03 00:00:00 | 1829
2008-01-04 00:00:00 | 1830
2008-01-05 00:00:00 | 1831
2008-01-06 00:00:00 | 1832
2008-01-07 00:00:00 | 1833
2008-01-08 00:00:00 | 1834
2008-01-09 00:00:00 | 1835
2008-01-10 00:00:00 | 1836
(10 rows)

In a case like the previous sample, you can gain additional control over output formatting by using
TO_CHAR.

In this example, an integer is cast as a character string:

select cast(2008 as char(4));

bpchar

2008

In this example, a DECIMAL(6,3) value is cast as a DECIMAL(4,1) value:

select cast(109.652 as decimal(4,1));

numeric

109.7

This example shows a more complex expression. The PRICEPAID column (a DECIMAL(8,2) column)
in the SALES table is converted to a DECIMAL(38,2) column and the values are multiplied by
100000000000000000000:

select salesid, pricepaid::decimal(38,2)*100000000000000000000
as value from sales where salesid<10 order by salesid;

 salesid | value
---------+----------------------------

Data type formatting functions 1729

https://docs.aws.amazon.com/redshift/latest/dg/r_TO_CHAR.html

Amazon Redshift Database Developer Guide

 1 | 72800000000000000000000.00
 2 | 7600000000000000000000.00
 3 | 35000000000000000000000.00
 4 | 17500000000000000000000.00
 5 | 15400000000000000000000.00
 6 | 39400000000000000000000.00
 7 | 78800000000000000000000.00
 8 | 19700000000000000000000.00
 9 | 59100000000000000000000.00
(9 rows)

Note

You can't perform a CAST or CONVERT operation on the GEOMETRY data type to change it
to another data type. However, you can provide a hexadecimal representation of a string
literal in extended well-known binary (EWKB) format as input to functions that accept a
GEOMETRY argument. For example, the ST_AsText function following expects a GEOMETRY
data type.

SELECT ST_AsText('01010000000000000000001C400000000000002040');

st_astext

 POINT(7 8)

You can also explicitly specify the GEOMETRY data type.

SELECT ST_AsText('010100000000000000000014400000000000001840'::geometry);

st_astext

 POINT(5 6)

CONVERT function

Like the CAST function, the CONVERT function converts one data type to another compatible
data type. For instance, you can convert a string to a date, or a numeric type to a string. CONVERT

Data type formatting functions 1730

https://docs.aws.amazon.com/redshift/latest/dg/r_CAST_function.html

Amazon Redshift Database Developer Guide

performs a runtime conversion, which means that the conversion doesn't change a value's data
type in a source table. It's changed only in the context of the query.

Certain data types require an explicit conversion to other data types using the CONVERT function.
Other data types can be converted implicitly, as part of another command, without using CAST or
CONVERT. See Type compatibility and conversion.

Syntax

CONVERT (type, expression)

Arguments

type

One of the supported Data types.

expression

An expression that evaluates to one or more values, such as a column name or a literal.
Converting null values returns nulls. The expression cannot contain blank or empty strings.

Return type

CONVERT returns the data type specified by the type argument.

Note

Amazon Redshift returns an error if you try to perform a problematic conversion, such as a
DECIMAL conversion that loses precision, like the following:

SELECT CONVERT(decimal(2,1), 123.456);

or an INTEGER conversion that causes an overflow:

SELECT CONVERT(smallint, 12345678);

Data type formatting functions 1731

Amazon Redshift Database Developer Guide

Examples

Some of the examples use the sample TICKIT database. For more information about setting up
sample data, see Load data.

The following query uses the CONVERT function to convert a column of decimals into integers

SELECT CONVERT(integer, pricepaid)
FROM sales WHERE salesid=100;

This example converts an integer into a character string.

SELECT CONVERT(char(4), 2008);

In this example, the current date and time is converted to a variable character data type:

SELECT CONVERT(VARCHAR(30), GETDATE());

getdate

2023-02-02 04:31:16

This example converts the saletime column into just the time, removing the dates from each row.

SELECT CONVERT(time, saletime), salesid
FROM sales order by salesid limit 10;

For information about converting a timestamp from one time zone to another, see the
CONVERT_TIMEZONE function. For additional date and time functions, see Date and time
functions.

The following example converts variable character data into a datetime object.

SELECT CONVERT(datetime, '2008-02-18 02:36:48') as mysaletime;

Note

You can't perform a CAST or CONVERT operation on the GEOMETRY data type to change it
to another data type. However, you can provide a hexadecimal representation of a string

Data type formatting functions 1732

https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html
https://docs.aws.amazon.com/redshift/latest/gsg/cm-dev-t-load-sample-data.html

Amazon Redshift Database Developer Guide

literal in extended well-known binary (EWKB) format as input to functions that accept a
GEOMETRY argument. For example, the ST_AsText function following expects a GEOMETRY
data type.

SELECT ST_AsText('01010000000000000000001C400000000000002040');

st_astext

 POINT(7 8)

You can also explicitly specify the GEOMETRY data type.

SELECT ST_AsText('010100000000000000000014400000000000001840'::geometry);

st_astext

 POINT(5 6)

TO_CHAR

TO_CHAR converts a timestamp or numeric expression to a character-string data format.

Syntax

TO_CHAR (timestamp_expression | numeric_expression , 'format')

Arguments

timestamp_expression

An expression that results in a TIMESTAMP or TIMESTAMPTZ type value or a value that can
implicitly be coerced to a timestamp.

numeric_expression

An expression that results in a numeric data type value or a value that can implicitly be coerced
to a numeric type. For more information, see Numeric types. TO_CHAR inserts a space to the
left of the numeral string.

Data type formatting functions 1733

Amazon Redshift Database Developer Guide

Note

TO_CHAR does not support 128-bit DECIMAL values.

format

The format for the new value. For valid formats, see Datetime format strings and Numeric
format strings.

Return type

VARCHAR

Examples

The following example converts a timestamp to a value with the date and time in a format with
the name of the month padded to nine characters, the name of the day of the week, and the day
number of the month.

select to_char(timestamp '2009-12-31 23:15:59', 'MONTH-DY-DD-YYYY HH12:MIPM');

to_char

DECEMBER -THU-31-2009 11:15PM

The following example converts a timestamp to a value with day number of the year.

select to_char(timestamp '2009-12-31 23:15:59', 'DDD');

to_char

365

The following example converts a timestamp to an ISO day number of the week.

select to_char(timestamp '2022-05-16 23:15:59', 'ID');

to_char

Data type formatting functions 1734

Amazon Redshift Database Developer Guide

1

The following example extracts the month name from a date.

select to_char(date '2009-12-31', 'MONTH');

to_char

DECEMBER

The following example converts each STARTTIME value in the EVENT table to a string that consists
of hours, minutes, and seconds.

select to_char(starttime, 'HH12:MI:SS')
from event where eventid between 1 and 5
order by eventid;

to_char

02:30:00
08:00:00
02:30:00
02:30:00
07:00:00

The following example converts an entire timestamp value into a different format.

select starttime, to_char(starttime, 'MON-DD-YYYY HH12:MIPM')
from event where eventid=1;

 starttime | to_char
---------------------+---------------------
 2008-01-25 14:30:00 | JAN-25-2008 02:30PM

The following example converts a timestamp literal to a character string.

select to_char(timestamp '2009-12-31 23:15:59','HH24:MI:SS');

to_char

23:15:59

Data type formatting functions 1735

Amazon Redshift Database Developer Guide

The following example converts a decimal number to a character string.

select to_char(125.8, '999.99');

to_char

125.80

The following example converts a decimal number to a character string.

select to_char(125.8, '999D99');

to_char

125.80

The following example converts a number to a character string with a leading zero.

select to_char(125.8, '0999D99');

to_char

0125.80

The following example converts a number to a character string with the negative sign at the end.

select to_char(-125.8, '999D99S');

to_char

125.80-

The following example converts a number to a character string with the positive or negative sign at
the specified position.

select to_char(125.8, '999D99SG');

to_char

125.80+

Data type formatting functions 1736

Amazon Redshift Database Developer Guide

The following example converts a number to a character string with the positive sign at the
specified position.

select to_char(125.8, 'PL999D99');

to_char

+ 125.80

The following example converts a number to a character string with the currency symbol.

select to_char(-125.88, '$S999D99');

to_char

$-125.88

The following example converts a number to a character string with the currency symbol in the
specified position.

select to_char(-125.88, 'S999D99L');

to_char

-125.88$

The following example converts a number to a character string using a thousands (comma)
separator.

select to_char(1125.8, '9,999.99');

to_char

1,125.80

The following example converts a number to a character string using angle brackets for negative
numbers.

select to_char(-125.88, '$999D99PR');

Data type formatting functions 1737

Amazon Redshift Database Developer Guide

to_char

$<125.88>

The following example converts a number to a Roman numeral string.

select to_char(125, 'RN');

to_char

 CXXV

The following example converts a date to a century code.

select to_char(date '2020-12-31', 'CC');

to_char

21

The following example displays the day of the week.

SELECT to_char(current_timestamp, 'FMDay, FMDD HH12:MI:SS');

to_char

Wednesday, 31 09:34:26

The following example displays the ordinal number suffix for a number.

SELECT to_char(482, '999th');

to_char

 482nd

The following example subtracts the commission from the price paid in the sales table. The
difference is then rounded up and converted to a roman numeral, shown in the to_char column:

select salesid, pricepaid, commission, (pricepaid - commission)

Data type formatting functions 1738

Amazon Redshift Database Developer Guide

as difference, to_char(pricepaid - commission, 'rn') from sales
group by sales.pricepaid, sales.commission, salesid
order by salesid limit 10;

 salesid | pricepaid | commission | difference | to_char
---------+-----------+------------+------------+-----------------
 1 | 728.00 | 109.20 | 618.80 | dcxix
 2 | 76.00 | 11.40 | 64.60 | lxv
 3 | 350.00 | 52.50 | 297.50 | ccxcviii
 4 | 175.00 | 26.25 | 148.75 | cxlix
 5 | 154.00 | 23.10 | 130.90 | cxxxi
 6 | 394.00 | 59.10 | 334.90 | cccxxxv
 7 | 788.00 | 118.20 | 669.80 | dclxx
 8 | 197.00 | 29.55 | 167.45 | clxvii
 9 | 591.00 | 88.65 | 502.35 | dii
 10 | 65.00 | 9.75 | 55.25 | lv

The following example adds the currency symbol to the difference values shown in the to_char
column:

select salesid, pricepaid, commission, (pricepaid - commission)
as difference, to_char(pricepaid - commission, 'l99999D99') from sales
group by sales.pricepaid, sales.commission, salesid
order by salesid limit 10;

salesid | pricepaid | commission | difference | to_char
--------+-----------+------------+------------+------------
 1 | 728.00 | 109.20 | 618.80 | $ 618.80
 2 | 76.00 | 11.40 | 64.60 | $ 64.60
 3 | 350.00 | 52.50 | 297.50 | $ 297.50
 4 | 175.00 | 26.25 | 148.75 | $ 148.75
 5 | 154.00 | 23.10 | 130.90 | $ 130.90
 6 | 394.00 | 59.10 | 334.90 | $ 334.90
 7 | 788.00 | 118.20 | 669.80 | $ 669.80
 8 | 197.00 | 29.55 | 167.45 | $ 167.45
 9 | 591.00 | 88.65 | 502.35 | $ 502.35
 10 | 65.00 | 9.75 | 55.25 | $ 55.25

The following example lists the century in which each sale was made.

select salesid, saletime, to_char(saletime, 'cc') from sales
order by salesid limit 10;

Data type formatting functions 1739

Amazon Redshift Database Developer Guide

 salesid | saletime | to_char
---------+---------------------+---------
 1 | 2008-02-18 02:36:48 | 21
 2 | 2008-06-06 05:00:16 | 21
 3 | 2008-06-06 08:26:17 | 21
 4 | 2008-06-09 08:38:52 | 21
 5 | 2008-08-31 09:17:02 | 21
 6 | 2008-07-16 11:59:24 | 21
 7 | 2008-06-26 12:56:06 | 21
 8 | 2008-07-10 02:12:36 | 21
 9 | 2008-07-22 02:23:17 | 21
 10 | 2008-08-06 02:51:55 | 21

The following example converts each STARTTIME value in the EVENT table to a string that consists
of hours, minutes, seconds, and time zone.

select to_char(starttime, 'HH12:MI:SS TZ')
from event where eventid between 1 and 5
order by eventid;

to_char

02:30:00 UTC
08:00:00 UTC
02:30:00 UTC
02:30:00 UTC
07:00:00 UTC

The following example shows formatting for seconds, milliseconds, and microseconds.

select sysdate,
to_char(sysdate, 'HH24:MI:SS') as seconds,
to_char(sysdate, 'HH24:MI:SS.MS') as milliseconds,
to_char(sysdate, 'HH24:MI:SS:US') as microseconds;

timestamp | seconds | milliseconds | microseconds
--------------------+----------+--------------+----------------
2015-04-10 18:45:09 | 18:45:09 | 18:45:09.325 | 18:45:09:325143

TO_DATE function

TO_DATE converts a date represented by a character string to a DATE data type.

Data type formatting functions 1740

Amazon Redshift Database Developer Guide

Syntax

TO_DATE(string, format)

TO_DATE(string, format, is_strict)

Arguments

string

A string to be converted.

format

A string literal that defines the format of the input string, in terms of its date parts. For a list of
valid day, month, and year formats, see Datetime format strings.

is_strict

An optional Boolean value that specifies whether an error is returned if an input date value is
out of range. When is_strict is set to TRUE, an error is returned if there is an out of range value.
When is_strict is set to FALSE, which is the default, then overflow values are accepted.

Return type

TO_DATE returns a DATE, depending on the format value.

If the conversion to format fails, then an error is returned.

Examples

The following SQL statement converts the date 02 Oct 2001 into a date data type.

select to_date('02 Oct 2001', 'DD Mon YYYY');

to_date

2001-10-02
(1 row)

The following SQL statement converts the string 20010631 to a date.

Data type formatting functions 1741

Amazon Redshift Database Developer Guide

select to_date('20010631', 'YYYYMMDD', FALSE);

The result is July 1, 2001, because there are only 30 days in June.

to_date

2001-07-01

The following SQL statement converts the string 20010631 to a date:

to_date('20010631', 'YYYYMMDD', TRUE);

The result is an error because there are only 30 days in June.

ERROR: date/time field date value out of range: 2001-6-31

TO_NUMBER

TO_NUMBER converts a string to a numeric (decimal) value.

Syntax

to_number(string, format)

Arguments

string

String to be converted. The format must be a literal value.

format

The second argument is a format string that indicates how the character string should be
parsed to create the numeric value. For example, the format '99D999' specifies that the string
to be converted consists of five digits with the decimal point in the third position. For example,
to_number('12.345','99D999') returns 12.345 as a numeric value. For a list of valid
formats, see Numeric format strings.

Return type

TO_NUMBER returns a DECIMAL number.

Data type formatting functions 1742

Amazon Redshift Database Developer Guide

If the conversion to format fails, then an error is returned.

Examples

The following example converts the string 12,454.8- to a number:

select to_number('12,454.8-', '99G999D9S');

to_number

-12454.8

The following example converts the string $ 12,454.88 to a number:

select to_number('$ 12,454.88', 'L 99G999D99');

to_number

12454.88

The following example converts the string $ 2,012,454.88 to a number:

select to_number('$ 2,012,454.88', 'L 9,999,999.99');

to_number

2012454.88

TEXT_TO_INT_ALT

TEXT_TO_INT_ALT converts a character string to an integer using Teradata-style formatting.
Fraction digits in the result are truncated.

Syntax

TEXT_TO_INT_ALT (expression [, 'format'])

Data type formatting functions 1743

Amazon Redshift Database Developer Guide

Arguments

expression

An expression that results in one or more CHAR or VARCHAR values, such as a column name or
literal string. Converting null values returns nulls. The function converts blank or empty strings
to 0.

format

A string literal that defines the format of the input expression. For more information about the
formatting characters you can specify, see Teradata-style formatting characters for numeric
data.

Return type

TEXT_TO_INT_ALT returns an INTEGER value.

The fractional portion of the cast result is truncated.

Amazon Redshift returns an error if the conversion to the format phrase that you specify isn't
successful.

Examples

The following example converts the input expression string '123-' to the integer -123.

select text_to_int_alt('123-');

text_to_int_alt

 -123

The following example converts the input expression string '2147483647+' to the integer
2147483647.

select text_to_int_alt('2147483647+');

text_to_int_alt

Data type formatting functions 1744

Amazon Redshift Database Developer Guide

2147483647

The following example converts the exponential input expression string '-123E-2' to the integer -1.

select text_to_int_alt('-123E-2');

text_to_int_alt

 -1

The following example converts the input expression string '2147483647+' to the integer
2147483647.

select text_to_int_alt('2147483647+');

text_to_int_alt

2147483647

The following example converts the input expression string '123{' with the format phrase '999S'
to the integer 1230. The S character indicates a Signed Zoned Decimal. For more information, see
Teradata-style formatting characters for numeric data.

text_to_int_alt('123{', '999S');

text_to_int_alt

 1230

The following example converts the input expression string 'USD123' with the format phrase 'C9(I)'
to the integer 123. See Teradata-style formatting characters for numeric data.

text_to_int_alt('USD123', 'C9(I)');

text_to_int_alt

 123

Data type formatting functions 1745

Amazon Redshift Database Developer Guide

The following example specifies a table column as the input expression.

select text_to_int_alt(a), text_to_int_alt(b) from t_text2int order by 1;

 text_to_int_alt | text_to_int_alt
-----------------+-----------------
 -123 | -123
 -123 | -123
 123 | 123
 123 | 123

Following is the table definition and the insert statement for this example.

create table t_text2int (a varchar(200), b char(200));

insert into t_text2int VALUES('123', '123'),('123.123', '123.123'), ('-123', '-123'),
 ('123-', '123-');

TEXT_TO_NUMERIC_ALT

TEXT_TO_NUMERIC_ALT performs a Teradata-style cast operation to convert a character string to a
numeric data format.

Syntax

TEXT_TO_NUMERIC_ALT (expression [, 'format'] [, precision, scale])

Arguments

expression

An expression that evaluates to one or more CHAR or VARCHAR values, such as a column name
or a literal. Converting null values returns nulls. Blank or empty strings are converted to 0.

format

A string literal that defines the format of the input expression. For more information, see
Teradata-style formatting characters for numeric data.

precision

The number of digits in the numeric result. The default is 38.

Data type formatting functions 1746

Amazon Redshift Database Developer Guide

scale

The number of digits to the right of the decimal point in the numeric result. The default is 0.

Return type

TEXT_TO_NUMERIC_ALT returns a DECIMAL number.

Amazon Redshift returns an error if the conversion to the format phrase that you specify isn't
successful.

Amazon Redshift casts the input expression string to the numeric type with the highest precision
that you specify for that type in the precision option. If the length of the numeric value exceeds the
value that you specify for precision, Amazon Redshift rounds the numeric value according to the
following rules:

• If the length of the cast result exceeds the length that you specify in the format phrase, Amazon
Redshift returns an error.

• If the result is cast to a numeric value, the result is rounded to the closest value. If the fractional
portion is exactly midway between the upper and lower cast result, the result is rounded to the
nearest even value.

Examples

The following example converts the input expression string '1.5' to the numeric value '2'. Because
the statement doesn't specify scale, the scale defaults to 0 and the cast result doesn't include a
fraction result. Because .5 is midway between 1 and 2, the cast result is rounded to the even value
of 2.

select text_to_numeric_alt('1.5');

 text_to_numeric_alt

 2

The following example converts the input expression string '2.51' to the numeric value 3. Because
the statement doesn't specify a scale value, the scale defaults to 0 and the cast result doesn't
include a fraction result. Because .51 is closer to 3 than 2, the cast result is rounded to the value of
3.

Data type formatting functions 1747

Amazon Redshift Database Developer Guide

select text_to_numeric_alt('2.51');

 text_to_numeric_alt

 3

The following example converts the input expression string 123.52501 with a precision of 10 and a
scale of 2 to the numeric value 123.53.

select text_to_numeric_alt('123.52501', 10, 2);

 text_to_numeric_alt

 123.53

The following example specifies a table column as the input expression.

select text_to_numeric_alt(a), text_to_numeric_alt(b) from t_text2numeric order by 1;

 text_to_numeric_alt | text_to_numeric_alt
---+---
 -99999999999999999999999999999999999999 | -99999999999999999999999999999999999999
 -12300 | -12300
 123 | 123
 123 | 123
 99999999999999999999999999999999999999 | 99999999999999999999999999999999999999

Following is the table definition and the insert statement for this example.

create table t_text2numeric (a varchar(200), b char(200));

insert into t_text2numeric values
('123', '123'),
('+123.456', '+123.456'),
('-' || repeat('9', 38), '-' || repeat('9', 38)),
(repeat('9', 38) || '+', repeat('9', 38) || '+'),
('-123E2', '-123E2');

Data type formatting functions 1748

Amazon Redshift Database Developer Guide

Datetime format strings

You can find a reference for datetime format strings following.

The following format strings apply to functions such as TO_CHAR. These strings can contain
datetime separators (such as '-', '/', or ':') and the following "dateparts" and "timeparts".

Datepart or timepart Meaning

BC or B.C., AD or A.D., b.c. or bc, ad or a.d. Upper and lowercase era indicators

CC Two-digit century number

YYYY, YYY, YY, Y 4-digit, 3-digit, 2-digit, 1-digit year number

Y,YYY 4-digit year number with comma

IYYY, IYY, IY, I 4-digit, 3-digit, 2-digit, 1-digit International
Organization for Standardization (ISO) year
number

Q Quarter number (1 to 4)

MONTH, Month, month Month name (uppercase, mixed-case,
lowercase, blank-padded to 9 characters)

MON, Mon, mon Abbreviated month name (uppercase, mixed-
case, lowercase, blank-padded to 3 characters)

MM Month number (01-12)

RM, rm Month number in Roman numerals (I–XII, with
I being January, uppercase or lowercase)

W Week of month (1–5; the first week starts on
the first day of the month.)

WW Week number of year (1–53; the first week
starts on the first day of the year.)

Data type formatting functions 1749

Amazon Redshift Database Developer Guide

Datepart or timepart Meaning

IW ISO week number of year (the first Thursday
of the new year is in week 1.)

DAY, Day, day Day name (uppercase, mixed-case, lowercase,
blank-padded to 9 characters)

DY, Dy, dy Abbreviated day name (uppercase, mixed-case,
lowercase, blank-padded to 3 characters)

DDD Day of year (001–366)

IDDD Day of ISO 8601 week-numbering year
(001-371; day 1 of the year is Monday of the
first ISO week)

DD Day of month as a number (01–31)

D Day of week (1–7; Sunday is 1)

Note

The D datepart behaves differently
from the day of week (DOW) datepart
used for the datetime functions
DATE_PART and EXTRACT. DOW is
based on integers 0–6, where Sunday
is 0. For more information, see Date
parts for date or timestamp functions.

ID ISO 8601 day of the week, Monday (1) to
Sunday (7)

J Julian day (days since January 1, 4712 BC)

HH24 Hour (24-hour clock, 00–23)

HH or HH12 Hour (12-hour clock, 01–12)

Data type formatting functions 1750

Amazon Redshift Database Developer Guide

Datepart or timepart Meaning

MI Minutes (00–59)

SS Seconds (00–59)

MS Milliseconds (.000)

US Microseconds (.000000)

AM or PM, A.M. or P.M., a.m. or p.m., am or pm Upper and lowercase meridian indicators (for
12-hour clock)

TZ, tz Upper and lowercase time zone abbreviation;
valid for TIMESTAMPTZ only

OF Offset from UTC; valid for TIMESTAMPTZ only

Note

You must surround datetime separators (such as '-', '/' or ':') with single quotation marks,
but you must surround the "dateparts" and "timeparts" listed in the preceding table with
double quotation marks.

Examples

For examples of formatting dates as strings, see TO_CHAR.

Numeric format strings

Following, you can find a reference for numeric format strings.

The following format strings apply to functions such as TO_NUMBER and TO_CHAR.

• For examples of formatting strings as numbers, see TO_NUMBER.

• For examples of formatting numbers as strings, see TO_CHAR.

Data type formatting functions 1751

Amazon Redshift Database Developer Guide

Format Description

9 Numeric value with the specified number of
digits.

0 Numeric value with leading zeros.

. (period), D Decimal point.

, (comma) Thousands separator.

CC Century code. For example, the 21st century
started on 2001-01-01 (supported for
TO_CHAR only).

FM Fill mode. Suppress padding blanks and
zeroes.

PR Negative value in angle brackets.

S Sign anchored to a number.

L Currency symbol in the specified position.

G Group separator.

MI Minus sign in the specified position for
numbers that are less than 0.

PL Plus sign in the specified position for numbers
that are greater than 0.

SG Plus or minus sign in the specified position.

RN Roman numeral between 1 and 3999
(supported for TO_CHAR only).

TH or th Ordinal number suffix. Does not convert
fractional numbers or values that are less than
zero.

Data type formatting functions 1752

Amazon Redshift Database Developer Guide

Teradata-style formatting characters for numeric data

Following, you can find how the TEXT_TO_INT_ALT and TEXT_TO_NUMERIC_ALT functions
interpret the characters in the input expression string. You can also find a list of the characters
that you can specify in the format phrase. In addition, you can find a description of the differences
between Teradata-style formatting and Amazon Redshift for the format option.

Format Description

G Not supported as a group separator in the
input expression string. You can't specify this
character in the format phrase.

D Radix symbol. You can specify this character in
the format phrase. This character is equivalent
to the . (period).

The Radix symbol can't appear in a format
phrase that contains any of the following
characters:

• . (period)

• S (uppercase 's')

• V (uppercase 'v')

/ , : % Insertion characters / (forward slash), comma
(,), : (colon), and % (percent sign).

You can't include these characters in the
format phrase.

Amazon Redshift ignores these characters in
the input expression string.

. Period as a radix character, that is a decimal
point.

This character can't appear in a format phrase
that contains any of the following characters:

Data type formatting functions 1753

Amazon Redshift Database Developer Guide

Format Description

• D (uppercase 'd')

• S (uppercase 's')

• V (uppercase 'v')

B You can't include the blank space character (B)
in the format phrase. In the input expression
string, leading and trailing spaces are ignored
and spaces between digits aren't allowed.

+ - You can't include the plus sign (+) or minus
sign (-) in the format phrase. However, the
plus sign (+) and minus sign (-) are parsed
implicitly as part of numeric value if they
appear in the input expression string.

V Decimal point position indicator.

This character can't appear in a format phrase
that contains any of the following characters:

• D (uppercase 'd')

• . (period)

Z Zero-suppressed decimal digit. Amazon
Redshift trims leading zeros. The Z character
can't follow a 9 character. The Z character
must be to the left of the radix character if the
fraction part contains the 9 character.

9 Decimal digit.

Data type formatting functions 1754

Amazon Redshift Database Developer Guide

Format Description

CHAR(n) For this format, you can specify the following:

• CHAR consists of Z or 9 characters. Amazon
Redshift doesn't support a + (plus) or -
(minus) in the CHAR value.

• n is an integer constant, I, or F. For I, this
is the number of characters necessary to
display the integer portion of numeric or
integer data. For F, this is the number of
characters necessary to display the fractiona
l portion of numeric data.

- Hyphen (-) character.

You can't include this character in the format
phrase.

Amazon Redshift ignores this character in the
input expression string.

Data type formatting functions 1755

Amazon Redshift Database Developer Guide

Format Description

S Signed Zoned Decimal. The S character
must follow the last decimal digit in the
format phrase. The last character of the
input expression string and the correspon
ding numeric conversion are listed in Data
formatting characters for Signed Zone
Decimal, Teradata–style numeric data
formatting .

The S character can't appear in a format
phrase that contains any of the following
characters:

• + (plus sign)

• . (period)

• D (uppercase 'd')

• Z (uppercase 'z')

• F (uppercase 'f')

• E (uppercase 'e')

E Exponential notation. The input expression
string can include the exponent character. You
can't specify E as an exponent character in
format phrase.

FN9 Not supported in Amazon Redshift.

FNE Not supported in Amazon Redshift.

Data type formatting functions 1756

Amazon Redshift Database Developer Guide

Format Description

$, USD, US Dollars Dollar sign ($), ISO currency symbol (USD), and
the currency name US Dollars.

The ISO currency symbol USD and the
currency name US Dollars are case-sensitive.
Amazon Redshift supports only the USD
currency. The input expression string can
include spaces between the USD currency
symbol and the numeric value, for example ‘$
123E2’ or ‘123E2 $’.

L Currency symbol. This currency symbol
character can only appear once in the format
phrase. You can't specify repeated currency
symbol characters.

C ISO currency symbol. This currency symbol
character can only appear once in the format
phrase. You can't specify repeated currency
symbol characters.

N Full currency name. This currency symbol
character can only appear once in the format
phrase. You can't specify repeated currency
symbol characters.

O Dual currency symbol. You can't specify this
character in the format phrase.

U Dual ISO currency symbol. You can't specify
this character in the format phrase.

A Full dual currency name. You can't specify this
character in the format phrase.

Data type formatting functions 1757

Amazon Redshift Database Developer Guide

Data formatting characters for Signed Zone Decimal, Teradata–style numeric data formatting

You can use the following characters in the format phrase of the TEXT_TO_INT_ALT and
TEXT_TO_NUMERIC_ALT functions for a signed zoned decimal value.

Last character of the input string Numeric conversion

{ or 0 n … 0

A or 1 n … 1

B or 2 n … 2

C or 3 n … 3

D or 4 n … 4

E or 5 n … 5

F or 6 n … 6

G or 7 n … 7

H or 8 n … 8

I or 9 n … 9

} -n … 0

J -n … 1

K -n … 2

L -n … 3

M -n … 4

N -n … 5

O -n … 6

P -n … 7

Data type formatting functions 1758

Amazon Redshift Database Developer Guide

Last character of the input string Numeric conversion

Q -n … 8

R -n … 9

Date and time functions

In this section, you can find information about the date and time scalar functions that Amazon
Redshift supports.

Topics

• Summary of date and time functions

• Date and time functions in transactions

• Deprecated leader node-only functions

• + (Concatenation) operator

• ADD_MONTHS function

• AT TIME ZONE function

• CONVERT_TIMEZONE function

• CURRENT_DATE function

• DATE_CMP function

• DATE_CMP_TIMESTAMP function

• DATE_CMP_TIMESTAMPTZ function

• DATEADD function

• DATEDIFF function

• DATE_PART function

• DATE_PART_YEAR function

• DATE_TRUNC function

• EXTRACT function

• GETDATE function

• INTERVAL_CMP function

• LAST_DAY function

Date and time functions 1759

Amazon Redshift Database Developer Guide

• MONTHS_BETWEEN function

• NEXT_DAY function

• SYSDATE function

• TIMEOFDAY function

• TIMESTAMP_CMP function

• TIMESTAMP_CMP_DATE function

• TIMESTAMP_CMP_TIMESTAMPTZ function

• TIMESTAMPTZ_CMP function

• TIMESTAMPTZ_CMP_DATE function

• TIMESTAMPTZ_CMP_TIMESTAMP function

• TIMEZONE function

• TO_TIMESTAMP function

• TRUNC function

• Date parts for date or timestamp functions

Summary of date and time functions

Function Syntax Returns

+ (Concatenation) operator

Concatenates a date to a time on either side
of the + symbol and returns a TIMESTAMP or
TIMESTAMPTZ.

date + time TIMESTAMP
 or

TIMESTAMP
Z

ADD_MONTHS

Adds the specified number of months to a
date or timestamp.

ADD_MONTHS
({date|timestamp}, integer)

TIMESTAMP

AT TIME ZONE

Specifies which time zone to use with a
TIMESTAMP or TIMESTAMPTZ expression.

AT TIME ZONE 'timezone' TIMESTAMP
 or

TIMESTAMP
Z

Date and time functions 1760

Amazon Redshift Database Developer Guide

Function Syntax Returns

CONVERT_TIMEZONE

Converts a timestamp from one time zone to
another.

CONVERT_TIMEZONE
(['timezone',] 'timezone',
timestamp)

TIMESTAMP

CURRENT_DATE

Returns a date in the current session time
zone (UTC by default) for the start of the
current transaction.

CURRENT_DATE DATE

DATE_CMP

Compares two dates and returns 0 if the dates
are identical, 1 if date1 is greater, and -1 if
date2 is greater.

DATE_CMP (date1, date2) INTEGER

DATE_CMP_TIMESTAMP

Compares a date to a time and returns 0 if the
values are identical, 1 if date is greater and -1
if timestamp is greater.

DATE_CMP_TIMESTAMP (date,
timestamp)

INTEGER

DATE_CMP_TIMESTAMPTZ

Compares a date and a timestamp with time
zone and returns 0 if the values are identical
, 1 if date is greater and -1 if timestamptz is
greater.

DATE_CMP_TIMESTAMPTZ
(date, timestamptz)

INTEGER

DATE_PART_YEAR

Extracts the year from a date.

DATE_PART_YEAR (date) INTEGER

DATEADD

Increments a date or time by a specified
interval.

DATEADD (datepart, interval,
{date|time|timetz|timestamp})

TIMESTAMP
 or TIME or

TIMETZ

Date and time functions 1761

Amazon Redshift Database Developer Guide

Function Syntax Returns

DATEDIFF

Returns the difference between two dates or
times for a given date part, such as a day or
month.

DATEDIFF (datepart,
{date|time|timetz|timestamp
},
{date|time|timetz|timestamp})

BIGINT

DATE_PART

Extracts a date part value from a date or time.

DATE_PART (datepart,
{date|timestamp})

DOUBLE

DATE_TRUNC

Truncates a timestamp based on a date part.

DATE_TRUNC ('datepart',
timestamp)

TIMESTAMP

EXTRACT

Extracts a date or time part from a timestamp,
timestamptz, time, or timetz.

EXTRACT (datepart FROM
source)

INTEGER or
DOUBLE

GETDATE

Returns the current date and time in the
current session time zone (UTC by default).
The parentheses are required.

GETDATE() TIMESTAMP

INTERVAL_CMP

Compares two intervals and returns 0 if the
intervals are equal, 1 if interval1 is greater,
and -1 if interval2 is greater.

INTERVAL_CMP (interval1,
interval2)

INTEGER

LAST_DAY

Returns the date of the last day of the month
that contains date.

LAST_DAY(date) DATE

Date and time functions 1762

Amazon Redshift Database Developer Guide

Function Syntax Returns

MONTHS_BETWEEN

Returns the number of months between two
dates.

MONTHS_BETWEEN (date,
date)

FLOAT8

NEXT_DAY

Returns the date of the first instance of day
that is later than date.

NEXT_DAY (date, day) DATE

SYSDATE

Returns the date and time in UTC for the start
of the current transaction.

SYSDATE TIMESTAMP

TIMEOFDAY

Returns the current weekday, date, and time in
the current session time zone (UTC by default)
as a string value.

TIMEOFDAY() VARCHAR

TIMESTAMP_CMP

Compares two timestamps and returns 0 if
the timestamps are equal, 1 if timestamp1 is
greater, and -1 if timestamp2 is greater.

TIMESTAMP_CMP (timestamp
1, timestamp2)

INTEGER

TIMESTAMP_CMP_DATE

Compares a timestamp to a date and returns
0 if the values are identical, 1 if timestamp is
greater, and -1 if date is greater.

TIMESTAMP_CMP_DATE
(timestamp, date)

INTEGER

Date and time functions 1763

Amazon Redshift Database Developer Guide

Function Syntax Returns

TIMESTAMP_CMP_TIMESTAMPTZ

Compares a timestamp with a timestamp
with time zone and returns 0 if the values
are equal, 1 if timestamp is greater, and -1 if
timestamptz is greater.

TIMESTAMP_CMP_TIME
STAMPTZ (timestamp,
timestamptz)

INTEGER

TIMESTAMPTZ_CMP

Compares two timestamp with time zone
values and returns 0 if the values are equal, 1
if timestamptz1 is greater, and -1 if timestamp
tz2 is greater.

TIMESTAMPTZ_CMP
(timestamptz1, timestamptz2)

INTEGER

TIMESTAMPTZ_CMP_DATE

Compares the value of a timestamp with time
zone and a date and returns 0 if the values are
equal, 1 if timestamptz is greater, and -1 if
date is greater.

TIMESTAMPTZ_CMP_DATE
(timestamptz, date)

INTEGER

TIMESTAMPTZ_CMP_TIMESTAMP

Compares a timestamp with time zone with
a timestamp and returns 0 if the values are
equal, 1 if timestamptz is greater, and -1 if
timestamp is greater.

TIMESTAMPTZ_CMP_TI
MESTAMP (timestamptz,
timestamp)

INTEGER

TIMEZONE

Returns a timestamp for the specified time
zone and timestamp value.

TIMEZONE ('timezone' {
timestamp | timestamptz)

TIMESTAMP
 or

TIMESTAMP
TZ

TO_TIMESTAMP

Returns a timestamp with time zone for the
specified timestamp and time zone format.

TO_TIMESTAMP ('timestamp',
'format')

TIMESTAMP
TZ

Date and time functions 1764

Amazon Redshift Database Developer Guide

Function Syntax Returns

TRUNC

Truncates a timestamp and returns a date.

TRUNC(timestamp) DATE

Note

Leap seconds are not considered in elapsed-time calculations.

Date and time functions in transactions

When you run the following functions within a transaction block (BEGIN … END), the function
returns the start date or time of the current transaction, not the start of the current statement.

• SYSDATE

• TIMESTAMP

• CURRENT_DATE

The following functions always return the start date or time of the current statement, even when
they are within a transaction block.

• GETDATE

• TIMEOFDAY

Deprecated leader node-only functions

The following date functions are deprecated because they run only on the leader node. For more
information, see Leader node–only functions.

• AGE. Use DATEDIFF function instead.

• CURRENT_TIME. Use GETDATE function or SYSDATE instead.

• CURRENT_TIMESTAMP. Use GETDATE function or SYSDATE instead.

• LOCALTIME. Use GETDATE function or SYSDATE instead.

• LOCALTIMESTAMP. Use GETDATE function or SYSDATE instead.

Date and time functions 1765

Amazon Redshift Database Developer Guide

• ISFINITE

• NOW. Use GETDATE function or SYSDATE instead.

+ (Concatenation) operator

Concatenates a DATE to a TIME or TIMETZ on either side of the + symbol and returns a TIMESTAMP
or TIMESTAMPTZ.

Syntax

date + {time | timetz}

The order of the arguments can be reversed. For example, time + date.

Arguments

date

A column of data type DATE or an expression that implicitly evaluates to a DATE type.

time

A column of data type TIME or an expression that implicitly evaluates to a TIME type.

timetz

A column of data type TIMETZ or an expression that implicitly evaluates to a TIMETZ type.

Return type

TIMESTAMP if input is date + time.

TIMESTAMPTZ if input is date + timetz.

Examples

Example setup

To set up the TIME_TEST and TIMETZ_TEST tables used in the examples, use the following
command.

create table time_test(time_val time);

Date and time functions 1766

Amazon Redshift Database Developer Guide

insert into time_test values
('20:00:00'),
('00:00:00.5550'),
('00:58:00');

create table timetz_test(timetz_val timetz);

insert into timetz_test values
('04:00:00+00'),
('00:00:00.5550+00'),
('05:58:00+00');

Examples with a time column

The following example table TIME_TEST has a column TIME_VAL (type TIME) with three values
inserted.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

The following example concatenates a date literal and a TIME_VAL column.

select date '2000-01-02' + time_val as ts from time_test;

ts

2000-01-02 20:00:00
2000-01-02 00:00:00.5550
2000-01-02 00:58:00

The following example concatenates a date literal and a time literal.

select date '2000-01-01' + time '20:00:00' as ts;

 ts

Date and time functions 1767

Amazon Redshift Database Developer Guide

 2000-01-01 20:00:00

The following example concatenates a time literal and a date literal.

select time '20:00:00' + date '2000-01-01' as ts;

 ts

 2000-01-01 20:00:00

Examples with a TIMETZ column

The following example table TIMETZ_TEST has a column TIMETZ_VAL (type TIMETZ) with three
values inserted.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

The following example concatenates a date literal and a TIMETZ_VAL column.

select date '2000-01-01' + timetz_val as ts from timetz_test;
ts

2000-01-01 04:00:00+00
2000-01-01 00:00:00.5550+00
2000-01-01 05:58:00+00

The following example concatenates a TIMETZ_VAL column and a date literal.

select timetz_val + date '2000-01-01' as ts from timetz_test;
ts

2000-01-01 04:00:00+00
2000-01-01 00:00:00.5550+00
2000-01-01 05:58:00+00

Date and time functions 1768

Amazon Redshift Database Developer Guide

The following example concatenates a DATE literal and a TIMETZ literal. The example returns a
TIMESTAMPTZ which is in the time zone UTC by default. UTC is 8 hours ahead of PST, so the result
is 8 hours ahead of the input time.

select date '2000-01-01' + timetz '20:00:00 PST' as ts;

 ts

 2000-01-02 04:00:00+00

ADD_MONTHS function

ADD_MONTHS adds the specified number of months to a date or timestamp value or expression.
The DATEADD function provides similar functionality.

Syntax

ADD_MONTHS({date | timestamp}, integer)

Arguments

date | timestamp

A column of data type DATE or TIMESTAMP or an expression that implicitly evaluates to a DATE
or TIMESTAMP type. If the date is the last day of the month, or if the resulting month is shorter,
the function returns the last day of the month in the result. For other dates, the result contains
the same day number as the date expression.

integer

A value of data type INTEGER. Use a negative number to subtract months from dates.

Return type

TIMESTAMP

Examples

The following query uses the ADD_MONTHS function inside a TRUNC function. The TRUNC
function removes the time of day from the result of ADD_MONTHS. The ADD_MONTHS function

Date and time functions 1769

Amazon Redshift Database Developer Guide

adds 12 months to each value from the CALDATE column. The values in the CALDATE column are
dates.

select distinct trunc(add_months(caldate, 12)) as calplus12,
trunc(caldate) as cal
from date
order by 1 asc;

 calplus12 | cal
------------+------------
 2009-01-01 | 2008-01-01
 2009-01-02 | 2008-01-02
 2009-01-03 | 2008-01-03
...
(365 rows)

The following example uses the ADD_MONTHS function to add 1 month to a timestamp.

select add_months('2008-01-01 05:07:30', 1);

add_months

2008-02-01 05:07:30

The following examples demonstrate the behavior when the ADD_MONTHS function operates
on dates with months that have different numbers of days. This example shows how the function
handles adding 1 month to March 31 and adding 1 month to April 30. April has 30 days, so adding
1 month to March 31 results in April 30. May has 31 days, so adding 1 month to April 30 results in
May 31.

select add_months('2008-03-31',1);

add_months

2008-04-30 00:00:00

select add_months('2008-04-30',1);

add_months

2008-05-31 00:00:00

Date and time functions 1770

Amazon Redshift Database Developer Guide

AT TIME ZONE function

AT TIME ZONE specifies which time zone to use with a TIMESTAMP or TIMESTAMPTZ expression.

Syntax

AT TIME ZONE 'timezone'

Arguments

timezone

The TIMEZONE for the return value. The time zone can be specified as a time zone name (such
as 'Africa/Kampala' or 'Singapore') or as a time zone abbreviation (such as 'UTC' or
'PDT').

To view a list of supported time zone names, run the following command.

select pg_timezone_names();

To view a list of supported time zone abbreviations, run the following command.

select pg_timezone_abbrevs();

For more information and examples, see Time zone usage notes.

Return type

TIMESTAMPTZ when used with a TIMESTAMP expression. TIMESTAMP when used with a
TIMESTAMPTZ expression.

Examples

The following example converts a timestamp value without time zone and interprets it as MST time
(UTC+7 in POSIX). The example returns a value of data type TIMESTAMPTZ for the UTC timezone.
If you configure your default timezone to a timezone other than UTC, you might see a different
result.

SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'MST';

Date and time functions 1771

Amazon Redshift Database Developer Guide

timezone

2001-02-17 03:38:40+00

The following example takes an input timestamp with a time zone value where the specified time
zone is EST (UTC+5 in POSIX) and converts it to MST (UTC+7 in POSIX). The example returns a
value of data type TIMESTAMP.

SELECT TIMESTAMPTZ '2001-02-16 20:38:40-05' AT TIME ZONE 'MST';

timezone

2001-02-16 18:38:40

CONVERT_TIMEZONE function

CONVERT_TIMEZONE converts a timestamp from one time zone to another. The function
automatically adjusts for daylight saving time.

Syntax

CONVERT_TIMEZONE(['source_timezone',] 'target_timezone', 'timestamp')

Arguments

source_timezone

(Optional) The time zone of the current timestamp. The default is UTC. For more information,
see Time zone usage notes.

target_timezone

The time zone for the new timestamp. For more information, see Time zone usage notes.

timestamp

A timestamp column or an expression that implicitly converts to a timestamp.

Return type

TIMESTAMP

Date and time functions 1772

Amazon Redshift Database Developer Guide

Time zone usage notes

source_timezone or target_timezone can be specified as a time zone name (such as 'Africa/Kampala'
or 'Singapore') or as a time zone abbreviation (such as 'UTC' or 'PDT'). You don't have to convert
time zone names to names or abbreviations to abbreviations. For example, you can choose a
timestamp from the source time zone name 'Singapore' and convert it to a timestamp in the time
zone abbreviation 'PDT'.

Note

The results of using a time zone name or a time zone abbreviation can be different due to
local seasonal time, such as daylight saving time.

Using a time zone name

To view a current and complete list of time zone names, run the following command.

select pg_timezone_names();

Each row contains a comma-separated string with the time zone name, abbreviation, UTC offset,
and indicator if the time zone observes daylight-savings (t or f). For example, the following
snippet shows two resulting rows. The first row is the time zone Europe/Paris, abbreviation CET,
with 01:00:00 offset from UTC, and f to indicate it doesn't observe daylight-savings time. The
second row is the time zone Israel, abbreviation IST, with 02:00:00 offset from UTC, and f to
indicate it doesn't observe daylight-savings time.

pg_timezone_names

(Europe/Paris,CET,01:00:00,f)
(Israel,IST,02:00:00,f)

Run the SQL statement to obtain the entire list and find a time zone name. Approximately 600
rows are returned. Even though some of the returned time zone names are capitalized initialisms or
acronyms (for example; GB, PRC, ROK), the CONVERT_TIMEZONE function treats them as time zone
names, not time zone abbreviations.

If you specify a time zone using a time zone name, CONVERT_TIMEZONE automatically adjusts for
daylight saving time (DST), or any other local seasonal protocol, such as Summer Time, Standard

Date and time functions 1773

Amazon Redshift Database Developer Guide

Time, or Winter Time, that is in force for that time zone during the date and time specified by
'timestamp'. For example, 'Europe/London' represents UTC in the winter and adds one hour in the
summer.

Using a time zone abbreviation

To view a current and complete list of time zone abbreviations, run the following command.

select pg_timezone_abbrevs();

The results contain a comma-separated string with the time zone abbreviation, UTC offset, and
indicator if the time zone observes daylight-savings (t or f). For example, the following snippet
shows two resulting rows. The first row contains the abbreviation for Pacific Daylight Time PDT,
with a -07:00:00 offset from UTC, and t to indicate it observes daylight-savings time. The second
row contains the abbreviation for Pacific Standard Time PST, with a -08:00:00 offset from UTC,
and f to indicate it doesn't observe daylight-savings time.

pg_timezone_abbrevs

(PDT,-07:00:00,t)
(PST,-08:00:00,f)

Run the SQL statement to obtain the entire list and find an abbreviation based on its offset and
daylight-savings indicator. Approximately 200 rows are returned.

Time zone abbreviations represent a fixed offset from UTC. If you specify a time zone using a time
zone abbreviation, CONVERT_TIMEZONE uses the fixed offset from UTC and doesn't adjust for any
local seasonal protocol.

Using POSIX-style format

A POSIX-style time zone specification is in the form STDoffset or STDoffsetDST, where STD is a
time zone abbreviation, offset is the numeric offset in hours west from UTC, and DST is an optional
daylight-savings zone abbreviation. Daylight savings time is assumed to be one hour ahead of the
given offset.

POSIX-style time zone formats use positive offsets west of Greenwich, in contrast to the ISO-8601
convention, which uses positive offsets east of Greenwich.

The following are examples of POSIX-style time zones:

Date and time functions 1774

Amazon Redshift Database Developer Guide

• PST8

• PST8PDT

• EST5

• EST5EDT

Note

Amazon Redshift doesn't validate POSIX-style time zone specifications, so it is possible to
set the time zone to an invalid value. For example, the following command doesn't return
an error, even though it sets the time zone to an invalid value.

set timezone to ‘xxx36’;

Examples

Many of the examples use the TICKIT sample data set. For more information, see Sample database.

The following example converts the timestamp value from the default UTC time zone to PST.

select convert_timezone('PST', '2008-08-21 07:23:54');

 convert_timezone

2008-08-20 23:23:54

The following example converts the timestamp value in the LISTTIME column from the default
UTC time zone to PST. Though the timestamp is within the daylight time period, it's converted to
standard time because the target time zone is specified as an abbreviation (PST).

select listtime, convert_timezone('PST', listtime) from listing
where listid = 16;

 listtime | convert_timezone
--------------------+-------------------
2008-08-24 09:36:12 2008-08-24 01:36:12

Date and time functions 1775

https://docs.aws.amazon.com/redshift/latest/dg/c_sampledb.html

Amazon Redshift Database Developer Guide

The following example converts a timestamp LISTTIME column from the default UTC time zone to
US/Pacific time zone. The target time zone uses a time zone name, and the timestamp is within the
daylight time period, so the function returns the daylight time.

select listtime, convert_timezone('US/Pacific', listtime) from listing
where listid = 16;

 listtime | convert_timezone
--------------------+---------------------
2008-08-24 09:36:12 | 2008-08-24 02:36:12

The following example converts a timestamp string from EST to PST:

select convert_timezone('EST', 'PST', '20080305 12:25:29');

 convert_timezone

2008-03-05 09:25:29

The following example converts a timestamp to US Eastern Standard Time because the target time
zone uses a time zone name (America/New_York) and the timestamp is within the standard time
period.

select convert_timezone('America/New_York', '2013-02-01 08:00:00');

 convert_timezone

2013-02-01 03:00:00
(1 row)

The following example converts the timestamp to US Eastern Daylight Time because the target
time zone uses a time zone name (America/New_York) and the timestamp is within the daylight
time period.

select convert_timezone('America/New_York', '2013-06-01 08:00:00');

 convert_timezone

2013-06-01 04:00:00
(1 row)

Date and time functions 1776

Amazon Redshift Database Developer Guide

The following example demonstrates the use of offsets.

SELECT CONVERT_TIMEZONE('GMT','NEWZONE +2','2014-05-17 12:00:00') as newzone_plus_2,
CONVERT_TIMEZONE('GMT','NEWZONE-2:15','2014-05-17 12:00:00') as newzone_minus_2_15,
CONVERT_TIMEZONE('GMT','America/Los_Angeles+2','2014-05-17 12:00:00') as la_plus_2,
CONVERT_TIMEZONE('GMT','GMT+2','2014-05-17 12:00:00') as gmt_plus_2;

 newzone_plus_2 | newzone_minus_2_15 | la_plus_2 | gmt_plus_2
---------------------+---------------------+---------------------+---------------------
2014-05-17 10:00:00 | 2014-05-17 14:15:00 | 2014-05-17 10:00:00 | 2014-05-17 10:00:00
(1 row)

CURRENT_DATE function

CURRENT_DATE returns a date in the current session time zone (UTC by default) in the default
format: YYYY-MM-DD.

Note

CURRENT_DATE returns the start date for the current transaction, not for the start of the
current statement. Consider the scenario where you start a transaction containing multiple
statements on 10/01/08 23:59, and the statement containing CURRENT_DATE runs at
10/02/08 00:00. CURRENT_DATE returns 10/01/08, not 10/02/08.

Syntax

CURRENT_DATE

Return type

DATE

Examples

The following example returns the current date (in the AWS Region where the function runs).

select current_date;

 date

Date and time functions 1777

Amazon Redshift Database Developer Guide

2008-10-01

The following example creates a table, inserts a row where the default of column todays_date is
CURRENT_DATE, and then selects all the rows in the table.

CREATE TABLE insert_dates(
 label varchar(128) NOT NULL,
 todays_date DATE DEFAULT CURRENT_DATE);

INSERT INTO insert_dates(label)
VALUES('Date row inserted');

SELECT * FROM insert_dates;

 label | todays_date
------------------+-------------
Date row inserted | 2023-05-10

DATE_CMP function

DATE_CMP compares two dates. The function returns 0 if the dates are identical, 1 if date1 is
greater, and -1 if date2 is greater.

Syntax

DATE_CMP(date1, date2)

Arguments

date1

A column of data type DATE or an expression that evaluates to a DATE type.

date2

A column of data type DATE or an expression that evaluates to a DATE type.

Return type

INTEGER

Date and time functions 1778

Amazon Redshift Database Developer Guide

Examples

The following query compares the DATE values in the CALDATE column to the date January 4, 2008
and returns whether the value in CALDATE is before (-1), equal to (0), or after (1) January 4, 2008:

select caldate, '2008-01-04',
date_cmp(caldate,'2008-01-04')
from date
order by dateid
limit 10;

 caldate | ?column? | date_cmp
-----------+------------+----------
2008-01-01 | 2008-01-04 | -1
2008-01-02 | 2008-01-04 | -1
2008-01-03 | 2008-01-04 | -1
2008-01-04 | 2008-01-04 | 0
2008-01-05 | 2008-01-04 | 1
2008-01-06 | 2008-01-04 | 1
2008-01-07 | 2008-01-04 | 1
2008-01-08 | 2008-01-04 | 1
2008-01-09 | 2008-01-04 | 1
2008-01-10 | 2008-01-04 | 1
(10 rows)

DATE_CMP_TIMESTAMP function

DATE_CMP_TIMESTAMP compares a date to a timestamp and returns 0 if the values are identical, 1
if date is greater chronologically and -1 if timestamp is greater.

Syntax

DATE_CMP_TIMESTAMP(date, timestamp)

Arguments

date

A column of data type DATE or an expression that evaluates to a DATE type.

timestamp

A column of data type TIMESTAMP or an expression that evaluates to a TIMESTAMP type.

Date and time functions 1779

Amazon Redshift Database Developer Guide

Return type

INTEGER

Examples

The following example compares the date 2008-06-18 to LISTTIME. The values of the column
LISTTIME are timestamps. Listings made before this date return 1; listings made after this date
return -1.

select listid, '2008-06-18', listtime,
date_cmp_timestamp('2008-06-18', listtime)
from listing
order by 1, 2, 3, 4
limit 10;

 listid | ?column? | listtime | date_cmp_timestamp
--------+------------+---------------------+--------------------
 1 | 2008-06-18 | 2008-01-24 06:43:29 | 1
 2 | 2008-06-18 | 2008-03-05 12:25:29 | 1
 3 | 2008-06-18 | 2008-11-01 07:35:33 | -1
 4 | 2008-06-18 | 2008-05-24 01:18:37 | 1
 5 | 2008-06-18 | 2008-05-17 02:29:11 | 1
 6 | 2008-06-18 | 2008-08-15 02:08:13 | -1
 7 | 2008-06-18 | 2008-11-15 09:38:15 | -1
 8 | 2008-06-18 | 2008-11-09 05:07:30 | -1
 9 | 2008-06-18 | 2008-09-09 08:03:36 | -1
 10 | 2008-06-18 | 2008-06-17 09:44:54 | 1
(10 rows)

DATE_CMP_TIMESTAMPTZ function

DATE_CMP_TIMESTAMPTZ compares a date to a timestamp with time zone and returns 0 if the
values are identical, 1 if date is greater chronologically and -1 if timestamptz is greater.

Syntax

DATE_CMP_TIMESTAMPTZ(date, timestamptz)

Date and time functions 1780

Amazon Redshift Database Developer Guide

Arguments

date

A column of data type DATE or an expression that implicitly evaluates to a DATE type.

timestamptz

A column of data type TIMESTAMPTZ or an expression that implicitly evaluates to a
TIMESTAMPTZ type.

Return type

INTEGER

Examples

The following example compares the date 2008-06-18 to LISTTIME. Listings made before this
date return 1; listings made after this date return -1.

select listid, '2008-06-18', CAST(listtime AS timestamptz),
date_cmp_timestamptz('2008-06-18', CAST(listtime AS timestamptz))
from listing
order by 1, 2, 3, 4
limit 10;

 listid | ?column? | timestamptz | date_cmp_timestamptz
--------+------------+------------------------+----------------------
 1 | 2008-06-18 | 2008-01-24 06:43:29+00 | 1
 2 | 2008-06-18 | 2008-03-05 12:25:29+00 | 1
 3 | 2008-06-18 | 2008-11-01 07:35:33+00 | -1
 4 | 2008-06-18 | 2008-05-24 01:18:37+00 | 1
 5 | 2008-06-18 | 2008-05-17 02:29:11+00 | 1
 6 | 2008-06-18 | 2008-08-15 02:08:13+00 | -1
 7 | 2008-06-18 | 2008-11-15 09:38:15+00 | -1
 8 | 2008-06-18 | 2008-11-09 05:07:30+00 | -1
 9 | 2008-06-18 | 2008-09-09 08:03:36+00 | -1
 10 | 2008-06-18 | 2008-06-17 09:44:54+00 | 1
(10 rows)

DATEADD function

Increments a DATE, TIME, TIMETZ, or TIMESTAMP value by a specified interval.

Date and time functions 1781

Amazon Redshift Database Developer Guide

Syntax

DATEADD(datepart, interval, {date|time|timetz|timestamp})

Arguments

datepart

The date part (year, month, day, or hour, for example) that the function operates on. For more
information, see Date parts for date or timestamp functions.

interval

An integer that specified the interval (number of days, for example) to add to the target
expression. A negative integer subtracts the interval.

date|time|timetz|timestamp

A DATE, TIME, TIMETZ, or TIMESTAMP column or an expression that implicitly converts to a
DATE, TIME, TIMETZ, or TIMESTAMP. The DATE, TIME, TIMETZ, or TIMESTAMP expression must
contain the specified date part.

Return type

TIMESTAMP or TIME or TIMETZ depending on the input data type.

Examples with a DATE column

The following example adds 30 days to each date in November that exists in the DATE table.

select dateadd(day,30,caldate) as novplus30
from date
where month='NOV'
order by dateid;

novplus30

2008-12-01 00:00:00
2008-12-02 00:00:00
2008-12-03 00:00:00
...
(30 rows)

Date and time functions 1782

Amazon Redshift Database Developer Guide

The following example adds 18 months to a literal date value.

select dateadd(month,18,'2008-02-28');

date_add

2009-08-28 00:00:00
(1 row)

The default column name for a DATEADD function is DATE_ADD. The default timestamp for a date
value is 00:00:00.

The following example adds 30 minutes to a date value that doesn't specify a timestamp.

select dateadd(m,30,'2008-02-28');

date_add

2008-02-28 00:30:00
(1 row)

You can name date parts in full or abbreviate them. In this case, m stands for minutes, not months.

Examples with a TIME column

The following example table TIME_TEST has a column TIME_VAL (type TIME) with three values
inserted.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

The following example adds 5 minutes to each TIME_VAL in the TIME_TEST table.

select dateadd(minute,5,time_val) as minplus5 from time_test;

Date and time functions 1783

Amazon Redshift Database Developer Guide

minplus5

20:05:00
00:05:00.5550
01:03:00

The following example adds 8 hours to a literal time value.

select dateadd(hour, 8, time '13:24:55');

date_add

21:24:55

The following example shows when a time goes over 24:00:00 or under 00:00:00.

select dateadd(hour, 12, time '13:24:55');

date_add

01:24:55

Examples with a TIMETZ column

The output values in these examples are in UTC which is the default timezone.

The following example table TIMETZ_TEST has a column TIMETZ_VAL (type TIMETZ) with three
values inserted.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

The following example adds 5 minutes to each TIMETZ_VAL in TIMETZ_TEST table.

select dateadd(minute,5,timetz_val) as minplus5_tz from timetz_test;

Date and time functions 1784

Amazon Redshift Database Developer Guide

minplus5_tz

04:05:00+00
00:05:00.5550+00
06:03:00+00

The following example adds 2 hours to a literal timetz value.

select dateadd(hour, 2, timetz '13:24:55 PST');

date_add

23:24:55+00

Examples with a TIMESTAMP column

The output values in these examples are in UTC which is the default timezone.

The following example table TIMESTAMP_TEST has a column TIMESTAMP_VAL (type TIMESTAMP)
with three values inserted.

SELECT timestamp_val FROM timestamp_test;

timestamp_val

1988-05-15 10:23:31
2021-03-18 17:20:41
2023-06-02 18:11:12

The following example adds 20 years only to the TIMESTAMP_VAL values in TIMESTAMP_TEST
from before the year 2000.

SELECT dateadd(year,20,timestamp_val)
FROM timestamp_test
WHERE timestamp_val < to_timestamp('2000-01-01 00:00:00', 'YYYY-MM-DD HH:MI:SS');

date_add

2008-05-15 10:23:31

Date and time functions 1785

Amazon Redshift Database Developer Guide

The following example adds 5 seconds to a literal timestamp value written without a seconds
indicator.

SELECT dateadd(second, 5, timestamp '2001-06-06');

date_add

2001-06-06 00:00:05

Usage notes

The DATEADD(month, ...) and ADD_MONTHS functions handle dates that fall at the ends of months
differently:

• ADD_MONTHS: If the date you are adding to is the last day of the month, the result is always the
last day of the result month, regardless of the length of the month. For example, April 30 + 1
month is May 31.

select add_months('2008-04-30',1);

add_months

2008-05-31 00:00:00
(1 row)

• DATEADD: If there are fewer days in the date you are adding to than in the result month, the
result is the corresponding day of the result month, not the last day of that month. For example,
April 30 + 1 month is May 30.

select dateadd(month,1,'2008-04-30');

date_add

2008-05-30 00:00:00
(1 row)

The DATEADD function handles the leap year date 02-29 differently when using dateadd(month,
12,…) or dateadd(year, 1, …).

select dateadd(month,12,'2016-02-29');

Date and time functions 1786

Amazon Redshift Database Developer Guide

date_add

2017-02-28 00:00:00

select dateadd(year, 1, '2016-02-29');

date_add

2017-03-01 00:00:00

DATEDIFF function

DATEDIFF returns the difference between the date parts of two date or time expressions.

Syntax

DATEDIFF(datepart, {date|time|timetz|timestamp}, {date|time|timetz|timestamp})

Arguments

datepart

The specific part of the date or time value (year, month, or day, hour, minute, second,
millisecond, or microsecond) that the function operates on. For more information, see Date
parts for date or timestamp functions.

Specifically, DATEDIFF determines the number of date part boundaries that are crossed
between two expressions. For example, suppose that you're calculating the difference in years
between two dates, 12-31-2008 and 01-01-2009. In this case, the function returns 1 year
despite the fact that these dates are only one day apart. If you are finding the difference in
hours between two timestamps, 01-01-2009 8:30:00 and 01-01-2009 10:00:00, the
result is 2 hours. If you are finding the difference in hours between two timestamps, 8:30:00
and 10:00:00, the result is 2 hours.

date|time|timetz|timestamp

A DATE, TIME, TIMETZ, or TIMESTAMP column or expressions that implicitly convert to a DATE,
TIME, TIMETZ, or TIMESTAMP. The expressions must both contain the specified date or time
part. If the second date or time is later than the first date or time, the result is positive. If the
second date or time is earlier than the first date or time, the result is negative.

Date and time functions 1787

Amazon Redshift Database Developer Guide

Return type

BIGINT

Examples with a DATE column

The following example finds the difference, in number of weeks, between two literal date values.

select datediff(week,'2009-01-01','2009-12-31') as numweeks;

numweeks

52
(1 row)

The following example finds the difference, in hours, between two literal date values. When you
don't provide the time value for a date, it defaults to 00:00:00.

select datediff(hour, '2023-01-01', '2023-01-03 05:04:03');

date_diff

53
(1 row)

The following example finds the difference, in days, between two literal TIMESTAMETZ values.

Select datediff(days, 'Jun 1,2008 09:59:59 EST', 'Jul 4,2008 09:59:59 EST')

date_diff

33

The following example finds the difference, in days, between two dates in the same row of a table.

select * from date_table;

start_date | end_date
-----------+-----------
2009-01-01 | 2009-03-23

Date and time functions 1788

Amazon Redshift Database Developer Guide

2023-01-04 | 2024-05-04
(2 rows)

select datediff(day, start_date, end_date) as duration from date_table;

duration

 81
 486
(2 rows)

The following example finds the difference, in number of quarters, between a literal value in
the past and today's date. This example assumes that the current date is June 5, 2008. You can
name date parts in full or abbreviate them. The default column name for the DATEDIFF function is
DATE_DIFF.

select datediff(qtr, '1998-07-01', current_date);

date_diff

40
(1 row)

The following example joins the SALES and LISTING tables to calculate how many days after they
were listed any tickets were sold for listings 1000 through 1005. The longest wait for sales of these
listings was 15 days, and the shortest was less than one day (0 days).

select priceperticket,
datediff(day, listtime, saletime) as wait
from sales, listing where sales.listid = listing.listid
and sales.listid between 1000 and 1005
order by wait desc, priceperticket desc;

priceperticket | wait
---------------+------
 96.00 | 15
 123.00 | 11
 131.00 | 9
 123.00 | 6
 129.00 | 4
 96.00 | 4
 96.00 | 0

Date and time functions 1789

Amazon Redshift Database Developer Guide

(7 rows)

This example calculates the average number of hours sellers waited for all ticket sales.

select avg(datediff(hours, listtime, saletime)) as avgwait
from sales, listing
where sales.listid = listing.listid;

avgwait

465
(1 row)

Examples with a TIME column

The following example table TIME_TEST has a column TIME_VAL (type TIME) with three values
inserted.

select time_val from time_test;

time_val

20:00:00
00:00:00.5550
00:58:00

The following example finds the difference in number of hours between the TIME_VAL column and
a time literal.

select datediff(hour, time_val, time '15:24:45') from time_test;

 date_diff

 -5
 15
 15

The following example finds the difference in number of minutes between two literal time values.

select datediff(minute, time '20:00:00', time '21:00:00') as nummins;

Date and time functions 1790

Amazon Redshift Database Developer Guide

nummins

60

Examples with a TIMETZ column

The following example table TIMETZ_TEST has a column TIMETZ_VAL (type TIMETZ) with three
values inserted.

select timetz_val from timetz_test;

timetz_val

04:00:00+00
00:00:00.5550+00
05:58:00+00

The following example finds the differences in number of hours, between a TIMETZ literal and
timetz_val.

select datediff(hours, timetz '20:00:00 PST', timetz_val) as numhours from timetz_test;

numhours

0
-4
1

The following example finds the difference in number of hours, between two literal TIMETZ values.

select datediff(hours, timetz '20:00:00 PST', timetz '00:58:00 EST') as numhours;

numhours

1

DATE_PART function

DATE_PART extracts date part values from an expression. DATE_PART is a synonym of the
PGDATE_PART function.

Date and time functions 1791

Amazon Redshift Database Developer Guide

Syntax

DATE_PART(datepart, {date|timestamp})

Arguments

datepart

An identifier literal or string of the specific part of the date value (for example, year, month, or
day) that the function operates on. For more information, see Date parts for date or timestamp
functions.

{date|timestamp}

A date column, timestamp column, or an expression that implicitly converts to a date or
timestamp. The column or expression in date or timestamp must contain the date part specified
in datepart.

Return type

DOUBLE

Examples

The default column name for the DATE_PART function is pgdate_part.

For more information about the data used in some of these examples, see Sample database.

The following example finds the minute from a timestamp literal.

SELECT DATE_PART(minute, timestamp '20230104 04:05:06.789');

pgdate_part

 5

The following example finds the week number from a timestamp literal. The week number
calculation follows the ISO 8601 standard. For more information, see ISO 8601 in Wikipedia.

SELECT DATE_PART(week, timestamp '20220502 04:05:06.789');

pgdate_part

Date and time functions 1792

https://en.wikipedia.org/wiki/ISO_8601

Amazon Redshift Database Developer Guide

 18

The following example finds the day of the month from a timestamp literal.

SELECT DATE_PART(day, timestamp '20220502 04:05:06.789');

pgdate_part

 2

The following example finds the day of the week from a timestamp literal. The day of week
number calculation is an integer from 0-6, starting with Sunday.

SELECT DATE_PART(dayofweek, timestamp '20220502 04:05:06.789');

pgdate_part

 1

The following example finds the century from a timestamp literal. The century calculation follows
the ISO 8601 standard. For more information, see ISO 8601 in Wikipedia.

SELECT DATE_PART(century, timestamp '20220502 04:05:06.789');

pgdate_part

 21

The following example finds the millennium from a timestamp literal. The millennium calculation
follows the ISO 8601 standard. For more information, see ISO 8601 in Wikipedia.

SELECT DATE_PART(millennium, timestamp '20220502 04:05:06.789');

pgdate_part

 3

The following example finds the microseconds from a timestamp literal. The microseconds
calculation follows the ISO 8601 standard. For more information, see ISO 8601 in Wikipedia.

Date and time functions 1793

https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601
https://en.wikipedia.org/wiki/ISO_8601

Amazon Redshift Database Developer Guide

SELECT DATE_PART(microsecond, timestamp '20220502 04:05:06.789');

pgdate_part

 789000

The following example finds the month from a date literal.

SELECT DATE_PART(month, date '20220502');

pgdate_part

 5

The following example applies the DATE_PART function to a column in a table.

SELECT date_part(w, listtime) AS weeks, listtime
FROM listing
WHERE listid=10

weeks | listtime
------+---------------------
 25 | 2008-06-17 09:44:54
(1 row)

You can name date parts in full or abbreviate them; in this case, w stands for weeks.

The day of week date part returns an integer from 0-6, starting with Sunday. Use DATE_PART with
dow (DAYOFWEEK) to view events on a Saturday.

SELECT date_part(dow, starttime) AS dow, starttime
FROM event
WHERE date_part(dow, starttime)=6
ORDER BY 2,1;

 dow | starttime
-----+---------------------
 6 | 2008-01-05 14:00:00
 6 | 2008-01-05 14:00:00
 6 | 2008-01-05 14:00:00
 6 | 2008-01-05 14:00:00

Date and time functions 1794

Amazon Redshift Database Developer Guide

...
(1147 rows)

DATE_PART_YEAR function

The DATE_PART_YEAR function extracts the year from a date.

Syntax

DATE_PART_YEAR(date)

Argument

date

A column of data type DATE or an expression that implicitly evaluates to a DATE type.

Return type

INTEGER

Examples

The following example finds the year from a date literal.

SELECT DATE_PART_YEAR(date '20220502 04:05:06.789');

date_part_year

2022

The following example extracts the year from the CALDATE column. The values in the CALDATE
column are dates. For more information about the data used in this example, see Sample database.

select caldate, date_part_year(caldate)
from date
order by
dateid limit 10;

 caldate | date_part_year
-----------+----------------
2008-01-01 | 2008

Date and time functions 1795

Amazon Redshift Database Developer Guide

2008-01-02 | 2008
2008-01-03 | 2008
2008-01-04 | 2008
2008-01-05 | 2008
2008-01-06 | 2008
2008-01-07 | 2008
2008-01-08 | 2008
2008-01-09 | 2008
2008-01-10 | 2008
(10 rows)

DATE_TRUNC function

The DATE_TRUNC function truncates a timestamp expression or literal based on the date part that
you specify, such as hour, day, or month.

Syntax

DATE_TRUNC('datepart', timestamp)

Arguments

datepart

The date part to which to truncate the timestamp value. The input timestamp is truncated to
the precision of the input datepart. For example, month truncates to the first day of the month.
Valid formats are as follows:

• microsecond, microseconds

• millisecond, milliseconds

• second, seconds

• minute, minutes

• hour, hours

• day, days

• week, weeks

• month, months

• quarter, quarters

• year, years

• decade, decades

Date and time functions 1796

Amazon Redshift Database Developer Guide

• century, centuries

• millennium, millennia

For more information about abbreviations of some formats, see Date parts for date or
timestamp functions

timestamp

A timestamp column or an expression that implicitly converts to a timestamp.

Return type

TIMESTAMP

Examples

Truncate the input timestamp to the second.

SELECT DATE_TRUNC('second', TIMESTAMP '20200430 04:05:06.789');
date_trunc
2020-04-30 04:05:06

Truncate the input timestamp to the minute.

SELECT DATE_TRUNC('minute', TIMESTAMP '20200430 04:05:06.789');
date_trunc
2020-04-30 04:05:00

Truncate the input timestamp to the hour.

SELECT DATE_TRUNC('hour', TIMESTAMP '20200430 04:05:06.789');
date_trunc
2020-04-30 04:00:00

Truncate the input timestamp to the day.

SELECT DATE_TRUNC('day', TIMESTAMP '20200430 04:05:06.789');
date_trunc
2020-04-30 00:00:00

Truncate the input timestamp to the first day of a month.

Date and time functions 1797

Amazon Redshift Database Developer Guide

SELECT DATE_TRUNC('month', TIMESTAMP '20200430 04:05:06.789');
date_trunc
2020-04-01 00:00:00

Truncate the input timestamp to the first day of a quarter.

SELECT DATE_TRUNC('quarter', TIMESTAMP '20200430 04:05:06.789');
date_trunc
2020-04-01 00:00:00

Truncate the input timestamp to the first day of a year.

SELECT DATE_TRUNC('year', TIMESTAMP '20200430 04:05:06.789');
date_trunc
2020-01-01 00:00:00

Truncate the input timestamp to the first day of a century.

SELECT DATE_TRUNC('millennium', TIMESTAMP '20200430 04:05:06.789');
date_trunc
2001-01-01 00:00:00

Truncate the input timestamp to the Monday of a week.

select date_trunc('week', TIMESTAMP '20220430 04:05:06.789');
date_trunc
2022-04-25 00:00:00

In the following example, the DATE_TRUNC function uses the 'week' date part to return the date
for the Monday of each week.

select date_trunc('week', saletime), sum(pricepaid) from sales where
saletime like '2008-09%' group by date_trunc('week', saletime) order by 1;

date_trunc | sum
------------+-------------
2008-09-01 | 2474899
2008-09-08 | 2412354
2008-09-15 | 2364707
2008-09-22 | 2359351

Date and time functions 1798

Amazon Redshift Database Developer Guide

2008-09-29 | 705249

EXTRACT function

The EXTRACT function returns a date or time part from a TIMESTAMP, TIMESTAMPTZ, TIME,
TIMETZ, INTERVAL YEAR TO MONTH, or INTERVAL DAY TO SECOND value. Examples include a day,
month, year, hour, minute, second, millisecond, or microsecond from a timestamp.

Syntax

EXTRACT(datepart FROM source)

Arguments

datepart

The subfield of a date or time to extract, such as a day, month, year, hour, minute, second,
millisecond, or microsecond. For possible values, see Date parts for date or timestamp
functions.

source

A column or expression that evaluates to a data type of TIMESTAMP, TIMESTAMPTZ, TIME,
TIMETZ, INTERVAL YEAR TO MONTH, or INTERVAL DAY TO SECOND.

Return type

INTEGER if the source value evaluates to data type TIMESTAMP, TIME, TIMETZ, INTERVAL YEAR TO
MONTH, or INTERVAL DAY TO SECOND.

DOUBLE PRECISION if the source value evaluates to data type TIMESTAMPTZ.

Examples with TIMESTAMP

The following example determines the week numbers for sales in which the price paid was $10,000
or more. This example uses the TICKIT data. For more information, see Sample database.

select salesid, extract(week from saletime) as weeknum
from sales
where pricepaid > 9999
order by 2;

Date and time functions 1799

Amazon Redshift Database Developer Guide

salesid | weeknum
--------+---------
 159073 | 6
 160318 | 8
 161723 | 26

The following example returns the minute value from a literal timestamp value.

select extract(minute from timestamp '2009-09-09 12:08:43');

date_part

8

The following example returns the millisecond value from a literal timestamp value.

select extract(ms from timestamp '2009-09-09 12:08:43.101');

date_part

101

Examples with TIMESTAMPTZ

The following example returns the year value from a literal timestamptz value.

select extract(year from timestamptz '1.12.1997 07:37:16.00 PST');

date_part

1997

Examples with TIME

The following example table TIME_TEST has a column TIME_VAL (type TIME) with three values
inserted.

select time_val from time_test;

time_val

20:00:00

Date and time functions 1800

Amazon Redshift Database Developer Guide

00:00:00.5550
00:58:00

The following example extracts the minutes from each time_val.

select extract(minute from time_val) as minutes from time_test;

minutes

 0
 0
 58

The following example extracts the hours from each time_val.

select extract(hour from time_val) as hours from time_test;

hours

 20
 0
 0

The following example extracts milliseconds from a literal value.

select extract(ms from time '18:25:33.123456');

 date_part

 123

Examples with TIMETZ

The following example table TIMETZ_TEST has a column TIMETZ_VAL (type TIMETZ) with three
values inserted.

select timetz_val from timetz_test;

timetz_val

04:00:00+00

Date and time functions 1801

Amazon Redshift Database Developer Guide

00:00:00.5550+00
05:58:00+00

The following example extracts the hours from each timetz_val.

select extract(hour from timetz_val) as hours from time_test;

hours

 4
 0
 5

The following example extracts milliseconds from a literal value. Literals aren't converted to UTC
before the extraction is processed.

select extract(ms from timetz '18:25:33.123456 EST');

 date_part

 123

The following example returns the timezone offset hour from UTC from a literal timetz value.

select extract(timezone_hour from timetz '1.12.1997 07:37:16.00 PDT');

date_part

-7

Examples with INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND

The following example extracts the day part of 1 from the INTERVAL DAY TO SECOND that defines
36 hours, which is 1 day 12 hours.

select EXTRACT('days' from INTERVAL '36 hours' DAY TO SECOND)

 date_part

 1

Date and time functions 1802

Amazon Redshift Database Developer Guide

The following example extracts the month part of 3 from the YEAR TO MONTH that defines 15
months, which is 1 year 3 months.

select EXTRACT('month' from INTERVAL '15 months' YEAR TO MONTH)

 date_part

 3

The following example extracts the month part of 6 from 30 months which is 2 years 6 months.

select EXTRACT('month' from INTERVAL '30' MONTH)

 date_part

 6

The following example extracts the hour part of 2 from 50 hours which is 2 days 2 hours.

select EXTRACT('hours' from INTERVAL '50' HOUR)

 date_part

 2

The following example extracts the minute part of 11 from 1 hour 11 minutes 11.123 seconds.

select EXTRACT('minute' from INTERVAL '70 minutes 70.123 seconds' MINUTE TO SECOND)

 date_part

 11

The following example extracts the seconds part of 1.11 from 1 day 1 hour 1 minute 1.11 seconds.

select EXTRACT('seconds' from INTERVAL '1 day 1:1:1.11' DAY TO SECOND)

 date_part

 1.11

Date and time functions 1803

Amazon Redshift Database Developer Guide

The following example extracts the total number of hours in an INTERVAL. Each part is extracted
and added to a total.

select EXTRACT('days' from INTERVAL '50' HOUR) * 24 + EXTRACT('hours' from INTERVAL
 '50' HOUR)

 ?column?

 50

The following example extracts the total number of seconds in an INTERVAL. Each part is extracted
and added to a total.

select EXTRACT('days' from INTERVAL '1 day 1:1:1.11' DAY TO SECOND) * 86400 +
 EXTRACT('hours' from INTERVAL '1 day 1:1:1.11' DAY TO SECOND) * 3600 +
 EXTRACT('minutes' from INTERVAL '1 day 1:1:1.11' DAY TO SECOND) * 60 +
 EXTRACT('seconds' from INTERVAL '1 day 1:1:1.11' DAY TO SECOND)

 ?column?

 90061.11

GETDATE function

GETDATE returns the current date and time in the current session time zone (UTC by default). It
returns the start date or time of the current statement, even when it is within a transaction block.

Syntax

GETDATE()

The parentheses are required.

Return type

TIMESTAMP

Examples

The following example uses the GETDATE function to return the full timestamp for the current
date.

Date and time functions 1804

Amazon Redshift Database Developer Guide

select getdate();

timestamp

2008-12-04 16:10:43

The following example uses the GETDATE function inside the TRUNC function to return the current
date without the time.

select trunc(getdate());

trunc

2008-12-04

INTERVAL_CMP function

INTERVAL_CMP compares two intervals and returns 1 if the first interval is greater, -1 if the second
interval is greater, and 0 if the intervals are equal. For more information, see Examples of interval
literals without qualifier syntax.

Syntax

INTERVAL_CMP(interval1, interval2)

Arguments

interval1

An interval literal value.

interval2

An interval literal value.

Return type

INTEGER

Examples

The following example compares the value of 3 days to 1 year.

Date and time functions 1805

Amazon Redshift Database Developer Guide

select interval_cmp('3 days','1 year');

interval_cmp

-1

This example compares the value 7 days to 1 week.

select interval_cmp('7 days','1 week');

interval_cmp

0

The following example compares the value of 1 year to 3 days.

select interval_cmp('1 year','3 days');

interval_cmp

1

LAST_DAY function

LAST_DAY returns the date of the last day of the month that contains date. The return type is
always DATE, regardless of the data type of the date argument.

For more information about retrieving specific date parts, see DATE_TRUNC function.

Syntax

LAST_DAY({ date | timestamp })

Arguments

date | timestamp

A column of data type DATE or TIMESTAMP or an expression that implicitly evaluates to a DATE or
TIMESTAMP type.

Date and time functions 1806

Amazon Redshift Database Developer Guide

Return type

DATE

Examples

The following example returns the date of the last day in the current month.

select last_day(sysdate);

 last_day

 2014-01-31

The following example returns the number of tickets sold for each of the last 7 days of the month.
The values in the SALETIME column are timestamps.

select datediff(day, saletime, last_day(saletime)) as "Days Remaining", sum(qtysold)
from sales
where datediff(day, saletime, last_day(saletime)) < 7
group by 1
order by 1;

days remaining | sum
---------------+-------
 0 | 10140
 1 | 11187
 2 | 11515
 3 | 11217
 4 | 11446
 5 | 11708
 6 | 10988
(7 rows)

MONTHS_BETWEEN function

MONTHS_BETWEEN determines the number of months between two dates.

If the first date is later than the second date, the result is positive; otherwise, the result is negative.

If either argument is null, the result is NULL.

Date and time functions 1807

Amazon Redshift Database Developer Guide

Syntax

MONTHS_BETWEEN(date1, date2)

Arguments

date1

A column of data type DATE or an expression that implicitly evaluates to a DATE type.

date2

A column of data type DATE or an expression that implicitly evaluates to a DATE type.

Return type

FLOAT8

The whole number portion of the result is based on the difference between the year and month
values of the dates. The fractional portion of the result is calculated from the day and timestamp
values of the dates and assumes a 31-day month.

If date1 and date2 both contain the same date within a month (for example, 1/15/14 and 2/15/14)
or the last day of the month (for example, 8/31/14 and 9/30/14), then the result is a whole
number based on the year and month values of the dates, regardless of whether the timestamp
portion matches, if present.

Examples

The following example returns the months between 1/18/1969 and 3/18/1969.

select months_between('1969-01-18', '1969-03-18')
as months;

months

-2

The following example returns the months between 1/18/1969 and 1/18/1969.

select months_between('1969-01-18', '1969-01-18')
as months;

Date and time functions 1808

Amazon Redshift Database Developer Guide

months

0

The following example returns the months between the first and last showings of an event.

select eventname,
min(starttime) as first_show,
max(starttime) as last_show,
months_between(max(starttime),min(starttime)) as month_diff
from event
group by eventname
order by eventname
limit 5;

eventname first_show last_show month_diff

.38 Special 2008-01-21 19:30:00.0 2008-12-25 15:00:00.0 11.12
3 Doors Down 2008-01-03 15:00:00.0 2008-12-01 19:30:00.0 10.94
70s Soul Jam 2008-01-16 19:30:00.0 2008-12-07 14:00:00.0 10.7
A Bronx Tale 2008-01-21 19:00:00.0 2008-12-15 15:00:00.0 10.8
A Catered Affair 2008-01-08 19:30:00.0 2008-12-19 19:00:00.0 11.35

NEXT_DAY function

NEXT_DAY returns the date of the first instance of the specified day that is later than the given
date.

If the day value is the same day of the week as the given date, the next occurrence of that day is
returned.

Syntax

NEXT_DAY({ date | timestamp }, day)

Arguments

date | timestamp

A column of data type DATE or TIMESTAMP or an expression that implicitly evaluates to a DATE
or TIMESTAMP type.

Date and time functions 1809

Amazon Redshift Database Developer Guide

day

A string containing the name of any day. Capitalization doesn't matter.

Valid values are as follows.

Day Values

Sunday Su, Sun, Sunday

Monday M, Mo, Mon, Monday

Tuesday Tu, Tue, Tues, Tuesday

Wednesday W, We, Wed, Wednesday

Thursday Th, Thu, Thurs, Thursday

Friday F, Fr, Fri, Friday

Saturday Sa, Sat, Saturday

Return type

DATE

Examples

The following example returns the date of the first Tuesday after 8/20/2014.

select next_day('2014-08-20','Tuesday');

next_day

2014-08-26

The following example returns the date of the first Tuesday after 1/1/2008 at 5:54:44.

select listtime, next_day(listtime, 'Tue') from listing limit 1;

listtime | next_day
--------------------+-----------

Date and time functions 1810

Amazon Redshift Database Developer Guide

2008-01-01 05:54:44 | 2008-01-08

The following example gets target marketing dates for the third quarter.

select username, (firstname ||' '|| lastname) as name,
eventname, caldate, next_day (caldate, 'Monday') as marketing_target
from sales, date, users, event
where sales.buyerid = users.userid
and sales.eventid = event.eventid
and event.dateid = date.dateid
and date.qtr = 3
order by marketing_target, eventname, name;

username | name | eventname | caldate |
 marketing_target
----------+-------------------+----------------------+--------------
+-------------------
MBO26QSG | Callum Atkinson | .38 Special | 2008-07-06 | 2008-07-07
WCR50YIU | Erasmus Alvarez | A Doll's House | 2008-07-03 | 2008-07-07
CKT70OIE | Hadassah Adkins | Ana Gabriel | 2008-07-06 | 2008-07-07
VVG07OUO | Nathan Abbott | Armando Manzanero | 2008-07-04 | 2008-07-07
GEW77SII | Scarlet Avila | August: Osage County | 2008-07-06 | 2008-07-07
ECR71CVS | Caryn Adkins | Ben Folds | 2008-07-03 | 2008-07-07
KUW82CYU | Kaden Aguilar | Bette Midler | 2008-07-01 | 2008-07-07
WZE78DJZ | Kay Avila | Bette Midler | 2008-07-01 | 2008-07-07
HXY04NVE | Dante Austin | Britney Spears | 2008-07-02 | 2008-07-07
URY81YWF | Wilma Anthony | Britney Spears | 2008-07-02 | 2008-07-07

SYSDATE function

SYSDATE returns the current date and time in the current session time zone (UTC by default).

Note

SYSDATE returns the start date and time for the current transaction, not for the start of the
current statement.

Syntax

SYSDATE

Date and time functions 1811

Amazon Redshift Database Developer Guide

This function requires no arguments.

Return type

TIMESTAMP

Examples

The following example uses the SYSDATE function to return the full timestamp for the current
date.

select sysdate;

timestamp

2008-12-04 16:10:43.976353

The following example uses the SYSDATE function inside the TRUNC function to return the current
date without the time.

select trunc(sysdate);

trunc

2008-12-04

The following query returns sales information for dates that fall between the date when the query
is issued and whatever date is 120 days earlier.

select salesid, pricepaid, trunc(saletime) as saletime, trunc(sysdate) as now
from sales
where saletime between trunc(sysdate)-120 and trunc(sysdate)
order by saletime asc;

 salesid | pricepaid | saletime | now
---------+-----------+------------+------------
91535 | 670.00 | 2008-08-07 | 2008-12-05
91635 | 365.00 | 2008-08-07 | 2008-12-05
91901 | 1002.00 | 2008-08-07 | 2008-12-05
...

Date and time functions 1812

Amazon Redshift Database Developer Guide

TIMEOFDAY function

TIMEOFDAY is a special alias used to return the weekday, date, and time as a string value. It returns
the time of day string for the current statement, even when it is within a transaction block.

Syntax

TIMEOFDAY()

Return type

VARCHAR

Examples

The following example returns the current date and time by using the TIMEOFDAY function.

select timeofday();

timeofday

Thu Sep 19 22:53:50.333525 2013 UTC

TIMESTAMP_CMP function

Compares the value of two timestamps and returns an integer. If the timestamps are identical, the
function returns 0. If the first timestamp is greater, the function returns 1. If the second timestamp
is greater, the function returns -1.

Syntax

TIMESTAMP_CMP(timestamp1, timestamp2)

Arguments

timestamp1

A column of data type TIMESTAMP or an expression that implicitly evaluates to a TIMESTAMP
type.

Date and time functions 1813

Amazon Redshift Database Developer Guide

timestamp2

A column of data type TIMESTAMP or an expression that implicitly evaluates to a TIMESTAMP
type.

Return type

INTEGER

Examples

The following example compares timestamps and shows the results of the comparison.

SELECT TIMESTAMP_CMP('2008-01-24 06:43:29', '2008-01-24 06:43:29'),
 TIMESTAMP_CMP('2008-01-24 06:43:29', '2008-02-18 02:36:48'), TIMESTAMP_CMP('2008-02-18
 02:36:48', '2008-01-24 06:43:29');

timestamp_cmp | timestamp_cmp | timestamp_cmp
---------------+---------------+---------------
 0 | -1 | 1

The following example compares the LISTTIME and SALETIME for a listing. The value for
TIMESTAMP_CMP is -1 for all listings because the timestamp for the sale is after the timestamp for
the listing.

select listing.listid, listing.listtime,
sales.saletime, timestamp_cmp(listing.listtime, sales.saletime)
from listing, sales
where listing.listid=sales.listid
order by 1, 2, 3, 4
limit 10;

 listid | listtime | saletime | timestamp_cmp
--------+---------------------+---------------------+---------------
 1 | 2008-01-24 06:43:29 | 2008-02-18 02:36:48 | -1
 4 | 2008-05-24 01:18:37 | 2008-06-06 05:00:16 | -1
 5 | 2008-05-17 02:29:11 | 2008-06-06 08:26:17 | -1
 5 | 2008-05-17 02:29:11 | 2008-06-09 08:38:52 | -1
 6 | 2008-08-15 02:08:13 | 2008-08-31 09:17:02 | -1
 10 | 2008-06-17 09:44:54 | 2008-06-26 12:56:06 | -1
 10 | 2008-06-17 09:44:54 | 2008-07-10 02:12:36 | -1
 10 | 2008-06-17 09:44:54 | 2008-07-16 11:59:24 | -1

Date and time functions 1814

Amazon Redshift Database Developer Guide

 10 | 2008-06-17 09:44:54 | 2008-07-22 02:23:17 | -1
 12 | 2008-07-25 01:45:49 | 2008-08-04 03:06:36 | -1
(10 rows)

This example shows that TIMESTAMP_CMP returns a 0 for identical timestamps:

select listid, timestamp_cmp(listtime, listtime)
from listing
order by 1 , 2
limit 10;

 listid | timestamp_cmp
--------+---------------
 1 | 0
 2 | 0
 3 | 0
 4 | 0
 5 | 0
 6 | 0
 7 | 0
 8 | 0
 9 | 0
 10 | 0
(10 rows)

TIMESTAMP_CMP_DATE function

TIMESTAMP_CMP_DATE compares the value of a timestamp and a date. If the timestamp and date
values are identical, the function returns 0. If the timestamp is greater chronologically, the function
returns 1. If the date is greater, the function returns -1.

Syntax

TIMESTAMP_CMP_DATE(timestamp, date)

Arguments

timestamp

A column of data type TIMESTAMP or an expression that implicitly evaluates to a TIMESTAMP
type.

Date and time functions 1815

Amazon Redshift Database Developer Guide

date

A column of data type DATE or an expression that implicitly evaluates to a DATE type.

Return type

INTEGER

Examples

The following example compares LISTTIME to the date 2008-06-18. Listings made after this date
return 1; listings made before this date return -1. LISTTIME values are timestamps.

select listid, listtime,
timestamp_cmp_date(listtime, '2008-06-18')
from listing
order by 1, 2, 3
limit 10;

 listid | listtime | timestamp_cmp_date
--------+---------------------+--------------------
 1 | 2008-01-24 06:43:29 | -1
 2 | 2008-03-05 12:25:29 | -1
 3 | 2008-11-01 07:35:33 | 1
 4 | 2008-05-24 01:18:37 | -1
 5 | 2008-05-17 02:29:11 | -1
 6 | 2008-08-15 02:08:13 | 1
 7 | 2008-11-15 09:38:15 | 1
 8 | 2008-11-09 05:07:30 | 1
 9 | 2008-09-09 08:03:36 | 1
 10 | 2008-06-17 09:44:54 | -1
(10 rows)

TIMESTAMP_CMP_TIMESTAMPTZ function

TIMESTAMP_CMP_TIMESTAMPTZ compares the value of a timestamp expression with a timestamp
with time zone expression. If the timestamp and timestamp with time zone values are identical,
the function returns 0. If the timestamp is greater chronologically, the function returns 1. If the
timestamp with time zone is greater, the function returns –1.

Date and time functions 1816

Amazon Redshift Database Developer Guide

Syntax

TIMESTAMP_CMP_TIMESTAMPTZ(timestamp, timestamptz)

Arguments

timestamp

A column of data type TIMESTAMP or an expression that implicitly evaluates to a TIMESTAMP
type.

timestamptz

A column of data type TIMESTAMPTZ or an expression that implicitly evaluates to a
TIMESTAMPTZ type.

Return type

INTEGER

Examples

The following example compares timestamps to timestamps with time zones and shows the results
of the comparison.

SELECT TIMESTAMP_CMP_TIMESTAMPTZ('2008-01-24 06:43:29', '2008-01-24 06:43:29+00'),
 TIMESTAMP_CMP_TIMESTAMPTZ('2008-01-24 06:43:29', '2008-02-18 02:36:48+00'),
 TIMESTAMP_CMP_TIMESTAMPTZ('2008-02-18 02:36:48', '2008-01-24 06:43:29+00');

timestamp_cmp_timestamptz | timestamp_cmp_timestamptz | timestamp_cmp_timestamptz
---------------------------+---------------------------+--------------------------
 0 | -1 | 1

TIMESTAMPTZ_CMP function

TIMESTAMPTZ_CMP compares the value of two timestamp with time zone values and returns an
integer. If the timestamps are identical, the function returns 0. If the first timestamp is greater
chronologically, the function returns 1. If the second timestamp is greater, the function returns –1.

Syntax

TIMESTAMPTZ_CMP(timestamptz1, timestamptz2)

Date and time functions 1817

Amazon Redshift Database Developer Guide

Arguments

timestamptz1

A column of data type TIMESTAMPTZ or an expression that implicitly evaluates to a
TIMESTAMPTZ type.

timestamptz2

A column of data type TIMESTAMPTZ or an expression that implicitly evaluates to a
TIMESTAMPTZ type.

Return type

INTEGER

Examples

The following example compares timestamps with time zones and shows the results of the
comparison.

SELECT TIMESTAMPTZ_CMP('2008-01-24 06:43:29+00', '2008-01-24 06:43:29+00'),
 TIMESTAMPTZ_CMP('2008-01-24 06:43:29+00', '2008-02-18 02:36:48+00'),
 TIMESTAMPTZ_CMP('2008-02-18 02:36:48+00', '2008-01-24 06:43:29+00');

timestamptz_cmp | timestamptz_cmp | timestamptz_cmp
-----------------+-----------------+----------------
 0 | -1 | 1

TIMESTAMPTZ_CMP_DATE function

TIMESTAMPTZ_CMP_DATE compares the value of a timestamp and a date. If the timestamp and
date values are identical, the function returns 0. If the timestamp is greater chronologically, the
function returns 1. If the date is greater, the function returns –1.

Syntax

TIMESTAMPTZ_CMP_DATE(timestamptz, date)

Date and time functions 1818

Amazon Redshift Database Developer Guide

Arguments

timestamptz

A column of data type TIMESTAMPTZ or an expression that implicitly evaluates to a
TIMESTAMPTZ type.

date

A column of data type DATE or an expression that implicitly evaluates to a DATE type.

Return type

INTEGER

Examples

The following example compares LISTTIME as a timestamp with time zone to the date
2008-06-18. Listings made after this date return 1; listings made before this date return -1.

select listid, CAST(listtime as timestamptz) as tstz,
timestamp_cmp_date(tstz, '2008-06-18')
from listing
order by 1, 2, 3
limit 10;

 listid | tstz | timestamptz_cmp_date
--------+------------------------+----------------------
 1 | 2008-01-24 06:43:29+00 | -1
 2 | 2008-03-05 12:25:29+00 | -1
 3 | 2008-11-01 07:35:33+00 | 1
 4 | 2008-05-24 01:18:37+00 | -1
 5 | 2008-05-17 02:29:11+00 | -1
 6 | 2008-08-15 02:08:13+00 | 1
 7 | 2008-11-15 09:38:15+00 | 1
 8 | 2008-11-09 05:07:30+00 | 1
 9 | 2008-09-09 08:03:36+00 | 1
 10 | 2008-06-17 09:44:54+00 | -1
(10 rows)

Date and time functions 1819

Amazon Redshift Database Developer Guide

TIMESTAMPTZ_CMP_TIMESTAMP function

TIMESTAMPTZ_CMP_TIMESTAMP compares the value of a timestamp with time zone expression
with a timestamp expression. If the timestamp with time zone and timestamp values are identical,
the function returns 0. If the timestamp with time zone is greater chronologically, the function
returns 1. If the timestamp is greater, the function returns –1.

Syntax

TIMESTAMPTZ_CMP_TIMESTAMP(timestamptz, timestamp)

Arguments

timestamptz

A column of data type TIMESTAMPTZ or an expression that implicitly evaluates to a
TIMESTAMPTZ type.

timestamp

A column of data type TIMESTAMP or an expression that implicitly evaluates to a TIMESTAMP
type.

Return type

INTEGER

Examples

The following example compares timestamps with time zones to timestamps and shows the results
of the comparison.

SELECT TIMESTAMPTZ_CMP_TIMESTAMP('2008-01-24 06:43:29+00', '2008-01-24 06:43:29'),
 TIMESTAMPTZ_CMP_TIMESTAMP('2008-01-24 06:43:29+00', '2008-02-18 02:36:48'),
 TIMESTAMPTZ_CMP_TIMESTAMP('2008-02-18 02:36:48+00', '2008-01-24 06:43:29');

timestamptz_cmp_timestamp | timestamptz_cmp_timestamp | timestamptz_cmp_timestamp
---------------------------+---------------------------+---------------------------
 0 | -1 | 1

Date and time functions 1820

Amazon Redshift Database Developer Guide

TIMEZONE function

TIMEZONE returns a timestamp for the specified time zone and timestamp value.

For information and examples about how to set time zone, see timezone.

For information and examples about how to convert time zone, see CONVERT_TIMEZONE.

Syntax

TIMEZONE('timezone', { timestamp | timestamptz })

Arguments

timezone

The time zone for the return value. The time zone can be specified as a time zone name (such
as 'Africa/Kampala' or 'Singapore') or as a time zone abbreviation (such as 'UTC' or
'PDT'). To view a list of supported time zone names, run the following command.

select pg_timezone_names();

To view a list of supported time zone abbreviations, run the following command.

select pg_timezone_abbrevs();

For more information and examples, see Time zone usage notes.

timestamp | timestamptz

An expression that results in a TIMESTAMP or TIMESTAMPTZ type, or a value that can implicitly
be coerced to a timestamp or a timestamp with time zone.

Return type

TIMESTAMPTZ when used with a TIMESTAMP expression.

TIMESTAMP when used with a TIMESTAMPTZ expression.

Examples

The following returns a timestamp for the UTC time zone using the timestamp 2008-06-17
09:44:54 from the PST timezone.

Date and time functions 1821

Amazon Redshift Database Developer Guide

SELECT TIMEZONE('PST', '2008-06-17 09:44:54');

timezone

2008-06-17 17:44:54+00

The following returns a timestamp for the PST time zone using the timestamp with UTC time zone
2008-06-17 09:44:54+00.

SELECT TIMEZONE('PST', timestamptz('2008-06-17 09:44:54+00'));

timezone

2008-06-17 01:44:54

TO_TIMESTAMP function

TO_TIMESTAMP converts a TIMESTAMP string to TIMESTAMPTZ. For a list of additional date and
time functions for Amazon Redshift, see Date and time functions.

Syntax

to_timestamp(timestamp, format)

to_timestamp (timestamp, format, is_strict)

Arguments

timestamp

A string that represents a timestamp value in the format specified by format. If this argument is
left as empty, the timestamp value defaults to 0001-01-01 00:00:00.

format

A string literal that defines the format of the timestamp value. Formats that include a time zone
(TZ, tz, or OF) are not supported as input. For valid timestamp formats, see Datetime format
strings.

Date and time functions 1822

Amazon Redshift Database Developer Guide

is_strict

An optional Boolean value that specifies whether an error is returned if an input timestamp
value is out of range. When is_strict is set to TRUE, an error is returned if there is an out of
range value. When is_strict is set to FALSE, which is the default, then overflow values are
accepted.

Return type

TIMESTAMPTZ

Examples

The following example demonstrates using the TO_TIMESTAMP function to convert a TIMESTAMP
string to a TIMESTAMPTZ.

select sysdate, to_timestamp(sysdate, 'YYYY-MM-DD HH24:MI:SS') as second;

timestamp | second
-------------------------- ----------------------
2021-04-05 19:27:53.281812 | 2021-04-05 19:27:53+00

It's possible to pass TO_TIMESTAMP part of a date. The remaining date parts are set to default
values. The time is included in the output:

SELECT TO_TIMESTAMP('2017','YYYY');

to_timestamp

2017-01-01 00:00:00+00

The following SQL statement converts the string '2011-12-18 24:38:15' to a TIMESTAMPTZ. The
result is a TIMESTAMPTZ that falls on the next day because the number of hours is more than 24
hours:

SELECT TO_TIMESTAMP('2011-12-18 24:38:15', 'YYYY-MM-DD HH24:MI:SS');

to_timestamp

Date and time functions 1823

Amazon Redshift Database Developer Guide

2011-12-19 00:38:15+00

The following SQL statement converts the string '2011-12-18 24:38:15' to a TIMESTAMPTZ. The
result is an error because the time value in the timestamp is more than 24 hours:

SELECT TO_TIMESTAMP('2011-12-18 24:38:15', 'YYYY-MM-DD HH24:MI:SS', TRUE);

ERROR: date/time field time value out of range: 24:38:15.0

TRUNC function

Truncates a TIMESTAMP and returns a DATE.

This function can also truncate a number. For more information, see TRUNC function.

Syntax

TRUNC(timestamp)

Arguments

timestamp

A column of data type TIMESTAMP or an expression that implicitly evaluates to a TIMESTAMP
type.

To return a timestamp value with 00:00:00 as the time, cast the function result to a
TIMESTAMP.

Return type

DATE

Examples

The following example returns the date portion from the result of the SYSDATE function (which
returns a timestamp).

SELECT SYSDATE;

Date and time functions 1824

Amazon Redshift Database Developer Guide

+----------------------------+
| timestamp |
+----------------------------+
| 2011-07-21 10:32:38.248109 |
+----------------------------+

SELECT TRUNC(SYSDATE);

+------------+
| trunc |
+------------+
| 2011-07-21 |
+------------+

The following example applies the TRUNC function to a TIMESTAMP column. The return type is a
date.

SELECT TRUNC(starttime) FROM event
ORDER BY eventid LIMIT 1;

+------------+
| trunc |
+------------+
| 2008-01-25 |
+------------+

The following example returns a timestamp value with 00:00:00 as the time by casting the
TRUNC function result to a TIMESTAMP.

SELECT CAST((TRUNC(SYSDATE)) AS TIMESTAMP);

+---------------------+
| trunc |
+---------------------+
| 2011-07-21 00:00:00 |
+---------------------+

Date parts for date or timestamp functions

The following table identifies the date part and time part names and abbreviations that are
accepted as arguments to the following functions:

Date and time functions 1825

Amazon Redshift Database Developer Guide

• DATEADD

• DATEDIFF

• DATE_PART

• EXTRACT

Date part or time part Abbreviations

millennium, millennia mil, mils

century, centuries c, cent, cents

decade, decades dec, decs

epoch epoch (supported by the EXTRACT)

year, years y, yr, yrs

quarter, quarters qtr, qtrs

month, months mon, mons

week, weeks w

day of week dayofweek, dow, dw, weekday (supported by the DATE_PART and
the EXTRACT function)

Returns an integer from 0–6, starting with Sunday.

Note

The DOW date part behaves differently from the day of
week (D) date part used for datetime format strings. D
is based on integers 1–7, where Sunday is 1. For more
information, see Datetime format strings.

day of year dayofyear, doy, dy, yearday (supported by the EXTRACT)

day, days d

Date and time functions 1826

Amazon Redshift Database Developer Guide

Date part or time part Abbreviations

hour, hours h, hr, hrs

minute, minutes m, min, mins

second, seconds s, sec, secs

millisecond, milliseconds ms, msec, msecs, msecond, mseconds, millisec, millisecs,
millisecon

microsecond, microseconds microsec, microsecs, microsecond, usecond, useconds, us, usec,
usecs

timezone, timezone_hour,
timezone_minute

Supported by the EXTRACT for timestamp with time zone
(TIMESTAMPTZ) only.

Variations in results with seconds, milliseconds, and microseconds

Minor differences in query results occur when different date functions specify seconds,
milliseconds, or microseconds as date parts:

• The EXTRACT function return integers for the specified date part only, ignoring higher- and
lower-level date parts. If the specified date part is seconds, milliseconds and microseconds are
not included in the result. If the specified date part is milliseconds, seconds and microseconds
are not included. If the specified date part is microseconds, seconds and milliseconds are not
included.

• The DATE_PART function returns the complete seconds portion of the timestamp, regardless of
the specified date part, returning either a decimal value or an integer as required.

For example, compare the results of the following queries:

create table seconds(micro timestamp);

insert into seconds values('2009-09-21 11:10:03.189717');

select extract(sec from micro) from seconds;

date_part

Date and time functions 1827

Amazon Redshift Database Developer Guide

3

select date_part(sec, micro) from seconds;

pgdate_part

3.189717

CENTURY, EPOCH, DECADE, and MIL notes

CENTURY or CENTURIES

Amazon Redshift interprets a CENTURY to start with year ###1 and end with year ###0:

select extract (century from timestamp '2000-12-16 12:21:13');
date_part

20

select extract (century from timestamp '2001-12-16 12:21:13');
date_part

21

EPOCH

The Amazon Redshift implementation of EPOCH is relative to 1970-01-01 00:00:00.000000
independent of the time zone where the cluster resides. You might need to offset the results by
the difference in hours depending on the time zone where the cluster is located.

The following example demonstrates the following:

1. Creates a table called EVENT_EXAMPLE based on the EVENT table. This CREATE AS command
uses the DATE_PART function to create a date column (called PGDATE_PART by default) to
store the epoch value for each event.

2. Selects the column and data type of EVENT_EXAMPLE from PG_TABLE_DEF.

3. Selects EVENTNAME, STARTTIME, and PGDATE_PART from the EVENT_EXAMPLE table to
view the different date and time formats.

Date and time functions 1828

Amazon Redshift Database Developer Guide

4. Selects EVENTNAME and STARTTIME from EVENT EXAMPLE as is. Converts epoch values in
PGDATE_PART using a 1 second interval to a timestamp without time zone, and returns the
results in a column called CONVERTED_TIMESTAMP.

create table event_example
as select eventname, starttime, date_part(epoch, starttime) from event;

select "column", type from pg_table_def where tablename='event_example';

 column | type
---------------+-----------------------------
 eventname | character varying(200)
 starttime | timestamp without time zone
 pgdate_part | double precision
(3 rows)

select eventname, starttime, pgdate_part from event_example;

 eventname | starttime | pgdate_part
----------------------+---------------------+-------------
 Mamma Mia! | 2008-01-01 20:00:00 | 1199217600
 Spring Awakening | 2008-01-01 15:00:00 | 1199199600
 Nas | 2008-01-01 14:30:00 | 1199197800
 Hannah Montana | 2008-01-01 19:30:00 | 1199215800
 K.D. Lang | 2008-01-01 15:00:00 | 1199199600
 Spamalot | 2008-01-02 20:00:00 | 1199304000
 Macbeth | 2008-01-02 15:00:00 | 1199286000
 The Cherry Orchard | 2008-01-02 14:30:00 | 1199284200
 Macbeth | 2008-01-02 19:30:00 | 1199302200
 Demi Lovato | 2008-01-02 19:30:00 | 1199302200

select eventname,
starttime,
timestamp with time zone 'epoch' + pgdate_part * interval '1 second' AS
 converted_timestamp
from event_example;

 eventname | starttime | converted_timestamp
----------------------+---------------------+---------------------
 Mamma Mia! | 2008-01-01 20:00:00 | 2008-01-01 20:00:00
 Spring Awakening | 2008-01-01 15:00:00 | 2008-01-01 15:00:00
 Nas | 2008-01-01 14:30:00 | 2008-01-01 14:30:00

Date and time functions 1829

Amazon Redshift Database Developer Guide

 Hannah Montana | 2008-01-01 19:30:00 | 2008-01-01 19:30:00
 K.D. Lang | 2008-01-01 15:00:00 | 2008-01-01 15:00:00
 Spamalot | 2008-01-02 20:00:00 | 2008-01-02 20:00:00
 Macbeth | 2008-01-02 15:00:00 | 2008-01-02 15:00:00
 The Cherry Orchard | 2008-01-02 14:30:00 | 2008-01-02 14:30:00
 Macbeth | 2008-01-02 19:30:00 | 2008-01-02 19:30:00
 Demi Lovato | 2008-01-02 19:30:00 | 2008-01-02 19:30:00
 ...

DECADE or DECADES

Amazon Redshift interprets the DECADE or DECADES DATEPART based on the common
calendar. For example, because the common calendar starts from the year 1, the first
decade (decade 1) is 0001-01-01 through 0009-12-31, and the second decade (decade 2)
is 0010-01-01 through 0019-12-31. For example, decade 201 spans from 2000-01-01 to
2009-12-31:

select extract(decade from timestamp '1999-02-16 20:38:40');
date_part

200

select extract(decade from timestamp '2000-02-16 20:38:40');
date_part

201

select extract(decade from timestamp '2010-02-16 20:38:40');
date_part

202

MIL or MILS

Amazon Redshift interprets a MIL to start with the first day of year #001 and end with the last
day of year #000:

select extract (mil from timestamp '2000-12-16 12:21:13');
date_part

2

Date and time functions 1830

Amazon Redshift Database Developer Guide

select extract (mil from timestamp '2001-12-16 12:21:13');
date_part

3

Hash functions

Topics

• CHECKSUM function

• farmFingerprint64 function

• FUNC_SHA1 function

• FNV_HASH function

• MD5 function

• SHA function

• SHA1 function

• SHA2 function

• MURMUR3_32_HASH

A hash function is a mathematical function that converts a numerical input value into another
value.

CHECKSUM function

Computes a checksum value for building a hash index.

Syntax

CHECKSUM(expression)

Argument

expression

The input expression must be a VARCHAR, INTEGER, or DECIMAL data type.

Hash functions 1831

Amazon Redshift Database Developer Guide

Return type

The CHECKSUM function returns an integer.

Example

The following example computes a checksum value for the COMMISSION column:

select checksum(commission)
from sales
order by salesid
limit 10;

checksum

10920
1140
5250
2625
2310
5910
11820
2955
8865
975
(10 rows)

farmFingerprint64 function

Computes the farmhash value of the input argument using the Fingerprint64 function.

Syntax

farmFingerprint64(expression)

Argument

expression

The input expression must be a VARCHAR or VARBYTE data type.

Hash functions 1832

Amazon Redshift Database Developer Guide

Return type

The farmFingerprint64 function returns a BIGINT.

Example

The following example returns the farmFingerprint64 value of Amazon Redshift that is input
as a VARCHAR data type.

SELECT farmFingerprint64('Amazon Redshift');

 farmfingerprint64

 8085098817162212970

The following example returns the farmFingerprint64 value of Amazon Redshift that is input
as a VARBYTE data type.

SELECT farmFingerprint64('Amazon Redshift'::varbyte);

 farmfingerprint64

 8085098817162212970

FUNC_SHA1 function

Synonym of SHA1 function.

See SHA1 function.

FNV_HASH function

Computes the 64-bit FNV-1a non-cryptographic hash function for all basic data types.

Syntax

FNV_HASH(value [, seed])

Hash functions 1833

Amazon Redshift Database Developer Guide

Arguments

value

The input value to be hashed. Amazon Redshift uses the binary representation of the value to
hash the input value; for instance, INTEGER values are hashed using 4 bytes and BIGINT values
are hashed using 8 bytes. Also, hashing CHAR and VARCHAR inputs does not ignore trailing
spaces.

seed

The BIGINT seed of the hash function is optional. If not given, Amazon Redshift uses the default
FNV seed. This enables combining the hash of multiple columns without any conversions or
concatenations.

Return type

BIGINT

Example

The following examples return the FNV hash of a number, the string 'Amazon Redshift', and the
concatenation of the two.

select fnv_hash(1);
 fnv_hash

 -5968735742475085980
(1 row)

select fnv_hash('Amazon Redshift');
 fnv_hash

 7783490368944507294
(1 row)

select fnv_hash('Amazon Redshift', fnv_hash(1));
 fnv_hash

 -2202602717770968555

Hash functions 1834

Amazon Redshift Database Developer Guide

(1 row)

Usage notes

• To compute the hash of a table with multiple columns, you can compute the FNV hash of the
first column and pass it as a seed to the hash of the second column. Then, it passes the FNV hash
of the second column as a seed to the hash of the third column.

The following example creates seeds to hash a table with multiple columns.

select fnv_hash(column_3, fnv_hash(column_2, fnv_hash(column_1))) from sample_table;

• The same property can be used to compute the hash of a concatenation of strings.

select fnv_hash('abcd');
 fnv_hash

 -281581062704388899
(1 row)

select fnv_hash('cd', fnv_hash('ab'));
 fnv_hash

 -281581062704388899
(1 row)

• The hash function uses the type of the input to determine the number of bytes to hash. Use
casting to enforce a specific type, if necessary.

The following examples use different types of input to produce different results.

select fnv_hash(1::smallint);
 fnv_hash

 589727492704079044
(1 row)

select fnv_hash(1);
 fnv_hash

Hash functions 1835

Amazon Redshift Database Developer Guide

 -5968735742475085980
(1 row)

select fnv_hash(1::bigint);
 fnv_hash

 -8517097267634966620
(1 row)

MD5 function

Uses the MD5 cryptographic hash function to convert a variable-length string into a 32-character
string that is a text representation of the hexadecimal value of a 128-bit checksum.

Syntax

MD5(string)

Arguments

string

A variable-length string.

Return type

The MD5 function returns a 32-character string that is a text representation of the hexadecimal
value of a 128-bit checksum.

Examples

The following example shows the 128-bit value for the string 'Amazon Redshift':

select md5('Amazon Redshift');
md5

f7415e33f972c03abd4f3fed36748f7a
(1 row)

Hash functions 1836

Amazon Redshift Database Developer Guide

SHA function

Synonym of SHA1 function.

See SHA1 function.

SHA1 function

The SHA1 function uses the SHA1 cryptographic hash function to convert a variable-length string
into a 40-character string that is a text representation of the hexadecimal value of a 160-bit
checksum.

Syntax

SHA1 is a synonym of SHA function and FUNC_SHA1 function.

SHA1(string)

Arguments

string

A variable-length string.

Return type

The SHA1 function returns a 40-character string that is a text representation of the hexadecimal
value of a 160-bit checksum.

Example

The following example returns the 160-bit value for the word 'Amazon Redshift':

select sha1('Amazon Redshift');

SHA2 function

The SHA2 function uses the SHA2 cryptographic hash function to convert a variable-length string
into a character string. The character string is a text representation of the hexadecimal value of the
checksum with the specified number of bits.

Hash functions 1837

Amazon Redshift Database Developer Guide

Syntax

SHA2(string, bits)

Arguments

string

A variable-length string.

integer

The number of bits in the hash functions. Valid values are 0 (same as 256), 224, 256, 384, and
512.

Return type

The SHA2 function returns a character string that is a text representation of the hexadecimal value
of the checksum or an empty string if the number of bits is invalid.

Example

The following example returns the 256-bit value for the word 'Amazon Redshift':

select sha2('Amazon Redshift', 256);

MURMUR3_32_HASH

The MURMUR3_32_HASH function computes the 32-bit Murmur3A non-cryptographic hash for all
common data types including numeric and string types.

Syntax

MURMUR3_32_HASH(value [, seed])

Arguments

value

The input value to hash. Amazon Redshift hashes the binary representation of the input
value. This behavior is similar to FNV_HASH function, but the value is converted to the binary
representation specified by the Apache Iceberg 32-bit Murmur3 hash specification.

Hash functions 1838

https://iceberg.apache.org/spec/#appendix-b-32-bit-hash-requirements

Amazon Redshift Database Developer Guide

seed

The INT seed of the hash function. This argument is optional. If not given, Amazon Redshift
uses the default seed of 0. This enables combining the hash of multiple columns without any
conversions or concatenations.

Return type

The function returns an INT.

Example

The following examples return the Murmur3 hash of a number, the string 'Amazon Redshift', and
the concatenation of the two.

select MURMUR3_32_HASH(1);

 MURMUR3_32_HASH

 -5968735742475085980
(1 row)

select MURMUR3_32_HASH('Amazon Redshift');

 MURMUR3_32_HASH

 7783490368944507294
(1 row)

select MURMUR3_32_HASH('Amazon Redshift', MURMUR3_32_HASH(1));

 MURMUR3_32_HASH

 -2202602717770968555
(1 row)

Usage notes

To compute the hash of a table with multiple columns, you can compute the Murmur3 hash of the
first column and pass it as a seed to the hash of the second column. Then, it passes the Murmur3
hash of the second column as a seed to the hash of the third column.

Hash functions 1839

Amazon Redshift Database Developer Guide

The following example creates seeds to hash a table with multiple columns.

select MURMUR3_32_HASH(column_3, MURMUR3_32_HASH(column_2, MURMUR3_32_HASH(column_1)))
 from sample_table;

The same property can be used to compute the hash of a concatenation of strings.

select MURMUR3_32_HASH('abcd');

 MURMUR3_32_HASH

 -281581062704388899
(1 row)

select MURMUR3_32_HASH('cd', MURMUR3_32_HASH('ab'));

 MURMUR3_32_HASH

 -281581062704388899
(1 row)

The hash function uses the type of the input to determine the number of bytes to hash. Use
casting to enforce a specific type, if necessary.

The following examples use different input types to produce different results.

select MURMUR3_32_HASH(1::smallint);

 MURMUR3_32_HASH

 589727492704079044
(1 row)

select MURMUR3_32_HASH(1);

 MURMUR3_32_HASH

 -5968735742475085980
(1 row)

Hash functions 1840

Amazon Redshift Database Developer Guide

select MURMUR3_32_HASH(1::bigint);

 MURMUR3_32_HASH

 -8517097267634966620
(1 row)

HyperLogLog functions

Following, you can find descriptions for the HyperLogLog functions for SQL that Amazon Redshift
supports.

Topics

• HLL function

• HLL_CREATE_SKETCH function

• HLL_CARDINALITY function

• HLL_COMBINE function

• HLL_COMBINE_SKETCHES function

HLL function

The HLL function returns the HyperLogLog cardinality of the input expression values. The HLL
function works with any data types except the HLLSKETCH data type. The HLL function ignores
NULL values. When there are no rows in a table or all rows are NULL, the resulting cardinality is 0.

Syntax

HLL (aggregate_expression)

Argument

aggregate_expression

Any valid expression that provides the value to an aggregate, such as a column name. This
function supports any data type as input except HLLSKETCH, GEOMETRY, GEOGRAPHY, and
VARBYTE.

HyperLogLog functions 1841

Amazon Redshift Database Developer Guide

Return type

The HLL function returns a BIGINT or INT8 value.

Examples

The following example returns the cardinality of column an_int in table a_table.

CREATE TABLE a_table(an_int INT);
INSERT INTO a_table VALUES (1), (2), (3), (4);

SELECT hll(an_int) AS cardinality FROM a_table;
cardinality

4

HLL_CREATE_SKETCH function

The HLL_CREATE_SKETCH function returns an HLLSKETCH data type that encapsulates the input
expression values. The HLL_CREATE_SKETCH function works with any data type and ignores NULL
values. When there are no rows in a table or all rows are NULL, the resulting sketch has no index-
value pairs such as {"version":1,"logm":15,"sparse":{"indices":[],"values":[]}}.

Syntax

HLL_CREATE_SKETCH (aggregate_expression)

Argument

aggregate_expression

Any valid expression that provides the value to an aggregate, such as a column name.
NULL values are ignored. This function supports any data type as input except HLLSKETCH,
GEOMETRY, GEOGRAPHY, and VARBYTE.

Return type

The HLL_CREATE_SKETCH function returns an HLLSKETCH value.

HyperLogLog functions 1842

Amazon Redshift Database Developer Guide

Examples

The following example returns the HLLSKETCH type for column an_int in table a_table. A JSON
object is used to represent a sparse HyperLogLog sketch when importing, exporting, or printing
sketches. A string representation (in Base64 format) is used to represent a dense HyperLogLog
sketch.

CREATE TABLE a_table(an_int INT);
INSERT INTO a_table VALUES (1), (2), (3), (4);

SELECT hll_create_sketch(an_int) AS sketch FROM a_table;
sketch

{"version":1,"logm":15,"sparse":{"indices":
[20812342,20850007,22362299,47158030],"values":[1,2,1,1]}}
(1 row)

HLL_CARDINALITY function

The HLL_CARDINALITY function returns the cardinality of the input HLLSKETCH data type.

Syntax

HLL_CARDINALITY (hllsketch_expression)

Argument

hllsketch_expression

Any valid expression that evaluates to an HLLSKETCH type, such as a column name. The input
value is the HLLSKETCH data type.

Return type

The HLL_CARDINALITY function returns a BIGINT or INT8 value.

Examples

The following example returns the cardinality of column sketch in table hll_table.

CREATE TABLE a_table(an_int INT, b_int INT);

HyperLogLog functions 1843

Amazon Redshift Database Developer Guide

INSERT INTO a_table VALUES (1,1), (2,1), (3,1), (4,1), (1,2), (2,2), (3,2), (4,2),
 (5,2), (6,2);

CREATE TABLE hll_table (sketch HLLSKETCH);
INSERT INTO hll_table select hll_create_sketch(an_int) from a_table group by b_int;

SELECT hll_cardinality(sketch) AS cardinality FROM hll_table;
cardinality

6
4
(2 rows)

HLL_COMBINE function

The HLL_COMBINE aggregate function returns an HLLSKETCH data type that combines all input
HLLSKETCH values.

The combination of two or more HyperLogLog sketches is a new HLLSKETCH that encapsulates
information about the union of the distinct values that each input sketch represents. After
combining sketches, Amazon Redshift extracts the cardinality of the union of two or more datasets.
For more information on how to combine multiple sketches, see Example: Return a HyperLogLog
sketch from combining multiple sketches.

Syntax

HLL_COMBINE (hllsketch_expression)

Argument

hllsketch_expression

Any valid expression that evaluates to an HLLSKETCH type, such as a column name. The input
value is the HLLSKETCH data type.

Return type

The HLL_COMBINE function returns an HLLSKETCH type.

Examples

The following example returns the combined HLLSKETCH values in the table hll_table.

HyperLogLog functions 1844

Amazon Redshift Database Developer Guide

CREATE TABLE a_table(an_int INT, b_int INT);
INSERT INTO a_table VALUES (1,1), (2,1), (3,1), (4,1), (1,2), (2,2), (3,2), (4,2),
 (5,2), (6,2);

CREATE TABLE hll_table (sketch HLLSKETCH);
INSERT INTO hll_table select hll_create_sketch(an_int) from a_table group by b_int;

SELECT hll_combine(sketch) AS sketches FROM hll_table;
sketches
--
{"version":1,"logm":15,"sparse":{"indices":
[20812342,20850007,22362299,40314817,42650774,47158030],"values":[1,2,1,3,2,1]}}
(1 row)

HLL_COMBINE_SKETCHES function

The HLL_COMBINE_SKETCHES is a scalar function that takes as input two HLLSKETCH values and
combines them into a single HLLSKETCH.

The combination of two or more HyperLogLog sketches is a new HLLSKETCH that encapsulates
information about the union of the distinct values that each input sketch represents.

Syntax

HLL_COMBINE_SKETCHES (hllsketch_expression1, hllsketch_expression2)

Argument

hllsketch_expression1 and hllsketch_expression2

Any valid expression that evaluates to an HLLSKETCH type, such as a column name.

Return type

The HLL_COMBINE_SKETCHES function returns an HLLSKETCH type.

Examples

The following example returns the combined HLLSKETCH values in the table hll_table.

WITH tbl1(x, y)
 AS (SELECT Hll_create_sketch(1),

HyperLogLog functions 1845

Amazon Redshift Database Developer Guide

 Hll_create_sketch(2)
 UNION ALL
 SELECT Hll_create_sketch(3),
 Hll_create_sketch(4)
 UNION ALL
 SELECT Hll_create_sketch(5),
 Hll_create_sketch(6)
 UNION ALL
 SELECT Hll_create_sketch(7),
 Hll_create_sketch(8)),
 tbl2(x, y)
 AS (SELECT Hll_create_sketch(9),
 Hll_create_sketch(10)
 UNION ALL
 SELECT Hll_create_sketch(11),
 Hll_create_sketch(12)
 UNION ALL
 SELECT Hll_create_sketch(13),
 Hll_create_sketch(14)
 UNION ALL
 SELECT Hll_create_sketch(15),
 Hll_create_sketch(16)
 UNION ALL
 SELECT Hll_create_sketch(NULL),
 Hll_create_sketch(NULL)),
 tbl3(x, y)
 AS (SELECT *
 FROM tbl1
 UNION ALL
 SELECT *
 FROM tbl2)
SELECT Hll_combine_sketches(x, y)
FROM tbl3;

JSON functions

Topics

• IS_VALID_JSON function

• IS_VALID_JSON_ARRAY function

• JSON_ARRAY_LENGTH function

• JSON_EXTRACT_ARRAY_ELEMENT_TEXT function

JSON functions 1846

Amazon Redshift Database Developer Guide

• JSON_EXTRACT_PATH_TEXT function

• JSON_PARSE function

• CAN_JSON_PARSE function

• JSON_SERIALIZE function

• JSON_SERIALIZE_TO_VARBYTE function

When you need to store a relatively small set of key-value pairs, you might save space by storing
the data in JSON format. Because JSON strings can be stored in a single column, using JSON might
be more efficient than storing your data in tabular format. For example, suppose you have a sparse
table, where you need to have many columns to fully represent all possible attributes, but most of
the column values are NULL for any given row or any given column. By using JSON for storage, you
might be able to store the data for a row in key:value pairs in a single JSON string and eliminate
the sparsely-populated table columns.

In addition, you can easily modify JSON strings to store additional key:value pairs without needing
to add columns to a table.

We recommend using JSON sparingly. JSON isn't a good choice for storing larger datasets because,
by storing disparate data in a single column, JSON doesn't use the Amazon Redshift column store
architecture. Though Amazon Redshift supports JSON functions over CHAR and VARCHAR columns,
we recommend using SUPER for processing data in JSON serialization format. SUPER uses a post-
parse schemaless representation that can efficiently query hierarchical data. For more information
about the SUPER data type, see Ingesting and querying semistructured data in Amazon Redshift.

JSON uses UTF-8 encoded text strings, so JSON strings can be stored as CHAR or VARCHAR data
types. Use VARCHAR if the strings include multi-byte characters.

JSON strings must be properly formatted JSON, according to the following rules:

• The root level JSON can either be a JSON object or a JSON array. A JSON object is an unordered
set of comma-separated key:value pairs enclosed by curly braces.

For example, {"one":1, "two":2}

• A JSON array is an ordered set of comma-separated values enclosed by brackets.

An example is the following: ["first", {"one":1}, "second", 3, null]

• JSON arrays use a zero-based index; the first element in an array is at position 0. In a JSON
key:value pair, the key is a string in double quotation marks.

JSON functions 1847

Amazon Redshift Database Developer Guide

• A JSON value can be any of the following:

• JSON object

• JSON array

• string in double quotation marks

• number (integer and float)

• boolean

• null

• Empty objects and empty arrays are valid JSON values.

• JSON fields are case-sensitive.

• White space between JSON structural elements (such as { }, []) is ignored.

The Amazon Redshift JSON functions and the Amazon Redshift COPY command use the same
methods to work with JSON-formatted data. For more information about working with JSON, see
COPY from JSON format

IS_VALID_JSON function

The IS_VALID_JSON function validates a JSON string. The function returns Boolean true if the
string is properly formed JSON or false if the string is malformed. To validate a JSON array, use
IS_VALID_JSON_ARRAY function

For more information, see JSON functions.

Syntax

IS_VALID_JSON('json_string')

Arguments

json_string

A string or expression that evaluates to a JSON string.

Return type

BOOLEAN

JSON functions 1848

Amazon Redshift Database Developer Guide

Examples

To create a table and insert JSON strings for testing, use the following example.

CREATE TABLE test_json(id int IDENTITY(0,1), json_strings VARCHAR);

-- Insert valid JSON strings --
INSERT INTO test_json(json_strings) VALUES
('{"a":2}'),
('{"a":{"b":{"c":1}}}'),
('{"a": [1,2,"b"]}');

-- Insert invalid JSON strings --
INSERT INTO test_json(json_strings) VALUES
('{{}}'),
('{1:"a"}'),
('[1,2,3]');

To validate the strings in the preceding example, use the following example.

SELECT id, json_strings, IS_VALID_JSON(json_strings)
FROM test_json
ORDER BY id;

+----+---------------------+---------------+
| id | json_strings | is_valid_json |
+----+---------------------+---------------+
0	{"a":2}	true
4	{"a":{"b":{"c":1}}}	true
8	{"a": [1,2,"b"]}	true
12	{{}}	false
16	{1:"a"}	false
20	[1,2,3]	false
+----+---------------------+---------------+

IS_VALID_JSON_ARRAY function

The IS_VALID_JSON_ARRAY function validates a JSON array. The function returns Boolean true if
the array is properly formed JSON or false if the array is malformed. To validate a JSON string,
use IS_VALID_JSON function

For more information, see JSON functions.

JSON functions 1849

Amazon Redshift Database Developer Guide

Syntax

IS_VALID_JSON_ARRAY('json_array')

Arguments

json_array

A string or expression that evaluates to a JSON array.

Return type

BOOLEAN

Examples

To create a table and insert JSON strings for testing, use the following example.

CREATE TABLE test_json_arrays(id int IDENTITY(0,1), json_arrays VARCHAR);

-- Insert valid JSON array strings --
INSERT INTO test_json_arrays(json_arrays)
VALUES('[]'),
('["a","b"]'),
('["a",["b",1,["c",2,3,null]]]');

-- Insert invalid JSON array strings --
INSERT INTO test_json_arrays(json_arrays)
VALUES('{"a":1}'),
('a'),
('[1,2,]');

To validate the strings in the preceding example, use the following example.

SELECT json_arrays, IS_VALID_JSON_ARRAY(json_arrays)
FROM test_json_arrays ORDER BY id;

+------------------------------+---------------------+
| json_arrays | is_valid_json_array |
+------------------------------+---------------------+
| [] | true |
| ["a","b"] | true |

JSON functions 1850

Amazon Redshift Database Developer Guide

["a",["b",1,["c",2,3,null]]]	true
{"a":1}	false
a	false
[1,2,]	false
+------------------------------+---------------------+

JSON_ARRAY_LENGTH function

The JSON_ARRAY_LENGTH function returns the number of elements in the outer array of a JSON
string. If the null_if_invalid argument is set to true and the JSON string is invalid, the function
returns NULL instead of returning an error.

For more information, see JSON functions.

Syntax

JSON_ARRAY_LENGTH('json_array' [, null_if_invalid])

Arguments

json_array

A properly formatted JSON array.

null_if_invalid

(Optional) A BOOLEAN value that specifies whether to return NULL if the input JSON string is
invalid instead of returning an error. To return NULL if the JSON is invalid, specify true (t). To
return an error if the JSON is invalid, specify false (f). The default is false.

Return type

INTEGER

Examples

To return the number of elements in the array, use the following example.

SELECT JSON_ARRAY_LENGTH('[11,12,13,{"f1":21,"f2":[25,26]},14]');

+-------------------+
| json_array_length |

JSON functions 1851

Amazon Redshift Database Developer Guide

+-------------------+
| 5 |
+-------------------+

To return an error because the JSON is invalid, use the following example.

SELECT JSON_ARRAY_LENGTH('[11,12,13,{"f1":21,"f2":[25,26]},14');

ERROR: invalid json array object [11,12,13,{"f1":21,"f2":[25,26]},14

To set null_if_invalid to true, so the statement the returns NULL instead of returning an error for
invalid JSON, use the following example.

SELECT JSON_ARRAY_LENGTH('[11,12,13,{"f1":21,"f2":[25,26]},14',true);

+-------------------+
| json_array_length |
+-------------------+
| NULL |
+-------------------+

JSON_EXTRACT_ARRAY_ELEMENT_TEXT function

The JSON_EXTRACT_ARRAY_ELEMENT_TEXT function returns a JSON array element in the
outermost array of a JSON string, using a zero-based index. The first element in an array is at
position 0. If the index is negative or out of bound, JSON_EXTRACT_ARRAY_ELEMENT_TEXT
returns empty string. If the null_if_invalid argument is set to true and the JSON string is invalid,
the function returns NULL instead of returning an error.

For more information, see JSON functions.

Syntax

JSON_EXTRACT_ARRAY_ELEMENT_TEXT('json string', pos [, null_if_invalid])

Arguments

json_string

A properly formatted JSON string.

JSON functions 1852

Amazon Redshift Database Developer Guide

pos

An INTEGER representing the index of the array element to be returned, using a zero-based
array index.

null_if_invalid

(Optional) A BOOLEAN value that specifies whether to return NULL if the input JSON string is
invalid instead of returning an error. To return NULL if the JSON is invalid, specify true (t). To
return an error if the JSON is invalid, specify false (f). The default is false.

Return type

VARCHAR

A VARCHAR string representing the JSON array element referenced by pos.

Examples

To return array element at position 2, which is the third element of a zero-based array index, use
the following example.

SELECT JSON_EXTRACT_ARRAY_ELEMENT_TEXT('[111,112,113]', 2);

+---------------------------------+
| json_extract_array_element_text |
+---------------------------------+
| 113 |
+---------------------------------+

To return an error because the JSON is invalid, use the following example.

SELECT JSON_EXTRACT_ARRAY_ELEMENT_TEXT('["a",["b",1,["c",2,3,null,]]]',1);

ERROR: invalid json array object ["a",["b",1,["c",2,3,null,]]]

To set null_if_invalid to true, so the statement returns NULL instead of returning an error for invalid
JSON, use the following example.

SELECT JSON_EXTRACT_ARRAY_ELEMENT_TEXT('["a",["b",1,["c",2,3,null,]]]',1,true);

JSON functions 1853

Amazon Redshift Database Developer Guide

+---------------------------------+
| json_extract_array_element_text |
+---------------------------------+
| NULL |
+---------------------------------+

JSON_EXTRACT_PATH_TEXT function

The JSON_EXTRACT_PATH_TEXT function returns the value for the key-value pair referenced
by a series of path elements in a JSON string. The JSON path can be nested up to five levels
deep. Path elements are case-sensitive. If a path element does not exist in the JSON string,
JSON_EXTRACT_PATH_TEXT returns NULL.

If the null_if_invalid argument is set to true and the JSON string is invalid, the function returns
NULL instead of returning an error.

For information about additional JSON functions, see JSON functions. For more information about
working with JSON, see COPY from JSON format.

Syntax

JSON_EXTRACT_PATH_TEXT('json_string', 'path_elem' [,'path_elem'[, …]]
 [, null_if_invalid])

Arguments

json_string

A properly formatted JSON string.

path_elem

A path element in a JSON string. One path element is required. Additional path elements can be
specified, up to five levels deep.

null_if_invalid

(Optional) A BOOLEAN value that specifies whether to return NULL if the input JSON string is
invalid instead of returning an error. To return NULL if the JSON is invalid, specify true (t). To
return an error if the JSON is invalid, specify false (f). The default is false.

JSON functions 1854

Amazon Redshift Database Developer Guide

In a JSON string, Amazon Redshift recognizes \n as a newline character and \t as a tab character.
To load a backslash, escape it with a backslash (\\). For more information, see Escape characters in
JSON.

Return type

VARCHAR

A VARCHAR string representing the JSON value referenced by the path elements.

Examples

To return the value for the path 'f4', 'f6', use the following example.

SELECT JSON_EXTRACT_PATH_TEXT('{"f2":{"f3":1},"f4":{"f5":99,"f6":"star"}}','f4', 'f6');

+------------------------+
| json_extract_path_text |
+------------------------+
| star |
+------------------------+

To return an error because the JSON is invalid, use the following example.

SELECT JSON_EXTRACT_PATH_TEXT('{"f2":{"f3":1},"f4":{"f5":99,"f6":"star"}','f4', 'f6');

ERROR: invalid json object {"f2":{"f3":1},"f4":{"f5":99,"f6":"star"}

To set null_if_invalid to true, so the statement returns NULL for invalid JSON instead of returning
an error, use the following example.

SELECT JSON_EXTRACT_PATH_TEXT('{"f2":{"f3":1},"f4":{"f5":99,"f6":"star"}','f4',
 'f6',true);

+------------------------+
| json_extract_path_text |
+------------------------+
| NULL |
+------------------------+

JSON functions 1855

Amazon Redshift Database Developer Guide

To return the value for the path 'farm', 'barn', 'color', where the value retrieved is at the
third level, use the following example. This sample is formatted with a JSON lint tool, to make it
easier to read.

SELECT JSON_EXTRACT_PATH_TEXT('{
 "farm": {
 "barn": {
 "color": "red",
 "feed stocked": true
 }
 }
}', 'farm', 'barn', 'color');
+------------------------+
| json_extract_path_text |
+------------------------+
| red |
+------------------------+

To return NULL because the 'color' element is missing, use the following example. This sample is
formatted with a JSON lint tool.

SELECT JSON_EXTRACT_PATH_TEXT('{
 "farm": {
 "barn": {}
 }
}', 'farm', 'barn', 'color');

+------------------------+
| json_extract_path_text |
+------------------------+
| NULL |
+------------------------+

If the JSON is valid, trying to extract an element that's missing returns NULL.

To return the value for the path 'house', 'appliances', 'washing machine', 'brand',
use the following example.

SELECT JSON_EXTRACT_PATH_TEXT('{
 "house": {
 "address": {
 "street": "123 Any St.",

JSON functions 1856

Amazon Redshift Database Developer Guide

 "city": "Any Town",
 "state": "FL",
 "zip": "32830"
 },
 "bathroom": {
 "color": "green",
 "shower": true
 },
 "appliances": {
 "washing machine": {
 "brand": "Any Brand",
 "color": "beige"
 },
 "dryer": {
 "brand": "Any Brand",
 "color": "white"
 }
 }
 }
}', 'house', 'appliances', 'washing machine', 'brand');

+------------------------+
| json_extract_path_text |
+------------------------+
| Any Brand |
+------------------------+

The following example creates a sample table and populates it with SUPER values, then returns the
value for the path 'f2' for both rows.

CREATE TABLE json_example(id INT, json_text SUPER);

INSERT INTO json_example VALUES
(1, JSON_PARSE('{"f2":{"f3":1},"f4":{"f5":99,"f6":"star"}}')),
(2, JSON_PARSE('{
 "farm": {
 "barn": {
 "color": "red",
 "feed stocked": true
 }
 }
}'));

JSON functions 1857

Amazon Redshift Database Developer Guide

SELECT * FROM json_example;
id | json_text
------------+--
1 | {"f2":{"f3":1},"f4":{"f5":99,"f6":"star"}}
2 | {"farm":{"barn":{"color":"red","feed stocked":true}}}

SELECT id, JSON_EXTRACT_PATH_TEXT(JSON_SERIALIZE(json_text), 'f2') FROM json_example;

id | json_text
------------+--
1 | {"f3":1}
2 |

JSON_PARSE function

The JSON_PARSE function parses data in JSON format and converts it into the SUPER
representation.

To ingest into SUPER data type using the INSERT or UPDATE command, use the JSON_PARSE
function. When you use JSON_PARSE() to parse JSON strings into SUPER values, certain restrictions
apply. For additional information, see Parsing options for SUPER.

Syntax

JSON_PARSE({json_string | binary_value})

Arguments

json_string

An expression that returns serialized JSON as a VARBYTE or VARCHAR type.

binary_value

A VARBYTE type binary value.

Return type

SUPER

JSON functions 1858

Amazon Redshift Database Developer Guide

Examples

To convert the JSON array [10001,10002,"abc"] into the SUPER data type, use the following
example.

SELECT JSON_PARSE('[10001,10002,"abc"]');

+---------------------+
| json_parse |
+---------------------+
| [10001,10002,"abc"] |
+---------------------+

To make sure that the function converted the JSON array into the SUPER data type, use the
following example. For more information, see JSON_TYPEOF function

SELECT JSON_TYPEOF(JSON_PARSE('[10001,10002,"abc"]'));

+-------------+
| json_typeof |
+-------------+
| array |
+-------------+

CAN_JSON_PARSE function

The CAN_JSON_PARSE function parses data in JSON format and returns true if the result can be
converted to a SUPER value using the JSON_PARSE function.

Syntax

CAN_JSON_PARSE({json_string | binary_value})

Arguments

json_string

An expression that returns serialized JSON in the VARBYTE or VARCHAR form.

binary_value

A VARBYTE type binary value.

JSON functions 1859

Amazon Redshift Database Developer Guide

Return type

BOOLEAN

Examples

To see if the JSON array [10001,10002,"abc"] can be converted into the SUPER data type, use
the following example.

SELECT CAN_JSON_PARSE('[10001,10002,"abc"]');

+----------------+
| can_json_parse |
+----------------+
| true |
+----------------+

JSON_SERIALIZE function

The JSON_SERIALIZE function serializes a SUPER expression into textual JSON representation to
follow RFC 8259. For more information on that RFC, see The JavaScript Object Notation (JSON)
Data Interchange Format.

The SUPER size limit is approximately the same as the block limit, and the VARCHAR limit is smaller
than the SUPER size limit. Therefore, the JSON_SERIALIZE function returns an error when the JSON
format exceeds the varchar limit of the system. To check the size of a SUPER expression, see the
JSON_SIZE function.

Syntax

JSON_SERIALIZE(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

VARCHAR

JSON functions 1860

https://tools.ietf.org/html/rfc8259
https://tools.ietf.org/html/rfc8259

Amazon Redshift Database Developer Guide

Examples

To serialize a SUPER value to a string, use the following example.

SELECT JSON_SERIALIZE(JSON_PARSE('[10001,10002,"abc"]'));

+---------------------+
| json_serialize |
+---------------------+
| [10001,10002,"abc"] |
+---------------------+

JSON_SERIALIZE_TO_VARBYTE function

The JSON_SERIALIZE_TO_VARBYTE function converts a SUPER value to a JSON string similar to
JSON_SERIALIZE(), but stored in a VARBYTE value instead.

Syntax

JSON_SERIALIZE_TO_VARBYTE(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

VARBYTE

Examples

To serialize a SUPER value and returns the result in VARBYTE format, use the following example.

SELECT JSON_SERIALIZE_TO_VARBYTE(JSON_PARSE('[10001,10002,"abc"]'));

+--+
| json_serialize_to_varbyte |
+--+

JSON functions 1861

Amazon Redshift Database Developer Guide

| 5b31303030312c31303030322c22616263225d |
+--+

To serialize a SUPER value and casts the result to VARCHAR format, use the following example. For
more information, see CAST function.

SELECT CAST((JSON_SERIALIZE_TO_VARBYTE(JSON_PARSE('[10001,10002,"abc"]'))) AS VARCHAR);

+---------------------------+
| json_serialize_to_varbyte |
+---------------------------+
| [10001,10002,"abc"] |
+---------------------------+

Machine learning functions

By using Amazon Redshift machine learning (ML), you can train ML models using SQL statements
and invoke them in SQL queries for prediction. Amazon Redshift model explainability includes
feature-importance values to help you understand how each attribute in your training data
contributes to the predicted result.

Following, you can find descriptions for the machine learning functions for SQL that Amazon
Redshift supports.

Topics

• EXPLAIN_MODEL function

EXPLAIN_MODEL function

The EXPLAIN_MODEL function returns a SUPER data type that contains a model explainability
report in a JSON format. The explainability report contains information about the Shapley value
for all model features.

The EXPLAIN_MODEL function currently supports only the AUTO ON or AUTO OFF XGBoost
models.

When the explainability report isn't available, the function returns statuses showing on the
progress of the model. These include Waiting for training job to complete, Waiting
for processing job to complete, and Processing job failed.

Machine learning functions 1862

Amazon Redshift Database Developer Guide

When you run the CREATE MODEL statement, the explanation state becomes Waiting for
training job to complete. When the model has been trained and an explanation request is
sent, the explanation state becomes Waiting for processing job to complete. When the
model explanation completes successfully, the full explainability report is available. Otherwise, the
state becomes Processing job failed.

When you run the CREATE MODEL statement, you can use the optional MAX_RUNTIME parameter
to specify the maximum amount of time the training should take. Once model creation reaches
that amount of time, Amazon Redshift stops creating the model. If you reach that time limit
while creating an autopilot model, Amazon Redshift will return the best model so far. Model
explainability becomes available once the model training finishes, so if MAX_RUNTIME is set to
a low amount of time, the explainability report might not be available. Training time varies and
depends on model complexity, data size, and other factors.

Syntax

EXPLAIN_MODEL ('schema_name.model_name')

Argument

schema_name

The name of the schema. If no schema_name is specified, then the current schema is selected.

model_name

The name of the model. The model name in a schema must be unique.

Return type

The EXPLAIN_MODEL function returns a SUPER data type, as shown following.

{"version":"1.0","explanations":{"kernel_shap":{"label0":{"global_shap_values":
{"x0":0.05,"x1":0.10,"x2":0.30,"x3":0.15},"expected_value":0.50}}}}

Examples

The following example returns the explanation state waiting for training job to
complete.

Machine learning functions 1863

Amazon Redshift Database Developer Guide

select explain_model('customer_churn_auto_model');
 explain_model
--
{"explanations":"waiting for training job to complete"}
(1 row)

When the model explanation completes successfully, the full explainability report is available as
follows.

select explain_model('customer_churn_auto_model');
 explain_model
--
{"version":"1.0","explanations":{"kernel_shap":{"label0":{"global_shap_values":
{"x0":0.05386043365892927,"x1":0.10801289723274592,"x2":0.23227865827017378,"x3":0.0676685133940455,"x4":0.0897097667672375,"x5":0.08502141653270926,"x6":0.07581993936077065,"x7":0.16462880604578135},"expected_value":0.8492974042892456}}}}
(1 row)

Because the EXPLAIN_MODEL function returns the SUPER data type, you can query the
explainability report. By doing this, you can extract global_shap_values, expected_value, or
feature-specific Shapley values.

The following example extracts global_shap_values for the model.

select json_table.report.explanations.kernel_shap.label0.global_shap_values from
 (select explain_model('customer_churn_auto_model') as report) as json_table;
 global_shap_values
--
{"state":0.10983770427197151,"account_length":0.1772441398408543,"area_code":0.08626823968639591,"phone":0.0736669595282712,"intl_plan":3.344907436910987,"vmail_plan":0.09646600597854467,"vmail_message":0.2064922655089351,"day_mins":2.015038015251777,"day_calls":0.13179511076780168,"day_charge":0.4941091720480879,"eve_mins":0.46081379198626105,"eve_calls":0.16913440417758477,"eve_charge":0.09651014369401761,"night_mins":0.44218153640050845,"night_calls":0.15311640089218997,"night_charge":0.13850366104495426,"intl_mins":0.7583662464883899,"intl_calls":0.47144468610485685,"intl_charge":0.10945894673611875,"cust_serv_calls":0.31822051038387733}
(1 row)

The following example extracts global_shap_values for the feature x0.

select json_table.report.explanations.kernel_shap.label0.global_shap_values.x0 from
 (select explain_model('customer_churn_auto_model') as report) as json_table;
 x0

 0.05386043365892927
(1 row)

If the model is created in a specific schema and you have access to the created model, then you can
query the model explanation as shown following.

Machine learning functions 1864

Amazon Redshift Database Developer Guide

-- Check the current schema
SHOW search_path;
 search_path

 $user, public
(1 row)
-- If you have the privilege to access the model explanation
-- in `test_schema`
SELECT explain_model('test_schema.test_model_name');
 explain_model

{"explanations":"waiting for training job to complete"}
(1 row)

Math functions

Topics

• Mathematical operator symbols

• ABS function

• ACOS function

• ASIN function

• ATAN function

• ATAN2 function

• CBRT function

• CEILING (or CEIL) function

• COS function

• COT function

• DEGREES function

• DEXP function

• DLOG1 function

• DLOG10 function

• EXP function

• FLOOR function

• LN function

• LOG function

Math functions 1865

Amazon Redshift Database Developer Guide

• MOD function

• PI function

• POWER function

• RADIANS function

• RANDOM function

• ROUND function

• SIN function

• SIGN function

• SQRT function

• TAN function

• TRUNC function

This section describes the mathematical operators and functions supported in Amazon Redshift.

Mathematical operator symbols

The following table lists the supported mathematical operators.

Supported operators

Operator Description Example Result

+ addition 2 + 3 5

- subtraction 2 - 3 -1

* multiplic
ation

2 * 3 6

/ division 4 / 2 2

% modulo 5 % 4 1

^ exponenti
ation

2.0 ^ 3.0 8

|/ square root | / 25.0 5

Math functions 1866

Amazon Redshift Database Developer Guide

Operator Description Example Result

||/ cube root || / 27.0 3

@ absolute
value

@ -5.0 5

<< bitwise shift
left

1 << 4 16

>> bitwise shift
right

8 >> 2 2

& bitwise and 8 & 2 0

Examples

The following examples use the TICKIT sample database. For more information, see Sample
database.

To calculate the commission paid plus a $2.00 handling for a given transaction, use the following
example.

SELECT
 commission,
 (commission + 2.00) AS comm
FROM
 sales
WHERE
 salesid = 10000;

+------------+-------+
| commission | comm |
+------------+-------+
| 28.05 | 30.05 |
+------------+-------+

To calculate 20 percent of the sales price for a given transaction, use the following example.

SELECT pricepaid, (pricepaid * .20) as twentypct

Math functions 1867

Amazon Redshift Database Developer Guide

FROM sales
WHERE salesid=10000;

+-----------+-----------+
| pricepaid | twentypct |
+-----------+-----------+
| 187 | 37.4 |
+-----------+-----------+

To forecast ticket sales based on a continuous growth pattern, use the following example. In
this example, the subquery returns the number of tickets sold in 2008. That result is multiplied
exponentially by a continuous growth rate of 5% over 10 years.

SELECT (SELECT SUM(qtysold) FROM sales, date
WHERE sales.dateid=date.dateid AND year=2008)^((5::float/100)*10) AS qty10years;

+------------------+
| qty10years |
+------------------+
| 587.664019657491 |
+------------------+

To find the total price paid and commission for sales with a date ID that is greater than or equal to
2000, use the following example. Then subtract the total commission from the total price paid.

SELECT SUM(pricepaid) AS sum_price, dateid,
SUM(commission) AS sum_comm, (SUM(pricepaid) - SUM(commission)) AS value
FROM sales
WHERE dateid >= 2000
GROUP BY dateid
ORDER BY dateid
LIMIT 10;

+-----------+--------+----------+-----------+
| sum_price | dateid | sum_comm | value |
+-----------+--------+----------+-----------+
305885	2000	45882.75	260002.25
316037	2001	47405.55	268631.45
358571	2002	53785.65	304785.35
366033	2003	54904.95	311128.05
307592	2004	46138.8	261453.2
333484	2005	50022.6	283461.4

Math functions 1868

Amazon Redshift Database Developer Guide

317670	2006	47650.5	270019.5
351031	2007	52654.65	298376.35
313359	2008	47003.85	266355.15
323675	2009	48551.25	275123.75
+-----------+--------+----------+-----------+

ABS function

ABS calculates the absolute value of a number, where that number can be a literal or an expression
that evaluates to a number.

Syntax

ABS(number)

Arguments

number

Number or expression that evaluates to a number. It can be the SMALLINT, INTEGER, BIGINT,
DECIMAL, FLOAT4, FLOAT8, or SUPER type.

Return type

ABS returns the same data type as its argument.

Examples

To calculate the absolute value of -38, use the following example.

SELECT ABS(-38);

+-----+
| abs |
+-----+
| 38 |
+-----+

To calculate the absolute value of (14-76), use the following example.

SELECT ABS(14-76);

Math functions 1869

Amazon Redshift Database Developer Guide

+-----+
| abs |
+-----+
| 62 |
+-----+

ACOS function

ACOS is a trigonometric function that returns the arc cosine of a number. The return value is in
radians and is between 0 and PI.

Syntax

ACOS(number)

Arguments

number

The input parameter is a DOUBLE PRECISION number.

Return type

DOUBLE PRECISION

Examples

To return the arc cosine of -1, use the following example.

SELECT ACOS(-1);

+-------------------+
| acos |
+-------------------+
| 3.141592653589793 |
+-------------------+

To convert the arc cosine of .5 to the equivalent number of degrees, use the following example.

SELECT (ACOS(.5) * 180/(SELECT PI())) AS degrees;

Math functions 1870

Amazon Redshift Database Developer Guide

+-------------------+
| degrees |
+-------------------+
| 60.00000000000001 |
+-------------------+

ASIN function

ASIN is a trigonometric function that returns the arc sine of a number. The return value is in radians
and is between PI/2 and -PI/2.

Syntax

ASIN(number)

Arguments

number

The input parameter is a DOUBLE PRECISION number.

Return type

DOUBLE PRECISION

Examples

To return the arc sine of 1, use the following example.

SELECT ASIN(1) AS halfpi;

+--------------------+
| halfpi |
+--------------------+
| 1.5707963267948966 |
+--------------------+

To convert the arc sine of .5 to the equivalent number of degrees, use the following example.

SELECT (ASIN(.5) * 180/(SELECT PI())) AS degrees;

Math functions 1871

Amazon Redshift Database Developer Guide

+--------------------+
| degrees |
+--------------------+
| 30.000000000000004 |
+--------------------+

ATAN function

ATAN is a trigonometric function that returns the arc tangent of a number. The return value is in
radians and is between -PI and PI.

Syntax

ATAN(number)

Arguments

number

The input parameter is a DOUBLE PRECISION number.

Return type

DOUBLE PRECISION

Examples

To return the arc tangent of 1 and multiply it by 4, use the following example.

SELECT ATAN(1) * 4 AS pi;

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

To convert the arc tangent of 1 to the equivalent number of degrees, use the following example.

SELECT (ATAN(1) * 180/(SELECT PI())) AS degrees;

Math functions 1872

Amazon Redshift Database Developer Guide

+---------+
| degrees |
+---------+
| 45 |
+---------+

ATAN2 function

ATAN2 is a trigonometric function that returns the arc tangent of one number divided by another
number. The return value is in radians and is between PI/2 and -PI/2.

Syntax

ATAN2(number1, number2)

Arguments

number1

A DOUBLE PRECISION number.

number2

A DOUBLE PRECISION number.

Return type

DOUBLE PRECISION

Examples

To return the arc tangent of 2/2 and multiply it by 4, use the following example.

SELECT ATAN2(2,2) * 4 AS PI;

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

Math functions 1873

Amazon Redshift Database Developer Guide

To convert the arc tangent of 1/0 (which evaluates to 0) to the equivalent number of degrees, use
the following example.

SELECT (ATAN2(1,0) * 180/(SELECT PI())) AS degrees;

+---------+
| degrees |
+---------+
| 90 |
+---------+

CBRT function

The CBRT function is a mathematical function that calculates the cube root of a given number.

Syntax

CBRT(number)

Arguments

CBRT takes a DOUBLE PRECISION number as an argument.

Return type

DOUBLE PRECISION

Examples

The following example uses the TICKIT sample database. For more information, see Sample
database.

To calculate the cube root of the commission paid for a given transaction, use the following
example.

SELECT CBRT(commission) FROM sales WHERE salesid=10000;

+--------------------+
| cbrt |
+--------------------+
| 3.0383953904884344 |

Math functions 1874

Amazon Redshift Database Developer Guide

+--------------------+

CEILING (or CEIL) function

The CEILING or CEIL function is used to round a number up to the next whole number. (The FLOOR
function rounds a number down to the next whole number.)

Syntax

{CEIL | CEILING}(number)

Arguments

number

The number or expression that evaluates to a number. It can be the SMALLINT, INTEGER,
BIGINT, DECIMAL, FLOAT4, FLOAT8, or SUPER type.

Return type

CEILING and CEIL return the same data type as its argument.

When the input is of the SUPER type, the output retains the same dynamic type as the input while
the static type remains the SUPER type. When the dynamic type of SUPER isn't a number, Amazon
Redshift returns a null.

Examples

The following example uses the TICKIT sample database. For more information, see Sample
database.

To calculate the ceiling of the commission paid for a given sales transaction, use the following
example.

SELECT CEILING(commission) FROM sales
WHERE salesid=10000;

+---------+
| ceiling |
+---------+
| 29 |

Math functions 1875

Amazon Redshift Database Developer Guide

+---------+

COS function

COS is a trigonometric function that returns the cosine of a number. The return value is in radians
and is between -1 and 1, inclusive.

Syntax

COS(double_precision)

Arguments

number

The input parameter is a DOUBLE PRECISION number.

Return type

The COS function returns a DOUBLE PRECISION number.

Examples

To return the cosine of 0, use the following example.

SELECT COS(0);

+-----+
| cos |
+-----+
| 1 |
+-----+

To return the cosine of pi, use the following example.

SELECT COS(PI());

+-----+
| cos |
+-----+
| -1 |

Math functions 1876

Amazon Redshift Database Developer Guide

+-----+

COT function

COT is a trigonometric function that returns the cotangent of a number. The input parameter must
be nonzero.

Syntax

COT(number)

Argument

number

The input parameter is a DOUBLE PRECISION number.

Return type

DOUBLE PRECISION

Examples

To return the cotangent of 1, use the following example.

SELECT COT(1);

+--------------------+
| cot |
+--------------------+
| 0.6420926159343306 |
+--------------------+

DEGREES function

Converts an angle in radians to its equivalent in degrees.

Syntax

DEGREES(number)

Math functions 1877

Amazon Redshift Database Developer Guide

Argument

number

The input parameter is a DOUBLE PRECISION number.

Return type

DOUBLE PRECISION

Examples

To return the degree equivalent of .5 radians, use the following example.

SELECT DEGREES(.5);

+-------------------+
| degrees |
+-------------------+
| 28.64788975654116 |
+-------------------+

To convert PI radians to degrees, use the following example.

SELECT DEGREES(pi());

+---------+
| degrees |
+---------+
| 180 |
+---------+

DEXP function

The DEXP function returns the exponential value in scientific notation for a double precision
number. The only difference between the DEXP and EXP functions is that the parameter for DEXP
must be a DOUBLE PRECISION.

Syntax

DEXP(number)

Math functions 1878

Amazon Redshift Database Developer Guide

Argument

number

The input parameter is a DOUBLE PRECISION number.

Return type

DOUBLE PRECISION

Example

The following example uses the TICKIT sample database. For more information, see Sample
database.

Use the DEXP function to forecast ticket sales based on a continuous growth pattern. In this
example, the subquery returns the number of tickets sold in 2008. That result is multiplied by the
result of the DEXP function, which specifies a continuous growth rate of 7% over 10 years.

SELECT (SELECT SUM(qtysold)
FROM sales, date
WHERE sales.dateid=date.dateid
AND year=2008) * DEXP((7::FLOAT/100)*10) qty2010;

+-------------------+
| qty2010 |
+-------------------+
| 695447.4837722216 |
+-------------------+

DLOG1 function

The DLOG1 function returns the natural logarithm of the input parameter. Synonym of LN
function.

DLOG10 function

The DLOG10 returns the base 10 logarithm of the input parameter.

Synonym of LOG function.

Math functions 1879

Amazon Redshift Database Developer Guide

Syntax

DLOG10(number)

Argument

number

The input parameter is a DOUBLE PRECISION number.

Return type

DOUBLE PRECISION

Example

To return the base 10 logarithm of the number 100, use the following example.

SELECT DLOG10(100);

+--------+
| dlog10 |
+--------+
| 2 |
+--------+

EXP function

The EXP function implements the exponential function for a numeric expression, or the base of
the natural logarithm, e, raised to the power of expression. The EXP function is the inverse of LN
function.

Syntax

EXP(expression)

Argument

expression

The expression must be an INTEGER, DECIMAL, or DOUBLE PRECISION data type.

Math functions 1880

Amazon Redshift Database Developer Guide

Return type

DOUBLE PRECISION

Example

The following example uses the TICKIT sample database. For more information, see Sample
database.

Use the EXP function to forecast ticket sales based on a continuous growth pattern. In this
example, the subquery returns the number of tickets sold in 2008. That result is multiplied by the
result of the EXP function, which specifies a continuous growth rate of 7% over 10 years.

SELECT (SELECT SUM(qtysold)
FROM sales, date
WHERE sales.dateid=date.dateid
AND year=2008) * EXP((7::FLOAT/100)*10) qty2018;

+-------------------+
| qty2018 |
+-------------------+
| 695447.4837722216 |
+-------------------+

FLOOR function

The FLOOR function rounds a number down to the next whole number.

Syntax

FLOOR(number)

Argument

number

The number or expression that evaluates to a number. It can be the SMALLINT, INTEGER,
BIGINT, DECIMAL, FLOAT4, FLOAT8, or SUPER type.

Return type

FLOOR returns the same data type as its argument.

Math functions 1881

Amazon Redshift Database Developer Guide

When the input is of the SUPER type, the output retains the same dynamic type as the input while
the static type remains the SUPER type. When the dynamic type of SUPER isn't a number, Amazon
Redshift returns NULL.

Examples

The following examples use the TICKIT sample database. For more information, see Sample
database.

To show the value of the commission paid for a given sales transaction before and after using the
FLOOR function, use the following example.

SELECT commission
FROM sales
WHERE salesid=10000;

+------------+
| commission |
+------------+
| 28.05 |
+------------+

SELECT FLOOR(commission)
FROM sales
WHERE salesid=10000;

+-------+
| floor |
+-------+
| 28 |
+-------+

LN function

Returns the natural logarithm of the input parameter.

Synonym of DLOG1 function.

Syntax

LN(expression)

Math functions 1882

Amazon Redshift Database Developer Guide

Argument

expression

The target column or expression that the function operates on.

Note

This function returns an error for some data types if the expression references an
Amazon Redshift user-created table or an Amazon Redshift STL or STV system table.

Expressions with the following data types produce an error if they reference a user-created or
system table. Expressions with these data types run exclusively on the leader node:

• BOOLEAN

• CHAR

• DATE

• DECIMAL or NUMERIC

• TIMESTAMP

• VARCHAR

Expressions with the following data types run successfully on user-created tables and STL or
STV system tables:

• BIGINT

• DOUBLE PRECISION

• INTEGER

• REAL

• SMALLINT

Return type

The LN function returns the same type as the input expression.

Examples

To return the natural logarithm or base e logarithm of the number 2.718281828, use the following
example.

Math functions 1883

Amazon Redshift Database Developer Guide

SELECT LN(2.718281828);

+--------------------+
| ln |
+--------------------+
| 0.9999999998311267 |
+--------------------+

Note that the answer is nearly equal to 1.

The following example uses the TICKIT sample database. For more information, see Sample
database.

To return the natural logarithm of the values in the userid column in the USERS table, use the
following example.

SELECT username, LN(userid) FROM users ORDER BY userid LIMIT 10;

+----------+--------------------+
| username | ln |
+----------+--------------------+
JSG99FHE	0
PGL08LJI	0.6931471805599453
IFT66TXU	1.0986122886681098
XDZ38RDD	1.3862943611198906
AEB55QTM	1.6094379124341003
NDQ15VBM	1.791759469228055
OWY35QYB	1.9459101490553132
AZG78YIP	2.0794415416798357
MSD36KVR	2.1972245773362196
WKW41AIW	2.302585092994046
+----------+--------------------+

LOG function

Returns logarithm of a number.

If you're using this function to calculate the base 10 logarithm, you can also use DLOG10 function.

Syntax

LOG([base,]argument)

Math functions 1884

Amazon Redshift Database Developer Guide

Parameters

base

(Optional) The base of the logarithm function. This number must be positive and can't equal 1.
If this parameter is omitted, Amazon Redshift computes the base 10 logarithm of the argument.

argument

The argument of the logarithm function. This number must be positive. If the argument value is
1, the function returns 0.

Return type

The LOG function returns a DOUBLE PRECISION number.

Examples

To find the base 2 logarithm of 100, use the following example.

SELECT LOG(2, 100);
+-------------------+
| log |
+-------------------+
| 6.643856189774725 |
+-------------------+

To find the base 10 logarithm of 100, use the following example. Note that if you omit the base
parameter, Amazon Redshift assumes a base of 10.

SELECT LOG(100);

+-----+
| log |
+-----+
| 2 |
+-----+

MOD function

Returns the remainder of two numbers, otherwise known as a modulo operation. To calculate the
result, the first parameter is divided by the second.

Math functions 1885

Amazon Redshift Database Developer Guide

Syntax

MOD(number1, number2)

Arguments

number1

The first input parameter is an INTEGER, SMALLINT, BIGINT, or DECIMAL number. If either
parameter is a DECIMAL type, the other parameter must also be a DECIMAL type. If either
parameter is an INTEGER, the other parameter can be an INTEGER, SMALLINT, or BIGINT.
Both parameters can also be SMALLINT or BIGINT, but one parameter cannot be a SMALLINT
if the other is a BIGINT.

number2

The second parameter is an INTEGER, SMALLINT, BIGINT, or DECIMAL number. The same data
type rules apply to number2 as to number1.

Return type

The return type of the MOD function is the same numeric type as the input parameters, if both
input parameters are the same type. If either input parameter is an INTEGER, however, the return
type will also be an INTEGER. Valid return types are DECIMAL, INT, SMALLINT, and BIGINT.

Usage notes

You can use % as a modulo operator.

Examples

To return the remainder when a number is divided by another, use the following example.

SELECT MOD(10, 4);

+-----+
| mod |
+-----+
| 2 |
+-----+

To return a DECIMAL result when using the MOD function, use the following example.

Math functions 1886

Amazon Redshift Database Developer Guide

SELECT MOD(10.5, 4);

+-----+
| mod |
+-----+
| 2.5 |
+-----+

To cast a number before running the MOD function, use the following example. For more
information, see CAST function.

SELECT MOD(CAST(16.4 AS INTEGER), 5);

+-----+
| mod |
+-----+
| 1 |
+-----+

To check if the first parameter is even by dividing it by 2, use the following example.

SELECT mod(5,2) = 0 AS is_even;

+---------+
| is_even |
+---------+
| false |
+---------+

To use % as a modulo operator, use the following example.

SELECT 11 % 4 as remainder;

 +-----------+
| remainder |
+-----------+
| 3 |
+-----------+

The following example uses the TICKIT sample database. For more information, see Sample
database.

Math functions 1887

Amazon Redshift Database Developer Guide

To return information for odd-numbered categories in the CATEGORY table, use the following
example.

SELECT catid, catname
FROM category
WHERE MOD(catid,2)=1
ORDER BY 1,2;

+-------+-----------+
| catid | catname |
+-------+-----------+
1	MLB
3	NFL
5	MLS
7	Plays
9	Pop
11	Classical
+-------+-----------+

PI function

The PI function returns the value of pi to 14 decimal places.

Syntax

PI()

Return type

DOUBLE PRECISION

Examples

To return the value of pi, use the following example.

SELECT PI();

+-------------------+
| pi |
+-------------------+
| 3.141592653589793 |
+-------------------+

Math functions 1888

Amazon Redshift Database Developer Guide

POWER function

The POWER function is an exponential function that raises a numeric expression to the power of a
second numeric expression. For example, 2 to the third power is calculated as POWER(2,3), with a
result of 8.

Syntax

{POW | POWER}(expression1, expression2)

Arguments

expression1

Numeric expression to be raised. Must be an INTEGER, DECIMAL, or FLOAT data type.

expression2

Power to raise expression1. Must be an INTEGER, DECIMAL, or FLOAT data type.

Return type

DOUBLE PRECISION

Examples

The following examples use the TICKIT sample database. For more information, see Sample
database.

In the following example, the POWER function is used to forecast what ticket sales will look like
in the next 10 years, based on the number of tickets sold in 2008 (the result of the subquery). The
growth rate is set at 7% per year in this example.

SELECT (SELECT SUM(qtysold) FROM sales, date
WHERE sales.dateid=date.dateid
AND year=2008) * POW((1+7::FLOAT/100),10) qty2010;

+-------------------+
| qty2010 |
+-------------------+
| 679353.7540885945 |
+-------------------+

Math functions 1889

Amazon Redshift Database Developer Guide

The following example is a variation on the previous example, with the growth rate at 7% per year
but the interval is set to months (120 months over 10 years).

SELECT (SELECT SUM(qtysold) FROM sales, date
WHERE sales.dateid=date.dateid
AND year=2008) * POW((1+7::FLOAT/100/12),120) qty2010;

+-----------------+
| qty2010 |
+-----------------+
| 694034.54678046 |
+-----------------+

RADIANS function

The RADIANS function converts an angle in degrees to its equivalent in radians.

Syntax

RADIANS(number)

Argument

number

The input parameter is a DOUBLE PRECISION number.

Return type

DOUBLE PRECISION

Examples

To return the radian equivalent of 180 degrees, use the following example.

SELECT RADIANS(180);

+-------------------+
| radians |
+-------------------+
| 3.141592653589793 |
+-------------------+

Math functions 1890

Amazon Redshift Database Developer Guide

RANDOM function

The RANDOM function generates a random value between 0.0 (inclusive) and 1.0 (exclusive).

Syntax

RANDOM()

Return type

DOUBLE PRECISION

Usage notes

Call RANDOM after setting a seed value with the SET command to cause RANDOM to generate
numbers in a predictable sequence.

Examples

To compute a random value between 0 and 99, use the following example. If the random number
is 0 to 1, this query produces a random number from 0 to 100.

SELECT CAST(RANDOM() * 100 AS INT);

+------+
| int4 |
+------+
| 59 |
+------+

This example uses the SET command to set a SEED value so that RANDOM generates a predictable
sequence of numbers.

To return three RANDOM integers without setting the SEED value, use the following example.

SELECT CAST(RANDOM() * 100 AS INT);
+------+
| int4 |
+------+
| 6 |
+------+

SELECT CAST(RANDOM() * 100 AS INT);

Math functions 1891

Amazon Redshift Database Developer Guide

+------+
| int4 |
+------+
| 68 |
+------+

SELECT CAST(RANDOM() * 100 AS INT);
+------+
| int4 |
+------+
| 56 |
+------+

To set the SEED value to .25, and return three more RANDOM numbers, use the following
example.

SET SEED TO .25;
SELECT CAST(RANDOM() * 100 AS INT);
+------+
| int4 |
+------+
| 21 |
+------+

SELECT CAST(RANDOM() * 100 AS INT);
+------+
| int4 |
+------+
| 79 |
+------+

SELECT CAST(RANDOM() * 100 AS INT);
+------+
| int4 |
+------+
| 12 |
+------+

To reset the SEED value to .25, and verify that RANDOM returns the same results as the previous
three calls, use the following example.

SET SEED TO .25;

Math functions 1892

Amazon Redshift Database Developer Guide

SELECT CAST(RANDOM() * 100 AS INT);
+------+
| int4 |
+------+
| 21 |
+------+

SELECT CAST(RANDOM() * 100 AS INT);
+------+
| int4 |
+------+
| 79 |
+------+

SELECT CAST(RANDOM() * 100 AS INT);
+------+
| int4 |
+------+
| 12 |
+------+

The following examples use the TICKIT sample database. For more information, see Sample
database.

To retrieve a uniform random sample of 10 items from the SALES table, use the following example.

SELECT *
FROM sales
ORDER BY RANDOM()
LIMIT 10;

+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+
| salesid | listid | sellerid | buyerid | eventid | dateid | qtysold | pricepaid |
 commission | saletime |
+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+
| 45422 | 51114 | 5983 | 24482 | 4369 | 2118 | 1 | 195 |
 29.25 | 2008-10-19 05:20:07 |
| 42481 | 47638 | 4573 | 6198 | 6479 | 1987 | 4 | 1140 |
 171 | 2008-06-10 09:39:19 |
| 31494 | 34759 | 18895 | 4719 | 7753 | 2090 | 4 | 1024 |
 153.6 | 2008-09-21 03:44:26 |

Math functions 1893

Amazon Redshift Database Developer Guide

| 119388 | 136685 | 21815 | 41905 | 2071 | 1884 | 1 | 359 |
 53.85 | 2008-02-27 10:43:10 |
| 166990 | 225037 | 18529 | 7628 | 746 | 2113 | 1 | 2009 |
 301.35 | 2008-10-14 10:07:44 |
| 11146 | 12096 | 42685 | 6619 | 1876 | 2123 | 1 | 29 |
 4.35 | 2008-10-24 06:23:54 |
| 148537 | 172056 | 15102 | 11787 | 6122 | 1923 | 2 | 480 |
 72 | 2008-04-07 03:58:23 |
| 68945 | 78387 | 7359 | 18323 | 6636 | 1910 | 1 | 457 |
 68.55 | 2008-03-25 08:31:03 |
| 52796 | 59576 | 9909 | 15102 | 7958 | 1951 | 1 | 479 |
 71.85 | 2008-05-05 02:25:08 |
| 90684 | 103522 | 38052 | 21549 | 7384 | 2117 | 1 | 313 |
 46.95 | 2008-10-18 05:43:11 |
+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+

To retrieve a random sample of 10 items, but choose the items in proportion to their prices, use the
following example. For example, an item that is twice the price of another would be twice as likely
to appear in the query results.

SELECT *
FROM sales
ORDER BY -LOG(RANDOM()) / pricepaid
LIMIT 10;

+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+
| salesid | listid | sellerid | buyerid | eventid | dateid | qtysold | pricepaid |
 commission | saletime |
+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+
| 158340 | 208208 | 17082 | 42018 | 1211 | 2160 | 4 | 6852 |
 1027.8 | 2008-11-30 12:21:43 |
| 53250 | 60069 | 12644 | 7066 | 7942 | 1838 | 4 | 1528 |
 229.2 | 2008-01-12 11:24:56 |
| 22929 | 24938 | 47314 | 6503 | 179 | 2000 | 3 | 741 |
 111.15 | 2008-06-23 08:04:50 |
| 164980 | 221181 | 1949 | 19670 | 1471 | 1906 | 1 | 1330 |
 199.5 | 2008-03-21 07:59:51 |
| 159641 | 211179 | 44897 | 16652 | 7458 | 2128 | 1 | 1019 |
 152.85 | 2008-10-29 02:02:15 |

Math functions 1894

Amazon Redshift Database Developer Guide

| 73143 | 83439 | 5716 | 5727 | 7314 | 1903 | 1 | 248 |
 37.2 | 2008-03-18 11:07:42 |
| 84778 | 96749 | 46608 | 32980 | 3883 | 1999 | 2 | 958 |
 143.7 | 2008-06-22 12:13:31 |
| 171096 | 232929 | 43683 | 8536 | 8353 | 1870 | 1 | 929 |
 139.35 | 2008-02-13 01:36:36 |
| 74212 | 84697 | 39809 | 15569 | 5525 | 2105 | 2 | 896 |
 134.4 | 2008-10-06 11:47:50 |
| 158011 | 207556 | 25399 | 16881 | 232 | 2088 | 2 | 2526 |
 378.9 | 2008-09-19 06:00:26 |
+---------+--------+----------+---------+---------+--------+---------+-----------
+------------+---------------------+

ROUND function

The ROUND function rounds numbers to the nearest integer or decimal.

The ROUND function can optionally include a second argument as an INTEGER to indicate the
number of decimal places for rounding, in either direction. When you don't provide the second
argument, the function rounds to the nearest whole number. When the second argument integer is
specified, the function rounds to the nearest number with integer decimal places of precision.

Syntax

ROUND(number [, integer])

Arguments

number

A number or expression that evaluates to a number. It can be the DECIMAL, FLOAT8 or SUPER
type. Amazon Redshift can implicitly convert other numeric data types.

integer

(Optional) An INTEGER that indicates the number of decimal places for rounding in either
direction. The SUPER data type isn't supported for this argument.

Return type

ROUND returns the same numeric data type as the input number.

Math functions 1895

Amazon Redshift Database Developer Guide

When the input is of the SUPER type, the output retains the same dynamic type as the input while
the static type remains the SUPER type. When the dynamic type of SUPER isn't a number, Amazon
Redshift returns NULL.

Examples

The following examples use the TICKIT sample database. For more information, see Sample
database.

To round the commission paid for a given transaction to the nearest whole number, use the
following example.

SELECT commission, ROUND(commission)
FROM sales WHERE salesid=10000;

+------------+-------+
| commission | round |
+------------+-------+
| 28.05 | 28 |
+------------+-------+

To round the commission paid for a given transaction to the first decimal place, use the following
example.

SELECT commission, ROUND(commission, 1)
FROM sales WHERE salesid=10000;

+------------+-------+
| commission | round |
+------------+-------+
| 28.05 | 28.1 |
+------------+-------+

To extend the precision in the opposite direction as the previous example, use the following
example.

SELECT commission, ROUND(commission, -1)
FROM sales WHERE salesid=10000;

+------------+-------+
| commission | round |

Math functions 1896

Amazon Redshift Database Developer Guide

+------------+-------+
| 28.05 | 30 |
+------------+-------+

SIN function

SIN is a trigonometric function that returns the sine of a number. The return value is between -1
and 1.

Syntax

SIN(number)

Argument

number

A DOUBLE PRECISION number in radians.

Return type

DOUBLE PRECISION

Examples

To return the sine of -PI, use the following example.

SELECT SIN(-PI());

+-------------------------+
| sin |
+-------------------------+
| -0.00000000000000012246 |
+-------------------------+

SIGN function

The SIGN function returns the sign (positive or negative) of a number. The result of the SIGN
function is 1 if the argument is positive, -1 if the argument is negative, or 0 if the argument is 0.

Math functions 1897

Amazon Redshift Database Developer Guide

Syntax

SIGN(number)

Argument

number

Number or expression that evaluates to a number. It can be a DECIMAL, FLOAT8, or SUPER type.
Amazon Redshift can convert other data types per the implicit conversion rules.

Return type

SIGN returns the same numeric data type as the input argument. If the input is DECIMAL, the
output is DECIMAL(1,0).

When the input is of the SUPER type, the output retains the same dynamic type as the input while
the static type remains the SUPER type. When the dynamic type of SUPER isn't a number, Amazon
Redshift returns a NULL.

Examples

The following example shows that column d in table t2 has DOUBLE PRECISION as its type since
the input is DOUBLE PRECISION and that column n in table t2 has NUMERIC(1,0) as the output
since the input is NUMERIC.

CREATE TABLE t1(d DOUBLE PRECISION, n NUMERIC(12, 2));
INSERT INTO t1 VALUES (4.25, 4.25), (-4.25, -4.25);
CREATE TABLE t2 AS SELECT SIGN(d) AS d, SIGN(n) AS n FROM t1;
SELECT table_name, column_name, data_type FROM SVV_REDSHIFT_COLUMNS WHERE
 table_name='t1' OR table_name='t2';

+------------+-------------+-----------------------+
| table_name | column_name | data_type |
+------------+-------------+-----------------------+
t1	d	double precision
t1	n	numeric(12,2)
t2	d	double precision
t2	n	numeric(1,0)
t1	col1	character varying(20)

Math functions 1898

Amazon Redshift Database Developer Guide

+------------+-------------+-----------------------+

The following example uses the TICKIT sample database. For more information, see Sample
database.

To determine the sign of the commission paid for a given transaction from the SALES table, use the
following example.

SELECT commission, SIGN(commission)
FROM sales WHERE salesid=10000;

+------------+------+
| commission | sign |
+------------+------+
| 28.05 | 1 |
+------------+------+

SQRT function

The SQRT function returns the square root of a NUMERIC value. The square root is a number
multiplied by itself to get the given value.

Syntax

SQRT(expression)

Argument

expression

The expression must have an INTEGER, DECIMAL, or FLOAT data type, or a data type that
implicitly converts to those data types. The expression can include functions.

Return type

DOUBLE PRECISION

Examples

To return the square root of 16, use the following example.

Math functions 1899

Amazon Redshift Database Developer Guide

SELECT SQRT(16);

+------+
| sqrt |
+------+
| 4 |
+------+

To return the square root of the string 16 using an implicit type conversion, use the following
example.

SELECT SQRT('16');

+------+
| sqrt |
+------+
| 4 |
+------+

To return the square root of 16.4 after using the ROUND function, use the following example.

SELECT SQRT(ROUND(16.4));

+------+
| sqrt |
+------+
| 4 |
+------+

To return the length of the radius when given the area of a circle, use the following example. It
calculates the radius in inches, for instance, when given the area in square inches. The area in the
sample is 20.

SELECT SQRT(20/PI()) AS radius;

+--------------------+
| radius |
+--------------------+
| 2.5231325220201604 |
+--------------------+

Math functions 1900

Amazon Redshift Database Developer Guide

The following examples use the TICKIT sample database. For more information, see Sample
database.

To return the square root for COMMISSION values from the SALES table, use the following
example. The COMMISSION column is a DECIMAL column. This example shows how you can use the
function in a query with more complex conditional logic.

SELECT SQRT(commission)
FROM sales WHERE salesid < 10 ORDER BY salesid;

+--------------------+
| sqrt |
+--------------------+
| 10.449880382090505 |
| 3.3763886032268267 |
| 7.245688373094719 |
| 5.123475382979799 |
| 4.806245936279167 |
| 7.687652437513028 |
| 10.871982339941507 |
| 5.4359911699707535 |
| 9.41541289588513 |
+--------------------+

To return the rounded square root for the same set of COMMISSION values, use the following
example.

SELECT ROUND(SQRT(commission))
FROM sales WHERE salesid < 10 ORDER BY salesid;

+-------+
| round |
+-------+
| 10 |
| 3 |
| 7 |
| 5 |
| 5 |
| 8 |
| 11 |
| 5 |
| 9 |

Math functions 1901

Amazon Redshift Database Developer Guide

+-------+

TAN function

TAN is a trigonometric function that returns the tangent of a number. The input argument is a
number (in radians).

Syntax

TAN(number)

Argument

number

A DOUBLE PRECISION number.

Return type

DOUBLE PRECISION

Examples

To return the tangent of zero, use the following example.

SELECT TAN(0);

+-----+
| tan |
+-----+
| 0 |
+-----+

TRUNC function

The TRUNC function truncates numbers to the previous integer or decimal.

The TRUNC function can optionally include a second argument as an INTEGER to indicate the
number of decimal places for rounding, in either direction. When you don't provide the second

Math functions 1902

Amazon Redshift Database Developer Guide

argument, the function rounds to the nearest whole number. When the second argument integer is
specified, the function rounds to the nearest number with integer decimal places of precision.

This function can also truncate a TIMESTAMP and return a DATE. For more information, see TRUNC
function.

Syntax

TRUNC(number [, integer])

Arguments

number

A number or an expression that evaluates to a number. It can be the DECIMAL, FLOAT8 or
SUPER type. Amazon Redshift can convert other data types per the implicit conversion rules.

integer

(Optional) An INTEGER that indicates the number of decimal places of precision, in either
direction. If no integer is provided, the number is truncated as a whole number; if an integer is
specified, the number is truncated to the specified decimal place. This isn't supported for the
SUPER data type.

Return type

TRUNC returns the same data type as the input number.

When the input is of the SUPER type, the output retains the same dynamic type as the input while
the static type remains the SUPER type. When the dynamic type of SUPER isn't a number, Amazon
Redshift returns NULL.

Examples

Some of the following examples use the TICKIT sample database. For more information, see
Sample database.

To truncate the commission paid for a given sales transaction, use the following example.

SELECT commission, TRUNC(commission)
FROM sales WHERE salesid=784;

Math functions 1903

Amazon Redshift Database Developer Guide

+------------+-------+
| commission | trunc |
+------------+-------+
| 111.15 | 111 |
+------------+-------+

To truncate the same commission value to the first decimal place, use the following example.

SELECT commission, TRUNC(commission,1)
FROM sales WHERE salesid=784;

+------------+-------+
| commission | trunc |
+------------+-------+
| 111.15 | 111.1 |
+------------+-------+

To truncate the commission with a negative value for the second argument, use the following
example. Note that 111.15 is rounded down to 110.

SELECT commission, TRUNC(commission,-1)
FROM sales WHERE salesid=784;

+------------+-------+
| commission | trunc |
+------------+-------+
| 111.15 | 110 |
+------------+-------+

Object functions

Following are the SQL object functions that Amazon Redshift supports to create SUPER type
objects:

Topics

• LOWER_ATTRIBUTE_NAMES function

• OBJECT function

• OBJECT_TRANSFORM function

• UPPER_ATTRIBUTE_NAMES function

Object functions 1904

Amazon Redshift Database Developer Guide

LOWER_ATTRIBUTE_NAMES function

Converts all applicable attribute names in a SUPER value to lowercase, using the same case
conversion routine as the LOWER function. LOWER_ATTRIBUTE_NAMES supports UTF-8 multibyte
characters, up to a maximum of four bytes per character.

To convert SUPER attribute names to uppercase, use the UPPER_ATTRIBUTE_NAMES function.

Syntax

LOWER_ATTRIBUTE_NAMES(super_expression)

Arguments

super_expression

A SUPER expression.

Return type

SUPER

Usage notes

In Amazon Redshift, column identifiers are traditionally case-insensitive and converted to
lowercase. If you ingest data from case-sensitive data formats such as JSON, the data might
contain mixed-case attribute names.

Consider the following example.

CREATE TABLE t1 (s) AS SELECT JSON_PARSE('{"AttributeName": "Value"}');

SELECT s.AttributeName FROM t1;

attributename

NULL

SELECT s."AttributeName" FROM t1;

Object functions 1905

Amazon Redshift Database Developer Guide

attributename

NULL

Amazon Redshift returns NULL for both queries. To query AttributeName, use
LOWER_ATTRIBUTE_NAMES to convert the data’s attribute names to lowercase. Consider the
following example.

CREATE TABLE t2 (s) AS SELECT LOWER_ATTRIBUTE_NAMES(s) FROM t1;

SELECT s.attributename FROM t2;

attributename

"Value"

SELECT s.AttributeName FROM t2;

attributename

"Value"

SELECT s."attributename" FROM t2;

attributename

"Value"

SELECT s."AttributeName" FROM t2;

attributename

"Value"

A related option for working with mixed-case object attribute names is the
enable_case_sensitive_super_attribute configuration option, which
lets Amazon Redshift recognize case in SUPER attribute names. This can be an

Object functions 1906

Amazon Redshift Database Developer Guide

alternative solution to using LOWER_ATTRIBUTE_NAMES. For more information about
enable_case_sensitive_super_attribute, go to enable_case_sensitive_super_attribute.

Examples

Converting SUPER attribute names to lowercase

The following example uses LOWER_ATTRIBUTE_NAMES to convert the attribute names of all
SUPER values in a table.

-- Create a table and insert several SUPER values.
CREATE TABLE t (i INT, s SUPER);

INSERT INTO t VALUES
 (1, NULL),
 (2, 'A'::SUPER),
 (3, JSON_PARSE('{"AttributeName": "B"}')),
 (4, JSON_PARSE(
 '[{"Subobject": {"C": "C"},
 "Subarray": [{"D": "D"}, "E"]
 }]'));

-- Convert all attribute names to lowercase.
UPDATE t SET s = LOWER_ATTRIBUTE_NAMES(s);

SELECT i, s FROM t ORDER BY i;

 i | s
---+--
 1 | NULL
 2 | "A"
 3 | {"attributename":"B"}
 4 | [{"subobject":{"c":"C"},"subarray":[{"d":"D"}, "E"]}]

Observe how LOWER_ATTRIBUTE_NAMES functions.

• NULL values and scalar SUPER values such as "A" are unchanged.

• In a SUPER object, all attribute names are changed to lowercase, but attribute values such as "B"
remain unchanged.

• LOWER_ATTRIBUTE_NAMES applies recursively to any SUPER object that is nested inside a
SUPER array or inside another object.

Object functions 1907

Amazon Redshift Database Developer Guide

Using LOWER_ATTRIBUTE_NAMES on a SUPER object with duplicate attribute names

If a SUPER object contains attributes whose names differ only in their case,
LOWER_ATTRIBUTE_NAMES will raise an error. Consider the following example.

SELECT LOWER_ATTRIBUTE_NAMES(JSON_PARSE('{"A": "A", "a": "a"}'));

error: Invalid input
code: 8001
context: SUPER value has duplicate attributes after case conversion.

OBJECT function

Creates an object of the SUPER data type.

Syntax

OBJECT ([key1, value1], [key2, value2 ...])

Arguments

key1, key2

Expressions that evaluate to VARCHAR type strings.

value1, value2

Expressions of any Amazon Redshift data type except datetime types, since Amazon Redshift
doesn't cast datetime types to the SUPER data type. For more information on datetime types,
see Datetime types.

value expressions in an object don't need to be of the same data type.

Rturn type

SUPER

Example

-- Creates an empty object.
select object();

object

Object functions 1908

Amazon Redshift Database Developer Guide

{}
(1 row)

-- Creates objects with different keys and values.
select object('a', 1, 'b', true, 'c', 3.14);

object

{"a":1,"b":true,"c":3.14}
(1 row)

select object('a', object('aa', 1), 'b', array(2,3), 'c', json_parse('{}'));

object

{"a":{"aa":1},"b":[2,3],"c":{}}
(1 row)

-- Creates objects using columns from a table.
create table bar (k varchar, v super);
insert into bar values ('k1', json_parse('[1]')), ('k2', json_parse('{}'));
select object(k, v) from bar;

object

{"k1":[1]}
{"k2":{}}
(2 rows)

-- Errors out because DATE type values can't be converted to SUPER type.
select object('k', '2008-12-31'::date);

ERROR: OBJECT could not convert type date to super

OBJECT_TRANSFORM function

Transforms a SUPER object.

Syntax

OBJECT_TRANSFORM(
 input

Object functions 1909

Amazon Redshift Database Developer Guide

 [KEEP path1, ...]
 [SET
 path1, value1,
 ..., ...
]
)

Arguments

input

An expression that resolves to a SUPER type object.

KEEP

All path values specified in this clause are kept and carried over to the output object.

This clause is optional.

path1, path2, ...

Constant string literals, in the format of double-quoted path components delimited by periods.
For example, '"a"."b"."c"' is a valid path value. This applies to the path parameter in both
the KEEP and SET clauses.

SET

path and value pairs to modify an exiting path or add a new path, and set the value of that path
in the output object.

This clause is optional.

value1, value2, ...

Expressions that resolve to SUPER type values. Note that numeric, text, and Boolean types are
resolvable to SUPER.

Return type

SUPER

Usage notes

OBJECT_TRANSFORM returns a SUPER type object containing the path values from input that were
specified in KEEP and the path and value pairs that were specified in SET.

Object functions 1910

Amazon Redshift Database Developer Guide

If both KEEP and SET are empty, OBJECT_TRANSFORM returns input.

If input isn’t a SUPER type object, OBJECT_TRANSFORM returns input, regardless of any KEEP or
SET values.

Example

The following example transforms a SUPER object into another SUPER object.

CREATE TABLE employees (
 col_person SUPER
);

INSERT INTO employees
VALUES
 (
 json_parse('
 {
 "name": {
 "first": "John",
 "last": "Doe"
 },
 "age": 25,
 "ssn": "111-22-3333",
 "company": "Company Inc.",
 "country": "U.S."
 }
 ')
),
 (
 json_parse('
 {
 "name": {
 "first": "Jane",
 "last": "Appleseed"
 },
 "age": 34,
 "ssn": "444-55-7777",
 "company": "Organization Org.",
 "country": "Ukraine"
 }
 ')
)
;

Object functions 1911

Amazon Redshift Database Developer Guide

SELECT
 OBJECT_TRANSFORM(
 col_person
 KEEP
 '"name"."first"',
 '"age"',
 '"company"',
 '"country"'
 SET
 '"name"."first"', UPPER(col_person.name.first::TEXT),
 '"age"', col_person.age + 5,
 '"company"', 'Amazon'
) AS col_person_transformed
FROM employees;

--This result is formatted for ease of reading.
 col_person_transformed

{
 "name": {
 "first": "JOHN"
 },
 "age": 30,
 "company": "Amazon",
 "country": "U.S."
}
{
 "name": {
 "first": "JANE"
 },
 "age": 39,
 "company": "Amazon",
 "country": "Ukraine"
}

UPPER_ATTRIBUTE_NAMES function

Converts all applicable attribute names in a SUPER value to uppercase, using the same case
conversion routine as the UPPER function. UPPER_ATTRIBUTE_NAMES supports UTF-8 multibyte
characters, up to a maximum of four bytes per character.

To convert SUPER attribute names to lowercase, use the LOWER_ATTRIBUTE_NAMES function.

Object functions 1912

Amazon Redshift Database Developer Guide

Syntax

UPPER_ATTRIBUTE_NAMES(super_expression)

Arguments

super_expression

A SUPER expression.

Return type

SUPER

Examples

Converting SUPER attribute names to uppercase

The following example uses UPPER_ATTRIBUTE_NAMES to convert the attribute names of all
SUPER values in a table.

-- Create a table and insert several SUPER values.
CREATE TABLE t (i INT, s SUPER);

INSERT INTO t VALUES
 (1, NULL),
 (2, 'a'::SUPER),
 (3, JSON_PARSE('{"AttributeName": "b"}')),
 (4, JSON_PARSE(
 '[{"Subobject": {"c": "c"},
 "Subarray": [{"d": "d"}, "e"]
 }]'));

-- Convert all attribute names to uppercase.
UPDATE t SET s = UPPER_ATTRIBUTE_NAMES(s);

SELECT i, s FROM t ORDER BY i;

 i | s
---+--
 1 | NULL
 2 | "a"
 3 | {"ATTRIBUTENAME":"B"}

Object functions 1913

Amazon Redshift Database Developer Guide

 4 | [{"SUBOBJECT":{"C":"c"},"SUBARRAY":[{"D":"d"}, "e"]}]

Observe how UPPER_ATTRIBUTE_NAMES functions.

• NULL values and scalar SUPER values such as "a" are unchanged.

• In a SUPER object, all attribute names are changed to uppercase, but attribute values such as
"b" remain unchanged.

• UPPER_ATTRIBUTE_NAMES applies recursively to any SUPER object that is nested inside a SUPER
array or inside another object.

Using UPPER_ATTRIBUTE_NAMES on a SUPER object with duplicate attribute names

If a SUPER object contains attributes whose names differ only in their case,
UPPER_ATTRIBUTE_NAMES will raise an error. Consider the following example.

SELECT UPPER_ATTRIBUTE_NAMES(JSON_PARSE('{"A": "A", "a": "a"}'));

error: Invalid input
code: 8001
context: SUPER value has duplicate attributes after case conversion.

Spatial functions

Relationships between geometry objects are based on the Dimensionally Extended nine-
Intersection Model (DE-9IM). This model defines predicates such as equals, contains, and covers.
For more information about the definition of spatial relationships, see DE-9IM in Wikipedia.

For more information about how to use spatial data with Amazon Redshift, see Querying spatial
data in Amazon Redshift.

Amazon Redshift provides spatial functions that work with GEOMETRY and GEOGRAPHY data types.
The following lists the functions that support the GEOGRAPHY data type:

• ST_Area

• ST_AsEWKT

• ST_AsGeoJSON

• ST_AsHexEWKB

• ST_AsHexWKB

Spatial functions 1914

https://en.wikipedia.org/wiki/DE-9IM

Amazon Redshift Database Developer Guide

• ST_AsText

• ST_Distance

• ST_GeogFromText

• ST_GeogFromWKB

• ST_Length

• ST_NPoints

• ST_Perimeter

The following lists the full set of spatial functions supported by Amazon Redshift.

Topics

• AddBBox

• DropBBox

• GeometryType

• H3_FromLongLat

• H3_FromPoint

• H3_Polyfill

• ST_AddPoint

• ST_Angle

• ST_Area

• ST_AsBinary

• ST_AsEWKB

• ST_AsEWKT

• ST_AsGeoJSON

• ST_AsHexWKB

• ST_AsHexEWKB

• ST_AsText

• ST_Azimuth

• ST_Boundary

• ST_Buffer

• ST_Centroid

Spatial functions 1915

Amazon Redshift Database Developer Guide

• ST_Collect

• ST_Contains

• ST_ContainsProperly

• ST_ConvexHull

• ST_CoveredBy

• ST_Covers

• ST_Crosses

• ST_Dimension

• ST_Disjoint

• ST_Distance

• ST_DistanceSphere

• ST_DWithin

• ST_EndPoint

• ST_Envelope

• ST_Equals

• ST_ExteriorRing

• ST_Force2D

• ST_Force3D

• ST_Force3DM

• ST_Force3DZ

• ST_Force4D

• ST_GeoHash

• ST_GeogFromText

• ST_GeogFromWKB

• ST_GeometryN

• ST_GeometryType

• ST_GeomFromEWKB

• ST_GeomFromEWKT

• ST_GeomFromGeoHash

• ST_GeomFromGeoJSON

Spatial functions 1916

Amazon Redshift Database Developer Guide

• ST_GeomFromGeoSquare

• ST_GeomFromText

• ST_GeomFromWKB

• ST_GeoSquare

• ST_InteriorRingN

• ST_Intersects

• ST_Intersection

• ST_IsPolygonCCW

• ST_IsPolygonCW

• ST_IsClosed

• ST_IsCollection

• ST_IsEmpty

• ST_IsRing

• ST_IsSimple

• ST_IsValid

• ST_Length

• ST_LengthSphere

• ST_Length2D

• ST_LineFromMultiPoint

• ST_LineInterpolatePoint

• ST_M

• ST_MakeEnvelope

• ST_MakeLine

• ST_MakePoint

• ST_MakePolygon

• ST_MemSize

• ST_MMax

• ST_MMin

• ST_Multi

• ST_NDims

Spatial functions 1917

Amazon Redshift Database Developer Guide

• ST_NPoints

• ST_NRings

• ST_NumGeometries

• ST_NumInteriorRings

• ST_NumPoints

• ST_Perimeter

• ST_Perimeter2D

• ST_Point

• ST_PointN

• ST_Points

• ST_Polygon

• ST_RemovePoint

• ST_Reverse

• ST_SetPoint

• ST_SetSRID

• ST_Simplify

• ST_SRID

• ST_StartPoint

• ST_Touches

• ST_Transform

• ST_Union

• ST_Within

• ST_X

• ST_XMax

• ST_XMin

• ST_Y

• ST_YMax

• ST_YMin

• ST_Z

• ST_ZMax

Spatial functions 1918

Amazon Redshift Database Developer Guide

• ST_ZMin

• SupportsBBox

AddBBox

AddBBox returns a copy of the input geometry that supports encoding with a precomputed
bounding box. For more information about support for bounding boxes, see Bounding box.

Syntax

AddBBox(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY

If geom is null, then null is returned.

Examples

The following SQL returns a copy of an input polygon geometry that supports being encoded with
a bounding box.

SELECT ST_AsText(AddBBox(ST_GeomFromText('POLYGON((0 0,1 0,0 1,0 0))')));

 st_astext

 POLYGON((0 0,1 0,0 1,0 0))

DropBBox

DropBBox returns a copy of the input geometry that doesn't support encoding with a precomputed
bounding box. For more information about support for bounding boxes, see Bounding box.

Spatial functions 1919

Amazon Redshift Database Developer Guide

Syntax

DropBBox(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY

If geom is null, then null is returned.

Examples

The following SQL returns a copy of an input polygon geometry that doesn't support being
encoded with a bounding box.

SELECT ST_AsText(DropBBox(ST_GeomFromText('POLYGON((0 0,1 0,0 1,0 0))')));

 st_astext

 POLYGON((0 0,1 0,0 1,0 0))

GeometryType

GeometryType returns the subtype of an input geometry as a string.

Syntax

GeometryType(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Spatial functions 1920

Amazon Redshift Database Developer Guide

Return type

VARCHAR representing the subtype of geom.

If geom is null, then null is returned.

The values returned are as follows.

Returned string value for 2D,
3DZ, 4D geometries

Returned string value for
3DM geometries

Geometry subtype

POINT POINTM Returned if geom is a POINT
subtype

LINESTRING LINESTRINGM Returned if geom is a
LINESTRING subtype

POLYGON POLYGONM Returned if geom is a
POLYGON subtype

MULTIPOINT MULTIPOINTM Returned if geom is a
MULTIPOINT subtype

MULTILINESTRING MULTILINESTRINGM Returned if geom is a
MULTILINESTRING subtype

MULTIPOLYGON MULTIPOLYGONM Returned if geom is a
MULTIPOLYGON subtype

GEOMETRYCOLLECTION GEOMETRYCOLLECTIONM Returned if geom is a
GEOMETRYCOLLECTION
subtype

Examples

The following SQL converts a well-known text (WKT) representation of a polygon and returns the
GEOMETRY subtype as a string.

SELECT GeometryType(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'));

Spatial functions 1921

Amazon Redshift Database Developer Guide

geometrytype

 POLYGON

H3_FromLongLat

H3_FromLongLat returns the corresponding H3 cell ID from an input longitude, latitude, and
resolution. For information about H3 indexing, see H3.

Syntax

H3_FromLongLat(longitude, lattitude, resolution)

Arguments

longitude

A value of data type DOUBLE PRECISION or an expression that evaluates to a DOUBLE
PRECISION type.

latitude

A value of data type DOUBLE PRECISION or an expression that evaluates to a DOUBLE
PRECISION type.

resolution

A value of data type INTEGER or an expression that evaluates to an INTEGER type. The value
represents the resolution of the H3 grid system. The value must be an integer between 0–15,
inclusive. With 0 being the coarsest and 15 being the finest.

Return type

BIGINT – represents the H3 cell ID.

If resolution is out of bounds, then an error is returned.

Examples

The following SQL returns the H3 cell ID from longitude 0, latitude 0, and resolution 10.

Spatial functions 1922

Amazon Redshift Database Developer Guide

SELECT H3_FromLongLat(0, 0, 10);

 h3_fromlonglat

 623560421467684863

H3_FromPoint

H3_FromPoint returns the corresponding H3 cell ID from an input geometry point and resolution.
For information about H3 indexing, see H3.

Syntax

H3_FromPoint(geom, resolution)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The geom
must be a POINT.

resolution

A value of data type INTEGER or an expression that evaluates to an INTEGER type. The value
represents the resolution of the H3 grid system. The value must be an integer between 0–15,
inclusive. With 0 being the coarsest and 15 being the finest.

Return type

BIGINT – represents the H3 cell ID.

If geom is not a POINT, then an error is returned.

If resolution is out of bounds, then an error is returned.

If geom is empty, then NULL is returned.

Examples

The following SQL returns the H3 cell ID from point 0,0, and resolution 10.

Spatial functions 1923

Amazon Redshift Database Developer Guide

SELECT H3_FromPoint(ST_GeomFromText('POINT(0 0)'), 10);

 h3_frompoint

 623560421467684863

H3_Polyfill

H3_Polyfill returns the corresponding H3 cell IDs that correspond to the hexagons and pentagons
that are contained in the input polygon of the given resolution. For information about H3 indexing,
see H3.

Syntax

H3_Polyfill(geom, resolution)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The geom
must be a POLYGON.

resolution

A value of data type INTEGER or an expression that evaluates to an INTEGER type. The value
represents the resolution of the H3 grid system. The value must be an integer between 0–15,
inclusive. With 0 being the coarsest and 15 being the finest.

Return type

SUPER – represents a list of H3 cell IDs.

If geom is not a POLYGON, then an error is returned.

If resolution is out of bounds, then an error is returned.

If geom is empty, then NULL is returned.

Spatial functions 1924

Amazon Redshift Database Developer Guide

Examples

The following SQL returns a SUPER data type array of H3 cell IDs from a polygon and resolution 4.

SELECT H3_Polyfill(ST_GeomFromText('POLYGON((0 0, 0 1, 1 1, 1 0, 0 0))'), 4);

 h3_polyfill
--
 [596538848238895103,596538805289222143,596538856828829695,596538813879156735,596537920525959167,596538685030137855,596538693620072447,596538839648960511]

ST_AddPoint

ST_AddPoint returns a linestring geometry that is the same as the input geometry with a point
added. If an index is provided, then the point is added at the index position. If the index is -1 or not
provided, then the point is appended to the linestring.

The index is zero-based. The spatial reference system identifier (SRID) of the result is the same as
that of the input geometry.

The dimension of the returned geometry is the same as that of the geom1 value. If geom1 and
geom2 have different dimensions, geom2 is projected to the dimension of geom1.

Syntax

ST_AddPoint(geom1, geom2)

ST_AddPoint(geom1, geom2, index)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be LINESTRING.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be POINT. The point can be the empty point.

Spatial functions 1925

Amazon Redshift Database Developer Guide

index

A value of data type INTEGER that represents the position of a zero-based index.

Return type

GEOMETRY

If geom1, geom2, or index is null, then null is returned.

If geom2 is the empty point, then a copy of geom1 is returned.

If geom1 is not a LINESTRING, then an error is returned.

If geom2 is not a POINT, then an error is returned.

If index is out of range, then an error is returned. Valid values for the index position are -1 or a
value between 0 and ST_NumPoints(geom1).

Examples

The following SQL adds a point to a linestring to make it a closed linestring.

WITH tmp(g) AS (SELECT ST_GeomFromText('LINESTRING(0 0,10 0,10 10,5 5,0 5)',4326))
SELECT ST_AsEWKT(ST_AddPoint(g, ST_StartPoint(g))) FROM tmp;

 st_asewkt
--
 SRID=4326;LINESTRING(0 0,10 0,10 10,5 5,0 5,0 0)

The following SQL adds a point to a specific position in a linestring.

WITH tmp(g) AS (SELECT ST_GeomFromText('LINESTRING(0 0,10 0,10 10,5 5,0 5)',4326))
SELECT ST_AsEWKT(ST_AddPoint(g, ST_SetSRID(ST_Point(5, 10), 4326), 3)) FROM tmp;

 st_asewkt
--
 SRID=4326;LINESTRING(0 0,10 0,10 10,5 10,5 5,0 5)

Spatial functions 1926

Amazon Redshift Database Developer Guide

ST_Angle

ST_Angle returns the angle in radians between points measured clockwise as follows:

• If three points are input, then the returned angle P1-P2-P3 is measured as if the angle was
obtained by rotating from P1 to P3 around P2 clockwise.

• If four points are input, then the returned clockwise angle formed by the directed lines P1-P2
and P3-P4 is returned. If the input is a degenerate case (that is, P1 equals P2, or P3 equals P4),
then null is returned.

The return value is in radians and in the range [0, 2π).

ST_Angle operates on 2D projections of the input geometries.

Syntax

ST_Angle(geom1, geom2, geom3)

ST_Angle(geom1, geom2, geom3, geom4)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be POINT.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be POINT.

geom3

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be POINT.

geom4

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be POINT.

Spatial functions 1927

Amazon Redshift Database Developer Guide

Return type

DOUBLE PRECISION.

If geom1 equals geom2, or geom2 equals geom3, then a null is returned.

If geom1, geom2, geom3, or geom4 is null, then a null is returned.

If any of geom1, geom2, geom3, or geom4 is the empty point, then an error is returned.

If geom1, geom2, geom3, and geom4 don't have the same value for the spatial reference system
identifier (SRID), then an error is returned.

Examples

The following SQL returns the angle converted to degrees of three input points.

SELECT ST_Angle(ST_Point(1,1), ST_Point(0,0), ST_Point(1,0)) / Pi() * 180.0 AS angle;

 angle

 45

The following SQL returns the angle converted to degrees of four input points.

SELECT ST_Angle(ST_Point(1,1), ST_Point(0,0), ST_Point(1,0), ST_Point(2,0)) / Pi() *
 180.0 AS angle;

 angle

 225

ST_Area

For an input geometry, ST_Area returns the Cartesian area of the 2D projection. The area units are
the same as the units in which the coordinates of the input geometry are expressed. For points,
linestrings, multipoints, and multilinestrings, the function returns 0. For geometry collections, it
returns the sum of the areas of the geometries in the collection.

Spatial functions 1928

Amazon Redshift Database Developer Guide

For an input geography, ST_Area returns the geodesic area of the 2D projection of an input areal
geography computed on the spheroid determined by the SRID. The unit of length is in square
meters. The function returns zero (0) for points, multipoints, and linear geographies. When the
input is a geometry collection, the function returns the sum of the areas of the areal geographies
in the collection.

Syntax

ST_Area(geo)

Arguments

geo

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type.

Return type

DOUBLE PRECISION

If geo is null, then null is returned.

Examples

The following SQL returns the Cartesian area of a multipolygon.

SELECT ST_Area(ST_GeomFromText('MULTIPOLYGON(((0 0,10 0,0 10,0 0)),((10 0,20 0,20 10,10
 0)))'));

 st_area

 100

The following SQL returns the area of a polygon in a geography.

SELECT ST_Area(ST_GeogFromText('polygon((34 35, 28 30, 25 34, 34 35))'));

Spatial functions 1929

Amazon Redshift Database Developer Guide

 st_area

 201824655743.383

The following SQL returns zero for a linear geography.

SELECT ST_Area(ST_GeogFromText('multipoint(0 0, 1 1, -21.32 121.2)'));

 st_area

 0

ST_AsBinary

ST_AsBinary returns the hexadecimal well-known binary (WKB) representation of an input
geometry. For 3DZ, 3DM, and 4D geometries, ST_AsBinary uses the Open Geospatial Consortium
(OGC) standard value for the geometry type.

Syntax

ST_AsBinary(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

VARBYTE

If geom is null, then null is returned.

Examples

The following SQL returns the hexadecimal WKB representation of a polygon.

Spatial functions 1930

Amazon Redshift Database Developer Guide

SELECT ST_AsBinary(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

st_asbinary

0103000000010000000500F03F000000000000F03F000000000000F03F000000000000F03F00

ST_AsEWKB

ST_AsEWKB returns the extended well-known binary (EWKB) representation of an input geometry.
For 3DZ, 3DM, and 4D geometries, ST_AsEWKB uses the Open Geospatial Consortium (OGC)
standard value for the geometry type.

Syntax

ST_AsEWKB(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

VARBYTE

If geom is null, then null is returned.

Examples

The following SQL returns the hexadecimal EWKB representation of a polygon.

SELECT ST_AsEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

st_asewkb

0103000020E6100000010000000500F03F000000000000F03F000000000000F03F000000000000F03F00

Spatial functions 1931

Amazon Redshift Database Developer Guide

ST_AsEWKT

ST_AsEWKT returns the extended well-known text (EWKT) representation of an input geometry or
geography. For 3DZ, 3DM, and 4D geometries, ST_AsEWKT appends Z, M, or ZM to the WKT value
for the geometry type.

Syntax

ST_AsEWKT(geo)

ST_AsEWKT(geo, precision)

Arguments

geo

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type.

precision

A value of data type INTEGER. For geometries, the coordinates of geo are displayed using the
specified precision 1–20. If precision is not specified, the default is 15. For geographies, the
coordinates of geo are displayed using the specified precision. If precision is not specified, the
default is 15.

Return type

VARCHAR

If geo is null, then null is returned.

If precision is null, then null is returned.

If the result is larger than a 64-KB VARCHAR, then an error is returned.

Examples

The following SQL returns the EWKT representation of a linestring.

SELECT ST_AsEWKT(ST_GeomFromText('LINESTRING(3.141592653589793
 -6.283185307179586,2.718281828459045 -1.414213562373095)', 4326));

Spatial functions 1932

Amazon Redshift Database Developer Guide

st_asewkt

 SRID=4326;LINESTRING(3.14159265358979 -6.28318530717959,2.71828182845905
 -1.41421356237309)

The following SQL returns the EWKT representation of a linestring. The coordinates of the
geometries are displayed with six digits of precision.

SELECT ST_AsEWKT(ST_GeomFromText('LINESTRING(3.141592653589793
 -6.283185307179586,2.718281828459045 -1.414213562373095)', 4326), 6);

st_asewkt

 SRID=4326;LINESTRING(3.14159 -6.28319,2.71828 -1.41421)

The following SQL returns the EWKT representation of a geography.

SELECT ST_AsEWKT(ST_GeogFromText('LINESTRING(110 40, 2 3, -10 80, -7 9)'));

 st_asewkt
--
 SRID=4326;LINESTRING(110 40,2 3,-10 80,-7 9)

ST_AsGeoJSON

ST_AsGeoJSON returns the GeoJSON representation of an input geometry or geography. For more
information about GeoJSON, see GeoJSON in Wikipedia.

For 3DZ and 4D geometries, the output geometry is a 3DZ projection of the input 3DZ or 4D
geometry. That is, the x, y, and z coordinates are present in the output. For 3DM geometries, the
output geometry is a 2D projection of the input 3DM geometry. That is, only x and y coordinates
are present in the output.

For input geographies, ST_AsGeoJSON returns the GeoJSON representation of an input geography.
The coordinates of the geography are displayed using the specified precision.

Spatial functions 1933

https://en.wikipedia.org/wiki/GeoJSON

Amazon Redshift Database Developer Guide

Syntax

ST_AsGeoJSON(geo)

ST_AsGeoJSON(geo, precision)

Arguments

geo

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type.

precision

A value of data type INTEGER. For geometries, the coordinates of geo are displayed using the
specified precision 1–20. If precision is not specified, the default is 15. For geographies, the
coordinates of geo are displayed using the specified precision. If precision is not specified, the
default is 15.

Return type

VARCHAR

If geo is null, then null is returned.

If precision is null, then null is returned.

If the result is larger than a 64-KB VARCHAR, then an error is returned.

Examples

The following SQL returns the GeoJSON representation of a linestring.

SELECT ST_AsGeoJSON(ST_GeomFromText('LINESTRING(3.141592653589793
 -6.283185307179586,2.718281828459045 -1.414213562373095)'));

st_asgeojson
--

Spatial functions 1934

Amazon Redshift Database Developer Guide

 {"type":"LineString","coordinates":[[3.14159265358979,-6.28318530717959],
[2.71828182845905,-1.41421356237309]]}

The following SQL returns the GeoJSON representation of a linestring. The coordinates of the
geometries are displayed with six digits of precision.

SELECT ST_AsGeoJSON(ST_GeomFromText('LINESTRING(3.141592653589793
 -6.283185307179586,2.718281828459045 -1.414213562373095)'), 6);

st_asgeojson

 {"type":"LineString","coordinates":[[3.14159,-6.28319],[2.71828,-1.41421]]}

The following SQL returns the GeoJSON representation of a geography.

SELECT ST_AsGeoJSON(ST_GeogFromText('LINESTRING(110 40, 2 3, -10 80, -7 9)'));

 st_asgeojson
--
 {"type":"LineString","coordinates":[[110,40],[2,3],[-10,80],[-7,9]]}

ST_AsHexWKB

ST_AsHexWKB returns the hexadecimal well-known binary (WKB) representation of an input
geometry or geography using ASCII hexadecimal characters (0–9, A–F). For 3DZ, 3DM, and 4D
geometries or geographies, ST_AsHexWKB uses the Open Geospatial Consortium (OGC) standard
value for the geometry or geography type.

Syntax

ST_AsHexWKB(geo)

Arguments

geo

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type.

Spatial functions 1935

Amazon Redshift Database Developer Guide

Return type

VARCHAR

If geo is null, then null is returned.

If the result is larger than a 64-KB VARCHAR, then an error is returned.

Examples

The following SQL returns the hexadecimal WKB representation of a polygon in a geometry.

SELECT ST_AsHexWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

st_ashexwkb

0103000000010000000500F03F000000000000F03F000000000000F03F000000000000F03F00

The following SQL returns the hexadecimal WKB representation of a polygon in a geography.

SELECT ST_AsHexWKB(ST_GeogFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))'));

st_ashexwkb

0103000000010000000500F03F000000000000F03F000000000000F03F000000000000F03F00

ST_AsHexEWKB

ST_AsHexEWKB returns the extended well-known binary (EWKB) representation of an input
geometry or geography using ASCII hexadecimal characters (0–9, A–F). For 3DZ, 3DM, and
4D geometries or geographies, ST_AsHexEWKB uses the PostGIS extended WKB value for the
geometry or geography type.

Syntax

ST_AsHexEWKB(geo)

Spatial functions 1936

Amazon Redshift Database Developer Guide

Arguments

geo

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type.

Return type

VARCHAR

If geo is null, then null is returned.

If the result is larger than a 64-KB VARCHAR, then an error is returned.

Examples

The following SQL returns the hexadecimal EWKB representation of a polygon in a geometry.

SELECT ST_AsHexEWKB(ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326));

st_ashexewkb

0103000020E6100000010000000500F03F000000000000F03F000000000000F03F000000000000F03F00

The following SQL returns the hexadecimal EWKB representation of a polygon in a geography.

SELECT ST_AsHexEWKB(ST_GeogFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))'));

st_ashexewkb

0103000020E6100000010000000500F03F000000000000F03F000000000000F03F000000000000F03F00

ST_AsText

ST_AsText returns the well-known text (WKT) representation of an input geometry or geography.
For 3DZ, 3DM, and 4D geometries or geographies, ST_AsEWKT appends Z, M, or ZM to the WKT
value for the geometry or geography type.

Spatial functions 1937

Amazon Redshift Database Developer Guide

Syntax

ST_AsText(geo)

ST_AsText(geo, precision)

Arguments

geo

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type.

precision

A value of data type INTEGER. For geometries, the coordinates of geo are displayed using the
specified precision 1–20. If precision is not specified, the default is 15. For geogpraphies, the
coordinates of geo are displayed using the specified precision. If precision is not specified, the
default is 15.

Return type

VARCHAR

If geo is null, then null is returned.

If precision is null, then null is returned.

If the result is larger than a 64-KB VARCHAR, then an error is returned.

Examples

The following SQL returns the WKT representation of a linestring.

SELECT ST_AsText(ST_GeomFromText('LINESTRING(3.141592653589793
 -6.283185307179586,2.718281828459045 -1.414213562373095)', 4326));

st_astext

LINESTRING(3.14159265358979 -6.28318530717959,2.71828182845905 -1.41421356237309)

Spatial functions 1938

Amazon Redshift Database Developer Guide

The following SQL returns the WKT representation of a linestring. The coordinates of the
geometries are displayed with six digits of precision.

SELECT ST_AsText(ST_GeomFromText('LINESTRING(3.141592653589793
 -6.283185307179586,2.718281828459045 -1.414213562373095)', 4326), 6);

st_astext
--
 LINESTRING(3.14159 -6.28319,2.71828 -1.41421)

The following SQL returns the WKT representation of a geography.

SELECT ST_AsText(ST_GeogFromText('LINESTRING(110 40, 2 3, -10 80, -7 9)'));

 st_astext

 LINESTRING(110 40,2 3,-10 80,-7 9)

ST_Azimuth

ST_Azimuth returns the north-based Cartesian azimuth using the 2D projections of the two input
points.

Syntax

ST_Azimuth(point1, point2)

Arguments

point1

A POINT value of data type GEOMETRY. The spatial reference system identifier (SRID) of point1
must match the SRID of point2.

point2

A POINT value of data type GEOMETRY. The SRID of point2 must match the SRID of point1.

Spatial functions 1939

Amazon Redshift Database Developer Guide

Return type

A number that is an angle in radians of DOUBLE PRECISION data type. Values range from 0
(inclusive) to 2 pi (exclusive).

If point1 or point2 is the empty point, then an error is returned.

If either point1 or point2 is null, then null is returned.

If point1 and point2 are equal, then null is returned.

If point1 or point2 is not a point, then an error is returned.

If point1 and point2 don't have the value for the spatial reference system identifier (SRID), then an
error is returned.

Examples

The following SQL returns the azimuth of the input points.

SELECT ST_Azimuth(ST_Point(1,2), ST_Point(5,6));

st_azimuth

 0.7853981633974483

ST_Boundary

ST_Boundary returns the boundary of an input geometry as follows:

• If the input geometry is empty (that is, it contains no points) it is returned as is.

• If the input geometry is a point or nonempty multipoint, an empty geometry collection is
returned.

• If the input is a linestring or a multilinestring, then a multipoint containing all the points on the
boundary is returned. The multipoint might be empty).

• If the input is a polygon that does not have any interior rings, then a closed linestring
representing its boundary is returned.

• If the input is a polygon that has interior rings, or is a multipolygon, then a multilinestring is
returned. The multilinestring contains all the boundaries of all the rings in the areal geometry as
closed linestrings.

Spatial functions 1940

Amazon Redshift Database Developer Guide

To determine point equality, ST_Boundary operates on the 2D projection of the input geometry.
If the input geometry is empty, a copy of it is returned in the same dimension as the input. For
nonempty 3DM and 4D geometries, their m coordinates are dropped. In the special case of 3DZ and
4D multilinestrings, the z coordinates of the multilinestring's boundary points are computed as the
averages of the distinct z-values of the linestring boundary points with the same 2D projection.

Syntax

ST_Boundary(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY

If geom is null, then null is returned.

If geom is a GEOMETRYCOLLECTION, then an error is returned.

Examples

The following SQL returns the boundary of the input polygon as a multilinestring.

SELECT ST_AsEWKT(ST_Boundary(ST_GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(1 1,1
 2,2 1,1 1))')));

st_asewkt

 MULTILINESTRING((0 0,10 0,10 10,0 10,0 0),(1 1,1 2,2 1,1 1))

ST_Buffer

ST_Buffer returns 2D geometry that represents all points whose distance from the input geometry
projected on the xy-Cartesian plane is less than or equal to the input distance.

Spatial functions 1941

Amazon Redshift Database Developer Guide

Syntax

ST_Buffer(geom, distance)

ST_Buffer(geom, distance, number_of_segments_per_quarter_circle)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

distance

A value of data type DOUBLE PRECISION that represents distance (or radius) of the buffer.

number_of_segments_per_quarter_circle

A value of data type INTEGER. This value determines the number of points to approximate a
quarter circle around each vertex of the input geometry. Negative values default to zero. The
default is 8.

Return type

GEOMETRY

The ST_Buffer function returns two-dimensional (2D) geometry in the xy-Cartesian plane.

If geom is a GEOMETRYCOLLECTION, then an error is returned.

Examples

The following SQL returns the buffer of the input linestring.

SELECT ST_AsEwkt(ST_Buffer(ST_GeomFromText('LINESTRING(1 2,5 2,5 8)'), 2));

 st_asewkt
POLYGON((-1 2,-0.96157056080646 2.39018064403226,-0.847759065022573
 2.76536686473018,-0.662939224605089 3.11114046603921,-0.414213562373093
 3.4142135623731,-0.111140466039201 3.66293922460509,0.234633135269824
 3.84775906502257,0.609819355967748 3.96157056080646,1 4,3 4,3 8,3.03842943919354
 8.39018064403226,3.15224093497743 8.76536686473018,3.33706077539491

Spatial functions 1942

Amazon Redshift Database Developer Guide

 9.11114046603921,3.58578643762691 9.4142135623731,3.8888595339608
 9.66293922460509,4.23463313526982 9.84775906502257,4.60981935596775
 9.96157056080646,5 10,5.39018064403226 9.96157056080646,5.76536686473018
 9.84775906502257,6.11114046603921 9.66293922460509,6.4142135623731
 9.41421356237309,6.66293922460509 9.1111404660392,6.84775906502258
 8.76536686473017,6.96157056080646 8.39018064403225,7 8,7 2,6.96157056080646
 1.60981935596774,6.84775906502257 1.23463313526982,6.66293922460509
 0.888859533960796,6.41421356237309 0.585786437626905,6.1111404660392
 0.33706077539491,5.76536686473018 0.152240934977427,5.39018064403226
 0.0384294391935391,5 0,1 0,0.609819355967744 0.0384294391935391,0.234633135269821
 0.152240934977427,-0.111140466039204 0.337060775394909,-0.414213562373095
 0.585786437626905,-0.662939224605091 0.888859533960796,-0.847759065022574
 1.23463313526982,-0.961570560806461 1.60981935596774,-1 2))

The following SQL returns the buffer of the input point geometry which approximates a circle.
Because the command doesn't specify the number of segments per quarter circle, the function uses
the default value of eight segments to approximate the quarter circle.

SELECT ST_AsEwkt(ST_Buffer(ST_GeomFromText('POINT(3 4)'), 2));

 st_asewkt
POLYGON((1 4,1.03842943919354 4.39018064403226,1.15224093497743
 4.76536686473018,1.33706077539491 5.11114046603921,1.58578643762691
 5.4142135623731,1.8888595339608 5.66293922460509,2.23463313526982
 5.84775906502257,2.60981935596775 5.96157056080646,3 6,3.39018064403226
 5.96157056080646,3.76536686473019 5.84775906502257,4.11114046603921
 5.66293922460509,4.4142135623731 5.41421356237309,4.66293922460509
 5.1111404660392,4.84775906502258 4.76536686473017,4.96157056080646 4.39018064403225,5
 4,4.96157056080646 3.60981935596774,4.84775906502257 3.23463313526982,4.66293922460509
 2.8888595339608,4.41421356237309 2.58578643762691,4.1111404660392
 2.33706077539491,3.76536686473018 2.15224093497743,3.39018064403226 2.03842943919354,3
 2,2.60981935596774 2.03842943919354,2.23463313526982 2.15224093497743,1.8888595339608
 2.33706077539491,1.58578643762691 2.58578643762691,1.33706077539491
 2.8888595339608,1.15224093497743 3.23463313526982,1.03842943919354 3.60981935596774,1
 4))

The following SQL returns the buffer of the input point geometry which approximates a circle.
Because the command specifies 3 as the number of segments per quarter circle, the function uses
three segments to approximate the quarter circle.

SELECT ST_AsEwkt(ST_Buffer(ST_GeomFromText('POINT(3 4)'), 2, 3));

Spatial functions 1943

Amazon Redshift Database Developer Guide

 st_asewkt
POLYGON((1 4,1.26794919243112 5,2 5.73205080756888,3 6,4
 5.73205080756888,4.73205080756888 5,5 4,4.73205080756888 3,4 2.26794919243112,3 2,2
 2.26794919243112,1.26794919243112 3,1 4))

ST_Centroid

ST_Centroid returns a point that represents a centroid of a geometry as follows:

• For POINT geometries, it returns the point whose coordinates are the average of the coordinates
of the points in the geometry.

• For LINESTRING geometries, it returns the point whose coordinates are the weighted average
of the midpoints of the segments of the geometry, where the weights are the lengths of the
segments of the geometry.

• For POLYGON geometries, it returns the point whose coordinates are the weighted average of
the centroids of a triangulation of the areal geometry where the weights are the areas of the
triangles in the triangulation.

• For geometry collections, it returns the weighted average of the centroids of the geometries of
maximum topological dimension in the geometry collection.

Syntax

ST_Centroid(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY

If geom is null, then null is returned.

If geom is empty, then null is returned.

Spatial functions 1944

Amazon Redshift Database Developer Guide

Examples

The following SQL returns central point of an input linestring.

SELECT ST_AsEWKT(ST_Centroid(ST_GeomFromText('LINESTRING(110 40, 2 3, -10 80, -7 9, -22
 -33)', 4326)))

 st_asewkt
--
 SRID=4326;POINT(15.6965103455214 27.0206782881905)

ST_Collect

ST_Collect has two variants. One accepts two geometries, and one accepts an aggregate
expression.

The first variant of ST_Collect creates a geometry from the input geometries. The order of the
input geometries is preserved. This variant works as follows:

• If both input geometries are points, then a MULTIPOINT with two points is returned.

• If both input geometries are linestrings, then a MULTILINESTRING with two linestrings is
returned.

• If both input geometries are polygons, then a MULTIPOLYGON with two polygons is returned.

• Otherwise, a GEOMETRYCOLLECTION with two input geometries is returned.

The second variant of ST_Collect creates a geometry from geometries in a geometry column. There
isn't a determined return order of the geometries. Specify the WITHIN GROUP (ORDER BY ...) clause
to specify the order of the returned geometries. This variant works as follows:

• If all non-NULL rows in the input aggregate expression are points, then a multipoint containing
all the points in the aggregate expression is returned.

• If all non-NULL rows in the aggregate expression are linestrings, then a multilinestring
containing all the linestrings in the aggregate expression is returned.

• If all non-NULL rows in the aggregate expression are polygons, the result is a multipolygon
containing all the polygons in the aggregate expression is returned.

• Otherwise, a GEOMETRYCOLLECTION containing all the geometries in the aggregate expression
is returned.

Spatial functions 1945

Amazon Redshift Database Developer Guide

The ST_Collect returns the geometry of the same dimension as the input geometries. All input
geometries must be of the same dimension.

Syntax

ST_Collect(geom1, geom2)

ST_Collect(aggregate_expression) [WITHIN GROUP (ORDER BY sort_expression1 [ASC | DESC]
 [, sort_expression2 [ASC | DESC] ...])]

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

aggregate_expression

A column of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

[WITHIN GROUP (ORDER BY sort_expression1 [ASC | DESC] [, sort_expression2 [ASC | DESC] ...])]

An optional clause that specifies the sort order of the aggregated values. The ORDER BY
clause contains a list of sort expressions. Sort expressions are expressions similar to valid sort
expressions in a query select list, such as a column name. You can specify ascending (ASC) or
descending (DESC) order. The default is ASC.

Return type

GEOMETRY of subtype MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, or
GEOMETRYCOLLECTION.

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometries.

If both geom1 or geom2 are null, then null is returned.

If all rows of aggregate_expression are null, then null is returned.

Spatial functions 1946

Amazon Redshift Database Developer Guide

If geom1 is null, then a copy of geom2 is returned. Likewise, if geom2 is null, then a copy of geom1
is returned.

If geom1 and geom2 have different SRID values, then an error is returned.

If two geometries in aggregate_expression have different SRID values, then an error is returned.

If the returned geometry is larger than the maximum size of a GEOMETRY, then an error is returned.

If geom1 and geom2 are of different dimensions, then an error is returned.

If two geometries in aggregate_expression are of different dimensions, then an error is returned.

Examples

The following SQL returns a geometry collection that contains the two input geometries.

SELECT ST_AsText(ST_Collect(ST_GeomFromText('LINESTRING(0 0,1 1)'),
 ST_GeomFromText('POLYGON((10 10,20 10,10 20,10 10))')));

st_astext

 GEOMETRYCOLLECTION(LINESTRING(0 0,1 1),POLYGON((10 10,20 10,10 20,10 10)))

The following SQL collects all the geometries from a table into a geometry collection.

WITH tbl(g) AS (SELECT ST_GeomFromText('POINT(1 2)', 4326) UNION ALL
SELECT ST_GeomFromText('LINESTRING(0 0,10 0)', 4326) UNION ALL
SELECT ST_GeomFromText('MULTIPOINT(13 4,8 5,4 4)', 4326) UNION ALL
SELECT NULL::geometry UNION ALL
SELECT ST_GeomFromText('POLYGON((0 0,10 0,0 10,0 0))', 4326))
SELECT ST_AsEWKT(ST_Collect(g)) FROM tbl;

st_astext

 SRID=4326;GEOMETRYCOLLECTION(POINT(1 2),LINESTRING(0 0,10 0),MULTIPOINT((13 4),(8 5),
(4 4)),POLYGON((0 0,10 0,0 10,0 0)))

The following SQL collects all geometries in the table grouped by the id column and ordered by
this ID. In this example, resulting geometries are grouped by ID as follows:

Spatial functions 1947

Amazon Redshift Database Developer Guide

• id 1 – points in a multipoint.

• id 2 – linestrings in a multilinestring.

• id 3 – mixed subtypes in a geometry collection.

• id 4 – polygons in a multipolygon.

• id 5 – null and the result is null.

WITH tbl(id, g) AS (SELECT 1, ST_GeomFromText('POINT(1 2)', 4326) UNION ALL
SELECT 1, ST_GeomFromText('POINT(4 5)', 4326) UNION ALL
SELECT 2, ST_GeomFromText('LINESTRING(0 0,10 0)', 4326) UNION ALL
SELECT 2, ST_GeomFromText('LINESTRING(10 0,20 -5)', 4326) UNION ALL
SELECT 3, ST_GeomFromText('MULTIPOINT(13 4,8 5,4 4)', 4326) UNION ALL
SELECT 3, ST_GeomFromText('MULTILINESTRING((-1 -1,-2 -2),(-3 -3,-5 -5))', 4326) UNION
 ALL
SELECT 4, ST_GeomFromText('POLYGON((0 0,10 0,0 10,0 0))', 4326) UNION ALL
SELECT 4, ST_GeomFromText('POLYGON((20 20,20 30,30 20,20 20))', 4326) UNION ALL
SELECT 1, NULL::geometry UNION ALL SELECT 2, NULL::geometry UNION ALL
SELECT 5, NULL::geometry UNION ALL SELECT 5, NULL::geometry)
SELECT id, ST_AsEWKT(ST_Collect(g)) FROM tbl GROUP BY id ORDER BY id;

 id | st_asewkt

+---
 1 | SRID=4326;MULTIPOINT((1 2),(4 5))
 2 | SRID=4326;MULTILINESTRING((0 0,10 0),(10 0,20 -5))
 3 | SRID=4326;GEOMETRYCOLLECTION(MULTIPOINT((13 4),(8 5),(4 4)),MULTILINESTRING((-1
 -1,-2 -2),(-3 -3,-5 -5)))
 4 | SRID=4326;MULTIPOLYGON(((0 0,10 0,0 10,0 0)),((20 20,20 30,30 20,20 20)))
 5 |

The following SQL collects all geometries from a table in a geometry collection. Results are
ordered in descending order by id, and then lexicographically based on their minimum and
maximum x-coordinates.

WITH tbl(id, g) AS (
SELECT 1, ST_GeomFromText('POINT(4 5)', 4326) UNION ALL
SELECT 1, ST_GeomFromText('POINT(1 2)', 4326) UNION ALL
SELECT 2, ST_GeomFromText('LINESTRING(10 0,20 -5)', 4326) UNION ALL

Spatial functions 1948

Amazon Redshift Database Developer Guide

SELECT 2, ST_GeomFromText('LINESTRING(0 0,10 0)', 4326) UNION ALL
SELECT 3, ST_GeomFromText('MULTIPOINT(13 4,8 5,4 4)', 4326) UNION ALL
SELECT 3, ST_GeomFromText('MULTILINESTRING((-1 -1,-2 -2),(-3 -3,-5 -5))', 4326) UNION
 ALL
SELECT 4, ST_GeomFromText('POLYGON((20 20,20 30,30 20,20 20))', 4326) UNION ALL
SELECT 4, ST_GeomFromText('POLYGON((0 0,10 0,0 10,0 0))', 4326) UNION ALL
SELECT 1, NULL::geometry UNION ALL SELECT 2, NULL::geometry UNION ALL
SELECT 5, NULL::geometry UNION ALL SELECT 5, NULL::geometry)
SELECT ST_AsEWKT(ST_Collect(g) WITHIN GROUP (ORDER BY id DESC, ST_XMin(g), ST_XMax(g)))
 FROM tbl;

 st_asewkt

 SRID=4326;GEOMETRYCOLLECTION(POLYGON((0 0,10 0,0 10,0 0)),POLYGON((20 20,20 30,30
 20,20 20)),MULTILINESTRING((-1 -1,-2 -2),(-3 -3,-5 -5)),MULTIPOINT((13 4),(8 5),(4
 4)),LINESTRING(0 0,10 0),LINESTRING(10 0,20 -5),POINT(1 2),POINT(4 5)

ST_Contains

ST_Contains returns true if the 2D projection of the first input geometry contains the 2D projection
of the second input geometry. Geometry A contains geometry B if every point in B is a point in A,
and their interiors have nonempty intersection.

ST_Contains(A, B) is equivalent to ST_Within(B, A).

Syntax

ST_Contains(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. This value
is compared with geom1 to determine if it is contained within geom1.

Spatial functions 1949

Amazon Redshift Database Developer Guide

Return type

BOOLEAN

If geom1 or geom2 is null, then null is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is a geometry collection, then an error is returned.

Examples

The following SQL checks if the first polygon contains the second polygon.

SELECT ST_Contains(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'),
 ST_GeomFromText('POLYGON((-1 3,2 1,0 -3,-1 3))'));

st_contains

 false

ST_ContainsProperly

ST_ContainsProperly returns true if both input geometries are nonempty, and all points of the 2D
projection of the second geometry are interior points of the 2D projection of the first geometry.

Syntax

ST_ContainsProperly(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype can't be GEOMETRYCOLLECTION.

Spatial functions 1950

Amazon Redshift Database Developer Guide

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype can't be GEOMETRYCOLLECTION. This value is compared with geom1 to determine if all
its points are interior points of geom1.

Return type

BOOLEAN

If geom1 or geom2 is null, then null is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is a geometry collection, then an error is returned.

Examples

The following SQL returns the values of ST_Contains and ST_ContainsProperly where the input
linestring intersects the interior and the boundary of the input polygon (but not its exterior). The
polygon contains the linestring but doesn't properly contain the linestring.

WITH tmp(g1, g2)
AS (SELECT ST_GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0))'),
 ST_GeomFromText('LINESTRING(5 5,10 5,10 6,5 5)')) SELECT ST_Contains(g1, g2),
 ST_ContainsProperly(g1, g2)
FROM tmp;

 st_contains | st_containsproperly
-------------+---------------------
 t | f

ST_ConvexHull

ST_ConvexHull returns a geometry that represents the convex hull of the nonempty points
contained in the input geometry.

For empty input, the resulting geometry is the same as the input geometry. For all nonempty
input, the function operates on the 2D projection of the input geometry. However, the dimension

Spatial functions 1951

Amazon Redshift Database Developer Guide

of the output geometry depends on the dimension of the input geometry. More specifically, when
the input geometry is a nonempty 3DM or 3D geometry, m coordinates are dropped. That is, the
dimension of the returned geometry is 2D or 3DZ, respectively. If the input is a nonempty 2D or
3DZ geometry, the resulting geometry has the same dimension.

Syntax

ST_ConvexHull(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometry.

If geom is null, then null is returned.

The values returned are as follows.

Number of points on the convex hull Geometry subtype

0 A copy of geom is returned.

1 A POINT subtype is returned.

2 A LINESTRING subtype is returned. The two
points of the returned linestring are lexicogra
phically ordered.

3 or greater A POLYGON subtype with no interior rings is
returned. The polygon is clockwise oriented,
and the first point of the exterior ring is the
lexicographically smallest point of the ring.

Spatial functions 1952

Amazon Redshift Database Developer Guide

Examples

The following SQL returns the extended well-known text (EWKT) representation of a linestring. In
this case, the convex hull returned is a polygon.

SELECT ST_AsEWKT(ST_ConvexHull(ST_GeomFromText('LINESTRING(0 0,1 0,0 1,1 1,0.5 0.5)')))
 as output;

output

POLYGON((0 0,0 1,1 1,1 0,0 0))

The following SQL returns the EWKT representation of a linestring. In this case, the convex hull
returned is a linestring.

SELECT ST_AsEWKT(ST_ConvexHull(ST_GeomFromText('LINESTRING(0 0,1 1,0.2 0.2,0.6 0.6,0.5
 0.5)'))) as output;

output

LINESTRING(0 0,1 1)

The following SQL returns the EWKT representation of a multipoint. In this case, the convex hull
returned is a point.

SELECT ST_AsEWKT(ST_ConvexHull(ST_GeomFromText('MULTIPOINT(0 0,0 0,0 0)'))) as output;

output

POINT(0 0)

ST_CoveredBy

ST_CoveredBy returns true if the 2D projection of the first input geometry is covered by the
2D projection of the second input geometry. Geometry A is covered by geometry B if both are
nonempty and every point in A is a point in B.

Spatial functions 1953

Amazon Redshift Database Developer Guide

ST_CoveredBy(A, B) is equivalent to ST_Covers(B, A).

Syntax

ST_CoveredBy(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. This value
is compared with geom2 to determine if it's covered by geom2.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom1 or geom2 is null, then null is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is a geometry collection, then an error is returned.

Examples

The following SQL checks if the first polygon is covered by the second polygon.

SELECT ST_CoveredBy(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'),
 ST_GeomFromText('POLYGON((-1 3,2 1,0 -3,-1 3))'));

st_coveredby

 true

Spatial functions 1954

Amazon Redshift Database Developer Guide

ST_Covers

ST_Covers returns true if the 2D projection of the first input geometry covers the 2D projection of
the second input geometry. Geometry A covers geometry B if both are nonempty and every point
in B is a point in A.

ST_Covers(A, B) is equivalent to ST_CoveredBy(B, A).

Syntax

ST_Covers(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. This value
is compared with geom1 to determine if it covers geom1.

Return type

BOOLEAN

If geom1 or geom2 is null, then null is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is a geometry collection, then an error is returned.

Examples

The following SQL checks if the first polygon covers the second polygon.

SELECT ST_Covers(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'),
 ST_GeomFromText('POLYGON((-1 3,2 1,0 -3,-1 3))'));

st_covers

Spatial functions 1955

Amazon Redshift Database Developer Guide

 false

ST_Crosses

ST_Crosses returns true if the 2D projections of the two input geometries cross each other.

Syntax

ST_Crosses(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom1 or geom2 is null, then an error is returned.

If geom1 or geom2 is a geometry collection, then an error is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

Examples

The following SQL checks if the first polygon crosses the second multipoint. In this example, the
multipoint intersects both the interior and exterior of the polygon, which is why ST_Crosses returns
true.

SELECT ST_Crosses (ST_GeomFromText('polygon((0 0,10 0,10 10,0 10,0 0))'),
 ST_GeomFromText('multipoint(5 5,0 0,-1 -1)'));

Spatial functions 1956

Amazon Redshift Database Developer Guide

st_crosses

 true

The following SQL checks if the first polygon crosses the second multipoint. In this example, the
multipoint intersects the exterior of the polygon but not its interior, which is why ST_Crosses
returns false.

SELECT ST_Crosses (ST_GeomFromText('polygon((0 0,10 0,10 10,0 10,0 0))'),
 ST_GeomFromText('multipoint(0 0,-1 -1)'));

st_crosses

 false

ST_Dimension

ST_Dimension returns the inherent dimension of an input geometry. The inherent dimension is the
dimension value of the subtype that is defined in the geometry.

For 3DM, 3DZ, and 4D geometry inputs, ST_Dimension returns the same result as for 2D geometry
inputs.

Syntax

ST_Dimension(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

INTEGER representing the inherent dimension of geom.

If geom is null, then null is returned.

The values returned are as follows.

Spatial functions 1957

Amazon Redshift Database Developer Guide

Returned value Geometry subtype

0 Returned if geom is a POINT or MULTIPOINT
subtype

1 Returned if geom is a LINESTRING or
MULTILINESTRING subtype.

2 Returned if geom is a POLYGON or MULTIPOLY
GON subtype

0 Returned if geom is an empty GEOMETRYC
OLLECTION subtype

Largest dimension of the components of the
collection

Returned if geom is a GEOMETRYCOLLECTION
 subtype

Examples

The following SQL converts a well-known text (WKT) representation of a four-point LINESTRING to
a GEOMETRY object and returns the dimension of the linestring.

SELECT ST_Dimension(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27
 29.31,77.29 29.07)'));

st_dimension

1

ST_Disjoint

ST_Disjoint returns true if the 2D projections of the two input geometries have no points in
common.

Syntax

ST_Disjoint(geom1, geom2)

Spatial functions 1958

Amazon Redshift Database Developer Guide

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom1 or geom2 is null, then null is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is a geometry collection, then an error is returned.

Examples

The following SQL checks if the first polygon is disjoint from the second polygon.

SELECT ST_Disjoint(ST_GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(2 2,2 5,5 5,5
 2,2 2))'), ST_Point(4, 4));

st_disjoint

 true

ST_Distance

For input geometries, ST_Distance returns the minimum Euclidean distance between the 2D
projections of the two input geometry values.

For 3DM, 3DZ, 4D geometries, ST_Distance returns the Euclidean distance between the 2D
projections of two input geometry values.

Spatial functions 1959

Amazon Redshift Database Developer Guide

For input geographies, ST_Distance returns the geodesic distance of the two 2D points. The unit of
distance is in meters. For geographies other than points and empty points an error is returned.

Syntax

ST_Distance(geo1, geo2)

Arguments

geo1

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type. The data type of geo1 must be the same as geo2.

geo2

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type. The data type of geo2 must be the same as geo1.

Return type

DOUBLE PRECISION in the same units as the input geometries or geographies.

If geo1 or geo2 is null or empty, then null is returned.

If geo1 and geo2 don't have the same value for the spatial reference system identifier (SRID), then
an error is returned.

If geo1 or geo2 is a geometry collection, then an error is returned.

Examples

The following SQL returns the distance between two polygons.

SELECT ST_Distance(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'),
 ST_GeomFromText('POLYGON((-1 -3,-2 -1,0 -3,-1 -3))'));

 st_distance

1.4142135623731

Spatial functions 1960

Amazon Redshift Database Developer Guide

The following SQL returns the distance (in meters) between the Brandenburg Gate and the
Reichstag building in Berlin using a GEOGRAPHY data type.

SELECT ST_Distance(ST_GeogFromText('POINT(13.37761826722198 52.516411678282445)'),
 ST_GeogFromText('POINT(13.377950831464005 52.51705102546893)'));

 st_distance

 74.64129172609631

ST_DistanceSphere

ST_DistanceSphere returns the distance between two point geometries lying on a sphere.

Syntax

ST_DistanceSphere(geom1, geom2)

ST_DistanceSphere(geom1, geom2, radius)

Arguments

geom1

A point value in degrees of data type GEOMETRY lying on a sphere. The first coordinate of the
point is the longitude value. The second coordinate of the point is the latitude value. For 3DZ,
3DM, or 4D geometries, only the first two coordinates are used.

geom2

A point value in degrees of data type GEOMETRY lying on a sphere. The first coordinate of the
point is the longitude value. The second coordinate of the point is the latitude value. For 3DZ,
3DM, or 4D geometries, only the first two coordinates are used.

radius

The radius of a sphere of data type DOUBLE PRECISION. If no radius is provided, the sphere
defaults to Earth and the radius is computed from the World Geodetic System (WGS) 84
representation of the ellipsoid.

Spatial functions 1961

Amazon Redshift Database Developer Guide

Return type

DOUBLE PRECISION in the same units as the radius. If no radius is provided, the distance is in
meters.

If geom1 or geom2 is null or empty, then null is returned.

If no radius is provided, then the result is in meters along the Earth's surface.

If radius is a negative number, then an error is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is not a point, then an error is returned.

Examples

The following example SQL computes the distance in kilometers between two points on Earth.

SELECT ROUND(ST_DistanceSphere(ST_Point(-122, 47), ST_Point(-122.1, 47.1))/ 1000, 0);

 round

 13

The following example SQL computes the distances in kilometers between three airport locations
in Germany: Berlin Tegel (TXL), Munich International (MUC), and Frankfurt International (FRA).

WITH airports_raw(code,lon,lat) AS (
(SELECT 'MUC', 11.786111, 48.353889) UNION
(SELECT 'FRA', 8.570556, 50.033333) UNION
(SELECT 'TXL', 13.287778, 52.559722)),
airports1(code,location) AS (SELECT code, ST_Point(lon, lat) FROM airports_raw),
airports2(code,location) AS (SELECT * from airports1)
SELECT (airports1.code || ' <-> ' || airports2.code) AS airports,
round(ST_DistanceSphere(airports1.location, airports2.location) / 1000, 0) AS
 distance_in_km
FROM airports1, airports2 WHERE airports1.code < airports2.code ORDER BY 1;

Spatial functions 1962

Amazon Redshift Database Developer Guide

 airports | distance_in_km
-------------+----------------
 FRA <-> MUC | 299
 FRA <-> TXL | 432
 MUC <-> TXL | 480

ST_DWithin

ST_DWithin returns true if the Euclidean distance between the 2D projections of the two input
geometry values is not larger than a threshold value.

Syntax

ST_DWithin(geom1, geom2, threshold)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

threshold

A value of data type DOUBLE PRECISION. This value is in the units of the input arguments.

Return type

BOOLEAN

If geom1 or geom2 is null, then null is returned.

If threshold is negative, then an error is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is a geometry collection, then an error is returned.

Examples

The following SQL checks if the distance between two polygons is within five units.

Spatial functions 1963

Amazon Redshift Database Developer Guide

SELECT ST_DWithin(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'),
 ST_GeomFromText('POLYGON((-1 3,2 1,0 -3,-1 3))'),5);

st_dwithin

 true

ST_EndPoint

ST_EndPoint returns the last point of an input linestring. The spatial reference system identifier
(SRID) value of the result is the same as that of the input geometry. The dimension of the returned
geometry is the same as that of the input geometry.

Syntax

ST_EndPoint(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be LINESTRING.

Return type

GEOMETRY

If geom is null, then null is returned.

If geom is empty, then null is returned.

If geom isn't a LINESTRING, then null is returned.

Examples

The following SQL returns an extended well-known text (EWKT) representation of a four-point
LINESTRING to a GEOMETRY object and returns the end point of the linestring.

Spatial functions 1964

Amazon Redshift Database Developer Guide

SELECT ST_AsEWKT(ST_EndPoint(ST_GeomFromText('LINESTRING(0 0,10 0,10 10,5 5,0
 5)',4326)));

st_asewkt

 SRID=4326;POINT(0 5)

ST_Envelope

ST_Envelope returns the minimum bounding box of the input geometry, as follows:

• If the input geometry is empty, the returned geometry is a copy of the input geometry.

• If the minimum bounding box of the input geometry degenerates to a point, the returned
geometry is a point.

• If the minimum bounding box of the input geometry is one-dimensional, a two-point linestring is
returned.

• If none of the preceding is true, the function returns a clockwise-oriented polygon whose
vertices are the corners of the minimum bounding box.

The spatial reference system identifier (SRID) of the returned geometry is the same as that of the
input geometry.

For all nonempty input, the function operates on the 2D projection of the input geometry.

Syntax

ST_Envelope(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY

Spatial functions 1965

Amazon Redshift Database Developer Guide

If geom is null, then null is returned.

Examples

The following SQL converts a well-known text (WKT) representation of a four-point LINESTRING
to a GEOMETRY object and returns a polygon whose vertices whose corners are the minimum
bounding box.

SELECT ST_AsText(ST_Envelope(ST_GeomFromText('GEOMETRYCOLLECTION(POLYGON((0 0,10 0,0
 10,0 0)),LINESTRING(20 10,20 0,10 0))')));

 st_astext

 POLYGON((0 0,0 10,20 10,20 0,0 0))

ST_Equals

ST_Equals returns true if the 2D projections of the input geometries are geometrically equal.
Geometries are considered geometrically equal if they have equal point sets and their interiors
have a nonempty intersection.

Syntax

ST_Equals(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. This value
is compared with geom1 to determine if it is equal to geom1.

Return type

BOOLEAN

Spatial functions 1966

Amazon Redshift Database Developer Guide

If geom1 or geom2 is null, then an error is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is a geometry collection, then an error is returned.

Examples

The following SQL checks if the two polygons are geometrically equal.

SELECT ST_Equals(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'),
 ST_GeomFromText('POLYGON((-1 3,2 1,0 -3,-1 3))'));

st_equals

 false

The following SQL checks if the two linestrings are geometrically equal.

SELECT ST_Equals(ST_GeomFromText('LINESTRING(1 0,10 0)'), ST_GeomFromText('LINESTRING(1
 0,5 0,10 0)'));

st_equals

 true

ST_ExteriorRing

ST_ExteriorRing returns a closed linestring that represents the exterior ring of an input polygon.
The dimension of the returned geometry is the same as that of the input geometry.

Syntax

ST_ExteriorRing(geom)

Spatial functions 1967

Amazon Redshift Database Developer Guide

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY of subtype LINESTRING.

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometry.

If geom is null, then null is returned.

If geom is not a polygon, then null is returned.

If geom is empty, then an empty polygon is returned.

Examples

The following SQL returns the exterior ring of a polygon as a closed linestring.

SELECT ST_AsEWKT(ST_ExteriorRing(ST_GeomFromText('POLYGON((7 9,8 7,11 6,15 8,16 6,17
 7,17 10,18 12,17 14,15 15,11 15,10 13,9 12,7 9),(9 9,10 10,11 11,11 10,10 8,9 9),(12
 14,15 14,13 11,12 14))')));

st_asewkt

 LINESTRING(7 9,8 7,11 6,15 8,16 6,17 7,17 10,18 12,17 14,15 15,11 15,10 13,9 12,7 9)

ST_Force2D

ST_Force2D returns a 2D geometry of the input geometry. For 2D geometries, a copy of the input is
returned. For 3DZ, 3DM, and 4D geometries, ST_Force2D projects the geometry to the xy-Cartesian
plane. Empty points in the input geometry remain empty points in the output geometry.

Syntax

ST_Force2D(geom)

Spatial functions 1968

Amazon Redshift Database Developer Guide

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY.

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometry.

If geom is null, then null is returned.

If geom is empty, then an empty geometry is returned.

Examples

The following SQL returns a 2D geometry from a 3DZ geometry.

SELECT ST_AsEWKT(ST_Force2D(ST_GeomFromText('MULTIPOINT Z(0 1 2, EMPTY, 2 3 4, 5 6
 7)')));

st_asewkt

 MULTIPOINT((0 1),EMPTY,(2 3),(5 6))

ST_Force3D

ST_Force3D is an alias for ST_Force3DZ. For more information, see ST_Force3DZ.

ST_Force3DM

ST_Force3DM returns a 3DM geometry of the input geometry. For 2D geometries, the m
coordinates of the nonempty points in the output geometry are all set to 0. For 3DM geometries,
a copy of the input geometry is returned. For 3DZ geometries, the geometry is projected to the xy-
Cartesian plane, and the m coordinates of the nonempty points in the output geometry are all set
to 0. For 4D geometries, the geometry is projected to the xym-Cartesian space. Empty points in the
input geometry remain empty points in the output geometry.

Spatial functions 1969

Amazon Redshift Database Developer Guide

Syntax

ST_Force3DM(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY.

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometry.

If geom is null, then null is returned.

If geom is empty, then an empty geometry is returned.

Examples

The following SQL returns a 3DM geometry from a 3DZ geometry.

SELECT ST_AsEWKT(ST_Force3DM(ST_GeomFromText('MULTIPOINT Z(0 1 2, EMPTY, 2 3 4, 5 6
 7)')));

st_asewkt

 MULTIPOINT M ((0 1 0),EMPTY,(2 3 0),(5 6 0))

ST_Force3DZ

ST_Force3DZ returns a 3DZ geometry from the input geometry. For 2D geometries, the z
coordinates of the nonempty points in the output geometry are all set to 0. For 3DM geometries,
the geometry is projected on the xy-Cartesian plane, and the z coordinates of the nonempty
points in the output geometry are all set to 0. For 3DZ geometries, a copy of the input geometry is
returned. For 4D geometries, the geometry is projected to the xyz-Cartesian space. Empty points in
the input geometry remain empty points in the output geometry.

Spatial functions 1970

Amazon Redshift Database Developer Guide

Syntax

ST_Force3DZ(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY.

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometry.

If geom is null, then null is returned.

If geom is empty, then an empty geometry is returned.

Examples

The following SQL returns a 3DZ geometry from a 3DM geometry.

SELECT ST_AsEWKT(ST_Force3DZ(ST_GeomFromText('MULTIPOINT M(0 1 2, EMPTY, 2 3 4, 5 6
 7)')));

st_asewkt

 MULTIPOINT Z ((0 1 0),EMPTY,(2 3 0),(5 6 0))

ST_Force4D

ST_Force4D returns a 4D geometry of the input geometry. For 2D geometries, the z and m
coordinates of the nonempty points in the output geometry are all set to 0. For 3DM geometries,
the z coordinates of the nonempty points in the output geometry are all set to 0. For 3DZ
geometries, the m coordinates of the nonempty points in the output geometry are all set to 0.

Spatial functions 1971

Amazon Redshift Database Developer Guide

For 4D geometries, a copy of the input geometry is returned. Empty points in the input geometry
remain empty points in the output geometry.

Syntax

ST_Force4D(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY.

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometry.

If geom is null, then null is returned.

If geom is empty, then an empty geometry is returned.

Examples

The following SQL returns a 4D geometry from a 3DM geometry.

SELECT ST_AsEWKT(ST_Force4D(ST_GeomFromText('MULTIPOINT M(0 1 2, EMPTY, 2 3 4, 5 6
 7)')));

st_asewkt

 MULTIPOINT ZM ((0 1 0 2),EMPTY,(2 3 0 4),(5 6 0 7))

ST_GeoHash

ST_GeoHash returns the geohash representation of the input point with the specified precision.
The default precision value is 20. For more information about the definition of geohash, see
Geohash in Wikipedia.

Spatial functions 1972

https://en.wikipedia.org/wiki/Geohash

Amazon Redshift Database Developer Guide

Syntax

ST_GeoHash(geom)

ST_GeoHash(geom, precision)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

precision

A value of data type INTEGER. The default is 20.

Return type

GEOMETRY

The function returns the geohash representation of the input point.

If the input point is empty, the function returns null.

If the input geometry is not a point, the function returns an error.

Examples

The following SQL returns the geohash representation of the input point.

SELECT ST_GeoHash(ST_GeomFromText('POINT(45 -45)'), 25) AS geohash;

 geohash

 m000000000000000000000gzz

The following SQL returns null because the input point is empty.

SELECT ST_GeoHash(ST_GeomFromText('POINT EMPTY'), 10) IS NULL AS result;

Spatial functions 1973

Amazon Redshift Database Developer Guide

 result

 true

ST_GeogFromText

ST_GeogFromText constructs a geography object from a well-known text (WKT) or extended well-
known text (EWKT) representation of an input geography.

Syntax

ST_GeogFromText(wkt_string)

Arguments

wkt_string

A value of data type VARCHAR that is a WKT or EWKT representation of a geography.

Return type

GEOGRAPHY

If the SRID value is set to the provided value in the input. If SRID is not provided, it is set to 4326.

If wkt_string is null, then null is returned.

If wkt_string is not valid, then an error is returned.

Examples

The following SQL constructs a polygon from a geography object with an SRID value.

SELECT ST_AsEWKT(ST_GeogFromText('SRID=4324;POLYGON((0 0,0 1,1 1,10 10,1 0,0 0))'));

 st_asewkt
--
 SRID=4324;POLYGON((0 0,0 1,1 1,10 10,1 0,0 0))

Spatial functions 1974

Amazon Redshift Database Developer Guide

The following SQL constructs a polygon from a geography object. The SRID value is set to 4326.

SELECT ST_AsEWKT(ST_GeogFromText('POLYGON((0 0,0 1,1 1,10 10,1 0,0 0))'));

 st_asewkt
--
 SRID=4326;POLYGON((0 0,0 1,1 1,10 10,1 0,0 0))

ST_GeogFromWKB

ST_GeogFromWKB constructs a geography object from a hexadecimal well-known binary (WKB)
representation of an input geography.

Syntax

ST_GeogFromWKB(wkb_string)

Arguments

wkb_string

A value of data type VARCHAR that is a hexadecimal WKB representation of a geography.

Return type

GEOGRAPHY

If the SRID value is provided it is set to the provided value. If SRID is not provided, it is set to 4326.

If wkb_string is null, then null is returned.

If wkb_string is not valid, then an error is returned.

Examples

The following SQL constructs a geography from a hexadecimal WKB value.

Spatial functions 1975

Amazon Redshift Database Developer Guide

SELECT
 ST_AsEWKT(ST_GeogFromWKB('0103000000010000000500F03F000000000000F03F000000000000F03F000000000000F03F00'));

 st_asewkt
--
 SRID=4326;POLYGON((0 0,0 1,1 1,1 0,0 0))

ST_GeometryN

ST_GeometryN returns a geometry pointed to by the input index of the input geometry, as follows:

• If the input is a point, linestring, or polygon, then a geometry is returned as is if the index is
equal to one (1), and null if the index is other than one (1).

• If the input is a multipoint, multilinestring, multipolygon, or geometry collection, then a point,
linestring, polygon, or geometry collection is returned as pointed to by an input index.

The index is one-based. The spatial reference system identifier (SRID) of the result is the same as
that of the input geometry. The dimension of the returned geometry is the same as that of the
input geometry.

Syntax

ST_GeometryN(geom, index)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

index

A value of data type INTEGER that represents the position of a one-based index.

Return type

GEOMETRY

Spatial functions 1976

Amazon Redshift Database Developer Guide

If geom or index is null, then null is returned.

If index is out of range, then an error is returned.

Examples

The following SQL returns the geometries in a geometry collection.

WITH tmp1(idx) AS (SELECT 1 UNION SELECT 2),
tmp2(g) AS (SELECT ST_GeomFromText('GEOMETRYCOLLECTION(POLYGON((0 0,10 0,0 10,0
 0)),LINESTRING(20 10,20 0,10 0))'))
SELECT idx, ST_AsEWKT(ST_GeometryN(g, idx)) FROM tmp1, tmp2 ORDER BY idx;

 idx | st_asewkt
-----+------------------------------
 1 | POLYGON((0 0,10 0,0 10,0 0))
 2 | LINESTRING(20 10,20 0,10 0)

ST_GeometryType

ST_GeometryType returns the subtype of an input geometry as a string.

For 3DM, 3DZ, and 4D geometry inputs, ST_GeometryType returns the same result as for 2D
geometry inputs.

Syntax

ST_GeometryType(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

VARCHAR representing the subtype of geom.

Spatial functions 1977

Amazon Redshift Database Developer Guide

If geom is null, then null is returned.

The values returned are as follows.

Returned string value Geometry subtype

ST_Point Returned if geom is a POINT subtype

ST_LineString Returned if geom is a LINESTRING subtype

ST_Polygon Returned if geom is a POLYGON subtype

ST_MultiPoint Returned if geom is a MULTIPOINT subtype

ST_MultiLineString Returned if geom is a MULTILINESTRING
subtype

ST_MultiPolygon Returned if geom is a MULTIPOLYGON
subtype

ST_GeometryCollection Returned if geom is a GEOMETRYCOLLECTION
 subtype

Examples

The following SQL returns the subtype of the input linestring geometry.

SELECT ST_GeometryType(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27
 29.31,77.29 29.07)'));

st_geometrytype

 ST_LineString

ST_GeomFromEWKB

ST_GeomFromEWKB constructs a geometry object from the extended well-known binary (EWKB)
representation of an input geometry.

Spatial functions 1978

Amazon Redshift Database Developer Guide

ST_GeomFromEWKB accepts 3DZ, 3DM, and 4D geometries written in WKB and EWKB hexadecimal
format.

Syntax

ST_GeomFromEWKB(ewkb_string)

Arguments

ewkb_string

A value of data type VARCHAR that is a hexadecimal EWKB representation of a geometry.

Return type

GEOMETRY

If ewkb_string is null, then null is returned.

If ewkb_string is not valid, then an error is returned.

Examples

The following SQL constructs a polygon from an EWKB value and returns the EWKT representation
of a polygon.

SELECT
 ST_AsEWKT(ST_GeomFromEWKB('0103000020E6100000010000000500F03F000000000000F03F000000000000F03F000000000000F03F00'));

 st_asewkt

 SRID=4326;POLYGON((0 0,0 1,1 1,1 0,0 0))

ST_GeomFromEWKT

ST_GeomFromEWKT constructs a geometry object from the extended well-known text (EWKT)
representation of an input geometry.

ST_GeomFromEWKT accepts 3DZ, 3DM, and 4D where the geometry type is prefixed with Z, M, or
ZM, respectively.

Spatial functions 1979

Amazon Redshift Database Developer Guide

Syntax

ST_GeomFromEWKT(ewkt_string)

Arguments

ewkt_string

A value of data type VARCHAR or an expression that evaluates to a VARCHAR type, that is an
EWKT representation of a geometry.

You can use the WKT keyword EMPTY to designate an empty point, a multipoint with an empty
point, or a geometry collection with an empty point. The following example creates an empty
point.

ST_GeomFromEWKT('SRID=4326;POINT EMPTY');

Return type

GEOMETRY

If ewkt_string is null, then null is returned.

If ewkt_string is not valid, then an error is returned.

Examples

The following SQL constructs a multilinestring from an EWKT value and returns a geometry. It also
returns the ST_AsEWKT result of the geometry.

SELECT ST_GeomFromEWKT('SRID=4326;MULTILINESTRING((1 0,1 0),(2 0,3 0),(4 0,5 0,6 0))')
 as geom, ST_AsEWKT(geom);

 geom

 | st_asewkt

--
+--

Spatial functions 1980

Amazon Redshift Database Developer Guide

 0105000020E610000003000000010200000002000000000000000000F03F0000000000000000000000000000F03F00000000000000000102000000020000000000000000000040000000000000000000000000000008400000000000000000010200000003000000000000000000104000000000000000000000000000001440000000000000000000000000000018400000000000000000
 | SRID=4326;MULTILINESTRING((1 0,1 0),(2 0,3 0),(4 0,5 0,6 0))

ST_GeomFromGeoHash

ST_GeomFromGeoHash constructs a geometry object from the geohash representation of an
input geometry. ST_GeomFromGeoHash returns a two-dimensional (2D) geometry with the
spatial reference identifier (SRID) of zero (0). For more information about the geohash format, see
Geohash in Wikipedia.

Syntax

ST_GeomFromGeoHash(geohash_string)

ST_GeomFromGeoHash(geohash_string, precision)

Arguments

geohash_string

A value of data type VARCHAR or an expression that evaluates to a VARCHAR type, that is a
geohash representation of a geometry.

precision

A value of data type INTEGER that represents the precision of the geohash. The value is the
number of characters of the geohash to be used as precision. If the value is not specified, less
than zero, or greater than the geohash_string length. then the geohash_string length is used.

Return type

GEOMETRY

If geohash_string is null, then null is returned.

If geohash_string is not valid, then an error is returned.

Examples

The following SQL returns a polygon with high precision.

Spatial functions 1981

https://en.wikipedia.org/wiki/Geohash

Amazon Redshift Database Developer Guide

SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0'));

 st_asewkt

 POLYGON((-115.172816 36.114646,-115.172816 36.114646,-115.172816 36.114646,-115.172816
 36.114646,-115.172816 36.114646))

The following SQL returns a point with high precision.

SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz00'));

 st_asewkt

 POINT(-115.172816 36.114646)

The following SQL returns a polygon with low precision.

SELECT ST_AsText(ST_GeomFromGeoHash('9qq'));

 st_asewkt

 POLYGON((-115.3125 35.15625,-115.3125 36.5625,-113.90625 36.5625,-113.90625
 35.15625,-115.3125 35.15625))

The following SQL returns a polygon with precision 3.

SELECT ST_AsText(ST_GeomFromGeoHash('9qqj7nmxncgyy4d0dbxqz0', 3));

 st_asewkt

 POLYGON((-115.3125 35.15625,-115.3125 36.5625,-113.90625 36.5625,-113.90625
 35.15625,-115.3125 35.15625))

Spatial functions 1982

Amazon Redshift Database Developer Guide

ST_GeomFromGeoJSON

ST_GeomFromGeoJSON constructs a geometry object from the GeoJSON representation of an
input geometry. For more information about the GeoJSON format, see GeoJSON in Wikipedia.

If there is at least one point with three or more coordinates, the resulting geometry is 3DZ, where
the Z component is zero for the points that have only two coordinates. If all points in the input
GeoJSON contain two coordinates or are empty, ST_GeomFromGeoJSON returns a 2D geometry.
The returned geometry always has the spatial reference identifier (SRID) of 4326.

Syntax

ST_GeomFromGeoJSON(geojson_string)

Arguments

geojson_string

A value of data type VARCHAR or an expression that evaluates to a VARCHAR type, that is a
GeoJSON representation of a geometry.

Return type

GEOMETRY

If geojson_string is null, then null is returned.

If geojson_string is not valid, then an error is returned.

Examples

The following SQL returns a 2D geometry represented in the input GeoJSON.

SELECT ST_AsEWKT(ST_GeomFromGeoJSON('{"type":"Point","coordinates":[1,2]}'));

 st_asewkt

Spatial functions 1983

https://en.wikipedia.org/wiki/GeoJSON

Amazon Redshift Database Developer Guide

 SRID=4326;POINT(1 2)

The following SQL returns a 3DZ geometry represented in the input GeoJSON.

SELECT ST_AsEWKT(ST_GeomFromGeoJSON('{"type":"LineString","coordinates":[[1,2,3],
[4,5,6],[7,8,9]]}'));

 st_asewkt
--
 SRID=4326;LINESTRING Z (1 2 3,4 5 6,7 8 9)

The following SQL returns 3DZ geometry when only one point has three coordinates while all other
points have two coordinates in the input GeoJSON.

SELECT ST_AsEWKT(ST_GeomFromGeoJSON('{"type":"Polygon","coordinates":[[[0, 0],[0, 1,
 8],[1, 0],[0, 0]]]}'));

 st_asewkt
--
 SRID=4326;POLYGON Z ((0 0 0,0 1 8,1 0 0,0 0 0))

ST_GeomFromGeoSquare

ST_GeomFromGeoSquare returns a geometry that covers the area that is represented by an input
geosquare value. The returned geometry is always two-dimensional. To calculate a geosquare
value, see ST_GeoSquare.

Syntax

ST_GeomFromGeoSquare(geosquare)

ST_GeomFromGeoSquare(geosquare, max_depth)

Spatial functions 1984

Amazon Redshift Database Developer Guide

Arguments

geosquare

A value of data type BIGINT or an expression that evaluates to a BIGINT type that is a
geosquare value that describes the sequence of subdivisions made on the initial domain to
reach the desired square. This value is calculated by ST_GeoSquare.

max_depth

A value of data type INTEGER that represents the maximum number of domain subdivisions
made on the initial domain. The value must be greater than or equal to 1.

Return type

GEOMETRY

If geosquare is not valid, the function returns an error.

If the input max_depth is not within range, the function returns an error.

Examples

The following SQL returns a geometry from a geosquare value.

SELECT ST_AsText(ST_GeomFromGeoSquare(797852));

 st_astext
--
 POLYGON((13.359375 52.3828125,13.359375 52.734375,13.7109375 52.734375,13.7109375
 52.3828125,13.359375 52.3828125))

The following SQL returns a geometry from a geosquare value and a maximum depth of 3.

SELECT ST_AsText(ST_GeomFromGeoSquare(797852, 3));

 st_astext

 POLYGON((0 45,0 90,45 90,45 45,0 45))

Spatial functions 1985

Amazon Redshift Database Developer Guide

The following SQL first calculates the geosquare value for Seattle by specifying the x coordinate
as longitude and the y coordinate as latitude (-122.3, 47.6). Then it returns the polygon for the
geosquare. Although the output is a two-dimensional geometry, it can be used to calculate spatial
data in terms of longitude and latitude.

SELECT ST_AsText(ST_GeomFromGeoSquare(ST_GeoSquare(ST_Point(-122.3, 47.6))));

 st_astext

POLYGON((-122.335167014971 47.6080129947513,-122.335167014971
 47.6080130785704,-122.335166931152 47.6080130785704,-122.335166931152
 47.6080129947513,-122.335167014971 47.6080129947513))

ST_GeomFromText

ST_GeomFromText constructs a geometry object from a well-known text (WKT) representation of
an input geometry.

ST_GeomFromText accepts 3DZ, 3DM, and 4D where the geometry type is prefixed with Z, M, or
ZM, respectively.

Syntax

ST_GeomFromText(wkt_string)

ST_GeomFromText(wkt_string, srid)

Arguments

wkt_string

A value of data type VARCHAR that is a WKT representation of a geometry.

You can use the WKT keyword EMPTY to designate an empty point, a multipoint with an
empty point, or a geometry collection with an empty point. The following example creates a
multipoint with one empty and one nonempty point.

Spatial functions 1986

Amazon Redshift Database Developer Guide

ST_GeomFromEWKT('MULTIPOINT(1 0,EMPTY)');

srid

A value of data type INTEGER that is a spatial reference identifier (SRID). If an SRID value is
provided, the returned geometry has this SRID value. Otherwise, the SRID value of the returned
geometry is set to zero (0).

Return type

GEOMETRY

If wkt_string or srid is null, then null is returned.

If srid is negative, then null is returned.

If wkt_string is not valid, then an error is returned.

If srid is not valid, then an error is returned.

Examples

The following SQL constructs a geometry object from the WKT representation and SRID value.

SELECT ST_GeomFromText('POLYGON((0 0,0 1,1 1,1 0,0 0))',4326);

st_geomfromtext

0103000020E6100000010000000500F03F000000000000F03F000000000000F03F000000000000F03F00

ST_GeomFromWKB

ST_GeomFromWKB constructs a geometry object from a hexadecimal well-known binary (WKB)
representation of an input geometry.

ST_GeomFromWKB accepts 3DZ, 3DM, and 4D geometries written in WKB hexadecimal format.

Syntax

ST_GeomFromWKB(wkb_string)

Spatial functions 1987

Amazon Redshift Database Developer Guide

ST_GeomFromWKB(wkb_string, srid)

Arguments

wkb_string

A value of data type VARCHAR that is a hexadecimal WKB representation of a geometry.

srid

A value of data type INTEGER that is a spatial reference identifier (SRID). If an SRID value is
provided, the returned geometry has this SRID value. Otherwise, the SRID value of the returned
geometry is set to 0.

Return type

GEOMETRY

If wkb_string or srid is null, then null is returned.

If srid is negative, then null is returned.

If wkb_string is not valid, then an error is returned.

If srid is not valid, then an error is returned.

Examples

The following SQL constructs a polygon from a WKB value and returns the WKT representation of a
polygon.

SELECT
 ST_AsText(ST_GeomFromWKB('0103000000010000000500F03F000000000000F03F000000000000F03F000000000000F03F00'));

 st_astext

 POLYGON((0 0,0 1,1 1,1 0,0 0))

Spatial functions 1988

Amazon Redshift Database Developer Guide

ST_GeoSquare

ST_GeoSquare recursively subdivides the domain ([-180, 180], [-90, 90]) into equal square regions
called geosquares to a specified depth. The subdivision is based on the location of a provided point.
One of the geosquares containing the point is subdivided at each step until reaching the maximum
depth. The selection of this geosquare is stable, that is, the function result depends on the input
arguments only. The function returns a unique value that identifies the final geosquare in which
the point is located.

The ST_GeoSquare accepts a POINT where the x coordinate is representing the longitude, and
the y coordinate is representing the latitude. The longitude and latitude are limited to [-180,
180] and [-90, 90], respectively. The output of ST_GeoSquare can be used as input to the
ST_GeomFromGeoSquare function.

There are 360° around the arc of the equatorial circumference of the Earth that are divided into
two hemispheres (Eastern and Western), each with 180° of longitudinal lines (Meridians) from the
0° Meridian. By convention, the eastern longitudes are "+" (positive) coordinates when projected
to an x-axis on a Cartesian plane and the western longitudes are "-" (negative) coordinates when
projected to an x-axis on a Cartesian plane. There are 90° of latitudinal lines north and south of
the 0° equatorial circumference of the Earth, each parallel to the 0° equatorial circumference of
the Earth. By convention, the northern latitudinal lines intersect the "+" (positive) y-axis when
projected to a Cartesian plane, and the southern latitudinal lines intersect the "-" (negative) y-axis
when projected to a Cartesian plane. The spherical grid formed by the intersection of longitudinal
lines and latitudinal lines is converted to a grid projected onto a Cartesian plane with standard
positive and negative x-coordinates and positive and negative y-coordinates on the Cartesian
plane.

The purpose of ST_GeoSquare is to tag or mark close points with equal code values. Points that
are located in the same geosquare receive the same code value. A geosquare is used to encode
geographic coordinates (latitude and longitude) into an integer. A larger region is divided into
grids to delineate an area on a map with varying resolutions. A geosquare can be used for spatial
indexing, spatial binning, proximity searches, location searching, and creating unique place
identifiers. The ST_GeoHash function follows a similar process of dividing a region into grids, but
has a different encoding.

Syntax

ST_GeoSquare(geom)

Spatial functions 1989

Amazon Redshift Database Developer Guide

ST_GeoSquare(geom, max_depth)

Arguments

geom

A POINT value of data type GEOMETRY or an expression that evaluates to a POINT subtype. The
x coordinate (longitude) of the point must be within the range: -180 – 180. The y coordinate
(latitude) of the point must be within the range: -90 – 90.

max_depth

A value of data type INTEGER. The maximum number of times the domain containing the point
is subdivided recursively. The value must be an integer from 1 – 32. The default is 32. The actual
final number of the subdivisions is less than or equal to the specified max_depth.

Return type

BIGINT

The function returns a unique value that identifies the final geosquare in which the input point is
located.

If the input geom is not a point, the function returns an error.

If the input point is empty, the return value is not a valid input to the ST_GeomFromGeoSquare
function. Use the ST_IsEmpty function to prevent calls to ST_GeoSquare with an empty point.

If the input point is not within range, the function returns an error.

If the input max_depth is out of range, the function returns an error.

Examples

The following SQL returns a geosquare from an input point.

SELECT ST_GeoSquare(ST_Point(13.5, 52.5));

 st_geosquare

 -4410772491521635895

Spatial functions 1990

Amazon Redshift Database Developer Guide

The following SQL returns a geosquare from an input point with a maximum depth of 10.

SELECT ST_GeoSquare(ST_Point(13.5, 52.5), 10);

 st_geosquare

 797852

ST_InteriorRingN

ST_InteriorRingN returns a closed linestring corresponding to the interior ring of an input polygon
at the index position. The dimension of the returned geometry is the same as that of the input
geometry.

Syntax

ST_InteriorRingN(geom, index)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

index

A value of data type INTEGER that represents the position of a ring of a one-based index.

Return type

GEOMETRY of subtype LINESTRING.

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometry.

If geom or index is null, then null is returned.

If index is out of range, then null is returned.

Spatial functions 1991

Amazon Redshift Database Developer Guide

If geom is not a polygon, then null is returned.

If geom is an empty polygon, then null is returned.

Examples

The following SQL returns the second ring of the polygon as a closed linestring.

SELECT ST_AsEWKT(ST_InteriorRingN(ST_GeomFromText('POLYGON((7 9,8 7,11 6,15 8,16 6,17
 7,17 10,18 12,17 14,15 15,11 15,10 13,9 12,7 9),(9 9,10 10,11 11,11 10,10 8,9 9),(12
 14,15 14,13 11,12 14))'),2));

st_asewkt

 LINESTRING(12 14,15 14,13 11,12 14)

ST_Intersects

ST_Intersects returns true if the 2D projections of the two input geometries have at least one point
in common.

Syntax

ST_Intersects(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom1 or geom2 is null, then null is returned.

Spatial functions 1992

Amazon Redshift Database Developer Guide

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is a geometry collection, then an error is returned.

Examples

The following SQL checks if the first polygon intersects the second polygon.

SELECT ST_Intersects(ST_GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(2 2,2 5,5 5,5
 2,2 2))'), ST_GeomFromText('MULTIPOINT((4 4),(6 6))'));

st_intersects

 true

ST_Intersection

ST_Intersection returns a geometry representing the point-set intersection of two geometries. That
is, it returns the portion of the two input geometries that is shared between them.

Syntax

ST_Intersection(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY

If geom1 and geom2 don't share any space (they are disjoint), then an empty geometry is returned.

Spatial functions 1993

Amazon Redshift Database Developer Guide

If geom1 or geom2 are empty, then an empty geometry is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is a geometry collection, then an error is returned.

If geom1 or geom2 is not a two-dimensional (2D) geometry, then an error is returned.

Examples

The following SQL returns the non-empty geometry representing the intersection of two input
geometries.

SELECT ST_AsEWKT(ST_Intersection(ST_GeomFromText('polygon((0 0,100 100,0 200,0 0))'),
 ST_GeomFromText('polygon((0 0,10 0,0 10,0 0))')));

 st_asewkt

 POLYGON((0 0,0 10,5 5,0 0))

The following SQL returns an empty geometry when passed disjoint (non-intersecting) input
geometries.

SELECT ST_AsEWKT(ST_Intersection(ST_GeomFromText('linestring(0 100,0 0)'),
 ST_GeomFromText('polygon((1 0,10 0,1 10,1 0))')));

 st_asewkt

 LINESTRING EMPTY

ST_IsPolygonCCW

ST_IsPolygonCCW returns true if the 2D projection of the input polygon or multipolygon is
counterclockwise. If the input geometry is a point, linestring, multipoint, or multilinestring, then
true is returned. For geometry collections, ST_IsPolygonCCW returns true if all the geometries in
the collection are counterclockwise.

Spatial functions 1994

Amazon Redshift Database Developer Guide

Syntax

ST_IsPolygonCCW(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom is null, then null is returned.

Examples

The following SQL checks if the polygon is counterclockwise.

SELECT ST_IsPolygonCCW(ST_GeomFromText('POLYGON((7 9,8 7,11 6,15 8,16 6,17 7,17 10,18
 12,17 14,15 15,11 15,10 13,9 12,7 9),(9 9,10 10,11 11,11 10,10 8,9 9),(12 14,15 14,13
 11,12 14))'));

 st_ispolygonccw

 true

ST_IsPolygonCW

ST_IsPolygonCW returns true if the 2D projection of the input polygon or multipolygon is
clockwise. If the input geometry is a point, linestring, multipoint, or multilinestring, then true
is returned. For geometry collections, ST_IsPolygonCW returns true if all the geometries in the
collection are clockwise.

Syntax

ST_IsPolygonCW(geom)

Spatial functions 1995

Amazon Redshift Database Developer Guide

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom is null, then null is returned.

Examples

The following SQL checks if the polygon is clockwise.

SELECT ST_IsPolygonCW(ST_GeomFromText('POLYGON((7 9,8 7,11 6,15 8,16 6,17 7,17 10,18
 12,17 14,15 15,11 15,10 13,9 12,7 9),(9 9,10 10,11 11,11 10,10 8,9 9),(12 14,15 14,13
 11,12 14))'));

 st_ispolygonccw

 true

ST_IsClosed

ST_IsClosed returns true if the 2D projection of the input geometry is closed. The following rules
define a closed geometry:

• The input geometry is a point or a multipoint.

• The input geometry is a linestring, and the start and end points of the linestring coincide.

• The input geometry is a nonempty multilinestring and all its linestrings are closed.

• The input geometry is a nonempty polygon, all polygon's rings are nonempty, and the start and
end points of all its rings coincide.

• The input geometry is a nonempty multipolygon and all its polygons are closed.

• The input geometry is a nonempty geometry collection and all its components are closed.

Spatial functions 1996

Amazon Redshift Database Developer Guide

Syntax

ST_IsClosed(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom is an empty point, then false is returned.

If geom is null, then null is returned.

Examples

The following SQL checks if the polygon is closed.

SELECT ST_IsClosed(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'));

st_isclosed

 true

ST_IsCollection

ST_IsCollection returns true if the input geometry is one of the following subtypes:
GEOMETRYCOLLECTION, MULTIPOINT, MULTILINESTRING, or MULTIPOLYGON.

Syntax

ST_IsCollection(geom)

Spatial functions 1997

Amazon Redshift Database Developer Guide

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom is null, then null is returned.

Examples

The following SQL checks if the polygon is a collection.

SELECT ST_IsCollection(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'));

st_iscollection

 false

ST_IsEmpty

ST_IsEmpty returns true if the input geometry is empty. A geometry is not empty if it contains at
least one nonempty point.

ST_IsEmpty returns true if the input geometry has at least one nonempty point.

Syntax

ST_IsEmpty(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Spatial functions 1998

Amazon Redshift Database Developer Guide

Return type

BOOLEAN

If geom is null, then null is returned.

Examples

The following SQL checks if the specified polygon is empty.

SELECT ST_IsEmpty(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'));

st_isempty

 false

ST_IsRing

ST_IsRing returns true if the input linestring is a ring. A linestring is a ring if it is closed and simple.

Syntax

ST_IsRing(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
geometry must be a LINESTRING.

Return type

BOOLEAN

If geom is not a LINESTRING, then an error is returned.

Examples

The following SQL checks if the specified linestring is a ring.

Spatial functions 1999

Amazon Redshift Database Developer Guide

SELECT ST_IsRing(ST_GeomFromText('linestring(0 0, 1 1, 1 2, 0 0)'));

st_isring

 true

ST_IsSimple

ST_IsSimple returns true if the 2D projection of the input geometry is simple. For more information
about the definition of a simple geometry, see Geometric simplicity.

Syntax

ST_IsSimple(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom is null, then null is returned.

Examples

The following SQL checks if the specified linestring is simple. In this example, it isn't simple
because it has self-intersection.

SELECT ST_IsSimple(ST_GeomFromText('LINESTRING(0 0,10 0,5 5,5 -5)'));

 st_issimple

 false

Spatial functions 2000

Amazon Redshift Database Developer Guide

ST_IsValid

ST_IsValid returns true if the 2D projection of the input geometry is valid. For more information
about the definition of a valid geometry, see Geometric validity.

Syntax

ST_IsValid(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom is null, then null is returned.

Examples

The following SQL checks if the specified polygon is valid. In this example, the polygon is invalid
because the interior of the polygon isn't simply connected.

SELECT ST_IsValid(ST_GeomFromText('POLYGON((0 0,10 0,10 10,0 10,0 0),(5 0,10 5,5 10,0
 5,5 0))'));

 st_isvalid

 false

ST_Length

For a linear geometry, ST_Length returns the Cartesian length of a 2D projection. The length
units are the same as the units in which the coordinates of the input geometry are expressed.
The function returns zero (0) for points, multipoints, and areal geometries. When the input is
a geometry collection, the function returns the sum of the lengths of the geometries in the
collection.

Spatial functions 2001

Amazon Redshift Database Developer Guide

For a geography, ST_Length returns the geodesic length of the 2D projection of an input linear
geography computed on the spheroid determined by the SRID. The unit of length is in meters.
The function returns zero (0) for points, multipoints, and areal geographies. When the input is
a geometry collection, the function returns the sum of the lengths of the geographies in the
collection.

Syntax

ST_Length(geo)

Arguments

geo

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type.

Return type

DOUBLE PRECISION

If geo is null, then null is returned.

If the SRID value is not found, then an error is returned.

Examples

The following SQL returns the Cartesian length of a multilinestring.

SELECT ST_Length(ST_GeomFromText('MULTILINESTRING((0 0,10 0,0 10),(10 0,20 0,20
 10))'));

st_length

 44.142135623731

The following SQL returns the length of a linestring in a geography.

SELECT ST_Length(ST_GeogFromText('SRID=4326;LINESTRING(5 0,6 0,4 0)'));

Spatial functions 2002

Amazon Redshift Database Developer Guide

 st_length

 333958.472379804

The following SQL returns the length of a point in a geography.

SELECT ST_Length(ST_GeogFromText('SRID=4326;POINT(4 5)'));

 st_length

 0

ST_LengthSphere

ST_LengthSphere returns the length of a linear geometry in meters. For point, multipoint, and
areal geometries, ST_LengthSphere returns 0. For geometry collections, ST_LengthSphere returns
the total length of the linear geometries in the collection in meters.

ST_LengthSphere interprets the coordinates of each point of the input geometry as longitude and
latitude in degrees. For 3DZ, 3DM, or 4D geometries, only the first two coordinates are used.

Syntax

ST_LengthSphere(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

DOUBLE PRECISION length in meters. The length computation is based on the spherical model of
the Earth whose radius is Earth's mean radius of the World Geodetic System (WGS) 84 ellipsoidal
model of the Earth.

Spatial functions 2003

Amazon Redshift Database Developer Guide

If geom is null, then null is returned.

Examples

The following example SQL computes the length of a linestring in meters.

SELECT ST_LengthSphere(ST_GeomFromText('LINESTRING(10 10,45 45)'));

 st_lengthsphere

 5127736.08292556

ST_Length2D

ST_Length2D is an alias for ST_Length. For more information, see ST_Length.

ST_LineFromMultiPoint

ST_LineFromMultiPoint returns a linestring from an input multipoint geometry. The order of the
points is preserved. The spatial reference system identifier (SRID) of the returned geometry is the
same as that of the input geometry. The dimension of the returned geometry is the same as that of
the input geometry.

Syntax

ST_LineFromMultiPoint(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be MULTIPOINT.

Return type

GEOMETRY

Spatial functions 2004

Amazon Redshift Database Developer Guide

If geom is null, then null is returned.

If geom is empty, then an empty LINESTRING is returned.

If geom contains empty points, then these empty points are ignored.

If geom isn't a MULTIPOINT, then error is returned.

Examples

The following SQL creates a linestring from a multipoint.

SELECT ST_AsEWKT(ST_LineFromMultiPoint(ST_GeomFromText('MULTIPOINT(0 0,10 0,10 10,5 5,0
 5)',4326)));

 st_asewkt

 SRID=4326;LINESTRING(0 0,10 0,10 10,5 5,0 5)

ST_LineInterpolatePoint

ST_LineInterpolatePoint returns a point along a line at a fractional distance from the start of the
line.

To determine point equality, ST_LineInterpolatePoint operates on the 2D projection of the input
geometry. If the input geometry is empty, a copy of it is returned in the same dimension as
the input. For 3DZ, 3DM, and 4D geometries, the z or m coordinate is the average of the z or m
coordinates of the segment where the point lies.

Syntax

ST_LineInterpolatePoint(geom, fraction)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype is LINESTRING.

Spatial functions 2005

Amazon Redshift Database Developer Guide

fraction

A value of data type DOUBLE PRECISION that represents the position of a point along the
linestring for the line. The value is a fraction in the range 0–1, inclusive.

Return type

GEOMETRY of subtype POINT.

If geom or fraction is null, then null is returned.

If geom is empty, then the empty point is returned.

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometry.

If fraction is out of range, then an error is returned.

If geom is not a linestring, then an error is returned.

Examples

The following SQL returns a point halfway along a linestring.

SELECT ST_AsEWKT(ST_LineInterpolatePoint(ST_GeomFromText('LINESTRING(0 0, 5 5, 7 7, 10
 10)'), 0.50));

st_asewkt

 POINT(5 5)

The following SQL returns a point 90 percent of the way along a linestring.

SELECT ST_AsEWKT(ST_LineInterpolatePoint(ST_GeomFromText('LINESTRING(0 0, 5 5, 7 7, 10
 10)'), 0.90));

st_asewkt

 POINT(9 9)

Spatial functions 2006

Amazon Redshift Database Developer Guide

ST_M

ST_M returns the m coordinate of an input point.

Syntax

ST_M(point)

Arguments

point

A POINT value of data type GEOMETRY.

Return type

DOUBLE PRECISION value of the m coordinate.

If point is null, then null is returned.

If point is a 2D or 3DZ point, then null is returned.

If point is the empty point, then null is returned.

If point is not a POINT, then an error is returned.

Examples

The following SQL returns the m coordinate of a point in a 3DM geometry.

SELECT ST_M(ST_GeomFromEWKT('POINT M (1 2 3)'));

st_m

 3

The following SQL returns the m coordinate of a point in a 4D geometry.

SELECT ST_M(ST_GeomFromEWKT('POINT ZM (1 2 3 4)'));

Spatial functions 2007

Amazon Redshift Database Developer Guide

st_m

 4

ST_MakeEnvelope

ST_MakeEnvelope returns a geometry as follows:

• If the input coordinates specify a point, then the returned geometry is a point.

• If the input coordinates specify a line, then the returned geometry is a linestring.

• Otherwise, the returned geometry is a polygon, where the input coordinates specify the lower-
left and upper-right corners of a box.

If provided, the spatial reference system identifier (SRID) value of the returned geometry is set to
the input SRID value.

Syntax

ST_MakeEnvelope(xmin, ymin, xmax, ymax)

ST_MakeEnvelope(xmin, ymin, xmax, ymax, srid)

Arguments

xmin

A value of data type DOUBLE PRECISION. This value is the first coordinate of the lower-left
corner of a box.

ymin

A value of data type DOUBLE PRECISION. This value is the second coordinate of the lower-left
corner of a box.

xmax

A value of data type DOUBLE PRECISION. This value is the first coordinate of the upper-right
corner of a box.

Spatial functions 2008

Amazon Redshift Database Developer Guide

ymax

A value of data type DOUBLE PRECISION. This value is the second coordinate of the upper-
right corner of a box.

srid

A value of data type INTEGER that represents a spatial reference system identifier (SRID). If the
SRID value is not provided, then it is set to zero.

Return type

GEOMETRY of subtype POINT, LINESTRING, or POLYGON.

The SRID of the returned geometry is set to srid or zero if srid isn't set.

If xmin, ymin, xmax, ymax, or srid is null, then null is returned.

If srid is negative, then an error is returned.

Examples

The following SQL returns a polygon representing an envelope defined by the four input
coordinate values.

SELECT ST_AsEWKT(ST_MakeEnvelope(2,4,5,7));

 st_astext

 POLYGON((2 4,2 7,5 7,5 4,2 4))

The following SQL returns a polygon representing an envelope defined by the four input
coordinate values and an SRID value.

SELECT ST_AsEWKT(ST_MakeEnvelope(2,4,5,7,4326));

 st_astext

Spatial functions 2009

Amazon Redshift Database Developer Guide

 SRID=4326;POLYGON((2 4,2 7,5 7,5 4,2 4))

ST_MakeLine

ST_MakeLine creates a linestring from the input geometries.

The dimension of the returned geometry is the same as that of the input geometries. Both input
geometries must of the same dimension.

Syntax

ST_MakeLine(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be POINT, LINESTRING, or MULTIPOINT.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be POINT, LINESTRING, or MULTIPOINT.

Return type

GEOMETRY of subtype LINESTRING.

If geom1 or geom2 is null, then null is returned.

If geom1 and geom2 is the empty point or contains empty points, then these empty points are
ignored.

If geom1 and geom2 are empty, then the empty LINESTRING is returned.

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometries.

If geom1 and geom2 have different SRID values, then an error is returned.

If geom1 or geom2 is not a POINT, LINESTRING, or MULTIPOINT, then an error is returned.

Spatial functions 2010

Amazon Redshift Database Developer Guide

If geom1 and geom2 have different dimensions, then an error is returned.

Examples

The following SQL constructs a linestring from two input linestrings.

SELECT ST_MakeLine(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27
 29.31,77.29 29.07)'), ST_GeomFromText('LINESTRING(88.29 39.07,88.42 39.26,88.27
 39.31,88.29 39.07)'));

st_makeline

 010200000008000000C3F5285C8F52534052B81E85EB113D407B14AE47E15A5340C3F5285C8F423D40E17A14AE475153408FC2F5285C4F3D40C3F5285C8F52534052B81E85EB113D40C3F5285C8F125640295C8FC2F58843407B14AE47E11A5640E17A14AE47A14340E17A14AE4711564048E17A14AEA74340C3F5285C8F125640295C8FC2F5884340

ST_MakePoint

ST_MakePoint returns a point geometry whose coordinate values are the input values.

Syntax

ST_MakePoint(x, y)

ST_MakePoint(x, y, z)

ST_MakePoint(x, y, z, m)

Arguments

x

A value of data type DOUBLE PRECISION representing the first coordinate.

y

A value of data type DOUBLE PRECISION representing the second coordinate.

z

A value of data type DOUBLE PRECISION representing the third coordinate.

Spatial functions 2011

Amazon Redshift Database Developer Guide

m

A value of data type DOUBLE PRECISION representing the fourth coordinate.

Return type

GEOMETRY of subtype POINT.

The spatial reference system identifier (SRID) value of the returned geometry is set to 0.

If x, y, z, or m is null, then null is returned.

Examples

The following SQL returns a GEOMETRY type of subtype POINT with the provided coordinates.

SELECT ST_AsText(ST_MakePoint(1,3));

st_astext

 POINT(1 3)

The following SQL returns a GEOMETRY type of subtype POINT with the provided coordinates.

SELECT ST_AsEWKT(ST_MakePoint(1, 2, 3));

st_asewkt

 POINT Z (1 2 3)

The following SQL returns a GEOMETRY type of subtype POINT with the provided coordinates.

SELECT ST_AsEWKT(ST_MakePoint(1, 2, 3, 4));

st_asewkt

 POINT ZM (1 2 3 4)

Spatial functions 2012

Amazon Redshift Database Developer Guide

ST_MakePolygon

ST_MakePolygon has two variants that return a polygon. One takes a single geometry, and another
takes two geometries.

• The input of the first variant is a linestring that defines the outer ring of the output polygon.

• The input of the second variant is a linestring and a multilinestring. Both of these are empty or
closed.

The boundary of the exterior ring of the output polygon is the input linestring, and the
boundaries of the interior rings of the polygon are the linestrings in the input multilinestring.
If the input linestring is empty, an empty polygon is returned. Empty linestrings in the
multilinestring are disregarded. The spatial reference system identifier (SRID) of the resulting
geometry is the common SRID of the two input geometries.

The dimension of the returned geometry is the same as that of the input geometries. The exterior
ring and interior rings must of the same dimension.

Syntax

ST_MakePolygon(geom1)

ST_MakePolygon(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be LINESTRING. The linestring value must be closed or empty.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be MULTILINESTRING.

Return type

GEOMETRY of subtype POLYGON.

Spatial functions 2013

Amazon Redshift Database Developer Guide

The spatial reference system identifier (SRID) of the returned geometry is equal to the SRID of the
inputs.

If geom1, or geom2 is null, then null is returned.

If geom1 is not a linestring, then an error is returned.

If geom2 is not a multilinestring, then an error is returned.

If geom1 is not closed, then an error is returned.

If geom1 is a single point or is not closed, then an error is returned.

If geom2 contains at least one linestring that has a single point or is not closed, then an error is
returned.

If geom1 and geom2 have different SRID values, then an error is returned.

If geom1 and geom2 have different dimensions, then an error is returned.

Examples

The following SQL returns a polygon from an input linestring.

SELECT ST_AsText(ST_MakePolygon(ST_GeomFromText('LINESTRING(77.29 29.07,77.42
 29.26,77.27 29.31,77.29 29.07)')));

 st_astext

POLYGON((77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07))

The following SQL creates a polygon from a closed linestring and a closed multilinestring. The
linestring is used for the exterior ring of the polygon. The linestrings in the multilinestrings are
used for the interior rings of the polygon.

SELECT ST_AsEWKT(ST_MakePolygon(ST_GeomFromText('LINESTRING(0 0,10 0,10 10,0 10,0 0)'),
 ST_GeomFromText('MULTILINESTRING((1 1,1 2,2 1,1 1),(3 3,3 4,4 3,3 3))')));

 st_astext

Spatial functions 2014

Amazon Redshift Database Developer Guide

POLYGON((0 0,10 0,10 10,0 10,0 0),(1 1,1 2,2 1,1 1),(3 3,3 4,4 3,3 3))

ST_MemSize

ST_MemSize returns the amount of memory space (in bytes) used by the input geometry. This size
depends on the Amazon Redshift internal representation of the geometry and thus can change if
the internal representation changes. You can use this size as an indication of the relative size of
geometry objects in Amazon Redshift.

Syntax

ST_MemSize(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

INTEGER representing the inherent dimension of geom.

If geom is null, then null is returned.

Examples

The following SQL returns the memory size of a geometry collection.

SELECT ST_MemSize(ST_GeomFromText('GEOMETRYCOLLECTION(POLYGON((0 0,10 0,0 10,0
 0)),LINESTRING(20 10,20 0,10 0))'))::varchar + ' bytes';

 ?column?

 172 bytes

ST_MMax

ST_MMax returns the maximum m coordinate of an input geometry.

Spatial functions 2015

Amazon Redshift Database Developer Guide

Syntax

ST_MMax(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

DOUBLE PRECISION value of the maximum m coordinate.

If geom is empty, then null is returned.

If geom is null, then null is returned.

If geom is a 2D or 3DZ geometry, then null is returned.

Examples

The following SQL returns the largest m coordinate of a linestring in a 3DM geometry.

SELECT ST_MMax(ST_GeomFromEWKT('LINESTRING M (0 1 2, 3 4 5, 6 7 8)'));

st_mmax

 8

The following SQL returns the largest m coordinate of a linestring in a 4D geometry.

SELECT ST_MMax(ST_GeomFromEWKT('LINESTRING ZM (0 1 2 3, 4 5 6 7, 8 9 10 11)'));

st_mmax

 11

Spatial functions 2016

Amazon Redshift Database Developer Guide

ST_MMin

ST_MMin returns the minimum m coordinate of an input geometry.

Syntax

ST_MMin(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

DOUBLE PRECISION value of the minimum m coordinate.

If geom is empty, then null is returned.

If geom is null, then null is returned.

If geom is a 2D or 3DZ geometry, then null is returned.

Examples

The following SQL returns the smallest m coordinate of a linestring in a 3DM geometry.

SELECT ST_MMin(ST_GeomFromEWKT('LINESTRING M (0 1 2, 3 4 5, 6 7 8)'));

st_mmin

 2

The following SQL returns the smallest m coordinate of a linestring in a 4D geometry.

SELECT ST_MMin(ST_GeomFromEWKT('LINESTRING ZM (0 1 2 3, 4 5 6 7, 8 9 10 11)'));

st_mmin

Spatial functions 2017

Amazon Redshift Database Developer Guide

 3

ST_Multi

ST_Multi converts a geometry to the corresponding multitype. If the input geometry is already
a multitype or a geometry collection, a copy of it is returned. If the input geometry is a point,
linestring, or polygon, then a multipoint, multilinestring, or multipolygon, respectively, that
contains the input geometry is returned.

Syntax

ST_Multi(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY with subtype MULTIPOINT, MULTILINESTRING, MULTIPOLYGON, or
GEOMETRYCOLLECTION.

The spatial reference system identifier (SRID) of the returned geometry is the same as that of the
input geometry.

If geom is null, then null is returned.

Examples

The following SQL returns a multipoint from an input multipoint.

SELECT ST_AsEWKT(ST_Multi(ST_GeomFromText('MULTIPOINT((1 2),(3 4))', 4326)));

 st_asewkt

 SRID=4326;MULTIPOINT((1 2),(3 4))

Spatial functions 2018

Amazon Redshift Database Developer Guide

The following SQL returns a multipoint from an input point.

SELECT ST_AsEWKT(ST_Multi(ST_GeomFromText('POINT(1 2)', 4326)));

 st_asewkt

 SRID=4326;MULTIPOINT((1 2))

The following SQL returns a geometry collection from an input geometry collection.

SELECT ST_AsEWKT(ST_Multi(ST_GeomFromText('GEOMETRYCOLLECTION(POINT(1 2),MULTIPOINT((1
 2),(3 4)))', 4326)));

 st_asewkt

 SRID=4326;GEOMETRYCOLLECTION(POINT(1 2),MULTIPOINT((1 2),(3 4)))

ST_NDims

ST_NDims returns the coordinate dimension of a geometry. ST_NDims doesn't consider the
topological dimension of a geometry. Instead, it returns a constant value depending on the
dimension of the geometry.

Syntax

ST_NDims(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

INTEGER representing the inherent dimension of geom.

If geom is null, then null is returned.

Spatial functions 2019

Amazon Redshift Database Developer Guide

The values returned are as follows.

Returned value Dimension of input geometry

2 2D

3 3DZ or 3DM

4 4D

Examples

The following SQL returns the number of dimensions of a 2D linestring.

SELECT ST_NDims(ST_GeomFromText('LINESTRING(0 0,1 1,2 2,0 0)'));

st_ndims

 2

The following SQL returns the number of dimensions of a 3DZ linestring.

SELECT ST_NDims(ST_GeomFromText('LINESTRING Z(0 0 3,1 1 3,2 2 3,0 0 3)'));

st_ndims

 3

The following SQL returns the number of dimensions of a 3DM linestring.

SELECT ST_NDims(ST_GeomFromText('LINESTRING M(0 0 4,1 1 4,2 2 4,0 0 4)'));

st_ndims

 3

Spatial functions 2020

Amazon Redshift Database Developer Guide

The following SQL returns the number of dimensions of a 4D linestring.

SELECT ST_NDims(ST_GeomFromText('LINESTRING ZM(0 0 3 4,1 1 3 4,2 2 3 4,0 0 3 4)'));

st_ndims

 4

ST_NPoints

ST_NPoints returns the number of nonempty points in an input geometry or geography.

Syntax

ST_NPoints(geo)

Arguments

geo

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type.

Return type

INTEGER

If geo is an empty point, then 0 is returned.

If geo is null, then null is returned.

Examples

The following SQL returns the number of points in a linestring.

SELECT ST_NPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29
 29.07)'));

Spatial functions 2021

Amazon Redshift Database Developer Guide

st_npoints

 4

The following SQL returns the number of points in a linestring in a geography.

SELECT ST_NPoints(ST_GeogFromText('LINESTRING(110 40, 2 3, -10 80, -7 9)'));

st_npoints

 4

ST_NRings

ST_NRings returns the number of rings in an input geometry.

Syntax

ST_NRings(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

INTEGER

If geom is null, then null is returned.

The values returned are as follows.

Returned value Geometry subtype

0 Returned if geom is a POINT, LINESTRIN
G , MULTIPOINT , or MULTILINESTRING
subtype

Spatial functions 2022

Amazon Redshift Database Developer Guide

Returned value Geometry subtype

The number of rings. Returned if geom is a POLYGON or MULTIPOLY
GON subtype

The number of rings in all components Returned if geom is a GEOMETRYCOLLECTION
 subtype

Examples

The following SQL returns the number of rings in a multipolygon.

SELECT ST_NRings(ST_GeomFromText('MULTIPOLYGON(((0 0,10 0,0 10,0 0)),((0 0,-10 0,0
 -10,0 0)))'));

 st_nrings

 2

ST_NumGeometries

ST_NumGeometries returns the number of geometries in an input geometry.

Syntax

ST_NumGeometries(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

INTEGER representing the number of geometries in geom.

If geom is null, then null is returned.

Spatial functions 2023

Amazon Redshift Database Developer Guide

If geom is a single empty geometry, then 0 is returned.

If geom is a single nonempty geometry, then 1 is returned.

If geom is a GEOMETRYCOLLECTION or a MULTI subtype, then the number of geometries is
returned.

Examples

The following SQL returns the number of geometries in the input multilinestring.

SELECT ST_NumGeometries(ST_GeomFromText('MULTILINESTRING((0 0,1 0,0 5),(3 4,13 26))'));

st_numgeometries

 2

ST_NumInteriorRings

ST_NumInteriorRings returns the number of rings in an input polygon geometry.

Syntax

ST_NumInteriorRings(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

INTEGER

If geom is null, then null is returned.

If geom is not a polygon, then null is returned.

Examples

The following SQL returns the number of interior rings in the input polygon.

Spatial functions 2024

Amazon Redshift Database Developer Guide

SELECT ST_NumInteriorRings(ST_GeomFromText('POLYGON((0 0,100 0,100 100,0 100,0 0),(1
 1,1 5,5 1,1 1),(7 7,7 8,8 7,7 7))'));

 st_numinteriorrings

 2

ST_NumPoints

ST_NumPoints returns the number of points in an input geometry.

Syntax

ST_NumPoints(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

INTEGER

If geom is null, then null is returned.

If geom is not of subtype LINESTRING, then null is returned.

Examples

The following SQL returns the number of points in the input linestring.

SELECT ST_NumPoints(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27
 29.31,77.29 29.07)'));

st_numpoints

Spatial functions 2025

Amazon Redshift Database Developer Guide

4

The following SQL returns null because the input geom is not of subtype LINESTRING.

SELECT ST_NumPoints(ST_GeomFromText('MULTIPOINT(1 2,3 4)'));

st_numpoints

ST_Perimeter

For an input areal geometry, ST_Perimeter returns the Cartesian perimeter (length of the
boundary) of the 2D projection. The perimeter units are the same as the units in which the
coordinates of the input geometry are expressed. The function returns zero (0) for points,
multipoints, and linear geometries. When the input is a geometry collection, the function returns
the sum of the perimeters of the geometries in the collection.

For an input geography, ST_Perimeter returns the geodesic perimeter (length of the boundary)
of the 2D projection of an input areal geography computed on the spheroid determined by the
SRID. The unit of perimeter is in meters. The function returns zero (0) for points, multipoints, and
linear geographies. When the input is a geometry collection, the function returns the sum of the
perimeters of the geographies in the collection.

Syntax

ST_Perimeter(geo)

Arguments

geo

A value of data type GEOMETRY or GEOGRAPHY, or an expression that evaluates to a GEOMETRY
or GEOGRAPHY type.

Return type

DOUBLE PRECISION

Spatial functions 2026

Amazon Redshift Database Developer Guide

If geo is null, then null is returned.

If the SRID value is not found, then an error is returned.

Examples

The following SQL returns the Cartesian perimeter of a multipolygon.

SELECT ST_Perimeter(ST_GeomFromText('MULTIPOLYGON(((0 0,10 0,0 10,0 0)),((10 0,20 0,20
 10,10 0)))'));

 st_perimeter

 68.2842712474619

The following SQL returns the Cartesian perimeter of a multipolygon.

SELECT ST_Perimeter(ST_GeomFromText('MULTIPOLYGON(((0 0,10 0,0 10,0 0)),((10 0,20 0,20
 10,10 0)))'));

 st_perimeter

 68.2842712474619

The following SQL returns the perimeter of a polygon in a geography.

SELECT ST_Perimeter(ST_GeogFromText('SRID=4326;POLYGON((0 0,1 0,0 1,0 0))'));

 st_perimeter

 378790.428393693

The following SQL returns the perimeter of a linestring in a geography.

SELECT ST_Perimeter(ST_GeogFromText('SRID=4326;LINESTRING(5 0,10 0)'));

Spatial functions 2027

Amazon Redshift Database Developer Guide

 st_perimeter

 0

ST_Perimeter2D

ST_Perimeter2D is an alias for ST_Perimeter. For more information, see ST_Perimeter.

ST_Point

ST_Point returns a point geometry from the input coordinate values.

Syntax

ST_Point(x, y)

Arguments

x

A value of data type DOUBLE PRECISION that represents a first coordinate.

y

A value of data type DOUBLE PRECISION that represents a second coordinate.

Return type

GEOMETRY of subtype POINT.

The spatial reference system identifier (SRID) value of the returned geometry is set to 0.

If x or y is null, then null is returned.

Examples

The following SQL constructs a point geometry from the input coordinates.

SELECT ST_AsText(ST_Point(5.0, 7.0));

st_astext

Spatial functions 2028

Amazon Redshift Database Developer Guide

POINT(5 7)

ST_PointN

ST_PointN returns a point in a linestring as specified by an index value. Negative index values are
counted backward from the end of the linestring, so that -1 is the last point.

The dimension of the returned geometry is the same as that of the input geometry.

Syntax

ST_PointN(geom, index)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be LINESTRING.

index

A value of data type INTEGER that represents the index of a point in a linestring.

Return type

GEOMETRY of subtype POINT.

The spatial reference system identifier (SRID) value of the returned geometry is set to 0.

If geom or index is null, then null is returned.

If index is out of range, then null is returned.

If geom is empty, then null is returned.

If geom is not a LINESTRING, then null is returned.

Examples

The following SQL returns an extended well-known text (EWKT) representation of a six-point
LINESTRING to a GEOMETRY object and returns the point at index 5 of the linestring.

Spatial functions 2029

Amazon Redshift Database Developer Guide

SELECT ST_AsEWKT(ST_PointN(ST_GeomFromText('LINESTRING(0 0,10 0,10 10,5 5,0 5,0
 0)',4326), 5));

st_asewkt

 SRID=4326;POINT(0 5)

ST_Points

ST_Points returns a multipoint geometry containing all nonempty points in the input geometry.
ST_Points doesn't remove points that are duplicated in the input, including the start and end
points of ring geometries.

Syntax

ST_Points(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY of subtype MULTIPOINT.

The spatial reference system identifier (SRID) value of the returned geometry is the same as geom.

If geom is null, then null is returned.

If geom is empty, then the empty multipoint is returned.

Examples

The following SQL examples construct a multipoint geometry from the input geometry. The result
is a multipoint geometry containing the nonempty points in the input geometry.

SELECT ST_AsEWKT(ST_Points(ST_SetSRID(ST_GeomFromText('LINESTRING(1 0,2 0,3 0)'),
 4326)));

Spatial functions 2030

Amazon Redshift Database Developer Guide

st_asewkt

SRID=4326;MULTIPOINT((1 0),(2 0),(3 0))

SELECT ST_AsEWKT(ST_Points(ST_SetSRID(ST_GeomFromText('MULTIPOLYGON(((0 0,1 0,0 1,0
 0)))'), 4326)));

st_asewkt

SRID=4326;MULTIPOINT((0 0),(1 0),(0 1),(0 0))

ST_Polygon

ST_Polygon returns a polygon geometry whose outer ring is the input linestring with the value that
was input for the spatial reference system identifier (SRID).

The dimension of the returned geometry is the same as that of the input geometry.

Syntax

ST_Polygon(linestring, srid)

Arguments

linestring

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be LINESTRING that represents a linestring. The linestring value must be closed.

srid

A value of data type INTEGER that represents a SRID.

Return type

GEOMETRY of subtype POLYGON.

The SRID value of the returned geometry is set to srid.

Spatial functions 2031

Amazon Redshift Database Developer Guide

If linestring or srid is null, then null is returned.

If linestring is not a linestring, then an error is returned.

If linestring is not closed, then an error is returned.

If srid is negative, then an error is returned.

Examples

The following SQL constructs a polygon with an SRID value.

SELECT ST_AsEWKT(ST_Polygon(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27
 29.31,77.29 29.07)'),4356));

st_asewkt

 SRID=4356;POLYGON((77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07))

ST_RemovePoint

ST_RemovePoint returns a linestring geometry that has the point of the input geometry at an
index position removed.

The index is zero-based. The spatial reference system identifier (SRID) of the result is the same
as the input geometry. The dimension of the returned geometry is the same as that of the input
geometry.

Syntax

ST_RemovePoint(geom, index)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be LINESTRING.

index

A value of data type INTEGER that represents the position of a zero-based index.

Spatial functions 2032

Amazon Redshift Database Developer Guide

Return type

GEOMETRY

If geom or index is null, then null is returned.

If geom is not subtype LINESTRING, then an error is returned.

If index is out of range, then an error is returned. Valid values for the index position are between 0
and ST_NumPoints(geom) minus 1.

Examples

The following SQL removes the last point in a linestring.

WITH tmp(g) AS (SELECT ST_GeomFromText('LINESTRING(0 0,10 0,10 10,5 5,0 5)',4326))
SELECT ST_AsEWKT(ST_RemovePoint(g, ST_NumPoints(g) - 1)) FROM tmp;

 st_asewkt

 SRID=4326;LINESTRING(0 0,10 0,10 10,5 5)

ST_Reverse

ST_Reverse reverses the order of the vertices for linear and areal geometries. For point or
multipoint geometries, a copy of the original geometry is returned. For geometry collections,
ST_Reverse reverses the order of the vertices for each of the geometries in the collection.

The dimension of the returned geometry is the same as that of the input geometry.

Syntax

ST_Reverse(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Spatial functions 2033

Amazon Redshift Database Developer Guide

Return type

GEOMETRY

The spatial reference system identifier (SRID) of the returned geometry is the same as that of the
input geometry.

If geom is null, then null is returned.

Examples

The following SQL reverses the order of the points in a linestring.

SELECT ST_AsEWKT(ST_Reverse(ST_GeomFromText('LINESTRING(1 0,2 0,3 0,4 0)', 4326)));

 st_asewkt

 SRID=4326;LINESTRING(4 0,3 0,2 0,1 0)

ST_SetPoint

ST_SetPoint returns a linestring with updated coordinates with respect to the input linestring's
position as specified by the index. The new coordinates are the coordinates of the input point.

The dimension of the returned geometry is the same as that of the geom1 value. If geom1 and
geom2 have different dimensions, geom2 is projected to the dimension of geom1.

Syntax

ST_SetPoint(geom1, index, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be LINESTRING.

index

A value of data type INTEGER that represents the position of an index. A 0 refers to the first
point of the linestring from the left, 1 refers to the second point, and so on. The index can be

Spatial functions 2034

Amazon Redshift Database Developer Guide

a negative value. A -1 refers to the first point of the linestring from the right, -2 refers to the
second point of the linestring from the right, and so on.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be POINT.

Return type

GEOMETRY

If geom2 is the empty point, then geom1 is returned.

If geom1, geom2, or index is null, then null is returned.

If geom1 is not a linestring, then an error is returned.

If index is not within a valid index range, then an error is returned.

If geom2 is not a point, then an error is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

Examples

The following SQL returns a new linestring where we set the second point of the input linestring
with the specified point.

SELECT ST_AsText(ST_SetPoint(ST_GeomFromText('LINESTRING(1 2, 3 2, 5 2, 1 2)'), 2,
 ST_GeomFromText('POINT(7 9)')));

st_astext

 LINESTRING(1 2,3 2,7 9,1 2)

The following SQL example returns a new linestring where we set the third point from the right
(the index is negative) of the linestring with the specified point.

Spatial functions 2035

Amazon Redshift Database Developer Guide

SELECT ST_AsText(ST_SetPoint(ST_GeomFromText('LINESTRING(1 2, 3 2, 5 2, 1 2)'), -3,
 ST_GeomFromText('POINT(7 9)')));

st_astext

 LINESTRING(1 2,7 9,5 2,1 2)

ST_SetSRID

ST_SetSRID returns a geometry that is the same as input geometry, except updated with the value
input for the spatial reference system identifier (SRID).

Syntax

ST_SetSRID(geom, srid)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

srid

A value of data type INTEGER that represents a SRID.

Return type

GEOMETRY

The SRID value of the returned geometry is set to srid.

If geom or srid is null, then null is returned.

If srid is negative, then an error is returned.

Examples

The following SQL sets the SRID value of a linestring.

Spatial functions 2036

Amazon Redshift Database Developer Guide

SELECT ST_AsEWKT(ST_SetSRID(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27
 29.31,77.29 29.07)'),50));

st_asewkt

 SRID=50;LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29 29.07)

ST_Simplify

ST_Simplify returns a simplified copy of the input geometry using the Ramer-Douglas-Peucker
algorithm with the given tolerance. The topology of the input geometry might not be preserved.
For more information about the algorithm, see Ramer–Douglas–Peucker algorithm in Wikipedia.

When ST_Simplify calculates distances to simplify a geometry, ST_Simplify operates on the 2D
projection of the input geometry.

Syntax

ST_Simplify(geom, tolerance)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

tolerance

A value of data type DOUBLE PRECISION that represents the tolerance level of the Ramer-
Douglas-Peucker algorithm. If tolerance is a negative number, then zero is used.

Return type

GEOMETRY.

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometry.

The dimension of the returned geometry is the same as that of the input geometry.

If geom is null, then null is returned.

Spatial functions 2037

https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm

Amazon Redshift Database Developer Guide

Examples

The following SQL simplifies the input linestring using a Euclidean distance tolerance of 1 with
the Ramer-Douglas-Peucker algorithm. The units of the distance are the same as those of the
coordinates of the geometry.

SELECT ST_AsEWKT(ST_Simplify(ST_GeomFromText('LINESTRING(0 0,1 2,1 1,2 2,2 1)'), 1));

 st_asewkt

LINESTRING(0 0,1 2,2 1)

ST_SRID

ST_SRID returns the spatial reference system identifier (SRID) of an input geometry. For more
information about an SRID, see Querying spatial data in Amazon Redshift.

Syntax

ST_SRID(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

INTEGER representing the SRID value of geom.

If geom is null, then null is returned.

Examples

The following SQL returns an SRID value of a linestring that is set to SRID 4326.

SELECT ST_SRID(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29
 29.07)',4326));

Spatial functions 2038

Amazon Redshift Database Developer Guide

st_srid

 4326

The following SQL returns an SRID value of a linestring that is not set when constructed. This
results in 0 for the SRID value.

SELECT ST_SRID(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29
 29.07)'));

st_srid

 0

ST_StartPoint

ST_StartPoint returns the first point of an input linestring. The spatial reference system identifier
(SRID) value of the result is the same as that of the input geometry. The dimension of the returned
geometry is the same as that of the input geometry.

Syntax

ST_StartPoint(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. The
subtype must be LINESTRING.

Return type

GEOMETRY

If geom is null, then null is returned.

If geom is empty, then null is returned.

Spatial functions 2039

Amazon Redshift Database Developer Guide

If geom isn't a LINESTRING, then null is returned.

Examples

The following SQL returns an extended well-known text (EWKT) representation of a four-point
LINESTRING to a GEOMETRY object and returns the start point of the linestring.

SELECT ST_AsEWKT(ST_StartPoint(ST_GeomFromText('LINESTRING(0 0,10 0,10 10,5 5,0
 5)',4326)));

st_asewkt

 SRID=4326;POINT(0 0)

ST_Touches

ST_Touches returns true if the 2D projections of the two input geometries touch. The two
geometries touch if they are nonempty, intersect, and have no interior points in common.

Syntax

ST_Touches(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom1 or geom2 is null, then null is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

Spatial functions 2040

Amazon Redshift Database Developer Guide

If geom1 or geom2 is a geometry collection, then an error is returned.

Examples

The following SQL checks if a polygon touches a linestring.

SELECT ST_Touches(ST_GeomFromText('POLYGON((0 0,10 0,0 10,0 0))'),
 ST_GeomFromText('LINESTRING(20 10,20 0,10 0)'));

 st_touches

 t

ST_Transform

ST_Transform returns a new geometry with coordinates that are transformed in a spatial reference
system defined by the input spatial reference system identifier (SRID).

Syntax

ST_Transform(geom, srid)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

srid

A value of data type INTEGER that represents an SRID.

Return type

GEOMETRY.

The SRID value of the returned geometry is set to srid.

If geom or srid is null, then null is returned.

If the SRID value associated with the input geom does not exist, then an error is returned.

Spatial functions 2041

Amazon Redshift Database Developer Guide

If srid does not exist, then an error is returned.

Examples

The following SQL transforms the SRID of an empty geometry collection.

SELECT ST_AsEWKT(ST_Transform(ST_GeomFromText('GEOMETRYCOLLECTION EMPTY', 3857),
 4326));

 st_asewkt

 SRID=4326;GEOMETRYCOLLECTION EMPTY

The following SQL transforms the SRID of a linestring.

SELECT ST_AsEWKT(ST_Transform(ST_GeomFromText('LINESTRING(110 40, 2 3, -10 80, -7 9,
 -22 -33)', 4326), 26918));

 st_asewkt

 SRID=26918;LINESTRING(73106.6977300955 15556182.9688576,14347201.5059964
 1545178.32934967,1515090.41262989 9522193.25115316,10491250.83295
 2575457.28410878,5672303.72135968 -5233682.61176205)

The following SQL transforms the SRID of a polygon.

SELECT ST_AsEWKT(ST_Transform(ST_GeomFromText('POLYGON Z ((-10 10 -7, -65 10 -6, -10 64
 -5, -10 10 -7), (-11 11 5, -11 12 6, -12 11 7, -11 11 5))', 6989), 6317));

 st_asewkt
--
 SRID=6317;POLYGON Z ((6186430.2771091 -1090834.57212608
 1100247.33216237,2654831.67853801 -5693304.90741276 1100247.50581055,2760987.41750022
 -486836.575101877 5709710.44137268,6186430.2771091 -1090834.57212608
 1100247.33216237),(6146675.25029258 -1194792.63532103 1209007.1115113,6125027.87562215

Spatial functions 2042

Amazon Redshift Database Developer Guide

 -1190584.81194058 1317403.77865723,6124888.99555252 -1301885.3455052
 1209007.49312929,6146675.25029258 -1194792.63532103 1209007.1115113))

ST_Union

ST_Union returns a geometry representing the union of two geometries. That is, it merges the
input geometries to produce a resulting geometry with no overlaps.

Syntax

ST_Union(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

GEOMETRY

The spatial reference system identifier (SRID) value of the returned geometry is the SRID value of
the input geometries.

If geom1 or geom2 is null, then null is returned.

If geom1 or geom2 are empty, then an empty geometry is returned.

If geom1 and geom2 don't have the same value for the spatial reference system identifier (SRID),
then an error is returned.

If geom1 or geom2 is a geometry collection, linestring, or multilinestring, then an error is returned.

If geom1 or geom2 is not a two-dimensional (2D) geometry, then an error is returned.

Examples

The following SQL returns the non-empty geometry representing the union of two input
geometries.

Spatial functions 2043

Amazon Redshift Database Developer Guide

SELECT ST_AsEWKT(ST_Union(ST_GeomFromText('POLYGON((0 0,100 100,0 200,0 0))'),
 ST_GeomFromText('POLYGON((0 0,10 0,0 10,0 0))')));

 st_asewkt

 POLYGON((0 0,0 200,100 100,5 5,10 0,0 0))

ST_Within

ST_Within returns true if the 2D projection of the first input geometry is within the 2D projection
of the second input geometry.

For example, geometry A is within geometry B if every point in A is a point in B and their interiors
have nonempty intersection.

ST_Within(A, B) is equivalent to ST_Contains(B, A).

Syntax

ST_Within(geom1, geom2)

Arguments

geom1

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type. This value
is compared with geom2 to determine if it is within geom2.

geom2

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

BOOLEAN

If geom1 or geom2 is null, then null is returned.

If geom1 and geom2 don't have the same spatial reference system identifier (SRID) value, then an
error is returned.

Spatial functions 2044

Amazon Redshift Database Developer Guide

If geom1 or geom2 is a geometry collection, then an error is returned.

Examples

The following SQL checks if the first polygon is within the second polygon.

SELECT ST_Within(ST_GeomFromText('POLYGON((0 2,1 1,0 -1,0 2))'),
 ST_GeomFromText('POLYGON((-1 3,2 1,0 -3,-1 3))'));

st_within

 true

ST_X

ST_X returns the first coordinate of an input point.

Syntax

ST_X(point)

Arguments

point

A POINT value of data type GEOMETRY.

Return type

DOUBLE PRECISION value of the first coordinate.

If point is null, then null is returned.

If point is the empty point, then null is returned.

If point is not a POINT, then an error is returned.

Examples

The following SQL returns the first coordinate of a point.

Spatial functions 2045

Amazon Redshift Database Developer Guide

SELECT ST_X(ST_Point(1,2));

st_x

 1.0

ST_XMax

ST_XMax returns the maximum first coordinate of an input geometry.

Syntax

ST_XMax(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

DOUBLE PRECISION value of the maximum first coordinate.

If geom is empty, then null is returned.

If geom is null, then null is returned.

Examples

The following SQL returns the largest first coordinate of a linestring.

SELECT ST_XMax(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29
 29.07)'));

st_xmax

 77.42

Spatial functions 2046

Amazon Redshift Database Developer Guide

ST_XMin

ST_XMin returns the minimum first coordinate of an input geometry.

Syntax

ST_XMin(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

DOUBLE PRECISION value of the minimum first coordinate.

If geom is empty, then null is returned.

If geom is null, then null is returned.

Examples

The following SQL returns the smallest first coordinate of a linestring.

SELECT ST_XMin(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29
 29.07)'));

st_xmin

 77.27

ST_Y

ST_Y returns the second coordinate of an input point.

Syntax

ST_Y(point)

Spatial functions 2047

Amazon Redshift Database Developer Guide

Arguments

point

A POINT value of data type GEOMETRY.

Return type

DOUBLE PRECISION value of the second coordinate.

If point is null, then null is returned.

If point is the empty point, then null is returned.

If point is not a POINT, then an error is returned.

Examples

The following SQL returns the second coordinate of a point.

SELECT ST_Y(ST_Point(1,2));

st_y

 2.0

ST_YMax

ST_YMax returns the maximum second coordinate of an input geometry.

Syntax

ST_YMax(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Spatial functions 2048

Amazon Redshift Database Developer Guide

Return type

DOUBLE PRECISION value of the maximum second coordinate.

If geom is empty, then null is returned.

If geom is null, then null is returned.

Examples

The following SQL returns the largest second coordinate of a linestring.

SELECT ST_YMax(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29
 29.07)'));

st_ymax

 29.31

ST_YMin

ST_YMin returns the minimum second coordinate of an input geometry.

Syntax

ST_YMin(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

DOUBLE PRECISION value of the minimum second coordinate.

If geom is empty, then null is returned.

If geom is null, then null is returned.

Spatial functions 2049

Amazon Redshift Database Developer Guide

Examples

The following SQL returns the smallest second coordinate of a linestring.

SELECT ST_YMin(ST_GeomFromText('LINESTRING(77.29 29.07,77.42 29.26,77.27 29.31,77.29
 29.07)'));

st_ymin

 29.07

ST_Z

ST_Z returns the z coordinate of an input point.

Syntax

ST_Z(point)

Arguments

point

A POINT value of data type GEOMETRY.

Return type

DOUBLE PRECISION value of the m coordinate.

If point is null, then null is returned.

If point is a 2D or 3DM point, then null is returned.

If point is the empty point, then null is returned.

If point is not a POINT, then an error is returned.

Examples

The following SQL returns the z coordinate of a point in a 3DZ geometry.

Spatial functions 2050

Amazon Redshift Database Developer Guide

SELECT ST_Z(ST_GeomFromEWKT('POINT Z (1 2 3)'));

st_z

 3

The following SQL returns the z coordinate of a point in a 4D geometry.

SELECT ST_Z(ST_GeomFromEWKT('POINT ZM (1 2 3 4)'));

st_z

 3

ST_ZMax

ST_ZMax returns the maximum z coordinate of an input geometry.

Syntax

ST_ZMax(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

DOUBLE PRECISION value of the maximum z coordinate.

If geom is empty, then null is returned.

If geom is null, then null is returned.

If geom is a 2D or 3DM geometry, then null is returned.

Spatial functions 2051

Amazon Redshift Database Developer Guide

Examples

The following SQL returns the largest z coordinate of a linestring in a 3DZ geometry.

SELECT ST_ZMax(ST_GeomFromEWKT('LINESTRING Z (0 1 2, 3 4 5, 6 7 8)'));

st_zmax

 8

The following SQL returns the largest z coordinate of a linestring in a 4D geometry.

SELECT ST_ZMax(ST_GeomFromEWKT('LINESTRING ZM (0 1 2 3, 4 5 6 7, 8 9 10 11)'));

st_zmax

 10

ST_ZMin

ST_ZMin returns the minimum z coordinate of an input geometry.

Syntax

ST_ZMin(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Return type

DOUBLE PRECISION value of the minimum z coordinate.

If geom is empty, then null is returned.

Spatial functions 2052

Amazon Redshift Database Developer Guide

If geom is null, then null is returned.

If geom is a 2D or 3DM geometry, then null is returned.

Examples

The following SQL returns the smallest z coordinate of a linestring in a 3DZ geometry.

SELECT ST_ZMin(ST_GeomFromEWKT('LINESTRING Z (0 1 2, 3 4 5, 6 7 8)'));

st_zmin

 2

The following SQL returns the smallest z coordinate of a linestring in a 4D geometry.

SELECT ST_ZMin(ST_GeomFromEWKT('LINESTRING ZM (0 1 2 3, 4 5 6 7, 8 9 10 11)'));

st_zmin

 2

SupportsBBox

SupportsBBox returns true if the input geometry supports encoding with a precomputed bounding
box. For more information about support for bounding boxes, see Bounding box.

Syntax

SupportsBBox(geom)

Arguments

geom

A value of data type GEOMETRY or an expression that evaluates to a GEOMETRY type.

Spatial functions 2053

Amazon Redshift Database Developer Guide

Return type

BOOLEAN

If geom is null, then null is returned.

Examples

The following SQL returns true because the input point geometry supports being encoded with a
bounding box.

SELECT SupportsBBox(AddBBox(ST_GeomFromText('POLYGON((0 0,1 0,0 1,0 0))')));

supportsbbox

t

The following SQL returns false because the input point geometry doesn't support being encoded
with a bounding box.

SELECT SupportsBBox(DropBBox(ST_GeomFromText('POLYGON((0 0,1 0,0 1,0 0))')));

supportsbbox

f

String functions

Topics

• || (Concatenation) operator

• ASCII function

• BPCHARCMP function

• BTRIM function

• BTTEXT_PATTERN_CMP function

• CHAR_LENGTH function

String functions 2054

Amazon Redshift Database Developer Guide

• CHARACTER_LENGTH function

• CHARINDEX function

• CHR function

• COLLATE function

• CONCAT function

• CRC32 function

• DIFFERENCE function

• INITCAP function

• LEFT and RIGHT functions

• LEN function

• LENGTH function

• LOWER function

• LPAD and RPAD functions

• LTRIM function

• OCTETINDEX function

• OCTET_LENGTH function

• POSITION function

• QUOTE_IDENT function

• QUOTE_LITERAL function

• REGEXP_COUNT function

• REGEXP_INSTR function

• REGEXP_REPLACE function

• REGEXP_SUBSTR function

• REPEAT function

• REPLACE function

• REPLICATE function

• REVERSE function

• RTRIM function

• SOUNDEX function

• SPLIT_PART function

String functions 2055

Amazon Redshift Database Developer Guide

• STRPOS function

• STRTOL function

• SUBSTRING function

• TEXTLEN function

• TRANSLATE function

• TRIM function

• UPPER function

String functions process and manipulate character strings or expressions that evaluate to character
strings. When the string argument in these functions is a literal value, it must be enclosed in single
quotation marks. Supported data types include CHAR and VARCHAR.

The following section provides the function names, syntax, and descriptions for supported
functions. All offsets into strings are one-based.

Deprecated leader node-only functions

The following string functions are deprecated because they run only on the leader node. For more
information, see Leader node–only functions

• GET_BYTE

• SET_BIT

• SET_BYTE

• TO_ASCII

|| (Concatenation) operator

Concatenates two expressions on either side of the || symbol and returns the concatenated
expression.

Similar to CONCAT function.

Note

If one or both of the expressions is null, the result of the concatenation is NULL.

String functions 2056

Amazon Redshift Database Developer Guide

Syntax

expression1 || expression2

Arguments

expression1

A CHAR string, a VARCHAR string, a binary expression, or an expression that evaluates to one of
these types.

expression2

A CHAR string, a VARCHAR string, a binary expression, or an expression that evaluates to one of
these types.

Return type

The return type of the string is the same as the type of the input arguments. For example,
concatenating two strings of type VARCHAR returns a string of type VARCHAR.

Examples

The following examples use the USERS and VENUE tables from the TICKIT sample database. For
more information, see Sample database.

To concatenate the FIRSTNAME and LASTNAME fields from the USERS table in the sample
database, use the following example.

SELECT (firstname || ' ' || lastname) as fullname
FROM users
ORDER BY 1
LIMIT 10;

+-----------------+
| fullname |
+-----------------+
| Aaron Banks |
| Aaron Booth |
| Aaron Browning |
| Aaron Burnett |

String functions 2057

Amazon Redshift Database Developer Guide

| Aaron Casey |
| Aaron Cash |
| Aaron Castro |
| Aaron Dickerson |
| Aaron Dixon |
| Aaron Dotson |
+-----------------+

To concatenate columns that might contain nulls, use the NVL and COALESCE functions expression.
The following example uses NVL to return a 0 whenever NULL is encountered.

SELECT (venuename || ' seats ' || NVL(venueseats, 0)) as seating
FROM venue
WHERE venuestate = 'NV' or venuestate = 'NC'
ORDER BY 1
LIMIT 10;

+-------------------------------------+
| seating |
+-------------------------------------+
| Ballys Hotel seats 0 |
| Bank of America Stadium seats 73298 |
| Bellagio Hotel seats 0 |
| Caesars Palace seats 0 |
| Harrahs Hotel seats 0 |
| Hilton Hotel seats 0 |
| Luxor Hotel seats 0 |
| Mandalay Bay Hotel seats 0 |
| Mirage Hotel seats 0 |
| New York New York seats 0 |
+-------------------------------------+

ASCII function

The ASCII function returns the ASCII code, or the Unicode code-point, of the first character in the
string that you specify. The function returns 0 if the string is empty. It returns NULL if the string is
null.

Syntax

ASCII('string')

String functions 2058

Amazon Redshift Database Developer Guide

Argument

string

A CHAR string or a VARCHAR string.

Return type

INTEGER

Examples

To return NULL, use the following example. The NULLIF function returns NULL if the two
arguments are the same, so the input argument for the ASCII function is NULL. For more
information, see NULLIF function.

SELECT ASCII(NULLIF('',''));

+-------+
| ascii |
+-------+
| NULL |
+-------+

To return the ASCII code 0, use the following example.

SELECT ASCII('');

+-------+
| ascii |
+-------+
| 0 |
+-------+

To return the ASCII code 97 for the first letter of the word amazon, use the following example.

SELECT ASCII('amazon');

+-------+
| ascii |
+-------+

String functions 2059

Amazon Redshift Database Developer Guide

| 97 |
+-------+

To return the ASCII code 65 for the first letter of the word Amazon, use the following example.

SELECT ASCII('Amazon');

+-------+
| ascii |
+-------+
| 65 |
+-------+

BPCHARCMP function

Compares the value of two strings and returns an integer. If the strings are identical, the function
returns 0. If the first string is greater alphabetically, the function returns 1. If the second string is
greater, the function returns -1.

For multibyte characters, the comparison is based on the byte encoding.

Synonym of BTTEXT_PATTERN_CMP function.

Syntax

BPCHARCMP(string1, string2)

Arguments

string1

A CHAR string or a VARCHAR string.

string2

A CHAR string or a VARCHAR string.

Return type

INTEGER

String functions 2060

Amazon Redshift Database Developer Guide

Examples

The following examples use the USERS table from the TICKIT sample database. For more
information, see Sample database.

To determine whether a user's first name is alphabetically greater than the user's last name for
the first ten entries in the USERS table, use the following example. For entries where the string
for FIRSTNAME is later alphabetically than the string for LASTNAME, the function returns 1. If the
LASTNAME is alphabetically later than FIRSTNAME, the function returns -1.

SELECT userid, firstname, lastname, BPCHARCMP(firstname, lastname)
FROM users
ORDER BY 1, 2, 3, 4
LIMIT 10;

+--------+-----------+-----------+-----------+
| userid | firstname | lastname | bpcharcmp |
+--------+-----------+-----------+-----------+
1	Rafael	Taylor	-1
2	Vladimir	Humphrey	1
3	Lars	Ratliff	-1
4	Barry	Roy	-1
5	Reagan	Hodge	1
6	Victor	Hernandez	1
7	Tamekah	Juarez	1
8	Colton	Roy	-1
9	Mufutau	Watkins	-1
10	Naida	Calderon	1
+--------+-----------+-----------+-----------+

To return all entries in the USERS table where the function returns 0, use the following example.
The function returns 0 when FIRSTNAME is identical to LASTNAME.

SELECT userid, firstname, lastname,
BPCHARCMP(firstname, lastname)
FROM users
WHERE BPCHARCMP(firstname, lastname)=0
ORDER BY 1, 2, 3, 4;

+--------+-----------+----------+-----------+
| userid | firstname | lastname | bpcharcmp |
+--------+-----------+----------+-----------+

String functions 2061

Amazon Redshift Database Developer Guide

62	Chase	Chase	0
4008	Whitney	Whitney	0
12516	Graham	Graham	0
13570	Harper	Harper	0
16712	Cooper	Cooper	0
18359	Chase	Chase	0
27530	Bradley	Bradley	0
31204	Harding	Harding	0
+--------+-----------+----------+-----------+

BTRIM function

The BTRIM function trims a string by removing leading and trailing blanks or by removing leading
and trailing characters that match an optional specified string.

Syntax

BTRIM(string [, trim_chars])

Arguments

string

The input VARCHAR string to be trimmed.

trim_chars

The VARCHAR string containing the characters to be matched.

Return type

The BTRIM function returns a VARCHAR string.

Examples

The following example trims leading and trailing blanks from the string ' abc ':

select ' abc ' as untrim, btrim(' abc ') as trim;

untrim | trim
----------+------

String functions 2062

Amazon Redshift Database Developer Guide

 abc | abc

The following example removes the leading and trailing 'xyz' strings from the string
'xyzaxyzbxyzcxyz'. The leading and trailing occurrences of 'xyz' are removed, but
occurrences that are internal within the string are not removed.

select 'xyzaxyzbxyzcxyz' as untrim,
btrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

 untrim | trim
-----------------+-----------
 xyzaxyzbxyzcxyz | axyzbxyzc

The following example removes the leading and trailing parts from the string
'setuphistorycassettes' that match any of the characters in the trim_chars list 'tes'. Any
t, e, or s that occur before another character that is not in the trim_chars list at the beginning or
ending of the input string are removed.

SELECT btrim('setuphistorycassettes', 'tes');

 btrim

 uphistoryca

BTTEXT_PATTERN_CMP function

Synonym for the BPCHARCMP function.

See BPCHARCMP function for details.

CHAR_LENGTH function

Synonym of the LEN function.

See LEN function.

CHARACTER_LENGTH function

Synonym of the LEN function.

See LEN function.

String functions 2063

Amazon Redshift Database Developer Guide

CHARINDEX function

Returns the location of the specified substring within a string.

See POSITION function and STRPOS function for similar functions.

Syntax

CHARINDEX(substring, string)

Arguments

substring

The substring to search for within the string.

string

The string or column to be searched.

Return type

INTEGER

The CHARINDEX function returns an INTEGER corresponding to the position of the substring
(one-based, not zero-based). The position is based on the number of characters, not bytes,
so that multi-byte characters are counted as single characters. CHARINDEX returns 0 if the
substring is not found within the string.

Examples

To return the position of the string fish within the word dog, use the following example.

SELECT CHARINDEX('fish', 'dog');

+-----------+
| charindex |
+-----------+
| 0 |
+-----------+

To return the position of the string fish within the word dogfish, use the following example.

String functions 2064

Amazon Redshift Database Developer Guide

SELECT CHARINDEX('fish', 'dogfish');

+-----------+
| charindex |
+-----------+
| 4 |
+-----------+

The following example uses the SALES table from the TICKIT sample database. For more
information, see Sample database.

To return the number of distinct sales transactions with a commission over 999.00 from the SALES
table, use the following example. This command counts commissions greater than 999.00 by
checking if the decimal is more than 4 places from the beginning of the commission value.

SELECT DISTINCT CHARINDEX('.', commission), COUNT (CHARINDEX('.', commission))
FROM sales
WHERE CHARINDEX('.', commission) > 4
GROUP BY CHARINDEX('.', commission)
ORDER BY 1,2;

+-----------+-------+
| charindex | count |
+-----------+-------+
| 5 | 629 |
+-----------+-------+

CHR function

The CHR function returns the character that matches the ASCII code point value specified by the
input parameter.

Syntax

CHR(number)

Argument

number

The input parameter is an INTEGER that represents an ASCII code point value.

String functions 2065

Amazon Redshift Database Developer Guide

Return type

CHAR

The CHR function returns a CHAR string if an ASCII character matches the input value. If the
input number has no ASCII match, the function returns NULL.

Examples

To return the character that corresponds with ASCII code point 0, use the following example. Note
that the CHR function returns NULL for the input 0.

SELECT CHR(0);

+-----+
| chr |
+-----+
| |
+-----+

To return the character that corresponds with ASCII code point 65, use the following example.

SELECT CHR(65);

+-----+
| chr |
+-----+
| A |
+-----+

To return distinct event names that begin with a capital A (ASCII code point 65), use the following
example. The following example uses the EVENT table from the TICKIT sample database. For more
information, see Sample database.

SELECT DISTINCT eventname FROM event
WHERE SUBSTRING(eventname, 1, 1)=CHR(65) LIMIT 5;

+-----------------------+
| eventname |
+-----------------------+
| A Catered Affair |

String functions 2066

Amazon Redshift Database Developer Guide

| As You Like It |
| A Man For All Seasons |
| Alan Jackson |
| Armando Manzanero |
+-----------------------+

COLLATE function

The COLLATE function overrides the collation of a string column or expression.

For information on how to create tables using database collation, see CREATE TABLE.

For information on how to create databases using database collation, see CREATE DATABASE.

Syntax

COLLATE(string, 'case_sensitive' | 'case_insensitive');

Arguments

string

A string column or expression that you want to override.

'case_sensitive' | 'case_insensitive'

A string constant of a collation name. Amazon Redshift only supports case_sensitive or
case_insensitive.

Return type

The COLLATE function returns VARCHAR or CHAR depending on the first input expression type. This
function only changes the collation of the first input argument and won't change its output value.

Examples

To create table T and define col1 in table T as case_sensitive, use the following example.

CREATE TABLE T (col1 Varchar(20) COLLATE case_sensitive);

INSERT INTO T VALUES ('john'),('JOHN');

String functions 2067

Amazon Redshift Database Developer Guide

When you run the first query, Amazon Redshift only returns john. After the COLLATE function
runs on col1, the collation becomes case_insensitive. The second query returns both john and
JOHN.

SELECT * FROM T WHERE col1 = 'john';

+------+
| col1 |
+------+
| john |
+------+

SELECT * FROM T WHERE COLLATE(col1, 'case_insensitive') = 'john';

+------+
| col1 |
+------+
| john |
| JOHN |
+------+

To create table A and define col1 in table A as case_insensitive, use the following example.

CREATE TABLE A (col1 Varchar(20) COLLATE case_insensitive);

INSERT INTO A VALUES ('john'),('JOHN');

When you run the first query, Amazon Redshift returns both john and JOHN. After the COLLATE
function runs on col1, the collation becomes case_sensitive. The second query returns only
john.

SELECT * FROM A WHERE col1 = 'john';

+------+
| col1 |
+------+
| john |
| JOHN |
+------+

SELECT * FROM A WHERE COLLATE(col1, 'case_sensitive') = 'john';

String functions 2068

Amazon Redshift Database Developer Guide

+------+
| col1 |
+------+
| john |
+------+

CONCAT function

The CONCAT function concatenates two expressions and returns the resulting expression. To
concatenate more than two expressions, use nested CONCAT functions. The concatenation
operator (||) between two expressions produces the same results as the CONCAT function.

Syntax

CONCAT (expression1, expression2)

Arguments

expression1, expression2

Both arguments can be a fixed-length character string, a variable-length character string, a
binary expression, or an expression that evaluates to one of these inputs.

Return type

CONCAT returns an expression. The data type of the expression is the same type as the input
arguments.

If the input expressions are of different types, Amazon Redshift tries to implicitly type casts one of
the expressions. If values can't be cast, an error is returned.

Usage notes

• For both the CONCAT function and the concatenation operator, if one or both expressions is null,
the result of the concatenation is null.

Examples

The following example concatenates two character literals:

SELECT CONCAT('December 25, ', '2008');

String functions 2069

Amazon Redshift Database Developer Guide

concat

December 25, 2008
(1 row)

The following query, using the || operator instead of CONCAT, produces the same result:

SELECT 'December 25, '||'2008';

?column?

December 25, 2008
(1 row)

The following example uses a nested CONCAT function inside another CONCAT function to
concatenate three character strings:

SELECT CONCAT('Thursday, ', CONCAT('December 25, ', '2008'));

concat

Thursday, December 25, 2008
(1 row)

To concatenate columns that might contain NULLs, use the NVL and COALESCE functions, which
returns a given value when it encounters NULL. The following example uses NVL to return a 0
whenever NULL is encountered.

SELECT CONCAT(venuename, CONCAT(' seats ', NVL(venueseats, 0))) AS seating
FROM venue WHERE venuestate = 'NV' OR venuestate = 'NC'
ORDER BY 1
LIMIT 5;

seating

Ballys Hotel seats 0
Bank of America Stadium seats 73298
Bellagio Hotel seats 0
Caesars Palace seats 0
Harrahs Hotel seats 0

String functions 2070

Amazon Redshift Database Developer Guide

(5 rows)

The following query concatenates CITY and STATE values from the VENUE table:

SELECT CONCAT(venuecity, venuestate)
FROM venue
WHERE venueseats > 75000
ORDER BY venueseats;

concat

DenverCO
Kansas CityMO
East RutherfordNJ
LandoverMD
(4 rows)

The following query uses nested CONCAT functions. The query concatenates CITY and STATE
values from the VENUE table but delimits the resulting string with a comma and a space:

SELECT CONCAT(CONCAT(venuecity,', '),venuestate)
FROM venue
WHERE venueseats > 75000
ORDER BY venueseats;

concat

Denver, CO
Kansas City, MO
East Rutherford, NJ
Landover, MD
(4 rows)

The following example concatenates two binary expressions. Where abc is a binary value (with a
hexadecimal representation of 616263) and def is a binary value (with hexadecimal representation
of 646566). The result is automatically shown as the hexadecimal representation of the binary
value.

SELECT CONCAT('abc'::VARBYTE, 'def'::VARBYTE);

concat

String functions 2071

Amazon Redshift Database Developer Guide

616263646566

CRC32 function

CRC32 is a function used for error detection. The function uses a CRC32 algorithm to detect
changes between source and target data. The CRC32 function converts a variable-length string
into an 8-character string that is a text representation of the hexadecimal value of a 32 bit-binary
sequence. To detect changes between source and target data, use the CRC32 function on the
source data and store the output. Then, use the CRC32 function on the target data and compare
that output to the output from the source data. The outputs will be the same if the data was not
modified, and the outputs will be different if the data was modified.

Syntax

CRC32(string)

Arguments

string

A CHAR string, a VARCHAR string, or an expression that implicitly evaluates to a CHAR or
VARCHAR type.

Return type

The CRC32 function returns an 8-character string that is a text representation of the hexadecimal
value of a 32-bit binary sequence. The Amazon Redshift CRC32 function is based on the CRC-32C
polynomial.

Examples

To show the 8-bit value for the string Amazon Redshift.

SELECT CRC32('Amazon Redshift');

+----------+
| crc32 |
+----------+
| f2726906 |
+----------+

String functions 2072

Amazon Redshift Database Developer Guide

DIFFERENCE function

The DIFFERENCE function compares the American Soundex codes of two strings. The function
returns an INTEGER to indicate the number of matching characters between the Soundex codes.

A Soundex code is a string that is four characters long. A Soundex code represents how a word
sounds rather than how it is spelled. For example, Smith and Smyth have the same Soundex code.

Syntax

DIFFERENCE(string1, string2)

Arguments

string1

A CHAR string, a VARCHAR string, or an expression that implicitly evaluates to a CHAR or
VARCHAR type.

string2

A CHAR string, a VARCHAR string, or an expression that implicitly evaluates to a CHAR or
VARCHAR type.

Return type

INTEGER

The DIFFERENCE function returns an INTEGER value from 0–4 that counts the number of
matching characters in the American Soundex codes of the two strings. A Soundex code has 4
characters, so the DIFFERENCE function returns 4 when all 4 characters of the strings' American
Soundex code values are the same. DIFFERENCE returns 0 if one of the two strings is empty.
The function returns 1 if neither string contains valid characters. The DIFFERENCE function
converts only English alphabetical lowercase or uppercase ASCII characters, including a–z and
A–Z. DIFFERENCE ignores other characters.

Examples

To compare the Soundex values of the strings % and @, use the following example. The function
returns 1 because neither string contains valid characters.

String functions 2073

Amazon Redshift Database Developer Guide

SELECT DIFFERENCE('%', '@');

+------------+
| difference |
+------------+
| 1 |
+------------+

To compare the Soundex values of Amazon and an empty string, use the following example. The
function returns 0 because one of the two strings is empty.

SELECT DIFFERENCE('Amazon', '');

+------------+
| difference |
+------------+
| 0 |
+------------+

To compare the Soundex values of the strings Amazon and Ama, use the following example. The
function returns 2 because 2 characters of the strings' Soundex values are the same.

SELECT DIFFERENCE('Amazon', 'Ama');

+------------+
| difference |
+------------+
| 2 |
+------------+

To compare the Soundex values of the strings Amazon and +-*/%Amazon, use the following
example. The function returns 4 because all 4 characters of the strings' Soundex values are the
same. Notice that the function ignores the invalid characters +-*/% in the second string.

SELECT DIFFERENCE('Amazon', '+-*/%Amazon');

+------------+
| difference |
+------------+
| 4 |

String functions 2074

Amazon Redshift Database Developer Guide

+------------+

To compare the Soundex values of the strings AC/DC and Ay See Dee See, use the following
example. The function returns 4 because all 4 characters of the strings' Soundex values are the
same.

SELECT DIFFERENCE('AC/DC', 'Ay See Dee See');

+------------+
| difference |
+------------+
| 4 |
+------------+

INITCAP function

Capitalizes the first letter of each word in a specified string. INITCAP supports UTF-8 multibyte
characters, up to a maximum of four bytes per character.

Syntax

INITCAP(string)

Argument

string

A CHAR string, a VARCHAR string, or an expression that implicitly evaluates to a CHAR or
VARCHAR type.

Return type

VARCHAR

Usage notes

The INITCAP function makes the first letter of each word in a string uppercase, and any subsequent
letters are made (or left) lowercase. Therefore, it is important to understand which characters
(other than space characters) function as word separators. A word separator character is any non-

String functions 2075

Amazon Redshift Database Developer Guide

alphanumeric character, including punctuation marks, symbols, and control characters. All of the
following characters are word separators:

! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~

Tabs, newline characters, form feeds, line feeds, and carriage returns are also word separators.

Examples

The following examples use data from the CATEGORY and USERS tables in the TICKIT sample
database. For more information, see Sample database.

To capitalize the initials of each word in the CATDESC column, use the following example.

SELECT catid, catdesc, INITCAP(catdesc)
FROM category
ORDER BY 1, 2, 3;

+-------+--
+--+
| catid | catdesc | initcap
 |
+-------+--
+--+
| 1 | Major League Baseball | Major League Baseball
 |
| 2 | National Hockey League | National Hockey League
 |
| 3 | National Football League | National Football League
 |
| 4 | National Basketball Association | National Basketball Association
 |
| 5 | Major League Soccer | Major League Soccer
 |
| 6 | Musical theatre | Musical Theatre
 |
| 7 | All non-musical theatre | All Non-Musical Theatre
 |
| 8 | All opera and light opera | All Opera And Light Opera
 |
| 9 | All rock and pop music concerts | All Rock And Pop Music Concerts
 |

String functions 2076

Amazon Redshift Database Developer Guide

| 10 | All jazz singers and bands | All Jazz Singers And Bands
 |
| 11 | All symphony, concerto, and choir concerts | All Symphony, Concerto, And
 Choir Concerts |
+-------+--
+--+

To show that the INITCAP function does not preserve uppercase characters when they do not begin
words, use the following example. For example, the string MLB becomes Mlb.

SELECT INITCAP(catname)
FROM category
ORDER BY catname;

+-----------+
| initcap |
+-----------+
| Classical |
| Jazz |
| Mlb |
| Mls |
| Musicals |
| Nba |
| Nfl |
| Nhl |
| Opera |
| Plays |
| Pop |
+-----------+

To show that non-alphanumeric characters other than spaces function as word separators, use the
following example. Several letters in each string will be capitalized.

SELECT email, INITCAP(email)
FROM users
ORDER BY userid DESC LIMIT 5;

+------------------------------------+------------------------------------+
| email | initcap |
+------------------------------------+------------------------------------+
| urna.Ut@egetdictumplacerat.edu | Urna.Ut@Egetdictumplacerat.Edu |
| nibh.enim@egestas.ca | Nibh.Enim@Egestas.Ca |

String functions 2077

Amazon Redshift Database Developer Guide

in@Donecat.ca	In@Donecat.Ca
sodales@blanditviverraDonec.ca	Sodales@Blanditviverradonec.Ca
sociis.natoque.penatibus@vitae.org	Sociis.Natoque.Penatibus@Vitae.Org
+------------------------------------+------------------------------------+

LEFT and RIGHT functions

These functions return the specified number of leftmost or rightmost characters from a character
string.

The number is based on the number of characters, not bytes, so that multibyte characters are
counted as single characters.

Syntax

LEFT(string, integer)

RIGHT(string, integer)

Arguments

string

A CHAR string, a VARCHAR string, or any expression that evaluates to a CHAR or VARCHAR string.

integer

A positive integer.

Return type

VARCHAR

Examples

The following example uses data from the EVENT table in the TICKIT sample database. For more
information, see Sample database.

To return the leftmost 5 and rightmost 5 characters from event names that have event IDs
between 1000 and 1005, use the following example.

String functions 2078

Amazon Redshift Database Developer Guide

SELECT eventid, eventname,
LEFT(eventname,5) AS left_5,
RIGHT(eventname,5) AS right_5
FROM event
WHERE eventid BETWEEN 1000 AND 1005
ORDER BY 1;

+---------+----------------+--------+---------+
| eventid | eventname | left_5 | right_5 |
+---------+----------------+--------+---------+
1000	Gypsy	Gypsy	Gypsy
1001	Chicago	Chica	icago
1002	The King and I	The K	and I
1003	Pal Joey	Pal J	Joey
1004	Grease	Greas	rease
1005	Chicago	Chica	icago
+---------+----------------+--------+---------+

LEN function

Returns the length of the specified string as the number of characters.

Syntax

LEN is a synonym of LENGTH function, CHAR_LENGTH function, CHARACTER_LENGTH function,
and TEXTLEN function.

LEN(expression)

Argument

expression

A CHAR string, a VARCHAR string, a VARBYTE expression, or an expression that implicitly
evaluates to a CHAR, VARCHAR, or VARBYTE type.

Return type

INTEGER

The LEN function returns an integer indicating the number of characters in the input string.

String functions 2079

Amazon Redshift Database Developer Guide

If the input string is a character string, the LEN function returns the actual number of characters
in multi-byte strings, not the number of bytes. For example, a VARCHAR(12) column is required
to store three four-byte Chinese characters. The LEN function will return 3 for that same string.
To get the length of a string in bytes, use the OCTET_LENGTH function.

Usage notes

If expression is a CHAR string, trailing spaces are not counted.

If expression is a VARCHAR string, trailing spaces are counted.

Examples

To return the number of bytes and the number of characters in the string français, use the
following example.

SELECT OCTET_LENGTH('français'),
LEN('français');

+--------------+-----+
| octet_length | len |
+--------------+-----+
| 9 | 8 |
+--------------+-----+

To return the number of bytes and the number of characters in the string français without using
the OCTET_LENGTH function, use the following example. For more information, see the CAST
function.

SELECT LEN(CAST('français' AS VARBYTE)) as bytes, LEN('français');

+-------+-----+
| bytes | len |
+-------+-----+
| 9 | 8 |
+-------+-----+

To return the number of characters in the strings cat with no trailing spaces, cat with three
trailing spaces, cat with three trailing spaces cast as a CHAR of length 6, and cat with three
trailing spaces cast as a VARCHAR of length 6, use the following example. Notice that the function

String functions 2080

Amazon Redshift Database Developer Guide

does not count trailing spaces for CHAR strings, but it does count trailing spaces for VARCHAR
strings.

SELECT LEN('cat'), LEN('cat '), LEN(CAST('cat ' AS CHAR(6))) AS len_char,
 LEN(CAST('cat ' AS VARCHAR(6))) AS len_varchar;

+-----+-----+----------+-------------+
| len | len | len_char | len_varchar |
+-----+-----+----------+-------------+
| 3 | 6 | 3 | 6 |
+-----+-----+----------+-------------+

The following example uses data from the VENUE table in the TICKIT sample database. For more
information, see Sample database.

To return the 10 longest venue names in the VENUE table, use the following example.

SELECT venuename, LEN(venuename)
FROM venue
ORDER BY 2 DESC, 1
LIMIT 10;

+---+-----+
| venuename | len |
+---+-----+
Saratoga Springs Performing Arts Center	39
Lincoln Center for the Performing Arts	38
Nassau Veterans Memorial Coliseum	33
Jacksonville Municipal Stadium	30
Rangers BallPark in Arlington	29
University of Phoenix Stadium	29
Circle in the Square Theatre	28
Hubert H. Humphrey Metrodome	28
Oriole Park at Camden Yards	27
Dick's Sporting Goods Park	26
+---+-----+

LENGTH function

Synonym of the LEN function.

See LEN function.

String functions 2081

Amazon Redshift Database Developer Guide

LOWER function

Converts a string to lowercase. LOWER supports UTF-8 multibyte characters, up to a maximum of
four bytes per character.

Syntax

LOWER(string)

Argument

string

A VARCHAR string or any expression that evaluates to the VARCHAR type.

Return type

string

The LOWER function returns a string that is the same data type as the input string. For example,
if the input is a CHAR string, the function will return a CHAR string.

Examples

The following example uses data from the CATEGORY table in the TICKIT sample database. For
more information, see Sample database.

To convert the VARCHAR strings in the CATNAME column to lowercase, use the following example.

SELECT catname, LOWER(catname) FROM category ORDER BY 1,2;

+-----------+-----------+
| catname | lower |
+-----------+-----------+
Classical	classical
Jazz	jazz
MLB	mlb
MLS	mls
Musicals	musicals
NBA	nba
NFL	nfl
NHL	nhl

String functions 2082

Amazon Redshift Database Developer Guide

Opera	opera
Plays	plays
Pop	pop
+-----------+-----------+

LPAD and RPAD functions

These functions prepend or append characters to a string, based on a specified length.

Syntax

LPAD(string1, length, [string2])

RPAD(string1, length, [string2])

Arguments

string1

A CHAR string, a VARCHAR string, or an expression that implicitly evaluates to a CHAR or
VARCHAR type.

length

An integer that defines the length of the result of the function. The length of a string is based
on the number of characters, not bytes, so that multi-byte characters are counted as single
characters. If string1 is longer than the specified length, it is truncated (on the right). If length is
zero or a negative number, the result of the function is an empty string.

string2

(Optional) One or more characters that are prepended or appended to string1. If this argument
is not specified, spaces are used.

Return type

VARCHAR

Examples

The following examples use data from the EVENT table in the TICKIT sample database. For more
information, see Sample database.

String functions 2083

Amazon Redshift Database Developer Guide

To truncate a specified set of event names to 20 characters and prepend the shorter names with
spaces, use the following example.

SELECT LPAD(eventname, 20) FROM event
WHERE eventid BETWEEN 1 AND 5 ORDER BY 1;

+---------------------+
| lpad |
+---------------------+
| Salome |
| Il Trovatore |
| Boris Godunov |
| Gotterdammerung |
|La Cenerentola (Cind |
+-----------------------+

To truncate the same set of event names to 20 characters but append the shorter names with
0123456789, use the following example.

SELECT RPAD(eventname, 20,'0123456789') FROM event
WHERE eventid BETWEEN 1 AND 5 ORDER BY 1;

+----------------------+
| rpad |
+----------------------+
| Boris Godunov0123456 |
| Gotterdammerung01234 |
| Il Trovatore01234567 |
| La Cenerentola (Cind |
| Salome01234567890123 |
+----------------------+

LTRIM function

Trims characters from the beginning of a string. Removes the longest string containing only
characters in the trim characters list. Trimming is complete when a trim character does not appear
in the input string.

Syntax

LTRIM(string [, trim_chars])

String functions 2084

Amazon Redshift Database Developer Guide

Arguments

string

A string column, expression, or string literal to be trimmed.

trim_chars

A string column, expression, or string literal that represents the characters to be trimmed from
the beginning of string. If not specified, a space is used as the trim character.

Return type

The LTRIM function returns a character string that is the same data type as the input string (CHAR
or VARCHAR).

Examples

The following example trims the year from the listime column. The trim characters in string
literal '2008-' indicate the characters to be trimmed from the left. If you use the trim characters
'028-', you achieve the same result.

select listid, listtime, ltrim(listtime, '2008-')
from listing
order by 1, 2, 3
limit 10;

listid | listtime | ltrim
-------+---------------------+----------------
 1 | 2008-01-24 06:43:29 | 1-24 06:43:29
 2 | 2008-03-05 12:25:29 | 3-05 12:25:29
 3 | 2008-11-01 07:35:33 | 11-01 07:35:33
 4 | 2008-05-24 01:18:37 | 5-24 01:18:37
 5 | 2008-05-17 02:29:11 | 5-17 02:29:11
 6 | 2008-08-15 02:08:13 | 15 02:08:13
 7 | 2008-11-15 09:38:15 | 11-15 09:38:15
 8 | 2008-11-09 05:07:30 | 11-09 05:07:30
 9 | 2008-09-09 08:03:36 | 9-09 08:03:36
 10 | 2008-06-17 09:44:54 | 6-17 09:44:54

LTRIM removes any of the characters in trim_chars when they appear at the beginning of string.
The following example trims the characters 'C', 'D', and 'G' when they appear at the beginning of
VENUENAME, which is a VARCHAR column.

String functions 2085

Amazon Redshift Database Developer Guide

select venueid, venuename, ltrim(venuename, 'CDG')
from venue
where venuename like '%Park'
order by 2
limit 7;

venueid | venuename | btrim
--------+----------------------------+--------------------------
 121 | ATT Park | ATT Park
 109 | Citizens Bank Park | itizens Bank Park
 102 | Comerica Park | omerica Park
 9 | Dick's Sporting Goods Park | ick's Sporting Goods Park
 97 | Fenway Park | Fenway Park
 112 | Great American Ball Park | reat American Ball Park
 114 | Miller Park | Miller Park

The following example uses the trim character 2 which is retrieved from the venueid column.

select ltrim('2008-01-24 06:43:29', venueid)
from venue where venueid=2;

ltrim

008-01-24 06:43:29

The following example does not trim any characters because a 2 is found before the '0' trim
character.

select ltrim('2008-01-24 06:43:29', '0');

ltrim

2008-01-24 06:43:29

The following example uses the default space trim character and trims the two spaces from the
beginning of the string.

select ltrim(' 2008-01-24 06:43:29');

ltrim

String functions 2086

Amazon Redshift Database Developer Guide

2008-01-24 06:43:29

OCTETINDEX function

The OCTETINDEX function returns the location of a substring within a string as a number of bytes.

Syntax

OCTETINDEX(substring, string)

Arguments

substring

A CHAR string, a VARCHAR string, or an expression that implicitly evaluates to a CHAR or
VARCHAR type.

string

A CHAR string, a VARCHAR string, or an expression that implicitly evaluates to a CHAR or
VARCHAR type.

Return type

INTEGER

The OCTETINDEX function returns an INTEGER value corresponding to the position of the
substring within the string as a number of bytes, where the first character in the string is
counted as 1. If the string doesn't contain multibyte characters, the result is equal to the result
of the CHARINDEX function. If the string does not contain the substring, the function returns 0.
If the substring is empty, the function returns 1.

Examples

To return the postion of the substring q in the string Amazon Redshift, use the following
example. This example returns 0 because the substring is not in the string.

SELECT OCTETINDEX('q', 'Amazon Redshift');

String functions 2087

Amazon Redshift Database Developer Guide

+------------+
| octetindex |
+------------+
| 0 |
+------------+

To return the postion of an empty substring in the string Amazon Redshift, use the following
example. This example returns 1 because the substring is empty.

SELECT OCTETINDEX('', 'Amazon Redshift');

+------------+
| octetindex |
+------------+
| 1 |
+------------+

To return the postion of the substring Redshift in the string Amazon Redshift, use the
following example. This example returns 8 because the substring begins on the eighth byte of the
string.

SELECT OCTETINDEX('Redshift', 'Amazon Redshift');

+------------+
| octetindex |
+------------+
| 8 |
+------------+

To return the postion of the substring Redshift in the string Amazon Redshift, use the
following example. This example returns 21 because the first six characters of the string are
double-byte characters.

SELECT OCTETINDEX('Redshift', 'Άμαζον Amazon Redshift');

+------------+
| octetindex |
+------------+
| 21 |
+------------+

String functions 2088

Amazon Redshift Database Developer Guide

OCTET_LENGTH function

Returns the length of the specified string as the number of bytes.

Syntax

OCTET_LENGTH(expression)

Argument

expression

A CHAR string, a VARCHAR string, a VARBYTE expression, or an expression that implicitly
evaluates to a CHAR, VARCHAR, or VARBYTE type.

Return type

INTEGER

The OCTET_LENGTH function returns an integer indicating the number of bytes in the input
string.

If the input string is a character string, the LEN function returns the actual number of characters
in multi-byte strings, not the number of bytes. For example, a VARCHAR(12) column is required
to store three four-byte Chinese characters. The OCTET_LENGTH function will return 12 for that
string, and the LEN function will return 3 for that same string.

Usage notes

If expression is a CHAR string, the function returns the length of the CHAR string. For example, the
output of a CHAR(6) input is a CHAR(6).

If expression is a VARCHAR string, trailing spaces are counted.

Examples

To return the number of bytes when the string francais with three trailing spaces is cast to
a CHAR and a VARCHAR type, use the following example. For more information, see the CAST
function.

String functions 2089

Amazon Redshift Database Developer Guide

SELECT OCTET_LENGTH(CAST('francais ' AS CHAR(15))) AS octet_length_char,
 OCTET_LENGTH(CAST('francais ' AS VARCHAR(15))) AS octet_length_varchar;

+-------------------+----------------------+
| octet_length_char | octet_length_varchar |
+-------------------+----------------------+
| 15 | 11 |
+-------------------+----------------------+

To return the number of bytes and the number of characters in the string français, use the
following example.

SELECT OCTET_LENGTH('français'), LEN('français');

+--------------+-----+
| octet_length | len |
+--------------+-----+
| 9 | 8 |
+--------------+-----+

To return the number of bytes when the string français is cast as a VARBYTE, use the following
example.

SELECT OCTET_LENGTH(CAST('français' AS VARBYTE));

+--------------+
| octet_length |
+--------------+
| 9 |
+--------------+

POSITION function

Returns the location of the specified substring within a string.

See CHARINDEX function and STRPOS function for similar functions.

Syntax

POSITION(substring IN string)

String functions 2090

Amazon Redshift Database Developer Guide

Arguments

substring

The substring to search for within the string.

string

The string or column to be searched.

Return type

The POSITION function returns an INTEGER corresponding to the position of the substring (one-
based, not zero-based). The position is based on the number of characters, not bytes, so that multi-
byte characters are counted as single characters. POSITION returns 0 if the substring is not found
within the string.

Examples

To return the position of the string fish within the word dog, use the following example.

SELECT POSITION('fish' IN 'dog');

+-----------+
| position |
+-----------+
| 0 |
+-----------+

To return the position of the string fish within the word dogfish, use the following example.

SELECT POSITION('fish' IN 'dogfish');

+-----------+
| position |
+-----------+
| 4 |
+-----------+

The following example uses the SALES table from the TICKIT sample database. For more
information, see Sample database.

String functions 2091

Amazon Redshift Database Developer Guide

To return the number of distinct sales transactions with a commission over 999.00 from the SALES
table, use the following example. This command counts commissions greater than 999.00 by
checking if the decimal is more than 4 places from the beginning of the commission value.

SELECT DISTINCT POSITION('.' IN commission), COUNT (POSITION('.' IN commission))
FROM sales
WHERE POSITION('.' IN commission) > 4
GROUP BY POSITION('.' IN commission)
ORDER BY 1,2;

+-----------+-------+
| position | count |
+-----------+-------+
| 5 | 629 |
+-----------+-------+

QUOTE_IDENT function

The QUOTE_IDENT function returns the specified string as a string with a leading double quotation
mark and a trailing double quotation mark. The function output can be used as an identifier in a
SQL statement. The function appropriately doubles any embedded double quotation marks.

QUOTE_IDENT adds double quotation marks only where necessary to create a valid identifier, when
the string contains non-identifier characters or would otherwise be folded to lowercase. To always
return a single-quoted string, use QUOTE_LITERAL.

Syntax

QUOTE_IDENT(string)

Argument

string

A CHAR or VARCHAR string.

Return type

The QUOTE_IDENT function returns the same type of string as the input string.

String functions 2092

Amazon Redshift Database Developer Guide

Examples

To return the string "CAT" with doubled quotation marks, use the following example.

SELECT QUOTE_IDENT('"CAT"');

+-------------+
| quote_ident |
+-------------+
| """CAT""" |
+-------------+

The following example uses data from the CATEGORY table in the TICKIT sample database. For
more information, see Sample database.

To return the CATNAME column surrounded by quotation marks, use the following example.

SELECT catid, QUOTE_IDENT(catname)
FROM category
ORDER BY 1,2;

+-------+-------------+
| catid | quote_ident |
+-------+-------------+
1	"MLB"
2	"NHL"
3	"NFL"
4	"NBA"
5	"MLS"
6	"Musicals"
7	"Plays"
8	"Opera"
9	"Pop"
10	"Jazz"
11	"Classical"
+-------+-------------+

QUOTE_LITERAL function

The QUOTE_LITERAL function returns the specified string as a single quoted string so that it can
be used as a string literal in a SQL statement. If the input parameter is a number, QUOTE_LITERAL
treats it as a string. Appropriately doubles any embedded single quotation marks and backslashes.

String functions 2093

Amazon Redshift Database Developer Guide

Syntax

QUOTE_LITERAL(string)

Argument

string

A CHAR or VARCHAR string.

Return type

The QUOTE_LITERAL function returns a CHAR or VARCHAR string that is the same data type as the
input string.

Examples

To return the string ''CAT'' with SINGLE quotation marks, use the following example.

SELECT QUOTE_LITERAL('''CAT''');

+---------------+
| quote_literal |
+---------------+
| '''CAT''' |
+---------------+

The following examples use data from the CATEGORY table in the TICKIT sample database. For
more information, see Sample database.

To return the CATNAME column surrounded by single quotation marks, use the following example.

SELECT catid, QUOTE_LITERAL(catname)
FROM category
ORDER BY 1,2;

+-------+---------------+
| catid | quote_literal |
+-------+---------------+
1	'MLB'
2	'NHL'
3	'NFL'

String functions 2094

Amazon Redshift Database Developer Guide

4	'NBA'
5	'MLS'
6	'Musicals'
7	'Plays'
8	'Opera'
9	'Pop'
10	'Jazz'
11	'Classical'
+-------+---------------+

To return the CATID column surrounded by single quotation marks, use the following example.

SELECT QUOTE_LITERAL(catid), catname
FROM category
ORDER BY 1,2;

+---------------+-----------+
| quote_literal | catname |
+---------------+-----------+
'1'	MLB
'10'	Jazz
'11'	Classical
'2'	NHL
'3'	NFL
'4'	NBA
'5'	MLS
'6'	Musicals
'7'	Plays
'8'	Opera
'9'	Pop
+---------------+-----------+

REGEXP_COUNT function

Searches a string for a regular expression pattern and returns an integer that indicates the number
of times the specified pattern occurs in the string. If no match is found, then the function returns
0. For more information about regular expressions, see POSIX operators and Regular expression in
Wikipedia.

Syntax

REGEXP_COUNT(source_string, pattern [, position [, parameters]])

String functions 2095

https://en.wikipedia.org/wiki/Regular_expression

Amazon Redshift Database Developer Guide

Arguments

source_string

A CHAR or VARCHAR string.

pattern

A UTF-8 string literal that represents a regular expression pattern. For more information, see
POSIX operators.

position

(Optional) A positive INTEGER that indicates the position within source_string to begin
searching. The position is based on the number of characters, not bytes, so that multibyte
characters are counted as single characters. The default is 1. If position is less than 1, the search
begins at the first character of source_string. If position is greater than the number of characters
in source_string, the result is 0.

parameters

(Optional) One or more string literals that indicate how the function matches the pattern. The
possible values are the following:

• c – Perform case-sensitive matching. The default is to use case-sensitive matching.

• i – Perform case-insensitive matching.

• p – Interpret the pattern with Perl Compatible Regular Expression (PCRE) dialect. For more
information about PCRE, see Perl Compatible Regular Expressions in Wikipedia.

Return type

INTEGER

Examples

To count the number of times a three-letter sequence occurs, use the following example.

SELECT REGEXP_COUNT('abcdefghijklmnopqrstuvwxyz', '[a-z]{3}');

+--------------+
| regexp_count |
+--------------+
| 8 |

String functions 2096

https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions

Amazon Redshift Database Developer Guide

+--------------+

To count the occurrences of the string FOX using case-insensitive matching, use the following
example.

SELECT REGEXP_COUNT('the fox', 'FOX', 1, 'i');

+--------------+
| regexp_count |
+--------------+
| 1 |
+--------------+

To use a pattern written in the PCRE dialect to locate words containing at least one number and
one lowercase letter, use the following example. The example uses the ?= operator, which has a
specific look-ahead connotation in PCRE. This example counts the number of occurrences of such
words, with case-sensitive matching.

SELECT REGEXP_COUNT('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 'p');

+--------------+
| regexp_count |
+--------------+
| 2 |
+--------------+

To use a pattern written in the PCRE dialect to locate words containing at least one number and
one lowercase letter, use the following example. It uses the ?= operator, which has a specific
connotation in PCRE. This example counts the number of occurrences of such words, but differs
from the previous example in that it uses case-insensitive matching.

SELECT REGEXP_COUNT('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 'ip');

+--------------+
| regexp_count |
+--------------+
| 3 |
+--------------+

String functions 2097

Amazon Redshift Database Developer Guide

The following example uses data from the USERS table in the TICKIT sample database. For more
information, see Sample database.

To count the number of times the top-level domain name is either org or edu, use the following
example.

SELECT email, REGEXP_COUNT(email,'@[^.]*\.(org|edu)') FROM users
ORDER BY userid LIMIT 4;

+---+--------------+
| email | regexp_count |
+---+--------------+
Etiam.laoreet.libero@sodalesMaurisblandit.edu	1
Suspendisse.tristique@nonnisiAenean.edu	1
amet.faucibus.ut@condimentumegetvolutpat.ca	0
sed@lacusUtnec.ca	0
+---+--------------+

REGEXP_INSTR function

Searches a string for a regular expression pattern and returns an integer that indicates the
beginning position or ending position of the matched substring. If no match is found, then the
function returns 0. REGEXP_INSTR is similar to the POSITION function, but lets you search a string
for a regular expression pattern. For more information about regular expressions, see POSIX
operators and Regular expression in Wikipedia.

Syntax

REGEXP_INSTR(source_string, pattern [, position [, occurrence] [, option [, parameters
]]]])

Arguments

source_string

A string expression, such as a column name, to be searched.

pattern

A UTF-8 string literal that represents a regular expression pattern. For more information, see
POSIX operators.

String functions 2098

https://en.wikipedia.org/wiki/Regular_expression

Amazon Redshift Database Developer Guide

position

(Optional) A positive INTEGER that indicates the position within source_string to begin
searching. The position is based on the number of characters, not bytes, so that multibyte
characters are counted as single characters. The default is 1. If position is less than 1, the search
begins at the first character of source_string. If position is greater than the number of characters
in source_string, the result is 0.

occurrence

(Optional) A positive INTEGER that indicates which occurrence of the pattern to use.
REGEXP_INSTR skips the first occurrence-1 matches. The default is 1. If occurrence is less
than 1 or greater than the number of characters in source_string, the search is ignored and the
result is 0.

option

(Optional) A value that indicates whether to return the position of the first character of the
match (0) or the position of the first character following the end of the match (1). A nonzero
value is the same as 1. The default value is 0.

parameters

(Optional) One or more string literals that indicate how the function matches the pattern. The
possible values are the following:

• c – Perform case-sensitive matching. The default is to use case-sensitive matching.

• i – Perform case-insensitive matching.

• e – Extract a substring using a subexpression.

If pattern includes a subexpression, REGEXP_INSTR matches a substring using the first
subexpression in pattern. REGEXP_INSTR considers only the first subexpression; additional
subexpressions are ignored. If the pattern doesn't have a subexpression, REGEXP_INSTR
ignores the 'e' parameter.

• p – Interpret the pattern with Perl Compatible Regular Expression (PCRE) dialect. For more
information about PCRE, see Perl Compatible Regular Expressions in Wikipedia.

Return type

Integer

String functions 2099

https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions

Amazon Redshift Database Developer Guide

Examples

The following examples use data from the USERS table in the TICKIT sample database. For more
information, see Sample database.

To search for the @ character that begins a domain name and returns the starting position of the
first match, use the following example.

SELECT email, REGEXP_INSTR(email, '@[^.]*')
FROM users
ORDER BY userid LIMIT 4;

+---+--------------+
| email | regexp_instr |
+---+--------------+
Etiam.laoreet.libero@sodalesMaurisblandit.edu	21
Suspendisse.tristique@nonnisiAenean.edu	22
amet.faucibus.ut@condimentumegetvolutpat.ca	17
sed@lacusUtnec.ca	4
+---+--------------+

To search for variants of the word Center and returns the starting position of the first match, use
the following example.

SELECT venuename, REGEXP_INSTR(venuename,'[cC]ent(er|re)$')
FROM venue
WHERE REGEXP_INSTR(venuename,'[cC]ent(er|re)$') > 0
ORDER BY venueid LIMIT 4;

+-----------------------+--------------+
| venuename | regexp_instr |
+-----------------------+--------------+
The Home Depot Center	16
Izod Center	6
Wachovia Center	10
Air Canada Centre	12
+-----------------------+--------------+

To find the starting position of the first occurrence of the string FOX, using case-insensitive
matching logic, use the following example.

SELECT REGEXP_INSTR('the fox', 'FOX', 1, 1, 0, 'i');

String functions 2100

Amazon Redshift Database Developer Guide

+--------------+
| regexp_instr |
+--------------+
| 5 |
+--------------+

To use a pattern written in PCRE dialect to locate words containing at least one number and one
lowercase letter, use the following example. It uses the ?= operator, which has a specific look-
ahead connotation in PCRE. This example finds the starting position of the second such word.

SELECT REGEXP_INSTR('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 0, 'p');

+--------------+
| regexp_instr |
+--------------+
| 21 |
+--------------+

To use a pattern written in PCRE dialect to locate words containing at least one number and one
lowercase letter, use the following example. It uses the ?= operator, which has a specific look-
ahead connotation in PCRE. This example finds the starting position of the second such word, but
differs from the previous example in that it uses case-insensitive matching.

SELECT REGEXP_INSTR('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 0, 'ip');

+--------------+
| regexp_instr |
+--------------+
| 15 |
+--------------+

REGEXP_REPLACE function

Searches a string for a regular expression pattern and replaces every occurrence of the pattern with
the specified string. REGEXP_REPLACE is similar to the REPLACE function, but lets you search a
string for a regular expression pattern. For more information about regular expressions, see POSIX
operators and Regular expression in Wikipedia.

String functions 2101

https://en.wikipedia.org/wiki/Regular_expression

Amazon Redshift Database Developer Guide

REGEXP_REPLACE is similar to the TRANSLATE function and the REPLACE function, except that
TRANSLATE makes multiple single-character substitutions and REPLACE substitutes one entire
string with another string, while REGEXP_REPLACE lets you search a string for a regular expression
pattern.

Syntax

REGEXP_REPLACE(source_string, pattern [, replace_string [, position [, parameters
]]])

Arguments

source_string

A CHAR or VARCHAR string expression, such as a column name, to be searched.

pattern

A UTF-8 string literal that represents a regular expression pattern. For more information, see
POSIX operators.

replace_string

(Optional) A CHAR or VARCHAR string expression, such as a column name, that will replace each
occurrence of pattern. The default is an empty string ("").

position

(Optional) A positive integer that indicates the position within source_string to begin searching.
The position is based on the number of characters, not bytes, so that multibyte characters
are counted as single characters. The default is 1. If position is less than 1, the search begins
at the first character of source_string. If position is greater than the number of characters in
source_string, the result is source_string.

parameters

(Optional) One or more string literals that indicate how the function matches the pattern. The
possible values are the following:

• c – Perform case-sensitive matching. The default is to use case-sensitive matching.

• i – Perform case-insensitive matching.

• p – Interpret the pattern with Perl Compatible Regular Expression (PCRE) dialect. For more
information about PCRE, see Perl Compatible Regular Expressions in Wikipedia.

String functions 2102

https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions

Amazon Redshift Database Developer Guide

Return type

VARCHAR

If either pattern or replace_string is NULL, the function returns NULL.

Examples

To replace all occurrences of the string FOX within the value quick brown fox using case-
insensitive matching, use the following example.

SELECT REGEXP_REPLACE('the fox', 'FOX', 'quick brown fox', 1, 'i');

+---------------------+
| regexp_replace |
+---------------------+
| the quick brown fox |
+---------------------+

The following example uses a pattern written in the PCRE dialect to locate words containing at
least one number and one lowercase letter. It uses the ?= operator, which has a specific look-ahead
connotation in PCRE. To replace each occurrence of such a word with the value [hidden], use the
following example.

SELECT REGEXP_REPLACE('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 '[hidden]', 1, 'p');

+-------------------------------+
| regexp_replace |
+-------------------------------+
| [hidden] plain A1234 [hidden] |
+-------------------------------+

The following example uses a pattern written in the PCRE dialect to locate words containing at
least one number and one lowercase letter. It uses the ?= operator, which has a specific look-
ahead connotation in PCRE. To replace each occurrence of such a word with the value [hidden],
but differs from the previous example in that it uses case-insensitive matching, use the following
example.

SELECT REGEXP_REPLACE('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 '[hidden]', 1, 'ip');

String functions 2103

Amazon Redshift Database Developer Guide

+----------------------------------+
| regexp_replace |
+----------------------------------+
| [hidden] plain [hidden] [hidden] |
+----------------------------------+

The following examples use data from the USERS table in the TICKIT sample database. For more
information, see Sample database.

To delete the @ and domain name from email addresses, use the following example.

SELECT email, REGEXP_REPLACE(email, '@.*\\.(org|gov|com|edu|ca)$')
FROM users
ORDER BY userid LIMIT 4;

+---+-----------------------+
| email | regexp_replace |
+---+-----------------------+
Etiam.laoreet.libero@sodalesMaurisblandit.edu	Etiam.laoreet.libero
Suspendisse.tristique@nonnisiAenean.edu	Suspendisse.tristique
amet.faucibus.ut@condimentumegetvolutpat.ca	amet.faucibus.ut
sed@lacusUtnec.ca	sed
+---+-----------------------+

To replace the domain names of email addresses with internal.company.com, use the following
example.

SELECT email, REGEXP_REPLACE(email, '@.*\\.[[:alpha:]]{2,3}','@internal.company.com')
FROM users
ORDER BY userid LIMIT 4;

+---
+--+
| email | regexp_replace
 |
+---
+--+
| Etiam.laoreet.libero@sodalesMaurisblandit.edu |
 Etiam.laoreet.libero@internal.company.com |
| Suspendisse.tristique@nonnisiAenean.edu |
 Suspendisse.tristique@internal.company.com |

String functions 2104

Amazon Redshift Database Developer Guide

| amet.faucibus.ut@condimentumegetvolutpat.ca | amet.faucibus.ut@internal.company.com
 |
| sed@lacusUtnec.ca | sed@internal.company.com
 |
+---
+--+

REGEXP_SUBSTR function

Returns characters from a string by searching it for a regular expression pattern. REGEXP_SUBSTR
is similar to the SUBSTRING function function, but lets you search a string for a regular expression
pattern. If the function can't match the regular expression to any characters in the string, it returns
an empty string. For more information about regular expressions, see POSIX operators and Regular
expression in Wikipedia.

Syntax

REGEXP_SUBSTR(source_string, pattern [, position [, occurrence [, parameters]]])

Arguments

source_string

A string expression to be searched.

pattern

A UTF-8 string literal that represents a regular expression pattern. For more information, see
POSIX operators.

position

A positive integer that indicates the position within source_string to begin searching. The
position is based on the number of characters, not bytes, so that multi-byte characters are
counted as single characters. The default is 1. If position is less than 1, the search begins at
the first character of source_string. If position is greater than the number of characters in
source_string, the result is an empty string ("").

occurrence

A positive integer that indicates which occurrence of the pattern to use. REGEXP_SUBSTR skips
the first occurrence -1 matches. The default is 1. If occurrence is less than 1 or greater than the
number of characters in source_string, the search is ignored and the result is NULL.

String functions 2105

https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Regular_expression

Amazon Redshift Database Developer Guide

parameters

One or more string literals that indicate how the function matches the pattern. The possible
values are the following:

• c – Perform case-sensitive matching. The default is to use case-sensitive matching.

• i – Perform case-insensitive matching.

• e – Extract a substring using a subexpression.

If pattern includes a subexpression, REGEXP_SUBSTR matches a substring using the
first subexpression in pattern. A subexpression is an expression within the pattern that
is bracketed with parentheses. For example, for the pattern 'This is a (\\w+)'
matches the first expression with the string 'This is a ' followed by a word. Instead of
returning pattern, REGEXP_SUBSTR with the e parameter returns only the string inside the
subexpression.

REGEXP_SUBSTR considers only the first subexpression; additional subexpressions are
ignored. If the pattern doesn't have a subexpression, REGEXP_SUBSTR ignores the 'e'
parameter.

• p – Interpret the pattern with Perl Compatible Regular Expression (PCRE) dialect. For more
information about PCRE, see Perl Compatible Regular Expressions in Wikipedia.

Return type

VARCHAR

Examples

The following example returns the portion of an email address between the @ character and the
domain extension. The users data queried is from the Amazon Redshift sample data. For more
information, see Sample database.

SELECT email, regexp_substr(email,'@[^.]*')
FROM users
ORDER BY userid LIMIT 4;

 email | regexp_substr
---+--------------------------
 Suspendisse.tristique@nonnisiAenean.edu | @nonnisiAenean
 amet.faucibus.ut@condimentumegetvolutpat.ca | @condimentumegetvolutpat

String functions 2106

https://en.wikipedia.org/wiki/Perl_Compatible_Regular_Expressions

Amazon Redshift Database Developer Guide

 sed@lacusUtnec.ca | @lacusUtnec
 Cum@accumsan.com | @accumsan

The following example returns the portion of the input corresponding to the first occurrence of the
string FOX using case-insensitive matching.

SELECT regexp_substr('the fox', 'FOX', 1, 1, 'i');

 regexp_substr

 fox

The following example returns the portion of the input corresponding to the second occurrence
of the string FOX using case-insensitive matching. The result is NULL (empty) because there is no
second occurrence.

SELECT regexp_substr('the fox', 'FOX', 1, 2, 'i');

 regexp_substr

The following example returns the first portion of the input that begins with lowercase letters. This
is functionally identical to the same SELECT statement without the c parameter.

SELECT regexp_substr('THE SECRET CODE IS THE LOWERCASE PART OF 1931abc0EZ.', '[a-z]+',
 1, 1, 'c');

 regexp_substr

 abc

The following example uses a pattern written in the PCRE dialect to locate words containing at
least one number and one lowercase letter. It uses the ?= operator, which has a specific look-ahead
connotation in PCRE. This example returns the portion of the input corresponding to the second
such word.

SELECT regexp_substr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 'p');

String functions 2107

Amazon Redshift Database Developer Guide

 regexp_substr

 a1234

The following example uses a pattern written in the PCRE dialect to locate words containing at
least one number and one lowercase letter. It uses the ?= operator, which has a specific look-ahead
connotation in PCRE. This example returns the portion of the input corresponding to the second
such word, but differs from the previous example in that it uses case-insensitive matching.

SELECT regexp_substr('passwd7 plain A1234 a1234', '(?=[^]*[a-z])(?=[^]*[0-9])[^]+',
 1, 2, 'ip');

 regexp_substr

 A1234

The following example uses a subexpression to find the second string matching the pattern
'this is a (\\w+)' using case-insensitive matching. It returns the subexpression inside the
parentheses.

SELECT regexp_substr(
 'This is a cat, this is a dog. This is a mouse.',
 'this is a (\\w+)', 1, 2, 'ie');

 regexp_substr

 dog

REPEAT function

Repeats a string the specified number of times. If the input parameter is numeric, REPEAT treats it
as a string.

Synonym for REPLICATE function.

Syntax

REPEAT(string, integer)

String functions 2108

Amazon Redshift Database Developer Guide

Arguments

string

The first input parameter is the string to be repeated.

integer

The second parameter is an INTEGER indicating the number of times to repeat the string.

Return type

VARCHAR

Examples

The following example uses data from the CATEGORY table in the TICKIT sample database. For
more information, see Sample database.

To repeat the value of the CATID column in the CATEGORY table three times, use the following
example.

SELECT catid, REPEAT(catid,3)
FROM category
ORDER BY 1,2;

+-------+--------+
| catid | repeat |
+-------+--------+
1	111
2	222
3	333
4	444
5	555
6	666
7	777
8	888
9	999
10	101010
11	111111
+-------+--------+

String functions 2109

Amazon Redshift Database Developer Guide

REPLACE function

Replaces all occurrences of a set of characters within an existing string with other specified
characters.

REPLACE is similar to the TRANSLATE function and the REGEXP_REPLACE function, except that
TRANSLATE makes multiple single-character substitutions and REGEXP_REPLACE lets you search
a string for a regular expression pattern, while REPLACE substitutes one entire string with another
string.

Syntax

REPLACE(string, old_chars, new_chars)

Arguments

string

CHAR or VARCHAR string to be searched search

old_chars

CHAR or VARCHAR string to replace.

new_chars

New CHAR or VARCHAR string replacing the old_string.

Return type

VARCHAR

If either old_chars or new_chars is NULL, the return is NULL.

Examples

The following example uses data from the CATEGORY table in the TICKIT sample database. For
more information, see Sample database.

To convert the string Shows to Theatre in the CATGROUP field, use the following example.

SELECT catid, catgroup, REPLACE(catgroup, 'Shows', 'Theatre')

String functions 2110

Amazon Redshift Database Developer Guide

FROM category
ORDER BY 1,2,3;

+-------+----------+----------+
| catid | catgroup | replace |
+-------+----------+----------+
1	Sports	Sports
2	Sports	Sports
3	Sports	Sports
4	Sports	Sports
5	Sports	Sports
6	Shows	Theatre
7	Shows	Theatre
8	Shows	Theatre
9	Concerts	Concerts
10	Concerts	Concerts
11	Concerts	Concerts
+-------+----------+----------+

REPLICATE function

Synonym for the REPEAT function.

See REPEAT function.

REVERSE function

The REVERSE function operates on a string and returns the characters in reverse order. For
example, reverse('abcde') returns edcba. This function works on numeric and date data types
as well as character data types; however, in most cases it has practical value for character strings.

Syntax

REVERSE(expression)

Argument

expression

An expression with a character, date, timestamp, or numeric data type that represents the
target of the character reversal. All expressions are implicitly converted to VARCHAR strings.
Trailing blanks in CHAR strings are ignored.

String functions 2111

Amazon Redshift Database Developer Guide

Return type

VARCHAR

Examples

The following examples use data from the USERS and SALES tables in the TICKIT sample database.
For more information, see Sample database.

To select five distinct city names and their corresponding reversed names from the USERS table,
use the following example.

SELECT DISTINCT city AS cityname, REVERSE(cityname)
FROM users
ORDER BY city LIMIT 5;

+----------+----------+
| cityname | reverse |
+----------+----------+
Aberdeen	needrebA
Abilene	enelibA
Ada	adA
Agat	tagA
Agawam	mawagA
+----------+----------+

To select five sales IDs and their corresponding reversed IDs cast as character strings, use the
following example.

SELECT salesid, REVERSE(salesid)
FROM sales
ORDER BY salesid DESC LIMIT 5;

+---------+---------+
| salesid | reverse |
+---------+---------+
172456	654271
172455	554271
172454	454271
172453	354271
172452	254271
+---------+---------+

String functions 2112

Amazon Redshift Database Developer Guide

RTRIM function

The RTRIM function trims a specified set of characters from the end of a string. Removes the
longest string containing only characters in the trim characters list. Trimming is complete when a
trim character does not appear in the input string.

Syntax

RTRIM(string, trim_chars)

Arguments

string

A string column, expression, or string literal to be trimmed.

trim_chars

A string column, expression, or string literal that represents the characters to be trimmed from
the end of string. If not specified, a space is used as the trim character.

Return type

A string that is the same data type as the string argument.

Example

The following example trims leading and trailing blanks from the string ' abc ':

select ' abc ' as untrim, rtrim(' abc ') as trim;

untrim | trim
----------+------
 abc | abc

The following example removes the trailing 'xyz' strings from the string 'xyzaxyzbxyzcxyz'.
The trailing occurrences of 'xyz' are removed, but occurrences that are internal within the string
are not removed.

select 'xyzaxyzbxyzcxyz' as untrim,
rtrim('xyzaxyzbxyzcxyz', 'xyz') as trim;

String functions 2113

Amazon Redshift Database Developer Guide

 untrim | trim
-----------------+-----------
 xyzaxyzbxyzcxyz | xyzaxyzbxyzc

The following example removes the trailing parts from the string 'setuphistorycassettes'
that match any of the characters in the trim_chars list 'tes'. Any t, e, or s that occur before
another character that is not in the trim_chars list at the ending of the input string are removed.

SELECT rtrim('setuphistorycassettes', 'tes');

 rtrim

 setuphistoryca

The following example trims the characters 'Park' from the end of VENUENAME where present:

select venueid, venuename, rtrim(venuename, 'Park')
from venue
order by 1, 2, 3
limit 10;

venueid | venuename | rtrim
--------+----------------------------+-------------------------
 1 | Toyota Park | Toyota
 2 | Columbus Crew Stadium | Columbus Crew Stadium
 3 | RFK Stadium | RFK Stadium
 4 | CommunityAmerica Ballpark | CommunityAmerica Ballp
 5 | Gillette Stadium | Gillette Stadium
 6 | New York Giants Stadium | New York Giants Stadium
 7 | BMO Field | BMO Field
 8 | The Home Depot Center | The Home Depot Cente
 9 | Dick's Sporting Goods Park | Dick's Sporting Goods
 10 | Pizza Hut Park | Pizza Hut

Note that RTRIM removes any of the characters P, a, r, or k when they appear at the end of a
VENUENAME.

SOUNDEX function

The SOUNDEX function returns the American Soundex value consisting of the first letter of the
input string followed by a 3–digit encoding of the sounds that represent the English pronunciation
of the string that you specify. For example, Smith and Smyth have the same Soundex value.

String functions 2114

Amazon Redshift Database Developer Guide

Syntax

SOUNDEX(string)

Arguments

string

You specify a CHAR or VARCHAR string that you want to convert to an American Soundex code
value.

Return type

VARCHAR(4)

Usage notes

The SOUNDEX function converts only English alphabetical lowercase and uppercase ASCII
characters, including a–z and A–Z. SOUNDEX ignores other characters. SOUNDEX returns a single
Soundex value for a string of multiple words separated by spaces.

SELECT SOUNDEX('AWS Amazon');

+---------+
| soundex |
+---------+
| A252 |
+---------+

SOUNDEX returns an empty string if the input string doesn't contain any English letters.

SELECT SOUNDEX('+-*/%');

+---------+
| soundex |
+---------+
| |
+---------+

Examples

To return the Soundex value for Amazon, use the following example.

String functions 2115

Amazon Redshift Database Developer Guide

SELECT SOUNDEX('Amazon');

+---------+
| soundex |
+---------+
| A525 |
+---------+

To return the Soundex value for smith and smyth, use the following example. Note that the
Soundex values are the same.

SELECT SOUNDEX('smith'), SOUNDEX('smyth');

+-------+-------+
| smith | smyth |
+-------+-------+
| S530 | S530 |
+-------+-------+

SPLIT_PART function

Splits a string on the specified delimiter and returns the part at the specified position.

Syntax

SPLIT_PART(string, delimiter, position)

Arguments

string

A string column, expression, or string literal to be split. The string can be CHAR or VARCHAR.

delimiter

The delimiter string indicating sections of the input string.

If delimiter is a literal, enclose it in single quotation marks.

position

Position of the portion of string to return (counting from 1). Must be an integer greater than 0.
If position is larger than the number of string portions, SPLIT_PART returns an empty string. If

String functions 2116

Amazon Redshift Database Developer Guide

delimiter is not found in string, then the returned value contains the contents of the specified
part, which might be the entire string or an empty value.

Return type

A CHAR or VARCHAR string, the same as the string parameter.

Examples

The following example splits a string literal into parts using the $ delimiter and returns the second
part.

select split_part('abcdefghi','$',2)

split_part

def

The following example splits a string literal into parts using the $ delimiter. It returns an empty
string because part 4 is not found.

select split_part('abcdefghi','$',4)

split_part

The following example splits a string literal into parts using the # delimiter. It returns the entire
string, which is the first part, because the delimiter is not found.

select split_part('abcdefghi','#',1)

split_part

abcdefghi

The following example splits the timestamp field LISTTIME into year, month, and day components.

select listtime, split_part(listtime,'-',1) as year,

String functions 2117

Amazon Redshift Database Developer Guide

split_part(listtime,'-',2) as month,
split_part(split_part(listtime,'-',3),' ',1) as day
from listing limit 5;

 listtime | year | month | day
---------------------+------+-------+------
 2008-03-05 12:25:29 | 2008 | 03 | 05
 2008-09-09 08:03:36 | 2008 | 09 | 09
 2008-09-26 05:43:12 | 2008 | 09 | 26
 2008-10-04 02:00:30 | 2008 | 10 | 04
 2008-01-06 08:33:11 | 2008 | 01 | 06

The following example selects the LISTTIME timestamp field and splits it on the '-' character to
get the month (the second part of the LISTTIME string), then counts the number of entries for each
month:

select split_part(listtime,'-',2) as month, count(*)
from listing
group by split_part(listtime,'-',2)
order by 1, 2;

 month | count
-------+-------
 01 | 18543
 02 | 16620
 03 | 17594
 04 | 16822
 05 | 17618
 06 | 17158
 07 | 17626
 08 | 17881
 09 | 17378
 10 | 17756
 11 | 12912
 12 | 4589

STRPOS function

Returns the position of a substring within a specified string.

See CHARINDEX function and POSITION function for similar functions.

String functions 2118

Amazon Redshift Database Developer Guide

Syntax

STRPOS(string, substring)

Arguments

string

The first input parameter is the CHAR or VARCHAR string to be searched.

substring

The second parameter is the substring to search for within the string.

Return type

INTEGER

The STRPOS function returns an INTEGER corresponding to the position of the substring (one-
based, not zero-based). The position is based on the number of characters, not bytes, so that
multi-byte characters are counted as single characters.

Usage notes

STRPOS returns 0 if the substring is not found within the string.

SELECT STRPOS('dogfish', 'fist');

+--------+
| strpos |
+--------+
| 0 |
+--------+

Examples

To show the position of fish within dogfish, use the following example.

SELECT STRPOS('dogfish', 'fish');

String functions 2119

Amazon Redshift Database Developer Guide

+--------+
| strpos |
+--------+
| 4 |
+--------+

The following example uses data from the SALES table in the TICKIT sample database. For more
information, see Sample database.

To return the number of sales transactions with a COMMISSION over 999.00 from the SALES table,
use the following example.

SELECT DISTINCT STRPOS(commission, '.'),
COUNT (STRPOS(commission, '.'))
FROM sales
WHERE STRPOS(commission, '.') > 4
GROUP BY STRPOS(commission, '.')
ORDER BY 1, 2;

+--------+-------+
| strpos | count |
+--------+-------+
| 5 | 629 |
+--------+-------+

STRTOL function

Converts a string expression of a number of the specified base to the equivalent integer value. The
converted value must be within the signed 64-bit range.

Syntax

STRTOL(num_string, base)

Arguments

num_string

String expression of a number to be converted. If num_string is empty ('') or begins with the
null character ('\0'), the converted value is 0. If num_string is a column containing a NULL
value, STRTOL returns NULL. The string can begin with any amount of white space, optionally

String functions 2120

Amazon Redshift Database Developer Guide

followed by a single plus '+' or minus '-' sign to indicate positive or negative. The default is '+'. If
base is 16, the string can optionally begin with '0x'.

base

INTEGER between 2 and 36.

Return type

BIGINT

If num_string is null, the function returns NULL.

Examples

To convert string and base value pairs to integers, use the following examples.

SELECT STRTOL('0xf',16);

+--------+
| strtol |
+--------+
| 15 |
+--------+

SELECT STRTOL('abcd1234',16);

+------------+
| strtol |
+------------+
| 2882343476 |
+------------+

SELECT STRTOL('1234567', 10);

+---------+
| strtol |
+---------+
| 1234567 |
+---------+

SELECT STRTOL('1234567', 8);

String functions 2121

Amazon Redshift Database Developer Guide

+--------+
| strtol |
+--------+
| 342391 |
+--------+

SELECT STRTOL('110101', 2);

+--------+
| strtol |
+--------+
| 53 |
+--------+

SELECT STRTOL('\0', 2);

+--------+
| strtol |
+--------+
| 0 |
+--------+

SUBSTRING function

Returns the subset of a string based on the specified start position.

If the input is a character string, the start position and number of characters extracted are based
on characters, not bytes, so that multi-byte characters are counted as single characters. If the input
is a binary expression, the start position and extracted substring are based on bytes. You can't
specify a negative length, but you can specify a negative starting position.

Syntax

SUBSTRING(character_string FROM start_position [FOR number_characters])

SUBSTRING(character_string, start_position, number_characters)

SUBSTRING(binary_expression, start_byte, number_bytes)

SUBSTRING(binary_expression, start_byte)

String functions 2122

Amazon Redshift Database Developer Guide

Arguments

character_string

The string to be searched. Non-character data types are treated like a string.

start_position

The position within the string to begin the extraction, starting at 1. The start_position is based
on the number of characters, not bytes, so that multi-byte characters are counted as single
characters. This number can be negative.

number_characters

The number of characters to extract (the length of the substring). The number_characters is
based on the number of characters, not bytes, so that multi-byte characters are counted as
single characters. This number cannot be negative.

binary_expression

The binary_expression of data type VARBYTE to be searched.

start_byte

The position within the binary expression to begin the extraction, starting at 1. This number can
be negative.

number_bytes

The number of bytes to extract, that is, the length of the substring. This number can't be
negative.

Return type

VARCHAR or VARBYTE depending on the input.

Usage Notes

Following are some examples of how you can use start_position and number_characters to extract
substrings from various positions in a string.

The following example returns a four-character string beginning with the sixth character.

select substring('caterpillar',6,4);
substring

String functions 2123

Amazon Redshift Database Developer Guide

pill
(1 row)

If the start_position + number_characters exceeds the length of the string, SUBSTRING returns a
substring starting from the start_position until the end of the string. For example:

select substring('caterpillar',6,8);
substring

pillar
(1 row)

If the start_position is negative or 0, the SUBSTRING function returns a substring beginning
at the first character of string with a length of start_position + number_characters -1. For
example:

select substring('caterpillar',-2,6);
substring

cat
(1 row)

If start_position + number_characters -1 is less than or equal to zero, SUBSTRING returns
an empty string. For example:

select substring('caterpillar',-5,4);
substring

(1 row)

Examples

The following example returns the month from the LISTTIME string in the LISTING table:

select listid, listtime,
substring(listtime, 6, 2) as month
from listing
order by 1, 2, 3
limit 10;

String functions 2124

Amazon Redshift Database Developer Guide

 listid | listtime | month
--------+---------------------+-------
 1 | 2008-01-24 06:43:29 | 01
 2 | 2008-03-05 12:25:29 | 03
 3 | 2008-11-01 07:35:33 | 11
 4 | 2008-05-24 01:18:37 | 05
 5 | 2008-05-17 02:29:11 | 05
 6 | 2008-08-15 02:08:13 | 08
 7 | 2008-11-15 09:38:15 | 11
 8 | 2008-11-09 05:07:30 | 11
 9 | 2008-09-09 08:03:36 | 09
 10 | 2008-06-17 09:44:54 | 06
(10 rows)

The following example is the same as above, but uses the FROM...FOR option:

select listid, listtime,
substring(listtime from 6 for 2) as month
from listing
order by 1, 2, 3
limit 10;

 listid | listtime | month
--------+---------------------+-------
 1 | 2008-01-24 06:43:29 | 01
 2 | 2008-03-05 12:25:29 | 03
 3 | 2008-11-01 07:35:33 | 11
 4 | 2008-05-24 01:18:37 | 05
 5 | 2008-05-17 02:29:11 | 05
 6 | 2008-08-15 02:08:13 | 08
 7 | 2008-11-15 09:38:15 | 11
 8 | 2008-11-09 05:07:30 | 11
 9 | 2008-09-09 08:03:36 | 09
 10 | 2008-06-17 09:44:54 | 06
(10 rows)

You can't use SUBSTRING to predictably extract the prefix of a string that might contain multi-byte
characters because you need to specify the length of a multi-byte string based on the number of
bytes, not the number of characters. To extract the beginning segment of a string based on the
length in bytes, you can CAST the string as VARCHAR(byte_length) to truncate the string, where
byte_length is the required length. The following example extracts the first 5 bytes from the string
'Fourscore and seven'.

String functions 2125

Amazon Redshift Database Developer Guide

select cast('Fourscore and seven' as varchar(5));

varchar

Fours

The following example shows a negative start position of a binary value abc. Because the start
position is -3, the substring is extracted from the beginning of the binary value. The result is
automatically shown as the hexadecimal representation of the binary substring.

select substring('abc'::varbyte, -3);

 substring

 616263

The following example shows a 1 for the start position of a binary value abc. Because because
there is no length specified, the string is extracted from the start position to the end of the string.
The result is automatically shown as the hexadecimal representation of the binary substring.

select substring('abc'::varbyte, 1);

 substring

 616263

The following example shows a 3 for the start position of a binary value abc. Because because
there is no length specified, the string is extracted from the start position to the end of the string.
The result is automatically shown as the hexadecimal representation of the binary substring.

select substring('abc'::varbyte, 3);

 substring

 63

The following example shows a 2 for the start position of a binary value abc. The string is
extracted from the start position to position 10, but the end of the string is at position 3. The result
is automatically shown as the hexadecimal representation of the binary substring.

String functions 2126

Amazon Redshift Database Developer Guide

select substring('abc'::varbyte, 2, 10);

 substring

 6263

The following example shows a 2 for the start position of a binary value abc. The string is
extracted from the start position for 1 byte. The result is automatically shown as the hexadecimal
representation of the binary substring.

select substring('abc'::varbyte, 2, 1);

 substring

 62

The following example returns the first name Ana which appears after the last space in the input
string Silva, Ana.

select reverse(substring(reverse('Silva, Ana'), 1, position(' ' IN reverse('Silva,
 Ana'))))

 reverse

 Ana

TEXTLEN function

Synonym of LEN function.

See LEN function.

TRANSLATE function

For a given expression, replaces all occurrences of specified characters with specified
substitutes. Existing characters are mapped to replacement characters by their positions in the
characters_to_replace and characters_to_substitute arguments. If more characters are specified
in the characters_to_replace argument than in the characters_to_substitute argument, the extra
characters from the characters_to_replace argument are omitted in the return value.

String functions 2127

Amazon Redshift Database Developer Guide

TRANSLATE is similar to the REPLACE function and the REGEXP_REPLACE function, except that
REPLACE substitutes one entire string with another string and REGEXP_REPLACE lets you search
a string for a regular expression pattern, while TRANSLATE makes multiple single-character
substitutions.

If any argument is null, the return is NULL.

Syntax

TRANSLATE(expression, characters_to_replace, characters_to_substitute)

Arguments

expression

The expression to be translated.

characters_to_replace

A string containing the characters to be replaced.

characters_to_substitute

A string containing the characters to substitute.

Return type

VARCHAR

Examples

To replace several characters in a string, use the following example.

SELECT TRANSLATE('mint tea', 'inea', 'osin');

+-----------+
| translate |
+-----------+
| most tin |
+-----------+

The following examples use data from the USERS table in the TICKIT sample database. For more
information, see Sample database.

String functions 2128

Amazon Redshift Database Developer Guide

To replace the at sign (@) with a period for all values in a column, use the following example.

SELECT email, TRANSLATE(email, '@', '.') as obfuscated_email
FROM users LIMIT 10;

+---------------------------------------+---------------------------------------+
| email | obfuscated_email |
+---------------------------------------+---------------------------------------+
Cum@accumsan.com	Cum.accumsan.com
lorem.ipsum@Vestibulumante.com	lorem.ipsum.Vestibulumante.com
non.justo.Proin@ametconsectetuer.edu	non.justo.Proin.ametconsectetuer.edu
non.ante.bibendum@porttitortellus.org	non.ante.bibendum.porttitortellus.org
eros@blanditatnisi.org	eros.blanditatnisi.org
augue@Donec.ca	augue.Donec.ca
cursus@pedeacurna.edu	cursus.pedeacurna.edu
at@Duis.com	at.Duis.com
quam@facilisisvitaeorci.ca	quam.facilisisvitaeorci.ca
mi.lorem@nunc.edu	mi.lorem.nunc.edu
+---------------------------------------+---------------------------------------+

To replace spaces with underscores and strips out periods for all values in a column, use the
following example.

SELECT city, TRANSLATE(city, ' .', '_')
FROM users
WHERE city LIKE 'Sain%' OR city LIKE 'St%'
GROUP BY city
ORDER BY city;

+----------------+---------------+
| city | translate |
+----------------+---------------+
Saint Albans	Saint_Albans
Saint Cloud	Saint_Cloud
Saint Joseph	Saint_Joseph
Saint Louis	Saint_Louis
Saint Paul	Saint_Paul
St. George	St_George
St. Marys	St_Marys
St. Petersburg	St_Petersburg
Stafford	Stafford
Stamford	Stamford
Stanton	Stanton

String functions 2129

Amazon Redshift Database Developer Guide

Starkville	Starkville
Statesboro	Statesboro
Staunton	Staunton
Steubenville	Steubenville
Stevens Point	Stevens_Point
Stillwater	Stillwater
Stockton	Stockton
Sturgis	Sturgis
+----------------+---------------+

TRIM function

Trims a string by blanks or specified characters.

Syntax

TRIM([BOTH | LEADING | TRAILING] [trim_chars FROM] string)

Arguments

BOTH | LEADING | TRAILING

(Optional) Specifies where to trim characters from. Use BOTH to remove leading and trailing
characters, use LEADING to remove leading characters only, and use TRAILING to remove
trailing characters only. If this parameter is omitted, both leading and trailing characters are
trimmed.

trim_chars

(Optional) The characters to be trimmed from the string. If this parameter is omitted, blanks are
trimmed.

string

The string to be trimmed.

Return type

The TRIM function returns a VARCHAR or CHAR string. If you use the TRIM function with a SQL
command, Amazon Redshift implicitly converts the results to VARCHAR. If you use the TRIM
function in the SELECT list for a SQL function, Amazon Redshift does not implicitly convert the

String functions 2130

Amazon Redshift Database Developer Guide

results, and you might need to perform an explicit conversion to avoid a data type mismatch error.
See the CAST function and CONVERT function functions for information about explicit conversions.

Examples

To trim both leading and trailing blanks from the string dog , use the following example.

SELECT TRIM(' dog ');

+-------+
| btrim |
+-------+
| dog |
+-------+

To trim both leading and trailing blanks from the string dog , use the following example.

SELECT TRIM(BOTH FROM ' dog ');

+-------+
| btrim |
+-------+
| dog |
+-------+

To remove the leading double quotation marks from the string "dog", use the following example.

SELECT TRIM(LEADING '"' FROM'"dog"');

+-------+
| ltrim |
+-------+
| dog" |
+-------+

To remove the trailing double quotation marks from the string "dog", use the following example.

SELECT TRIM(TRAILING '"' FROM'"dog"');

+-------+
| rtrim |
+-------+

String functions 2131

Amazon Redshift Database Developer Guide

| "dog |
+-------+

TRIM removes any of the characters in trim_chars when they appear at the beginning or end
of string. The following example trims the characters 'C', 'D', and 'G' when they appear at the
beginning or end of VENUENAME, which is a VARCHAR column. For more information, see VENUE
table.

SELECT venueid, venuename, TRIM('CDG' FROM venuename)
FROM venue
WHERE venuename LIKE '%Park'
ORDER BY 2
LIMIT 7;

+---------+----------------------------+---------------------------+
| venueid | venuename | btrim |
+---------+----------------------------+---------------------------+
121	AT&T Park	AT&T Park
109	Citizens Bank Park	itizens Bank Park
102	Comerica Park	omerica Park
9	Dick's Sporting Goods Park	ick's Sporting Goods Park
97	Fenway Park	Fenway Park
112	Great American Ball Park	reat American Ball Park
114	Miller Park	Miller Park
+---------+----------------------------+---------------------------+

UPPER function

Converts a string to uppercase. UPPER supports UTF-8 multibyte characters, up to a maximum of
four bytes per character.

Syntax

UPPER(string)

Arguments

string

The input parameter is a VARCHAR string or any other data type, such as CHAR, that can be
implicitly converted to VARCHAR.

String functions 2132

Amazon Redshift Database Developer Guide

Return type

The UPPER function returns a character string that is the same data type as the input string. For
example, the function will return a VARCHAR string if the input is a VARCHAR string.

Examples

The following example uses data from the CATEGORY table in the TICKIT sample database. For
more information, see Sample database.

To convert the CATNAME field to uppercase, use the following.

SELECT catname, UPPER(catname)
FROM category
ORDER BY 1,2;

+-----------+-----------+
| catname | upper |
+-----------+-----------+
Classical	CLASSICAL
Jazz	JAZZ
MLB	MLB
MLS	MLS
Musicals	MUSICALS
NBA	NBA
NFL	NFL
NHL	NHL
Opera	OPERA
Plays	PLAYS
Pop	POP
+-----------+-----------+

SUPER type information functions

Following, you can find a description for the type information functions for SQL that Amazon
Redshift supports to derive the dynamic information from inputs of the SUPER data type.

Topics

• DECIMAL_PRECISION function

• DECIMAL_SCALE function

• IS_ARRAY function

SUPER type information functions 2133

Amazon Redshift Database Developer Guide

• IS_BIGINT function

• IS_BOOLEAN function

• IS_CHAR function

• IS_DECIMAL function

• IS_FLOAT function

• IS_INTEGER function

• IS_OBJECT function

• IS_SCALAR function

• IS_SMALLINT function

• IS_VARCHAR function

• JSON_SIZE function

• JSON_TYPEOF function

• SIZE

DECIMAL_PRECISION function

Checks the precision of the maximum total number of decimal digits to be stored. This number
includes both the left and right digits of the decimal point. The range of the precision is from 1 to
38, with a default of 38.

Syntax

DECIMAL_PRECISION(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

INTEGER

Examples

To apply the DECIMAL_PRECISION function to the table t, use the following example.

SUPER type information functions 2134

Amazon Redshift Database Developer Guide

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES (3.14159);

SELECT DECIMAL_PRECISION(s) FROM t;

+-------------------+
| decimal_precision |
+-------------------+
| 6 |
+-------------------+

DECIMAL_SCALE function

Checks the number of decimal digits to be stored to the right of the decimal point. The range of
the scale is from 0 to the precision point, with a default of 0.

Syntax

DECIMAL_SCALE(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

INTEGER

Examples

To apply the DECIMAL_SCALE function to the table t, use the following example.

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES (3.14159);

SELECT DECIMAL_SCALE(s) FROM t;

+---------------+

SUPER type information functions 2135

Amazon Redshift Database Developer Guide

| decimal_scale |
+---------------+
| 5 |
+---------------+

IS_ARRAY function

Checks whether a variable is an array. The function returns true if the variable is an array. The
function also includes empty arrays. Otherwise, the function returns false for all other values,
including null.

Syntax

IS_ARRAY(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

BOOLEAN

Examples

To check if [1,2] is an array using the IS_ARRAY function, use the following example.

SELECT IS_ARRAY(JSON_PARSE('[1,2]'));

+----------+
| is_array |
+----------+
| true |
+----------+

IS_BIGINT function

Checks whether a value is a BIGINT. The IS_BIGINT function returns true for numbers of scale 0
in the 64-bit range. Otherwise, the function returns false for all other values, including null and
floating point numbers.

SUPER type information functions 2136

Amazon Redshift Database Developer Guide

The IS_BIGINT function is a superset of IS_INTEGER.

Syntax

IS_BIGINT(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

BOOLEAN

Examples

To check if 5 is a BIGINT using the IS_BIGINT function, use the following example.

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES (5);

SELECT s, IS_BIGINT(s) FROM t;

+---+-----------+
| s | is_bigint |
+---+-----------+
| 5 | true |
+---+-----------+

IS_BOOLEAN function

Checks whether a value is a BOOLEAN. The IS_BOOLEAN function returns true for constant JSON
Booleans. The function returns false for any other values, including null.

Syntax

IS_BOOLEAN(super_expression)

SUPER type information functions 2137

Amazon Redshift Database Developer Guide

Arguments

super_expression

A SUPER expression or column.

Return type

BOOLEAN

Examples

To check if TRUE is a BOOLEAN using the IS_BOOLEAN function, use the following example.

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES (TRUE);

SELECT s, IS_BOOLEAN(s) FROM t;

+------+------------+
| s | is_boolean |
+------+------------+
| true | true |
+------+------------+

IS_CHAR function

Checks whether a value is a CHAR. The IS_CHAR function returns true for strings that have only
ASCII characters, because the CHAR type can store only characters that are in the ASCII format. The
function returns false for any other values.

Syntax

IS_CHAR(super_expression)

Arguments

super_expression

A SUPER expression or column.

SUPER type information functions 2138

Amazon Redshift Database Developer Guide

Return type

BOOLEAN

Examples

To check if t is a CHAR using the IS_CHAR function, use the following example.

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES ('t');

SELECT s, IS_CHAR(s) FROM t;

+-----+---------+
| s | is_char |
+-----+---------+
| "t" | true |
+-----+---------+

IS_DECIMAL function

Checks whether a value is a DECIMAL. The IS_DECIMAL function returns true for numbers that are
not floating points. The function returns false for any other values, including null.

The IS_DECIMAL function is a superset of IS_BIGINT.

Syntax

IS_DECIMAL(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

BOOLEAN

SUPER type information functions 2139

Amazon Redshift Database Developer Guide

Examples

To check if 1.22 is a DECIMAL using the IS_DECIMAL function, use the following example.

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES (1.22);

SELECT s, IS_DECIMAL(s) FROM t;

+------+------------+
| s | is_decimal |
+------+------------+
| 1.22 | true |
+------+------------+

IS_FLOAT function

Checks whether a value is a floating point number. The IS_FLOAT function returns true for
floating point numbers (FLOAT4 and FLOAT8). The function returns false for any other values.

The set of IS_DECIMAL the set of IS_FLOAT are disjoint.

Syntax

IS_FLOAT(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

BOOLEAN

Examples

To check if 2.22::FLOAT is a FLOAT using the IS_FLOAT function, use the following example.

SUPER type information functions 2140

Amazon Redshift Database Developer Guide

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES(2.22::FLOAT);

SELECT s, IS_FLOAT(s) FROM t;

+---------+----------+
| s | is_float |
+---------+----------+
| 2.22e+0 | true |
+---------+----------+

IS_INTEGER function

Returns true for numbers of scale 0 in the 32-bit range, and false for anything else (including
null and floating point numbers).

The IS_INTEGER function is a superset of the IS_SMALLINT function.

Syntax

IS_INTEGER(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

BOOLEAN

Examples

To check if 5 is an INTEGER using the IS_INTEGER function, use the following example.

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES (5);

SUPER type information functions 2141

Amazon Redshift Database Developer Guide

SELECT s, IS_INTEGER(s) FROM t;

+---+------------+
| s | is_integer |
+---+------------+
| 5 | true |
+---+------------+

IS_OBJECT function

Checks whether a variable is an object. The IS_OBJECT function returns true for objects, including
empty objects. The function returns false for any other values, including null.

Syntax

IS_OBJECT(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

BOOLEAN

Examples

To check if {"name": "Joe"} is an object using the IS_OBJECT function, use the following
example.

CREATE TABLE t(s super);

INSERT INTO t VALUES (JSON_PARSE('{"name": "Joe"}'));

SELECT s, IS_OBJECT(s) FROM t;

+----------------+-----------+
| s | is_object |
+----------------+-----------+

SUPER type information functions 2142

Amazon Redshift Database Developer Guide

| {"name":"Joe"} | true |
+----------------+-----------+

IS_SCALAR function

Checks whether a variable is a scalar. The IS_SCALAR function returns true for any value that is
not an array or an object. The function returns false for any other values, including null.

The set of IS_ARRAY, IS_OBJECT, and IS_SCALAR cover all values except nulls.

Syntax

IS_SCALAR(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

BOOLEAN

Examples

To check if {"name": "Joe"} is a scalar using the IS_SCALAR function, use the following
example.

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES (JSON_PARSE('{"name": "Joe"}'));

SELECT s, IS_SCALAR(s.name) FROM t;

+----------------+-----------+
| s | is_scalar |
+----------------+-----------+
| {"name":"Joe"} | true |
+----------------+-----------+

SUPER type information functions 2143

Amazon Redshift Database Developer Guide

IS_SMALLINT function

Checks whether a variable is a SMALLINT. The IS_SMALLINT function returns true for numbers
of scale 0 in the 16-bit range. The function returns false for any other values, including null and
floating point numbers.

Syntax

IS_SMALLINT(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return

BOOLEAN

Examples

To check if 5 is a SMALLINT using the IS_SMALLINT function, use the following example.

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES (5);

SELECT s, IS_SMALLINT(s) FROM t;

+---+-------------+
| s | is_smallint |
+---+-------------+
| 5 | true |
+---+-------------+

IS_VARCHAR function

Checks whether a variable is a VARCHAR. The IS_VARCHAR function returns true for all strings. The
function returns false for any other values.

SUPER type information functions 2144

Amazon Redshift Database Developer Guide

The IS_VARCHAR function is a superset of the IS_CHAR function.

Syntax

IS_VARCHAR(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

BOOLEAN

Examples

To check if abc is a VARCHAR using the IS_VARCHAR function, use the following example.

CREATE TABLE t(s SUPER);

INSERT INTO t VALUES ('abc');

SELECT s, IS_VARCHAR(s) FROM t;

+-------+------------+
| s | is_varchar |
+-------+------------+
| "abc" | true |
+-------+------------+

JSON_SIZE function

The JSON_SIZE function returns the number of bytes in the given SUPER expression when
serialized into a string.

Syntax

JSON_SIZE(super_expression)

SUPER type information functions 2145

Amazon Redshift Database Developer Guide

Arguments

super_expression

A SUPER constant or expression.

Return type

INTEGER

The JSON_SIZE function returns an INTEGER indicating the number of bytes in the input string.
This value is different from the number of characters. For example, the UTF-8 character #, a
black dot, is 3 bytes in size even though it is 1 character.

Usage notes

JSON_SIZE(x) is functionally identical to OCTET_LENGTH(JSON_SERIALIZE). However, note that
JSON_SERIALIZE returns an error when the provided SUPER expression would exceed the VARCHAR
limit of the system when serialized. JSON_SIZE does not have this limitation.

Examples

To return the length of a SUPER value serialized to a string, use the following example.

SELECT JSON_SIZE(JSON_PARSE('[10001,10002,"#"]'));

+-----------+
| json_size |
+-----------+
| 19 |
+-----------+

Note that the provided SUPER expression is 17 characters long, but # is a 3-byte character, so
JSON_SIZE returns 19.

JSON_TYPEOF function

The JSON_TYPEOF scalar function returns a VARCHAR with values boolean, number, string, object,
array, or null, depending on the dynamic type of the SUPER value.

SUPER type information functions 2146

Amazon Redshift Database Developer Guide

Syntax

JSON_TYPEOF(super_expression)

Arguments

super_expression

A SUPER expression or column.

Return type

VARCHAR

Examples

To check the type of JSON for the array [1,2] using the JSON_TYPEOF function, use the following
example.

SELECT JSON_TYPEOF(ARRAY(1,2));

+-------------+
| json_typeof |
+-------------+
| array |
+-------------+

To check the type of JSON for the object {"name":"Joe"} using the JSON_TYPEOF function, use
the following example.

SELECT JSON_TYPEOF(JSON_PARSE('{"name":"Joe"}'));

+-------------+
| json_typeof |
+-------------+
| object |
+-------------+

SIZE

Returns the binary in-memory size of a SUPER type constant or expression as an INTEGER.

SUPER type information functions 2147

Amazon Redshift Database Developer Guide

Syntax

SIZE(super_expression)

Arguments

super_expression

A SUPER type constant or expression.

Return type

INTEGER

Examples

To use SIZE to get the in-memory size of several SUPER type expressions, use the following
example.

CREATE TABLE test_super_size(a SUPER);

INSERT INTO test_super_size
VALUES
 (null),
 (TRUE),
 (JSON_PARSE('[0,1,2,3]')),
 (JSON_PARSE('{"a":0,"b":1,"c":2,"d":3}'))
;

SELECT a, SIZE(a)
FROM test_super_size
ORDER BY 2, 1;

+---------------------------+------+
| a | size |
+---------------------------+------+
true	4
NULL	4
[0,1,2,3]	23
{"a":0,"b":1,"c":2,"d":3}	52
+---------------------------+------+

SUPER type information functions 2148

Amazon Redshift Database Developer Guide

VARBYTE functions and operators

Amazon Redshift functions and operators that support the VARBYTE data type include:

• VARBYTE operators

• FROM_HEX

• FROM_VARBYTE

• GETBIT

• TO_HEX

• TO_VARBYTE

• CONCAT

• LEN

• LENGTH function

• OCTET_LENGTH

• SUBSTRING function

VARBYTE operators

The following table lists the VARBYTE operators. The operator works with binary value of data type
VARBYTE. If one or both inputs is null, the result is null.

Supported operators

Operator Description Return
type

< Less than BOOLEAN

<= Less than or
equal

BOOLEAN

= Equal BOOLEAN

> Greater
than

BOOLEAN

VARBYTE functions 2149

Amazon Redshift Database Developer Guide

Operator Description Return
type

>= Greater
than or
equal

BOOLEAN

!= or <> Not equal BOOLEAN

|| Concatena
tion

VARBYTE

+ Concatena
tion

VARBYTE

~ Bitwise not VARBYTE

& Bitwise and VARBYTE

| Bitwise or VARBYTE

Bitwise xor VARBYTE

Examples

In the following examples, the value of 'a'::VARBYTE is 61 and the value of 'b'::VARBYTE is
62. The :: casts the strings into the VARBYTE data type. For more information about casting data
types, see CAST.

To compare if 'a' is less than 'b' using the < operator, use the following example.

SELECT 'a'::VARBYTE < 'b'::VARBYTE AS less_than;

+-----------+
| less_than |
+-----------+
| true |
+-----------+

To compare if 'a' equals 'b' using the = operator, use the following example.

VARBYTE functions 2150

Amazon Redshift Database Developer Guide

SELECT 'a'::VARBYTE = 'b'::VARBYTE AS equal;

+-------+
| equal |
+-------+
| false |
+-------+

To concatenate two binary values using the || operator, use the following example.

SELECT 'a'::VARBYTE || 'b'::VARBYTE AS concat;

+--------+
| concat |
+--------+
| 6162 |
+--------+

To concatenate two binary values using the + operator, use the following example.

SELECT 'a'::VARBYTE + 'b'::VARBYTE AS concat;

+--------+
| concat |
+--------+
| 6162 |
+--------+

To negate each bit of the input binary value using the FROM_VARBYTE function, use the following
example. The string 'a' evaluates to 01100001. For more information, see FROM_VARBYTE.

SELECT FROM_VARBYTE(~'a'::VARBYTE, 'binary');

+--------------+
| from_varbyte |
+--------------+
| 10011110 |
+--------------+

To apply the & operator on the two input binary values, use the following example. The string 'a'
evaluates to 01100001 and 'b' evaluates to 01100010.

VARBYTE functions 2151

Amazon Redshift Database Developer Guide

SELECT FROM_VARBYTE('a'::VARBYTE & 'b'::VARBYTE, 'binary');

+--------------+
| from_varbyte |
+--------------+
| 01100000 |
+--------------+

FROM_HEX function

FROM_HEX converts a hexadecimal to a binary value.

Syntax

FROM_HEX(hex_string)

Arguments

hex_string

Hexadecimal string of data type VARCHAR or TEXT to be converted. The format must be a literal
value.

Return type

VARBYTE

Examples

To convert the hexadecimal representation of '6162' to a binary value, use the following example.
The result is automatically shown as the hexadecimal representation of the binary value.

SELECT FROM_HEX('6162');

+----------+
| from_hex |
+----------+
| 6162 |
+----------+

VARBYTE functions 2152

Amazon Redshift Database Developer Guide

FROM_VARBYTE function

FROM_VARBYTE converts a binary value to a character string in the specified format.

Syntax

FROM_VARBYTE(binary_value, format)

Arguments

binary_value

A binary value of data type VARBYTE.

format

The format of the returned character string. Case insensitive valid values are hex, binary,
utf8 (also utf-8 and utf_8), and base64.

Return type

VARCHAR

Examples

To convert the binary value 'ab' to hexadecimal, use the following example.

SELECT FROM_VARBYTE('ab', 'hex');

+--------------+
| from_varbyte |
+--------------+
| 6162 |
+--------------+

To return the binary representation of '4d', use the following example. The binary representation
of '4d' is the character string 01001101.

SELECT FROM_VARBYTE(FROM_HEX('4d'), 'binary');

+--------------+

VARBYTE functions 2153

Amazon Redshift Database Developer Guide

| from_varbyte |
+--------------+
| 01001101 |
+--------------+

GETBIT function

GETBIT returns the bit value of a binary value at the specified index.

Syntax

GETBIT(binary_value, index)

Arguments

binary_value

A binary value of data type VARBYTE.

index

An index number of the bit in the binary value that is returned. The binary value is a 0-based
bit array that is indexed from the rightmost bit (least significant bit) to the leftmost bit (most
significant bit).

Return type

INTEGER

Examples

To return the bit at index 2 of the binary value from_hex('4d'), use the following example. The
binary representation of '4d' is 01001101.

SELECT GETBIT(FROM_HEX('4d'), 2);

+--------+
| getbit |
+--------+
| 1 |
+--------+

VARBYTE functions 2154

Amazon Redshift Database Developer Guide

To return the bit at eight index locations of the binary value returned by from_hex('4d'), use
the following example. The binary representation of '4d' is 01001101.

SELECT GETBIT(FROM_HEX('4d'), 7), GETBIT(FROM_HEX('4d'), 6),
 GETBIT(FROM_HEX('4d'), 5), GETBIT(FROM_HEX('4d'), 4),
 GETBIT(FROM_HEX('4d'), 3), GETBIT(FROM_HEX('4d'), 2),
 GETBIT(FROM_HEX('4d'), 1), GETBIT(FROM_HEX('4d'), 0);

+--------+--------+--------+--------+--------+--------+--------+--------+
| getbit | getbit | getbit | getbit | getbit | getbit | getbit | getbit |
+--------+--------+--------+--------+--------+--------+--------+--------+
| 0 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
+--------+--------+--------+--------+--------+--------+--------+--------+

TO_HEX function

TO_HEX converts a number or binary value to a hexadecimal representation.

Syntax

TO_HEX(value)

Arguments

value

Either a number or binary value (VARBYTE) to be converted.

Return type

VARCHAR

Examples

To convert a number to its hexadecimal representation, use the following example.

SELECT TO_HEX(2147676847);

+----------+
| to_hex |

VARBYTE functions 2155

Amazon Redshift Database Developer Guide

+----------+
| 8002f2af |
+----------+

To convert the VARBYTE representation of 'abc' to a hexadecimal number, use the followign
example.

SELECT TO_HEX('abc'::VARBYTE);

+--------+
| to_hex |
+--------+
| 616263 |
+--------+

To create a table, insert the VARBYTE representation of 'abc' to a hexadecimal number, and
select the column with the value, use the following example.

CREATE TABLE t (vc VARCHAR);
INSERT INTO t SELECT TO_HEX('abc'::VARBYTE);
SELECT vc FROM t;

+--------+
| vc |
+--------+
| 616263 |
+--------+

To show that when casting a VARBYTE value to VARCHAR the format is UTF-8, use the following
example.

CREATE TABLE t (vc VARCHAR);
INSERT INTO t SELECT 'abc'::VARBYTE::VARCHAR;

SELECT vc FROM t;

+-----+
| vc |
+-----+
| abc |
+-----+

VARBYTE functions 2156

Amazon Redshift Database Developer Guide

TO_VARBYTE function

TO_VARBYTE converts a string in a specified format to a binary value.

Syntax

TO_VARBYTE(string, format)

Arguments

string

A CHAR or VARCHAR string.

format

The format of the input string. Case insensitive valid values are hex, binary, utf8 (also utf-8
and utf_8), and base64.

Return type

VARBYTE

Examples

To convert the hex 6162 to a binary value, use the following example. The result is automatically
shown as the hexadecimal representation of the binary value.

SELECT TO_VARBYTE('6162', 'hex');

+------------+
| to_varbyte |
+------------+
| 6162 |
+------------+

To return the binary representation of 4d, use the following example. The binary representation of
'4d' is 01001101.

SELECT TO_VARBYTE('01001101', 'binary');

+------------+

VARBYTE functions 2157

Amazon Redshift Database Developer Guide

| to_varbyte |
+------------+
| 4d |
+------------+

To convert the string 'a' in UTF-8 to a binary value, use the following example. The result is
automatically shown as the hexadecimal representation of the binary value.

SELECT TO_VARBYTE('a', 'utf8');

+------------+
| to_varbyte |
+------------+
| 61 |
+------------+

To convert the string '4' in hexadecimal to a binary value, use the following example. If the
hexadecimal string length is an odd number, then a 0 is prepended to form a valid hexadecimal
number.

SELECT TO_VARBYTE('4', 'hex');

+------------+
| to_varbyte |
+------------+
| 04 |
+------------+

Window functions

By using window functions, you can create analytic business queries more efficiently. Window
functions operate on a partition or "window" of a result set, and return a value for every row in that
window. In contrast, non-windowed functions perform their calculations with respect to every row
in the result set. Unlike group functions that aggregate result rows, window functions retain all
rows in the table expression.

The values returned are calculated by using values from the sets of rows in that window. For each
row in the table, the window defines a set of rows that is used to compute additional attributes.
A window is defined using a window specification (the OVER clause), and is based on three main
concepts:

Window functions 2158

Amazon Redshift Database Developer Guide

• Window partitioning, which forms groups of rows (PARTITION clause)

• Window ordering, which defines an order or sequence of rows within each partition (ORDER BY
clause)

• Window frames, which are defined relative to each row to further restrict the set of rows (ROWS
specification)

Window functions are the last set of operations performed in a query except for the final ORDER
BY clause. All joins and all WHERE, GROUP BY, and HAVING clauses are completed before the
window functions are processed. Therefore, window functions can appear only in the select list
or ORDER BY clause. You can use multiple window functions within a single query with different
frame clauses. You can also use window functions in other scalar expressions, such as CASE.

Window function syntax summary

Window functions follow a standard syntax, which is as follows.

function (expression) OVER (
[PARTITION BY expr_list]
[ORDER BY order_list [frame_clause]])

Here, function is one of the functions described in this section.

The expr_list is as follows.

expression | column_name [, expr_list]

The order_list is as follows.

expression | column_name [ASC | DESC]
[NULLS FIRST | NULLS LAST]
[, order_list]

The frame_clause is as follows.

ROWS
{ UNBOUNDED PRECEDING | unsigned_value PRECEDING | CURRENT ROW } |

{ BETWEEN
{ UNBOUNDED PRECEDING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW}

Window functions 2159

Amazon Redshift Database Developer Guide

AND
{ UNBOUNDED FOLLOWING | unsigned_value { PRECEDING | FOLLOWING } | CURRENT ROW }}

Arguments

function

The window function. For details, see the individual function descriptions.

OVER

The clause that defines the window specification. The OVER clause is mandatory for window
functions, and differentiates window functions from other SQL functions.

PARTITION BY expr_list

(Optional) The PARTITION BY clause subdivides the result set into partitions, much like the
GROUP BY clause. If a partition clause is present, the function is calculated for the rows in each
partition. If no partition clause is specified, a single partition contains the entire table, and the
function is computed for that complete table.

The ranking functions DENSE_RANK, NTILE, RANK, and ROW_NUMBER require a global
comparison of all the rows in the result set. When a PARTITION BY clause is used, the query
optimizer can run each aggregation in parallel by spreading the workload across multiple
slices according to the partitions. If the PARTITION BY clause is not present, the aggregation
step must be run serially on a single slice, which can have a significant negative impact on
performance, especially for large clusters.

Amazon Redshift doesn't support string literals in PARTITION BY clauses.

ORDER BY order_list

(Optional) The window function is applied to the rows within each partition sorted according
to the order specification in ORDER BY. This ORDER BY clause is distinct from and completely
unrelated to ORDER BY clauses in the frame_clause. The ORDER BY clause can be used without
the PARTITION BY clause.

For ranking functions, the ORDER BY clause identifies the measures for the ranking values. For
aggregation functions, the partitioned rows must be ordered before the aggregate function is
computed for each frame. For more about window function types, see Window functions.

Column identifiers or expressions that evaluate to column identifiers are required in the order
list. Neither constants nor constant expressions can be used as substitutes for column names.

Window functions 2160

Amazon Redshift Database Developer Guide

NULLS values are treated as their own group, sorted and ranked according to the NULLS FIRST
or NULLS LAST option. By default, NULL values are sorted and ranked last in ASC ordering, and
sorted and ranked first in DESC ordering.

Amazon Redshift doesn't support string literals in ORDER BY clauses.

If the ORDER BY clause is omitted, the order of the rows is nondeterministic.

Note

In any parallel system such as Amazon Redshift, when an ORDER BY clause
doesn't produce a unique and total ordering of the data, the order of the rows is
nondeterministic. That is, if the ORDER BY expression produces duplicate values (a
partial ordering), the return order of those rows might vary from one run of Amazon
Redshift to the next. In turn, window functions might return unexpected or inconsistent
results. For more information, see Unique ordering of data for window functions.

column_name

Name of a column to be partitioned by or ordered by.

ASC | DESC

Option that defines the sort order for the expression, as follows:

• ASC: ascending (for example, low to high for numeric values and 'A' to 'Z' for character
strings). If no option is specified, data is sorted in ascending order by default.

• DESC: descending (high to low for numeric values; 'Z' to 'A' for strings).

NULLS FIRST | NULLS LAST

Option that specifies whether NULLS should be ordered first, before non-null values, or last,
after non-null values. By default, NULLS are sorted and ranked last in ASC ordering, and sorted
and ranked first in DESC ordering.

frame_clause

For aggregate functions, the frame clause further refines the set of rows in a function's window
when using ORDER BY. It enables you to include or exclude sets of rows within the ordered
result. The frame clause consists of the ROWS keyword and associated specifiers.

Window functions 2161

Amazon Redshift Database Developer Guide

The frame clause doesn't apply to ranking functions. Also, the frame clause isn't required when
no ORDER BY clause is used in the OVER clause for an aggregate function. If an ORDER BY
clause is used for an aggregate function, an explicit frame clause is required.

When no ORDER BY clause is specified, the implied frame is unbounded, equivalent to ROWS
BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.

ROWS

This clause defines the window frame by specifying a physical offset from the current row.

This clause specifies the rows in the current window or partition that the value in the current
row is to be combined with. It uses arguments that specify row position, which can be before
or after the current row. The reference point for all window frames is the current row. Each row
becomes the current row in turn as the window frame slides forward in the partition.

The frame can be a simple set of rows up to and including the current row.

{UNBOUNDED PRECEDING | offset PRECEDING | CURRENT ROW}

Or it can be a set of rows between two boundaries.

BETWEEN
{ UNBOUNDED PRECEDING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }
AND
{ UNBOUNDED FOLLOWING | offset { PRECEDING | FOLLOWING } | CURRENT ROW }

UNBOUNDED PRECEDING indicates that the window starts at the first row of the partition;
offset PRECEDING indicates that the window starts a number of rows equivalent to the value of
offset before the current row. UNBOUNDED PRECEDING is the default.

CURRENT ROW indicates the window begins or ends at the current row.

UNBOUNDED FOLLOWING indicates that the window ends at the last row of the partition;
offset FOLLOWING indicates that the window ends a number of rows equivalent to the value of
offset after the current row.

offset identifies a physical number of rows before or after the current row. In this case, offset
must be a constant that evaluates to a positive numeric value. For example, 5 FOLLOWING ends
the frame five rows after the current row.

Window functions 2162

Amazon Redshift Database Developer Guide

Where BETWEEN is not specified, the frame is implicitly bounded by the current row. For
example, ROWS 5 PRECEDING is equal to ROWS BETWEEN 5 PRECEDING AND CURRENT
ROW. Also, ROWS UNBOUNDED FOLLOWING is equal to ROWS BETWEEN CURRENT ROW AND
UNBOUNDED FOLLOWING.

Note

You can't specify a frame in which the starting boundary is greater than the ending
boundary. For example, you can't specify any of the following frames.

between 5 following and 5 preceding
between current row and 2 preceding
between 3 following and current row

Unique ordering of data for window functions

If an ORDER BY clause for a window function doesn't produce a unique and total ordering of the
data, the order of the rows is nondeterministic. If the ORDER BY expression produces duplicate
values (a partial ordering), the return order of those rows can vary in multiple runs. In this case,
window functions can also return unexpected or inconsistent results.

For example, the following query returns different results over multiple runs. These different
results occur because order by dateid doesn't produce a unique ordering of the data for the
SUM window function.

select dateid, pricepaid,
sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid
from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+-------------
1827 | 1730.00 | 1730.00
1827 | 708.00 | 2438.00
1827 | 234.00 | 2672.00
...

select dateid, pricepaid,
sum(pricepaid) over(order by dateid rows unbounded preceding) as sumpaid

Window functions 2163

Amazon Redshift Database Developer Guide

from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+-------------
1827 | 234.00 | 234.00
1827 | 472.00 | 706.00
1827 | 347.00 | 1053.00
...

In this case, adding a second ORDER BY column to the window function can solve the problem.

select dateid, pricepaid,
sum(pricepaid) over(order by dateid, pricepaid rows unbounded preceding) as sumpaid
from sales
group by dateid, pricepaid;

dateid | pricepaid | sumpaid
--------+-----------+---------
1827 | 234.00 | 234.00
1827 | 337.00 | 571.00
1827 | 347.00 | 918.00
...

Supported functions

Amazon Redshift supports two types of window functions: aggregate and ranking.

Following are the supported aggregate functions:

• AVG window function

• COUNT window function

• CUME_DIST window function

• DENSE_RANK window function

• FIRST_VALUE window function

• LAG window function

• LAST_VALUE window function

• LEAD window function

• LISTAGG window function

Window functions 2164

Amazon Redshift Database Developer Guide

• MAX window function

• MEDIAN window function

• MIN window function

• NTH_VALUE window function

• PERCENTILE_CONT window function

• PERCENTILE_DISC window function

• RATIO_TO_REPORT window function

• STDDEV_SAMP and STDDEV_POP window functions (STDDEV_SAMP and STDDEV are synonyms)

• SUM window function

• VAR_SAMP and VAR_POP window functions (VAR_SAMP and VARIANCE are synonyms)

Following are the supported ranking functions:

• DENSE_RANK window function

• NTILE window function

• PERCENT_RANK window function

• RANK window function

• ROW_NUMBER window function

Sample table for window function examples

You can find specific window function examples with each function description. Some of the
examples use a table named WINSALES, which contains 11 rows, as shown following.

SALESID DATEID SELLERID BUYERID QTY QTY_SHIPP
ED

30001 8/2/2003 3 B 10 10

10001 12/24/2003 1 C 10 10

10005 12/24/2003 1 A 30

40001 1/9/2004 4 A 40

Window functions 2165

Amazon Redshift Database Developer Guide

SALESID DATEID SELLERID BUYERID QTY QTY_SHIPP
ED

10006 1/18/2004 1 C 10

20001 2/12/2004 2 B 20 20

40005 2/12/2004 4 A 10 10

20002 2/16/2004 2 C 20 20

30003 4/18/2004 3 B 15

30004 4/18/2004 3 B 20

30007 9/7/2004 3 C 30

The following script creates and populates the sample WINSALES table.

CREATE TABLE winsales(
 salesid int,
 dateid date,
 sellerid int,
 buyerid char(10),
 qty int,
 qty_shipped int);

INSERT INTO winsales VALUES
 (30001, '8/2/2003', 3, 'b', 10, 10),
 (10001, '12/24/2003', 1, 'c', 10, 10),
 (10005, '12/24/2003', 1, 'a', 30, null),
 (40001, '1/9/2004', 4, 'a', 40, null),
 (10006, '1/18/2004', 1, 'c', 10, null),
 (20001, '2/12/2004', 2, 'b', 20, 20),
 (40005, '2/12/2004', 4, 'a', 10, 10),
 (20002, '2/16/2004', 2, 'c', 20, 20),
 (30003, '4/18/2004', 3, 'b', 15, null),
 (30004, '4/18/2004', 3, 'b', 20, null),
 (30007, '9/7/2004', 3, 'c', 30, null);

Window functions 2166

Amazon Redshift Database Developer Guide

AVG window function

The AVG window function returns the average (arithmetic mean) of the input expression values.
The AVG function works with numeric values and ignores NULL values.

Syntax

AVG ([ALL] expression) OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list
 frame_clause]
)

Arguments

expression

The target column or expression that the function operates on.

ALL

With the argument ALL, the function retains all duplicate values from the expression for
counting. ALL is the default. DISTINCT is not supported.

OVER

Specifies the window clauses for the aggregation functions. The OVER clause distinguishes
window aggregation functions from normal set aggregation functions.

PARTITION BY expr_list

Defines the window for the AVG function in terms of one or more expressions.

ORDER BY order_list

Sorts the rows within each partition. If no PARTITION BY is specified, ORDER BY uses the entire
table.

frame_clause

If an ORDER BY clause is used for an aggregate function, an explicit frame clause is required.
The frame clause refines the set of rows in a function's window, including or excluding sets of

Window functions 2167

Amazon Redshift Database Developer Guide

rows within the ordered result. The frame clause consists of the ROWS keyword and associated
specifiers. See Window function syntax summary.

Data types

The argument types supported by the AVG function are SMALLINT, INTEGER, BIGINT, NUMERIC,
DECIMAL, REAL, and DOUBLE PRECISION.

The return types supported by the AVG function are:

• BIGINT for SMALLINT or INTEGER arguments

• NUMERIC for BIGINT arguments

• DOUBLE PRECISION for floating point arguments

Examples

The following example computes a rolling average of quantities sold by date; order the results by
date ID and sales ID:

select salesid, dateid, sellerid, qty,
avg(qty) over
(order by dateid, salesid rows unbounded preceding) as avg
from winsales
order by 2,1;

salesid | dateid | sellerid | qty | avg
---------+------------+----------+-----+-----
30001 | 2003-08-02 | 3 | 10 | 10
10001 | 2003-12-24 | 1 | 10 | 10
10005 | 2003-12-24 | 1 | 30 | 16
40001 | 2004-01-09 | 4 | 40 | 22
10006 | 2004-01-18 | 1 | 10 | 20
20001 | 2004-02-12 | 2 | 20 | 20
40005 | 2004-02-12 | 4 | 10 | 18
20002 | 2004-02-16 | 2 | 20 | 18
30003 | 2004-04-18 | 3 | 15 | 18
30004 | 2004-04-18 | 3 | 20 | 18
30007 | 2004-09-07 | 3 | 30 | 19
(11 rows)

For a description of the WINSALES table, see Sample table for window function examples.

Window functions 2168

Amazon Redshift Database Developer Guide

COUNT window function

The COUNT window function counts the rows defined by the expression.

The COUNT function has two variations. COUNT(*) counts all the rows in the target table whether
they include nulls or not. COUNT(expression) computes the number of rows with non-NULL values
in a specific column or expression.

Syntax

COUNT (* | [ALL] expression) OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list
 frame_clause]
)

Arguments

expression

The target column or expression that the function operates on.

ALL

With the argument ALL, the function retains all duplicate values from the expression for
counting. ALL is the default. DISTINCT is not supported.

OVER

Specifies the window clauses for the aggregation functions. The OVER clause distinguishes
window aggregation functions from normal set aggregation functions.

PARTITION BY expr_list

Defines the window for the COUNT function in terms of one or more expressions.

ORDER BY order_list

Sorts the rows within each partition. If no PARTITION BY is specified, ORDER BY uses the entire
table.

frame_clause

If an ORDER BY clause is used for an aggregate function, an explicit frame clause is required.
The frame clause refines the set of rows in a function's window, including or excluding sets of

Window functions 2169

Amazon Redshift Database Developer Guide

rows within the ordered result. The frame clause consists of the ROWS keyword and associated
specifiers. See Window function syntax summary.

Data types

The COUNT function supports all argument data types.

The return type supported by the COUNT function is BIGINT.

Examples

The following example shows the sales ID, quantity, and count of all rows from the beginning of
the data window:

select salesid, qty,
count(*) over (order by salesid rows unbounded preceding) as count
from winsales
order by salesid;

salesid | qty | count
---------+-----+-----
10001 | 10 | 1
10005 | 30 | 2
10006 | 10 | 3
20001 | 20 | 4
20002 | 20 | 5
30001 | 10 | 6
30003 | 15 | 7
30004 | 20 | 8
30007 | 30 | 9
40001 | 40 | 10
40005 | 10 | 11
(11 rows)

For a description of the WINSALES table, see Sample table for window function examples.

The following example shows how the sales ID, quantity, and count of non-null rows from the
beginning of the data window. (In the WINSALES table, the QTY_SHIPPED column contains some
NULLs.)

select salesid, qty, qty_shipped,
count(qty_shipped)

Window functions 2170

Amazon Redshift Database Developer Guide

over (order by salesid rows unbounded preceding) as count
from winsales
order by salesid;

salesid | qty | qty_shipped | count
---------+-----+-------------+-------
10001 | 10 | 10 | 1
10005 | 30 | | 1
10006 | 10 | | 1
20001 | 20 | 20 | 2
20002 | 20 | 20 | 3
30001 | 10 | 10 | 4
30003 | 15 | | 4
30004 | 20 | | 4
30007 | 30 | | 4
40001 | 40 | | 4
40005 | 10 | 10 | 5
(11 rows)

CUME_DIST window function

Calculates the cumulative distribution of a value within a window or partition. Assuming ascending
ordering, the cumulative distribution is determined using this formula:

count of rows with values <= x / count of rows in the window or partition

where x equals the value in the current row of the column specified in the ORDER BY clause. The
following dataset illustrates use of this formula:

Row# Value Calculation CUME_DIST
1 2500 (1)/(5) 0.2
2 2600 (2)/(5) 0.4
3 2800 (3)/(5) 0.6
4 2900 (4)/(5) 0.8
5 3100 (5)/(5) 1.0

The return value range is >0 to 1, inclusive.

Syntax

CUME_DIST ()
OVER (

Window functions 2171

Amazon Redshift Database Developer Guide

[PARTITION BY partition_expression]
[ORDER BY order_list]
)

Arguments

OVER

A clause that specifies the window partitioning. The OVER clause cannot contain a window
frame specification.

PARTITION BY partition_expression

Optional. An expression that sets the range of records for each group in the OVER clause.

ORDER BY order_list

The expression on which to calculate cumulative distribution. The expression must have either a
numeric data type or be implicitly convertible to one. If ORDER BY is omitted, the return value is
1 for all rows.

If ORDER BY doesn't produce a unique ordering, the order of the rows is nondeterministic. For
more information, see Unique ordering of data for window functions.

Return type

FLOAT8

Examples

The following example calculates the cumulative distribution of the quantity for each seller:

select sellerid, qty, cume_dist()
over (partition by sellerid order by qty)
from winsales;

sellerid qty cume_dist
--
1 10.00 0.33
1 10.64 0.67
1 30.37 1
3 10.04 0.25
3 15.15 0.5

Window functions 2172

Amazon Redshift Database Developer Guide

3 20.75 0.75
3 30.55 1
2 20.09 0.5
2 20.12 1
4 10.12 0.5
4 40.23 1

For a description of the WINSALES table, see Sample table for window function examples.

DENSE_RANK window function

The DENSE_RANK window function determines the rank of a value in a group of values, based on
the ORDER BY expression in the OVER clause. If the optional PARTITION BY clause is present, the
rankings are reset for each group of rows. Rows with equal values for the ranking criteria receive
the same rank. The DENSE_RANK function differs from RANK in one respect: if two or more rows
tie, there is no gap in the sequence of ranked values. For example, if two rows are ranked 1, the
next rank is 2.

You can have ranking functions with different PARTITION BY and ORDER BY clauses in the same
query.

Syntax

DENSE_RANK() OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Arguments

()

The function takes no arguments, but the empty parentheses are required.

OVER

The window clauses for the DENSE_RANK function.

PARTITION BY expr_list

(Optional) One or more expressions that define the window.

Window functions 2173

Amazon Redshift Database Developer Guide

ORDER BY order_list

(Optional) The expression on which the ranking values are based. If no PARTITION BY is
specified, ORDER BY uses the entire table. If ORDER BY is omitted, the return value is 1 for all
rows.

If ORDER BY doesn't produce a unique ordering, the order of the rows is nondeterministic. For
more information, see Unique ordering of data for window functions.

Return type

INTEGER

Examples

The following examples use the sample table for window functions. For more information, see
Sample table for window function examples.

The following example orders the table by the quantity sold and assigns both a dense rank and a
regular rank to each row. The results are sorted after the window function results are applied.

SELECT salesid, qty,
DENSE_RANK() OVER(ORDER BY qty DESC) AS d_rnk,
RANK() OVER(ORDER BY qty DESC) AS rnk
FROM winsales
ORDER BY 2,1;

+---------+-----+-------+-----+
| salesid | qty | d_rnk | rnk |
+---------+-----+-------+-----+
10001	10	5	8
10006	10	5	8
30001	10	5	8
40005	10	5	8
30003	15	4	7
20001	20	3	4
20002	20	3	4
30004	20	3	4
10005	30	2	2
30007	30	2	2
40001	40	1	1
+---------+-----+-------+-----+

Window functions 2174

Amazon Redshift Database Developer Guide

Note the difference in rankings assigned to the same set of rows when the DENSE_RANK and RANK
functions are used side by side in the same query.

The following example partitions the table by sellerid, orders each partition by the quantity, and
assigns a dense rank to each row. The results are sorted after the window function results are
applied.

SELECT salesid, sellerid, qty,
DENSE_RANK() OVER(PARTITION BY sellerid ORDER BY qty DESC) AS d_rnk
FROM winsales
ORDER BY 2,3,1;

+---------+----------+-----+-------+
| salesid | sellerid | qty | d_rnk |
+---------+----------+-----+-------+
10001	1	10	2
10006	1	10	2
10005	1	30	1
20001	2	20	1
20002	2	20	1
30001	3	10	4
30003	3	15	3
30004	3	20	2
30007	3	30	1
40005	4	10	2
40001	4	40	1
+---------+----------+-----+-------+

To successfully use the last example, use the following command to insert a row into the
WINSALES table. This row has the same buyerid, sellerid, and qtysold as another row. This
will cause two rows to tie in the last example and thus will show the difference between the
DENSE_RANK and RANK functions.

INSERT INTO winsales VALUES(30009, '2/2/2003', 3, 'b', 20, NULL);

The following example partitions the table by buyerid and sellerid, orders each partition by the
quantity, and assigns both a dense rank and a regular rank to each row. The results are sorted after
the window function is applied.

SELECT salesid, sellerid, qty, buyerid,

Window functions 2175

Amazon Redshift Database Developer Guide

DENSE_RANK() OVER(PARTITION BY buyerid, sellerid ORDER BY qty DESC) AS d_rnk,
RANK() OVER (PARTITION BY buyerid, sellerid ORDER BY qty DESC) AS rnk
FROM winsales
ORDER BY rnk;

+---------+----------+-----+---------+-------+-----+
| salesid | sellerid | qty | buyerid | d_rnk | rnk |
+---------+----------+-----+---------+-------+-----+
20001	2	20	b	1	1
30007	3	30	c	1	1
10006	1	10	c	1	1
10005	1	30	a	1	1
20002	2	20	c	1	1
30009	3	20	b	1	1
40001	4	40	a	1	1
30004	3	20	b	1	1
10001	1	10	c	1	1
40005	4	10	a	2	2
30003	3	15	b	2	3
30001	3	10	b	3	4
+---------+----------+-----+---------+-------+-----+

FIRST_VALUE window function

Given an ordered set of rows, FIRST_VALUE returns the value of the specified expression with
respect to the first row in the window frame.

For information about selecting the last row in the frame, see LAST_VALUE window function .

Syntax

FIRST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Arguments

expression

The target column or expression that the function operates on.

Window functions 2176

Amazon Redshift Database Developer Guide

IGNORE NULLS

When this option is used with FIRST_VALUE, the function returns the first value in the frame
that is not NULL (or NULL if all values are NULL).

RESPECT NULLS

Indicates that Amazon Redshift should include null values in the determination of which row to
use. RESPECT NULLS is supported by default if you do not specify IGNORE NULLS.

OVER

Introduces the window clauses for the function.

PARTITION BY expr_list

Defines the window for the function in terms of one or more expressions.

ORDER BY order_list

Sorts the rows within each partition. If no PARTITION BY clause is specified, ORDER BY sorts the
entire table. If you specify an ORDER BY clause, you must also specify a frame_clause.

The results of the FIRST_VALUE function depends on the ordering of the data. The results are
nondeterministic in the following cases:

• When no ORDER BY clause is specified and a partition contains two different values for an
expression

• When the expression evaluates to different values that correspond to the same value in the
ORDER BY list.

frame_clause

If an ORDER BY clause is used for an aggregate function, an explicit frame clause is required.
The frame clause refines the set of rows in a function's window, including or excluding sets
of rows in the ordered result. The frame clause consists of the ROWS keyword and associated
specifiers. See Window function syntax summary.

Return type

These functions support expressions that use primitive Amazon Redshift data types. The return
type is the same as the data type of the expression.

Window functions 2177

Amazon Redshift Database Developer Guide

Examples

The following examples use the VENUE table from the sample TICKIT data. For more information,
see Sample database.

The following example returns the seating capacity for each venue in the VENUE table, with the
results ordered by capacity (high to low). The FIRST_VALUE function is used to select the name
of the venue that corresponds to the first row in the frame: in this case, the row with the highest
number of seats. The results are partitioned by state, so when the VENUESTATE value changes, a
new first value is selected. The window frame is unbounded so the same first value is selected for
each row in each partition.

For California, Qualcomm Stadium has the highest number of seats (70561), so this name is the
first value for all of the rows in the CA partition.

select venuestate, venueseats, venuename,
first_value(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | first_value
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Qualcomm Stadium
CA | 69843 | Monster Park | Qualcomm Stadium
CA | 63026 | McAfee Coliseum | Qualcomm Stadium
CA | 56000 | Dodger Stadium | Qualcomm Stadium
CA | 45050 | Angel Stadium of Anaheim | Qualcomm Stadium
CA | 42445 | PETCO Park | Qualcomm Stadium
CA | 41503 | AT&T Park | Qualcomm Stadium
CA | 22000 | Shoreline Amphitheatre | Qualcomm Stadium
CO | 76125 | INVESCO Field | INVESCO Field
CO | 50445 | Coors Field | INVESCO Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Dolphin Stadium
FL | 73800 | Jacksonville Municipal Stadium | Dolphin Stadium
FL | 65647 | Raymond James Stadium | Dolphin Stadium
FL | 36048 | Tropicana Field | Dolphin Stadium
...

Window functions 2178

Amazon Redshift Database Developer Guide

The following example shows the use of the IGNORE NULLS option and relies on the addition of a
new row to the VENUE table:

insert into venue values(2000,null,'Stanford','CA',90000);

This new row contains a NULL value for the VENUENAME column. Now repeat the FIRST_VALUE
query that was shown earlier in this section:

select venuestate, venueseats, venuename,
first_value(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

venuestate | venueseats | venuename | first_value
-----------+------------+----------------------------+-------------
CA | 90000 | NULL | NULL
CA | 70561 | Qualcomm Stadium | NULL
CA | 69843 | Monster Park | NULL
...

Because the new row contains the highest VENUESEATS value (90000) and its VENUENAME is
NULL, the FIRST_VALUE function returns NULL for the CA partition. To ignore rows like this in the
function evaluation, add the IGNORE NULLS option to the function argument:

select venuestate, venueseats, venuename,
first_value(venuename) ignore nulls
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venuestate='CA')
order by venuestate;

venuestate | venueseats | venuename | first_value
------------+------------+----------------------------+------------------
CA | 90000 | NULL | Qualcomm Stadium
CA | 70561 | Qualcomm Stadium | Qualcomm Stadium
CA | 69843 | Monster Park | Qualcomm Stadium
...

Window functions 2179

Amazon Redshift Database Developer Guide

LAG window function

The LAG window function returns the values for a row at a given offset above (before) the current
row in the partition.

Syntax

LAG (value_expr [, offset])
[IGNORE NULLS | RESPECT NULLS]
OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Arguments

value_expr

The target column or expression that the function operates on.

offset

An optional parameter that specifies the number of rows before the current row to return
values for. The offset can be a constant integer or an expression that evaluates to an integer.
If you do not specify an offset, Amazon Redshift uses 1 as the default value. An offset of 0
indicates the current row.

IGNORE NULLS

An optional specification that indicates that Amazon Redshift should skip null values in the
determination of which row to use. Null values are included if IGNORE NULLS is not listed.

Note

You can use an NVL or COALESCE expression to replace the null values with another
value. For more information, see NVL and COALESCE functions.

RESPECT NULLS

Indicates that Amazon Redshift should include null values in the determination of which row to
use. RESPECT NULLS is supported by default if you do not specify IGNORE NULLS.

Window functions 2180

Amazon Redshift Database Developer Guide

OVER

Specifies the window partitioning and ordering. The OVER clause cannot contain a window
frame specification.

PARTITION BY window_partition

An optional argument that sets the range of records for each group in the OVER clause.

ORDER BY window_ordering

Sorts the rows within each partition.

The LAG window function supports expressions that use any of the Amazon Redshift data types.
The return type is the same as the type of the value_expr.

Examples

The following example shows the quantity of tickets sold to the buyer with a buyer ID of 3 and
the time that buyer 3 bought the tickets. To compare each sale with the previous sale for buyer
3, the query returns the previous quantity sold for each sale. Since there is no purchase before
1/16/2008, the first previous quantity sold value is null:

select buyerid, saletime, qtysold,
lag(qtysold,1) over (order by buyerid, saletime) as prev_qtysold
from sales where buyerid = 3 order by buyerid, saletime;

buyerid | saletime | qtysold | prev_qtysold
---------+---------------------+---------+--------------
3 | 2008-01-16 01:06:09 | 1 |
3 | 2008-01-28 02:10:01 | 1 | 1
3 | 2008-03-12 10:39:53 | 1 | 1
3 | 2008-03-13 02:56:07 | 1 | 1
3 | 2008-03-29 08:21:39 | 2 | 1
3 | 2008-04-27 02:39:01 | 1 | 2
3 | 2008-08-16 07:04:37 | 2 | 1
3 | 2008-08-22 11:45:26 | 2 | 2
3 | 2008-09-12 09:11:25 | 1 | 2
3 | 2008-10-01 06:22:37 | 1 | 1
3 | 2008-10-20 01:55:51 | 2 | 1
3 | 2008-10-28 01:30:40 | 1 | 2
(12 rows)

Window functions 2181

Amazon Redshift Database Developer Guide

LAST_VALUE window function

Given an ordered set of rows, The LAST_VALUE function returns the value of the expression with
respect to the last row in the frame.

For information about selecting the first row in the frame, see FIRST_VALUE window function .

Syntax

LAST_VALUE(expression)[IGNORE NULLS | RESPECT NULLS]
OVER (
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Arguments

expression

The target column or expression that the function operates on.

IGNORE NULLS

The function returns the last value in the frame that is not NULL (or NULL if all values are
NULL).

RESPECT NULLS

Indicates that Amazon Redshift should include null values in the determination of which row to
use. RESPECT NULLS is supported by default if you do not specify IGNORE NULLS.

OVER

Introduces the window clauses for the function.

PARTITION BY expr_list

Defines the window for the function in terms of one or more expressions.

ORDER BY order_list

Sorts the rows within each partition. If no PARTITION BY clause is specified, ORDER BY sorts the
entire table. If you specify an ORDER BY clause, you must also specify a frame_clause.

The results depend on the ordering of the data. The results are nondeterministic in the
following cases:

Window functions 2182

Amazon Redshift Database Developer Guide

• When no ORDER BY clause is specified and a partition contains two different values for an
expression

• When the expression evaluates to different values that correspond to the same value in the
ORDER BY list.

frame_clause

If an ORDER BY clause is used for an aggregate function, an explicit frame clause is required.
The frame clause refines the set of rows in a function's window, including or excluding sets
of rows in the ordered result. The frame clause consists of the ROWS keyword and associated
specifiers. See Window function syntax summary.

Return type

These functions support expressions that use primitive Amazon Redshift data types. The return
type is the same as the data type of the expression.

Examples

The following examples use the VENUE table from the sample TICKIT data. For more information,
see Sample database.

The following example returns the seating capacity for each venue in the VENUE table, with the
results ordered by capacity (high to low). The LAST_VALUE function is used to select the name of
the venue that corresponds to the last row in the frame: in this case, the row with the least number
of seats. The results are partitioned by state, so when the VENUESTATE value changes, a new last
value is selected. The window frame is unbounded so the same last value is selected for each row
in each partition.

For California, Shoreline Amphitheatre is returned for every row in the partition because it has
the lowest number of seats (22000).

select venuestate, venueseats, venuename,
last_value(venuename)
over(partition by venuestate
order by venueseats desc
rows between unbounded preceding and unbounded following)
from (select * from venue where venueseats >0)
order by venuestate;

Window functions 2183

Amazon Redshift Database Developer Guide

venuestate | venueseats | venuename | last_value
-----------+------------+--------------------------------
+------------------------------
CA | 70561 | Qualcomm Stadium | Shoreline Amphitheatre
CA | 69843 | Monster Park | Shoreline Amphitheatre
CA | 63026 | McAfee Coliseum | Shoreline Amphitheatre
CA | 56000 | Dodger Stadium | Shoreline Amphitheatre
CA | 45050 | Angel Stadium of Anaheim | Shoreline Amphitheatre
CA | 42445 | PETCO Park | Shoreline Amphitheatre
CA | 41503 | AT&T Park | Shoreline Amphitheatre
CA | 22000 | Shoreline Amphitheatre | Shoreline Amphitheatre
CO | 76125 | INVESCO Field | Coors Field
CO | 50445 | Coors Field | Coors Field
DC | 41888 | Nationals Park | Nationals Park
FL | 74916 | Dolphin Stadium | Tropicana Field
FL | 73800 | Jacksonville Municipal Stadium | Tropicana Field
FL | 65647 | Raymond James Stadium | Tropicana Field
FL | 36048 | Tropicana Field | Tropicana Field
...

LEAD window function

The LEAD window function returns the values for a row at a given offset below (after) the current
row in the partition.

Syntax

LEAD (value_expr [, offset])
[IGNORE NULLS | RESPECT NULLS]
OVER ([PARTITION BY window_partition] ORDER BY window_ordering)

Arguments

value_expr

The target column or expression that the function operates on.

offset

An optional parameter that specifies the number of rows below the current row to return values
for. The offset can be a constant integer or an expression that evaluates to an integer. If you do
not specify an offset, Amazon Redshift uses 1 as the default value. An offset of 0 indicates the
current row.

Window functions 2184

Amazon Redshift Database Developer Guide

IGNORE NULLS

An optional specification that indicates that Amazon Redshift should skip null values in the
determination of which row to use. Null values are included if IGNORE NULLS is not listed.

Note

You can use an NVL or COALESCE expression to replace the null values with another
value. For more information, see NVL and COALESCE functions.

RESPECT NULLS

Indicates that Amazon Redshift should include null values in the determination of which row to
use. RESPECT NULLS is supported by default if you do not specify IGNORE NULLS.

OVER

Specifies the window partitioning and ordering. The OVER clause cannot contain a window
frame specification.

PARTITION BY window_partition

An optional argument that sets the range of records for each group in the OVER clause.

ORDER BY window_ordering

Sorts the rows within each partition.

The LEAD window function supports expressions that use any of the Amazon Redshift data types.
The return type is the same as the type of the value_expr.

Examples

The following example provides the commission for events in the SALES table for which tickets
were sold on January 1, 2008 and January 2, 2008 and the commission paid for ticket sales for the
subsequent sale. The following example uses the TICKIT sample database. For more information,
see Sample database.

SELECT eventid, commission, saletime, LEAD(commission, 1) over (ORDER BY saletime) AS
 next_comm
FROM sales

Window functions 2185

Amazon Redshift Database Developer Guide

WHERE saletime BETWEEN '2008-01-09 00:00:00' AND '2008-01-10 12:59:59'
LIMIT 10;

+---------+------------+---------------------+-----------+
| eventid | commission | saletime | next_comm |
+---------+------------+---------------------+-----------+
1664	13.2	2008-01-09 01:00:21	69.6
184	69.6	2008-01-09 01:00:36	116.1
6870	116.1	2008-01-09 01:02:37	11.1
3718	11.1	2008-01-09 01:05:19	205.5
6772	205.5	2008-01-09 01:14:04	38.4
3074	38.4	2008-01-09 01:26:50	209.4
5254	209.4	2008-01-09 01:29:16	26.4
3724	26.4	2008-01-09 01:40:09	57.6
5303	57.6	2008-01-09 01:40:21	51.6
3678	51.6	2008-01-09 01:42:54	43.8
+---------+------------+---------------------+-----------+

LISTAGG window function

For each group in a query, the LISTAGG window function orders the rows for that group according
to the ORDER BY expression, then concatenates the values into a single string.

LISTAGG is a compute-node only function. The function returns an error if the query doesn't
reference a user-defined table or Amazon Redshift system table. For more information, see
Querying the catalog tables.

Syntax

LISTAGG([DISTINCT] expression [, 'delimiter'])
[WITHIN GROUP (ORDER BY order_list)]
OVER ([PARTITION BY partition_expression])

Arguments

DISTINCT

(Optional) A clause that eliminates duplicate values from the specified expression before
concatenating. Trailing spaces are ignored, so the strings 'a' and 'a ' are treated as
duplicates. LISTAGG uses the first value encountered. For more information, see Significance of
trailing blanks.

Window functions 2186

Amazon Redshift Database Developer Guide

aggregate_expression

Any valid expression (such as a column name) that provides the values to aggregate. NULL
values and empty strings are ignored.

delimiter

(Optional) The string constant to will separate the concatenated values. The default is NULL.

WITHIN GROUP (ORDER BY order_list)

(Optional) A clause that specifies the sort order of the aggregated values. Deterministic only
if ORDER BY provides unique ordering. The default is to aggregate all rows and return a single
value.

OVER

A clause that specifies the window partitioning. The OVER clause cannot contain a window
ordering or window frame specification.

PARTITION BY partition_expression

(Optional) Sets the range of records for each group in the OVER clause.

Returns

VARCHAR(MAX). If the result set is larger than the maximum VARCHAR size (64K – 1, or 65535),
then LISTAGG returns the following error:

Invalid operation: Result size exceeds LISTAGG limit

Examples

The following examples uses the WINSALES table. For a description of the WINSALES table, see
Sample table for window function examples.

The following example returns a list of seller IDs, ordered by seller ID.

select listagg(sellerid)
within group (order by sellerid)

Window functions 2187

Amazon Redshift Database Developer Guide

over() from winsales;

 listagg

 11122333344
...
...
 11122333344
 11122333344
 (11 rows)

The following example returns a list of seller IDs for buyer B, ordered by date.

select listagg(sellerid)
within group (order by dateid)
over () as seller
from winsales
where buyerid = 'b' ;

 seller

 3233
 3233
 3233
 3233

The following example returns a comma-separated list of sales dates for buyer B.

select listagg(dateid,',')
within group (order by sellerid desc,salesid asc)
over () as dates
from winsales
where buyerid = 'b';

 dates

2003-08-02,2004-04-18,2004-04-18,2004-02-12
2003-08-02,2004-04-18,2004-04-18,2004-02-12
2003-08-02,2004-04-18,2004-04-18,2004-02-12
2003-08-02,2004-04-18,2004-04-18,2004-02-12

The following example uses DISTINCT to return a list of unique sales dates for buyer B.

Window functions 2188

Amazon Redshift Database Developer Guide

select listagg(distinct dateid,',')
within group (order by sellerid desc,salesid asc)
over () as dates
from winsales
where buyerid = 'b';

 dates

2003-08-02,2004-04-18,2004-02-12
2003-08-02,2004-04-18,2004-02-12
2003-08-02,2004-04-18,2004-02-12
2003-08-02,2004-04-18,2004-02-12

The following example returns a comma-separated list of sales IDs for each buyer ID.

select buyerid,
listagg(salesid,',')
within group (order by salesid)
over (partition by buyerid) as sales_id
from winsales
order by buyerid;

+---------+-------------------------+
| buyerid | sales_id |
+---------+-------------------------+
a	10005,40001,40005
a	10005,40001,40005
a	10005,40001,40005
b	20001,30001,30003,30004
b	20001,30001,30003,30004
b	20001,30001,30003,30004
b	20001,30001,30003,30004
c	10001,10006,20002,30007
c	10001,10006,20002,30007
c	10001,10006,20002,30007
c	10001,10006,20002,30007
+---------+-------------------------+

MAX window function

The MAX window function returns the maximum of the input expression values. The MAX function
works with numeric values and ignores NULL values.

Window functions 2189

Amazon Redshift Database Developer Guide

Syntax

MAX ([ALL] expression) OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Arguments

expression

The target column or expression that the function operates on.

ALL

With the argument ALL, the function retains all duplicate values from the expression. ALL is the
default. DISTINCT is not supported.

OVER

A clause that specifies the window clauses for the aggregation functions. The OVER clause
distinguishes window aggregation functions from normal set aggregation functions.

PARTITION BY expr_list

Defines the window for the MAX function in terms of one or more expressions.

ORDER BY order_list

Sorts the rows within each partition. If no PARTITION BY is specified, ORDER BY uses the entire
table.

frame_clause

If an ORDER BY clause is used for an aggregate function, an explicit frame clause is required.
The frame clause refines the set of rows in a function's window, including or excluding sets of
rows within the ordered result. The frame clause consists of the ROWS keyword and associated
specifiers. See Window function syntax summary.

Data types

Accepts any data type as input. Returns the same data type as expression.

Window functions 2190

Amazon Redshift Database Developer Guide

Examples

The following example shows the sales ID, quantity, and maximum quantity from the beginning of
the data window:

select salesid, qty,
max(qty) over (order by salesid rows unbounded preceding) as max
from winsales
order by salesid;

salesid | qty | max
---------+-----+-----
10001 | 10 | 10
10005 | 30 | 30
10006 | 10 | 30
20001 | 20 | 30
20002 | 20 | 30
30001 | 10 | 30
30003 | 15 | 30
30004 | 20 | 30
30007 | 30 | 30
40001 | 40 | 40
40005 | 10 | 40
(11 rows)

For a description of the WINSALES table, see Sample table for window function examples.

The following example shows the salesid, quantity, and maximum quantity in a restricted frame:

select salesid, qty,
max(qty) over (order by salesid rows between 2 preceding and 1 preceding) as max
from winsales
order by salesid;

salesid | qty | max
---------+-----+-----
10001 | 10 |
10005 | 30 | 10
10006 | 10 | 30
20001 | 20 | 30
20002 | 20 | 20
30001 | 10 | 20
30003 | 15 | 20

Window functions 2191

Amazon Redshift Database Developer Guide

30004 | 20 | 15
30007 | 30 | 20
40001 | 40 | 30
40005 | 10 | 40
(11 rows)

MEDIAN window function

Calculates the median value for the range of values in a window or partition. NULL values in the
range are ignored.

MEDIAN is an inverse distribution function that assumes a continuous distribution model.

MEDIAN is a compute-node only function. The function returns an error if the query doesn't
reference a user-defined table or Amazon Redshift system table.

Syntax

MEDIAN (median_expression)
OVER ([PARTITION BY partition_expression])

Arguments

median_expression

An expression, such as a column name, that provides the values for which to determine the
median. The expression must have either a numeric or datetime data type or be implicitly
convertible to one.

OVER

A clause that specifies the window partitioning. The OVER clause cannot contain a window
ordering or window frame specification.

PARTITION BY partition_expression

Optional. An expression that sets the range of records for each group in the OVER clause.

Data types

The return type is determined by the data type of median_expression. The following table shows
the return type for each median_expression data type.

Window functions 2192

Amazon Redshift Database Developer Guide

Input Type Return Type

INT2, INT4, INT8, NUMERIC, DECIMAL DECIMAL

FLOAT, DOUBLE DOUBLE

DATE DATE

Usage notes

If the median_expression argument is a DECIMAL data type defined with the maximum precision of
38 digits, it is possible that MEDIAN will return either an inaccurate result or an error. If the return
value of the MEDIAN function exceeds 38 digits, the result is truncated to fit, which causes a loss of
precision. If, during interpolation, an intermediate result exceeds the maximum precision, a numeric
overflow occurs and the function returns an error. To avoid these conditions, we recommend either
using a data type with lower precision or casting the median_expression argument to a lower
precision.

For example, a SUM function with a DECIMAL argument returns a default precision of 38 digits.
The scale of the result is the same as the scale of the argument. So, for example, a SUM of a
DECIMAL(5,2) column returns a DECIMAL(38,2) data type.

The following example uses a SUM function in the median_expression argument of a MEDIAN
function. The data type of the PRICEPAID column is DECIMAL (8,2), so the SUM function returns
DECIMAL(38,2).

select salesid, sum(pricepaid), median(sum(pricepaid))
over() from sales where salesid < 10 group by salesid;

To avoid a potential loss of precision or an overflow error, cast the result to a DECIMAL data type
with lower precision, as the following example shows.

select salesid, sum(pricepaid), median(sum(pricepaid)::decimal(30,2))
over() from sales where salesid < 10 group by salesid;

Examples

The following example calculates the median sales quantity for each seller:

Window functions 2193

Amazon Redshift Database Developer Guide

select sellerid, qty, median(qty)
over (partition by sellerid)
from winsales
order by sellerid;

sellerid qty median

1 10 10.0
1 10 10.0
1 30 10.0
2 20 20.0
2 20 20.0
3 10 17.5
3 15 17.5
3 20 17.5
3 30 17.5
4 10 25.0
4 40 25.0

For a description of the WINSALES table, see Sample table for window function examples.

MIN window function

The MIN window function returns the minimum of the input expression values. The MIN function
works with numeric values and ignores NULL values.

Syntax

MIN ([ALL] expression) OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list frame_clause]
)

Arguments

expression

The target column or expression that the function operates on.

Window functions 2194

Amazon Redshift Database Developer Guide

ALL

With the argument ALL, the function retains all duplicate values from the expression. ALL is the
default. DISTINCT is not supported.

OVER

Specifies the window clauses for the aggregation functions. The OVER clause distinguishes
window aggregation functions from normal set aggregation functions.

PARTITION BY expr_list

Defines the window for the MIN function in terms of one or more expressions.

ORDER BY order_list

Sorts the rows within each partition. If no PARTITION BY is specified, ORDER BY uses the entire
table.

frame_clause

If an ORDER BY clause is used for an aggregate function, an explicit frame clause is required.
The frame clause refines the set of rows in a function's window, including or excluding sets of
rows within the ordered result. The frame clause consists of the ROWS keyword and associated
specifiers. See Window function syntax summary.

Data types

Accepts any data type as input. Returns the same data type as expression.

Examples

The following example shows the sales ID, quantity, and minimum quantity from the beginning of
the data window:

select salesid, qty,
min(qty) over
(order by salesid rows unbounded preceding)
from winsales
order by salesid;

salesid | qty | min
---------+-----+-----

Window functions 2195

Amazon Redshift Database Developer Guide

10001 | 10 | 10
10005 | 30 | 10
10006 | 10 | 10
20001 | 20 | 10
20002 | 20 | 10
30001 | 10 | 10
30003 | 15 | 10
30004 | 20 | 10
30007 | 30 | 10
40001 | 40 | 10
40005 | 10 | 10
(11 rows)

For a description of the WINSALES table, see Sample table for window function examples.

The following example shows the sales ID, quantity, and minimum quantity in a restricted frame:

select salesid, qty,
min(qty) over
(order by salesid rows between 2 preceding and 1 preceding) as min
from winsales
order by salesid;

salesid | qty | min
---------+-----+-----
10001 | 10 |
10005 | 30 | 10
10006 | 10 | 10
20001 | 20 | 10
20002 | 20 | 10
30001 | 10 | 20
30003 | 15 | 10
30004 | 20 | 10
30007 | 30 | 15
40001 | 40 | 20
40005 | 10 | 30
(11 rows)

NTH_VALUE window function

The NTH_VALUE window function returns the expression value of the specified row of the window
frame relative to the first row of the window.

Window functions 2196

Amazon Redshift Database Developer Guide

Syntax

NTH_VALUE (expr, offset)
[IGNORE NULLS | RESPECT NULLS]
OVER
([PARTITION BY window_partition]
[ORDER BY window_ordering
 frame_clause])

Arguments

expr

The target column or expression that the function operates on.

offset

Determines the row number relative to the first row in the window for which to return the
expression. The offset can be a constant or an expression and must be a positive integer that is
greater than 0.

IGNORE NULLS

An optional specification that indicates that Amazon Redshift should skip null values in the
determination of which row to use. Null values are included if IGNORE NULLS is not listed.

RESPECT NULLS

Indicates that Amazon Redshift should include null values in the determination of which row to
use. RESPECT NULLS is supported by default if you do not specify IGNORE NULLS.

OVER

Specifies the window partitioning, ordering, and window frame.

PARTITION BY window_partition

Sets the range of records for each group in the OVER clause.

ORDER BY window_ordering

Sorts the rows within each partition. If ORDER BY is omitted, the default frame consists of all
rows in the partition.

Window functions 2197

Amazon Redshift Database Developer Guide

frame_clause

If an ORDER BY clause is used for an aggregate function, an explicit frame clause is required.
The frame clause refines the set of rows in a function's window, including or excluding sets
of rows in the ordered result. The frame clause consists of the ROWS keyword and associated
specifiers. See Window function syntax summary.

The NTH_VALUE window function supports expressions that use any of the Amazon Redshift data
types. The return type is the same as the type of the expr.

Examples

The following example shows the number of seats in the third largest venue in California, Florida,
and New York compared to the number of seats in the other venues in those states:

select venuestate, venuename, venueseats,
nth_value(venueseats, 3)
ignore nulls
over(partition by venuestate order by venueseats desc
rows between unbounded preceding and unbounded following)
as third_most_seats
from (select * from venue where venueseats > 0 and
venuestate in('CA', 'FL', 'NY'))
order by venuestate;

venuestate | venuename | venueseats | third_most_seats
------------+--------------------------------+------------+------------------
CA | Qualcomm Stadium | 70561 | 63026
CA | Monster Park | 69843 | 63026
CA | McAfee Coliseum | 63026 | 63026
CA | Dodger Stadium | 56000 | 63026
CA | Angel Stadium of Anaheim | 45050 | 63026
CA | PETCO Park | 42445 | 63026
CA | AT&T Park | 41503 | 63026
CA | Shoreline Amphitheatre | 22000 | 63026
FL | Dolphin Stadium | 74916 | 65647
FL | Jacksonville Municipal Stadium | 73800 | 65647
FL | Raymond James Stadium | 65647 | 65647
FL | Tropicana Field | 36048 | 65647
NY | Ralph Wilson Stadium | 73967 | 20000
NY | Yankee Stadium | 52325 | 20000
NY | Madison Square Garden | 20000 | 20000

Window functions 2198

Amazon Redshift Database Developer Guide

(15 rows)

NTILE window function

The NTILE window function divides ordered rows in the partition into the specified number of
ranked groups of as equal size as possible and returns the group that a given row falls into.

Syntax

NTILE (expr)
OVER (
[PARTITION BY expression_list]
[ORDER BY order_list]
)

Arguments

expr

The number of ranking groups and must result in a positive integer value (greater than 0) for
each partition. The expr argument must not be nullable.

OVER

A clause that specifies the window partitioning and ordering. The OVER clause cannot contain a
window frame specification.

PARTITION BY window_partition

Optional. The range of records for each group in the OVER clause.

ORDER BY window_ordering

Optional. An expression that sorts the rows within each partition. If the ORDER BY clause is
omitted, the ranking behavior is the same.

If ORDER BY does not produce a unique ordering, the order of the rows is nondeterministic. For
more information, see Unique ordering of data for window functions.

Return type

BIGINT

Window functions 2199

Amazon Redshift Database Developer Guide

Examples

The following example ranks into four ranking groups the price paid for Hamlet tickets on August
26, 2008. The result set is 17 rows, divided almost evenly among the rankings 1 through 4:

select eventname, caldate, pricepaid, ntile(4)
over(order by pricepaid desc) from sales, event, date
where sales.eventid=event.eventid and event.dateid=date.dateid and eventname='Hamlet'
and caldate='2008-08-26'
order by 4;

eventname | caldate | pricepaid | ntile
-----------+------------+-----------+-------
Hamlet | 2008-08-26 | 1883.00 | 1
Hamlet | 2008-08-26 | 1065.00 | 1
Hamlet | 2008-08-26 | 589.00 | 1
Hamlet | 2008-08-26 | 530.00 | 1
Hamlet | 2008-08-26 | 472.00 | 1
Hamlet | 2008-08-26 | 460.00 | 2
Hamlet | 2008-08-26 | 355.00 | 2
Hamlet | 2008-08-26 | 334.00 | 2
Hamlet | 2008-08-26 | 296.00 | 2
Hamlet | 2008-08-26 | 230.00 | 3
Hamlet | 2008-08-26 | 216.00 | 3
Hamlet | 2008-08-26 | 212.00 | 3
Hamlet | 2008-08-26 | 106.00 | 3
Hamlet | 2008-08-26 | 100.00 | 4
Hamlet | 2008-08-26 | 94.00 | 4
Hamlet | 2008-08-26 | 53.00 | 4
Hamlet | 2008-08-26 | 25.00 | 4
(17 rows)

PERCENT_RANK window function

Calculates the percent rank of a given row. The percent rank is determined using this formula:

(x - 1) / (the number of rows in the window or partition - 1)

where x is the rank of the current row. The following dataset illustrates use of this formula:

Row# Value Rank Calculation PERCENT_RANK
1 15 1 (1-1)/(7-1) 0.0000
2 20 2 (2-1)/(7-1) 0.1666

Window functions 2200

Amazon Redshift Database Developer Guide

3 20 2 (2-1)/(7-1) 0.1666
4 20 2 (2-1)/(7-1) 0.1666
5 30 5 (5-1)/(7-1) 0.6666
6 30 5 (5-1)/(7-1) 0.6666
7 40 7 (7-1)/(7-1) 1.0000

The return value range is 0 to 1, inclusive. The first row in any set has a PERCENT_RANK of 0.

Syntax

PERCENT_RANK ()
OVER (
[PARTITION BY partition_expression]
[ORDER BY order_list]
)

Arguments

()

The function takes no arguments, but the empty parentheses are required.

OVER

A clause that specifies the window partitioning. The OVER clause cannot contain a window
frame specification.

PARTITION BY partition_expression

Optional. An expression that sets the range of records for each group in the OVER clause.

ORDER BY order_list

Optional. The expression on which to calculate percent rank. The expression must have either a
numeric data type or be implicitly convertible to one. If ORDER BY is omitted, the return value is
0 for all rows.

If ORDER BY does not produce a unique ordering, the order of the rows is nondeterministic. For
more information, see Unique ordering of data for window functions.

Return type

FLOAT8

Window functions 2201

Amazon Redshift Database Developer Guide

Examples

The following example calculates the percent rank of the sales quantities for each seller:

select sellerid, qty, percent_rank()
over (partition by sellerid order by qty)
from winsales;

sellerid qty percent_rank
--
1 10.00 0.0
1 10.64 0.5
1 30.37 1.0
3 10.04 0.0
3 15.15 0.33
3 20.75 0.67
3 30.55 1.0
2 20.09 0.0
2 20.12 1.0
4 10.12 0.0
4 40.23 1.0

For a description of the WINSALES table, see Sample table for window function examples.

PERCENTILE_CONT window function

PERCENTILE_CONT is an inverse distribution function that assumes a continuous distribution
model. It takes a percentile value and a sort specification, and returns an interpolated value that
would fall into the given percentile value with respect to the sort specification.

PERCENTILE_CONT computes a linear interpolation between values after ordering them. Using the
percentile value (P) and the number of not null rows (N) in the aggregation group, the function
computes the row number after ordering the rows according to the sort specification. This row
number (RN) is computed according to the formula RN = (1+ (P*(N-1)). The final result of
the aggregate function is computed by linear interpolation between the values from rows at row
numbers CRN = CEILING(RN) and FRN = FLOOR(RN).

The final result will be as follows.

If (CRN = FRN = RN) then the result is (value of expression from row at RN)

Otherwise the result is as follows:

Window functions 2202

Amazon Redshift Database Developer Guide

(CRN - RN) * (value of expression for row at FRN) + (RN - FRN) * (value of
expression for row at CRN).

You can specify only the PARTITION clause in the OVER clause. If PARTITION is specified, for each
row, PERCENTILE_CONT returns the value that would fall into the specified percentile among a set
of values within a given partition.

PERCENTILE_CONT is a compute-node only function. The function returns an error if the query
doesn't reference a user-defined table or Amazon Redshift system table.

Syntax

PERCENTILE_CONT (percentile)
WITHIN GROUP (ORDER BY expr)
OVER ([PARTITION BY expr_list])

Arguments

percentile

Numeric constant between 0 and 1. Nulls are ignored in the calculation.

WITHIN GROUP (ORDER BY expr)

Specifies numeric or date/time values to sort and compute the percentile over.

OVER

Specifies the window partitioning. The OVER clause cannot contain a window ordering or
window frame specification.

PARTITION BY expr

Optional argument that sets the range of records for each group in the OVER clause.

Returns

The return type is determined by the data type of the ORDER BY expression in the WITHIN GROUP
clause. The following table shows the return type for each ORDER BY expression data type.

Input Type Return Type

INT2, INT4, INT8, NUMERIC, DECIMAL DECIMAL

Window functions 2203

Amazon Redshift Database Developer Guide

Input Type Return Type

FLOAT, DOUBLE DOUBLE

DATE DATE

TIMESTAMP TIMESTAMP

Usage notes

If the ORDER BY expression is a DECIMAL data type defined with the maximum precision of 38
digits, it is possible that PERCENTILE_CONT will return either an inaccurate result or an error. If
the return value of the PERCENTILE_CONT function exceeds 38 digits, the result is truncated to
fit, which causes a loss of precision. If, during interpolation, an intermediate result exceeds the
maximum precision, a numeric overflow occurs and the function returns an error. To avoid these
conditions, we recommend either using a data type with lower precision or casting the ORDER BY
expression to a lower precision.

For example, a SUM function with a DECIMAL argument returns a default precision of 38 digits.
The scale of the result is the same as the scale of the argument. So, for example, a SUM of a
DECIMAL(5,2) column returns a DECIMAL(38,2) data type.

The following example uses a SUM function in the ORDER BY clause of a PERCENTILE_CONT
function. The data type of the PRICEPAID column is DECIMAL (8,2), so the SUM function returns
DECIMAL(38,2).

select salesid, sum(pricepaid), percentile_cont(0.6)
within group (order by sum(pricepaid) desc) over()
from sales where salesid < 10 group by salesid;

To avoid a potential loss of precision or an overflow error, cast the result to a DECIMAL data type
with lower precision, as the following example shows.

select salesid, sum(pricepaid), percentile_cont(0.6)
within group (order by sum(pricepaid)::decimal(30,2) desc) over()
from sales where salesid < 10 group by salesid;

Window functions 2204

Amazon Redshift Database Developer Guide

Examples

The following examples uses the WINSALES table. For a description of the WINSALES table, see
Sample table for window function examples.

select sellerid, qty, percentile_cont(0.5)
within group (order by qty)
over() as median from winsales;

 sellerid | qty | median
----------+-----+--------
 1 | 10 | 20.0
 1 | 10 | 20.0
 3 | 10 | 20.0
 4 | 10 | 20.0
 3 | 15 | 20.0
 2 | 20 | 20.0
 3 | 20 | 20.0
 2 | 20 | 20.0
 3 | 30 | 20.0
 1 | 30 | 20.0
 4 | 40 | 20.0
(11 rows)

select sellerid, qty, percentile_cont(0.5)
within group (order by qty)
over(partition by sellerid) as median from winsales;

 sellerid | qty | median
----------+-----+--------
 2 | 20 | 20.0
 2 | 20 | 20.0
 4 | 10 | 25.0
 4 | 40 | 25.0
 1 | 10 | 10.0
 1 | 10 | 10.0
 1 | 30 | 10.0
 3 | 10 | 17.5
 3 | 15 | 17.5
 3 | 20 | 17.5
 3 | 30 | 17.5
(11 rows)

Window functions 2205

Amazon Redshift Database Developer Guide

The following example calculates the PERCENTILE_CONT and PERCENTILE_DISC of the ticket sales
for sellers in Washington state.

SELECT sellerid, state, sum(qtysold*pricepaid) sales,
percentile_cont(0.6) within group (order by sum(qtysold*pricepaid::decimal(14,2))
 desc) over(),
percentile_disc(0.6) within group (order by sum(qtysold*pricepaid::decimal(14,2))
 desc) over()
from sales s, users u
where s.sellerid = u.userid and state = 'WA' and sellerid < 1000
group by sellerid, state;

 sellerid | state | sales | percentile_cont | percentile_disc
----------+-------+---------+-----------------+-----------------
 127 | WA | 6076.00 | 2044.20 | 1531.00
 787 | WA | 6035.00 | 2044.20 | 1531.00
 381 | WA | 5881.00 | 2044.20 | 1531.00
 777 | WA | 2814.00 | 2044.20 | 1531.00
 33 | WA | 1531.00 | 2044.20 | 1531.00
 800 | WA | 1476.00 | 2044.20 | 1531.00
 1 | WA | 1177.00 | 2044.20 | 1531.00
(7 rows)

PERCENTILE_DISC window function

PERCENTILE_DISC is an inverse distribution function that assumes a discrete distribution model. It
takes a percentile value and a sort specification and returns an element from the given set.

For a given percentile value P, PERCENTILE_DISC sorts the values of the expression in the ORDER
BY clause and returns the value with the smallest cumulative distribution value (with respect to the
same sort specification) that is greater than or equal to P.

You can specify only the PARTITION clause in the OVER clause.

PERCENTILE_DISC is a compute-node only function. The function returns an error if the query
doesn't reference a user-defined table or Amazon Redshift system table.

Syntax

PERCENTILE_DISC (percentile)
WITHIN GROUP (ORDER BY expr)
OVER ([PARTITION BY expr_list])

Window functions 2206

Amazon Redshift Database Developer Guide

Arguments

percentile

Numeric constant between 0 and 1. Nulls are ignored in the calculation.

WITHIN GROUP (ORDER BY expr)

Specifies numeric or date/time values to sort and compute the percentile over.

OVER

Specifies the window partitioning. The OVER clause cannot contain a window ordering or
window frame specification.

PARTITION BY expr

Optional argument that sets the range of records for each group in the OVER clause.

Returns

The same data type as the ORDER BY expression in the WITHIN GROUP clause.

Examples

The following examples use the WINSALES table. For a description of the WINSALES table, see
Sample table for window function examples.

SELECT sellerid, qty, PERCENTILE_DISC(0.5)
WITHIN GROUP (ORDER BY qty)
OVER() AS MEDIAN FROM winsales;

+----------+-----+--------+
| sellerid | qty | median |
+----------+-----+--------+
3	10	20
1	10	20
1	10	20
4	10	20
3	15	20
2	20	20
2	20	20
3	20	20
1	30	20

Window functions 2207

Amazon Redshift Database Developer Guide

| 3 | 30 | 20 |
| 4 | 40 | 20 |
+----------+-----+--------+

SELECT sellerid, qty, PERCENTILE_DISC(0.5)
WITHIN GROUP (ORDER BY qty)
OVER(PARTITION BY sellerid) AS MEDIAN FROM winsales;

+----------+-----+--------+
| sellerid | qty | median |
+----------+-----+--------+
4	10	10
4	40	10
3	10	15
3	15	15
3	20	15
3	30	15
2	20	20
2	20	20
1	10	10
1	10	10
1	30	10
+----------+-----+--------+

To find PERCENTILE_DISC(0.25) and PERCENTILE_DISC(0.75) for the quantity when partitioned by
the seller ID, use the following examples.

SELECT sellerid, qty, PERCENTILE_DISC(0.25)
WITHIN GROUP (ORDER BY qty)
OVER(PARTITION BY sellerid) AS quartile1 FROM winsales;

+----------+-----+-----------+
| sellerid | qty | quartile1 |
+----------+-----+-----------+
4	10	10
4	40	10
2	20	20
2	20	20
3	10	10
3	15	10
3	20	10
3	30	10
1	10	10

Window functions 2208

Amazon Redshift Database Developer Guide

| 1 | 10 | 10 |
| 1 | 30 | 10 |
+----------+-----+-----------+

SELECT sellerid, qty, PERCENTILE_DISC(0.75)
WITHIN GROUP (ORDER BY qty)
OVER(PARTITION BY sellerid) AS quartile3 FROM winsales;

+----------+-----+-----------+
| sellerid | qty | quartile3 |
+----------+-----+-----------+
3	10	20
3	15	20
3	20	20
3	30	20
4	10	40
4	40	40
2	20	20
2	20	20
1	10	30
1	10	30
1	30	30
+----------+-----+-----------+

RANK window function

The RANK window function determines the rank of a value in a group of values, based on the
ORDER BY expression in the OVER clause. If the optional PARTITION BY clause is present, the
rankings are reset for each group of rows. Rows with equal values for the ranking criteria receive
the same rank. Amazon Redshift adds the number of tied rows to the tied rank to calculate the
next rank and thus the ranks might not be consecutive numbers. For example, if two rows are
ranked 1, the next rank is 3.

RANK differs from the DENSE_RANK window function in one respect: For DENSE_RANK, if two
or more rows tie, there is no gap in the sequence of ranked values. For example, if two rows are
ranked 1, the next rank is 2.

You can have ranking functions with different PARTITION BY and ORDER BY clauses in the same
query.

Window functions 2209

Amazon Redshift Database Developer Guide

Syntax

RANK () OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list]
)

Arguments

()

The function takes no arguments, but the empty parentheses are required.

OVER

The window clauses for the RANK function.

PARTITION BY expr_list

Optional. One or more expressions that define the window.

ORDER BY order_list

Optional. Defines the columns on which the ranking values are based. If no PARTITION BY is
specified, ORDER BY uses the entire table. If ORDER BY is omitted, the return value is 1 for all
rows.

If ORDER BY does not produce a unique ordering, the order of the rows is nondeterministic. For
more information, see Unique ordering of data for window functions.

Return type

INTEGER

Examples

The following example orders the table by the quantity sold (default ascending), and assign a rank
to each row. A rank value of 1 is the highest ranked value. The results are sorted after the window
function results are applied:

select salesid, qty,
rank() over (order by qty) as rnk
from winsales

Window functions 2210

Amazon Redshift Database Developer Guide

order by 2,1;

salesid | qty | rnk
--------+-----+-----
10001 | 10 | 1
10006 | 10 | 1
30001 | 10 | 1
40005 | 10 | 1
30003 | 15 | 5
20001 | 20 | 6
20002 | 20 | 6
30004 | 20 | 6
10005 | 30 | 9
30007 | 30 | 9
40001 | 40 | 11
(11 rows)

Note that the outer ORDER BY clause in this example includes columns 2 and 1 to make sure that
Amazon Redshift returns consistently sorted results each time this query is run. For example, rows
with sales IDs 10001 and 10006 have identical QTY and RNK values. Ordering the final result set
by column 1 ensures that row 10001 always falls before 10006. For a description of the WINSALES
table, see Sample table for window function examples.

In the following example, the ordering is reversed for the window function (order by qty
desc). Now the highest rank value applies to the largest QTY value.

select salesid, qty,
rank() over (order by qty desc) as rank
from winsales
order by 2,1;

 salesid | qty | rank
---------+-----+-----
 10001 | 10 | 8
 10006 | 10 | 8
 30001 | 10 | 8
 40005 | 10 | 8
 30003 | 15 | 7
 20001 | 20 | 4
 20002 | 20 | 4
 30004 | 20 | 4
 10005 | 30 | 2
 30007 | 30 | 2

Window functions 2211

Amazon Redshift Database Developer Guide

 40001 | 40 | 1
(11 rows)

For a description of the WINSALES table, see Sample table for window function examples.

The following example partitions the table by SELLERID and order each partition by the quantity
(in descending order) and assign a rank to each row. The results are sorted after the window
function results are applied.

select salesid, sellerid, qty, rank() over
(partition by sellerid
order by qty desc) as rank
from winsales
order by 2,3,1;

salesid | sellerid | qty | rank
--------+----------+-----+-----
 10001 | 1 | 10 | 2
 10006 | 1 | 10 | 2
 10005 | 1 | 30 | 1
 20001 | 2 | 20 | 1
 20002 | 2 | 20 | 1
 30001 | 3 | 10 | 4
 30003 | 3 | 15 | 3
 30004 | 3 | 20 | 2
 30007 | 3 | 30 | 1
 40005 | 4 | 10 | 2
 40001 | 4 | 40 | 1
(11 rows)

RATIO_TO_REPORT window function

Calculates the ratio of a value to the sum of the values in a window or partition. The ratio to report
value is determined using the formula:

value of ratio_expression argument for the current row / sum of ratio_expression
argument for the window or partition

The following dataset illustrates use of this formula:

Row# Value Calculation RATIO_TO_REPORT
1 2500 (2500)/(13900) 0.1798

Window functions 2212

Amazon Redshift Database Developer Guide

2 2600 (2600)/(13900) 0.1870
3 2800 (2800)/(13900) 0.2014
4 2900 (2900)/(13900) 0.2086
5 3100 (3100)/(13900) 0.2230

The return value range is 0 to 1, inclusive. If ratio_expression is NULL, then the return value is NULL.
If a value in partition_expression is unique, then function will return 1 for that value.

Syntax

RATIO_TO_REPORT (ratio_expression)
OVER ([PARTITION BY partition_expression])

Arguments

ratio_expression

An expression, such as a column name, that provides the value for which to determine the ratio.
The expression must have either a numeric data type or be implicitly convertible to one.

You cannot use any other analytic function in ratio_expression.

OVER

A clause that specifies the window partitioning. The OVER clause cannot contain a window
ordering or window frame specification.

PARTITION BY partition_expression

Optional. An expression that sets the range of records for each group in the OVER clause.

Return type

FLOAT8

Examples

The following examples use the WINSALES table. For a information about how to create the
WINSALES table, see Sample table for window function examples.

The following example calculates the ratio-to-report value of each row of a seller's quantity to the
total of all seller's quantities.

select sellerid, qty, ratio_to_report(qty)

Window functions 2213

Amazon Redshift Database Developer Guide

over()
from winsales
order by sellerid;

sellerid qty ratio_to_report

1 30 0.13953488372093023
1 10 0.046511627906976744
1 10 0.046511627906976744
2 20 0.09302325581395349
2 20 0.09302325581395349
3 30 0.13953488372093023
3 20 0.09302325581395349
3 15 0.06976744186046512
3 10 0.046511627906976744
4 10 0.046511627906976744
4 40 0.18604651162790697

The following example calculates the ratios of the sales quantities for each seller by partition.

select sellerid, qty, ratio_to_report(qty)
over(partition by sellerid)
from winsales;

sellerid qty ratio_to_report

2 20 0.5
2 20 0.5
4 40 0.8
4 10 0.2
1 10 0.2
1 30 0.6
1 10 0.2
3 10 0.13333333333333333
3 15 0.2
3 20 0.26666666666666666
3 30 0.4

ROW_NUMBER window function

Assigns an ordinal number of the current row within a group of rows, counting from 1, based
on the ORDER BY expression in the OVER clause. If the optional PARTITION BY clause is present,

Window functions 2214

Amazon Redshift Database Developer Guide

the ordinal numbers are reset for each group of rows. Rows with equal values for the ORDER BY
expressions receive the different row numbers nondeterministically.

Syntax

ROW_NUMBER() OVER(
 [PARTITION BY expr_list]
 [ORDER BY order_list]
)

Arguments

()

The function takes no arguments, but the empty parentheses are required.

OVER

The window function clause for the ROW_NUMBER function.

PARTITION BY expr_list

Optional. One or more column expressions that divide the results into sets of rows.

ORDER BY order_list

Optional. One or more column expressions that defines the order of rows within a set. If no
PARTITION BY is specified, ORDER BY uses the entire table.

If ORDER BY does not produce a unique ordering or is omitted, the order of the rows is
nondeterministic. For more information, see Unique ordering of data for window functions.

Return type

BIGINT

Examples

The following examples use the WINSALES table. For a description of the WINSALES table, see
Sample table for window function examples.

The following example orders the table by QTY (in ascending order), then assigns a row number to
each row. The results are sorted after the window function results are applied.

Window functions 2215

Amazon Redshift Database Developer Guide

SELECT salesid, sellerid, qty,
ROW_NUMBER() OVER(
 ORDER BY qty ASC) AS row
FROM winsales
ORDER BY 4,1;

salesid sellerid qty row
---------+----------+-----+-----
 30001 | 3 | 10 | 1
 10001 | 1 | 10 | 2
 10006 | 1 | 10 | 3
 40005 | 4 | 10 | 4
 30003 | 3 | 15 | 5
 20001 | 2 | 20 | 6
 20002 | 2 | 20 | 7
 30004 | 3 | 20 | 8
 10005 | 1 | 30 | 9
 30007 | 3 | 30 | 10
 40001 | 4 | 40 | 11

The following example partitions the table by SELLERID and orders each partition by QTY (in
ascending order), then assigns a row number to each row. The results are sorted after the window
function results are applied.

SELECT salesid, sellerid, qty,
ROW_NUMBER() OVER(
 PARTITION BY sellerid
 ORDER BY qty ASC) AS row_by_seller
FROM winsales
ORDER BY 2,4;

 salesid | sellerid | qty | row_by_seller
---------+----------+-----+-----
 10001 | 1 | 10 | 1
 10006 | 1 | 10 | 2
 10005 | 1 | 30 | 3
 20001 | 2 | 20 | 1
 20002 | 2 | 20 | 2
 30001 | 3 | 10 | 1
 30003 | 3 | 15 | 2
 30004 | 3 | 20 | 3
 30007 | 3 | 30 | 4

Window functions 2216

Amazon Redshift Database Developer Guide

 40005 | 4 | 10 | 1
 40001 | 4 | 40 | 2

The following example shows the results when not using the optional clauses.

SELECT salesid, sellerid, qty, ROW_NUMBER() OVER() AS row
FROM winsales
ORDER BY 4,1;

salesid sellerid qty row
---------+----------+-----+-----
 30001 | 3 | 10 | 1
 10001 | 1 | 10 | 2
 10005 | 1 | 30 | 3
 40001 | 4 | 40 | 4
 10006 | 1 | 10 | 5
 20001 | 2 | 20 | 6
 40005 | 4 | 10 | 7
 20002 | 2 | 20 | 8
 30003 | 3 | 15 | 9
 30004 | 3 | 20 | 10
 30007 | 3 | 30 | 11

STDDEV_SAMP and STDDEV_POP window functions

The STDDEV_SAMP and STDDEV_POP window functions return the sample and population
standard deviation of a set of numeric values (integer, decimal, or floating-point). See also
STDDEV_SAMP and STDDEV_POP functions.

STDDEV_SAMP and STDDEV are synonyms for the same function.

Syntax

STDDEV_SAMP | STDDEV | STDDEV_POP
([ALL] expression) OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list
 frame_clause]
)

Window functions 2217

Amazon Redshift Database Developer Guide

Arguments

expression

The target column or expression that the function operates on.

ALL

With the argument ALL, the function retains all duplicate values from the expression. ALL is the
default. DISTINCT is not supported.

OVER

Specifies the window clauses for the aggregation functions. The OVER clause distinguishes
window aggregation functions from normal set aggregation functions.

PARTITION BY expr_list

Defines the window for the function in terms of one or more expressions.

ORDER BY order_list

Sorts the rows within each partition. If no PARTITION BY is specified, ORDER BY uses the entire
table.

frame_clause

If an ORDER BY clause is used for an aggregate function, an explicit frame clause is required.
The frame clause refines the set of rows in a function's window, including or excluding sets of
rows within the ordered result. The frame clause consists of the ROWS keyword and associated
specifiers. See Window function syntax summary.

Data types

The argument types supported by the STDDEV functions are SMALLINT, INTEGER, BIGINT,
NUMERIC, DECIMAL, REAL, and DOUBLE PRECISION.

Regardless of the data type of the expression, the return type of a STDDEV function is a double
precision number.

Examples

The following example shows how to use STDDEV_POP and VAR_POP functions as window
functions. The query computes the population variance and population standard deviation for
PRICEPAID values in the SALES table.

Window functions 2218

Amazon Redshift Database Developer Guide

select salesid, dateid, pricepaid,
round(stddev_pop(pricepaid) over
(order by dateid, salesid rows unbounded preceding)) as stddevpop,
round(var_pop(pricepaid) over
(order by dateid, salesid rows unbounded preceding)) as varpop
from sales
order by 2,1;

salesid | dateid | pricepaid | stddevpop | varpop
--------+--------+-----------+-----------+---------
 33095 | 1827 | 234.00 | 0 | 0
 65082 | 1827 | 472.00 | 119 | 14161
 88268 | 1827 | 836.00 | 248 | 61283
 97197 | 1827 | 708.00 | 230 | 53019
 110328 | 1827 | 347.00 | 223 | 49845
 110917 | 1827 | 337.00 | 215 | 46159
 150314 | 1827 | 688.00 | 211 | 44414
 157751 | 1827 | 1730.00 | 447 | 199679
 165890 | 1827 | 4192.00 | 1185 | 1403323
...

The sample standard deviation and variance functions can be used in the same way.

SUM window function

The SUM window function returns the sum of the input column or expression values. The SUM
function works with numeric values and ignores NULL values.

Syntax

SUM ([ALL] expression) OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list
 frame_clause]
)

Arguments

expression

The target column or expression that the function operates on.

Window functions 2219

Amazon Redshift Database Developer Guide

ALL

With the argument ALL, the function retains all duplicate values from the expression. ALL is the
default. DISTINCT is not supported.

OVER

Specifies the window clauses for the aggregation functions. The OVER clause distinguishes
window aggregation functions from normal set aggregation functions.

PARTITION BY expr_list

Defines the window for the SUM function in terms of one or more expressions.

ORDER BY order_list

Sorts the rows within each partition. If no PARTITION BY is specified, ORDER BY uses the entire
table.

frame_clause

If an ORDER BY clause is used for an aggregate function, an explicit frame clause is required.
The frame clause refines the set of rows in a function's window, including or excluding sets of
rows within the ordered result. The frame clause consists of the ROWS keyword and associated
specifiers. See Window function syntax summary.

Data types

The argument types supported by the SUM function are SMALLINT, INTEGER, BIGINT, NUMERIC,
DECIMAL, REAL, and DOUBLE PRECISION.

The return types supported by the SUM function are:

• BIGINT for SMALLINT or INTEGER arguments

• NUMERIC for BIGINT arguments

• DOUBLE PRECISION for floating-point arguments

Examples

The following example creates a cumulative (rolling) sum of sales quantities ordered by date and
sales ID:

Window functions 2220

Amazon Redshift Database Developer Guide

select salesid, dateid, sellerid, qty,
sum(qty) over (order by dateid, salesid rows unbounded preceding) as sum
from winsales
order by 2,1;

salesid | dateid | sellerid | qty | sum
---------+------------+----------+-----+-----
30001 | 2003-08-02 | 3 | 10 | 10
10001 | 2003-12-24 | 1 | 10 | 20
10005 | 2003-12-24 | 1 | 30 | 50
40001 | 2004-01-09 | 4 | 40 | 90
10006 | 2004-01-18 | 1 | 10 | 100
20001 | 2004-02-12 | 2 | 20 | 120
40005 | 2004-02-12 | 4 | 10 | 130
20002 | 2004-02-16 | 2 | 20 | 150
30003 | 2004-04-18 | 3 | 15 | 165
30004 | 2004-04-18 | 3 | 20 | 185
30007 | 2004-09-07 | 3 | 30 | 215
(11 rows)

For a description of the WINSALES table, see Sample table for window function examples.

The following example creates a cumulative (rolling) sum of sales quantities by date, partition the
results by seller ID, and order the results by date and sales ID within the partition:

select salesid, dateid, sellerid, qty,
sum(qty) over (partition by sellerid
order by dateid, salesid rows unbounded preceding) as sum
from winsales
order by 2,1;

salesid | dateid | sellerid | qty | sum
---------+------------+----------+-----+-----
30001 | 2003-08-02 | 3 | 10 | 10
10001 | 2003-12-24 | 1 | 10 | 10
10005 | 2003-12-24 | 1 | 30 | 40
40001 | 2004-01-09 | 4 | 40 | 40
10006 | 2004-01-18 | 1 | 10 | 50
20001 | 2004-02-12 | 2 | 20 | 20
40005 | 2004-02-12 | 4 | 10 | 50
20002 | 2004-02-16 | 2 | 20 | 40
30003 | 2004-04-18 | 3 | 15 | 25
30004 | 2004-04-18 | 3 | 20 | 45

Window functions 2221

Amazon Redshift Database Developer Guide

30007 | 2004-09-07 | 3 | 30 | 75
(11 rows)

The following example numbers all of the rows sequentially in the result set, ordered by the
SELLERID and SALESID columns:

select salesid, sellerid, qty,
sum(1) over (order by sellerid, salesid rows unbounded preceding) as rownum
from winsales
order by 2,1;

salesid | sellerid | qty | rownum
--------+----------+------+--------
10001 | 1 | 10 | 1
10005 | 1 | 30 | 2
10006 | 1 | 10 | 3
20001 | 2 | 20 | 4
20002 | 2 | 20 | 5
30001 | 3 | 10 | 6
30003 | 3 | 15 | 7
30004 | 3 | 20 | 8
30007 | 3 | 30 | 9
40001 | 4 | 40 | 10
40005 | 4 | 10 | 11
(11 rows)

For a description of the WINSALES table, see Sample table for window function examples.

The following example numbers all rows sequentially in the result set, partition the results by
SELLERID, and order the results by SELLERID and SALESID within the partition:

select salesid, sellerid, qty,
sum(1) over (partition by sellerid
order by sellerid, salesid rows unbounded preceding) as rownum
from winsales
order by 2,1;

salesid | sellerid | qty | rownum
---------+----------+-----+--------
10001 | 1 | 10 | 1
10005 | 1 | 30 | 2
10006 | 1 | 10 | 3
20001 | 2 | 20 | 1

Window functions 2222

Amazon Redshift Database Developer Guide

20002 | 2 | 20 | 2
30001 | 3 | 10 | 1
30003 | 3 | 15 | 2
30004 | 3 | 20 | 3
30007 | 3 | 30 | 4
40001 | 4 | 40 | 1
40005 | 4 | 10 | 2
(11 rows)

VAR_SAMP and VAR_POP window functions

The VAR_SAMP and VAR_POP window functions return the sample and population variance of a set
of numeric values (integer, decimal, or floating-point). See also VAR_SAMP and VAR_POP functions.

VAR_SAMP and VARIANCE are synonyms for the same function.

Syntax

VAR_SAMP | VARIANCE | VAR_POP
([ALL] expression) OVER
(
[PARTITION BY expr_list]
[ORDER BY order_list
 frame_clause]
)

Arguments

expression

The target column or expression that the function operates on.

ALL

With the argument ALL, the function retains all duplicate values from the expression. ALL is the
default. DISTINCT is not supported.

OVER

Specifies the window clauses for the aggregation functions. The OVER clause distinguishes
window aggregation functions from normal set aggregation functions.

PARTITION BY expr_list

Defines the window for the function in terms of one or more expressions.

Window functions 2223

Amazon Redshift Database Developer Guide

ORDER BY order_list

Sorts the rows within each partition. If no PARTITION BY is specified, ORDER BY uses the entire
table.

frame_clause

If an ORDER BY clause is used for an aggregate function, an explicit frame clause is required.
The frame clause refines the set of rows in a function's window, including or excluding sets of
rows within the ordered result. The frame clause consists of the ROWS keyword and associated
specifiers. See Window function syntax summary.

Data types

The argument types supported by the VARIANCE functions are SMALLINT, INTEGER, BIGINT,
NUMERIC, DECIMAL, REAL, and DOUBLE PRECISION.

Regardless of the data type of the expression, the return type of a VARIANCE function is a double
precision number.

System administration functions

Topics

• CHANGE_QUERY_PRIORITY

• CHANGE_SESSION_PRIORITY

• CHANGE_USER_PRIORITY

• CURRENT_SETTING

• PG_CANCEL_BACKEND

• PG_TERMINATE_BACKEND

• REBOOT_CLUSTER

• SET_CONFIG

Amazon Redshift supports several system administration functions.

CHANGE_QUERY_PRIORITY

CHANGE_QUERY_PRIORITY enables superusers to modify the priority of a query that is either
running or waiting in workload management (WLM).

System administration functions 2224

Amazon Redshift Database Developer Guide

This function enables superusers to immediately change the priority of any query in the system.
Only one query, user, or session can run with the priority CRITICAL.

Syntax

CHANGE_QUERY_PRIORITY(query_id, priority)

Arguments

query_id

The query identifier of the query whose priority is changed. Requires an INTEGER value.

priority

The new priority to be assigned to the query. This argument must be a string with the value
CRITICAL, HIGHEST, HIGH, NORMAL, LOW, or LOWEST.

Return Type

None

Examples

To show the column query_priority in the STV_WLM_QUERY_STATE system table, use the
following example.

SELECT query, service_class, query_priority, state
FROM stv_wlm_query_state WHERE service_class = 101;

+-------+---------------+----------------+---------+
| query | service_class | query_priority | state |
+-------+---------------+----------------+---------+
| 1076 | 101 | Lowest | Running |
| 1075 | 101 | Lowest | Running |
+-------+---------------+----------------+---------+

To show the results of a superuser running the function change_query_priority to change the
priority to CRITICAL, use the following example.

SELECT CHANGE_QUERY_PRIORITY(1076, 'Critical');

System administration functions 2225

Amazon Redshift Database Developer Guide

+---+
| change_query_priority |
+---+
| Succeeded to change query priority. Priority changed from Lowest to Critical. |
+---+

CHANGE_SESSION_PRIORITY

CHANGE_SESSION_PRIORITY enables superusers to immediately change the priority of any session
in the system. Only one session, user, or query can run with the priority CRITICAL.

Syntax

CHANGE_SESSION_PRIORITY(pid, priority)

Arguments

pid

The process identifier of the session whose priority is changed. The value -1 refers to the
current session. Requires an INTEGER value.

priority

The new priority to be assigned to the session. This argument must be a string with the value
CRITICAL, HIGHEST, HIGH, NORMAL, LOW, or LOWEST.

Return type

None

Examples

To return the process identifier of the server process handling the current session, use the
following example.

SELECT pg_backend_pid();

+----------------+
| pg_backend_pid |

System administration functions 2226

Amazon Redshift Database Developer Guide

+----------------+
| 30311 |
+----------------+

In this example, the priority is changed to LOWEST for the current session.

SELECT CHANGE_SESSION_PRIORITY(30311, 'Lowest');

+---
+
| change_session_priority
 |
+---
+
| Succeeded to change session priority. Changed session (pid:30311) priority to lowest.
 |
+---
+

In this example, the priority is changed to HIGH for the current session.

SELECT CHANGE_SESSION_PRIORITY(-1, 'High');

+---
+
| change_session_priority
 |
+---
+
| Succeeded to change session priority. Changed session (pid:30311) priority from
 lowest to high. |
+---
+

To create a stored procedure that changes a session priority, use the following example. Permission
to run this stored procedure is granted to the database user test_user.

CREATE OR REPLACE PROCEDURE sp_priority_low(pid IN int, result OUT varchar)
AS $$
BEGIN
 SELECT CHANGE_SESSION_PRIORITY(pid, 'low') into result;
END;

System administration functions 2227

Amazon Redshift Database Developer Guide

$$ LANGUAGE plpgsql
SECURITY DEFINER;
GRANT EXECUTE ON PROCEDURE sp_priority_low(int) TO test_user;

Then the database user named test_user calls the procedure.

CALL sp_priority_low(pg_backend_pid());

+--+
| result |
+--+
| Success. Change session (pid:13155) priority to low. |
+--+

CHANGE_USER_PRIORITY

CHANGE_USER_PRIORITY enables superusers to modify the priority of all queries issued by a user
that are either running or waiting in workload management (WLM). Only one user, session, or
query can run with the priority CRITICAL.

Syntax

CHANGE_USER_PRIORITY(user_name, priority)

Arguments

user_name

The database user name whose query priority is changed.

priority

The new priority to be assigned to all queries issued by user_name. This argument must be
a string with the value CRITICAL, HIGHEST, HIGH, NORMAL, LOW, LOWEST, or RESET. Only
superusers can change the priority to CRITICAL. Changing the priority to RESET removes the
priority setting for user_name.

Return type

None

System administration functions 2228

Amazon Redshift Database Developer Guide

Examples

To change the priority for the user analysis_user to LOWEST, use the following example.

SELECT CHANGE_USER_PRIORITY('analysis_user', 'lowest');

+---+
| change_user_priority |
+---+
| Succeeded to change user priority. Changed user (analysis_user) priority to lowest. |
+---+

To change the priority to LOW, use the following example.

SELECT CHANGE_USER_PRIORITY('analysis_user', 'low');

+--
+
| change_user_priority
 |
+--
+
| Succeeded to change user priority. Changed user (analysis_user) priority from Lowest
 to low. |
+--
+

To reset the priority, use the following example.

SELECT CHANGE_USER_PRIORITY('analysis_user', 'reset');

+---+
| change_user_priority |
+---+
| Succeeded to reset priority for user (analysis_user). |
+---+

CURRENT_SETTING

CURRENT_SETTING returns the current value of the specified configuration parameter.

This function is equivalent to the SHOW command.

System administration functions 2229

Amazon Redshift Database Developer Guide

Syntax

current_setting('parameter')

The following statement returns the current value of the specified session context variable.

current_setting('variable_name')
current_setting('variable_name'[, error_if_undefined])

Arguments

parameter

Parameter value to display. For a list of configuration parameters, see Configuration reference

variable_name

The name of the variable to display. This must be a string constant for session context variables.

error_if_undefined

(Optional) A boolean value that specifies the behavior if the variable name doesn't exist. When
error_if_undefined is set to TRUE, which is the default, Amazon Redshift throws an error. When
error_if_undefined is set to FALSE, Amazon Redshift returns NULL. Amazon Redshift supports
the error_if_undefined parameter only for session context variables. This can't be used when the
input is a configuration parameter.

Return type

Returns a CHAR or VARCHAR string.

Examples

To return the current setting for the query_group parameter, use the following example.

SELECT CURRENT_SETTING('query_group');

+-----------------+
| current_setting |
+-----------------+
| unset |
+-----------------+

System administration functions 2230

Amazon Redshift Database Developer Guide

To return the current setting for the variable app_context.user_id, use the following example.

SELECT CURRENT_SETTING('app_context.user_id', FALSE);

PG_CANCEL_BACKEND

Cancels a query. PG_CANCEL_BACKEND is functionally equivalent to the CANCEL command. You
can cancel queries currently being run by your user. Superusers can cancel any query.

Syntax

pg_cancel_backend(pid)

Arguments

pid

The process ID (PID) of the query to be canceled. You cannot cancel a query by specifying a
query ID; you must specify the query's process ID. Requires an INTEGER value.

Return type

None

Usage notes

If queries in multiple sessions hold locks on the same table, you can use the
PG_TERMINATE_BACKEND function to terminate one of the sessions, which forces any currently
running transactions in the terminated session to release all locks and roll back the transaction.
Query the PG__LOCKS catalog table to view currently held locks. If you cannot cancel a query
because it is in transaction block (BEGIN … END), you can terminate the session in which the query
is running by using the PG_TERMINATE_BACKEND function.

Examples

To cancel a currently running query, first retrieve the process ID for the query that you want to
cancel. To determine the process IDs for all currently running queries, run the following command.

SELECT pid, TRIM(starttime) AS start,
duration, TRIM(user_name) AS user,
SUBSTRING(query,1,40) AS querytxt

System administration functions 2231

Amazon Redshift Database Developer Guide

FROM stv_recents
WHERE status = 'Running';

+-----+------------------------+----------+--------+-----------------------------+
| pid | starttime | duration | user | querytxt |
+-----+------------------------+----------+--------+-----------------------------+
802	2013-10-14 09:19:03.55	132	dwuser	select venuename from venue
834	2013-10-14 08:33:49.47	1250414	dwuser	select * from listing;
964	2013-10-14 08:30:43.29	326179	dwuser	select sellerid from sales
+-----+------------------------+----------+--------+-----------------------------+

To cancel the query with process ID 802, use the following example.

SELECT PG_CANCEL_BACKEND(802);

PG_TERMINATE_BACKEND

Terminates a session. You can terminate a session owned by your user. A superuser can terminate
any session.

Syntax

pg_terminate_backend(pid)

Arguments

pid

The process ID of the session to be terminated. Requires an INTEGER value.

Return type

None

Usage notes

If you are close to reaching the limit for concurrent connections, use PG_TERMINATE_BACKEND to
terminate idle sessions and free up the connections. For more information, see Limits in Amazon
Redshift.

If queries in multiple sessions hold locks on the same table, you can use PG_TERMINATE_BACKEND
to terminate one of the sessions, which forces any currently running transactions in the terminated

System administration functions 2232

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html
https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Redshift Database Developer Guide

session to release all locks and roll back the transaction. Query the PG_LOCKS catalog table to
view currently held locks.

If a query is not in a transaction block (BEGIN … END), you can cancel the query by using the
CANCEL command or the PG_CANCEL_BACKEND function.

Examples

To query the SVV_TRANSACTIONS table to view all locks in effect for current transactions, use the
following example.

SELECT * FROM svv_transactions;

+-----------+--------+-------+------+---------------------+-----------------
+----------------------+----------+---------+
| txn_owner | txn_db | xid | pid | txn_start | lock_mode |
 lockable_object_type | relation | granted |
+-----------+--------+-------+------+---------------------+-----------------
+----------------------+----------+---------+
| rsuser | dev | 96178 | 8585 | 2017-04-12 20:13:07 | AccessShareLock | relation
 | 51940 | true |
| rsuser | dev | 96178 | 8585 | 2017-04-12 20:13:07 | AccessShareLock | relation
 | 52000 | true |
| rsuser | dev | 96178 | 8585 | 2017-04-12 20:13:07 | AccessShareLock | relation
 | 108623 | true |
| rsuser | dev | 96178 | 8585 | 2017-04-12 20:13:07 | ExclusiveLock |
 transactionid | | true |
+-----------+--------+-------+------+---------------------+-----------------
+----------------------+----------+---------+

TO terminate the session holding the locks, use the following example.

SELECT PG_TERMINATE_BACKEND(8585);

REBOOT_CLUSTER

Reboot the Amazon Redshift cluster without closing the connections to the cluster. You must be a
database superuser to run this command.

After this soft reboot has completed, the Amazon Redshift cluster returns an error to the user
application and requires the user application to resubmit any transactions or queries interrupted by
the soft reboot.

System administration functions 2233

Amazon Redshift Database Developer Guide

Syntax

SELECT REBOOT_CLUSTER();

SET_CONFIG

Sets a configuration parameter to a new setting.

This function is equivalent to the SET command in SQL.

Syntax

SET_CONFIG('parameter', 'new_value' , is_local)

The following statement sets a session context variable to a new setting.

set_config('variable_name', 'new_value' , is_local)

Arguments

parameter

Parameter to set.

variable_name

The name of the variable to set.

new_value

New value of the parameter.

is_local

If true, parameter value applies only to the current transaction. Valid values are true or 1 and
false or 0.

Return type

Returns a CHAR or VARCHAR string.

System administration functions 2234

Amazon Redshift Database Developer Guide

Examples

To set the value of the query_group parameter to test for the current transaction only, use the
following example.

SELECT SET_CONFIG('query_group', 'test', true);

+------------+
| set_config |
+------------+
| test |
+------------+

To set session context variables, use the following example.

SELECT SET_CONFIG(‘app.username’, ‘cuddy’, FALSE);

System information functions

Amazon Redshift supports numerous system information functions.

Topics

• CURRENT_AWS_ACCOUNT

• CURRENT_DATABASE

• CURRENT_NAMESPACE

• CURRENT_SCHEMA

• CURRENT_SCHEMAS

• CURRENT_USER

• CURRENT_USER_ID

• DEFAULT_IAM_ROLE

• HAS_ASSUMEROLE_PRIVILEGE

• HAS_DATABASE_PRIVILEGE

• HAS_SCHEMA_PRIVILEGE

• HAS_TABLE_PRIVILEGE

• LAST_USER_QUERY_ID

• PG_BACKEND_PID

System information functions 2235

Amazon Redshift Database Developer Guide

• PG_GET_COLS

• PG_GET_GRANTEE_BY_IAM_ROLE

• PG_GET_IAM_ROLE_BY_USER

• PG_GET_LATE_BINDING_VIEW_COLS

• PG_GET_SESSION_ROLES

• PG_LAST_COPY_COUNT

• PG_LAST_COPY_ID

• PG_LAST_UNLOAD_ID

• PG_LAST_QUERY_ID

• PG_LAST_UNLOAD_COUNT

• SLICE_NUM Function

• USER

• ROLE_IS_MEMBER_OF

• USER_IS_MEMBER_OF

• VERSION

CURRENT_AWS_ACCOUNT

Returns the AWS account associated with the Amazon Redshift cluster that submitted a query.

Syntax

current_aws_account

Return type

Returns an integer.

Example

The following query returns the name of the current database.

select user, current_aws_account;
current_user | current_account
-------------+---------------
dwuser | 987654321

System information functions 2236

Amazon Redshift Database Developer Guide

(1 row)

CURRENT_DATABASE

Returns the name of the database where you are currently connected.

Syntax

current_database()

Return type

Returns a CHAR or VARCHAR string.

Example

The following query returns the name of the current database.

select current_database();

current_database

tickit
(1 row)

CURRENT_NAMESPACE

Returns the cluster namespace of the current Amazon Redshift cluster. Amazon Redshift cluster
namespace is the unique ID of the Amazon Redshift cluster.

Syntax

current_namespace

Return type

Returns a CHAR or VARCHAR string.

Example

The following query returns the name of the current namespace.

System information functions 2237

Amazon Redshift Database Developer Guide

select user, current_namespace;
current_user | current_namespace
-------------+-------------------------------------
dwuser | 86b5169f-01dc-4a6f-9fbb-e2e24359e9a8

(1 row)

CURRENT_SCHEMA

Returns the name of the schema at the front of the search path. This schema will be used for any
tables or other named objects that are created without specifying a target schema.

Syntax

Note

This is a leader-node function. This function returns an error if it references a user-created
table, an STL or STV system table, or an SVV or SVL system view.

current_schema()

Return type

CURRENT_SCHEMA returns a CHAR or VARCHAR string.

Examples

The following query returns the current schema:

select current_schema();

current_schema

public
(1 row)

CURRENT_SCHEMAS

Returns an array of the names of any schemas in the current search path. The current search path is
defined in the search_path parameter.

System information functions 2238

Amazon Redshift Database Developer Guide

Syntax

Note

This is a leader-node function. This function returns an error if it references a user-created
table, an STL or STV system table, or an SVV or SVL system view.

current_schemas(include_implicit)

Argument

include_implicit

If true, specifies that the search path should include any implicitly included system schemas.
Valid values are true and false. Typically, if true, this parameter returns the pg_catalog
schema in addition to the current schema.

Return type

Returns a CHAR or VARCHAR string.

Examples

The following example returns the names of the schemas in the current search path, not including
implicitly included system schemas:

select current_schemas(false);

current_schemas

{public}
(1 row)

The following example returns the names of the schemas in the current search path, including
implicitly included system schemas:

select current_schemas(true);

current_schemas

System information functions 2239

Amazon Redshift Database Developer Guide

{pg_catalog,public}
(1 row)

CURRENT_USER

Returns the user name of the current "effective" user of the database, as applicable to checking
permissions. Usually, this user name will be the same as the session user; however, this can
occasionally be changed by superusers.

Note

Do not use trailing parentheses when calling CURRENT_USER.

Syntax

current_user

Return type

CURRENT_USER returns a NAME data type and can be cast as a CHAR or VARCHAR string.

Usage notes

If a stored procedure was created using the SECURITY DEFINER option of the CREATE_PROCEDURE
command, when invoking the CURRENT_USER function from within the stored procedure, Amazon
Redshift returns the user name of the owner of the stored procedure.

Example

The following query returns the name of the current database user:

select current_user;

current_user

dwuser
(1 row)

CURRENT_USER_ID

Returns the unique identifier for the Amazon Redshift user logged in to the current session.

System information functions 2240

Amazon Redshift Database Developer Guide

Syntax

CURRENT_USER_ID

Return type

The CURRENT_USER_ID function returns an integer.

Examples

The following example returns the user name and current user ID for this session:

select user, current_user_id;

 current_user | current_user_id
--------------+-----------------
 dwuser | 1
(1 row)

DEFAULT_IAM_ROLE

Returns the default IAM role currently associated with the Amazon Redshift cluster. The function
returns none if there isn't any default IAM role associated.

Syntax

select default_iam_role();

Return type

Returns a VARCHAR string.

Example

The following example returns the default IAM role currently associated with the specified Amazon
Redshift cluster,

select default_iam_role();
 default_iam_role

 arn:aws:iam::123456789012:role/myRedshiftRole
(1 row)

System information functions 2241

Amazon Redshift Database Developer Guide

HAS_ASSUMEROLE_PRIVILEGE

Returns Boolean true (t) if the specified user has the specified IAM role with the privilege to run
the specified command. The function returns false (f) if the user doesn't have the specified IAM
role with the privilege to run the specified command. For more information about privileges, see
GRANT.

Syntax

has_assumerole_privilege([user,] iam_role_arn, cmd_type)

Arguments

user

The name of the user to check for IAM role privileges. The default is to check the current user.
Superusers and users can use this function. However, users can only view their own privileges.

iam_role_arn

The IAM role that has been granted the command privileges.

cmd_type

The command for which access has been granted. Valid values are the following:

• COPY

• UNLOAD

• EXTERNAL FUNCTION

• CREATE MODEL

Return type

BOOLEAN

Example

The following query confirms that the user reg_user1 has the privilege for the Redshift-S3-
Read role to run the COPY command.

select has_assumerole_privilege('reg_user1', 'arn:aws:iam::123456789012:role/Redshift-
S3-Read', 'copy');

System information functions 2242

Amazon Redshift Database Developer Guide

has_assumerole_privilege

true
(1 row)

HAS_DATABASE_PRIVILEGE

Returns true if the user has the specified privilege for the specified database. For more
information about privileges, see GRANT.

Syntax

Note

This is a leader-node function. This function returns an error if it references a user-created
table, an STL or STV system table, or an SVV or SVL system view.

has_database_privilege([user,] database, privilege)

Arguments

user

The name of the user to check for database privileges. The default is to check the current user.

database

The database associated with the privilege.

privilege

The privilege to check. Valid values are the following:

• CREATE

• TEMPORARY

• TEMP

Return type

Returns a CHAR or VARCHAR string.

System information functions 2243

Amazon Redshift Database Developer Guide

Example

The following query confirms that the GUEST user has the TEMP privilege on the TICKIT database.

select has_database_privilege('guest', 'tickit', 'temp');

has_database_privilege

true
(1 row)

HAS_SCHEMA_PRIVILEGE

Returns true if the user has the specified privilege for the specified schema. For more information
about privileges, see GRANT.

Syntax

Note

This is a leader-node function. This function returns an error if it references a user-created
table, an STL or STV system table, or an SVV or SVL system view.

has_schema_privilege([user,] schema, privilege)

Arguments

user

The name of the user to check for schema privileges. The default is to check the current user.

schema

The schema associated with the privilege.

privilege

The privilege to check. Valid values are the following:

• CREATE

• USAGE

System information functions 2244

Amazon Redshift Database Developer Guide

Return type

Returns a CHAR or VARCHAR string.

Example

The following query confirms that the GUEST user has the CREATE privilege on the PUBLIC schema:

select has_schema_privilege('guest', 'public', 'create');

has_schema_privilege

true
(1 row)

HAS_TABLE_PRIVILEGE

Returns true if the user has the specified privilege for the specified table and returns false
otherwise.

Syntax

Note

This is a leader-node function. This function returns an error if it references a user-created
table, an STL or STV system table, or an SVV or SVL system view. For more information
about privileges, see GRANT.

has_table_privilege([user,] table, privilege)

Arguments

user

The name of the user to check for table privileges. The default is to check the current user.

table

Table associated with the privilege.

System information functions 2245

Amazon Redshift Database Developer Guide

privilege

Privilege to check. Valid values are the following:

• SELECT

• INSERT

• UPDATE

• DELETE

• DROP

• REFERENCES

Return type

BOOLEAN

Examples

The following query finds that the GUEST user doesn't have SELECT privilege on the LISTING table.

select has_table_privilege('guest', 'listing', 'select');

has_table_privilege

false

The following query lists table privileges, including select, insert, update, and delete, using output
from the pg_tables and pg_user catalog tables. This is a sample only. You might have to specify
a schema name and table names from your database. For more information, see Querying the
catalog tables.

SELECT
 tablename
 ,usename
 ,HAS_TABLE_PRIVILEGE(users.usename, tablename, 'select') AS sel
 ,HAS_TABLE_PRIVILEGE(users.usename, tablename, 'insert') AS ins
 ,HAS_TABLE_PRIVILEGE(users.usename, tablename, 'update') AS upd
 ,HAS_TABLE_PRIVILEGE(users.usename, tablename, 'delete') AS del
FROM
(SELECT * from pg_tables
WHERE schemaname = 'public' and tablename in ('event','listing')) as tables
,(SELECT * FROM pg_user) AS users;

System information functions 2246

Amazon Redshift Database Developer Guide

tablename | usename | sel | ins | upd | del
----------+-----------+--------+-------+-------+-------
event | john | true | true | true | true
event | sally | false | false | false | false
event | elsa | false | false | false | false
listing | john | true | true | true | true
listing | sally | false | false | false | false
listing | elsa | false | false | false | false

The previous query also contains a cross join. For more information, see JOIN examples. To query
tables that are not in the public schema, remove the schemaname condition from the WHERE
clause and use the following example prior to your query.

SET SEARCH_PATH to 'schema_name';

LAST_USER_QUERY_ID

Returns the query ID of the most recently completed user query in the current session. If no queries
have been run in the current session, last_user_query_id returns -1. The function does not return
the query ID for queries that run exclusively on the leader node. For more information, see Leader
node–only functions.

Syntax

last_user_query_id()

Return type

Returns an integer.

Example

The following query returns the ID of the latest query run by a user completed in the current
session.

select last_user_query_id();

Results are the following.

last_user_query_id

System information functions 2247

Amazon Redshift Database Developer Guide

 5437
(1 row)

The following query returns the query ID and text of the most recently completed query run by a
user in the current session.

select query_id, query_text from sys_query_history where query_id =
 last_user_query_id();

Results are the following.

 query_id, query_text

+---
 5556975 | select last_user_query_id() limit 100 --RequestID=<unique request ID>;
 TraceID=<unique trace ID>

PG_BACKEND_PID

Returns the process ID (PID) of the server process handling the current session.

Note

The PID is not globally unique. It can be reused over time.

Syntax

pg_backend_pid()

Return type

Returns an integer.

Example

You can correlate PG_BACKEND_PID with log tables to retrieve information for the current session.
For example, the following query returns the query ID and a portion of the query text for queries
completed in the current session.

System information functions 2248

Amazon Redshift Database Developer Guide

select query, substring(text,1,40)
from stl_querytext
where pid = PG_BACKEND_PID()
order by query desc;

 query | substring
-------+--
 14831 | select query, substring(text,1,40) from
 14827 | select query, substring(path,0,80) as pa
 14826 | copy category from 's3://dw-tickit/manif
 14825 | Count rows in target table
 14824 | unload ('select * from category') to 's3
(5 rows)

You can correlate PG_BACKEND_PID with the pid column in the following log tables (exceptions are
noted in parentheses):

• STL_CONNECTION_LOG

• STL_DDLTEXT

• STL_ERROR

• STL_QUERY

• STL_QUERYTEXT

• STL_SESSIONS (process)

• STL_TR_CONFLICT

• STL_UTILITYTEXT

• STV_ACTIVE_CURSORS

• STV_INFLIGHT

• STV_LOCKS (lock_owner_pid)

• STV_RECENTS (process_id)

PG_GET_COLS

Returns the column metadata for a table or view definition.

Syntax

pg_get_cols('name')

System information functions 2249

Amazon Redshift Database Developer Guide

Arguments

name

The name of an Amazon Redshift table or view. For more information, see Names and
identifiers.

Return type

VARCHAR

Usage notes

The PG_GET_COLS function returns one row for each column in the table or view definition. The
row contains a comma-separated list with the schema name, relation name, column name, data
type, and column number. The formatting of the result of the SQL depends on the SQL client used.

Examples

The following examples return results for a view named SALES_VW in schema public and table
table named sales in schema mytickit1 that are created by the user in the connected database
dev.

The following example returns the column metadata for a view named SALES_VW.

select pg_get_cols('sales_vw');

pg_get_cols

(public,sales_vw,salesid,integer,1)
(public,sales_vw,listid,integer,2)
(public,sales_vw,sellerid,integer,3)
(public,sales_vw,buyerid,integer,4)
(public,sales_vw,eventid,integer,5)
(public,sales_vw,dateid,smallint,6)
(public,sales_vw,qtysold,smallint,7)
(public,sales_vw,pricepaid,"numeric(8,2)",8)
(public,sales_vw,commission,"numeric(8,2)",9)
(public,sales_vw,saletime,"timestamp without time zone",10)

The following example returns the column metadata for the SALES_VW view in table format.

System information functions 2250

Amazon Redshift Database Developer Guide

select * from pg_get_cols('sales_vw')
cols(view_schema name, view_name name, col_name name, col_type varchar, col_num int);

view_schema | view_name | col_name | col_type | col_num
------------+-----------+------------+-----------------------------+--------
public | sales_vw | salesid | integer | 1
public | sales_vw | listid | integer | 2
public | sales_vw | sellerid | integer | 3
public | sales_vw | buyerid | integer | 4
public | sales_vw | eventid | integer | 5
public | sales_vw | dateid | smallint | 6
public | sales_vw | qtysold | smallint | 7
public | sales_vw | pricepaid | numeric(8,2) | 8
public | sales_vw | commission | numeric(8,2) | 9
public | sales_vw | saletime | timestamp without time zone | 10

The following example returns the column metadata for the SALES table in schema mytickit1in
table format.

select * from pg_get_cols('"mytickit1"."sales"')
cols(view_schema name, view_name name, col_name name, col_type varchar, col_num int);

view_schema | view_name | col_name | col_type | col_num
------------+-----------+------------+-----------------------------+--------
mytickit1 | sales | salesid | integer | 1
mytickit1 | sales | listid | integer | 2
mytickit1 | sales | sellerid | integer | 3
mytickit1 | sales | buyerid | integer | 4
mytickit1 | sales | eventid | integer | 5
mytickit1 | sales | dateid | smallint | 6
mytickit1 | sales | qtysold | smallint | 7
mytickit1 | sales | pricepaid | numeric(8,2) | 8
mytickit1 | sales | commission | numeric(8,2) | 9
mytickit1 | sales | saletime | timestamp without time zone | 10

PG_GET_GRANTEE_BY_IAM_ROLE

Returns all users and groups granted a specified IAM role.

Syntax

pg_get_grantee_by_iam_role('iam_role_arn')

System information functions 2251

Amazon Redshift Database Developer Guide

Arguments

iam_role_arn

The IAM role for which to return the users and groups that have been granted this role.

Return type

VARCHAR

Usage notes

The PG_GET_GRANTEE_BY_IAM_ROLE function returns one row for each user or group. Each
row contains the grantee name, grantee type, and granted privilege. The possible values for the
grantee type are p for public, u for user, and g for group.

You must be a superuser to use this function.

Example

The following example indicates that the IAM role Redshift-S3-Write is granted to group1 and
reg_user1. Users in group_1 can specify the role only for COPY operations, and user reg_user1
can specify the role only to perform UNLOAD operations.

select pg_get_grantee_by_iam_role('arn:aws:iam::123456789012:role/Redshift-S3-Write');

 pg_get_grantee_by_iam_role

 (group_1,g,COPY)
 (reg_user1,u,UNLOAD)

The following example of the PG_GET_GRANTEE_BY_IAM_ROLE function formats the result as a
table.

select grantee, grantee_type, cmd_type FROM
 pg_get_grantee_by_iam_role('arn:aws:iam::123456789012:role/Redshift-S3-Write')
 res_grantee(grantee text, grantee_type text, cmd_type text) ORDER BY 1,2,3;

 grantee | grantee_type | cmd_type
-----------+--------------+----------
 group_1 | g | COPY

System information functions 2252

Amazon Redshift Database Developer Guide

 reg_user1 | u | UNLOAD

PG_GET_IAM_ROLE_BY_USER

Returns all IAM roles and command privileges granted to a user.

Syntax

pg_get_iam_role_by_user('name')

Arguments

name

The name of the user for which to return IAM roles.

Return type

VARCHAR

Usage notes

The PG_GET_IAM_ROLE_BY_USER function returns one row for each set of roles and command
privileges. The row contains a comma-separated list with the user name, IAM role, and command.

A value of default in the result indicates that the user can specify any available role to perform
the displayed command.

You must be a superuser to use this function.

Example

The following example indicates that user reg_user1 can specify any available IAM role to
perform COPY operations. The user can also specify the Redshift-S3-Write role for UNLOAD
operations.

select pg_get_iam_role_by_user('reg_user1');

 pg_get_iam_role_by_user

 (reg_user1,default,COPY)

System information functions 2253

Amazon Redshift Database Developer Guide

 (reg_user1,arn:aws:iam::123456789012:role/Redshift-S3-Write,COPY|UNLOAD)

The following example of the PG_GET_IAM_ROLE_BY_USER function formats the result as a table.

select username, iam_role, cmd FROM pg_get_iam_role_by_user('reg_user1')
 res_iam_role(username text, iam_role text, cmd text);

 username | iam_role | cmd
-----------+---+------
 reg_user1 | default | None
 reg_user1 | arn:aws:iam::123456789012:role/Redshift-S3-Read | COPY

PG_GET_LATE_BINDING_VIEW_COLS

Returns the column metadata for all late-binding views in the database. For more information, see
Late-binding views

Syntax

pg_get_late_binding_view_cols()

Return type

VARCHAR

Usage notes

The PG_GET_LATE_BINDING_VIEW_COLS function returns one row for each column in late-
binding views. The row contains a comma-separated list with the schema name, relation name,
column name, data type, and column number.

Example

The following example returns the column metadata for all late-binding views.

select pg_get_late_binding_view_cols();

pg_get_late_binding_view_cols
--
(public,myevent,eventname,"character varying(200)",1)
(public,sales_lbv,salesid,integer,1)

System information functions 2254

Amazon Redshift Database Developer Guide

(public,sales_lbv,listid,integer,2)
(public,sales_lbv,sellerid,integer,3)
(public,sales_lbv,buyerid,integer,4)
(public,sales_lbv,eventid,integer,5)
(public,sales_lbv,dateid,smallint,6)
(public,sales_lbv,qtysold,smallint,7)
(public,sales_lbv,pricepaid,"numeric(8,2)",8)
(public,sales_lbv,commission,"numeric(8,2)",9)
(public,sales_lbv,saletime,"timestamp without time zone",10)
(public,event_lbv,eventid,integer,1)
(public,event_lbv,venueid,smallint,2)
(public,event_lbv,catid,smallint,3)
(public,event_lbv,dateid,smallint,4)
(public,event_lbv,eventname,"character varying(200)",5)
(public,event_lbv,starttime,"timestamp without time zone",6)

The following example returns the column metadata for all late-binding views in table format.

select * from pg_get_late_binding_view_cols() cols(view_schema name, view_name name,
 col_name name, col_type varchar, col_num int);
view_schema | view_name | col_name | col_type | col_num
------------+-----------+------------+-----------------------------+--------
public | sales_lbv | salesid | integer | 1
public | sales_lbv | listid | integer | 2
public | sales_lbv | sellerid | integer | 3
public | sales_lbv | buyerid | integer | 4
public | sales_lbv | eventid | integer | 5
public | sales_lbv | dateid | smallint | 6
public | sales_lbv | qtysold | smallint | 7
public | sales_lbv | pricepaid | numeric(8,2) | 8
public | sales_lbv | commission | numeric(8,2) | 9
public | sales_lbv | saletime | timestamp without time zone | 10
public | event_lbv | eventid | integer | 1
public | event_lbv | venueid | smallint | 2
public | event_lbv | catid | smallint | 3
public | event_lbv | dateid | smallint | 4
public | event_lbv | eventname | character varying(200) | 5
public | event_lbv | starttime | timestamp without time zone | 6

PG_GET_SESSION_ROLES

Returns session roles of the currently logged in user. Session roles of a user are the groups defined
by an identity provider (IdP) for the logged in user. For example, an identity provider (IdP) such

System information functions 2255

Amazon Redshift Database Developer Guide

as Microsoft Azure Active Directory (Azure AD) verifies the identity of the user and provides
any external groups the user is part of during the user login process. These external groups are
transformed into Amazon Redshift roles and are available during the current session. These roles
are called session roles. An administrator can grant privileges to a session role similar to other
Amazon Redshift roles. For information about using roles, see Role-based access control (RBAC).
For information about managing identities with an identity provider (IdP), see Native identity
provider (IdP) federation for Amazon Redshift in the Amazon Redshift Management Guide.

To view the roles defined in the Amazon Redshift catalog, connect to the database as an admin or
super user, and query the system view SVV_ROLES.

Syntax

pg_get_session_roles()

Return type

A set of rows that consists of two values. The first value has two parts separated by a colon(:) that
contains an idp-namespace:role-name. The idp-namespace is the namespace of the identity
provider (IdP). The role-name is the name of the external group in the identity provider (IdP). The
second value contains a role-id which is the role identifier.

Usage notes

The PG_GET_SESSION_ROLES function returns one row for each returned session role.

Examples

The following example returns one row for each role from the Azure Active Directory IdP. The
returned columns are cast to sess_roles with columns name and roleid. Each name consists of
the Azure Active Directory namespace and a group name in Azure Active Directory.

SELECT * FROM pg_get_session_roles() AS sess_roles(name name, roleid integer);

name roleid

my_aad:test_group_1 106204
my_aad:test_group_2 106205
my_aad:test_group_3 106206
my_aad:test_group_4 106207
my_aad:test_group_5 106208

System information functions 2256

https://azure.microsoft.com/en-us/services/active-directory/
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-native-idp.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-iam-access-control-native-idp.html

Amazon Redshift Database Developer Guide

The following example returns one row for each IAM group that the currently logged in IAM user is
a member of. The returned columns are cast to sess_roles with columns name and roleid. Each
name consists of the IAM namespace and IAM group name.

SELECT * FROM pg_get_session_roles() AS sess_roles(name name, roleid integer);

name roleid

IAM:myGroup 110332

PG_LAST_COPY_COUNT

Returns the number of rows that were loaded by the last COPY command run in the current
session. PG_LAST_COPY_COUNT is updated with the last COPY ID, which is the query ID of the last
COPY that began the load process, even if the load failed. The query ID and COPY ID are updated
when the COPY command begins the load process.

If the COPY fails because of a syntax error or because of insufficient privileges, the COPY ID
is not updated and PG_LAST_COPY_COUNT returns the count for the previous COPY. If no
COPY commands were run in the current session, or if the last COPY failed during loading,
PG_LAST_COPY_COUNT returns 0. For more information, see PG_LAST_COPY_ID.

Syntax

pg_last_copy_count()

Return type

Returns BIGINT.

Example

The following query returns the number of rows loaded by the latest COPY command in the
current session.

select pg_last_copy_count();

pg_last_copy_count

 192497
(1 row)

System information functions 2257

Amazon Redshift Database Developer Guide

PG_LAST_COPY_ID

Returns the query ID of the most recently completed COPY command in the current session. If no
COPY commands have been run in the current session, PG_LAST_COPY_ID returns -1.

The value for PG_LAST_COPY_ID is updated when the COPY command begins the load
process. If the COPY fails because of invalid load data, the COPY ID is updated, so you can use
PG_LAST_COPY_ID when you query STL_LOAD_ERRORS table. If the COPY transaction is rolled
back, the COPY ID is not updated.

The COPY ID is not updated if the COPY command fails because of an error that occurs before
the load process begins, such as a syntax error, access error, invalid credentials, or insufficient
privileges. The COPY ID is not updated if the COPY fails during the analyze compression step, which
begins after a successful connection, but before the data load.

Syntax

pg_last_copy_id()

Return type

Returns an integer.

Example

The following query returns the query ID of the latest COPY command in the current session.

select pg_last_copy_id();

pg_last_copy_id

 5437
(1 row)

The following query joins STL_LOAD_ERRORS to STL_LOADERROR_DETAIL to view the details
errors that occurred during the most recent load in the current session:

select d.query, substring(d.filename,14,20),
d.line_number as line,
substring(d.value,1,16) as value,
substring(le.err_reason,1,48) as err_reason
from stl_loaderror_detail d, stl_load_errors le

System information functions 2258

Amazon Redshift Database Developer Guide

where d.query = le.query
and d.query = pg_last_copy_id();

 query | substring | line | value | err_reason
-------+-------------------+------+----------
+---
 558| allusers_pipe.txt | 251 | 251 | String contains invalid or unsupported
 UTF8 code
 558| allusers_pipe.txt | 251 | ZRU29FGR | String contains invalid or unsupported
 UTF8 code
 558| allusers_pipe.txt | 251 | Kaitlin | String contains invalid or unsupported
 UTF8 code
 558| allusers_pipe.txt | 251 | Walter | String contains invalid or unsupported
 UTF8 code

PG_LAST_UNLOAD_ID

Returns the query ID of the most recently completed UNLOAD command in the current session. If
no UNLOAD commands have been run in the current session, PG_LAST_UNLOAD_ID returns -1.

The value for PG_LAST_UNLOAD_ID is updated when the UNLOAD command begins the load
process. If the UNLOAD fails because of invalid load data, the UNLOAD ID is updated, so you
can use the UNLOAD ID for further investigation. If the UNLOAD transaction is rolled back, the
UNLOAD ID is not updated.

The UNLOAD ID is not updated if the UNLOAD command fails because of an error that occurs
before the load process begins, such as a syntax error, access error, invalid credentials, or
insufficient privileges.

Syntax

PG_LAST_UNLOAD_ID()

Return type

Returns an integer.

Example

The following query returns the query ID of the latest UNLOAD command in the current session.

select PG_LAST_UNLOAD_ID();

System information functions 2259

Amazon Redshift Database Developer Guide

PG_LAST_UNLOAD_ID

 5437
(1 row)

PG_LAST_QUERY_ID

Returns the query ID of the most recently completed query in the current session. If no queries
have been run in the current session, PG_LAST_QUERY_ID returns -1. PG_LAST_QUERY_ID does not
return the query ID for queries that run exclusively on the leader node. For more information, see
Leader node–only functions.

Syntax

pg_last_query_id()

Return type

Returns an integer.

Example

The following query returns the ID of the latest query completed in the current session.

select pg_last_query_id();

Results are the following.

pg_last_query_id

 5437
(1 row)

The following query returns the query ID and text of the most recently completed query in the
current session.

select query, trim(querytxt) as sqlquery
from stl_query
where query = pg_last_query_id();

System information functions 2260

Amazon Redshift Database Developer Guide

Results are the following.

query | sqlquery
------+--
 5437 | select name, loadtime from stl_file_scan where loadtime > 1000000;
(1 rows)

PG_LAST_UNLOAD_COUNT

Returns the number of rows that were unloaded by the last UNLOAD command completed
in the current session. PG_LAST_UNLOAD_COUNT is updated with the query ID of the
last UNLOAD, even if the operation failed. The query ID is updated when the UNLOAD is
completed. If the UNLOAD fails because of a syntax error or because of insufficient privileges,
PG_LAST_UNLOAD_COUNT returns the count for the previous UNLOAD. If no UNLOAD commands
were completed in the current session, or if the last UNLOAD failed during the unload operation,
PG_LAST_UNLOAD_COUNT returns 0.

Syntax

pg_last_unload_count()

Return type

Returns BIGINT.

Example

The following query returns the number of rows unloaded by the latest UNLOAD command in the
current session.

select pg_last_unload_count();

pg_last_unload_count

 192497
(1 row)

SLICE_NUM Function

Returns an integer corresponding to the slice number in the cluster where the data for a row is
located. SLICE_NUM takes no parameters.

System information functions 2261

Amazon Redshift Database Developer Guide

Syntax

SLICE_NUM()

Return type

The SLICE_NUM function returns an integer.

Examples

The following example shows which slices contain data for the first ten EVENT rows in the EVENTS
table:

select distinct eventid, slice_num() from event order by eventid limit 10;

 eventid | slice_num
---------+-----------
 1 | 1
 2 | 2
 3 | 3
 4 | 0
 5 | 1
 6 | 2
 7 | 3
 8 | 0
 9 | 1
 10 | 2
(10 rows)

The following example returns a code (10000) to show that a query without a FROM statement
runs on the leader node:

select slice_num();
slice_num

10000
(1 row)

USER

Synonym for CURRENT_USER. See CURRENT_USER.

System information functions 2262

Amazon Redshift Database Developer Guide

ROLE_IS_MEMBER_OF

Returns true if the role is a member of another role. Superusers can check the membership of
all roles. Regular users who have the ACCESS SYSTEM TABLE permission can check all users'
membership. Otherwise, regular users can only check roles to which they have access. Amazon
Redshift errors out if the provided roles don't exist or the current user doesn't have access to the
role.

Syntax

role_is_member_of(role_name, granted_role_name)

Arguments

role_name

The name of the role.

granted_role_name

The name of the granted role.

Return type

Returns a BOOLEAN.

Example

The following query confirms that the role isn't a member of role1 nor role2.

SELECT role_is_member_of('role1', 'role2');

 role_is_member_of

 False

USER_IS_MEMBER_OF

Returns true if the user is a member of a role or group. Superusers can check the membership of all
users. Regular users who are members of the sys:secadmin or sys:superuser role can check all users'
membership. Otherwise, regular users can only check themselves. Amazon Redshift sends an error
if the provided identities don't exist or the current user doesn't have access to the role.

System information functions 2263

Amazon Redshift Database Developer Guide

Syntax

user_is_member_of(user_name, role_name | group_name)

Arguments

user_name

The name of the user.

role_name

The name of the role.

group_name

The name of the group.

Return type

Returns a BOOLEAN.

Example

The following query confirms that the user isn't a member of role1.

SELECT user_is_member_of('reguser', 'role1');

 user_is_member_of

 False

VERSION

The VERSION function returns details about the currently installed release, with specific Amazon
Redshift version information at the end.

Note

This is a leader-node function. This function returns an error if it references a user-created
table, an STL or STV system table, or an SVV or SVL system view.

System information functions 2264

Amazon Redshift Database Developer Guide

Syntax

VERSION()

Return type

Returns a CHAR or VARCHAR string.

Examples

The following example shows the cluster version information of the current cluster:

select version();

 version
 --

 PostgreSQL 8.0.2 on i686-pc-linux-gnu, compiled by GCC gcc (GCC) 3.4.2 20041017 (Red
 Hat 3.4.2-6.fc3), Redshift 1.0.12103

Where 1.0.12103 is the cluster version number.

Note

To force your cluster to update to the latest cluster version, adjust your maintenance
window.

Reserved words

The following is a list of Amazon Redshift reserved words. You can use the reserved words with
delimited identifiers (double quotation marks).

Note

While START and CONNECT are not reserved words, use delimited identifiers or AS if you're
using START and CONNECT as table aliases in your query to avoid failure at runtime.

Reserved words 2265

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-maintenance-windows
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#rs-maintenance-windows

Amazon Redshift Database Developer Guide

For more information, see Names and identifiers.

AES128
AES256
ALL
ALLOWOVERWRITE
ANALYSE
ANALYZE
AND
ANY
ARRAY
AS
ASC
AUTHORIZATION
AZ64
BACKUP
BETWEEN
BINARY
BLANKSASNULL
BOTH
BYTEDICT
BZIP2
CASE
CAST
CHECK
COLLATE
COLUMN
CONSTRAINT
CREATE
CREDENTIALS
CROSS
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_USER
CURRENT_USER_ID
DEFAULT
DEFERRABLE
DEFLATE
DEFRAG
DELTA
DELTA32K
DESC
DISABLE

Reserved words 2266

Amazon Redshift Database Developer Guide

DISTINCT
DO
ELSE
EMPTYASNULL
ENABLE
ENCODE
ENCRYPT
ENCRYPTION
END
EXCEPT
EXPLICIT
FALSE
FOR
FOREIGN
FREEZE
FROM
FULL
GLOBALDICT256
GLOBALDICT64K
GRANT
GROUP
GZIP
HAVING
IDENTITY
IGNORE
ILIKE
IN
INITIALLY
INNER
INTERSECT
INTERVAL
INTO
IS
ISNULL
JOIN
LEADING
LEFT
LIKE
LIMIT
LOCALTIME
LOCALTIMESTAMP
LUN
LUNS
LZO

Reserved words 2267

Amazon Redshift Database Developer Guide

LZOP
MINUS
MOSTLY16
MOSTLY32
MOSTLY8
NATURAL
NEW
NOT
NOTNULL
NULL
NULLS
OFF
OFFLINE
OFFSET
OID
OLD
ON
ONLY
OPEN
OR
ORDER
OUTER
OVERLAPS
PARALLEL
PARTITION
PERCENT
PERMISSIONS
PIVOT
PLACING
PRIMARY
RAW
READRATIO
RECOVER
REFERENCES
REJECTLOG
RESORT
RESPECT
RESTORE
RIGHT
SELECT
SESSION_USER
SIMILAR
SNAPSHOT
SOME

Reserved words 2268

Amazon Redshift Database Developer Guide

SYSDATE
SYSTEM
TABLE
TAG
TDES
TEXT255
TEXT32K
THEN
TIMESTAMP
TO
TOP
TRAILING
TRUE
TRUNCATECOLUMNS
UNION
UNIQUE
UNNEST
UNPIVOT
USER
USING
VERBOSE
WALLET
WHEN
WHERE
WITH
WITHOUT

Reserved words 2269

Amazon Redshift Database Developer Guide

System tables and views reference

Topics

• System tables and views

• Types of system tables and views

• Visibility of data in system tables and views

• Migrating provisioned-only queries to SYS monitoring view queries

• Improving query identifier tracking using the SYS monitoring views

• System table query, process, and sesssion ids

• SVV metadata views

• SYS monitoring views

• System view mapping for migrating to SYS monitoring views

• System monitoring (provisioned only)

• System catalog tables

System tables and views

Amazon Redshift has many system tables and views that contain information about how the
system is functioning. You can query these system tables and views the same way that you would
query any other database tables. This section shows some sample system table queries and
explains:

• How different types of system tables and views are generated

• What types of information you can obtain from these tables

• How to join Amazon Redshift system tables to catalog tables

• How to manage the growth of system table log files

Some system tables can only be used by AWS staff for diagnostic purposes. The following sections
discuss the system tables that can be queried for useful information by system administrators or
other database users.

System tables and views 2270

Amazon Redshift Database Developer Guide

Note

System tables are not included in automated or manual cluster backups (snapshots). STL
system views retain seven days of log history. Retaining logs doesn't require any customer
action, but if you want to store log data for more than 7 days, you have to periodically copy
it to other tables or unload it to Amazon S3.

Types of system tables and views

There are several types of system tables and views:

• SVV views contain information about database objects with references to transient STV tables.

• SYS views are used to monitor query and workload usage for provisioned clusters and serverless
workgroups.

• STL views are generated from logs that have been persisted to disk to provide a history of the
system.

• STV tables are virtual system tables that contain snapshots of the current system data. They are
based on transient in-memory data and are not persisted to disk-based logs or regular tables.

• SVCS views provide details about queries on both the main and concurrency scaling clusters.

• SVL views provide details about queries on main clusters.

System tables and views do not use the same consistency model as regular tables. It is important
to be aware of this issue when querying them, especially for STV tables and SVV views. For
example, given a regular table t1 with a column c1, you would expect that the following query to
return no rows:

select * from t1
where c1 > (select max(c1) from t1)

However, the following query against a system table might well return rows:

select * from stv_exec_state
where currenttime > (select max(currenttime) from stv_exec_state)

Types of system tables and views 2271

Amazon Redshift Database Developer Guide

The reason this query might return rows is that currenttime is transient and the two references in
the query might not return the same value when evaluated.

On the other hand, the following query might well return no rows:

select * from stv_exec_state
where currenttime = (select max(currenttime) from stv_exec_state)

Visibility of data in system tables and views

There are two classes of visibility for data in system tables and views: visible to users and visible to
superusers.

Only users with superuser privileges can see the data in those tables that are in the superuser-
visible category. Regular users can see data in the user-visible tables. To give a regular user access
to superuser-visible tables, grant SELECT privilege on that table to the regular user. For more
information, see GRANT.

By default, in most user-visible tables, rows generated by another user are invisible to a regular
user. If a regular user is given SYSLOG ACCESS UNRESTRICTED, that user can see all rows in user-
visible tables, including rows generated by another user. For more information, see ALTER USER
or CREATE USER. All rows in SVV_TRANSACTIONS are visible to all users. For more information
about data visibility, see the AWS re:Post knowledge base article How can I allow Amazon Redshift
database regular users permission to view data in system tables from other users for my cluster?.

For metadata views, Amazon Redshift doesn't allow visibility to users that are granted SYSLOG
ACCESS UNRESTRICTED.

Note

Giving a user unrestricted access to system tables gives the user visibility to data generated
by other users. For example, STL_QUERY and STL_QUERY_TEXT contain the full text of
INSERT, UPDATE, and DELETE statements, which might contain sensitive user-generated
data.

A superuser can see all rows in all tables. To give a regular user access to superuser-visible tables,
GRANT SELECT privilege on that table to the regular user.

Visibility of data in system tables and views 2272

https://repost.aws/knowledge-center/amazon-redshift-system-tables
https://repost.aws/knowledge-center/amazon-redshift-system-tables

Amazon Redshift Database Developer Guide

Filtering system-generated queries

The query-related system tables and views, such as SVL_QUERY_SUMMARY, SVL_QLOG, and
others, usually contain a large number of automatically generated statements that Amazon
Redshift uses to monitor the status of the database. These system-generated queries are visible
to a superuser, but are seldom useful. To filter them out when selecting from a system table or
system view that uses the userid column, add the condition userid > 1 to the WHERE clause.
For example:

 select * from svl_query_summary where userid > 1

Migrating provisioned-only queries to SYS monitoring view
queries

Migrating from provisioned clusters to Amazon Redshift Serverless

If you're migrating a provisioned cluster to Amazon Redshift Serverless, you may have queries using
the following system views, which only store data from provisioned clusters.

• All STL views

• All STV views

• All SVCS views

• All SVL views

• Some SVV views

• For a full list of SVV views unsupported in Amazon Redshift Serverless, see the list at the
bottom of Monitoring queries and workloads with Amazon Redshift Serverless in the Amazon
Redshift Management Guide.

To keep using your queries, refit them to use columns defined in the SYS monitoring views
that correspond to the columns in your provisioned-only views. To see the mapping relation
between the provisioned-only views and the SYS monitoring views, go to System view mapping for
migrating to SYS monitoring views

Filtering system-generated queries 2273

https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-monitoring.html

Amazon Redshift Database Developer Guide

Updating queries while staying on a provisioned cluster

If you're not migrating to Amazon Redshift Serverless, you might still want to update your existing
queries. The SYS monitoring views are designed for ease of use and reduced complexity, providing
a complete array of metrics for effective monitoring and troubleshooting. Using SYS views such
as SYS_QUERY_HISTORY and SYS_QUERY_DETAIL that consolidate the information of multiple
provisioned-only views, you can streamline your queries.

Improving query identifier tracking using the SYS monitoring
views

SYS monitoring views such as such as SYS_QUERY_HISTORY and SYS_QUERY_DETAIL contain
the query_id column, which holds the identifier for users’ queries. Similarly, provisioned-only
views such as STL_QUERY and SVL_QLOG contain the query column, which also holds the query
identifiers. However, the query identifiers recorded in the SYS system views are different from
those recorded in the provisioned-only views.

The difference between the SYS views’ query_id column values and the provisioned-only views’
query column values is as follows:

• In SYS views, the query_id column records user-submitted queries in their original form.
The Amazon Redshift optimizer might break them down into child queries for improved
performance, but a single query you run will still only have a single row in SYS_QUERY_HISTORY.
If you want to see the individual child queries, you can find them in SYS_QUERY_DETAIL.

• In provisioned-only views, the query column records queries at the child query level. If the
Amazon Redshift optimizer rewrites your original query into multiple child queries, there will be
multiple rows in STL_QUERY with differing query identifier values for a single query you run.

When you migrate your monitoring and diagnostic queries from provisioned-only views to SYS
views, consider this difference and edit your queries accordingly. For more information on how
Amazon Redshift processes queries, see Query planning and execution workflow.

Example

For an example of how Amazon Redshift records queries differently in provisioned-only and SYS
monitoring views, see the following sample query. This is the query written as you would run it in
Amazon Redshift.

Updating queries while staying on a provisioned cluster 2274

Amazon Redshift Database Developer Guide

SELECT
 s_name
 , COUNT(*) AS numwait
FROM
 supplier,
 lineitem l1,
 orders,
 nation
WHERE s_suppkey = l1.l_suppkey
 AND o_orderkey = l1.l_orderkey
 AND o_orderstatus = 'F'
 AND l1.l_receiptdate > l1.l_commitdate
 AND EXISTS (SELECT
 *
 FROM
 lineitem l2
 WHERE l2.l_orderkey = l1.l_orderkey
 AND l2.l_suppkey <> l1.l_suppkey)
 AND NOT EXISTS (SELECT
 *
 FROM
 lineitem l3
 WHERE l3.l_orderkey = l1.l_orderkey
 AND l3.l_suppkey <> l1.l_suppkey
 AND l3.l_receiptdate > l3.l_commitdate)
 AND s_nationkey = n_nationkey
 AND n_name = 'UNITED STATES'
GROUP BY
 s_name
ORDER BY
 numwait DESC
 , s_name LIMIT 100;

Under the hood the Amazon Redshift query optimizer rewrites the above user-submitted query
into 5 child queries.

The first child query creates a temporary table to materialize a subquery.

CREATE TEMP TABLE volt_tt_606590308b512(l_orderkey
 , l_suppkey
 , s_name) AS SELECT
 l1.l_orderkey
 , l1.l_suppkey

Example 2275

Amazon Redshift Database Developer Guide

 , public.supplier.s_name
 FROM
 public.lineitem AS l1,
 public.nation,
 public.orders,
 public.supplier
 WHERE l1.l_commitdate <
 l1.l_receiptdate
 AND l1.l_orderkey =
 public.orders.o_orderkey
 AND l1.l_suppkey =
 public.supplier.s_suppkey
 AND public.nation.n_name
 = 'UNITED STATES'::CHAR(8)
 AND
 public.nation.n_nationkey = public.supplier.s_nationkey
 AND
 public.orders.o_orderstatus = 'F'::CHAR(1);

The second child query collects statistics from the temporary table.

padb_fetch_sample: select count(*) from volt_tt_606590308b512;

The third child query creates another temporary table to materialize another subquery, referencing
the temporary table created above.

CREATE TEMP TABLE volt_tt_606590308c2ef(l_orderkey
 , l_suppkey) AS (SELECT

 volt_tt_606590308b512.l_orderkey
 ,
 volt_tt_606590308b512.l_suppkey
 FROM
 public.lineitem AS l2,
 volt_tt_606590308b512
 WHERE l2.l_suppkey <>
 volt_tt_606590308b512.l_suppkey
 AND l2.l_orderkey =
 volt_tt_606590308b512.l_orderkey)
 EXCEPT distinct (SELECT
 volt_tt_606590308b512.l_orderkey, volt_tt_606590308b512.l_suppkey
 FROM public.lineitem AS
 l3, volt_tt_606590308b512

Example 2276

Amazon Redshift Database Developer Guide

 WHERE l3.l_commitdate <
 l3.l_receiptdate
 AND l3.l_suppkey <>
 volt_tt_606590308b512.l_suppkey
 AND l3.l_orderkey =
 volt_tt_606590308b512.l_orderkey);

The fourth child query again collects the temporary table’s statistics.

padb_fetch_sample: select count(*) from volt_tt_606590308c2ef

The last child query uses the temporary tables created above to generate the output.

SELECT
 volt_tt_606590308b512.s_name AS s_name
 , COUNT(*) AS numwait
FROM
 volt_tt_606590308b512,
 volt_tt_606590308c2ef
WHERE volt_tt_606590308b512.l_orderkey = volt_tt_606590308c2ef.l_orderkey
 AND volt_tt_606590308b512.l_suppkey = volt_tt_606590308c2ef.l_suppkey
GROUP BY
 1
ORDER BY
 2 DESC
 , 1 ASC LIMIT 100;

In the provisioned-only system view STL_QUERY, Amazon Redshift records five rows at the child
query level, as follows:

SELECT userid, xid, pid, query, querytxt::varchar(100);
FROM stl_query
WHERE xid = 48237350
ORDER BY xid, starttime;

 userid | xid | pid | query |
 querytxt
--------+----------+------------+----------
+--
 101 | 48237350 | 1073840810 | 12058151 | CREATE TEMP TABLE
 volt_tt_606590308b512(l_orderkey, l_suppkey, s_name) AS SELECT l1.l_orderkey, l1.l

Example 2277

Amazon Redshift Database Developer Guide

 101 | 48237350 | 1073840810 | 12058152 | padb_fetch_sample: select count(*) from
 volt_tt_606590308b512
 101 | 48237350 | 1073840810 | 12058156 | CREATE TEMP TABLE
 volt_tt_606590308c2ef(l_orderkey, l_suppkey) AS (SELECT volt_tt_606590308b512.l_or
 101 | 48237350 | 1073840810 | 12058168 | padb_fetch_sample: select count(*) from
 volt_tt_606590308c2ef
 101 | 48237350 | 1073840810 | 12058170 | SELECT s_name , COUNT(*) AS numwait FROM
 supplier, lineitem l1, orders, nation WHERE s_suppkey = l1.
(5 rows)

In the SYS monitoring view SYS_QUERY_HISTORY, Amazon Redshift records the query as follows:

SELECT user_id, transaction_id, session_id, query_id, query_text::varchar(100)
FROM sys_query_history
WHERE transaction_id = 48237350
ORDER BY start_time;

 user_id | transaction_id | session_id | query_id |
 query_text
---------+----------------+------------+----------
+--
 101 | 48237350 | 1073840810 | 12058149 | SELECT s_name , COUNT(*) AS numwait
 FROM supplier, lineitem l1, orders, nation WHERE s_suppkey = l1.

In SYS_QUERY_DETAIL, you can find child query-level details using the query_id value from
SYS_QUERY_HISTORY. The child_query_sequence column shows the order the child queries are
executed in. For more information on the columns in SYS_QUERY_DETAIL, see SYS_QUERY_DETAIL.

select user_id,
 query_id,
 child_query_sequence,
 stream_id,
 segment_id,
 step_id,
 start_time,
 end_time,
 duration,
 blocks_read,
 blocks_write,
 local_read_io,
 remote_read_io,
 data_skewness,
 time_skewness,

Example 2278

Amazon Redshift Database Developer Guide

 is_active,
 spilled_block_local_disk,
 spilled_block_remote_disk
from sys_query_detail
where query_id = 12058149
 and step_id = -1
order by query_id,
 child_query_sequence,
 stream_id,
 segment_id,
 step_id;

 user_id | query_id | child_query_sequence | stream_id | segment_id | step_id |
 start_time | end_time | duration | blocks_read |
 blocks_write | local_read_io | remote_read_io | data_skewness | time_skewness |
 is_active | spilled_block_local_disk | spilled_block_remote_disk
---------+----------+----------------------+-----------+------------+---------
+----------------------------+----------------------------+----------+-------------
+--------------+---------------+----------------+---------------+---------------
+-----------+--------------------------+---------------------------
 101 | 12058149 | 1 | 0 | 0 | -1 |
 2023-09-27 15:40:38.512415 | 2023-09-27 15:40:38.533333 | 20918 | 0 |
 0 | 0 | 0 | 0 | 44 | f
 | 0 | 0
 101 | 12058149 | 1 | 1 | 1 | -1 |
 2023-09-27 15:40:39.931437 | 2023-09-27 15:40:39.972826 | 41389 | 12 |
 0 | 12 | 0 | 0 | 77 | f
 | 0 | 0
 101 | 12058149 | 1 | 2 | 2 | -1 |
 2023-09-27 15:40:40.584412 | 2023-09-27 15:40:40.613982 | 29570 | 32 |
 0 | 32 | 0 | 0 | 25 | f
 | 0 | 0
 101 | 12058149 | 1 | 2 | 3 | -1 |
 2023-09-27 15:40:40.582038 | 2023-09-27 15:40:40.615758 | 33720 | 0 |
 0 | 0 | 0 | 0 | 1 | f
 | 0 | 0
 101 | 12058149 | 1 | 3 | 4 | -1 |
 2023-09-27 15:40:46.668766 | 2023-09-27 15:40:46.705456 | 36690 | 24 |
 0 | 15 | 0 | 0 | 17 | f
 | 0 | 0
 101 | 12058149 | 1 | 4 | 5 | -1 |
 2023-09-27 15:40:46.707209 | 2023-09-27 15:40:46.709176 | 1967 | 0 |
 0 | 0 | 0 | 0 | 18 | f
 | 0 | 0

Example 2279

Amazon Redshift Database Developer Guide

 101 | 12058149 | 1 | 4 | 6 | -1 |
 2023-09-27 15:40:46.70656 | 2023-09-27 15:40:46.71289 | 6330 | 0 |
 0 | 0 | 0 | 0 | 0 | f
 | 0 | 0
 101 | 12058149 | 1 | 5 | 7 | -1 |
 2023-09-27 15:40:46.71405 | 2023-09-27 15:40:46.714343 | 293 | 0 |
 0 | 0 | 0 | 0 | 0 | f
 | 0 | 0
 101 | 12058149 | 2 | 0 | 0 | -1 |
 2023-09-27 15:40:52.083907 | 2023-09-27 15:40:52.087854 | 3947 | 0 |
 0 | 0 | 0 | 0 | 35 | f
 | 0 | 0
 101 | 12058149 | 2 | 1 | 1 | -1 |
 2023-09-27 15:40:52.089632 | 2023-09-27 15:40:52.091129 | 1497 | 0 |
 0 | 0 | 0 | 0 | 11 | f
 | 0 | 0
 101 | 12058149 | 2 | 1 | 2 | -1 |
 2023-09-27 15:40:52.089008 | 2023-09-27 15:40:52.091306 | 2298 | 0 |
 0 | 0 | 0 | 0 | 0 | f
 | 0 | 0
 101 | 12058149 | 3 | 0 | 0 | -1 |
 2023-09-27 15:40:56.882013 | 2023-09-27 15:40:56.897282 | 15269 | 0 |
 0 | 0 | 0 | 0 | 29 | f
 | 0 | 0
 101 | 12058149 | 3 | 1 | 1 | -1 |
 2023-09-27 15:40:59.718554 | 2023-09-27 15:40:59.722789 | 4235 | 0 |
 0 | 0 | 0 | 0 | 13 | f
 | 0 | 0
 101 | 12058149 | 3 | 2 | 2 | -1 |
 2023-09-27 15:40:59.800382 | 2023-09-27 15:40:59.807388 | 7006 | 0 |
 0 | 0 | 0 | 0 | 58 | f
 | 0 | 0
 101 | 12058149 | 3 | 3 | 3 | -1 |
 2023-09-27 15:41:06.488685 | 2023-09-27 15:41:06.493825 | 5140 | 0 |
 0 | 0 | 0 | 0 | 56 | f
 | 0 | 0
 101 | 12058149 | 3 | 3 | 4 | -1 |
 2023-09-27 15:41:06.486206 | 2023-09-27 15:41:06.497756 | 11550 | 0 |
 0 | 0 | 0 | 0 | 2 | f
 | 0 | 0
 101 | 12058149 | 3 | 4 | 5 | -1 |
 2023-09-27 15:41:06.499201 | 2023-09-27 15:41:06.500851 | 1650 | 0 |
 0 | 0 | 0 | 0 | 15 | f
 | 0 | 0

Example 2280

Amazon Redshift Database Developer Guide

 101 | 12058149 | 3 | 4 | 6 | -1 |
 2023-09-27 15:41:06.498609 | 2023-09-27 15:41:06.500949 | 2340 | 0 |
 0 | 0 | 0 | 0 | 0 | f
 | 0 | 0
 101 | 12058149 | 3 | 5 | 7 | -1 |
 2023-09-27 15:41:06.502945 | 2023-09-27 15:41:06.503282 | 337 | 0 |
 0 | 0 | 0 | 0 | 0 | f
 | 0 | 0
 101 | 12058149 | 4 | 0 | 0 | -1 |
 2023-09-27 15:41:06.62899 | 2023-09-27 15:41:06.631452 | 2462 | 0 |
 0 | 0 | 0 | 0 | 22 | f
 | 0 | 0
 101 | 12058149 | 4 | 1 | 1 | -1 |
 2023-09-27 15:41:06.632313 | 2023-09-27 15:41:06.63391 | 1597 | 0 |
 0 | 0 | 0 | 0 | 20 | f
 | 0 | 0
 101 | 12058149 | 4 | 1 | 2 | -1 |
 2023-09-27 15:41:06.631726 | 2023-09-27 15:41:06.633813 | 2087 | 0 |
 0 | 0 | 0 | 0 | 0 | f
 | 0 | 0
 101 | 12058149 | 5 | 0 | 0 | -1 |
 2023-09-27 15:41:12.571974 | 2023-09-27 15:41:12.584234 | 12260 | 0 |
 0 | 0 | 0 | 0 | 39 | f
 | 0 | 0
 101 | 12058149 | 5 | 0 | 1 | -1 |
 2023-09-27 15:41:12.569815 | 2023-09-27 15:41:12.585391 | 15576 | 0 |
 0 | 0 | 0 | 0 | 4 | f
 | 0 | 0
 101 | 12058149 | 5 | 1 | 2 | -1 |
 2023-09-27 15:41:13.758513 | 2023-09-27 15:41:13.76401 | 5497 | 0 |
 0 | 0 | 0 | 0 | 39 | f
 | 0 | 0
 101 | 12058149 | 5 | 1 | 3 | -1 |
 2023-09-27 15:41:13.749 | 2023-09-27 15:41:13.772987 | 23987 | 0 |
 0 | 0 | 0 | 0 | 32 | f
 | 0 | 0
 101 | 12058149 | 5 | 2 | 4 | -1 |
 2023-09-27 15:41:13.799526 | 2023-09-27 15:41:13.813506 | 13980 | 0 |
 0 | 0 | 0 | 0 | 62 | f
 | 0 | 0
 101 | 12058149 | 5 | 2 | 5 | -1 |
 2023-09-27 15:41:13.798823 | 2023-09-27 15:41:13.813651 | 14828 | 0 |
 0 | 0 | 0 | 0 | 0 | f
 | 0 | 0

Example 2281

Amazon Redshift Database Developer Guide

(28 rows)

System table query, process, and sesssion ids

When analyzing query, process, and session ids that appear in system tables, be aware of the
following:

• The query id value (in columns such as query_id and query) can be reused over time.

• The process id or session id value (in columns such as process_id, pid, and session_id) can
be reused over time.

• The transaction id value (in columns such as transaction_id and xid) is unique.

SVV metadata views

SVV views are system views in Amazon Redshift that contain information about database objects.

Note

Amazon Redshift reports a WARNING, not an ERROR, if a database response fails for any
reason. Amazon Redshift doesn't send ERROR messages when you're querying objects in a
datashare.

Topics

• SVV_ACTIVE_CURSORS

• SVV_ALL_COLUMNS

• SVV_ALL_SCHEMAS

• SVV_ALL_TABLES

• SVV_ALTER_TABLE_RECOMMENDATIONS

• SVV_ATTACHED_MASKING_POLICY

• SVV_COLUMNS

• SVV_COLUMN_PRIVILEGES

• SVV_DATABASE_PRIVILEGES

System table query, process, and sesssion ids 2282

Amazon Redshift Database Developer Guide

• SVV_DATASHARE_PRIVILEGES

• SVV_DATASHARES

• SVV_DATASHARE_CONSUMERS

• SVV_DATASHARE_OBJECTS

• SVV_DEFAULT_PRIVILEGES

• SVV_DISKUSAGE

• SVV_EXTERNAL_COLUMNS

• SVV_EXTERNAL_DATABASES

• SVV_EXTERNAL_PARTITIONS

• SVV_EXTERNAL_SCHEMAS

• SVV_EXTERNAL_TABLES

• SVV_FUNCTION_PRIVILEGES

• SVV_GEOGRAPHY_COLUMNS

• SVV_GEOMETRY_COLUMNS

• SVV_IAM_PRIVILEGES

• SVV_IDENTITY_PROVIDERS

• SVV_INTEGRATION

• SVV_INTEGRATION_TABLE_STATE

• SVV_INTERLEAVED_COLUMNS

• SVV_LANGUAGE_PRIVILEGES

• SVV_MASKING_POLICY

• SVV_ML_MODEL_INFO

• SVV_ML_MODEL_PRIVILEGES

• SVV_MV_DEPENDENCY

• SVV_MV_INFO

• SVV_QUERY_INFLIGHT

• SVV_QUERY_STATE

• SVV_REDSHIFT_COLUMNS

SVV metadata views 2283

Amazon Redshift Database Developer Guide

• SVV_REDSHIFT_DATABASES

• SVV_REDSHIFT_FUNCTIONS

• SVV_REDSHIFT_SCHEMA_QUOTA

• SVV_REDSHIFT_SCHEMAS

• SVV_REDSHIFT_TABLES

• SVV_RELATION_PRIVILEGES

• SVV_RLS_APPLIED_POLICY

• SVV_RLS_ATTACHED_POLICY

• SVV_RLS_POLICY

• SVV_RLS_RELATION

• SVV_ROLE_GRANTS

• SVV_ROLES

• SVV_SCHEMA_PRIVILEGES

• SVV_SCHEMA_QUOTA_STATE

• SVV_SYSTEM_PRIVILEGES

• SVV_TABLE_INFO

• SVV_TABLES

• SVV_TRANSACTIONS

• SVV_USER_GRANTS

• SVV_USER_INFO

• SVV_VACUUM_PROGRESS

• SVV_VACUUM_SUMMARY

SVV_ACTIVE_CURSORS

SVV_ACTIVE_CURSORS displays details for currently open cursors. For more information, see
DECLARE.

SVV_ACTIVE_CURSORS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views. A user can
only view cursors opened by that user. A superuser can view all cursors.

SVV_ACTIVE_CURSORS 2284

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

user_id integer The ID of the user who
created the cursor.

cursor_name varchar(128) The name of the cursor.

transaction_id bigint(128) The ID of the transaction.

session_id integer The ID of the process with the
active cursor.

declare_time timestamp The time the cursor was
declared.

total_bytes bigint The size of the cursor result
set, in bytes.

total_rows bigint The number of rows in the
cursor result set.

fetched_rows bigint The number of rows currently
fetched from the cursor result
set.

cursor_storage_limit_used_p
ercent

integer The percentage of disk space
currently used by the cursor.

SVV_ALL_COLUMNS

Use SVV_ALL_COLUMNS to view a union of columns from Amazon Redshift tables as shown in
SVV_REDSHIFT_COLUMNS and the consolidated list of all external columns from all external
tables. For information about Amazon Redshift columns, see SVV_REDSHIFT_COLUMNS.

SVV_ALL_COLUMNS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

SVV_ALL_COLUMNS 2285

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

database_name varchar(128) The name of the database.

schema_name varchar(128) The name of the schema.

table_name varchar(128) The name of the table.

column_name varchar(128) The name of the column.

ordinal_position integer The position of the column in
the table.

column_default varchar(4000) The default value of the
column.

is_nullable varchar(3) A value that indicates
whether the column is
nullable. Possible values are
yes and no.

data_type varchar(128) The data type of the column.

character_maximum_length integer The maximum number of
characters in the column.

numeric_precision integer The numeric precision.

numeric_scale integer The numeric scale.

remarks varchar(256) Remarks.

Sample queries

The following example returns the output of SVV_ALL_COLUMNS.

SELECT *
FROM svv_all_columns

SVV_ALL_COLUMNS 2286

Amazon Redshift Database Developer Guide

WHERE database_name = 'tickit_db'
 AND TABLE_NAME = 'tickit_sales_redshift'
ORDER BY COLUMN_NAME,
 SCHEMA_NAME
LIMIT 5;

 database_name | schema_name | table_name | column_name | ordinal_position
 | column_default | is_nullable | data_type | character_maximum_length |
 numeric_precision | numeric_scale | remarks
 --------------+-------------+-----------------------+-------------+------------------
+----------------+-------------+-----------+--------------------------
+-------------------+---------------+---------
 tickit_db | public | tickit_sales_redshift | buyerid | 4 |
 | NO | integer | | 32
 | 0 |
 tickit_db | public | tickit_sales_redshift | commission | 9 |
 | YES | numeric | | 8
 | 2 |
 tickit_db | public | tickit_sales_redshift | dateid | 7 |
 | NO | smallint | | 16
 | 0 |
 tickit_db | public | tickit_sales_redshift | eventid | 5 |
 | NO | integer | | 32
 | 0 |
 tickit_db | public | tickit_sales_redshift | listid | 2 |
 | NO | integer | | 32
 | 0 |

SVV_ALL_SCHEMAS

Use SVV_ALL_SCHEMAS to view a union of Amazon Redshift schemas as shown in
SVV_REDSHIFT_SCHEMAS and the consolidated list of all external schemas from all databases. For
more information about Amazon Redshift schemas, see SVV_REDSHIFT_SCHEMAS.

SVV_ALL_SCHEMAS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

SVV_ALL_SCHEMAS 2287

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

database_name varchar(128) The name of the database
where the schema exists.

schema_name varchar(128) The name of the schema.

schema_owner integer The user ID of the schema
owner. For information about
user IDs, see PG_USER_INFO.

schema_type varchar(128) The type of the schema.
Possible values are external,
local, and shared schemas.

schema_acl varchar(128) The string that defines the
permissions for the specified
user or user group for the
schema.

source_database varchar(128) The name of the source
database for external schema.

schema_option varchar(256) The options of the schema.
This is an external schema
attribute.

Sample query

The following example returns the output of SVV_ALL_SCHEMAS.

SELECT *
FROM svv_all_schemas
WHERE database_name = 'tickit_db'
ORDER BY database_name,
 SCHEMA_NAME;

SVV_ALL_SCHEMAS 2288

Amazon Redshift Database Developer Guide

 database_name | schema_name | schema_owner | schema_type | schema_acl |
 source_database | schema_option
---------------+--------------------+--------------+-------------+------------
+-----------------+---------------
 tickit_db | public | 1 | shared | |
 |

SVV_ALL_TABLES

Use SVV_ALL_TABLES to view a union of Amazon Redshift tables as shown in
SVV_REDSHIFT_TABLES and the consolidated list of all external tables from all external schemas.
For information about Amazon Redshift tables, see SVV_REDSHIFT_TABLES.

SVV_ALL_TABLES is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

database_name varchar(128) The name of the database
where the table exists.

schema_name varchar(128) The schema name for the
table.

table_name varchar(128) The name of the table.

table_acl varchar(128) The string that defines the
permission for the specified
user or user group for the
table.

table_type varchar(128) The type of the table.
Possible values are views,
base tables, external tables,
and shared tables.

remarks varchar(256) Remarks.

SVV_ALL_TABLES 2289

Amazon Redshift Database Developer Guide

Sample queries

The following example returns the output of SVV_ALL_TABLES.

SELECT *
FROM svv_all_tables
WHERE database_name = 'tickit_db'
ORDER BY TABLE_NAME,
 SCHEMA_NAME
LIMIT 5;

 database_name | schema_name | table_name | table_type | table_acl |
 remarks
---------------+-------------+--------------------------+------------+-----------
+---------
 tickit_db | public | tickit_category_redshift | TABLE | |
 tickit_db | public | tickit_date_redshift | TABLE | |
 tickit_db | public | tickit_event_redshift | TABLE | |
 tickit_db | public | tickit_listing_redshift | TABLE | |
 tickit_db | public | tickit_sales_redshift | TABLE | |

If the table_acl value is null, no access privileges have been explicitly granted to the corresponding
table.

SVV_ALTER_TABLE_RECOMMENDATIONS

Records the current Amazon Redshift Advisor recommendations for tables. This view shows
recommendations for all tables, whether they are defined for automatic optimization or not. To
view if a table is defined for automatic optimization, see SVV_TABLE_INFO. Entries appear only for
tables visible in the current session's database. After a recommendation has been applied (either by
Amazon Redshift or by you), it no longer appears in the view.

SVV_ALTER_TABLE_RECOMMENDATIONS is visible only to superusers. For more information, see
Visibility of data in system tables and views.

SVV_ALTER_TABLE_RECOMMENDATIONS 2290

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data
type

Description

type character
(30)

The type of recommendation. Possible values are distkey and
sortkey.

database character
(128)

The database name.

table_id integer The table identifier.

group_id integer The group number of a set of recommendations. All recommend
ations in a group should be applied to see the maximum benefit.
Possible values are -1 for a sort key recommendation, and a number
larger than zero for a distribution key recommendation.

ddl character
(1024)

The SQL statement that must run to apply the recommendation.

auto_eligible character
(1)

The value indicates if the recommendation is eligible for Amazon
Redshift to run automatically. If this value is t, then the indication is
true, if f then false.

Sample queries

In the following example, the rows in the result show recommendations for distribution key and
sort key. The rows also show whether the recommendations are eligible for Amazon Redshift to
automatically apply them.

select type, database, table_id, group_id, ddl, auto_eligible
from svv_alter_table_recommendations;

 type | database | table_id | group_id | ddl

 | auto_eligible

SVV_ALTER_TABLE_RECOMMENDATIONS 2291

Amazon Redshift Database Developer Guide

 diststyle | db0 | 117884 | 2 | ALTER TABLE "sch"."dp21235_tbl_1" ALTER
 DISTSTYLE KEY DISTKEY "c0"
 | f
 diststyle | db0 | 117892 | 2 | ALTER TABLE "sch"."dp21235_tbl_1" ALTER
 DISTSTYLE KEY DISTKEY "c0"
 | f
 diststyle | db0 | 117885 | 1 | ALTER TABLE "sch"."catalog_returns"
 ALTER DISTSTYLE KEY DISTKEY "cr_sold_date_sk", ALTER COMPOUND SORTKEY
 ("cr_sold_date_sk","cr_returned_time_sk") | t
 sortkey | db0 | 117890 | -1 | ALTER TABLE "sch"."customer_addresses"
 ALTER COMPOUND SORTKEY ("ca_address_sk")
 | t

SVV_ATTACHED_MASKING_POLICY

Use SVV_ATTACHED_MASKING_POLICY to view all the relations and roles/users with policies
attached on the currently connected database.

Only superusers and users with the sys:secadmin role can view
SVV_ATTACHED_MASKING_POLICY. Regular users will see 0 rows.

Table columns

Column name Data type Description

policy_name text The name of the masking
policy attached to the table.

schema_name text The schema of the table to
which the policy is attached.

table_name text The name of the table to
which the policy is attached.

table_type text The type of the table to which
the policy is attached.

grantor text The name of the user that
attached the policy.

SVV_ATTACHED_MASKING_POLICY 2292

https://docs.aws.amazon.com/redshift/latest/dg/r_roles-default.html

Amazon Redshift Database Developer Guide

Column name Data type Description

grantee text The name of the user/role to
whom the policy is attached.

grantee_type text The type of grantee. This can
be role, user, or public.

priority int The priority of the attached
policy.

input_columns text The input column attributes
of the attached policy.

output_columns text The output column attributes
of the attached policy.

Internal functions

SVV_ATTACHED_MASKING_POLICY supports the following internal functions:

mask_get_policy_for_role_on_column

Get the highest priority policy that applies to a given column/role pair.

Syntax

mask_get_policy_for_role_on_column
 (relschema,
 relname,
 colname,
 rolename);

Parameters

relschema

The name of the schema the policy is in.

relname

The name of the table the policy is in.

SVV_ATTACHED_MASKING_POLICY 2293

Amazon Redshift Database Developer Guide

colname

The name of the column the policy is attached to.

rolename

The name of the role the policy is attached to.

mask_get_policy_for_user_on_column

Get the highest priority policy that applies to a given column/user pair.

Syntax

mask_get_policy_for_user_on_column
 (relschema,
 relname,
 colname,
 username);

Parameters

relschema

The name of the schema the policy is in.

relname

The name of the table the policy is in.

colname

The name of the column the policy is attached to.

rolename

The name of the user the policy is attached to.

SVV_COLUMNS

Use SVV_COLUMNS to view catalog information about the columns of local and external tables
and views, including late-binding views.

SVV_COLUMNS 2294

Amazon Redshift Database Developer Guide

SVV_COLUMNS is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

The SVV_COLUMNS view joins table metadata from the System catalog tables (tables with a
PG prefix) and the SVV_EXTERNAL_COLUMNS system view. The system catalog tables describe
Amazon Redshift database tables. SVV_EXTERNAL_COLUMNS describes external tables that are
used with Amazon Redshift Spectrum.

All users can see all rows from the system catalog tables. Regular users can see column definitions
from the SVV_EXTERNAL_COLUMNS view only for external tables to which they have been granted
access. Although regular users can see table metadata in the system catalog tables, they can only
select data from user-defined tables if they own the table or have been granted access.

Table columns

Column name Data type Description

table_catalog text The name of the catalog
where the table is.

table_schema text The schema name for the
table.

table_name text The name of the table.

column_name text The name of the column.

ordinal_position int The position of the column in
the table.

column_default text The default value of the
column.

is_nullable text A value that indicates
whether the column is
nullable.

data_type text The data type of the column.

SVV_COLUMNS 2295

Amazon Redshift Database Developer Guide

Column name Data type Description

character_maximum_length int The maximum number of
characters in the column.

numeric_precision int The numeric precision. If
the data_type column is
numeric, this column returns
the number of significant
digits in the entire value.

numeric_precision_radix int The numeric precision radix.
If the data_type column is
numeric, this column returns
the base of the columns
numeric_precision and
numeric_scale.

numeric_scale int The numeric scale. If the
data_type column is numeric,
this column returns the
number of significant digits in
the decimal value.

datetime_precision int The datetime precision.

interval_type text The interval type.

interval_precision text The interval precision.

character_set_catalog text The character set catalog.

character_set_schema text The character set schema.

character_set_name text The character set name.

collation_catalog text The collation catalog.

collation_schema text The collation schema.

SVV_COLUMNS 2296

Amazon Redshift Database Developer Guide

Column name Data type Description

collation_name text The collation name.

domain_name text The domain name.

remarks text Remarks.

SVV_COLUMN_PRIVILEGES

Use SVV_COLUMN_PRIVILEGES to view the column permissions that are explicitly granted to users,
roles, and groups in the current database.

SVV_COLUMN_PRIVILEGES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see identities they have access to or own.

Table columns

Column name Data type Description

namespace_name text The name of the namespace where
a specified relation exists.

relation_name text The name of the relation.

column_name text The name of the column.

privilege_type text The type of the permission.
Possible values are SELECT or
UPDATE.

identity_id integer The ID of the identity. Possible
values are user ID, role ID, or group
ID.

SVV_COLUMN_PRIVILEGES 2297

Amazon Redshift Database Developer Guide

Column name Data type Description

identity_name text The name of the identity.

identity_type text The type of the identity. Possible
values are user, role, group or
public.

Sample query

The following example displays the result of the SVV_COLUMN_PRIVILEGES.

SELECT
 namespace_name,relation_name,COLUMN_NAME,privilege_type,identity_name,identity_type
FROM svv_column_privileges WHERE relation_name = 'lineitem';

 namespace_name | relation_name | column_name | privilege_type | identity_name |
 identity_type
----------------+---------------+-------------+----------------+---------------
+----------------
 public | lineitem | l_orderkey | SELECT | reguser |
 user
 public | lineitem | l_orderkey | SELECT | role1 |
 role
 public | lineitem | l_partkey | SELECT | reguser |
 user
 public | lineitem | l_partkey | SELECT | role1 |
 role

SVV_DATABASE_PRIVILEGES

Use SVV_DATABASE_PRIVILEGES to view the database permissions that are explicitly granted to
users, roles, and groups in your Amazon Redshift cluster.

SVV_DATABASE_PRIVILEGES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see identities they have access to or own.

SVV_DATABASE_PRIVILEGES 2298

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

database_
name

text The name of the database.

privilege
_type

text The type of the permission. Possible values are USAGE, CREATE, or
TEMP.

identity_
id

integer The ID of the identity. Possible values are user ID, role ID, or group ID.

identity_
name

text The name of the identity.

identity_
type

text The type of the identity. Possible values are user, role, group, or public.

admin_opt
ion

boolean A value that indicates whether the user can grant the permission to
other users and roles. It is always false for the role and group identity
type.

Sample query

The following example displays the result of the SVV_DATABASE_PRIVILEGES.

SELECT database_name,privilege_type,identity_name,identity_type,admin_option FROM
 svv_database_privileges
WHERE database_name = 'test_db';

 database_name | privilege_type | identity_name | identity_type | admin_option
---------------+----------------+---------------+---------------+--------------
 test_db | CREATE | reguser | user | False
 test_db | CREATE | role1 | role | False
 test_db | TEMP | public | public | False
 test_db | TEMP | role1 | role | False

SVV_DATABASE_PRIVILEGES 2299

Amazon Redshift Database Developer Guide

SVV_DATASHARE_PRIVILEGES

Use SVV_DATASHARE_PRIVILEGES to view the datashare permissions that are explicitly granted to
users, roles, and groups in your Amazon Redshift cluster.

SVV_DATASHARE_PRIVILEGES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see identities they have access to or own.

Table columns

Column
name

Data type Description

datashare
_name

text The name of the datashare.

privilege
_type

text The type of the permission. Possible values are ALTER or SHARE.

identity_id integer The ID of the identity. Possible values are user ID, role ID, or group
ID.

identity_
name

text The name of the identity.

identity_type text The type of the identity. Possible values are user, role, group, or
public.

admin_opt
ion

boolean A value that indicates whether the user can grant the permission
to other users and roles. It is always false for the role and group
identity type.

SVV_DATASHARE_PRIVILEGES 2300

Amazon Redshift Database Developer Guide

Sample query

The following example displays the result of the SVV_DATASHARE_PRIVILEGES.

SELECT datashare_name,privilege_type,identity_name,identity_type,admin_option FROM
 svv_datashare_privileges
WHERE datashare_name = 'demo_share';

 datashare_name | privilege_type | identity_name | identity_type | admin_option
----------------+----------------+----------------+---------------+--------------
 demo_share | ALTER | superuser | user | False
 demo_share | ALTER | reguser | user | False

SVV_DATASHARES

Use SVV_DATASHARES to view a list of datashares created on the cluster, and datashares shared
with the cluster.

SVV_DATASHARES is visible to the following users:

• Superusers

• Datashare owners

• Users with ALTER or USAGE permissions on a datashare

Other users can't see any rows. For information on the ALTER and USAGE permissions, see GRANT.

Table columns

Column name Data type Description

share_name varchar(128) The name of a datashare.

share_id integer The ID of the datashare.

share_owner integer The owner of the datashare.

source_database varchar(128) The source database for this
datashare.

SVV_DATASHARES 2301

Amazon Redshift Database Developer Guide

Column name Data type Description

consumer_database varchar(128) The consumer database that
is created from this datashare.

share_type varchar(8) The type of the datashare.
Possible values are INBOUND
and OUTBOUND.

createdate timestamp without time
zone

The date when datashare was
created.

is_publicaccessible boolean The property that specifies
whether a datashare can be
shared to a publicly accessible
cluster.

share_acl varchar(256) The string that defines the
permissions for the specified
user or user group for the
datashare.

producer_account varchar(16) The ID for the datashare
producer account.

producer_namespace varchar(64) The unique cluster identifie
r for the datashare producer
cluster.

managed_by varchar(64) The property that specifies
the AWS service that
manages the datashare.

Usage notes

Retrieving additional metadata – Using the integer returned in the share_owner column, you
can join with usesysid in SVL_USER_INFO to get data about the datashare owner. This includes
the name and additional properties.

SVV_DATASHARES 2302

Amazon Redshift Database Developer Guide

Sample query

The following example returns the output for SVV_DATASHARES.

SELECT share_owner, source_database, share_type, is_publicaccessible
FROM svv_datashares
WHERE share_name LIKE 'tickit_datashare%'
AND source_database = 'dev';

 share_owner | source_database | share_type | is_publicaccessible
--------------+-----------------+-------------+----------------------
 100 | dev | OUTBOUND | True
(1 rows)

The following example returns the output for SVV_DATASHARES for outbound datashares.

SELECT share_name, share_owner, btrim(source_database), btrim(consumer_database),
 share_type, is_publicaccessible, share_acl, btrim(producer_account),
 btrim(producer_namespace), btrim(managed_by) FROM svv_datashares WHERE share_type =
 'OUTBOUND';

 share_name | share_owner | source_database | consumer_database | share_type |
 is_publicaccessible | share_acl | producer_account| producer_namespace
 | managed_by
----------------+-------------+-----------------+-------------------
+------------+---------------------+-----------+-----------------
+--------------------------------------+------------
 salesshare | 1 | dev | | OUTBOUND |
 True | | 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d |

 marketingshare | 1 | dev | | OUTBOUND |
 True | | 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d |

The following example returns the output for SVV_DATASHARES for inbound datashares.

SELECT share_name, share_owner, btrim(source_database), btrim(consumer_database),
 share_type, is_publicaccessible, share_acl, btrim(producer_account),
 btrim(producer_namespace), btrim(managed_by) FROM svv_datashares WHERE share_type =
 'INBOUND';

SVV_DATASHARES 2303

Amazon Redshift Database Developer Guide

 share_name | share_owner | source_database | consumer_database | share_type |
 is_publicaccessible | share_acl | producer_account | producer_namespace
 | managed_by
----------------+-------------+-----------------+-------------------
+------------+---------------------+-----------+------------------
+--------------------------------------+------------
 salesshare | | | | INBOUND |
 False | | 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d
 |
 marketingshare | | | | INBOUND |
 False | | 123456789012 | 13b8833d-17c6-4f16-8fe4-1a018f5ed00d |
 ADX

SVV_DATASHARE_CONSUMERS

Use SVV_DATASHARE_CONSUMERS to view a list of consumers for a datashare created on a cluster.

SVV_DATASHARE_CONSUMERS is visible to the following users:

• Superusers

• Datashare owners

• Users with ALTER or USAGE permissions on a datashare

Other users can't see any rows. For information on the ALTER and USAGE permissions, see GRANT.

Table columns

Column name Data type Description

share_name varchar(128) The name of the datashare.

consumer_account varchar(16) The account ID for the
datashare consumer.

consumer_namespace varchar(64) The unique cluster identifie
r of the datashare consumer
 cluster.

share_date timestamp without time
zone

The date that the datashare
was shared.

SVV_DATASHARE_CONSUMERS 2304

Amazon Redshift Database Developer Guide

Sample query

The following example returns the output for SVV_DATASHARE_CONSUMERS.

SELECT count(*)
FROM svv_datashare_consumers
WHERE share_name LIKE 'tickit_datashare%';

1

SVV_DATASHARE_OBJECTS

Use SVV_DATASHARE_OBJECTS to view a list of objects in all datashares created on the cluster or
shared with the cluster.

SVV_DATASHARE_OBJECTS is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

For information about viewing a list of datashares, see SVV_DATASHARES.

Table columns

Column name Data type Description

share_type varchar(8) The type of the specified
datashare. Possible values are
OUTBOUND and INBOUND.

share_name varchar(128) The name of the datashare.

object_type varchar(64) The type of a specified object.
Possible values are schemas,
tables, views, late binding
views, materialized views, and
functions.

object_name varchar(512) The name of the object.
The object name extends to
include the schema name,
such as schema1.t1.

SVV_DATASHARE_OBJECTS 2305

https://docs.aws.amazon.com/redshift/latest/dg/r_SVV_DATASHARES.html

Amazon Redshift Database Developer Guide

Column name Data type Description

producer_account varchar(16) The ID for the datashare
producer account.

producer_namespace varchar(64) The unique cluster identifie
r for the datashare producer
cluster.

include_new boolean The property that specifies
whether to add any future
tables, views, or SQL user-
defined functions (UDFs)
created in the specified
schema to the datashare. This
parameter is only relevant for
OUTBOUND datashares and
only for schema types in the
datashare.

Sample query

The following examples return the output for SVV_DATASHARE_OBJECTS.

SELECT share_type,
 btrim(share_name)::varchar(16) AS share_name,
 object_type,
 object_name
FROM svv_datashare_objects
WHERE share_name LIKE 'tickit_datashare%'
AND object_name LIKE '%tickit%'
ORDER BY object_name
LIMIT 5;

 share_type | share_name | object_type | object_name
------------+--------------------+-------------+---------------------------------
 OUTBOUND | tickit_datashare | table | public.tickit_category_redshift
 OUTBOUND | tickit_datashare | table | public.tickit_date_redshift
 OUTBOUND | tickit_datashare | table | public.tickit_event_redshift

SVV_DATASHARE_OBJECTS 2306

Amazon Redshift Database Developer Guide

 OUTBOUND | tickit_datashare | table | public.tickit_listing_redshift
 OUTBOUND | tickit_datashare | table | public.tickit_sales_redshift

SELECT * FROM SVV_DATASHARE_OBJECTS WHERE share_name like 'sales%';

share_type | share_name | object_type | object_name | producer_account |
 producer_namespace | include_new
-----------+------------+-------------+--------------+------------------
+--------------------------------------+-------------
 OUTBOUND | salesshare | schema | public | 123456789012 |
 13b8833d-17c6-4f16-8fe4-1a018f5ed00d | t
 OUTBOUND | salesshare | table | public.sales | 123456789012 |
 13b8833d-17c6-4f16-8fe4-1a018f5ed00d |

SVV_DEFAULT_PRIVILEGES

Use SVV_DEFAULT_PRIVILEGES to view the default privileges that a user has access to in an
Amazon Redshift cluster.

SVV_DEFAULT_PRIVILEGES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see default permissions granted to them.

Table columns

Column
name

Data
type

Description

schema_na
me

text The name of the schema.

object_type text The object type. Possible values are RELATION, FUNCTION, or
PROCEDURE.

owner_id integer The owner ID. Possible value is the user ID.

SVV_DEFAULT_PRIVILEGES 2307

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

owner_nam
e

text The name of the owner.

owner_type text The owner type. Possible value is user.

privilege
_type

text The privilege type. Possible values are INSERT, SELECT, UPDATE,
DELETE, RULE, REFERENCES TRIGGER, DROP, and EXECUTE.

grantee_id integer The grantee ID. Possible values are user ID, role ID, and group ID.

grantee_t
ype

text The grantee type. Possible values are user, role, and public.

admin_opt
ion

boolean The value that indicates whether the user can grant permissions to
other users and roles. It is always false for role and group type.

Sample query

The following example returns the output for SVV_DEFAULT_PRIVILEGES.

SELECT * from svv_default_privileges;

 schema_name | object_type | owner_id | owner_name | owner_type | privilege_type
 | grantee_id | grantee_name | grantee_type | admin_option
-------------+-------------------+--------- +------------+------------+----------------
+------------+--------------+--------------+-------------+
 public | RELATION | 106 | u1 | user | UPDATE
 | 107 | u2 | user | f |
 public | RELATION | 106 | u1 | user | SELECT
 | 107 | u2 | user | f |

SVV_DISKUSAGE

Amazon Redshift creates the SVV_DISKUSAGE system view by joining the STV_TBL_PERM and
STV_BLOCKLIST tables. The SVV_DISKUSAGE view contains information about data allocation for
the tables in a database.

SVV_DISKUSAGE 2308

Amazon Redshift Database Developer Guide

Use aggregate queries with SVV_DISKUSAGE, as the following examples show, to determine the
number of disk blocks allocated per database, table, slice, or column. Each data block uses 1 MB.
You can also use STV_PARTITIONS to view summary information about disk utilization.

SVV_DISKUSAGE is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Note

This view is only available when querying provisioned clusters.

Table columns

Column
name

Data
type

Description

db_id integer Database ID.

name character
(72)

Table name.

slice integer Data slice allocated to the table.

col integer Zero-based index for the column. Every table you create has three
hidden columns appended to it: INSERT_XID, DELETE_XID, and
ROW_ID (OID). A table with 3 user-defined columns contains 6 actual
columns, and the user-defined columns are internally numbered as
0, 1, and 2. The INSERT_XID, DELETE_XID, and ROW_ID columns are
numbered 3, 4, and 5, respectively, in this example.

tbl integer Table ID.

blocknum integer ID for the data block.

num_values integer Number of values contained on the block.

minvalue bigint Minimum value contained on the block.

maxvalue bigint Maximum value contained on the block.

SVV_DISKUSAGE 2309

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

sb_pos integer Internal identifier for the position of the super block on disk.

pinned integer Whether or not the block is pinned into memory as part of pre-load.
0 = false; 1 = true. Default is false.

on_disk integer Whether or not the block is automatically stored on disk. 0 = false; 1
= true. Default is false.

modified integer Whether or not the block has been modified. 0 = false; 1 = true.
Default is false.

hdr_modif
ied

integer Whether or not the block header has been modified. 0 = false; 1 =
true. Default is false.

unsorted integer Whether or not a block is unsorted. 0 = false; 1 = true. Default is true.

tombstone integer For internal use.

preferred
_diskno

integer Disk number that the block should be on, unless the disk has failed.
Once the disk has been fixed, the block will move back to this disk.

temporary integer Whether or not the block contains temporary data, such as from a
temporary table or intermediate query results. 0 = false; 1 = true.
Default is false.

newblock integer Indicates whether or not a block is new (true) or was never
committed to disk (false). 0 = false; 1 = true.

Sample queries

SVV_DISKUSAGE contains one row per allocated disk block, so a query that selects all the rows
potentially returns a very large number of rows. We recommend using only aggregate queries with
SVV_DISKUSAGE.

Return the highest number of blocks ever allocated to column 6 in the USERS table (the EMAIL
column):

SVV_DISKUSAGE 2310

Amazon Redshift Database Developer Guide

select db_id, trim(name) as tablename, max(blocknum)
from svv_diskusage
where name='users' and col=6
group by db_id, name;

db_id | tablename | max
--------+-----------+-----
175857 | users | 2
(1 row)

The following query returns similar results for all of the columns in a large 10-column table
called SALESNEW. (The last three rows, for columns 10 through 12, are for the hidden metadata
columns.)

select db_id, trim(name) as tablename, col, tbl, max(blocknum)
from svv_diskusage
where name='salesnew'
group by db_id, name, col, tbl
order by db_id, name, col, tbl;

db_id | tablename | col | tbl | max
--------+------------+-----+--------+-----
175857 | salesnew | 0 | 187605 | 154
175857 | salesnew | 1 | 187605 | 154
175857 | salesnew | 2 | 187605 | 154
175857 | salesnew | 3 | 187605 | 154
175857 | salesnew | 4 | 187605 | 154
175857 | salesnew | 5 | 187605 | 79
175857 | salesnew | 6 | 187605 | 79
175857 | salesnew | 7 | 187605 | 302
175857 | salesnew | 8 | 187605 | 302
175857 | salesnew | 9 | 187605 | 302
175857 | salesnew | 10 | 187605 | 3
175857 | salesnew | 11 | 187605 | 2
175857 | salesnew | 12 | 187605 | 296
(13 rows)

SVV_DISKUSAGE 2311

Amazon Redshift Database Developer Guide

SVV_EXTERNAL_COLUMNS

Use SVV_EXTERNAL_COLUMNS to view details for columns in external tables. Use
SVV_EXTERNAL_COLUMNS also for cross-database queries to view details on all columns from the
table on unconnected databases that users have access to.

SVV_EXTERNAL_COLUMNS is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

redshift_database_name text The name of the local
Amazon Redshift database.

schemaname text The name of the Amazon
Redshift external schema for
the external table.

tablename text The name of the external
table.

columnname text The name of the column.

external_type text The data type of the column.

columnnum integer The external column number,
starting from 1.

part_key integer If the column is a partition
key, the order of the key. If
the column isn't a partition,
the value is 0.

is_nullable text Defines whether a column is
nullable or not. Some values
are true, false, or " " empty

SVV_EXTERNAL_COLUMNS 2312

Amazon Redshift Database Developer Guide

Column name Data type Description

string that represents no
information.

SVV_EXTERNAL_DATABASES

Use SVV_EXTERNAL_DATABASES to view details for external databases.

SVV_EXTERNAL_DATABASES is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

eskind integer The type of the external
catalog for the database; 1
indicates a data catalog, 2
indicates a Hive metastore.

esoptions text Details of the catalog where
the database resides.

databasename text The name of the database in
the external catalog.

location text The location of the database.

parameters text Database parameters.

SVV_EXTERNAL_PARTITIONS

Use SVV_EXTERNAL_PARTITIONS to view details for partitions in external tables.

SVV_EXTERNAL_PARTITIONS is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views..

SVV_EXTERNAL_DATABASES 2313

Amazon Redshift Database Developer Guide

Table columns

Column name Data
type

Description

schemaname text The name of the Amazon Redshift external schema for the
external table with the specified partitions.

tablename text The name of the external table.

values text Values for the partition.

location text The location of the partition. The column size is limited to 128
characters. Longer values are truncated.

input_format text The input format.

output_format text The output format.

serialization_lib text The serialization library.

serde_par
ameters

text SerDe parameters.

compressed integer A value that indicates whether the partition is compressed; 1
indicates compressed, 0 indicates not compressed.

parameters text Partition properties.

SVV_EXTERNAL_SCHEMAS

Use SVV_EXTERNAL_SCHEMAS to view information about external schemas. For more information,
see CREATE EXTERNAL SCHEMA.

SVV_EXTERNAL_SCHEMAS is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

SVV_EXTERNAL_SCHEMAS 2314

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

esoid oid External schema ID.

eskind smallint The type of the external catalog for the external schema:
1 indicates a data catalog, 2 indicates a Hive metastore
, 3 indicates a federated query to Aurora PostgreSQL
or Amazon RDS PostgreSQL, 4 indicates a schema for a
local Amazon Redshift database, 5 indicates a schema
for a remote Amazon Redshift database, 6 indicates
a schema for a system table, 8 indicates a schema for
remote MySQL databases, 9 indicates a schema for an
Amazon Kinesis data stream, and 10 indicates an Amazon
Managed Streaming for Apache Kafka data stream.

schemanam
e

name External schema name.

esowner integer User ID of the external schema owner.

databasen
ame

text External database name.

esoptions text External schema options.

Example

The following example shows details for external schemas.

select * from svv_external_schemas;

esoid | eskind | schemaname | esowner | databasename | esoptions

-------+--------+------------+---------+--------------
+---

SVV_EXTERNAL_SCHEMAS 2315

Amazon Redshift Database Developer Guide

100133 | 1 | spectrum | 100 | redshift |
 {"IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"}

SVV_EXTERNAL_TABLES

Use SVV_EXTERNAL_TABLES to view details for external tables; for more information, see CREATE
EXTERNAL SCHEMA. Use SVV_EXTERNAL_TABLES also for cross-database queries to view metadata
on all tables on unconnected databases that users have access to.

SVV_EXTERNAL_TABLES is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

redshift_database_name text The name of the local
Amazon Redshift database.

schemaname text The name of the Amazon
Redshift external schema for
the external table.

tablename text The name of the external
table.

tabletype text The type of table. Some
values are TABLE, VIEW,
MATERIALIZED VIEW, or " "
empty string that represents
no information.

location text The location of the table.

input_format text The input format

output_format text The output format.

serialization_lib text The serialization library.

SVV_EXTERNAL_TABLES 2316

Amazon Redshift Database Developer Guide

Column name Data type Description

serde_parameters text SerDe parameters.

compressed integer A value that indicates
whether the table is
compressed; 1 indicates
compressed, 0 indicates not
compressed.

parameters text Table properties.

Example

The following example shows details svv_external_tables with a predicate on the external schema
used by a federated query.

select schemaname, tablename from svv_external_tables where schemaname = 'apg_tpch';
schemaname | tablename
------------+-----------
apg_tpch | customer
apg_tpch | lineitem
apg_tpch | nation
apg_tpch | orders
apg_tpch | part
apg_tpch | partsupp
apg_tpch | region
apg_tpch | supplier
(8 rows)

SVV_FUNCTION_PRIVILEGES

Use SVV_FUNCTION_PRIVILEGES to view the function permissions that are explicitly granted to
users, roles, and groups in the current database.

SVV_FUNCTION_PRIVILEGES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

SVV_FUNCTION_PRIVILEGES 2317

Amazon Redshift Database Developer Guide

Other users can only see identities they have access to or own.

Table columns

Column
name

Data type Description

namespace
_name

text The name of the namespace where a specified function exists.

function_
name

text The name of the function.

argument_
types

text The string that represents the type of input argument for a
function.

privilege
_type

text The type of the permission. Possible value is EXECUTE.

identity_id integer The ID of the identity. Possible values are user ID, role ID, or
group ID.

identity_
name

text The name of the identity.

identity_type text The type of the identity. Possible values are user, role, group, or
public.

admin_opt
ion

boolean A value that indicates whether the user can grant the permission
to other users and roles. It is always false for the role and group
identity type.

Sample query

The following example displays the result of the SVV_FUNCTION_PRIVILEGES.

SELECT
 namespace_name,function_name,argument_types,privilege_type,identity_name,identity_type,admin_option
 FROM svv_function_privileges

SVV_FUNCTION_PRIVILEGES 2318

Amazon Redshift Database Developer Guide

WHERE identity_name IN ('role1', 'reguser');

 namespace_name | function_name | argument_types | privilege_type |
 identity_name | identity_type | admin_option
----------------+---------------+----------------------------+----------------
+----------------+---------------+--------------
 public | test_func1 | integer | EXECUTE |
 role1 | role | False
 public | test_func2 | integer, character varying | EXECUTE |
 reguser | user | False

SVV_GEOGRAPHY_COLUMNS

Use SVV_GEOGRAPHY_COLUMNS to view the list of GEOGRAPHY columns in your data warehouse.
This list of columns includes columns from datashares.

SVV_GEOGRAPHY_COLUMNS is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

f_table_c
atalog

varchar(1
28)

The name of the database where the table with the GEOGRAPHY
column exists.

f_table_s
chema

varchar(1
28)

The name of the schema where the table with the GEOGRAPHY
column exists.

f_table_n
ame

varchar(1
28)

The name of the table where the GEOGRAPHY column exists.

f_geograp
hy_column

varchar(1
28)

The name of the GEOGRAPHY column.

coord_dim
ension

integer The number of dimensions of the GEOGRAPHY data.

SVV_GEOGRAPHY_COLUMNS 2319

Amazon Redshift Database Developer Guide

Column
name

Data type Description

srid integer The spatial reference system identifier (SRID) of the GEOGRAPHY
data.

type varchar(1
28)

The spatial geography data type name.

Sample query

The following example displays the result of the SVV_GEOGRAPHY_COLUMNS.

SELECT * FROM svv_geography_columns;

f_table_catalog | f_table_schema | f_table_name | f_geography_column |
 coord_dimension | srid | type
-----------------+-----------------+---------------+---------------------
+-----------------+------+--------------
dev | public | spatial_test | test_geography | 2
 | 0 | GEOGRAPHY

SVV_GEOMETRY_COLUMNS

Use SVV_GEOMETRY_COLUMNS to view the list of GEOMETRY columns in your data warehouse.
This list of columns includes columns from datashares.

SVV_GEOMETRY_COLUMNS is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

f_table_c
atalog

varchar(1
28)

The name of the database where the table with the GEOMETRY
column exists.

SVV_GEOMETRY_COLUMNS 2320

Amazon Redshift Database Developer Guide

Column
name

Data type Description

f_table_s
chema

varchar(1
28)

The name of the schema where the table with the GEOMETRY
column exists.

f_table_n
ame

varchar(1
28)

The name of the table where the GEOMETRY column exists.

f_geometr
y_column

varchar(1
28)

The name of the GEOMETRY column.

coord_dim
ension

integer The number of dimensions of the GEOMETRY data.

srid integer The spatial reference system identifier (SRID) of the GEOMETRY
olumn.

type varchar(1
28)

The spatial geometry type name.

Sample query

The following example displays the result of the SVV_GEOMETRY_COLUMNS.

SELECT * FROM svv_geometry_columns;

f_table_catalog | f_table_schema | f_table_name | f_geometry_column |
 coord_dimension | srid | type
-----------------+-----------------+---------------+---------------------
+-----------------+------+--------------
dev | public | accomodations | shape | 2
 | 0 | GEOMETRY
dev | public | zipcode | wkb_geometry | 2
 | 0 | GEOMETRY

SVV_IAM_PRIVILEGES

Use SVV_IAM_PRIVILEGES to view explicitly granted IAM privileges on users, roles and groups.

SVV_IAM_PRIVILEGES 2321

Amazon Redshift Database Developer Guide

SVV_IAM_PRIVILEGES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see entries they have access to.

Table columns

Column
name

Data
type

Description

iam_arn text Name of the namespace.

command_t
ype

text Privilege types. Possible values are COPY, UNLOAD, CREATE MODEL, or
EXTERNAL FUNCTION.

identity_
id

integer Identity ID. Possible values are user ID, role ID, or group ID.

identity_
name

text Identity name.

identity_
type

text Identity type. Possible values are user, role, group, or public.

Sample queries

The following example shows the results of SVV_IAM_PRIVILEGES.

SELECT * from SVV_IAM_PRIVILEGES ORDER BY IDENTITY_ID;
 iam_arn | command_type | identity_id | identity_name | identity_type
----------------------+--------------+-------------+---------------+---------------
 default-aws-iam-role | COPY | 0 | public | public
 default-aws-iam-role | UNLOAD | 0 | public | public
 default-aws-iam-role | CREATE MODEL | 0 | public | public
 default-aws-iam-role | EXFUNC | 0 | public | public
 default-aws-iam-role | COPY | 106 | u1 | user

SVV_IAM_PRIVILEGES 2322

Amazon Redshift Database Developer Guide

 default-aws-iam-role | UNLOAD | 106 | u1 | user
 default-aws-iam-role | CREATE MODEL | 106 | u1 | user
 default-aws-iam-role | EXFUNC | 106 | u1 | user
 default-aws-iam-role | COPY | 118413 | r1 | role
 default-aws-iam-role | UNLOAD | 118413 | r1 | role
 default-aws-iam-role | CREATE MODEL | 118413 | r1 | role
 default-aws-iam-role | EXFUNC | 118413 | r1 | role
(12 rows)

SVV_IDENTITY_PROVIDERS

The SVV_IDENTITY_PROVIDERS view returns the name and additional properties for identity
providers. For more information about how to create an identity provider, see CREATE IDENTITY
PROVIDER.

SVV_IDENTITY_PROVIDERS is visible only to superusers. For more information, see Visibility of data
in system tables and views.

Table columns

Column name Data type Description

uid integer The unique ID of the registere
d identity provider.

name text The identity provider name.

type text The identity provider type.

instanceid text The unique differentiator
between instances of the
same type.

namespc text The namespace prefix of the
identity provider.

params text The JSON object with
parameters for the identity
provider.

SVV_IDENTITY_PROVIDERS 2323

Amazon Redshift Database Developer Guide

Column name Data type Description

enabled bool Indicates if the identity
provider is enabled.

Sample queries

To view identity provider properties, run a query like the following after creating identity providers.

SELECT name, type, instanceid, namespc, params, enabled
FROM svv_identity_providers
ORDER BY 1;

The sample output includes param descriptions.

 name | type | instanceid | namespc |

 params

 | enabled
------------------+-------+--------------------------------------+---------
+---
+---------
 rs5517_azure_idp | azure | e40d4bb2-7670-44ae-bfb8-5db013221d73 | abc |
 {"issuer":"https://login.microsoftonline.com/e40d4bb2-7670-44ae-bfb8-5db013221d73/
v2.0", "client_id":"871c010f-5e61-4fb1-83ac-98610a7e9110", "client_secret":,
 "audience":["https://analysis.windows.net/powerbi/connector/AmazonRedshift", "https://
analysis.windows.net/powerbi/connector/AWSRDS"]} | t
(1 row)

SVV_INTEGRATION

SVV_INTEGRATION displays details about the configuration of integrations.

SVV_INTEGRATION is visible only to superusers. For more information, see Visibility of data in
system tables and views.

For information about zero-ETL integrations, see Working with zero-ETL integrations.

SVV_INTEGRATION 2324

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.html

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

integration_id character
(128)

The identifier associated with the integration.

target_database character
(128)

The database in Amazon Redshift that receives the
integration data.

source character
(128)

The source data for the integration. Possible types
include MySQL and PostgreSQL .

state character
(128)

The state of the integration. Possible values
include PendingDbConnectState , SchemaDis
coveryState , CdcRefreshState , and
ErrorState .

current_lag bigint The current lag time (milliseconds) between the
source and destination of the integration.

last_replicated_ch
eckpoint

character
(128)

The last replicated checkpoint.

total_tables_replicated integer The number of total tables currently in the replicate
d state.

total_tables_failed integer The number of total tables currently in the failed
state.

creation_time timestamp The time (UTC) when the integration is created. It
is defined as the time when the target database is
created from the integration.

Sample queries

The following SQL command displays the currently defined integrations.

select * from svv_integration;

SVV_INTEGRATION 2325

Amazon Redshift Database Developer Guide

 integration_id | target_database | source | state
 | current_lag | last_replicated_checkpoint | total_tables_replicated |
 total_tables_failed | creation_time
---------------------------------------+-----------------+--------+-----------------
+-------------+-------------------------------------+-------------------------
+---------------------+---------------------------
 99108e72-1cfd-414f-8cc0-0216acefac77 | perfdb | MySQL | CdcRefreshState |
 56606106 | {"txn_seq":9834,"txn_id":126597515} | 152 |
 0 | 2023-09-19 21:05:27.520299

SVV_INTEGRATION_TABLE_STATE

SVV_INTEGRATION_TABLE_STATE displays details about table-level integration information.

SVV_INTEGRATION_TABLE_STATE is visible only to superusers. For more information, see Visibility
of data in system tables and views.

For more information, see Working with zero-ETL integrations.

Table columns

Column name Data type Description

integration_id character(128) The identifier associated with the integration.

target_database character(128) The name of the Amazon Redshift database.

schema_name character(128) The name of the Amazon Redshift schema.

table_name character(128) The name of the table.

table_state character(128) The state of the table. Possible values are
Synced, Failed, Deleted, ResyncReq
uired , and ResyncInitiated .

table_last_replica
ted_checkpoint

character(128) The current synced log coordinates.

reason character(256) The reason for the last state transition.
Common reasons can be unsupported data

SVV_INTEGRATION_TABLE_STATE 2326

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.html

Amazon Redshift Database Developer Guide

Column name Data type Description

types in tables, tables don't have primary
keys. To learn more about how to troublesh
oot common issues, see Troubleshooting
zero-ETL integrations in Amazon Redshift.

last_updated_times
tamp

timestamp without
time zone

The time (UTC) when the table is last
updated.

Sample queries

The following SQL command displays the log of integrations.

select * from svv_integration_table_state;

 integration_id | target_database | schema_name | table_name
 | Table_state |table_last_replicated_checkpoint | reason | last_updated_timestamp
--------------------------------------+-----------------+-------------
+-------------------+--------------+---------------------------------
+-------------------------------------
 4798e675-8f9f-4686-b05f-92c538e19629 | sample_test2 | sample |
 SampleTestChannel | Synced | {"txn_seq":3,"txn_id":3122} | |
 2023-05-12 12:40:30.656625

SVV_INTERLEAVED_COLUMNS

Use the SVV_INTERLEAVED_COLUMNS view to help determine whether a table that uses
interleaved sort keys should be reindexed using VACUUM REINDEX. For more information about
how to determine how often to run VACUUM and when to run a VACUUM REINDEX, see Managing
vacuum times.

SVV_INTERLEAVED_COLUMNS is visible only to superusers. For more information, see Visibility of
data in system tables and views.

SVV_INTERLEAVED_COLUMNS 2327

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.troubleshooting.html
https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.troubleshooting.html

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data
type

Description

tbl integer Table ID.

col integer Zero-based index for the column.

interleav
ed_skew

numeric(1
9,2)

Ratio that indicates of the amount of skew present in the interleaved sort
key columns for a table. A value of 1.00 indicates no skew, and larger values
indicate more skew. Tables with a large skew should be reindexed with the
VACUUM REINDEX command.

last_rein
dex

timestampTime when the last VACUUM REINDEX was run for the specified table. This
value is NULL if a table has never been reindexed or if the underlying system
log table, STL_VACUUM, has been rotated since the last reindex.

Sample queries

To identify tables that might need to be reindexed, run the following query.

select tbl as tbl_id, stv_tbl_perm.name as table_name,
col, interleaved_skew, last_reindex
from svv_interleaved_columns, stv_tbl_perm
where svv_interleaved_columns.tbl = stv_tbl_perm.id
and interleaved_skew is not null;

 tbl_id | table_name | col | interleaved_skew | last_reindex
--------+------------+-----+------------------+--------------------
 100068 | lineorder | 0 | 3.65 | 2015-04-22 22:05:45
 100068 | lineorder | 1 | 2.65 | 2015-04-22 22:05:45
 100072 | customer | 0 | 1.65 | 2015-04-22 22:05:45
 100072 | lineorder | 1 | 1.00 | 2015-04-22 22:05:45
(4 rows)

SVV_INTERLEAVED_COLUMNS 2328

Amazon Redshift Database Developer Guide

SVV_LANGUAGE_PRIVILEGES

Use SVV_LANGUAGE_PRIVILEGES to view the language permissions that are explicitly granted to
users, roles, and groups in the current database.

SVV_LANGUAGE_PRIVILEGES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see identities they have access to or own.

Table columns

Column
name

Data
type

Description

language_
name

text The name of the language.

privilege_type text The type of the permission. Possible value is USAGE.

identity_id integer The ID of the identity. Possible values are user ID, role ID, or group
ID.

identity_
name

text The name of the identity.

identity_type text The type of the identity. Possible values are user, role, group, or
public.

admin_option boolean A value that indicates whether the user can grant the permission
to other users and roles. It is always false for the role and group
identity type.

Sample query

The following example displays the result of the SVV_LANGUAGE_PRIVILEGES.

SVV_LANGUAGE_PRIVILEGES 2329

Amazon Redshift Database Developer Guide

SELECT language_name,privilege_type,identity_name,identity_type,admin_option FROM
 svv_language_privileges
WHERE identity_name IN ('role1', 'reguser');

 language_name | privilege_type | identity_name | identity_type | admin_option
---------------+----------------+---------------+---------------+---------------
 exfunc | USAGE | reguser | user | False
 exfunc | USAGE | role1 | role | False
 plpythonu | USAGE | reguser | user | False

SVV_MASKING_POLICY

Use SVV_MASKING_POLICY to view all masking policies created on the cluster.

Only superusers and users with the sys:secadmin role can view SVV_MASKING_POLICY. Regular
users will see 0 rows.

Table columns

Column name Data type Description

policy_database text The name of the database in
which the masking policy was
created.

policy_name text The name of the masking
policy.

input_columns text The attributes provided in
the WITH clause of CREATE
POLICY statement.

policy_expression text The masking expression used
in the policy.

policy_modified_by text The name of the user who
last modified the policy.

SVV_MASKING_POLICY 2330

https://docs.aws.amazon.com/redshift/latest/dg/r_roles-default.html

Amazon Redshift Database Developer Guide

Column name Data type Description

policy_modified_time timestamp The timestamp of when the
policy was created or last
modified.

SVV_ML_MODEL_INFO

State information about the current state of the machine learning model.

SVV_ML_MODEL_INFO is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

database_name char(128) The database of the model.

schema_name char(128) The schema of the model.

user_name char(128) The owner of the model.

model_name char(128) The name of the model.

life_cycle char(20) The lifecycle status of the model.

is_refreshable integer The state of the model whether it is refreshab
le if original tables and columns in the training
query still exist and the user still has the
permissions to them. Possible values are: 1
(refreshable) and 0 (not refreshable).

model_state char(128) The current state of the model.

Sample query

The following query displays the current state of machine learning models.

SVV_ML_MODEL_INFO 2331

Amazon Redshift Database Developer Guide

SELECT schema_name, model_name, model_state
FROM svv_ml_model_info;

 schema_name | model_name | model_state
-------------+------------------------------+--------------------------------------
 public | customer_churn_auto_model | Train Model On SageMaker In Progress
 public | customer_churn_xgboost_model | Model is Ready
(2 row)

SVV_ML_MODEL_PRIVILEGES

Use SVV_ML_MODEL_PRIVILEGES to view the machine learning model permissions that are
explicitly granted to users, roles, and groups in the cluster.

SVV_ML_MODEL_PRIVILEGES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see identities they have access to or own.

Table columns

Column name Data type Description

namespace_name text The name of the namespace where
a specified machine learning model
exists.

model_name text The name of the machine learning
model.

model_version integer The version number of the model.

privilege_type text The type of the permission.
Possible value is EXECUTE.

SVV_ML_MODEL_PRIVILEGES 2332

Amazon Redshift Database Developer Guide

Column name Data type Description

identity_id integer The ID of the identity. Possible
values are user ID, role ID, or group
ID.

identity_name text The name of the identity.

identity_type text The type of the identity. Possible
values are user, role, group, or
public.

admin_option boolean A value that indicates whether
the user can grant the permissio
n to other users and roles. It is
always false for the role and group
identity type.

Sample query

The following example displays the result of the SVV_ML_MODEL_PRIVILEGES.

SELECT
 namespace_name,model_name,model_version,privilege_type,identity_name,identity_type,admin_option
 FROM svv_ml_model_privileges
WHERE model_name = 'test_model';

 namespace_name | model_name | model_version | privilege_type | identity_name |
 identity_type | admin_option
----------------+------------+---------------+----------------+----------------
+---------------+--------------
 public | test_model | 1 | EXECUTE | reguser |
 user | False
 public | test_model | 1 | EXECUTE | role1 |
 role | False

SVV_ML_MODEL_PRIVILEGES 2333

Amazon Redshift Database Developer Guide

SVV_MV_DEPENDENCY

The SVV_MV_DEPENDENCY table shows the dependencies of materialized views on other
materialized views within Amazon Redshift.

For more information about materialized views, see Creating materialized views in Amazon
Redshift.

SVV_MV_DEPENDENCY is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

database_name char(128) The database that contains the specified
 materialized view.

schema_name char(128) The schema of the materialized view.

name char(128) The name of the materialized view.

dependent
_database
_name

char(128) The materialized view database on which this
materialized view depends.

dependent
_schema_name

char(128) The materialized view schema on which this
materialized view depends.

dependent
_name

char(128) The name of the materialized view on which this
materialized view depends.

Sample query

The following query returns an output row that indicates that the materialized view mv_over_foo
uses the materialized view mv_foo in its definition as a dependency.

CREATE SCHEMA test_ivm_setup;
CREATE TABLE test_ivm_setup.foo(a INT);

SVV_MV_DEPENDENCY 2334

Amazon Redshift Database Developer Guide

CREATE MATERIALIZED VIEW test_ivm_setup.mv_foo AS SELECT * FROM test_ivm_setup.foo;
CREATE MATERIALIZED VIEW test_ivm_setup.mv_over_foo AS SELECT * FROM
 test_ivm_setup.mv_foo;

SELECT * FROM svv_mv_dependency;

 database_name | schema_name | name | dependent_database_name |
 dependent_schema_name | dependent_name
---------------+----------------------+-------------+-------------------------
+---------------------------+----------
 dev | test_ivm_setup | mv_over_foo | dev |
 test_ivm_setup | mv_foo

SVV_MV_INFO

The SVV_MV_INFO table contains a row for every materialized view, whether the data is stale, and
state information.

For more information about materialized views, see Creating materialized views in Amazon
Redshift.

SVV_MV_INFO is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

database_name char(128) The database that contains the materialized
view.

schema_name char(128) The schema of the database.

user_name char(128) The user who owns the materialized view.

name char(128) The materialized view name.

is_stale char(1) A t indicates that the materialized view is stale.
A stale materialized view is one where the base
tables have been updated but the materialized
view hasn't been refreshed. This information

SVV_MV_INFO 2335

Amazon Redshift Database Developer Guide

Column name Data type Description

might not be accurate if a refresh hasn't been
run since the last restart.

state integer The state of the materialized view as follows:

• 0 – The materialized view is fully recomputed
when refreshed.

• 1 – The materialized view is incremental.

• 101 – The materialized view can't be refreshed
 due to a dropped column. This constraint
applies even if the column isn't used in the
materialized view.

• 102 – The materialized view can't be refreshed
 due to a changed column type. This constrain
t applies even if the column isn't used in the
materialized view.

• 103 – The materialized view can't be refreshed
 due to a renamed table.

• 104 – The materialized view can't be refreshed
 due to a renamed column. This constraint
applies even if the column isn't used in the
materialized view.

• 105 – The materialized view can't be refreshed
 due to a renamed schema.

autorewrite char(1) A t indicates that the materialized view is
eligible for automatic rewriting of queries.

autorefresh char(1) A t indicates that the materialized view can be
automatically refreshed.

Sample query

To view the state of all materialized views, run the following query.

SVV_MV_INFO 2336

Amazon Redshift Database Developer Guide

select * from svv_mv_info;

This query returns the following sample output.

database_name | schema_name | user_name | name | is_stale | state |
 autorefresh | autorewrite
--------------+-------------------------+-----------+---------+-----------+-------
+-------------+----------------
 dev | test_ivm_setup | catch-22 | mv | f | 1 |
 1 | 0
 dev | test_ivm_setup | lotr | old_mv | t | 1 |
 0 | 1

SVV_QUERY_INFLIGHT

Use the SVV_QUERY_INFLIGHT view to determine what queries are currently running on the
database. This view joins STV_INFLIGHT to STL_QUERYTEXT. SVV_QUERY_INFLIGHT does not
show leader-node only queries. For more information, see Leader node–only functions.

SVV_QUERY_INFLIGHT is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Note

This view is only available when querying provisioned clusters.

Table columns

Column
name

Data type Description

userid integer ID of user who generated entry.

slice integer Slice where the query is running.

SVV_QUERY_INFLIGHT 2337

Amazon Redshift Database Developer Guide

Column
name

Data type Description

query integer Query ID. Can be used to join various other system tables
and views.

pid integer Process ID. All of the queries in a session are run in the
same process, so this value remains constant if you run
a series of queries in the same session. You can use this
column to join to the STL_ERROR table.

starttime timestamp Time that the query started.

suspended integer Whether the query is suspended: 0 = false; 1 = true.

text character(200) Query text, in 200-character increments.

sequence integer Sequence number for segments of query statements.

Sample queries

The sample output below shows two queries currently running, the SVV_QUERY_INFLIGHT query
itself and query 428, which is split into three rows in the table. (The starttime and statement
columns are truncated in this sample output.)

select slice, query, pid, starttime, suspended, trim(text) as statement, sequence
from svv_query_inflight
order by query, sequence;

slice|query| pid | starttime |suspended| statement | sequence
-----+-----+------+----------------------+---------+-----------+---------
1012 | 428 | 1658 | 2012-04-10 13:53:... | 0 | select ...| 0
1012 | 428 | 1658 | 2012-04-10 13:53:... | 0 | enueid ...| 1
1012 | 428 | 1658 | 2012-04-10 13:53:... | 0 | atname,...| 2
1012 | 429 | 1608 | 2012-04-10 13:53:... | 0 | select ...| 0
(4 rows)

SVV_QUERY_STATE

Use SVV_QUERY_STATE to view information about the runtime of currently running queries.

SVV_QUERY_STATE 2338

Amazon Redshift Database Developer Guide

The SVV_QUERY_STATE view contains a data subset of the STV_EXEC_STATE table.

SVV_QUERY_STATE is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Note

This view is only available when querying provisioned clusters.

Table columns

Column
name

Data type Description

userid integer ID of user who generated entry.

query integer Query ID. Can be used to join various other system tables and
views.

seg integer Number of the query segment that is running. A query consists
of multiple segments, and each segment consists of one or more
steps. Query segments can run in parallel. Each segment runs in a
single process.

step integer Number of the query step that is running. A step is the smallest
unit of query runtime. Each step represents a discrete unit of
work, such as scanning a table, returning results, or sorting data.

maxtime interval Maximum amount of time (in microseconds) for this step to run.

avgtime interval Average time (in microseconds) for this step to run.

rows bigint Number of rows produced by the step that is running.

bytes bigint Number of bytes produced by the step that is running.

SVV_QUERY_STATE 2339

Amazon Redshift Database Developer Guide

Column
name

Data type Description

cpu bigint For internal use.

memory bigint For internal use.

rate_row double precision Rows-per-second rate since the query started, computed by
summing the rows and dividing by the number of seconds from
when the query started to the current time.

rate_byte double precision Bytes-per-second rate since the query started, computed by
summing the bytes and dividing by the number of seconds from
when the query started to the current time.

label character(25) Query label: a name for the step, such as scan or sort.

is_diskba
sed

character(1) Whether this step of the query is running as a disk-based
operation: true (t) or false (f). Only certain steps, such as hash,
sort, and aggregate steps, can go to disk. Many types of steps are
always performed in memory.

workmem bigint Amount of working memory (in bytes) assigned to the query step.

num_partsinteger Number of partitions a hash table is divided into during a hash
step. A positive number in this column does not imply that the
hash step runs as a disk-based operation. Check the value in the
IS_DISKBASED column to see if the hash step was disk-based.

is_rrscan character(1) If true (t), indicates that range-restricted scan was used on the
step. Default is false (f).

is_delaye
d_scan

character(1) If true (t), indicates that delayed scan was used on the step.
Default is false (f).

Sample queries

Determining the processing time of a query by step

SVV_QUERY_STATE 2340

Amazon Redshift Database Developer Guide

The following query shows how long each step of the query with query ID 279 took to run and how
many data rows Amazon Redshift processed:

select query, seg, step, maxtime, avgtime, rows, label
from svv_query_state
where query = 279
order by query, seg, step;

This query retrieves the processing information about query 279, as shown in the following sample
output:

query | seg | step | maxtime | avgtime | rows | label
------+---------+------+---------+---------+---------+-------------------
 279 | 3 | 0 | 1658054 | 1645711 | 1405360 | scan
 279 | 3 | 1 | 1658072 | 1645809 | 0 | project
 279 | 3 | 2 | 1658074 | 1645812 | 1405434 | insert
 279 | 3 | 3 | 1658080 | 1645816 | 1405437 | distribute
 279 | 4 | 0 | 1677443 | 1666189 | 1268431 | scan
 279 | 4 | 1 | 1677446 | 1666192 | 1268434 | insert
 279 | 4 | 2 | 1677451 | 1666195 | 0 | aggr
(7 rows)

Determining if any active queries are currently running on disk

The following query shows if any active queries are currently running on disk:

select query, label, is_diskbased from svv_query_state
where is_diskbased = 't';

This sample output shows any active queries currently running on disk:

 query | label | is_diskbased
-------+--------------+--------------
1025 | hash tbl=142 | t
(1 row)

SVV_REDSHIFT_COLUMNS

Use SVV_REDSHIFT_COLUMNS to view a list of all columns that a user has access to. This set of
columns includes the columns on the cluster and the columns from datashares provided by remote
clusters.

SVV_REDSHIFT_COLUMNS 2341

Amazon Redshift Database Developer Guide

SVV_REDSHIFT_COLUMNS is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

database_name varchar(128) The name of the database
where the table containing
the columns exists.

schema_name varchar(128) The name of the schema for
the table.

table_name varchar(128) The name of the table.

column_name varchar(128) The name of a column.

ordinal_position integer The position of the column in
the table.

data_type varchar(32) The data type of the column.

column_default varchar(4000) The default value of the
column.

is_nullable varchar(3) A value that defines whether
a column is nullable. Possible
values are yes, no, and " " (an
empty string that represents
no information).

encoding varchar(128) The encoding type of the
column.

distkey boolean A value that is true if this
column is the distribution
key for the table, and false
otherwise.

SVV_REDSHIFT_COLUMNS 2342

Amazon Redshift Database Developer Guide

Column name Data type Description

sortkey integer A value that specifies the
order of the column in the
sort key.

If the table uses a compound
sort key, then all columns
that are part of the sort key
have a positive value that
indicates the position of the
column in the sort key.

If the table uses an interleav
ed sort key, then each column
that is part of the sort key
has a value that is alternately
positive or negative. Here, the
absolute value indicates the
position of the column in the
sort key.

If sortkey is 0, the column
isn't part of a sort key.

column_acl varchar(128) A string that defines the
permissions for the specified
user or user group for the
column.

remarks varchar(256) Remarks.

Sample query

The following example returns the output of SVV_REDSHIFT_COLUMNS.

SELECT *
FROM svv_redshift_columns

SVV_REDSHIFT_COLUMNS 2343

Amazon Redshift Database Developer Guide

WHERE database_name = 'tickit_db'
 AND TABLE_NAME = 'tickit_sales_redshift'
ORDER BY COLUMN_NAME,
 TABLE_NAME,
 database_name
LIMIT 5;

database_name | schema_name | table_name | column_name | ordinal_position |
 data_type | column_default | is_nullable | encoding | distkey | sortkey | column_acl
 | remarks
--------------+-------------+-----------------------+-------------+------------------
+-----------+----------------+-------------+----------+---------+---------
+-------------+--------
 tickit_db | public | tickit_sales_redshift | buyerid | 4 |
 integer | | NO | az64 | False | 0 | |
 tickit_db | public | tickit_sales_redshift | commission | 9 |
 numeric | (8,2) | YES | az64 | False | 0 | |
 tickit_db | public | tickit_sales_redshift | dateid | 6 |
 smallint | | NO | none | False | 1 | |
 tickit_db | public | tickit_sales_redshift | eventid | 5 |
 integer | | NO | az64 | False | 0 | |
 tickit_db | public | tickit_sales_redshift | listid | 2 |
 integer | | NO | az64 | True | 0 | |

SVV_REDSHIFT_DATABASES

Use SVV_ REDSHIFT_DATABASES to view a list of all the databases that a user has access to. This
includes the databases on the cluster and the databases created from datashares provided by
remote clusters.

SVV_REDSHIFT_DATABASES is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

database_name varchar(128) The name of the database.

database_owner integer The database owner user ID.

SVV_REDSHIFT_DATABASES 2344

Amazon Redshift Database Developer Guide

Column name Data type Description

database_type varchar(32) The type of database.
Possible types are local or
shared databases.

database_acl varchar(128) This information is for
internal use only.

database_options varchar(128) The properties of the
database.

database_isolation_level varchar(128) The isolation level of
the database. Possible
values include: Snapshot
Isolation and Serializa
ble .

Sample query

The following example returns the output for SVV_REDSHIFT_DATABASES.

select database_name, database_owner, database_type, database_options,
 database_isolation_level
from svv_redshift_databases;

database_name | database_owner | database_type | database_options |
 database_isolation_level
--------------+----------------+---------------+------------------+------------------
 dev | 1 | local | NULL | Serializable

SVV_REDSHIFT_FUNCTIONS

Use SVV_REDSHIFT_FUNCTIONS to view a list of all functions that a user has access to. This set
of functions includes the functions on the cluster and the functions from datashares provided by
remote clusters.

SVV_REDSHIFT_FUNCTIONS 2345

Amazon Redshift Database Developer Guide

SVV_REDSHIFT_FUNCTIONS is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

database_name varchar(128) The name of the database
where the cluster that has
these functions exists.

schema_name varchar(128) The name of the schema that
specifies a given function.

function_name varchar(128) The name of a specified
function.

function_type varchar(128) The type of function. Possible
values are regular functions
, aggregate functions, and
stored procedures.

argument_type varchar(512) A string that represents the
type of a function's input
argument.

result_type varchar(128) The data type of a function's
return value.

Sample query

The following example returns the output of SVV_REDSHIFT_FUNCTIONS.

SELECT *
FROM svv_redshift_functions
WHERE database_name = 'tickit_db'
 AND SCHEMA_NAME = 'public'
ORDER BY function_name
LIMIT 5;

SVV_REDSHIFT_FUNCTIONS 2346

Amazon Redshift Database Developer Guide

database_name | schema_name | function_name | function_type |
 argument_type | result_type
--------------+-------------+-----------------------+------------------
+------------------+-------------
 tickit_db | public | shared_function | REGULAR FUNCTION | integer,
 integer | integer

SVV_REDSHIFT_SCHEMA_QUOTA

Displays the quota and the current disk usage for each schema in a database.

SVV_REDSHIFT_SCHEMA_QUOTA is visible to all users. Superusers can see all rows; regular users
can see only their own data. For more information, see Visibility of data in system tables and views.

This view is available when querying provisioned clusters or Redshift Serverless workgroups.

Table columns

Column name Data type Description

database_name character(128) The database that contains the
schema.

schema_name character(128) The name of the schema.

schema_owner integer The internal user ID of the schema
owner.

quota integer The amount of disk space (in MB)
that the schema can use.

disk_usage integer The disk space (in MB) that is
currently used by the schema.

Sample query

The following example displays the quota and the current disk usage for the schema named
sales_schema.

SVV_REDSHIFT_SCHEMA_QUOTA 2347

Amazon Redshift Database Developer Guide

SELECT TRIM(SCHEMA_NAME) "schema_name", QUOTA, disk_usage FROM
 svv_redshift_schema_quota
WHERE SCHEMA_NAME = 'sales_schema';

schema_name | quota | disk_usage
--------------+-------+------------
sales_schema | 2048 | 30

SVV_REDSHIFT_SCHEMAS

Use SVV_REDSHIFT_SCHEMAS to view a list of all schemas that a user has access to. This set of
schemas includes the schemas on the cluster and the schemas from datashares provided by remote
clusters.

SVV_REDSHIFT_SCHEMAS is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

database_name varchar(128) The name of the database
where a specified schema
exists.

schema_name varchar(128) The namespace or schema
name.

schema_owner integer The internal user ID of the
schema owner.

schema_type varchar(16) The type of the schema.
Possible values are shared
and local schemas.

schema_acl varchar(128) The string that defines the
permissions for the specified

SVV_REDSHIFT_SCHEMAS 2348

Amazon Redshift Database Developer Guide

Column name Data type Description

user or user group for the
schema.

schema_option varchar(128) The options of the schema.

Sample query

The following example returns the output of SVV_REDSHIFT_SCHEMAS.

SELECT *
FROM svv_redshift_schemas
WHERE database_name = 'tickit_db'
ORDER BY database_name,
 SCHEMA_NAME;

database_name | schema_name | schema_owner | schema_type | schema_acl |
 schema_option
--------------+--------------------+--------------+-------------+------------
+---------------
 tickit_db | public | 1 | shared | |

SVV_REDSHIFT_TABLES

Use SVV_REDSHIFT_TABLES to view a list of all tables that a user has access to. This set of tables
includes the tables on the cluster and the tables from datashares provided by remote clusters.

SVV_REDSHIFT_TABLES is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

database_name varchar(128) The name of the database
where a specified table exists.

schema_name varchar(128) The name the schema for the
table.

SVV_REDSHIFT_TABLES 2349

Amazon Redshift Database Developer Guide

Column name Data type Description

table_name varchar(128) The name of the table.

table_type varchar(128) The type of table. Possible
values are views and tables.

table_acl varchar(128) The string that defines the
permissions for the specified
user or user group for the
table.

remarks varchar(128) Remarks.

table_owner varchar(128) The owner of the table.

Sample query

The following example returns the output of SVV_REDSHIFT_TABLES.

SELECT *
FROM svv_redshift_tables
WHERE database_name = 'tickit_db' AND TABLE_NAME LIKE 'tickit_%'
ORDER BY database_name,
TABLE_NAME;

database_name | schema_name | table_name | table_type | table_acl |
 remarks | table_owner
--------------+-------------+--------------------------+------------+-----------
+---------+-----------
 tickit_db | public | tickit_category_redshift | TABLE | |
 +
 tickit_db | public | tickit_date_redshift | TABLE | |
 +
 tickit_db | public | tickit_event_redshift | TABLE | |
 +
 tickit_db | public | tickit_listing_redshift | TABLE | |
 +
 tickit_db | public | tickit_sales_redshift | TABLE | |
 +

SVV_REDSHIFT_TABLES 2350

Amazon Redshift Database Developer Guide

 tickit_db | public | tickit_users_redshift | TABLE | |
 +
 tickit_db | public | tickit_venue_redshift | TABLE | |

If the table_acl value is null, no access privileges have been explicitly granted to the corresponding
table.

SVV_RELATION_PRIVILEGES

Use SVV_RELATION_PRIVILEGES to view the relation (tables and views) permissions that are
explicitly granted to users, roles, and groups in the current database.

SVV_RELATION_PRIVILEGES is visible to the following users:

• Superusers

• Users with the SYSLOG ACCESS UNRESTRICTED permission

Other users can only see identities they have access to or own. For more information about data
visibility, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

namespace
_name

text The name of the namespace where a specified relation
exists.

relation_name text The name of the relation.

privilege_type text The type of the permission. Possible values are INSERT,
SELECT, UPDATE, DELETE, REFERENCES, or DROP.

identity_id integer The ID of the identity. Possible values are user ID, role ID,
or group ID.

identity_name text The name of the identity.

identity_type text The type of the identity. Possible values are user, role,
group, or public.

SVV_RELATION_PRIVILEGES 2351

Amazon Redshift Database Developer Guide

Column name Data type Description

admin_option boolean A value that indicates whether the user can grant the
permission to other users and roles. It is always false for
the role and group identity type.

Sample query

The following example displays the result of the SVV_RELATION_PRIVILEGES.

SELECT
 namespace_name,relation_name,privilege_type,identity_name,identity_type,admin_option
 FROM svv_relation_privileges
WHERE relation_name = 'orders' AND privilege_type = 'SELECT';

 namespace_name | relation_name | privilege_type | identity_name | identity_type |
 admin_option
----------------+---------------+----------------+----------------+---------------
+--------------
 public | orders | SELECT | reguser | user |
 False
 public | orders | SELECT | role1 | role |
 False

SVV_RLS_APPLIED_POLICY

Use SVV_RLS_APPLIED_POLICY to trace the application of RLS policies on queries that reference
RLS-protected relations.

SVV_RLS_APPLIED_POLICY is visible to the following users:

• Superusers

• Users with the sys:operator role

• Users with the ACCESS SYSTEM TABLE permission

Note that sys:secadmin isn't granted this system permission.

SVV_RLS_APPLIED_POLICY 2352

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

username text The name of the user that ran the query.

query integer The ID of the query.

xid long The context of the transaction.

pid integer The leader process running the query.

recordtime time The time when the query was recorded.

command char(1) The command for which the RLS policy was applied. Possible
values are k for unknown, s for select, u for update, i for insert, y
for utility, and d for delete.

datname text The name of the database of the relation to which the row-level
security policy is attached.

relschema text The name of the schema of the relation to which the row-level
security policy is attached.

relname text The name of the relation to which the row-level security policy is
attached.

polname text The name of the row-level security policy that is attached to the
relation.

poldefault char(1) The default setting of the row-level security policy that is
attached to the relation. Possible vaules are f for false if the
default false policy has been applied and t for true if the default
true policy has been applied.

SVV_RLS_APPLIED_POLICY 2353

Amazon Redshift Database Developer Guide

Sample query

The following example displays the result of the SVV_RLS_APPLIED_POLICY. To query the
SVV_RLS_APPLIED_POLICY, you must have the ACCESS SYSTEM TABLE permission.

-- Check what RLS policies were applied to the run query.
SELECT username, command, datname, relschema, relname, polname, poldefault
FROM svv_rls_applied_policy
WHERE datname = CURRENT_DATABASE() AND query = PG_LAST_QUERY_ID();

 username | command | datname | relschema | relname | polname
 | poldefault
----------+---------+-----------+-----------+--------------------------
+-----------------+------------
 molly | s | tickit_db | public | tickit_category_redshift |
 policy_concerts |

SVV_RLS_ATTACHED_POLICY

Use SVV_RLS_ATTACHED_POLICY to view a list of all relations and users that have one or more
row-level security policies attached on the currently connected database.

Only users with the sys:secadmin role can query this view.

Table columns

Column
name

Data type Description

relschema text The name of the schema of the relation to which the row-level
security policy is attached.

relname text The name of the relation to which the row-level security policy is
attached.

relkind text The type of the object, such as table.

polname text The name of the row-level security policy that is attached to the
relation.

grantor text The name of the user that has attached this policy.

SVV_RLS_ATTACHED_POLICY 2354

Amazon Redshift Database Developer Guide

Column
name

Data type Description

grantee text The name of the user or role that this policy has been attached to.

granteekind text The type of grantee. Possible values are user or role.

is_pol_on boolean The parameter that indicates whether a row-level security policy
is turned on or off on a table. Possible values are true and false.

is_rls_on boolean The parameter that indicates whether a row-level security is
turned on or off on a table. Possible values are true and false.

rls_conju
nction_type

character
(3)

The parameter that indicates whether relation combine RLS
policies with and or or.

Sample query

The following example displays the result of the SVV_RLS_ATTACHED_POLICY.

--Inspect the policy in SVV_RLS_ATTACHED_POLICY
SELECT * FROM svv_rls_attached_policy;

 relschema | relname | relkind | polname | grantor | grantee
 | granteekind | is_pol_on | is_rls_on | rls_conjuntion_type
-----------+--------------------------+---------+-----------------+---------+----------
+-------------+-----------+-----------+---------------------
 public | tickit_category_redshift | table | policy_concerts | bob | analyst
 | role | True | True | and
 public | tickit_category_redshift | table | policy_concerts | bob | dbadmin
 | role | True | True | and

SVV_RLS_POLICY

Use SVV_RLS_POLICY to view a list of all row-level security policies created on the Amazon
Redshift cluster.

SVV_RLS_POLICY is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

SVV_RLS_POLICY 2355

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

poldb text The name of the database in which the row-level security
policy is created.

polname text The name of the row-level security policy.

polalias text The table alias used in the policy definition.

polatts text The attributes provided to the policy definition.

polqual text The policy condition provided in the USING clause of the
CREATE POLICY statement.

polenabled boolean Whether the policy is turned on globally.

polmodifiedby text The name of the user that created or modified the policy most
recently.

polmodifi
edtime

timestamp The timestamp of when the policy is created or last modified.

Sample query

The following example displays the result of the SVV_RLS_POLICY.

-- Create some policies.
CREATE RLS POLICY pol1 WITH (a int) AS t USING (t.a IS NOT NULL);
CREATE RLS POLICY pol2 WITH (c varchar(10)) AS t USING (c LIKE '%public%');

-- Inspect the policy in SVV_RLS_POLICY
SELECT * FROM svv_rls_policy;

 poldb | polname | polalias | polatts |
 polqual | polenabled | polmodifiedby | polmodifiedtime
-------+---------+----------+--
+---------------------------------------+------------+---------------
+---------------------

SVV_RLS_POLICY 2356

Amazon Redshift Database Developer Guide

 my_db | pol1 | t | [{"colname":"a","type":"integer"}] |
 "t"."a" IS NOT NULL | t | policy_admin | 2022-02-11
 14:40:49
 my_db | pol2 | t | [{"colname":"c","type":"character varying(10)"}] |
 "t"."c" LIKE CAST('%public%' AS TEXT) | t | policy_admin | 2022-02-11
 14:41:28

SVV_RLS_RELATION

Use SVV_RLS_RELATION to view a list of all relations that are RLS-protected.

SVV_RLS_RELATION is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

datname text The name of the database containing the relation.

relschema text The name of the schema containing the relation.

relname text The name of the relation.

relkind text The type of the relation, such as tables or views.

is_rls_on boolean The parameter that indicates whether the relation is RLS-prote
cted.

is_rls_da
tashare_on

boolean The parameter that indicates whether the relation is RLS-prote
cted over datashares.

rls_conju
nction_type

character(3) The parameter that indicates whether relation combine RLS
policies with and or or.

rls_datas
hare_conj
unction_t
ype

character(3) The parameter that indicates whether relation combine RLS
policies with and or or over datashares.

SVV_RLS_RELATION 2357

Amazon Redshift Database Developer Guide

Sample query

The following example displays the result of the SVV_RLS_RELATION.

ALTER TABLE tickit_category_redshift ROW LEVEL SECURITY ON FOR DATASHARES;

--Inspect RLS state on the relations using SVV_RLS_RELATION.
SELECT datname, relschema, relname, relkind, is_rls_on, is_rls_datashare_on FROM
 svv_rls_relation ORDER BY relname;

 datname | relschema | relname | relkind | is_rls_on |
 is_rls_datashare_on | rls_conjunction_type | rls_datashare_conjunction_type
-----------+-----------+--------------------------+---------+-----------
+---------------------+----------------------+--------------------------------
 tickit_db | public | tickit_category_redshift | table | t | t
 | and | and
(1 row)

SVV_ROLE_GRANTS

Use SVV_ROLE_GRANTS to view a list of roles that are explicitly granted roles in the cluster.

SVV_ROLE_GRANTS is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see identities they have access to or own.

Table columns

Column name Data type Description

role_id integer The ID of the role.

role_name text The name of the role.

granted_role_id integer The ID for the granted role.

SVV_ROLE_GRANTS 2358

Amazon Redshift Database Developer Guide

Column name Data type Description

granted_role_name text The name for the granted
role.

Sample query

The following example returns the output of SVV_ROLE_GRANTS.

GRANT ROLE role1 TO ROLE role2;
GRANT ROLE role2 TO ROLE role3;

SELECT role_name, granted_role_name FROM svv_role_grants;

 role_name | granted_role_name
-----------+--------------------
 role2 | role1
 role3 | role2
(2 rows)

SVV_ROLES

Use SVV_ROLES to view a list of roles that a user has access to.

SVV_ROLES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see identities they have access to or own.

Table columns

Column name Data type Description

role_id integer The role ID.

role_name text The name of the role.

SVV_ROLES 2359

Amazon Redshift Database Developer Guide

Column name Data type Description

role_owner text The name of the role owner.

external_id text The unique identifier of the role in the third-party
identity provider.

Sample query

The following example returns the output of SVV_ROLES.

SELECT role_name,role_owner FROM svv_roles WHERE role_name IN ('role1', 'role2');

 role_name | role_owner
-----------+------------
 role1 | superuser
 role2 | superuser

SVV_SCHEMA_PRIVILEGES

Use SVV_SCHEMA_PRIVILEGES to view the schema permissions that are explicitly granted to users,
roles, and groups in the current database.

SVV_SCHEMA_PRIVILEGES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see identities they have access to or own.

Table columns

Column name Data type Description

namespace_name text The name of the namespace where
a specified schema exists.

SVV_SCHEMA_PRIVILEGES 2360

Amazon Redshift Database Developer Guide

Column name Data type Description

privilege_type text The type of the permission.
Possible values are USAGE or
CREATE.

identity_id integer The ID of the identity. Possible
values are user ID, role ID, or group
ID.

identity_name text The name of the identity.

identity_type text The type of the identity. Possible
values are user, role, group, or
public.

admin_option boolean A value that indicates whether
the user can grant the permissio
n to other users and roles. It is
always false for the role and group
identity type.

Sample query

The following example displays the result of the SVV_SCHEMA_PRIVILEGES.

SELECT namespace_name,privilege_type,identity_name,identity_type,admin_option FROM
 svv_schema_privileges
WHERE namespace_name = 'test_schema1';

 namespace_name | privilege_type | identity_name | identity_type | admin_option
----------------+----------------+----------------+---------------+--------------
 test_schema1 | USAGE | reguser | user | False
 test_schema1 | USAGE | role1 | role | False

SVV_SCHEMA_QUOTA_STATE

Displays the quota and the current disk usage for each schema.

SVV_SCHEMA_QUOTA_STATE 2361

Amazon Redshift Database Developer Guide

Regular users can see information for schemas for which they have USAGE permission. Superusers
can see information for all schemas in the current database.

SVV_SCHEMA_QUOTA_STATE is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Note

This view is only available when querying provisioned clusters.

Table columns

Column name Data type Description

schema_id integer The namespace or schema ID.

schema_name character (128) The namespace or schema name.

schema_owner integer The internal user ID of the schema
owner.

quota integer The amount of disk space (in MB)
that the schema can use.

disk_usage integer The disk space (in MB) that is
currently used by the schema.

disk_usage_pct double precision The disk space percentage that is
currently used by the schema out
of the configured quota.

Sample query

The following example displays the quota and the current disk usage for the schema.

SELECT TRIM(SCHEMA_NAME) "schema_name", QUOTA, disk_usage, disk_usage_pct FROM
 svv_schema_quota_state
WHERE SCHEMA_NAME = 'sales_schema';

SVV_SCHEMA_QUOTA_STATE 2362

Amazon Redshift Database Developer Guide

schema_name | quota | disk_usage | disk_usage_pct
--------------+-------+------------+----------------
sales_schema | 2048 | 30 | 1.46
(1 row)

SVV_SYSTEM_PRIVILEGES

SVV_SYSTEM_PRIVILEGES is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see identities they have access to or own.

Table columns

Column name Data type Description

system_privilege text The name of the system permissio
n.

identity_id integer The ID of the identity. Possible
values are user ID or role ID.

identity_name text The name of the identity.

identity_type text The type of the identity. Possible
values are user or role.

Sample query

The following example displays the result for the specified parameters.

SELECT system_privilege,identity_name,identity_type FROM svv_system_privileges
WHERE system_privilege = 'ALTER TABLE' AND identity_name = 'sys:superuser';

 system_privilege | identity_name | identity_type
------------------+---------------+---------------

SVV_SYSTEM_PRIVILEGES 2363

Amazon Redshift Database Developer Guide

 ALTER TABLE | sys:superuser | role

SVV_TABLE_INFO

Shows summary information for tables in the database. The view filters system tables and shows
only user-defined tables.

You can use the SVV_TABLE_INFO view to diagnose and address table design issues that can
influence query performance. This includes issues with compression encoding, distribution keys,
sort style, data distribution skew, table size, and statistics. The SVV_TABLE_INFO view doesn't
return any information for empty tables.

The SVV_TABLE_INFO view summarizes information from the STV_BLOCKLIST,
STV_NODE_STORAGE_CAPACITY, STV_TBL_PERM, and STV_SLICES system tables and from the
PG_DATABASE, PG_ATTRIBUTE, PG_CLASS, PG_NAMESPACE, and PG_TYPE catalog tables.

SVV_TABLE_INFO is visible only to superusers. For more information, see Visibility of data
in system tables and views. To permit a user to query the view, grant SELECT permission on
SVV_TABLE_INFO to the user.

Table columns

Column name Data type Description

database text Database name.

schema text Schema name.

table_id oid Table ID.

table text Table name.

encoded text Value that indicates whether
any column has compression
encoding defined.

diststyle text Distribution style or distribut
ion key column, if key
distribution is defined.
Possible values include

SVV_TABLE_INFO 2364

https://www.postgresql.org/docs/8.0/static/catalog-pg-database.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-attribute.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-class.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-namespace.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-type.html

Amazon Redshift Database Developer Guide

Column name Data type Description

EVEN, KEY(column), ALL,
AUTO(ALL) , AUTO(EVEN) ,
and AUTO(KEY(column)).

sortkey1 text First column in the sort key, if
a sort key is defined. Possible
values include column,
AUTO(SORTKEY) , and
AUTO(SORTKEY(column)).

max_varchar integer Size of the largest column
that uses a VARCHAR data
type.

sortkey1_enc character(32) Compression encoding of the
first column in the sort key, if
a sort key is defined.

sortkey_num integer Number of columns defined
as sort keys.

size bigint Size of the table, in 1-MB data
blocks.

pct_used numeric(10,4) Percent of available space
that is used by the table.

empty bigint For internal use. This column
is no longer used and will be
removed in a future release.

unsorted numeric(5,2) Percent of unsorted rows in
the table.

SVV_TABLE_INFO 2365

Amazon Redshift Database Developer Guide

Column name Data type Description

stats_off numeric(5,2) Number that indicates how
stale the table's statistics
are; 0 is current, 100 is out of
date.

tbl_rows numeric(38,0) Total number of rows in the
table. This value includes
rows marked for deletion, but
not yet vacuumed.

skew_sortkey1 numeric(19,2) Ratio of the size of the largest
non-sort key column to the
size of the first column of
the sort key, if a sort key is
defined. Use this value to
evaluate the effectiveness of
the sort key.

skew_rows numeric(19,2) Ratio of the number of rows
in the slice with the most
rows to the number of rows in
the slice with the fewest rows.

estimated_visible_rows numeric(38,0) The estimated rows in the
table. This value does not
include rows marked for
deletion.

SVV_TABLE_INFO 2366

Amazon Redshift Database Developer Guide

Column name Data type Description

risk_event text Risk information about a
table. The field is separated
into parts:

risk_type |xid|timestamp

• The risk_type , where
1 indicates that a COPY
command with the
EXPLICIT_IDS option
ran. Amazon Redshift
no longer checks the
uniqueness of IDENTITY
columns in the table. For
more information, see
EXPLICIT_IDS.

• The transaction ID, xid,
that introduced the risk.

• The timestamp when the
COPY command ran.

The following example shows
the values in the field.

1|1107|2019-06-22
 07:16:11.292952

vacuum_sort_benefit numeric(12,2) The estimated maximum
percentage improvement
of scan query performance
when you run vacuum sort.

SVV_TABLE_INFO 2367

Amazon Redshift Database Developer Guide

Column name Data type Description

create_time timestamp without time
zone

The timestamp for when the
table was created.

Sample queries

The following example shows encoding, distribution style, sorting, and data skew for all user-
defined tables in the database. Here, "table" must be enclosed in double quotation marks because
it is a reserved word.

select "table", encoded, diststyle, sortkey1, skew_sortkey1, skew_rows
from svv_table_info
order by 1;

table | encoded | diststyle | sortkey1 | skew_sortkey1 | skew_rows
---------------+---------+-----------------+--------------+---------------+----------
category | N | EVEN | | |
date | N | ALL | dateid | 1.00 |
event | Y | KEY(eventid) | dateid | 1.00 | 1.02
listing | Y | KEY(listid) | dateid | 1.00 | 1.01
sales | Y | KEY(listid) | dateid | 1.00 | 1.02
users | Y | KEY(userid) | userid | 1.00 | 1.01
venue | N | ALL | venueid | 1.00 |
(7 rows)

SVV_TABLES

Use SVV_TABLES to view tables in local and external catalogs.

SVV_TABLES is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

table_catalog text The name of the catalog
where the table exists.

SVV_TABLES 2368

Amazon Redshift Database Developer Guide

Column name Data type Description

table_schema text The name the schema for the
table.

table_name text The name of the table.

table_type text The type of table. Possible
values are views, external
tables, and base tables.

remarks text Remarks.

SVV_TRANSACTIONS

Records information about transactions that currently hold locks on tables in the database. Use
the SVV_TRANSACTIONS view to identify open transactions and lock contention issues. For more
information about locks, see Managing concurrent write operations and LOCK.

SVV_TRANSACTIONS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

txn_owner text Name of the owner of the
transaction.

txn_db text Name of the database
associated with the transacti
on.

xid bigint Transaction ID.

pid integer Process ID associated with the
lock.

txn_start timestamp Start time of the transaction.

SVV_TRANSACTIONS 2369

Amazon Redshift Database Developer Guide

Column name Data type Description

lock_mode text Name of the lock mode held
or requested by this process.
If lock_mode is Exclusive
Lock and granted is true
(t), then this transaction ID is
an open transaction.

lockable_object_type text Type of object requesting
or holding the lock, either
relation if it is a table or
transactionid if it is a
transaction.

relation integer Table ID for the table
(relation) acquiring the
lock. This value is NULL if
lockable_object_type
is transactionid .

granted boolean Value that indicates whether
that the lock has been
granted (t) or is pending (f) .

Sample queries

The following command shows all active transactions and the locks requested by each transaction.

select * from svv_transactions;

 txn_
 lockable_
 owner | txn_db | xid | pid | txn_start | lock_mode |
 object_type | relation | granted
-------+--------+--------+-------+----------------------------+---------------------
+----------------+----------+---------
 root | dev | 438484 | 22223 | 2016-03-02 18:42:18.862254 | AccessShareLock |
 relation | 100068 | t

SVV_TRANSACTIONS 2370

Amazon Redshift Database Developer Guide

 root | dev | 438484 | 22223 | 2016-03-02 18:42:18.862254 | ExclusiveLock |
 transactionid | | t
 root | tickit | 438490 | 22277 | 2016-03-02 18:42:48.084037 | AccessShareLock |
 relation | 50860 | t
 root | tickit | 438490 | 22277 | 2016-03-02 18:42:48.084037 | AccessShareLock |
 relation | 52310 | t
 root | tickit | 438490 | 22277 | 2016-03-02 18:42:48.084037 | ExclusiveLock |
 transactionid | | t
 root | dev | 438505 | 22378 | 2016-03-02 18:43:27.611292 | AccessExclusiveLock |
 relation | 100068 | f
 root | dev | 438505 | 22378 | 2016-03-02 18:43:27.611292 | RowExclusiveLock |
 relation | 16688 | t
 root | dev | 438505 | 22378 | 2016-03-02 18:43:27.611292 | AccessShareLock |
 relation | 100064 | t
 root | dev | 438505 | 22378 | 2016-03-02 18:43:27.611292 | AccessExclusiveLock |
 relation | 100166 | t
 root | dev | 438505 | 22378 | 2016-03-02 18:43:27.611292 | AccessExclusiveLock |
 relation | 100171 | t
 root | dev | 438505 | 22378 | 2016-03-02 18:43:27.611292 | AccessExclusiveLock |
 relation | 100190 | t
 root | dev | 438505 | 22378 | 2016-03-02 18:43:27.611292 | ExclusiveLock |
 transactionid | | t
(12 rows)

(12 rows)

SVV_USER_GRANTS

Use SVV_USER_GRANTS to view the list of users that are explicitly granted roles in the cluster.

SVV_USER_GRANTS is visible to the following users:

• Superusers

• Users with the ACCESS SYSTEM TABLE permission

Other users can only see roles that are explicitly granted to them.

SVV_USER_GRANTS 2371

Amazon Redshift Database Developer Guide

Table columns

Column name Data
type

Description

user_id integer The user ID for the user.

user_name text The name of the user.

role_id integer The role ID for the granted role.

role_name text The role name for the granted role.

admin_option boolean A value that indicates whether the user can grant the role to
other users and roles.

Sample queries

The following queries grant roles to users and show the list of users that are explicitly granted
roles.

GRANT ROLE role1 TO reguser;
GRANT ROLE role2 TO reguser;
GRANT ROLE role1 TO superuser;
GRANT ROLE role2 TO superuser;

SELECT user_name,role_name,admin_option FROM svv_user_grants;

 user_name | role_name | admin_option
-----------+-----------+--------------
 superuser | role1 | False
 reguser | role1 | False
 superuser | role2 | False
 reguser | role2 | False

SVV_USER_INFO

You can retrieve data about Amazon Redshift database users with the SVV_USER_INFO view.

SVV_USER_INFO 2372

Amazon Redshift Database Developer Guide

SVV_USER_INFO is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data
type

Description

user_name text The user name for the role.

user_id integer The user ID for the user.

createdb boolean A value that indicates whether the user has permissions to create
databases.

superuser boolean A value that indicates whether the user is a superuser.

catalog_u
pdate

boolean A value that indicates whether the user can update system catalogs.

connectio
n_limit

text The number of connections that the user can open.

syslog_ac
cess

text A value that indicates whether the user has access to the system logs.
The two possible values are RESTRICTED and UNRESTRICTED .
RESTRICTED means that users that are not superusers can see their
own records. UNRESTRICTED means that user that are not superuser
s can see all records in the system views and tables to which they have
SELECT privileges.

last_ddl_
timestamp

timestamp The timestamp for the last data definition language (DDL) create
statement run by the user.

session_t
imeout

integer The maximum time in seconds that a session remains inactive or idle
before timing out. 0 indicates that no timeout is set. For information
about the cluster's idle or inactive timeout setting, see Quotas and
limits in Amazon Redshift in the Amazon Redshift Management Guide.

SVV_USER_INFO 2373

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html
https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

external_
user_id

text Unique identifier of the user in the third-party identity provider.

Sample queries

The following command retrieves user information from SVV_USER_INFO.

SELECT * FROM SVV_USER_INFO;

SVV_VACUUM_PROGRESS

This view returns an estimate of how much time it will take to complete a vacuum operation that is
currently in progress.

SVV_VACUUM_PROGRESS is visible only to superusers. For more information, see Visibility of data
in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_VACUUM_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

For information about SVV_VACUUM_SUMMARY, see SVV_VACUUM_SUMMARY.

For information about SVL_VACUUM_PERCENTAGE, see SVL_VACUUM_PERCENTAGE.

Note

This view is only available when querying provisioned clusters.

SVV_VACUUM_PROGRESS 2374

Amazon Redshift Database Developer Guide

Table columns

Column name Data
type

Description

table_name text Name of the table currently being vacuumed, or the table
that was last vacuumed if no operation is in progress.

status text Description of the current activity being done as part of the
vacuum operation:

• Initialize

• Sort

• Merge

• Delete

• Select

• Failed

• Complete

• Skipped

• Building INTERLEAVED SORTKEY order

time_remaining_est
imate

text Estimated time left for the current vacuum operation to
complete, in minutes and seconds: 5m 10s, for example. An
estimated time is not returned until the vacuum completes
its first sort operation. If no vacuum is in progress, the last
vacuum that was performed is displayed with Completed
in the STATUS column and an empty TIME_REMAINING_EST
IMATE column. The estimate typically becomes more
accurate as the vacuum progresses.

Sample queries

The following queries, run a few minutes apart, show that a large table named SALESNEW is being
vacuumed.

select * from svv_vacuum_progress;

SVV_VACUUM_PROGRESS 2375

Amazon Redshift Database Developer Guide

table_name | status | time_remaining_estimate
--------------+-------------------------------+-------------------------
salesnew | Vacuum: initialize salesnew |
(1 row)
...
select * from svv_vacuum_progress;

table_name | status | time_remaining_estimate
-------------+------------------------+-------------------------
salesnew | Vacuum salesnew sort | 33m 21s
(1 row)

The following query shows that no vacuum operation is currently in progress. The last table to be
vacuumed was the SALES table.

select * from svv_vacuum_progress;

table_name | status | time_remaining_estimate
-------------+----------+-------------------------
 sales | Complete |
(1 row)

SVV_VACUUM_SUMMARY

The SVV_VACUUM_SUMMARY view joins the STL_VACUUM, STL_QUERY, and STV_TBL_PERM
tables to summarize information about vacuum operations logged by the system. The view returns
one row per table per vacuum transaction. The view records the elapsed time of the operation, the
number of sort partitions created, the number of merge increments required, and deltas in row and
block counts before and after the operation was performed.

SVV_VACUUM_SUMMARY is visible only to superusers. For more information, see Visibility of data
in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_VACUUM_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

For information about SVV_VACUUM_PROGRESS, see SVV_VACUUM_PROGRESS.

For information about SVL_VACUUM_PERCENTAGE, see SVL_VACUUM_PERCENTAGE.

SVV_VACUUM_SUMMARY 2376

Amazon Redshift Database Developer Guide

Note

This view is only available when querying provisioned clusters.

Table columns

Column name Data
type

Description

table_name text Name of the vacuumed table.

xid bigint Transaction ID of the VACUUM operation.

sort_partitions bigint Number of sorted partitions created during the sort phase of
the vacuum operation.

merge_increments bigint Number of merge increments required to complete the
merge phase of the vacuum operation.

elapsed_time bigint Elapsed runtime of the vacuum operation (in microseconds).

row_delta bigint Difference in the total number of table rows before and after
the vacuum.

sortedrow_delta bigint Difference in the number of sorted table rows before and
after the vacuum.

block_delta integer Difference in block count for the table before and after the
vacuum.

max_merge_partitio
ns

integer This column is used for performance analysis and represent
s the maximum number of partitions that vacuum can
process for the table per merge phase iteration. (Vacuum
sorts the unsorted region into one or more sorted partition
s. Depending on the number of columns in the table and the
current Amazon Redshift configuration, the merge phase can
process a maximum number of partitions in a single merge
iteration. The merge phase will still work if the number of

SVV_VACUUM_SUMMARY 2377

Amazon Redshift Database Developer Guide

Column name Data
type

Description

sorted partitions exceeds the maximum number of merge
partitions, but more merge iterations will be required.)

Sample query

The following query returns statistics for vacuum operations on three different tables. The SALES
table was vacuumed twice.

select table_name, xid, sort_partitions as parts, merge_increments as merges,
elapsed_time, row_delta, sortedrow_delta as sorted_delta, block_delta
from svv_vacuum_summary
order by xid;

table_ | xid |parts|merges| elapsed_ | row_ | sorted_ | block_
name | | | | time | delta | delta | delta
--------+------+-----+------+----------+---------+---------+--------
users | 2985 | 1 | 1 | 61919653 | 0 | 49990 | 20
category| 3982 | 1 | 1 | 24136484 | 0 | 11 | 0
sales | 3992 | 2 | 1 | 71736163 | 0 | 1207192 | 32
sales | 4000 | 1 | 1 | 15363010 | -851648 | -851648 | -140
(4 rows)

SYS monitoring views

Monitoring views are system views in Amazon Redshift that are used to monitor query and
workload resource usage of provisioned clusters and serverless workgroups. These views are
located in the pg_catalog schema. To display the information provided by these views, run SQL
SELECT statements.

Unless noted otherwise, these views are available for Amazon Redshift clusters and Amazon
Redshift Serverless workgroups.

SYS_SERVERLESS_USAGE gathers usage data for Amazon Redshift Serverless only.

Topics

SYS monitoring views 2378

Amazon Redshift Database Developer Guide

• SYS_ANALYZE_COMPRESSION_HISTORY

• SYS_ANALYZE_HISTORY

• SYS_APPLIED_MASKING_POLICY_LOG

• SYS_AUTO_TABLE_OPTIMIZATION

• SYS_CONNECTION_LOG

• SYS_COPY_JOB (preview)

• SYS_COPY_REPLACEMENTS

• SYS_DATASHARE_CHANGE_LOG

• SYS_DATASHARE_CROSS_REGION_USAGE

• SYS_DATASHARE_USAGE_CONSUMER

• SYS_DATASHARE_USAGE_PRODUCER

• SYS_EXTERNAL_QUERY_DETAIL

• SYS_EXTERNAL_QUERY_ERROR

• SYS_INTEGRATION_ACTIVITY

• SYS_INTEGRATION_TABLE_STATE_CHANGE

• SYS_LOAD_DETAIL

• SYS_LOAD_ERROR_DETAIL

• SYS_LOAD_HISTORY

• SYS_MV_REFRESH_HISTORY

• SYS_MV_STATE

• SYS_PROCEDURE_CALL

• SYS_PROCEDURE_MESSAGES

• SYS_QUERY_DETAIL

• SYS_QUERY_HISTORY

• SYS_QUERY_TEXT

• SYS_RESTORE_LOG

• SYS_RESTORE_STATE

• SYS_SCHEMA_QUOTA_VIOLATIONS

• SYS_SERVERLESS_USAGE

• SYS_SESSION_HISTORY

SYS monitoring views 2379

Amazon Redshift Database Developer Guide

• SYS_SPATIAL_SIMPLIFY

• SYS_STREAM_SCAN_ERRORS

• SYS_STREAM_SCAN_STATES

• SYS_TRANSACTION_HISTORY

• SYS_UDF_LOG

• SYS_UNLOAD_DETAIL

• SYS_UNLOAD_HISTORY

• SYS_USERLOG

• SYS_VACUUM_HISTORY

SYS_ANALYZE_COMPRESSION_HISTORY

Records details for compression analysis operations during COPY or ANALYZE COMPRESSION
commands.

SYS_ANALYZE_COMPRESSION_HISTORY is visible to all users. Superusers can see all rows; regular
users can see only their own data. For more information, see Visibility of data in system tables and
views.

Table columns

Column
name

Data type Description

user_id integer The ID of the user who generated the entry.

start_time timestamp The time when the compression analysis operation started.

transacti
on_id

bigint The transaction ID of the compression analysis operation.

table_id integer The table ID of the table that was analyzed.

table_name character(128) The name of the table that was analyzed.

column_po
sition

integer The index of the column in the table that was analyzed to
determine the compression encoding.

SYS_ANALYZE_COMPRESSION_HISTORY 2380

Amazon Redshift Database Developer Guide

Column
name

Data type Description

old_encod
ing

character(15) The encoding type before compression analysis.

new_encod
ing

character(15) The encoding type after compression analysis.

mode character(14) The possible values are:

PRESET

Specifies that the new_encoding is determined by the
Amazon Redshift COPY command based on the column
data type. No data is sampled.

ON

Specifies that the new_encoding is determined by the
Amazon Redshift COPY command based on an analysis
of sample data.

ANALYZE ONLY

Specifies that the new_encoding is determined by the
Amazon Redshift ANALYZE COMPRESSION command
based on an analysis of sample data. However, the
encoding type of the analyzed column is not changed.

Sample queries

The following example inspects the details of compression analysis on the lineitem table by the
last COPY command run in the same session.

select transaction_id, table_id, btrim(table_name) as table_name, column_position,
 old_encoding, new_encoding, mode
from sys_analyze_compression_history
where transaction_id = (select transaction_id from sys_query_history where query_id =
 pg_last_copy_id()) order by column_position;

SYS_ANALYZE_COMPRESSION_HISTORY 2381

Amazon Redshift Database Developer Guide

 transaction_id | table_id | table_name | column_position | old_encoding |
 new_encoding | mode
-----------------+-------------+------------+-----------------+-----------------
+-----------------+-------------
 8196 | 248126 | lineitem | 0 | mostly32 |
 mostly32 | ON
 8196 | 248126 | lineitem | 1 | mostly32 | lzo
 | ON
 8196 | 248126 | lineitem | 2 | lzo |
 delta32k | ON
 8196 | 248126 | lineitem | 3 | delta | delta
 | ON
 8196 | 248126 | lineitem | 4 | bytedict |
 bytedict | ON
 8196 | 248126 | lineitem | 5 | mostly32 |
 mostly32 | ON
 8196 | 248126 | lineitem | 6 | delta | delta
 | ON
 8196 | 248126 | lineitem | 7 | delta | delta
 | ON
 8196 | 248126 | lineitem | 8 | lzo | zstd
 | ON
 8196 | 248126 | lineitem | 9 | runlength | zstd
 | ON
 8196 | 248126 | lineitem | 10 | delta | lzo
 | ON
 8196 | 248126 | lineitem | 11 | delta | delta
 | ON
 8196 | 248126 | lineitem | 12 | delta | delta
 | ON
 8196 | 248126 | lineitem | 13 | bytedict | zstd
 | ON
 8196 | 248126 | lineitem | 14 | bytedict | zstd
 | ON
 8196 | 248126 | lineitem | 15 | text255 | zstd
 | ON
(16 rows)

SYS_ANALYZE_HISTORY

Logs details for ANALYZE operations.

SYS_ANALYZE_HISTORY 2382

https://docs.aws.amazon.com/redshift/latest/dg/r_ANALYZE.html

Amazon Redshift Database Developer Guide

SYS_ANALYZE_HISTORY is visible only to superusers. For more information, see Visibility of data in
system tables and views.

Table columns

Column
name

Data type Description

user_id integer The ID of the user who generated the entry.

transacti
on_id

long The transaction ID.

query_id long The query identifier in SYS_QUERY_HISTORY.

database_
name

char(30) The name of the database.

table_name char(30) The name of the table.

table_id integer The ID of the table.

is_automa
tic

char(1) The value is true (t) if the operation included an Amazon
Redshift ANALYZE operation by default. The value is false (f)
if the ANALYZE command was run explicitly.

status char(15) The result of the analyze command. Possible values are Full,
Skipped, and PredicateColumn.

start_time timestamp The time in UTC of when the ANALYZE operation started
running.

end_time timestamp The time in UTC of when the ANALYZE operation finished
running.

rows double The total number of rows in the table

modified_
rows

double The total number of rows that were modified since the last
ANALYZE operation.

SYS_ANALYZE_HISTORY 2383

https://docs.aws.amazon.com/redshift/latest/dg/SYS_QUERY_HISTORY.html

Amazon Redshift Database Developer Guide

Column
name

Data type Description

analyze_t
hreshold_
percent

integer The value of the analyze_threshold_percent parameter.

last_anal
yze_time

timestamp The time in UTC of when the table was previously analyzed.

Sample queries

 user_id | transaction_id | database_name | schema_name | table_name |
 table_id | is_automatic | Status | start_time | end_time
 | rows | modified_rows | analyze_threshold_percent | last_analyze_time
---------+----------------+---------------+-------------+---------------------
+----------+--------------+--------+----------------------------+----------
+-----------------+------+---------------+---------------------------
+---------------------
 101 | 8006 | dev | public | test_table_562bf8dc
 | 110427 | f | Full | 2023-09-21 18:33:08.504646 | 2023-09-21
 18:33:24.296498 | 5 | 5 | 0 | 2000-01-01
 00:00:00

SYS_APPLIED_MASKING_POLICY_LOG

Use SYS_APPLIED_MASKING_POLICY_LOG to trace the application of dynamic data masking
policies on queries that reference DDM-protected relations.

SYS_APPLIED_MASKING_POLICY_LOG is visible to the following users:

• Superusers

• Users with the sys:operator role

• Users with the ACCESS SYSTEM TABLE permission

Regular users will see 0 rows.

SYS_APPLIED_MASKING_POLICY_LOG 2384

Amazon Redshift Database Developer Guide

Note that SYS_APPLIED_MASKING_POLICY_LOG isn’t visible to users with the sys:secadmin role.

For more information on dynamic data masking, go to Dynamic data masking.

Table columns

Column
name

Data type Description

policy_na
me

text The name of the masking policy.

user_id text The ID of the user who ran the query.

record_time timestamp The time that the system view entry was recorded.

session_id int The process ID.

transacti
on_id

long The transaction ID.

query_id int The query ID.

database_
name

text The name of the database on which the query was run.

relation_
name

text The name of the table that the masking policy is applied to.

schema_na
me

text The name of the schema that the table is in.

attachmen
t_id

long The attached masking policy's ID.

relation_
kind

text The type of the relation that the masking policy is applied
to. Possible values are TABLE, VIEW, LATE BINDING VIEW,
and MATERIALIZED VIEW .

SYS_APPLIED_MASKING_POLICY_LOG 2385

Amazon Redshift Database Developer Guide

Sample queries

The following example shows that the mask_credit_card_full masking policy is attached to
the credit_db.public.credit_cards table.

select policy_name, database_name, relation_name, schema_name, relation_kind
from sys_applied_masking_policy_log;

policy_name | database_name | relation_name | schema_name | relation_kind
----------------------+---------------+---------------+-------------+---------------
mask_credit_card_full | credit_db | credit_cards | public | table

(1 row)

SYS_AUTO_TABLE_OPTIMIZATION

Records automated actions taken by Amazon Redshift on tables defined for automatic
optimization.

SYS_AUTO_TABLE_OPTIMIZATION is visible only to superusers. For more information, see Visibility
of data in system tables and views.

Table columns

Column
name

Data
type

Description

transacti
on_id

long The transaction identifier.

session_id int The session identifier of the process that executed the alter
command.

table_id int The table identifier.

alter_tab
le_type

character
(32)

The type of recommendation. Possible values are distkey,
sortkey, and encode.

status character
(128)

The completion status of the recommendation. Possible values are
Start, Complete, Skipped, Abort, Checkpoint , and Failed.

SYS_AUTO_TABLE_OPTIMIZATION 2386

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

event_time timestamp The timestamp of the status column.

alter_from character
(200)

The previous distribution style and sort keys of the table before
applying the recommendation. The value is truncated into 200-chara
cter increments.

alter_to character
(200)

The current distribution style and sort keys of the table after
applying the recommendation. The value is truncated into 200-chara
cter increments.

Sample queries

In the following example, the rows in the result show actions taken by Amazon Redshift.

SELECT table_id, alter_table_type, status, event_time, alter_from
FROM SYS_AUTO_TABLE_OPTIMIZATION;

 table_id | alter_table_type | status
 | event_time | alter_from
----------+---------------------+--
+-----------------------------+-----------------
 118082 | sortkey | Start
 | 2020-08-22 19:42:20.727049 |
 118078 | sortkey | Start
 | 2020-08-22 19:43:54.728819 |
 118082 | sortkey | Start
 | 2020-08-22 19:42:52.690264 |
 118072 | sortkey | Start
 | 2020-08-22 19:44:14.793572 |
 118082 | sortkey | Failed
 | 2020-08-22 19:42:20.728917 |
 118078 | sortkey | Complete
 | 2020-08-22 19:43:54.792705 | SORTKEY: None;
 118086 | sortkey | Complete
 | 2020-08-22 19:42:00.72635 | SORTKEY: None;
 118082 | sortkey | Complete
 | 2020-08-22 19:43:34.728144 | SORTKEY: None;

SYS_AUTO_TABLE_OPTIMIZATION 2387

Amazon Redshift Database Developer Guide

 118072 | sortkey | Skipped:Retry exceeds the maximum limit for a table.
 | 2020-08-22 19:44:46.706155 |
 118086 | sortkey | Start
 | 2020-08-22 19:42:00.685255 |
 118082 | sortkey | Start
 | 2020-08-22 19:43:34.69531 |
 118072 | sortkey | Start
 | 2020-08-22 19:44:46.703331 |
 118082 | sortkey | Checkpoint: progress 14.755079%
 | 2020-08-22 19:42:52.692828 |
 118072 | sortkey | Failed
 | 2020-08-22 19:44:14.796071 |
 116723 | sortkey | Abort:This table is not AUTO.
 | 2020-10-28 05:12:58.479233 |
 110203 | distkey | Abort:This table is not AUTO.
 | 2020-10-28 05:45:54.67259 |

SYS_CONNECTION_LOG

Logs authentication attempts and connections and disconnections.

SYS_CONNECTION_LOG is visible only to superusers. For more information, see Visibility of data in
system tables and views.

Table columns

Column
name

Data type Description

event character(50) Connection or authentication event.

record_time timestamp Time the event occurred.

remote_ho
st

character(45) Name or IP address of remote host.

remote_po
rt

character(32) Port number for remote host.

session_id integer Process ID associated with the statement.

SYS_CONNECTION_LOG 2388

Amazon Redshift Database Developer Guide

Column
name

Data type Description

database_
name

character(50) Database name.

user_name character(50) Username.

auth_meth
od

character(32) Authentication method.

duration integer Duration of connection in microseconds.

ssl_version character(50) Secure Sockets Layer (SSL) version.

ssl_cipher character(128) SSL cipher.

mtu integer Maximum transmission unit (MTU).

ssl_compr
ession

character(64) SSL compression type.

ssl_expan
sion

character(64) SSL expansion type.

iam_auth_
guid

character(36) The IAM authentication ID for the CloudTrail request.

applicati
on_name

character(250) The initial or updated name of the application for a session.

driver_ve
rsion

character(64) The version of ODBC or JDBC driver that connects to your
Amazon Redshift cluster from your third-party SQL client
tools.

os_version character(64) The version of the operating system that is on the client
machine that connects to your Amazon Redshift cluster.

plugin_na
me

character(32) The name of the plugin used to connect to your Amazon
Redshift cluster.

SYS_CONNECTION_LOG 2389

Amazon Redshift Database Developer Guide

Column
name

Data type Description

protocol_
version

integer The internal protocol version that the Amazon Redshift
driver uses when establishing its connection with the server.
The protocol versions are negotiated between the driver and
server. The version describes the features available. Valid
values include:

• 0 (BASE_SERVER_PROTOCOL_VERSION)

• 1 (EXTENDED_RESULT_METADATA_SERVER_PRO
TOCOL_VERSION) – To save a round trip per query, the
server sends extra result set metadata information.

• 2 (BINARY_PROTOCOL_VERSION) – Depending on the
data type of the result set, the server sends data in binary
format.

• 3 (EXTENDED2_RESULT_METADATA_SERVER_PR
OTOCOL_VERSION) – The server sends case sensitivity
(collation) information of a column.

global_se
ssion_id

character(36) The globally unique identifier for the current session. The
session ID persists through node failure restarts.

Sample queries

To view the details for open connections, run the following query.

select record_time, user_name, database_name, remote_host, remote_port
from sys_connection_log
where event = 'initiating session'
and session_id not in
(select session_id from sys_connection_log
where event = 'disconnecting session')
order by 1 desc;

record_time | user_name | database_name | remote_host | remote_port

SYS_CONNECTION_LOG 2390

Amazon Redshift Database Developer Guide

--------------------+-------------+-----------------+---------------
+---------------------------------
2014-11-06 20:30:06 | rdsdb | dev | [local] |

2014-11-06 20:29:37 | test001 | test | 10.49.42.138 | 11111

2014-11-05 20:30:29 | rdsdb | dev | 10.49.42.138 | 33333

2014-11-05 20:28:35 | rdsdb | dev | [local] |
(4 rows)

The following example reflects a failed authentication attempt and a successful connection and
disconnection.

select event, record_time, remote_host, user_name
from sys_connection_log order by record_time;

 event | record_time | remote_host | user_name

-----------------------+----------------------------+---------------+---------
authentication failure | 2012-10-25 14:41:56.96391 | 10.49.42.138 | john

authenticated | 2012-10-25 14:42:10.87613 | 10.49.42.138 | john

initiating session | 2012-10-25 14:42:10.87638 | 10.49.42.138 | john

disconnecting session | 2012-10-25 14:42:19.95992 | 10.49.42.138 | john

(4 rows)

The following example shows the version of the ODBC driver, the operating system on the client
machine, and the plugin used to connect to the Amazon Redshift cluster. In this example, the
plugin used is for standard ODBC driver authentication using a login name and password.

select driver_version, os_version, plugin_name from sys_connection_log;

driver_version | os_version |
 plugin_name
--+-----------------------------------
+--------------------
Amazon Redshift ODBC Driver 1.4.15.0001 | Darwin 18.7.0 x86_64 | none
Amazon Redshift ODBC Driver 1.4.15.0001 | Linux 4.15.0-101-generic x86_64 | none

SYS_CONNECTION_LOG 2391

Amazon Redshift Database Developer Guide

The following example shows the version of the operating system on the client machine, the driver
version, and the protocol version.

select os_version, driver_version, protocol_version from sys_connection_log;

os_version | driver_version | protocol_version
--------------------------------+------------------------------+--------------------
Linux 4.15.0-101-generic x86_64 | Redshift JDBC Driver 2.0.0.0 | 2
Linux 4.15.0-101-generic x86_64 | Redshift JDBC Driver 2.0.0.0 | 2
Linux 4.15.0-101-generic x86_64 | Redshift JDBC Driver 2.0.0.0 | 2

SYS_COPY_JOB (preview)

This is prerelease documentation for autocopy (SQL COPY JOB), which is in preview release.
The documentation and the feature are both subject to change. We recommend that you use
this feature only in test environments, and not in production environments. Public preview
will end on June 30, 2024. Preview clusters will be removed automatically two weeks after the
end of the preview. For preview terms and conditions, see Betas and Previews in AWS Service
Terms.

Use SYS_COPY_JOB to view details of COPY JOB commands.

This view contains the COPY JOB commands that have been created.

SYS_COPY_JOB is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

job_id bigint The copy job identifier.

job_name character(128) The name of the copy job.

iam_role character(128) The IAM role specified in the
COPY statement.

SYS_COPY_JOB (preview) 2392

https://aws.amazon.com/service-terms/
https://aws.amazon.com/service-terms/

Amazon Redshift Database Developer Guide

Column name Data type Description

job_text character(256) The parameters of the COPY
statement.

is_auto integer Indicates whether the COPY
JOB is automatically run
by Amazon Redshift. A 1
indicates true, 0 indicates
false.

on_error_suspend integer This information is for
internal use only.

SYS_COPY_REPLACEMENTS

Displays a log that records when invalid UTF-8 characters were replaced by the COPY command
with the ACCEPTINVCHARS option. A log entry is added to SYS_COPY_REPLACEMENTS for each of
the first 100 rows on each node slice that required at least one replacement.

You can use this view to see information about serverless workgroups and provisioned clusters.

SYS_COPY_REPLACEMENTS is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

user_id integer ID of the user who generated the query.

query_id bigint The query ID. The column used to join other system tables
and views.

table_id integer The table ID.

file_name character
(256)

The complete path to the input file for the COPY command.

SYS_COPY_REPLACEMENTS 2393

Amazon Redshift Database Developer Guide

Column name Data type Description

column_name character
(127)

The first field that contains an invalid UTF-8 character.

line_number bigint The line number in the input data file that containes an
invalid UTF-8 character. -1 indicates that the line number is
not available, such as when copying from a columnar data
file.

raw_line character
(1024)

The raw load data that contains an invalid UTF-8 character.

Sample queries

The following example returns replacements for the most recent COPY operation.

select query_idp, table_id, file_name, line_number, colname
from sys_copy_replacements
where query = pg_last_copy_id();

 query_id | table_id | file_name | line_number | column_name
 ---------+----------+-----------------------------------+-------------+--------
 96 | 26 | s3://mybucket/allusers_pipe.txt | 123 | city
 96 | 26 | s3://mybucket/allusers_pipe.txt | 456 | city
 96 | 26 | s3://mybucket/allusers_pipe.txt | 789 | city
 96 | 26 | s3://mybucket/allusers_pipe.txt | 012 | city
 96 | 26 | s3://mybucket/allusers_pipe.txt | 119 | city
...

SYS_DATASHARE_CHANGE_LOG

Records the consolidated view for tracking changes to datashares on both producer and consumer
clusters.

SYS_DATASHARE_CHANGE_LOG is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

SYS_DATASHARE_CHANGE_LOG 2394

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data
type

Description

user_id integer The ID of the user taking the action.

user_name varchar(1
28)

The name of the user taking the action.

session_id integer The ID of the session.

transacti
on_id

bigint The ID of the transaction.

share_id integer The ID of the datashare affected.

share_name varchar(1
28)

The name of the datashare.

source_da
tabase_id

integer The ID of the database to which the datashare belongs.

source_da
tabase_na
me

varchar(1
28)

The name of the database to which the datashare belongs.

consumer_
database_id

integer The ID of the database imported from the datashare.

consumer_
database_
name

varchar(1
28)

The name of the database imported from the datashare.

arn varchar(1
92)

The ARN of the resource backing the imported database.

record_time timestamp The timestamp of the action.

SYS_DATASHARE_CHANGE_LOG 2395

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

action varchar(1
28)

The action being run. Possible values are CREATE DATASHARE, DROP
DATASHARE, GRANT ALTER, REVOKE ALTER, GRANT SHARE, REVOKE
SHARE, ALTER ADD, ALTER REMOVE, ALTER SET, GRANT USAGE,
REVOKE USAGE, CREATE DATABASE, GRANT, or REVOKE USAGE
on a shared database, DROP SHARED DATABASE, ALTER SHARED
DATABASE.

status integer The status of the action. Possible values are SUCCESS and ERROR-
ERROR CODE.

share_obj
ect_type

varchar(6
4)

The type of database object that was added to or removed from the
datashare. Possible values are schemas, tables, columns, functions,
and views. This is a field for the producer cluster.

share_obj
ect_id

integer The ID of database object that was added to or removed from the
datashare. This is a field for the producer cluster.

share_obj
ect_name

varchar(1
28)

The name of database object that was added to or removed from
the datashare. This is a field for the producer cluster.

target_us
er_type

varchar(1
6)

The type of users or groups that a privilege was granted to. This is a
field for both the producer and consumer cluster.

target_us
er_id

integer The ID of users or groups that a privilege was granted to. This is a
field for both the producer and consumer cluster.

target_us
er_name

varchar(1
28)

The name of users or groups that a privilege was granted to. This is a
field for both the producer and consumer cluster.

consumer_
account

varchar(1
6)

The account ID of the data consumer. This is a field for the producer
cluster.

consumer_
namespace

varchar(6
4)

The namespace of the data consumer account. This is a field for the
producer cluster.

SYS_DATASHARE_CHANGE_LOG 2396

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

producer_
account

varchar(1
6)

The account ID of the producer account that the datashare belongs
to. This is a field for the consumer cluster.

producer_
namespace

varchar(6
4)

The namespace of the product account that the datashare belongs
to. This is a field for the consumer cluster.

attribute
_name

varchar(6
4)

The name of an attribute of the datashare or shared database.

attribute
_value

varchar(1
28)

The value of an attribute of the datashare or shared database.

message varchar(5
12)

The error message when an action fails.

Sample queries

The following example shows a SYS_DATASHARE_CHANGE_LOG view.

SELECT DISTINCT action
FROM sys_datashare_change_log
WHERE share_object_name LIKE 'tickit%';

 action

 "ALTER DATASHARE ADD"

SYS_DATASHARE_CROSS_REGION_USAGE

Use the SYS_DATASHARE_CROSS_REGION_USAGE view to get a summary of
cross-Region data transferred usage caused by cross-Region datasharing query.
SYS_DATASHARE_CROSS_REGION_USAGE aggregates details at the segment level.

SYS_DATASHARE_CROSS_REGION_USAGE is visible only to superusers. For more information, see
Visibility of data in system tables and views.

SYS_DATASHARE_CROSS_REGION_USAGE 2397

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data
type

Description

query_id integer The ID of the query. Use this value to join other system tables and
views.

child_que
ry_sequence

integer The sequence of the rewritten user query, starting with 1.

segment_id bigint The number of the segment. A query consists of multiple segments,
and each segment consists of one or more steps.

start_time time The time in UTC that the data transfer began.

end_time time The time in UTC that the data transfer ended.

transferr
ed_data

bigint The number of bytes of data transferred from a producer Region to a
consumer Region.

source_re
gion

char(25) The producer Region that the query transferred data from.

Sample queries

The following example shows a SYS_DATASHARE_CROSS_REGION_USAGE view.

SELECT query, segment, transferred_data, source_region
from sys_datashare_cross_region_usage
where query = pg_last_query_id()
order by query,segment;

 query | segment | transferred_data | source_region
--------+---------+------------------+---------------
 200048 | 2 | 4194304 | us-west-1
 200048 | 2 | 4194304 | us-east-2

SYS_DATASHARE_CROSS_REGION_USAGE 2398

Amazon Redshift Database Developer Guide

SYS_DATASHARE_USAGE_CONSUMER

Records the activity and usage of datashares. This view is only relevant on the consumer cluster.

SYS_DATASHARE_USAGE_CONSUMER is visible to all users. Superusers can see all rows; regular
users can see only their own data. For more information, see Visibility of data in system tables and
views.

Table columns

Column
name

Data
type

Description

user_id integer The ID of the user issuing the request.

session_id integer The ID of the leader process running the query.

transacti
on_id

bigint The context of the current transaction.

request_id varchar(5
0)

The unique ID of the requested API call.

request_t
ype

varchar(2
5)

The type of the request made to the producer cluster.

transacti
on_uid

varchar(5
0)

The unique ID of the transaction.

record_time timestamp The time when the action is recorded.

status integer The status of the requested API call.

error_mes
sage

varchar(5
12)

The message for an error.

Sample queries

The following example shows the SYS_DATASHARE_USAGE_CONSUMER view.

SYS_DATASHARE_USAGE_CONSUMER 2399

Amazon Redshift Database Developer Guide

SELECT request_type, status, trim(error) AS error
FROM sys_datashare_usage_consumer

 request_type | status | error_message
----------------+--------+---------------
 "GET RELATION" | 0 |

SYS_DATASHARE_USAGE_PRODUCER

Records the activity and usage of datashares. This view is only relevant on the producer cluster.

SYS_DATASHARE_USAGE_PRODUCER is visible to all users. Superusers can see all rows; regular
users can see only their own data. For more information, see Visibility of data in system tables and
views.

Table columns

Column
name

Data
type

Description

share_id integer The object ID (OID) of the datashare.

share_name varchar(1
28)

The name of the datashare.

request_id varchar(5
0)

The unique ID of the requested API call.

request_t
ype

varchar(2
5)

The type of the request made to the producer cluster.

object_type varchar(6
4)

The type of the object being shared from the datashare. Possible
values are schemas, tables, columns, functions, and views.

object_oid integer The ID of the object being shared from the datashare.

object_name varchar(1
28)

The name of the object being shared from the datashare.

SYS_DATASHARE_USAGE_PRODUCER 2400

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

consumer_
account

varchar(1
6)

The account of the consumer account that the datashare is shared
to.

consumer_
namespace

varchar(6
4)

The namespace of the consumer account that the datashare is
shared to.

consumer_
transacti
on_uid

varchar(5
0)

The unique transaction ID of the statement on the consumer cluster.

record_time timestamp The time when the action is recorded.

status integer The status of the datashare.

error_mes
sage

varchar(5
12)

The message for an error.

consumer_
region

char(64) The Region that the consumer cluster is in.

Sample queries

The following example shows the SYS_DATASHARE_USAGE_PRODUCER view.

SELECT DISTINCT
FROM sys_datashare_usage_producer
WHERE object_name LIKE 'tickit%';

 request_type

 "GET RELATION"

SYS_EXTERNAL_QUERY_DETAIL

Use SYS_EXTERNAL_QUERY_DETAIL to view details for queries at a segment level. Each row
represents a segment from a particular WLM query with details like the number of rows processed,

SYS_EXTERNAL_QUERY_DETAIL 2401

Amazon Redshift Database Developer Guide

number of bytes processed, and partition info of external tables in Amazon S3. Each row in this
view will also have a corresponding entry in the SYS_QUERY_DETAIL view, except this view has
more detail information related to external query processing.

SYS_EXTERNAL_QUERY_DETAIL is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

user_id integer The identifier of the user who
submitted the query.

query_id bigint The query identifier of the
external query.

transaction_id bigint The transaction identifier.

child_query_sequence integer The sequence of the rewritten
user query. Starts with 0,
similar to segment_id.

segment_id integer The segment identifier of the
query segment.

source_type character(32) The data source type of the
query, it could be S3 for
Redshift Spectrum, PG for
federated query.

start_time timestamp The time when the query
began.

end_time timestamp The time when the query
completed.

duration bigint The amount of time (microsec
onds) spent on the query.

SYS_EXTERNAL_QUERY_DETAIL 2402

Amazon Redshift Database Developer Guide

Column name Data type Description

total_partitions integer The number of partitions an
Amazon S3 query required.

qualified_partitions integer The number of partitions an
Amazon S3 query scanned.

scanned_files bigint The number of Amazon S3
files scanned.

returned_rows bigint The number of scanned rows
for an Amazon S3 query, or
the number of returned rows
for a federated query.

returned_bytes bigint The number of scanned bytes
for an Amazon S3 query, or
the number of returned bytes
for a federated query.

file_format text The file format of Amazon S3
files.

file_location text The Amazon S3 location of
external table.

external_query_text text The segment level query text
for a federated query.

warning_message character(4000) The warning message
displayed when the query
runs.

table_name character(136) The table name of the step
that is being operated.

is_recursive character(1) Indicates whether there is
recursive scan for subfolders.

SYS_EXTERNAL_QUERY_DETAIL 2403

Amazon Redshift Database Developer Guide

Column name Data type Description

is_nested character(1) Indicates whether the nested
column data type is accessed.

s3list_time bigint The duration of file listing in
milliseconds.

get_partition_time long Time spent to list and qualify
partitions for a given external
object from the AWS Glue
Data Catalog and Apache
Hive.

Sample queries

The following query shows the external query details.

SELECT query_id,
 segment_id,
 start_time,
 end_time,
 total_partitions,
 qualified_partitions,
 scanned_files,
 returned_rows,
 returned_bytes,
 trim(external_query_text) query_text,
 trim(file_location) file_location
FROM sys_external_query_detail
ORDER BY query_id, start_time DESC
LIMIT 2;

Sample output.

 query_id | segment_id | start_time | end_time
 | total_partitions | qualified_partitions | scanned_files | returned_rows |
 returned_bytes | query_text | file_location

SYS_EXTERNAL_QUERY_DETAIL 2404

Amazon Redshift Database Developer Guide

----------+------------+----------------------------+----------------------------
+------------------+----------------------+---------------+---------------
+----------------+------------+---------------
 763251 | 0 | 2022-02-15 22:32:23.312448 | 2022-02-15 22:32:24.036023 |
 3 | 3 | 3 | 38203 | 2683414 |
 |
 763254 | 0 | 2022-02-15 22:32:40.17103 | 2022-02-15 22:32:40.839313 |
 3 | 3 | 3 | 38203 | 2683414 |
 |

SYS_EXTERNAL_QUERY_ERROR

You can query the system view SYS_EXTERNAL_QUERY_ERROR to get information about Redshift
Spectrum scan errors. SYS_EXTERNAL_QUERY_ERROR displays a sample of logged errors. The
default is 10 entries per query.

SYS_EXTERNAL_QUERY_ERROR is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

user_id integer The identifier of the user that generated this row.

query_id bigint The query identifier of the query that generated this row.

file_loca
tion

char(256) The location of the data being queried.

rowid char(2100) The location of the error within the file. The rowid parts
are separated with a : (colon) and additional parts might
be added in the future.

row_offset :row_group :row_id

A row_offset is the offset (in bytes) of the row within the
file and is set to -1 for unsupported file formats. A table

SYS_EXTERNAL_QUERY_ERROR 2405

Amazon Redshift Database Developer Guide

Column
name

Data type Description

is divided into row_groups, and each group has rows with
distinct row_ids.

column_na
me

char(127) The name of the column returned by the query.

original_
value

char(1024) Original value queried.

modified_
value

char(1024) Modified value returned based on the data handling
configuration option specified in the query.

trigger char(128) Data handling option specified in the query.

action char(128) Action associated with the data handling option specified
in the query.

action_va
lue

char(128) Value of action parameter associated with the data
handling option specified in the query.

error_code integer Result code of the data handling option specified in the
query.

Sample query

The following query returns the list of rows for which data handling operations were performed.

SELECT * FROM sys_external_query_error;

The query returns results similar to the following.

 user_id query_id file_location rowid
 column_name original_value modified_value trigger
 action action_value error_code

SYS_EXTERNAL_QUERY_ERROR 2406

Amazon Redshift Database Developer Guide

 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:0
 league_name Barclays Premier League Barclays Premier Lea UNSPECIFIED
 TRUNCATE 156
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:0
 league_nspi 34595 32767 UNSPECIFIED
 OVERFLOW_VALUE 199
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:1
 league_nspi 34151 32767 UNSPECIFIED
 OVERFLOW_VALUE 199
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:2
 league_name Barclays Premier League Barclays Premier Lea UNSPECIFIED
 TRUNCATE 156
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:2
 league_nspi 33223 32767 UNSPECIFIED
 OVERFLOW_VALUE 199
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:3
 league_name Barclays Premier League Barclays Premier Lea UNSPECIFIED
 TRUNCATE 156
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:3
 league_nspi 32808 32767 UNSPECIFIED
 OVERFLOW_VALUE 199
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:4
 league_nspi 32790 32767 UNSPECIFIED
 OVERFLOW_VALUE 199
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:5
 league_name Spanish Primera Division Spanish Primera Divi UNSPECIFIED
 TRUNCATE 156
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:6
 league_name Spanish Primera Division Spanish Primera Divi UNSPECIFIED
 TRUNCATE 156

SYS_INTEGRATION_ACTIVITY

SYS_INTEGRATION_ACTIVITY displays details about completed integration runs.

SYS_INTEGRATION_ACTIVITY is visible only to superusers. For more information, see Visibility of
data in system tables and views.

For information about zero-ETL integrations, see Working with zero-ETL integrations in the
Amazon Redshift Management Guide.

SYS_INTEGRATION_ACTIVITY 2407

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.html

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

integration_id character
(128)

The identifier associated with the integration.

target_database character
(128)

The database in Amazon Redshift that receives the
integration data.

source character
(128)

The source data for the integration. Possible types
includes MySQL and PostgreSQL .

checkpoint_name character
(128)

The name of the checkpoint replicating binlog
coordinates.

checkpoint_type character
(16)

The type of checkpoint. Possible values include:
snapshot, cdc.

checkpoint_bytes bigint The number of bytes in this checkpoint.

last_commit_timestamp timestamp The timestamp when last commited in this
checkpoint.

modified_tables integer The number of tables modified in the checkpoint.

integration_start_time time The time (UTC) when integration started for this
checkpoint.

integration_end_time time The time (UTC) when integration ended for this
checkpoint.

Sample queries

The following SQL command displays the log of integrations.

select * from sys_integration_activity;

 integration_id | target_database | source |
 checkpoint_name | checkpoint_type | checkpoint_bytes |

SYS_INTEGRATION_ACTIVITY 2408

Amazon Redshift Database Developer Guide

 last_commit_timestamp | modified_tables | integration_start_time |
 integration_end_time
--------------------------------------+-----------------+--------
+---+------------------+------------------
+-------------------------+-----------------+----------------------------
+----------------------------
 76b15917-afae-4447-b7fd-08e2a5acce7b | demo1 | MySQL | checkpoints/
checkpoint_3_241_3_510.json | cdc | 762 | 2023-05-10
 23:00:14.201 | 1 | 2023-05-10 23:00:45.054265 | 2023-05-10
 23:00:46.339826
 76b15917-afae-4447-b7fd-08e2a5acce7b | demo1 | MySQL | checkpoints/
checkpoint_3_16329_3_17839.json | cdc | 13488 | 2023-05-11
 01:33:57.411 | 2 | 2023-05-11 02:19:09.440121 | 2023-05-11
 02:19:16.090492
 76b15917-afae-4447-b7fd-08e2a5acce7b | demo1 | MySQL | checkpoints/
checkpoint_3_5103_3_5532.json | cdc | 1657 | 2023-05-10
 23:13:14.205 | 2 | 2023-05-10 23:13:23.545487 | 2023-05-10
 23:13:25.652144

SYS_INTEGRATION_TABLE_STATE_CHANGE

SYS_INTEGRATION_TABLE_STATE_CHANGE displays details about table state change logs for
integrations.

A superuser can see all rows in this table.

For more information, see Working with Zero-ETL integrations.

Table columns

Column name Data type Description

integration_id character
(128)

The identifier associated with the integration.

database_name character
(128)

The name of the Amazon Redshift database.

schema_name character
(128)

The name of the Amazon Redshift schema.

SYS_INTEGRATION_TABLE_STATE_CHANGE 2409

https://docs.aws.amazon.com/redshift/latest/mgmt/zero-etl-using.html

Amazon Redshift Database Developer Guide

Column name Data type Description

table_name character
(128)

The name of the table.

new_state character
(128)

The state of the table. Possible values are Synced,
ResyncRequired , ResyncInitiated ,
Deleted, Failed, and ResyncDeleted .

table_last_replica
ted_checkpoint

character
(128)

The current synced log coordinates.

state_change_reason character
(256)

The reason for the last state transition.

record_time timestamp The time (UTC) when this record was updated.

Sample queries

The following SQL command displays the log of integrations.

select * from sys_integration_table_state_change;

 integration_id | database_name | schema_name | table_name
 | new_state | table_last_replicated_checkpoint | state_change_reason |
 record_time
--------------------------------------+---------------+-------------+------------
+-----------+-------------------------------------+---------------------
+----------------------------
 99108e72-1cfd-414f-8cc0-0216acefac77 | perfdb | sbtest80t3s | sbtest79 |
 Synced | {"txn_seq":9834,"txn_id":126597515} | | 2023-09-20
 19:39:50.087868
 99108e72-1cfd-414f-8cc0-0216acefac77 | perfdb | sbtest80t3s | sbtest56 |
 Synced | {"txn_seq":9834,"txn_id":126597515} | | 2023-09-20
 19:39:45.54005
 99108e72-1cfd-414f-8cc0-0216acefac77 | perfdb | sbtest80t3s | sbtest50 |
 Synced | {"txn_seq":9834,"txn_id":126597515} | | 2023-09-20
 19:40:20.362504
 99108e72-1cfd-414f-8cc0-0216acefac77 | perfdb | sbtest80t3s | sbtest18 |
 Synced | {"txn_seq":9834,"txn_id":126597515} | | 2023-09-20
 19:40:32.544084

SYS_INTEGRATION_TABLE_STATE_CHANGE 2410

Amazon Redshift Database Developer Guide

 99108e72-1cfd-414f-8cc0-0216acefac77 | perfdb | sbtest40t3s | sbtest23 |
 Synced | {"txn_seq":9834,"txn_id":126597515} | | 2023-09-20
 15:49:05.186209

SYS_LOAD_DETAIL

Returns information to track or troubleshoot a data load.

This view records the progress of each data file as it is loaded into a database table.

This view is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

user_id integer ID of the user who generated the entry.

query_id integer Query ID.

file_name character(256) File name to be loaded.

bytes_sca
nned

integer The number of bytes scanned from the file in Amazon S3.

lines_sca
nned

integer Number of lines scanned from the load file. This number
may not match the number of rows that are actually loaded.
For example, the load may scan but tolerate a number of
bad records, based on the MAXERROR option in the COPY
command.

record_time timestamp Time that this entry was last updated.

splits_sc
anned

Number of splits
of this file.

Number of splits of this file.

start_time timestamp Time that this file processing started.

end_time timestamp Time that this file processing finished.

SYS_LOAD_DETAIL 2411

Amazon Redshift Database Developer Guide

Sample queries

The following example returns details for the last COPY operation.

select query_id, trim(file_name) as file, record_time
from sys_load_detail
where query_id = pg_last_copy_id();

 query_id | file | record_time
----------+----------------------------------+----------------------------
 28554 | s3://dw-tickit/category_pipe.txt | 2013-11-01 17:14:52.648486
(1 row)

The following query contains entries for a fresh load of the tables in the TICKIT database:

select query_id, trim(file_name), record_time
from sys_load_detail
where file_name like '%tickit%' order by query_id;

 query_id | btrim | record_time
----------+--------------------------+----------------------------
 22475 | tickit/allusers_pipe.txt | 2013-02-08 20:58:23.274186
 22478 | tickit/venue_pipe.txt | 2013-02-08 20:58:25.070604
 22480 | tickit/category_pipe.txt | 2013-02-08 20:58:27.333472
 22482 | tickit/date2008_pipe.txt | 2013-02-08 20:58:28.608305
 22485 | tickit/allevents_pipe.txt| 2013-02-08 20:58:29.99489
 22487 | tickit/listings_pipe.txt | 2013-02-08 20:58:37.632939
 22593 | tickit/allusers_pipe.txt | 2013-02-08 21:04:08.400491
 22596 | tickit/venue_pipe.txt | 2013-02-08 21:04:10.056055
 22598 | tickit/category_pipe.txt | 2013-02-08 21:04:11.465049
 22600 | tickit/date2008_pipe.txt | 2013-02-08 21:04:12.461502
 22603 | tickit/allevents_pipe.txt| 2013-02-08 21:04:14.785124
 22605 | tickit/listings_pipe.txt | 2013-02-08 21:04:20.170594

(12 rows)

The fact that a record is written to the log file for this system view does not mean that the load
committed successfully as part of its containing transaction. To verify load commits, query the
STL_UTILITYTEXT view and look for the COMMIT record that corresponds with a COPY transaction.
For example, this query joins SYS_LOAD_DETAIL and STL_QUERY based on a subquery against
STL_UTILITYTEXT:

SYS_LOAD_DETAIL 2412

Amazon Redshift Database Developer Guide

select l.query_id,rtrim(l.file_name),q.xid
from sys_load_detail l, stl_query q
where l.query_id=q.query
and exists
(select xid from stl_utilitytext where xid=q.xid and rtrim("text")='COMMIT');

 query_id | rtrim | xid
----------+---------------------------+-------
 22600 | tickit/date2008_pipe.txt | 68311
 22480 | tickit/category_pipe.txt | 68066
 7508 | allusers_pipe.txt | 23365
 7552 | category_pipe.txt | 23415
 7576 | allevents_pipe.txt | 23429
 7516 | venue_pipe.txt | 23390
 7604 | listings_pipe.txt | 23445
 22596 | tickit/venue_pipe.txt | 68309
 22605 | tickit/listings_pipe.txt | 68316
 22593 | tickit/allusers_pipe.txt | 68305
 22485 | tickit/allevents_pipe.txt | 68071
 7561 | allevents_pipe.txt | 23429
 7541 | category_pipe.txt | 23415
 7558 | date2008_pipe.txt | 23428
 22478 | tickit/venue_pipe.txt | 68065
 526 | date2008_pipe.txt | 2572
 7466 | allusers_pipe.txt | 23365
 22482 | tickit/date2008_pipe.txt | 68067
 22598 | tickit/category_pipe.txt | 68310
 22603 | tickit/allevents_pipe.txt | 68315
 22475 | tickit/allusers_pipe.txt | 68061
 547 | date2008_pipe.txt | 2572
 22487 | tickit/listings_pipe.txt | 68072
 7531 | venue_pipe.txt | 23390
 7583 | listings_pipe.txt | 23445
(25 rows)

SYS_LOAD_ERROR_DETAIL

Use SYS_LOAD_ERROR_DETAIL to view details of COPY command errors. Each row represents a
COPY command. It contains both running and finished COPY commands.

SYS_LOAD_ERROR_DETAIL is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

SYS_LOAD_ERROR_DETAIL 2413

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

user_id integer The identifier of the user who
submitted the copy.

query_id bigint The query identifier of the
copy.

transaction_id bigint The transaction identifier.

session_id integer The process identifier of the
process running the copy.

database_name character(64) The name of the database the
user was connected to when
the copy was issued.

table_id integer The table identifier.

start_time timestamp The time (UTC) when the copy
began.

file_name character(256) The complete path to the
input file to load.

line_number bigint The line number in the load
file with the error. When you
load a JSON file, the line
number of the last line of the
JSON object with the error.

column_name character(127) The field with the error.

column_type character(10) The data type of the field
with the error.

column_length character(10) The column length, if
applicable. This field is

SYS_LOAD_ERROR_DETAIL 2414

Amazon Redshift Database Developer Guide

Column name Data type Description

populated when the data
type has a limit length. For
example, for a column with
a data type of "character(3)",
this column contains the
value "3."

position integer The position of the error in
the field.

error_code integer The error code.

error_message character(512) The explanation of the error.

Sample queries

The following query shows the load error details of copy command for specific query.

SELECT query_id,
 table_id,
 start_time,
 trim(file_name) AS file_name,
 trim(column_name) AS column_name,
 trim(column_type) AS column_type,
 trim(error_message) AS error_message
FROM sys_load_error_detail
WHERE query_id = 762949
ORDER BY start_time
LIMIT 10;

Sample output.

 query_id | table_id | start_time | file_name
 | column_name | column_type | error_message
----------+----------+----------------------------
+--+-------------+-------------
+--

SYS_LOAD_ERROR_DETAIL 2415

Amazon Redshift Database Developer Guide

 762949 | 137885 | 2022-02-15 22:14:46.759151 | s3://load-test/copyfail/
wrong_format_000 | id | int4 | Invalid digit, Value 'a', Pos 0, Type:
 Integer
 762949 | 137885 | 2022-02-15 22:14:46.759151 | s3://load-test/copyfail/
wrong_format_001 | id | int4 | Invalid digit, Value 'a', Pos 0, Type:
 Integer

SYS_LOAD_HISTORY

Use SYS_LOAD_HISTORY to view details of COPY commands. Each row represents a COPY
command with accumulated statistics for some of the fields. It contains both running and finished
COPY commands.

SYS_LOAD_HISTORY is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

user_id integer The identifier of the user who
submitted the copy.

query_id bigint The query identifier of the
copy.

transaction_id bigint The transaction identifier.

session_id integer The process identifier of the
process running the copy.

database_name text The name of the database the
user was connected to when
the operation was issued.

status text The status of the copy.
Valid values are running,
completed , aborted.

SYS_LOAD_HISTORY 2416

Amazon Redshift Database Developer Guide

Column name Data type Description

table_name text The name of the table
copying into.

start_time timestamp The time when the copy
began.

end_time timestamp The time when the copy
completed.

duration bigint The amount of time (microsec
onds) spent in the COPY
command.

data_source text The Amazon S3 location of
files input to copy.

file_format text The source file format.
Formats include csv, txt, json,
avro, orc, or parquet.

loaded_rows bigint The number of rows copied to
a table.

loaded_bytes bigint The number of bytes copied
to a table.

source_file_count integer The number of files count in
source files.

source_file_bytes bigint The number of bytes in
source files.

file_count_scanned integer The number of scanned files
from Amazon S3.

file_bytes_scanned bigint The number of bytes scanned
from the file in Amazon S3.

SYS_LOAD_HISTORY 2417

Amazon Redshift Database Developer Guide

Column name Data type Description

error_count bigint The number of errors count.

copy_job_id bigint The copy job identifier. A 0
indicates no job identifier.

Sample queries

The following query shows the loaded rows, bytes, tables, and datasource of specific copy
commands.

SELECT query_id,
 table_name,
 data_source,
 loaded_rows,
 loaded_bytes
FROM sys_load_history
WHERE query_id IN (6389,490791,441663,74374,72297)
ORDER BY query_id,
 data_source DESC;

Sample output.

 query_id | table_name | data_source
 | loaded_rows | loaded_bytes
----------+------------------
+---+-------------
+---------------
 6389 | store_returns | s3://load-test/data-sources/tpcds/2.8.0/textfile/1T/
store_returns/ | 287999764 | 1196240296158
 72297 | web_site | s3://load-test/data-sources/tpcds/2.8.0/textfile/1T/
web_site/ | 54 | 43808
 74374 | ship_mode | s3://load-test/data-sources/tpcds/2.8.0/textfile/1T/
ship_mode/ | 20 | 1320
 441663 | income_band | s3://load-test/data-sources/tpcds/2.8.0/textfile/1T/
income_band/ | 20 | 2152
 490791 | customer_address | s3://load-test/data-sources/tpcds/2.8.0/textfile/1T/
customer_address/ | 6000000 | 722924305

The following query shows the loaded rows, bytes, tables, and datasource of copy commands.

SYS_LOAD_HISTORY 2418

Amazon Redshift Database Developer Guide

SELECT query_id,
 table_name,
 data_source,
 loaded_rows,
 loaded_bytes
FROM sys_load_history
ORDER BY query_id DESC
LIMIT 10;

Sample output.

 query_id | table_name | data_source
 | loaded_rows | loaded_bytes
----------+------------------------
+---
+-------------+-----------------
 491058 | web_site | s3://load-test/data-sources/tpcds/2.8.0/
textfile/1T/web_site/ | 54 | 43808
 490947 | web_sales | s3://load-test/data-sources/tpcds/2.8.0/
textfile/1T/web_sales/ | 720000376 | 22971988122819
 490923 | web_returns | s3://load-test/data-sources/tpcds/2.8.0/
textfile/1T/web_returns/ | 71997522 | 96597496325
 490918 | web_page | s3://load-test/data-sources/tpcds/2.8.0/
textfile/1T/web_page/ | 3000 | 1320
 490907 | warehouse | s3://load-test/data-sources/tpcds/2.8.0/
textfile/1T/warehouse/ | 20 | 1320
 490902 | time_dim | s3://load-test/data-sources/tpcds/2.8.0/
textfile/1T/time_dim/ | 86400 | 1320
 490876 | store_sales | s3://load-test/data-sources/tpcds/2.8.0/
textfile/1T/store_sales/ | 2879987999 | 151666241887933
 490870 | store_returns | s3://load-test/data-sources/tpcds/2.8.0/
textfile/1T/store_returns/ | 287999764 | 1196405607941
 490865 | store | s3://load-test/data-sources/tpcds/2.8.0/
textfile/1T/store/ | 1002 | 365507

The following query shows the daily loaded rows and bytes of the copy command.

SELECT date_trunc('day',start_time) AS exec_day,
 SUM(loaded_rows) AS loaded_rows,
 SUM(loaded_bytes) AS loaded_bytes
FROM sys_load_history
GROUP BY exec_day

SYS_LOAD_HISTORY 2419

Amazon Redshift Database Developer Guide

ORDER BY exec_day DESC;

Sample output.

 exec_day | loaded_rows | loaded_bytes
---------------------+-------------+------------------
 2022-01-20 00:00:00 | 6347386005 | 258329473070606
 2022-01-19 00:00:00 | 19042158015 | 775198502204572
 2022-01-18 00:00:00 | 38084316030 | 1550294469446883
 2022-01-17 00:00:00 | 25389544020 | 1033271084791724
 2022-01-16 00:00:00 | 19042158015 | 775222736252792
 2022-01-15 00:00:00 | 19834245387 | 798122849155598
 2022-01-14 00:00:00 | 75376544688 | 3077040926571384

SYS_MV_REFRESH_HISTORY

The results include information about the refresh history of all materialized views. The results
include the refresh type, such as manual or auto, and the status of the most recent refresh.

SYS_MV_REFRESH_HISTORY is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

user_id integer The identifier of the user who
submitted the refresh.

session_id integer The process identifier for the
process running the materiali
zed view refresh.

transaction_id bigint The transaction identifier.

database_name char(128) The database that contains
the materialized view.

schema_name char(128) The schema of the materiali
zed view.

SYS_MV_REFRESH_HISTORY 2420

Amazon Redshift Database Developer Guide

Column name Data type Description

mv_id bigint Object ID of the materialized
view.

mv_name char(128) The materialized view name.

refresh_type char(32) The type of refresh, such as
manual or auto.

status text The status of the refresh.
For detailed information
about statuses, see the status
column for SVL_MV_RE
FRESH_STATUS.

start_time timestamp The start time of the refresh.

end_time timestamp The end time of the refresh.

duration bigint The amount of time in
microseconds it took to
refresh the materialized view.

Sample queries

The following query shows the refresh history for materialized views.

SELECT user_id,
 session_id,
 transaction_id,
 database_name,
 schema_name,
 mv_id,
 mv_name,
 refresh_type,
 status,
 start_time,
 end_time,
 duration

SYS_MV_REFRESH_HISTORY 2421

Amazon Redshift Database Developer Guide

 from sys_mv_refresh_history;

The query returns the following sample output:

 user_id | session_id | transaction_id | database_name | schema_name |
 mv_id | mv_name | refresh_type | status
 | start_time | end_time | duration
---------+------------+----------------+---------------
+----------------------------+--------+--------------------+----------------
+---+----------------------------
+----------------------------+-----------
 1 | 1073815659 | 15066 | dev | test_stl_mv_refresh_schema |
 203762 | mv_incremental | Manual | MV was already updated
 | 2023-10-26 15:59:20.952179 | 2023-10-26 15:59:20.952866 | 687
 1 | 1073815659 | 15068 | dev | test_stl_mv_refresh_schema |
 203771 | mv_nonincremental | Manual | MV was already updated
 | 2023-10-26 15:59:21.008049 | 2023-10-26 15:59:21.008658 | 609
 1 | 1073815659 | 15070 | dev | test_stl_mv_refresh_schema |
 203779 | mv_refresh_error | Manual | MV was already updated
 | 2023-10-26 15:59:21.064252 | 2023-10-26 15:59:21.064885 | 633
 1 | 1073815659 | 15074 | dev | test_stl_mv_refresh_schema
 | 203762 | mv_incremental | Manual | Refresh successfully updated MV
 incrementally | 2023-10-26 15:59:29.693329 | 2023-10-26 15:59:43.482842 | 13789513
 1 | 1073815659 | 15076 | dev | test_stl_mv_refresh_schema |
 203771 | mv_nonincremental | Manual | Refresh successfully recomputed MV from
 scratch | 2023-10-26 15:59:43.550184 | 2023-10-26 15:59:47.880833 | 4330649
 1 | 1073815659 | 15078 | dev | test_stl_mv_refresh_schema |
 203779 | mv_refresh_error | Manual | Refresh failed due to an internal error
 | 2023-10-26 15:59:47.949052 | 2023-10-26 15:59:52.494681 | 4545629
(6 rows)

SYS_MV_STATE

The results include information about the state of all materialized views. It includes base table
information, schema properties, and information about recent events, like dropping a column.

SYS_MV_STATE is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

SYS_MV_STATE 2422

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

user_id bigint The ID of the user who
created the event.

transaction_id bigint The transaction ID of the
event.

database_name char(128) The database that contains
the materialized view.

event_desc char(500) The event that prompted the
state change. Example values
include the following:

• Column type was changed

• Column was dropped

• Column was renamed

• Schema name was changed

• Small-table conversion

• TRUNCATE

• Vacuum

Note that there are other
possible values for this
column.

start_time timestamp The start time of the event.

base_table_database_name char(128) The database name for the
base table.

base_table_schema char(128) The schema of the base table.

base_table_name char(128) The name of the base table.

SYS_MV_STATE 2423

Amazon Redshift Database Developer Guide

Column name Data type Description

mv_schema char(128) The schema of the materiali
zed view.

mv_name char(128) The name of the materialized
view.

state character(32) The changed state of the
materialized view, which are
as follows:

• Recompute

• Unrefreshable

Sample queries

The following query shows the materialized view state.

select * from sys_mv_state;

The query returns the following sample output:

 user_id | transaction_id | database_name | event_desc | start_time
 | base_table_database_name | base_table_schema | base_table_name |
 mv_schema | mv_name | state
---------+----------------+---------------+-----------------------------
+----------------------------+--------------------------+-------------------
+---------------------+-------------+----------------------------+--------------
 106 | 12720 | tickit_db | TRUNCATE | 2023-07-26
 14:59:12.788268 | tickit_db | mv_schema | test_table_95d6d861 |
 mv_schema | materialized_view_a1f3f862 | Recompute
 106 | 12724 | tickit_db | ALTER TABLE ALTER DISTSTYLE | 2023-07-26
 14:59:51.409014 | tickit_db | mv_schema | test_table_58102435 |
 mv_schema | materialized_view_ca746631 | Recompute
 106 | 12720 | tickit_db | Column was renamed | 2023-07-26
 14:59:12.822928 | tickit_db | mv_schema | test_table_95d6d861 |
 mv_schema | materialized_view_5750a8d4 | Unrefreshable

SYS_MV_STATE 2424

Amazon Redshift Database Developer Guide

 106 | 12727 | tickit_db | Table was renamed | 2023-07-26
 15:00:08.051244 | tickit_db | mv_schema | test_table_95d6d861 |
 mv_schema | materialized_view_5750a8d4 | Unrefreshable
 106 | 12720 | tickit_db | Column was renamed | 2023-07-26
 14:59:12.857755 | tickit_db | mv_schema | test_table_95d6d861 |
 mv_schema | materialized_view_5750a8d4 | Unrefreshable
 106 | 12727 | tickit_db | Table was renamed | 2023-07-26
 15:00:08.051358 | tickit_db | mv_schema | test_table_95d6d861 |
 mv_schema | materialized_view_5ef0d754 | Unrefreshable
 106 | 12720 | tickit_db | TRUNCATE | 2023-07-26
 14:59:12.788159 | tickit_db | mv_schema | test_table_95d6d861 |
 mv_schema | materialized_view_5750a8d4 | Recompute
 106 | 12720 | tickit_db | Column was renamed | 2023-07-26
 14:59:12.857799 | tickit_db | mv_schema | test_table_95d6d861 |
 mv_schema | materialized_view_a1f3f862 | Unrefreshable
 106 | 12720 | tickit_db | TRUNCATE | 2023-07-26
 14:59:12.788327 | tickit_db | mv_schema | test_table_95d6d861 |
 mv_schema | materialized_view_5ef0d754 | Recompute
 106 | 12727 | tickit_db | ALTER TABLE ALTER SORTKEY | 2023-07-26
 15:00:08.006235 | tickit_db | mv_schema | test_table_58102435 |
 mv_schema | materialized_view_ca746631 | Recompute
 106 | 12720 | tickit_db | Column was renamed | 2023-07-26
 14:59:12.82297 | tickit_db | mv_schema | test_table_95d6d861 |
 mv_schema | materialized_view_a1f3f862 | Unrefreshable
 106 | 12727 | tickit_db | Table was renamed | 2023-07-26
 15:00:08.051321 | tickit_db | mv_schema | test_table_95d6d861 |
 mv_schema | materialized_view_a1f3f862 | Unrefreshable

SYS_PROCEDURE_CALL

Use the SYS_PROCEDURE_CALL view to get information about stored procedure calls, including
start time, end time, status of a stored procedure call, and call hierarchy for nested stored
procedure calls. Each stored procedure call receives a query ID.

SYS_PROCEDURE_CALL is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

SYS_PROCEDURE_CALL 2425

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

session_user_id integer The identifier of the user who
created the session and is
the invoker of the top-level
stored procedure call.

security_user_id integer The identifier of the user
whose privileges were used
to run the statement within
the stored procedure. If
the stored procedure is
DEFINER, then this will be the
owner user_id of the stored
procedure.

query_id integer The query identifier of the
stored procedure call.

query_text char(4000) The text of the stored
procedure call query.

start_time timestamp The time in UTC when the
query started running. The
timestamp uses six digits
of precision for fractiona
l seconds, for example.
2009-06-12 11:29:19.
131358.

end_time timestamp The time in UTC when the
query finished running. The
timestamp uses six digits
of precision for fractiona
l seconds, for example:

SYS_PROCEDURE_CALL 2426

Amazon Redshift Database Developer Guide

Column name Data type Description

2009-06-12 11:29:19.
131358.

status char(10) The status of the stored
procedure call. When the
stored procedure was
stopped by the system or
canceled by the user, the
value is canceled. If the
stored procedure call runs
to completion, the value is
success.

caller_procedure_query_id integer If the stored procedure call
was invoked by another
stored procedure call, then
this column contains the
query ID of the outer call.
Otherwise, the field is NULL.

Sample queries

The following query returns a nested stored procedure call hierarchy.

select query_id, datediff(seconds, start_time, end_time) as elapsed_time, status,
 trim(query_text) as call, caller_procedure_query_id from sys_procedure_call;

Sample output.

 query_id | elapsed_time | status | call |
 caller_procedure_query_id
----------+--------------+---------+--
+---------------------------
 3087 | 18 | success | CALL proc_bd906c98c45443ffa165e9552056902d(1) |
 3085
 3085 | 18 | success | CALL proc_bd906c98c45443ffa165e9552056902d_2(1); |

SYS_PROCEDURE_CALL 2427

Amazon Redshift Database Developer Guide

(2 rows)

SYS_PROCEDURE_MESSAGES

SYS_PROCEDURE_MESSAGES is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

transaction_id bigint The transaction identifier.

query_id integer The query identifier of the
stored procedure call.

record_time timestamp The time in UTC when the
message was generated.

log_level char(10) The log level of the generated
message. Possible values
are LOG, INFO, NOTICE,
WARNING, and EXCEPTION.

message char(1024) The text of the generated
message.

line_number integer The line number of the
generated message.

Sample queries

The following query shows sample output of SYS_PROCEDURE_MESSAGES.

select transaction_id, query_id, record_time, log_level, trim(message), line_number
 from sys_procedure_messages;

transaction_id | query_id | record_time | log_level | btrim
 | line_number

SYS_PROCEDURE_MESSAGES 2428

Amazon Redshift Database Developer Guide

---------------+----------+----------------------------+-----------
+---------------------------+-------------
 25267 | 80562 | 2023-07-17 14:38:31.910136 | NOTICE |
 test_notice_msg_b9f1e749 | 8
 25267 | 80562 | 2023-07-17 14:38:31.910002 | LOG |
 test_log_msg_833c7420 | 6
 25267 | 80562 | 2023-07-17 14:38:31.910111 | INFO |
 test_info_msg_651373d9 | 7
 25267 | 80562 | 2023-07-17 14:38:31.910154 | WARNING |
 test_warning_msg_831c5747 | 9
(4 rows)

SYS_QUERY_DETAIL

Use SYS_QUERY_DETAIL to view details for queries at a step level. Each row represents a step
from a particular WLM query with details. This view contains many types of queries such as DDL,
DML, and utility commands (for example, copy and unload). Some columns might not be relevant
depending on the query type. For example, external_scanned_bytes is not relevant to internal
tables.

SYS_QUERY_DETAIL is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

user_id integer The identifier of the user who
submitted the query.

query_id bigint The query identifier.

child_query_sequence integer The sequence of the rewritten
user query, starting with 1.

stream_id integer The stream identifier of the
query stream.

segment_id integer The segment identifier of the
query running segment.

SYS_QUERY_DETAIL 2429

Amazon Redshift Database Developer Guide

Column name Data type Description

step_id integer The step identifier in a
segment.

step_name text The step name in a
segment. Possible values are
aggregate , broadcast

, delete, distribute ,
hash, hashjoin, insert,
limit, merge, nestloop,
parse, return, save, scan,
sort, sortlimit , unique,
and window.

table_id integer The table identifier for
permanent table scans.

table_name character(136) The table name of the step
that is being operated.

is_rrscan character A value that indicates
whether a step is a scan
step. True (t) indicates that
a range-restricted scan was
used.

start_time timestamp The time when the query step
began.

end_time timestamp The time when the query step
completed.

duration bigint The amount of time (microsec
onds) spent on the step.

alert text The description of the alert
event.

SYS_QUERY_DETAIL 2430

Amazon Redshift Database Developer Guide

Column name Data type Description

input_bytes bigint The input bytes for the
current step.

input_rows bigint The input rows for the current
step.

output_bytes bigint The output bytes for the
current step.

output_rows bigint The output rows for the
current step.

blocks_read bigint The number of block the step
read.

blocks_write bigint The number of block the step
wrote.

local_read_IO bigint The number of blocks read
from local disk cache.

remote_read_IO bigint The number of blocks read
from remote.

source text The type of database object
that was scanned. This
column only has a value when
the row's step_name value is
scan.

data_skewness integer The skewness of output rows
distribution among all steps.
It is a number in the range of
0% to 100%. The larger the
number, the more unbalanced
is the distribution.

SYS_QUERY_DETAIL 2431

Amazon Redshift Database Developer Guide

Column name Data type Description

time_skewness integer The skewness of execution
time distribution among all
steps. It is a number in the
range of 0% to 100%. The
larger the number, the more
unbalanced is the distribut
ion.

is_active character The state of the query at the
step level. Possible values
are ‘t’ that shows the step is
actively running or ‘f’ that
indicates the step completes
running.

spilled_block_local_disk bigint The number of blocks spilled
to local disk.

spilled_block_remote_disk bigint The number of blocks spilled
to Amazon Simple Storage
Service.

step_attribute character(64) Contains information about
the associated step. Possible
values for scan steps: multi-
dimensional .

Sample queries

The following example returns the output of SYS_QUERY_DETAIL.

The following query shows the query metadata detail at step level, including step name,
input_bytes, output_bytes, input_rows, output_rows.

SELECT query_id,
 child_query_sequence,

SYS_QUERY_DETAIL 2432

Amazon Redshift Database Developer Guide

 stream_id,
 segment_id,
 step_id,
 trim(step_name) AS step_name,
 duration,
 input_bytes,
 output_bytes,
 input_rows,
 output_rows
FROM sys_query_detail
WHERE query_id IN (193929)
ORDER BY query_id,
 stream_id,
 segment_id,
 step_id DESC;

Sample output.

 query_id | child_query_sequence | stream_id | segment_id | step_id | step_name |
 duration | input_bytes | output_bytes | input_rows | output_rows
----------+----------------------+-----------+------------+---------+------------
+-----------------+-------------+--------------+------------+-------------
 193929 | 2 | 0 | 0 | 3 | hash |
 37144 | 0 | 9350272 | 0 | 292196
 193929 | 5 | 0 | 0 | 3 | hash |
 9492 | 0 | 23360 | 0 | 1460
 193929 | 1 | 0 | 0 | 3 | hash |
 46809 | 0 | 9350272 | 0 | 292196
 193929 | 4 | 0 | 0 | 2 | return |
 7685 | 0 | 896 | 0 | 112
 193929 | 1 | 0 | 0 | 2 | project |
 46809 | 0 | 0 | 0 | 292196
 193929 | 2 | 0 | 0 | 2 | project |
 37144 | 0 | 0 | 0 | 292196
 193929 | 5 | 0 | 0 | 2 | project |
 9492 | 0 | 0 | 0 | 1460
 193929 | 3 | 0 | 0 | 2 | return |
 11033 | 0 | 14336 | 0 | 112
 193929 | 2 | 0 | 0 | 1 | project |
 37144 | 0 | 0 | 0 | 292196
 193929 | 1 | 0 | 0 | 1 | project |
 46809 | 0 | 0 | 0 | 292196

SYS_QUERY_DETAIL 2433

Amazon Redshift Database Developer Guide

 193929 | 5 | 0 | 0 | 1 | project |
 9492 | 0 | 0 | 0 | 1460
 193929 | 3 | 0 | 0 | 1 | aggregate |
 11033 | 0 | 201488 | 0 | 14
 193929 | 4 | 0 | 0 | 1 | aggregate |
 7685 | 0 | 28784 | 0 | 14
 193929 | 5 | 0 | 0 | 0 | scan |
 9492 | 0 | 23360 | 292196 | 1460
 193929 | 4 | 0 | 0 | 0 | scan |
 7685 | 0 | 1344 | 112 | 112
 193929 | 2 | 0 | 0 | 0 | scan |
 37144 | 0 | 7304900 | 292196 | 292196
 193929 | 3 | 0 | 0 | 0 | scan |
 11033 | 0 | 13440 | 112 | 112
 193929 | 1 | 0 | 0 | 0 | scan |
 46809 | 0 | 7304900 | 292196 | 292196
 193929 | 5 | 0 | 0 | -1 | |
 9492 | 12288 | 0 | 0 | 0
 193929 | 1 | 0 | 0 | -1 | |
 46809 | 16384 | 0 | 0 | 0
 193929 | 2 | 0 | 0 | -1 | |
 37144 | 16384 | 0 | 0 | 0
 193929 | 4 | 0 | 0 | -1 | |
 7685 | 28672 | 0 | 0 | 0
 193929 | 3 | 0 | 0 | -1 | |
 11033 | 114688 | 0 | 0 | 0

To view the tables in your database in order from most used to least used, use the following
example. Replace sample_data_dev with your own database. Note that this query will count
queries starting when your cluster is created, but your system view data is not saved when your
data warehouse is lacking space.

SELECT table_name, COUNT (DISTINCT query_id)
FROM SYS_QUERY_DETAIL
WHERE table_name LIKE 'sample_data_dev%'
GROUP BY table_name
ORDER BY COUNT(*) DESC;

+---------------------------------+-------+
| table_name | count |
+---------------------------------+-------+
| sample_data_dev.tickit.venue | 4 |
| sample_data_dev.myunload1.venue | 3 |

SYS_QUERY_DETAIL 2434

Amazon Redshift Database Developer Guide

sample_data_dev.tickit.listing	1
sample_data_dev.tickit.category	1
sample_data_dev.tickit.users	1
sample_data_dev.tickit.date	1
sample_data_dev.tickit.sales	1
sample_data_dev.tickit.event	1
+---------------------------------+-------+

SYS_QUERY_HISTORY

Use SYS_QUERY_HISTORY to view details of user queries. Each row represents a user query with
accumulated statistics for some of the fields. This view contains many types of queries, such as
data definition language (DDL), data manipulation language (DML), copy, unload, and Amazon
Redshift Spectrum. It contains both running and finished queries.

SYS_QUERY_HISTORY is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

user_id integer The identifier of the user who
submitted the query.

query_id bigint The query identifier.

query_label character(320) The short name for the query.

transaction_id bigint The transaction identifier.

session_id integer The process identifier of the
process running the query.

database_name character(128) The name of the database the
user was connected to when
the query was issued.

query_type character(32) The type of query, such as,
SELECT, INSERT, UPDATE,

SYS_QUERY_HISTORY 2435

Amazon Redshift Database Developer Guide

Column name Data type Description

UNLOAD, COPY, COMMAND,
DDL, UTILITY, CTAS, and
OTHER.

status character(10) The status of the query. Valid
values: planning, queued,
running, returning, failed,
canceled, and success.

result_cache_hit Boolean Indicates whether the query
matches the result cache.

start_time timestamp The time when the query
began.

end_time timestamp The time when the query
completed.

elapsed_time bigint The total amount of time
(microseconds) spent on the
query.

queue_time bigint The total time (microseconds)
spent on the service class
query queue.

execution_time bigint The total time (microseconds)
running in the service class.

error_message character(512) The reason a query failed.

returned_rows bigint The number of rows returned
to the client.

returned_bytes bigint The number of bytes returned
to the client.

SYS_QUERY_HISTORY 2436

Amazon Redshift Database Developer Guide

Column name Data type Description

query_text character(4000) The query string. This string
might be truncated.

redshift_version character(256) The Amazon Redshift version
when the query ran.

usage_limit character(150) List of usage limit IDs reached
by the query.

compute_type varchar(32) Indicates whether the query
runs on the main cluster
or concurrency scaling
cluster. Possible values are
primary (query runs on the
main cluster), secondary
(query runs on the secondary
cluster), or primary-s
cale (query runs on the
concurrency cluster). This is
only applicable to provisioned
cluster.

compile_time bigint The total time (microseconds)
spent on compilation of the
query.

planning_time bigint The total time (microseconds)
spent on planning of the
query.

lock_wait_time bigint The total time (microseconds)
spent on waiting for relation
lock.

SYS_QUERY_HISTORY 2437

Amazon Redshift Database Developer Guide

Sample queries

The following query returns running and queued queries.

SELECT user_id,
 query_id,
 transaction_id,
 session_id,
 status,
 trim(database_name) AS database_name,
 start_time,
 end_time,
 result_cache_hit,
 elapsed_time,
 queue_time,
 execution_time
FROM sys_query_history
WHERE status IN ('running','queued')
ORDER BY start_time;

Sample output.

 user_id | query_id | transaction_id | session_id | status | database_name |
 start_time | end_time | result_cache_hit | elapsed_time |
 queue_time | execution_time
---------+----------+----------------+------------+---------+---------------
+---------------------------+----------------------------+------------------
+--------------+------------+----------------
 101 | 760705 | 852337 | 1073832321 | running | tpcds_1t |
 2022-02-15 19:03:19.67849 | 2022-02-15 19:03:19.739811 | f |
 61321 | 0 | 0

The following query returns the query start time, end time, queue time, elapsed time, planning
time, and other metadata for a specific query.

SELECT user_id,
 query_id,
 transaction_id,
 session_id,
 status,
 trim(database_name) AS database_name,
 start_time,

SYS_QUERY_HISTORY 2438

Amazon Redshift Database Developer Guide

 end_time,
 result_cache_hit,
 elapsed_time,
 queue_time,
 execution_time,
 planning_time,
 trim(query_text) as query_text
FROM sys_query_history
WHERE query_id = 3093;

Sample output.

user_id | query_id | transaction_id | session_id | status | database_name |
 start_time | end_time | result_cache_hit | elapsed_time |
 queue_time | execution_time | planning_time | query_text
--------+----------+----------------+------------+------------
+---------------+----------------------------+----------------------------
+------------------+--------------+------------+----------------+---------------
+-------------------------------------
 106 | 3093 | 11759 | 1073750146 | success | dev |
 2023-03-16 16:53:17.840214 | 2023-03-16 16:53:18.106588 | f |
 266374 | 0 | 105725 | 136589 | select count(*) from item;

The following query lists the 10 most recent SELECT queries.

SELECT query_id,
 transaction_id,
 session_id,
 start_time,
 elapsed_time,
 queue_time,
 execution_time,
 returned_rows,
 returned_bytes
FROM sys_query_history
WHERE query_type = 'SELECT'
ORDER BY start_time DESC limit 10;

Sample output.

SYS_QUERY_HISTORY 2439

Amazon Redshift Database Developer Guide

 query_id | transaction_id | session_id | start_time | elapsed_time |
 queue_time | execution_time | returned_rows | returned_bytes
----------+----------------+------------+----------------------------+--------------
+------------+----------------+---------------+----------------
 526532 | 61093 | 1073840313 | 2022-02-09 04:43:24.149603 | 520571 |
 0 | 481293 | 1 | 3794
 526520 | 60850 | 1073840313 | 2022-02-09 04:38:27.24875 | 635957 |
 0 | 596601 | 1 | 3679
 526508 | 60803 | 1073840313 | 2022-02-09 04:37:51.118835 | 563882 |
 0 | 503135 | 5 | 17216
 526505 | 60763 | 1073840313 | 2022-02-09 04:36:48.636224 | 649337 |
 0 | 589823 | 1 | 652
 526478 | 60730 | 1073840313 | 2022-02-09 04:36:11.741471 | 14611321 |
 0 | 14544058 | 0 | 0
 526467 | 60636 | 1073840313 | 2022-02-09 04:34:11.91463 | 16711367 |
 0 | 16633767 | 1 | 575
 511617 | 617946 | 1074009948 | 2022-01-20 06:21:54.44481 | 9937090 |
 0 | 9899271 | 100 | 12500
 511603 | 617941 | 1074259415 | 2022-01-20 06:21:45.71744 | 8065081 |
 0 | 7582500 | 100 | 8889
 511595 | 617935 | 1074128320 | 2022-01-20 06:21:44.030876 | 1051270 |
 0 | 1014879 | 1 | 72
 511584 | 617931 | 1074030019 | 2022-01-20 06:21:42.764088 | 609033 |
 0 | 485887 | 100 | 8438

The following query shows the daily select query count and average query elapsed time.

SELECT date_trunc('day',start_time) AS exec_day,
 status,
 COUNT(*) AS query_cnt,
 AVG(datediff (microsecond,start_time,end_time)) AS elapsed_avg
FROM sys_query_history
WHERE query_type = 'SELECT'
AND start_time >= '2022-01-14'
AND start_time <= '2022-01-18'
GROUP BY exec_day,
 status
ORDER BY exec_day,
 status;

Sample output.

 exec_day | status | query_cnt | elapsed_avg

SYS_QUERY_HISTORY 2440

Amazon Redshift Database Developer Guide

---------------------+---------+-----------+------------
 2022-01-14 00:00:00 | success | 5253 | 56608048
 2022-01-15 00:00:00 | success | 7004 | 56995017
 2022-01-16 00:00:00 | success | 5253 | 57016363
 2022-01-17 00:00:00 | success | 5309 | 55236784
 2022-01-18 00:00:00 | success | 8092 | 54355124

The following query shows the daily query elapsed time performance.

SELECT distinct date_trunc('day',start_time) AS exec_day,
 query_count.cnt AS query_count,
 Percentile_cont(0.5) within group(ORDER BY elapsed_time) OVER (PARTITION BY
 exec_day) AS P50_runtime,
 Percentile_cont(0.8) within group(ORDER BY elapsed_time) OVER (PARTITION BY
 exec_day) AS P80_runtime,
 Percentile_cont(0.9) within group(ORDER BY elapsed_time) OVER (PARTITION BY
 exec_day) AS P90_runtime,
 Percentile_cont(0.99) within group(ORDER BY elapsed_time) OVER (PARTITION BY
 exec_day) AS P99_runtime,
 Percentile_cont(1.0) within group(ORDER BY elapsed_time) OVER (PARTITION BY
 exec_day) AS max_runtime
FROM sys_query_history
LEFT JOIN (SELECT date_trunc('day',start_time) AS day, count(*) cnt
 FROM sys_query_history
 WHERE query_type = 'SELECT'
 GROUP by 1) query_count
ON date_trunc('day',start_time) = query_count.day
WHERE query_type = 'SELECT'
ORDER BY exec_day;

Sample output.

 exec_day | query_count | p50_runtime | p80_runtime | p90_runtime |
 p99_runtime | max_runtime
---------------------+-------------+-------------+-------------+-------------
+--------------+--------------
 2022-01-14 00:00:00 | 5253 | 16816922.0 | 69525096.0 | 158524917.8 |
 486322477.52 | 1582078873.0
 2022-01-15 00:00:00 | 7004 | 15896130.5 | 71058707.0 | 164314568.9 |
 500331542.07 | 1696344792.0
 2022-01-16 00:00:00 | 5253 | 15750451.0 | 72037082.2 | 159513733.4 |
 480372059.24 | 1594793766.0

SYS_QUERY_HISTORY 2441

Amazon Redshift Database Developer Guide

 2022-01-17 00:00:00 | 5309 | 15394513.0 | 68881393.2 | 160254700.0 |
 493372245.84 | 1521758640.0
 2022-01-18 00:00:00 | 8092 | 15575286.5 | 68485955.4 | 154559572.5 |
 463552685.39 | 1542783444.0
 2022-01-19 00:00:00 | 5860 | 16648747.0 | 72470482.6 | 166485138.2 |
 492038228.67 | 1693483241.0
 2022-01-20 00:00:00 | 1751 | 15422072.0 | 69686381.0 | 162315385.0 |
 497066615.00 | 1439319739.0
 2022-02-09 00:00:00 | 13 | 6382812.0 | 17616161.6 | 21197988.4 |
 23021343.84 | 23168439.0

The following query shows the query type distribution.

SELECT query_type,
 COUNT(*) AS query_count
FROM sys_query_history
GROUP BY query_type
ORDER BY query_count DESC;

Sample output.

 query_type | query_count
------------+-------------
 UTILITY | 134486
 SELECT | 38537
 DDL | 4832
 OTHER | 768
 LOAD | 768
 CTAS | 748
 COMMAND | 92

SYS_QUERY_TEXT

Use SYS_QUERY_TEXT to view the query text of all queries. Each row represents the query text
of queries up to 4000 characters starting with sequence number 0. When the query statement
contains more than 4000 characters, additional rows are logged for the statement by incrementing
the sequence number for each row. This view logs all user query text such as DDL, utility, Amazon
Redshift queries, and leader-node only queries.

SYS_QUERY_TEXT is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

SYS_QUERY_TEXT 2442

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

user_id integer The identifier of the user who
submitted the query.

query_id bigint The query identifier.

transaction_id bigint The identifier of the transacti
on associated with the
statement.

session_id integer The process identifier of the
session running the query.

start_time timestamp The time when the query
starts.

sequence integer When a single statement
contains more than 4000
characters, additional rows
are logged for the statement
. Sequence 0 is the first row, 1
is the second row, and so on.

text character (4000) The text of the SQL query
that is in 4000-character
increments. This field might
contain special character
s, such as backslash (\) and
newline (\n).

Sample queries

The following query returns running and queued queries.

SELECT user_id,

SYS_QUERY_TEXT 2443

Amazon Redshift Database Developer Guide

 query_id,
 transaction_id,
 session_id, start_time,
 sequence, trim(text) as text from sys_query_text
 ORDER BY sequence;

Sample output.

 user_id | query_id | transaction_id | session_id | start_time |
 sequence | text
--------+----------+-----------------+------------+----------------------------
+----------
+--
 100 | 4 | 1396 | 1073750220 | 2023-04-28 16:44:55.887184 |
 0 | SELECT trim(text) as text, sequence FROM sys_query_text WHERE query_id =
 pg_last_query_id() AND user_id > 1 AND start
_time > '2023-04-28 16:44:55.922705+00:00'::timestamp order by sequence;

The following query returns the permissions that have been granted or revoked from groups in
your database.

SELECT
 SPLIT_PART(text, ' ', 1) as grantrevoke,
 SPLIT_PART((SUBSTRING(text, STRPOS(UPPER(text), 'GROUP'))), ' ', 2) as group,
 SPLIT_PART((SUBSTRING(text, STRPOS(UPPER(text), ' '))), 'ON', 1) as type,
 SPLIT_PART((SUBSTRING(text, STRPOS(UPPER(text), 'ON'))), ' ', 2) || ' ' ||
 SPLIT_PART((SUBSTRING(text, STRPOS(UPPER(text), 'ON'))), ' ', 3) as entity
FROM SYS_QUERY_TEXT
WHERE (text LIKE 'GRANT%' OR text LIKE 'REVOKE%') AND text LIKE '%GROUP%';

+-------------+----------+--------+----------+
| grantrevoke | group | type | entity |
+-------------+----------+--------+----------+
GRANT	bi_group	SELECT	TABLE t1
GRANT	bi_group	SELECT	TABLE t1
GRANT	bi_group	SELECT	TABLE t1
GRANT	bi_group	USAGE	TABLE t1
GRANT	bi_group	SELECT	TABLE t1
GRANT	bi_group	SELECT	TABLE t1
+-------------+----------+--------+----------+

SYS_QUERY_TEXT 2444

Amazon Redshift Database Developer Guide

SYS_RESTORE_LOG

Use SYS_RESTORE_LOG to monitor the migration progress of each table in the cluster during a
classic resize to RA3 nodes. It captures the historic throughput of data migration during the resize
operation. For more information about classic resize to RA3 nodes, see Classic resize.

SYS_RESTORE_LOG is visible only to superusers.

Table columns

Column name Data type Description

event_time timestamp A timestamp that indicates
when the log entry is
recorded.

database_name char(128) The name of the database.

schema_name char(128) The name of the schema.

table_name char(128) The name of the table.

table_id integer The ID of the table.

action char(128) The action taken at the
time of the entry. Values
can include: Migration
started, checkpoint, resumed,
completed, cancelled, or
reset.

table_size long The size of the table.

total_data_processed long The size of the data in MB
processed up to this point for
the table.

delta_data_processed long Size of data processed since
the last event_time update, in
MB. This helps you determine

SYS_RESTORE_LOG 2445

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-operations.html#classic-resize-faster

Amazon Redshift Database Developer Guide

Column name Data type Description

how much of the data has
been processed since the
previous recorded time
interval. You can compare
this with the table_size to get
a sense of how quickly data
processing is going.

message char(512) A detailed explanation for the
value in the action column.

redistribution_type char(32) The redistribution type
for the table. Either KEY
conversion or an EVEN
rebalancing task. For more
information about distribut
ion styles, see Distribution
styles.

Sample queries

The following query calculates the throughput of data processing, using SYS_RESTORE_LOG.

SELECT
 ROUND(sum(delta_data_processed) / 1024.0, 2) as data_processed_gb,
 ROUND(datediff(sec, min(event_time), max(event_time)) / 3600.0, 2) as duration_hr,
 ROUND(data_processed_gb/duration_hr, 2) as throughput_gb_per_hr
from sys_restore_log;

Sample output.

 data_processed_gb | duration_hr | throughput_gb_per_hr
-------------------+-------------+----------------------
 0.91 | 8.37 | 0.11
(1 row)

The following query that shows all redistribution types.

SYS_RESTORE_LOG 2446

https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html
https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html

Amazon Redshift Database Developer Guide

SELECT * from sys_restore_log ORDER BY event_time;

 database_name | schema_name | table_name | table_id |
 action | total_data_processed | delta_data_processed | event_time
 | table_size | message | redistribution_type
---------------+----------------------+----------------------+----------
+-----------------------------+----------------------+----------------------
+----------------------------+------------+---------+--------------------------
 dev | schemaaaa877096d844d | customer_key | 106424 |
 Redistribution started | 0 | | 2024-01-05
 02:18:00.744977 | 325 | | Restore Distkey Table
 dev | schemaaaa877096d844d | dp30907_t2_autokey | 106430 |
 Redistribution started | 0 | | 2024-01-05
 02:18:02.756675 | 90 | | Restore Distkey Table
 dev | schemaaaa877096d844d | dp30907_t2_autokey | 106430 |
 Redistribution completed | 90 | 90 | 2024-01-05
 02:23:30.643718 | 90 | | Restore Distkey Table
 dev | schemaaaa877096d844d | customer_key | 106424 |
 Redistribution completed | 325 | 325 | 2024-01-05
 02:23:45.998249 | 325 | | Restore Distkey Table
 dev | schemaaaa877096d844d | dp30907_t1_even | 106428 |
 Redistribution started | 0 | | 2024-01-05
 02:23:46.083849 | 30 | | Rebalance Disteven Table
 dev | schemaaaa877096d844d | dp30907_t5_auto_even | 106436 |
 Redistribution started | 0 | | 2024-01-05
 02:23:46.855728 | 45 | | Rebalance Disteven Table
 dev | schemaaaa877096d844d | dp30907_t5_auto_even | 106436 |
 Redistribution completed | 45 | 45 | 2024-01-05
 02:24:16.343029 | 45 | | Rebalance Disteven Table
 dev | schemaaaa877096d844d | dp30907_t1_even | 106428 |
 Redistribution completed | 30 | 30 | 2024-01-05
 02:24:20.584703 | 30 | | Rebalance Disteven Table
 dev | schemaefd028a2a48a4c | customer_even | 130512 |
 Redistribution started | 0 | | 2024-01-05
 04:54:55.641741 | 190 | | Restore Disteven Table
 dev | schemaefd028a2a48a4c | customer_even | 130512 |
 Redistribution checkpointed | 29.4342113157737 | 29.4342113157737 | 2024-01-05
 04:55:04.770696 | 190 | | Restore Disteven Table
(8 rows)

SYS_RESTORE_LOG 2447

Amazon Redshift Database Developer Guide

SYS_RESTORE_STATE

Use SYS_RESTORE_STATE to monitor the migration progress of each table during a classic resize.
This is specifically applicable when the target node type is RA3. For more information about classic
resize to RA3 nodes, see Classic resize.

SYS_RESTORE_STATE is visible only to superusers. For more information, see Visibility of data in
system tables and views.

Table columns

Column name Data type Description

user_id integer The identifier of the user who
submitted the query.

database_name char(64) The name of the database of
the table.

schema_id integer The schema ID of the table.

table_id integer The ID of the table.

table_name char(128) The name of the table.

redistribution_status char(128) The status of redistribution
progress of the table. Possible
values are Completed , In
progress, and Pending.

percentage_redistributed float The percentage of the
redistribution progress of
the table. Possible values are
from 0 to 100%. For example,
a value of 25 indicates that
25% of the data is redistrib
uted.

redistribution_type char(32) The redistribution type
for the table. Either KEY

SYS_RESTORE_STATE 2448

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-operations.html#classic-resize-faster

Amazon Redshift Database Developer Guide

Column name Data type Description

conversion or an EVEN
rebalancing task. For more
information about distribut
ion styles, see Distribution
styles.

Sample queries

The following query returns records for running and queued queries.

SELECT * FROM sys_restore_state;

Sample output.

 userid | database_name | schema_id | table_id | table_name | redistribution_status
 | precentage_redistributed | redistribution_type
--------+---------------+-----------+----------+----------------
+-----------------------+--------------------------+-------------------------
 1 | test1 | 124865 | 124878 | customer_key_4 | Pending
 | 0 | Rebalance Disteven Table
 1 | dev | 124865 | 124874 | customer_key_3 | Pending
 | 0 | Rebalance Disteven Table
 1 | dev | 124865 | 124870 | customer_key_2 | Completed
 | 100 | Rebalance Disteven Table
 1 | dev | 124865 | 124866 | customer_key_1 | In progress
 | 13.52 | Restore Distkey Table

The following gives you the data-processing status.

SELECT
 redistribution_status, ROUND(SUM(block_count) / 1024.0, 2) AS total_size_gb
FROM sys_restore_state sys inner join stv_tbl_perm stv
 on sys.table_id = stv.id
GROUP BY sys.redistribution_status;

Sample output.

 redistribution_status | total_size_gb

SYS_RESTORE_STATE 2449

https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html
https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html

Amazon Redshift Database Developer Guide

-----------------------+---------------
 Completed | 0.07
 Pending | 0.71
 In progress | 0.20
(3 rows)

SYS_SCHEMA_QUOTA_VIOLATIONS

Records the occurrence, transaction ID, and other useful information when a schema quota is
exceeded. This system table is a translation of STL_SCHEMA_QUOTA_VIOLATIONS.

r_SYS_SCHEMA_QUOTA_VIOLATIONS is visible to all users. Superusers can see all rows; regular
users can see only their own data. For more information, see Visibility of data in system tables and
views.

Table columns

Column
name

Data type Description

owner_id integer The ID of the schema owner.

user_id integer The ID of the user who generated the entry.

transacti
on_id

bigint The transaction ID associated with the statement.

session_id integer The process ID associated with the statement.

schema_id integer The namespace or schema ID.

schema_na
me

character
(128)

The namespace or schema name.

quota integer The amount of disk space (in MB) that the schema can use.

disk_usage integer The disk space (in MB) that is currently used by the schema.

SYS_SCHEMA_QUOTA_VIOLATIONS 2450

Amazon Redshift Database Developer Guide

Column
name

Data type Description

record_ti
me

timestamp
without time
zone

The time when the violation occurred.

Sample queries

The following query shows the result of a quota violation:

SELECT user_id, TRIM(schema_name) "schema_name", quota, disk_usage, record_time FROM
sys_schema_quota_violations WHERE SCHEMA_NAME = 'sales_schema' ORDER BY timestamp DESC;

This query returns the following sample output for the specified schema:

user_id| schema_name | quota | disk_usage | record_time
-------+--------------+-------+------------+----------------------------
104 | sales_schema | 2048 | 2798 | 2020-04-20 20:09:25.494723
(1 row)

SYS_SERVERLESS_USAGE

Use SYS_SERVERLESS_USAGE to view details of Amazon Redshift Serverless usage of resources.
This system view doesn't apply to provisioned Amazon Redshift clusters.

This view contains the serverless usage summary including how much compute capacity is used
to process queries and the amount of Amazon Redshift managed storage used at a 1-minute
granularity. The compute capacity is measured in Redshift processing units (RPUs) and metered for
the workloads that you run in RPU-seconds on a per-second basis. RPUs are used to process queries
on the data loaded in the data warehouse, queried from an Amazon S3 data lake, or accessed from
operational databases using a federated query. Amazon Redshift Serverless retains the information
in SYS_SERVERLESS_USAGE for 7 days.

For examples on compute cost billing, see Billing for Amazon Redshift Serverless.

SYS_SERVERLESS_USAGE is visible only to superusers. For more information, see Visibility of data
in system tables and views.

SYS_SERVERLESS_USAGE 2451

https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-billing.html

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

start_time timestamp The time when the interval
began.

end_time timestamp The time when the interval
completed.

compute_seconds double precision The accumulated compute
unit (RPU) seconds consumed
during this time interval. This
value accounts for the base
RPU capacity allocated for the
account.

compute_capacity double precision The average number of
compute units (Redshift
 processing units, or RPUs)
allocated during this time
interval.

The compute_capacity value
can be dynamically changed.

data_storage integer The average data storage
space in MB used during this
time interval.

Used data storage can change
dynamically as data is loaded
or deleted from the database.

cross_region_transferred_data integer The accumulated data
transferred for cross-Region
data sharing in bytes during
this time interval.

SYS_SERVERLESS_USAGE 2452

Amazon Redshift Database Developer Guide

Column name Data type Description

charged_seconds integer The accumulated compute
unit (RPU) seconds charged
during this time interval. This
is computed after transacti
ons end, and hence can be 0
while a transaction runs. Use
charged_seconds to calculate
cost for an Amazon Redshift
Serverless workgroup. This
value accounts for the RPU
capacity allocated for the
Amazon Redshift Serverless
workgroup.

Usage notes

• There are situations where compute_seconds is 0 but charged_seconds is greater than 0, or vice
versa. This is normal behavior resulting from the way data is recorded in the system view. For a
more accurate representation of serverless usage details, we recommend aggregating the data.

Example

To get the total charges for RPU hours used for a time interval by querying charged_seconds, run
the following query:

select trunc(start_time) "Day",
(sum(charged_seconds)/3600::double precision) * <Price for 1 RPU> as cost_incurred
from sys_serverless_usage
group by 1
order by 1

Note that there can be idle time during the interval. Idle time doesn't add to RPUs consumed.

SYS_SERVERLESS_USAGE 2453

Amazon Redshift Database Developer Guide

SYS_SESSION_HISTORY

Use the SYS_SESSION_HISTORY to view information about the current active sessions and session
history.

SYS_SESSION_HISTORY is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

user_id char(50) The identifier of the user who generated the entry.

session_id integer The ID of the session associated with the statement.

database_
name

char(50) The name of the database.

status char The status of the session. Possible values are active,
timed out, and closed.

session_t
imeout

integer The maximum time in seconds that a session remains
inactive or idle before timing out. 0 indicates that no
timeout is set.

start_time timestamp The timestamp that the connection was established.

end_time timestamp The timestamp that the connected stopped.

Example

The following is a sample output of SYS_SESSION_HISTORY.

select * from sys_session_history;
 user_id | session_id | database_name | status | session_timeout |
 start_time | end_time
---------+------------+------------------+--------+-----------------
+----------------------------+----------------------------

SYS_SESSION_HISTORY 2454

Amazon Redshift Database Developer Guide

 1 | 1073971370 | dev | closed | 0 | 2023-07-17
 15:50:12.030104 | 2023-07-17 15:50:12.123218
 1 | 1073979694 | dev | closed | 0 | 2023-07-17
 15:50:24.117947 | 2023-07-17 15:50:24.131859
 1 | 1073873049 | dev | closed | 0 | 2023-07-17
 15:49:29.067398 | 2023-07-17 15:49:29.070294
 1 | 1073873086 | database18127a4a | closed | 0 | 2023-07-17
 15:49:29.119018 | 2023-07-17 15:49:29.125925
 1 | 1073832112 | dev | closed | 0 | 2023-07-17
 15:49:29.164688 | 2023-07-17 15:49:29.179631
 1 | 1073987697 | dev | closed | 0 | 2023-07-17
 15:49:29.26749 | 2023-07-17 15:49:29.273034
 1 | 1073922429 | dev | closed | 0 | 2023-07-17
 15:49:33.35315 | 2023-07-17 15:49:33.367499
 1 | 1073766783 | dev | closed | 0 | 2023-07-17
 15:49:45.38237 | 2023-07-17 15:49:45.396902
 1 | 1073807506 | dev | active | 0 | 2023-07-17
 15:51:48 |

SYS_SPATIAL_SIMPLIFY

You can query the system view SYS_SPATIAL_SIMPLIFY to get information about simplified spatial
geometry objects using the COPY command. When you use COPY on a shapefile, you can specify
SIMPLIFY tolerance, SIMPLIFY AUTO, and SIMPLIFY AUTO max_tolerance ingestion options.
The result of the simplification is summarized in SYS_SPATIAL_SIMPLIFY system view.

When SIMPLIFY AUTO max_tolerance is set, this view contains a row for each geometry that
exceeded the maximum size. When SIMPLIFY tolerance is set, then one row for the entire
COPY operation is stored. This row references the COPY query ID and the specified simplification
tolerance.

For more information about loading a shapefile, see Loading a shapefile into Amazon Redshift.

SYS_SPATIAL_SIMPLIFY is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

SYS_SPATIAL_SIMPLIFY 2455

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

query_id bigint The ID of the query (COPY command) that generated this
row.

line_numb
er

bigint When COPY SIMPLIFY AUTO option is specified, this
value is the record number of the simplified record in the
shapefile.

maximum_t
olerance

double precision The distance tolerance value specified in the COPY
command. This is either the maximum tolerance value
using the SIMPLIFY AUTO option, or the fixed tolerance
value using the SIMPLIFY option.

initial_size bigint The size in bytes of the GEOMETRY data value before
simplification.

simplified char(1) When the COPY SIMPLIFY AUTO option is specified, t if
the geometry was successfully simplified, or f otherwise.
The geometry might not be simplified successfully if after
the simplification with the given maximum tolerance its
size is still larger than the maximum geometry size.

final_size bigint When the COPY SIMPLIFY AUTO option is specified, this
is the size in bytes of the geometry after simplification.

final_tol
erance

double precision Final tolerance chosen for the simplification.

Sample query

The following query returns the list of records that COPY simplified.

SELECT * FROM sys_spatial_simplify;

SYS_SPATIAL_SIMPLIFY 2456

Amazon Redshift Database Developer Guide

 query_id | line_number | maximum_tolerance | initial_size | simplified | final_size |
 final_tolerance
----------+-------------+-------------------+--------------+------------+------------
+----------------------
 20 | 1184704 | -1 | 1513736 | t | 1008808 |
 1.276386653895e-05
 20 | 1664115 | -1 | 1233456 | t | 1023584 |
 6.11707814796635e-06

SYS_STREAM_SCAN_ERRORS

Records errors for records loaded via streaming ingestion.

SYS_STREAM_SCAN_ERRORS is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data
type

Description

external_
schema_na
me

character
(128)

The name of the Kinesis stream or Amazon MSK topic's schema. It is
case sensitive.

stream_na
me

character
(255)

The name of the stream or topic. It is case sensitive.

mv_name character
(128)

The name of the associated materialized view. Empty if none. It is
case sensitive.

transacti
on_id

bigint The transaction ID.

query_id bigint The query ID.

SYS_STREAM_SCAN_ERRORS 2457

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

stream_ti
mestamp_t
ype

character
(1)

The type of the stream timestamp. It is case sensitive.

stream_ti
mestamp

timestamp
without
time
zone

The time when the record arrived.

record_time timestamp
without
time
zone

The time when the error message was logged.

partition_id character
(128)

The partition/shard id. It is case sensitive.

position character
(128)

The position of the record. This corresponds with the sequence
number in Kinesis or the offset in Amazon MSK. It is case sensitive.

error_code integer The error code.

error_reason character
(128)

The error reason. It is case sensitive.

SYS_STREAM_SCAN_STATES

Records scan states for records loaded via streaming ingestion.

SYS_STREAM_SCAN_STATES is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

SYS_STREAM_SCAN_STATES 2458

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data
type

Description

external_
schema_na
me

character
(128)

The external schema name. It is case sensitive.

stream_na
me

character
(255)

The stream name. It is case sensitive.

mv_name character
(128)

The name of the associated materialized view. Empty if none. It is
case sensitive.

transacti
on_id

bigint The transaction ID.

query_id bigint The query ID.

record_time timestamp
without
time
zone

The time when the data was logged.

partition_id character
(128)

The partition or shard id. It is case sensitive.

latest_po
sition

character
(128)

The position of the last record read in the batch. This corresponds
with the sequence number in Kinesis or the offset in Amazon MSK. It
is case sensitive.

scanned_r
ows

bigint The number of records that were scanned in the batch.

skipped_r
ows

bigint The number of records that were skipped in the batch.

SYS_STREAM_SCAN_STATES 2459

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

scanned_b
ytes

bigint The number of bytes that were scanned in the batch.

stream_re
cord_time
_min

timestamp
without
time
zone

Kinesis or Amazon MSK arrival time for the earliest record in the
batch.

stream_re
cord_time
_max

timestamp
without
time
zone

Kinesis or Amazon MSK arrival time for the latest record in the batch.

The following query shows stream and topic data for specific queries.

select
 query_id,mv_name::varchar,external_schema_name::varchar,stream_name::varchar,sum(scanned_rows)
 total_records,
sum(scanned_bytes) total_bytes from sys_stream_scan_states where query in
 (5401180,8601939) group by 1,2,3,4;

 query_id | mv_name | external_schema_name | stream_name | total_records |
 total_bytes
------------+----------------+----------------------+-----------------+---------------
+----------------
 5401180 | kinesistest | kinesis | kinesisstream | 1493255696 |
 3209006490704
 8601939 | msktest | msk | mskstream | 14677023 |
 31056580668
(2 rows)

SYS_TRANSACTION_HISTORY

Use SYS_TRANSACTION_HISTORY to see details of a transaction when tracking a query.

SYS_TRANSACTION_HISTORY is visible only to superusers. For more information, see Visibility of
data in system tables and views.

SYS_TRANSACTION_HISTORY 2460

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

user_id integer ID of the user who generated
the entry.

transaction_id bigint The ID of the transaction.

isolation_level text The isolation level of the
transaction. Possible values
are Serializable and
Snapshot Isolation .

status text The status of the transacti
on. Possible statuses are
committed and rolledbac
k .

transaction_start_time timestamp The start time of the transacti
on.

commit_start_time timestamp The start time of the commit.

commit_end_time timestamp The end time of the commit.

blocks_committed bigint The number of blocks that
had to be written as part of
this commit.

undo_transaction_id bigint The ID of the undo transacti
on if any transactions have
been undone. Otherwise, this
value is -1.

Sample queries

select * from sys_transaction_history order by transaction_start_time desc;

SYS_TRANSACTION_HISTORY 2461

Amazon Redshift Database Developer Guide

 user_id | transaction_id | isolation_level | status | transaction_start_time
 | commit_start_time | commit_end_time | blocks_committed |
 undo_transaction_id
---------+----------------+-----------------+------------+----------------------------
+----------------------------+----------------------------+------------------
+---------------------
 100 | 1310 | Serializable | committed | 2023-08-27 21:03:11.822205 |
 2023-08-28 21:03:11.825287 | 2023-08-28 21:03:11.854883 | 17 |
 -1
 101 | 1345 | Serializable | committed | 2023-08-27 21:03:12.000278 |
 2023-08-28 21:03:12.003736 | 2023-08-28 21:03:12.030061 | 17 |
 -1
 102 | 1367 | Serializable | committed | 2023-08-27 21:03:12.1532 |
 2023-08-28 21:03:12.156124 | 2023-08-28 21:03:12.186468 | 17 |
 -1
 100 | 1370 | Serializable | committed | 2023-08-27 21:03:12.199316 |
 2023-08-28 21:03:12.204854 | 2023-08-28 21:03:12.238186 | 24 |
 -1
 100 | 1408 | Serializable | committed | 2023-08-27 21:03:53.891107 |
 2023-08-28 21:03:53.894825 | 2023-08-28 21:03:53.927465 | 17 |
 -1
 100 | 1409 | Serializable | rolledback | 2023-08-27 21:03:53.936431 |
 2000-01-01 00:00:00 | 2023-08-28 21:04:08.712532 | 0 |
 1409
 101 | 1415 | Serializable | committed | 2023-08-27 21:04:24.283188 |
 2023-08-28 21:04:24.289196 | 2023-08-28 21:04:24.374318 | 25 |
 -1
 101 | 1416 | Serializable | committed | 2023-08-27 21:04:24.38818 |
 2023-08-28 21:04:24.391688 | 2023-08-28 21:04:24.415135 | 17 |
 -1
 100 | 1417 | Serializable | rolledback | 2023-08-27 21:04:24.424252 |
 2000-01-01 00:00:00 | 2023-08-28 21:04:28.354826 | 0 |
 1417
 101 | 1418 | Serializable | rolledback | 2023-08-27 21:04:24.425195 |
 2000-01-01 00:00:00 | 2023-08-28 21:04:28.680355 | 0 |
 1418
 100 | 1420 | Serializable | committed | 2023-08-27 21:04:28.697607 |
 2023-08-28 21:04:28.702374 | 2023-08-28 21:04:28.735541 | 23 |
 -1
 101 | 1421 | Serializable | committed | 2023-08-27 21:04:28.744854 |
 2023-08-28 21:04:28.749344 | 2023-08-28 21:04:28.779029 | 23 |
 -1

SYS_TRANSACTION_HISTORY 2462

Amazon Redshift Database Developer Guide

 101 | 1423 | Serializable | committed | 2023-08-27 21:04:28.78942 |
 2023-08-28 21:04:28.791556 | 2023-08-28 21:04:28.817485 | 16 |
 -1
 100 | 1430 | Serializable | committed | 2023-08-27 21:04:28.917788 |
 2023-08-28 21:04:28.919993 | 2023-08-28 21:04:28.944812 | 16 |
 -1
 102 | 1494 | Serializable | committed | 2023-08-27 21:04:37.029058 |
 2023-08-28 21:04:37.033137 | 2023-08-28 21:04:37.062001 | 16 |
 -1

SYS_UDF_LOG

Records system-defined error and warning messages generated during user-defined function (UDF)
execution.

SYS_UDF_LOG is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Table columns

Column
name

Data type Description

query_id bigint The query identifier.

function_
name

text The name of the user-defined function.

record_time timestamp The time that the record was created.

sequence integer The sequence of a single log message.

message text The log message text.

Sample queries

The following example shows how UDFs handle system-defined errors. The first block shows the
definition for a UDF function that returns the inverse of an argument. When you run the function

SYS_UDF_LOG 2463

Amazon Redshift Database Developer Guide

and provide a 0 as your argument, the function returns an error. The last statement returns the
error message logged in SYS_UDF_LOG.

-- Create a function to find the inverse of a number.
CREATE OR REPLACE FUNCTION f_udf_inv(a int)

RETURNS float

IMMUTABLE AS $$return 1/a

$$ LANGUAGE plpythonu;

-- Run the function with 0 to create an error.
Select f_udf_inv(0);

-- Query SYS_UDF_LOG to view the message.
Select query_id, record_time, message::varchar from sys_udf_log;

query_id | record_time | message
----------+----------------------------
+---
2211 | 2023-08-23 15:53:11.360538 | ZeroDivisionError: integer division or
 modulo by zero line 2, in f_udf_inv\n return 1/a\n

The following example adds logging and a warning message to the UDF so that a divide by zero
operation results in a warning message instead of stopping with an error message.

-- Create a function to find the inverse of a number and log a warning if you input 0.
CREATE OR REPLACE FUNCTION f_udf_inv_log(a int)
 RETURNS float IMMUTABLE
 AS $$
 import logging
 logger = logging.getLogger() #get root logger
 if a==0:
 logger.warning('You attempted to divide by zero.\nReturning zero instead of error.
\n')
 return 0
 else:
 return 1/a
$$ LANGUAGE plpythonu;

-- Run the function with 0 to trigger the warning.

SYS_UDF_LOG 2464

Amazon Redshift Database Developer Guide

Select f_udf_inv_log(0);

-- Query SYS_UDF_LOG to view the message.
Select query_id, record_time, message::varchar from sys_udf_log;

 query_id | record_time | message
----------+----------------------------
+---
 0 | 2023-08-23 16:10:48.833503 | WARNING: You attempted to divide by zero.
\nReturning zero instead of error.\n

SYS_UNLOAD_DETAIL

Use SYS_UNLOAD_DETAIL to view details of an UNLOAD operation. It records one row for
each file created by an UNLOAD statement. For example, if an UNLOAD creates 12 files,
SYS_UNLOAD_DETAIL will contain 12 corresponding rows.

SYS_UNLOAD_DETAIL is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

user_id integer The identifier of the user who
generated the entry.

query_id integer The query identifier of the
UNLOAD command.

session_id integer The ID of the process
associated with the query
statement.

transaction_id bigint The ID of the transaction
associated with the query
statement.

file_name character (1280) The complete Amazon S3
object path for the file.

SYS_UNLOAD_DETAIL 2465

Amazon Redshift Database Developer Guide

Column name Data type Description

start_time timestamp The time when the transacti
on began.

end_time timestamp The time when the transacti
on completed.

line_count bigint The number of lines (rows)
unloaded to the file.

transfer_size bigint The number of bytes transferr
ed.

file_format character (10) The file format of the
unloaded files.

Sample queries

The following query shows the unloaded query details, including format, rows, and file count of
unload command.

select query_id, substring(file_name, 0, 50), transfer_size, file_format from
 sys_unload_detail;

Sample output.

 query_id | substring | transfer_size |
 file_format
----------+---+---------------
+-------------
 9272 | s3://my-bucket/my_unload_doc_venue0000_part_00.gz | 395886 | Text

 9272 | s3://my-bucket/my_unload_doc_venue0001_part_00.gz | 406444 | Text

 9272 | s3://my-bucket/my_unload_doc_venue0002_part_00.gz | 409431 | Text

 9272 | s3://my-bucket/my_unload_doc_venue0003_part_00.gz | 403051 | Text

SYS_UNLOAD_DETAIL 2466

Amazon Redshift Database Developer Guide

 9272 | s3://my-bucket/my_unload_doc_venue0004_part_00.gz | 413592 | Text

 9272 | s3://my-bucket/my_unload_doc_venue0005_part_00.gz | 395689 | Text

(6 rows)

SYS_UNLOAD_HISTORY

Use SYS_UNLOAD_HISTORY to view details of UNLOAD commands. Each row represents a UNLOAD
command with accumulated statistics for some of the fields. It contains both running and finished
UNLOAD commands.

SYS_UNLOAD_HISTORY is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

user_id integer The identifier of the user who
submitted the unload.

query_id bigint The query identifier of the
UNLOAD command.

transaction_id bigint The transaction identifier.

session_id integer The process identifier of the
process running the unload.

database_name text The name of the database the
user was connected to when
the operation was issued.

status text The status of the UNLOAD
command. Valid values
include: running,
completed , aborted, and
unknown.

SYS_UNLOAD_HISTORY 2467

Amazon Redshift Database Developer Guide

Column name Data type Description

start_time timestamp The time when the unload
began.

end_time timestamp The time when the unload
completed.

duration bigint The amount of time (microsec
onds) spent in the UNLOAD
command.

file_format text The file format of the output
files.

compression_type text The compression type.

unloaded_location text The Amazon S3 location of
unloaded files.

unloaded_rows bigint The number of rows.

unloaded_files_count bigint The file count of the output
file.

unloaded_files_size bigint The file size of the output file.

error_message text The error message of the
UNLOAD command.

Sample queries

The following query shows the unloaded query details, including format, rows, and file count of
unload command.

SELECT query_id,
 file_format,
 start_time,
 duration,
 unloaded_rows,

SYS_UNLOAD_HISTORY 2468

Amazon Redshift Database Developer Guide

 unloaded_files_count
FROM sys_unload_history
ORDER BY query_id,
file_format limit 100;

Sample output.

 query_id | file_format | start_time | duration | unloaded_rows |
 unloaded_files_count
----------+-------------+----------------------------+----------+---------------
+----------------------
 527067 | Text | 2022-02-09 05:18:35.844452 | 5932478 | 10 |
 1

SYS_USERLOG

Records details for the following changes to a database user:

• Create user

• Drop user

• Alter user (rename)

• Alter user (alter properties)

You can query this view to see information about serverless workgroups and provisioned clusters.

SYS_USERLOG is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Table columns

Column name Data type Description

user_id integer The identifier of the user who
submitted the unload.

user_name character(50) Username of the user
affected by the change.

SYS_USERLOG 2469

Amazon Redshift Database Developer Guide

Column name Data type Description

original_user_name character(50) The original username in a
rename action. This field is
empty for all other actions.

action character(10) The action that occurred.
Valid values are alter, create,
drop, and rename.

has_create_db_privs integer If true (a value of 1), the user
has create database permissio
ns.

is_superuser integer If true (a value of 1), the user
can update system catalogs.

has_update_catalog_privs integer If true (a value of 1), the user
can update system catalogs.

password_expiration timestamp The password expiration date.

session_id integer The process ID.

transaction_id bigint The transaction ID.

record_time timestamp Time in UTC of when the
query started.

Sample queries

The following example performs four user actions, then queries the SYS_USERLOG view.

CREATE USER userlog1 password 'Userlog1';
ALTER USER userlog1 createdb createuser;
ALTER USER userlog1 rename to userlog2;
DROP user userlog2;

SYS_USERLOG 2470

Amazon Redshift Database Developer Guide

SELECT user_id, user_name, original_user_name, action, has_create_db_privs,
 is_superuser from SYS_USERLOG order by record_time desc;

user_id | user_name | original_user_name | action | has_create_db_privs |
 is_superuser
--------+------------+--------------------+---------+---------------------+------------
 108 | userlog2 | | drop | 1 | 1
 108 | userlog2 | userlog1 | rename | 1 | 1
 108 | userlog1 | | alter | 1 | 1
 108 | userlog1 | | create | 0 | 0
 (4 rows)

SYS_VACUUM_HISTORY

Use SYS_VACUUM_HISTORY to view details of vacuum queries. For information on the VACUUM
command, see VACUUM.

SYS_VACUUM_HISTORY is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

user_id integer The ID of the user who
initiated the query.

transaction_id long The transaction ID for the
VACUUM statement.

query_id long The query identifier for the
VACUUM statement. You
can join this table to the
SYS_QUERY_DETAIL view
to see the individual SQL
statements that are run for
a given VACUUM transacti

SYS_VACUUM_HISTORY 2471

Amazon Redshift Database Developer Guide

Column name Data type Description

on. If you vacuum the whole
database, each table is
vacuumed in a separate
transaction. For automated
VACUUM operations, this
value is null.

database_name text The name of the database.

schema_name text The name of the schema.

table_name text The name of the table.

table_id integer The ID of the table.

vacuum_type character The type of the VACUUM
operation. Possible values are
as follows:

• Delete

• Sort

• Reindex

• Recluster

• Full

For more information on
vacuum types, see VACUUM.

is_automatic boolean true if the operation is an
automatic vacuum. Otherwise
, false.

SYS_VACUUM_HISTORY 2472

Amazon Redshift Database Developer Guide

Column name Data type Description

status character Description of the current
activity being done as part of
the vacuum operation:

• Initialize

• Sort

• Merge

• Delete

• Select

• Failed

• Complete

• Skipped

• Building INTERLEAVED
SORTKEY order

start_time timestamp The time the vacuum
operation started.

end_time timestamp The time the vacuum
operation ended. If the
operation is ongoing, this
field is blank.

record_time timestamp The time the vacuum
operation was recorded in
SYS_VACUUM_HISTORY.

duration integer The number of microseconds
between the start and end of
the vacuum operation. If the
vacuum operation is ongoing,
this field is blank.

SYS_VACUUM_HISTORY 2473

Amazon Redshift Database Developer Guide

Column name Data type Description

rows_before_vacuum bigint The actual number of rows
in the table plus any deleted
rows that are still stored on
disk (waiting to be vacuumed)
.

size_before_vacuum integer The size of the table before
the vacuum operation began,
in MB.

reclaimable_rows bigint The number of rows the
vacuum operation estimates
it will reclaim before starting.

reclaimed_rows bigint The number of rows the
vacuum operation reclaimed.

reclaimed_blocks bigint The number of blocks the
vacuum operation reclaimed.

sortedrows_before_vacuum integer The number of sorted rows in
the table before the vacuum
operation started.

sortedrows_after_vacuum integer The additional number of
sorted rows in the table
after the vacuum operation
finished. This doesn't
include the rows counted in
sortedrows_before_
vacuum .

System view mapping for migrating to SYS monitoring views

When you migrate your Amazon Redshift provisioned cluster to Amazon Redshift Serverless,
your monitoring or diagnostic queries might reference system views that are only available on

System view mapping for migrating to SYS monitoring views 2474

Amazon Redshift Database Developer Guide

provisioned clusters. You can update your queries to use the SYS monitoring views. This page
provides provisioned-only to SYS view mappings for you to reference when updating your queries.

Topics

• SYS_QUERY_HISTORY

• SYS_QUERY_DETAIL

• SYS_RESTORE_LOG

• SYS_RESTORE_STATE

• SYS_TRANSACTION_HISTORY

• SYS_QUERY_TEXT

• SYS_CONNECTION_LOG

• SYS_SESSION_HISTORY

• SYS_LOAD_DETAIL

• SYS_LOAD_HISTORY

• SYS_LOAD_ERROR_DETAIL

• SYS_UNLOAD_HISTORY

• SYS_UNLOAD_DETAIL

• SYS_COPY_REPLACEMENTS

• SYS_DATASHARE_USAGE_CONSUMER

• SYS_DATASHARE_USAGE_PRODUCER

• SYS_DATASHARE_CROSS_REGION_USAGE

• SYS_DATASHARE_CHANGE_LOG

• SYS_EXTERNAL_QUERY_DETAIL

• SYS_EXTERNAL_QUERY_ERROR

• SYS_VACUUM_HISTORY

• SYS_ANALYZE_HISTORY

• SYS_ANALYZE_COMPRESSION_HISTORY

• SYS_MV_REFRESH_HISTORY

• SYS_MV_STATE

System view mapping for migrating to SYS monitoring views 2475

Amazon Redshift Database Developer Guide

• SYS_PROCEDURE_CALL

• SYS_PROCEDURE_MESSAGES

• SYS_UDF_LOG

• SYS_USERLOG

• SYS_SCHEMA_QUOTA_VIOLATIONS

• SYS_SPATIAL_SIMPLIFY

SYS_QUERY_HISTORY

Some or all of the columns in the following tables are also defined in SYS_QUERY_HISTORY.

• STL_DDLTEXT

• STL_ERROR

• STL_QUERY

• STL_UTILITYTEXT

• STL_WLM_QUERY

• STV_INFLIGHT

• STV_RECENTS

• STV_WLM_QUERY_STATE

• SVL_COMPILE

• SVL_MULTI_STATEMENT_VIOLATIONS

• SVL_QLOG

• SVL_QUERY_QUEUE_INFO

• SVL_STATEMENTTEXT

• SVL_TERMINATE

SYS_QUERY_DETAIL

Some or all of the columns in the following tables are also defined in SYS_QUERY_DETAIL.

• STL_AGGR

SYS_QUERY_HISTORY 2476

Amazon Redshift Database Developer Guide

• STL_ALERT_EVENT_LOG

• STL_BCAST

• STL_DELETE

• STL_DIST

• STL_EXPLAIN

• STL_HASH

• STL_HASHJOIN

• STL_INSERT

• STL_LIMIT

• STL_MERGE

• STL_MERGEJOIN

• STL_NESTLOOP

• STL_PARSE

• STL_PLAN_INFO

• STL_PROJECT

• STL_QUERY_METRICS

• STL_RETURN

• STL_SAVE

• STL_SCAN

• STL_SORT

• STL_STREAM_SEGS

• STL_UNIQUE

• STL_WINDOW

• STV_EXEC_STATE

• STV_QUERY_METRICS

• SVCS_QUERY_SUMMARY

• SVL_QUERY_METRICS

• SVL_QUERY_METRICS_SUMMARY

SYS_QUERY_DETAIL 2477

Amazon Redshift Database Developer Guide

• SVL_QUERY_REPORT

• SVL_QUERY_SUMMARY

• SVV_QUERY_STATE

SYS_RESTORE_LOG

Some or all of the columns in the following table are also defined in SYS_RESTORE_LOG.

• SVL_RESTORE_ALTER_TABLE_PROGRESS

SYS_RESTORE_STATE

Some or all of the columns in the following table are also defined in SYS_RESTORE_STATE.

• STV_XRESTORE_ALTER_QUEUE_STATE

SYS_TRANSACTION_HISTORY

Some or all of the columns in the following tables are also defined in
SYS_TRANSACTION_HISTORY.

• STL_COMMIT_STATS

• STL_TR_CONFLICT

• STL_UNDONE

SYS_QUERY_TEXT

Some or all of the columns in the following table are also defined in SYS_QUERY_TEXT.

• STL_QUERYTEXT

SYS_CONNECTION_LOG

Some or all of the columns in the following table are also defined in SYS_CONNECTION_LOG.

• STL_CONNECTION_LOG

SYS_RESTORE_LOG 2478

Amazon Redshift Database Developer Guide

SYS_SESSION_HISTORY

Some or all of the columns in the following tables are also defined in SYS_SESSION_HISTORY.

• STL_SESSIONS

• STL_RESTARTED_SESSIONS

• STV_SESSIONS

SYS_LOAD_DETAIL

Some or all of the columns in the following table are also defined in SYS_LOAD_DETAIL.

• STL_LOAD_COMMITS

SYS_LOAD_HISTORY

Some or all of the columns in the following table are also defined in SYS_LOAD_HISTORY.

• STL_LOAD_COMMITS

SYS_LOAD_ERROR_DETAIL

Some or all of the columns in the following tables are also defined in SYS_LOAD_ERROR_DETAIL.

• STL_LOADERROR_DETAIL

• STL_LOAD_ERRORS

SYS_UNLOAD_HISTORY

Some or all of the columns in the following table are also defined in SYS_UNLOAD_HISTORY.

• STL_UNLOAD_LOG

SYS_UNLOAD_DETAIL

Some or all of the columns in the following table are also defined in SYS_UNLOAD_DETAIL.

SYS_SESSION_HISTORY 2479

Amazon Redshift Database Developer Guide

• STL_UNLOAD_LOG

SYS_COPY_REPLACEMENTS

Some or all of the columns in the following table are also defined in SYS_COPY_REPLACEMENTS.

• STL_REPLACEMENTS

SYS_DATASHARE_USAGE_CONSUMER

Some or all of the columns in the following table are also defined in
SYS_DATASHARE_USAGE_CONSUMER.

• SVL_DATASHARE_USAGE_CONSUMER

SYS_DATASHARE_USAGE_PRODUCER

Some or all of the columns in the following table are also defined in
SYS_DATASHARE_USAGE_PRODUCER.

• SVL_DATASHARE_USAGE_PRODUCER

SYS_DATASHARE_CROSS_REGION_USAGE

Some or all of the columns in the following table are also defined in
SYS_DATASHARE_CROSS_REGION_USAGE.

• SVL_DATASHARE_CROSS_REGION_USAGE

SYS_DATASHARE_CHANGE_LOG

Some or all of the columns in the following table are also defined in
SYS_DATASHARE_CHANGE_LOG.

• SVL_DATASHARE_CHANGE_LOG

SYS_COPY_REPLACEMENTS 2480

Amazon Redshift Database Developer Guide

SYS_EXTERNAL_QUERY_DETAIL

Some or all of the columns in the following tables are also defined in
SYS_EXTERNAL_QUERY_DETAIL.

• SVL_FEDERATED_QUERY

• SVL_S3LIST

• SVL_S3QUERY

• SVL_S3QUERY_SUMMARY

SYS_EXTERNAL_QUERY_ERROR

Some or all of the columns in the following tables are also defined in
SYS_EXTERNAL_QUERY_ERROR.

• SVL_SPECTRUM_SCAN_ERROR

SYS_VACUUM_HISTORY

Some or all of the columns in the following tables are also defined in SYS_VACUUM_HISTORY.

• STL_VACUUM

• SVL_VACUUM_PERCENTAGE

• SVV_VACUUM_PROGRESS

• SVV_VACUUM_SUMMARY

SYS_ANALYZE_HISTORY

Some or all of the columns in the following tables are also defined in SYS_ANALYZE_HISTORY.

• STL_ANALYZE

SYS_ANALYZE_COMPRESSION_HISTORY

Some or all of the columns in the following tables are also defined in
SYS_ANALYZE_COMPRESSION_HISTORY.

SYS_EXTERNAL_QUERY_DETAIL 2481

Amazon Redshift Database Developer Guide

• STL_ANALYZE_COMPRESSION

SYS_MV_REFRESH_HISTORY

Some or all of the columns in the following tables are also defined in SYS_MV_REFRESH_HISTORY.

• SVL_MV_REFRESH_STATUS

SYS_MV_STATE

Some or all of the columns in the following tables are also defined in SYS_MV_STATE.

• STL_MV_STATE

SYS_PROCEDURE_CALL

Some or all of the columns in the following tables are also defined in SYS_PROCEDURE_CALL.

• SVL_STORED_PROC_CALL

SYS_PROCEDURE_MESSAGES

Some or all of the columns in the following tables are also defined in
SYS_PROCEDURE_MESSAGES.

• SVL_STORED_PROC_MESSAGES

SYS_UDF_LOG

Some or all of the columns in the following tables are also defined in SYS_UDF_LOG.

• SVL_UDF_LOG

SYS_USERLOG

Some or all of the columns in the following tables are also defined in SYS_USERLOG.

SYS_MV_REFRESH_HISTORY 2482

Amazon Redshift Database Developer Guide

• STL_USERLOG

SYS_SCHEMA_QUOTA_VIOLATIONS

Some or all of the columns in the following tables are also defined in
SYS_SCHEMA_QUOTA_VIOLATIONS.

• STL_SCHEMA_QUOTA_VIOLATIONS

SYS_SPATIAL_SIMPLIFY

Some or all of the columns in the following tables are also defined in SYS_SPATIAL_SIMPLIFY.

• SVL_SPATIAL_SIMPLIFY

System monitoring (provisioned only)

The following system tables and views can be queried on provisioned clusters. STL and STV tables
and views contain a subset of data found in several of the system tables. These provide quicker and
easier access to commonly queried data found in those tables.

SVCS views provide details about queries on both the main and concurrency scaling clusters.
SVL views provide information only for queries run on the main cluster, with the exception
of SVL_STATEMENTTEXT. SVL_STATEMENTTEXT can contain information for queries run on
concurrency scaling clusters as well as the main cluster.

Topics

• STL views for logging

• STV tables for snapshot data

• SVCS views for main and concurrency scaling clusters

• SVL views for main cluster

STL views for logging

STL system views are generated from Amazon Redshift log files to provide a history of the system.

SYS_SCHEMA_QUOTA_VIOLATIONS 2483

Amazon Redshift Database Developer Guide

These files reside on every node in the data warehouse cluster. The STL views take the information
from the logs and format them into usable views for system administrators.

Log retention – STL system views retain seven days of log history. Log retention is guaranteed for
all cluster sizes and node types, and it isn't affected by changes in cluster workload. Log retention
also isn't affected by cluster status, such as when the cluster is paused. You have less than seven
days of log history only in the case where the cluster is new. You don't need to take any action to
retain logs, but you have to periodically copy log data to other tables or unload it to Amazon S3 to
keep log data that's more than 7 days old.

Topics

• STL_AGGR

• STL_ALERT_EVENT_LOG

• STL_ANALYZE

• STL_ANALYZE_COMPRESSION

• STL_BCAST

• STL_COMMIT_STATS

• STL_CONNECTION_LOG

• STL_DDLTEXT

• STL_DELETE

• STL_DISK_FULL_DIAG

• STL_DIST

• STL_ERROR

• STL_EXPLAIN

• STL_FILE_SCAN

• STL_HASH

• STL_HASHJOIN

• STL_INSERT

• STL_LIMIT

• STL_LOAD_COMMITS

• STL_LOAD_ERRORS

• STL_LOADERROR_DETAIL

STL views for logging 2484

Amazon Redshift Database Developer Guide

• STL_MERGE

• STL_MERGEJOIN

• STL_MV_STATE

• STL_NESTLOOP

• STL_PARSE

• STL_PLAN_INFO

• STL_PROJECT

• STL_QUERY

• STL_QUERY_METRICS

• STL_QUERYTEXT

• STL_REPLACEMENTS

• STL_RESTARTED_SESSIONS

• STL_RETURN

• STL_S3CLIENT

• STL_S3CLIENT_ERROR

• STL_SAVE

• STL_SCAN

• STL_SCHEMA_QUOTA_VIOLATIONS

• STL_SESSIONS

• STL_SORT

• STL_SSHCLIENT_ERROR

• STL_STREAM_SEGS

• STL_TR_CONFLICT

• STL_UNDONE

• STL_UNIQUE

• STL_UNLOAD_LOG

• STL_USAGE_CONTROL

• STL_USERLOG

• STL_UTILITYTEXT

• STL_VACUUM

STL views for logging 2485

Amazon Redshift Database Developer Guide

• STL_WINDOW

• STL_WLM_ERROR

• STL_WLM_RULE_ACTION

• STL_WLM_QUERY

STL_AGGR

Analyzes aggregate execution steps for queries. These steps occur during execution of aggregate
functions and GROUP BY clauses.

STL_AGGR is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_AGGR only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL. The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

STL views for logging 2486

Amazon Redshift Database Developer Guide

Column
name

Data type Description

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision for
fractional seconds. For example: 2009-06-12 11:29:19.
131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision for
fractional seconds. For example: 2009-06-12 11:29:19.
131358 .

tasknum integer Number of the query task process that was assigned to run
the step.

rows bigint Total number of rows that were processed.

bytes bigint Size, in bytes, of all the output rows for the step.

slots integer Number of hash buckets.

occupied integer Number of slots that contain records.

maxlength integer Size of the largest slot.

tbl integer Table ID.

is_diskba
sed

character(1) If true (t), the query was run as a disk-based operation. If
false (f), the query was run in memory.

workmem bigint Number of bytes of working memory assigned to the step.

STL views for logging 2487

Amazon Redshift Database Developer Guide

Column
name

Data type Description

type character(6) The type of step. Valid values are:

• HASHED. Indicates that the step used grouped, unsorted
aggregation.

• PLAIN. Indicates that the step used ungrouped, scalar
aggregation.

• SORTED. Indicates that the step used grouped, sorted
aggregation.

resizes integer This information is for internal use only.

flushable integer This information is for internal use only.

Sample queries

Returns information about aggregate execution steps for SLICE 1 and TBL 239.

select query, segment, bytes, slots, occupied, maxlength, is_diskbased, workmem, type
from stl_aggr where slice=1 and tbl=239
order by rows
limit 10;

 query | segment | bytes | slots | occupied | maxlength | is_diskbased | workmem |
 type
-------+---------+-------+---------+----------+-----------+--------------+-----------
+--------
 562 | 1 | 0 | 4194304 | 0 | 0 | f | 383385600 |
 HASHED
 616 | 1 | 0 | 4194304 | 0 | 0 | f | 383385600 |
 HASHED
 546 | 1 | 0 | 4194304 | 0 | 0 | f | 383385600 |
 HASHED
 547 | 0 | 8 | 0 | 0 | 0 | f | 0 |
 PLAIN
 685 | 1 | 32 | 4194304 | 1 | 0 | f | 383385600 |
 HASHED

STL views for logging 2488

Amazon Redshift Database Developer Guide

 652 | 0 | 8 | 0 | 0 | 0 | f | 0 |
 PLAIN
 680 | 0 | 8 | 0 | 0 | 0 | f | 0 |
 PLAIN
 658 | 0 | 8 | 0 | 0 | 0 | f | 0 |
 PLAIN
 686 | 0 | 8 | 0 | 0 | 0 | f | 0 |
 PLAIN
 695 | 1 | 32 | 4194304 | 1 | 0 | f | 383385600 |
 HASHED
(10 rows)

STL_ALERT_EVENT_LOG

Records an alert when the query optimizer identifies conditions that might indicate performance
issues. Use the STL_ALERT_EVENT_LOG view to identify opportunities to improve query
performance.

A query consists of multiple segments, and each segment consists of one or more steps. For more
information, see Query processing.

STL_ALERT_EVENT_LOG is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Note

STL_ALERT_EVENT_LOG only contains queries run on main clusters. It doesn't contain
queries run on concurrency scaling clusters. To access queries run on both main and
concurrency scaling clusters, we recommend that you use the SYS monitoring view
SYS_QUERY_DETAIL . The data in the SYS monitoring view is formatted to be easier to use
and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

STL views for logging 2489

Amazon Redshift Database Developer Guide

Column
name

Data type Description

query integer Query ID. The query column can be used to join other system
tables and views.

slice integer Number that identifies the slice where the query was running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

pid integer Process ID associated with the statement and slice. The same
query might have multiple PIDs if it runs on multiple slices.

xid bigint Transaction ID associated with the statement.

event character
(1024)

Description of the alert event.

solution character
(1024)

Recommended solution.

event_time timestamp Time in UTC that the query started. Total time includes queuing
and execution. with 6 digits of precision for fractional seconds. For
example: 2009-06-12 11:29:19.131358 .

Usage notes

You can use the STL_ALERT_EVENT_LOG to identify potential issues in your queries, then follow
the practices in Tuning query performance to optimize your database design and rewrite your
queries. STL_ALERT_EVENT_LOG records the following alerts:

• Missing statistics

Statistics are missing. Run ANALYZE following data loads or significant updates and use
STATUPDATE with COPY operations. For more information, see Amazon Redshift best practices
for designing queries.

• Nested loop

STL views for logging 2490

Amazon Redshift Database Developer Guide

A nested loop is usually a Cartesian product. Evaluate your query to ensure that all participating
tables are joined efficiently.

• Very selective filter

The ratio of rows returned to rows scanned is less than 0.05. Rows scanned is the value of
rows_pre_user_filter and rows returned is the value of rows in the STL_SCAN system view.
Indicates that the query is scanning an unusually large number of rows to determine the result
set. This can be caused by missing or incorrect sort keys. For more information, see Working with
sort keys.

• Excessive ghost rows

A scan skipped a relatively large number of rows that are marked as deleted but not vacuumed,
or rows that have been inserted but not committed. For more information, see Vacuuming
tables.

• Large distribution

More than 1,000,000 rows were redistributed for hash join or aggregation. For more information,
see Working with data distribution styles.

• Large broadcast

More than 1,000,000 rows were broadcast for hash join. For more information, see Working with
data distribution styles.

• Serial execution

A DS_DIST_ALL_INNER redistribution style was indicated in the query plan, which forces
serial execution because the entire inner table was redistributed to a single node. For more
information, see Working with data distribution styles.

Sample queries

The following query shows alert events for four queries.

SELECT query, substring(event,0,25) as event,
substring(solution,0,25) as solution,
trim(event_time) as event_time from stl_alert_event_log order by query;

 query | event | solution | event_time

STL views for logging 2491

Amazon Redshift Database Developer Guide

-------+-------------------------------+------------------------------
+---------------------
 6567 | Missing query planner statist | Run the ANALYZE command | 2014-01-03
 18:20:58
 7450 | Scanned a large number of del | Run the VACUUM command to rec| 2014-01-03
 21:19:31
 8406 | Nested Loop Join in the query | Review the join predicates to| 2014-01-04
 00:34:22
 29512 | Very selective query filter:r | Review the choice of sort key| 2014-01-06
 22:00:00

(4 rows)

STL_ANALYZE

Records details for ANALYZE operations.

STL_ANALYZE is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_ANALYZE_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer The ID of the user who generated the entry.

xid long The transaction ID.

database char(30) The database name.

table_id integer The table ID.

status char(15) The result of the analyze command. Possible values are
Full, Skipped, and PredicateColumn .

rows double The total number of rows in the table.

STL views for logging 2492

Amazon Redshift Database Developer Guide

Column
name

Data type Description

modified_
rows

double The total number of rows that were modified since the last
ANALYZE operation.

threshold
_percent

integer The value of the analyze_threshold_percent
parameter.

is_auto char(1) The value is true (t) if the operation included an Amazon
Redshift analyze operation by default. The value is false (f)
if the ANALYZE command was run explicitly.

starttime timestamp The time in UTC that the analyze operation started running.

endtime timestamp The time in UTC that the analyze operation finished running.

prevtime timestamp The time in UTC that the table was previously analyzed.

num_predi
cate_cols

integer The current number of predicate columns in the table.

num_new_p
redicate_
cols

integer The number of new predicate columns in the table since the
previous analyze operation.

is_backgr
ound

character(1) The value is true (t) if the analysis was run by an automatic
analyze operation. Otherwise, the value is false (f).

auto_anal
yze_phase

character(100) Reserved for internal use.

schema_na
me

char(128) The schema name for the table.

table_name char(136) The name of the table.

Sample queries

The following example joins STV_TBL_PERM to show the table name and execution details.

STL views for logging 2493

Amazon Redshift Database Developer Guide

select distinct a.xid, trim(t.name) as name, a.status, a.rows, a.modified_rows,
 a.starttime, a.endtime
from stl_analyze a
join stv_tbl_perm t on t.id=a.table_id
where name = 'users'
order by starttime;

xid | name | status | rows | modified_rows | starttime |
 endtime
-------+-------+-----------------+-------+---------------+---------------------
+--------------------
 1582 | users | Full | 49990 | 49990 | 2016-09-22 22:02:23 |
 2016-09-22 22:02:28
244287 | users | Full | 24992 | 74988 | 2016-10-04 22:50:58 |
 2016-10-04 22:51:01
244712 | users | Full | 49984 | 24992 | 2016-10-04 22:56:07 |
 2016-10-04 22:56:07
245071 | users | Skipped | 49984 | 0 | 2016-10-04 22:58:17 |
 2016-10-04 22:58:17
245439 | users | Skipped | 49984 | 1982 | 2016-10-04 23:00:13 |
 2016-10-04 23:00:13
(5 rows)

STL_ANALYZE_COMPRESSION

Records details for compression analysis operations during COPY or ANALYZE COMPRESSION
commands.

STL_ANALYZE_COMPRESSION is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_ANALYZE_COMPRESSION_HISTORY. The data in the SYS monitoring view is formatted to
be easier to use and understand. We recommend that you use the SYS monitoring view for your
queries.

STL views for logging 2494

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

userid integer The ID of the user who generated the entry.

start_time timestamp The time when the compression analysis operation started.

xid bigint The transaction ID of the compression analysis operation.

tbl integer The table ID of the table that was analyzed.

tablename character(128) The name of the table that was analyzed.

col integer The index of the column in the table that was analyzed to
determine the compression encoding.

old_encod
ing

character(15) The encoding type before compression analysis.

new_encod
ing

character(15) The encoding type after compression analysis.

mode character(14) The possible values are:

PRESET

Specifies that the new_encoding is determined by the
Amazon Redshift COPY command based on the column
data type. No data is sampled.

ON

Specifies that the new_encoding is determined by the
Amazon Redshift COPY command based on an analysis
of sample data.

ANALYZE ONLY

Specifies that the new_encoding is determined by the
Amazon Redshift ANALYZE COMPRESSION command

STL views for logging 2495

Amazon Redshift Database Developer Guide

Column
name

Data type Description

based on an analysis of sample data. However, the
encoding type of the analyzed column is not changed.

best_comp
ression_e
ncoding

character(15) The encoding type that gives the best compression ratio.

recommend
ed_bytes

character(15) The bytes used by adopting the new encoding.

best_comp
ression_b
ytes

character(15) The bytes used by adopting the best compression encoding.

ndv bigint The number of distinct values in the sampled rows.

Sample queries

The following example inspects the details of compression analysis on the lineitem table by the
last COPY command run in the same session.

select xid, tbl, btrim(tablename) as tablename, col, old_encoding, new_encoding,
 best_compression_encoding, mode
from stl_analyze_compression
where xid = (select xid from stl_query where query = pg_last_copy_id()) order by col;

 xid | tbl | tablename | col | old_encoding | new_encoding |
 best_compression_encoding | mode
------+--------+-----------+-----+-----------------+-----------------
+---------------------------+----------------
 5308 | 158961 | $lineitem | 0 | mostly32 | az64 | delta
 | ON
 5308 | 158961 | $lineitem | 1 | mostly32 | az64 | az64
 | ON
 5308 | 158961 | $lineitem | 2 | lzo | az64 | az64
 | ON
 5308 | 158961 | $lineitem | 3 | delta | az64 | az64
 | ON

STL views for logging 2496

Amazon Redshift Database Developer Guide

 5308 | 158961 | $lineitem | 4 | bytedict | az64 | bytedict
 | ON
 5308 | 158961 | $lineitem | 5 | mostly32 | az64 | az64
 | ON
 5308 | 158961 | $lineitem | 6 | delta | az64 | az64
 | ON
 5308 | 158961 | $lineitem | 7 | delta | az64 | az64
 | ON
 5308 | 158961 | $lineitem | 8 | lzo | lzo | lzo
 | ON
 5308 | 158961 | $lineitem | 9 | runlength | runlength | runlength
 | ON
 5308 | 158961 | $lineitem | 10 | delta | az64 | az64
 | ON
 5308 | 158961 | $lineitem | 11 | delta | az64 | az64
 | ON
 5308 | 158961 | $lineitem | 12 | delta | az64 | az64
 | ON
 5308 | 158961 | $lineitem | 13 | bytedict | bytedict | bytedict
 | ON
 5308 | 158961 | $lineitem | 14 | bytedict | bytedict | bytedict
 | ON
 5308 | 158961 | $lineitem | 15 | text255 | text255 | text255
 | ON
(16 rows)

STL_BCAST

Logs information about network activity during execution of query steps that broadcast data.
Network traffic is captured by numbers of rows, bytes, and packets that are sent over the network
during a given step on a given slice. The duration of the step is the difference between the logged
start and end times.

To identify broadcast steps in a query, look for bcast labels in the SVL_QUERY_SUMMARY view or
run the EXPLAIN command and then look for step attributes that include bcast.

STL_BCAST is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

STL views for logging 2497

Amazon Redshift Database Developer Guide

Note

STL_BCAST only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision for
fractional seconds. For example: 2009-06-12 11:29:19.
131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision for
fractional seconds. For example: 2009-06-12 11:29:19.
131358 .

tasknum integer Number of the query task process that was assigned to run
the step.

rows bigint Total number of rows that were processed.

STL views for logging 2498

Amazon Redshift Database Developer Guide

Column
name

Data type Description

bytes bigint Size, in bytes, of all the output rows for the step.

packets integer Total number of packets sent over the network.

Sample queries

The following example returns broadcast information for the queries where there are one or more
packets, and the difference between the start and end of the query was one second or more.

select query, slice, step, rows, bytes, packets, datediff(seconds, starttime, endtime)
from stl_bcast
where packets>0 and datediff(seconds, starttime, endtime)>0;

 query | slice | step | rows | bytes | packets | date_diff
-------+-------+------+------+-------+---------+-----------
 453 | 2 | 5 | 1 | 264 | 1 | 1
 798 | 2 | 5 | 1 | 264 | 1 | 1
 1408 | 2 | 5 | 1 | 264 | 1 | 1
 2993 | 0 | 5 | 1 | 264 | 1 | 1
 5045 | 3 | 5 | 1 | 264 | 1 | 1
 8073 | 3 | 5 | 1 | 264 | 1 | 1
 8163 | 3 | 5 | 1 | 264 | 1 | 1
 9212 | 1 | 5 | 1 | 264 | 1 | 1
 9873 | 1 | 5 | 1 | 264 | 1 | 1
(9 rows)

STL_COMMIT_STATS

Provides metrics related to commit performance, including the timing of the various stages of
commit and the number of blocks committed. Query STL_COMMIT_STATS to determine what
portion of a transaction was spent on commit and how much queuing is occurring.

STL_COMMIT_STATS is visible only to superusers. For more information, see Visibility of data in
system tables and views.

STL views for logging 2499

Amazon Redshift Database Developer Guide

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_TRANSACTION_HISTORY. The data in the SYS monitoring view is formatted to be easier to use
and understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

xid bigint Transaction id being committed.

node integer Node number. -1 is the leader node.

startqueue timestamp Start of queueing for commit.

startwork timestamp Start of commit.

endflush timestamp End of dirty block flush phase.

endstage timestamp End of metadata staging phase.

endlocal timestamp End of local commit phase.

startglobal timestamp Start of global phase.

endtime timestamp End of the commit.

queuelen bigint Number of transactions that were ahead of this transaction
in the commit queue.

permblocks bigint Number of existing permanent blocks at the time of this
commit.

newblocks bigint Number of new permanent blocks at the time of this
commit.

dirtyblocks bigint Number of blocks that had to be written as part of this
commit.

headers bigint Number of block headers that had to be written as part of
this commit.

STL views for logging 2500

Amazon Redshift Database Developer Guide

Column
name

Data type Description

numxids integer The number of active DML transactions.

oldestxid bigint The XID of the oldest active DML transaction.

extwritel
atency

bigint This information is for internal use only.

metadataw
ritten

int This information is for internal use only.

tombstone
dblocks

bigint This information is for internal use only.

tossedblo
cks

bigint This information is for internal use only.

batched_by bigint This information is for internal use only.

Sample query

select node, datediff(ms,startqueue,startwork) as queue_time,
datediff(ms, startwork, endtime) as commit_time, queuelen
from stl_commit_stats
where xid = 2574
order by node;

node | queue_time | commit_time | queuelen
-----+--------------+-------------+---------
 -1 | 0 | 617 | 0
 0 | 444950725641 | 616 | 0
 1 | 444950725636 | 616 | 0

STL_CONNECTION_LOG

Logs authentication attempts and connections and disconnections.

STL views for logging 2501

Amazon Redshift Database Developer Guide

STL_CONNECTION_LOG is visible only to superusers. For more information, see Visibility of data in
system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_CONNECTION_LOG. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

event character(50) Connection or authentication event.

recordtime timestamp Time the event occurred.

remotehost character(45) Name or IP address of remote host.

remoteport character(32) Port number for remote host.

pid integer Process ID associated with the statement.

dbname character(50) Database name.

username character(50) User name.

authmetho
d

character(32) Authentication method.

duration integer Duration of connection in microseconds.

sslversion character(50) Secure Sockets Layer (SSL) version.

sslcipher character(128) SSL cipher.

mtu integer Maximum transmission unit (MTU).

sslcompre
ssion

character(64) SSL compression type.

STL views for logging 2502

Amazon Redshift Database Developer Guide

Column
name

Data type Description

sslexpans
ion

character(64) SSL expansion type.

iamauthgu
id

character(36) The IAM authentication ID for the CloudTrail request.

applicati
on_name

character(250) The initial or updated name of the application for a session.

os_version character(64) The version of the operating system that is on the client
machine that connects to your Amazon Redshift cluster.

driver_ve
rsion

character(64) The version of ODBC or JDBC driver that connects to your
Amazon Redshift cluster from your third-party SQL client
tools.

plugin_na
me

character(32) The name of the plugin used to connect to your Amazon
Redshift cluster.

protocol_
version

integer The internal protocol version that the Amazon Redshift
driver uses when establishing its connection with the server.
The protocol versions is negotiated between the driver and
server. The version describes the features available. Valid
values include:

• 0 (BASE_SERVER_PROTOCOL_VERSION)

• 1 (EXTENDED_RESULT_METADATA_SERVER_PRO
TOCOL_VERSION) – To save a round trip per query, the
server sends extra result set metadata information.

• 2 (BINARY_PROTOCOL_VERSION) – Depending on the
data type of the result set, the server sends data in binary
format.

• 3 (EXTENDED2_RESULT_METADATA_SERVER_PR
OTOCOL_VERSION) – The server sends case sensitivity
(collation) information of a column.

STL views for logging 2503

Amazon Redshift Database Developer Guide

Column
name

Data type Description

sessionid character(36) The globally unique identifier for the current session. The
session ID persists through node failure restarts.

compressi
on

character(16) The compression algorithm in use for the connection.

Sample queries

To view the details for open connections, run the following query.

select recordtime, username, dbname, remotehost, remoteport
from stl_connection_log
where event = 'initiating session'
and pid not in
(select pid from stl_connection_log
where event = 'disconnecting session')
order by 1 desc;

recordtime | username | dbname | remotehost | remoteport

--------------------+-------------+------------+---------------+------------
2014-11-06 20:30:06 | rdsdb | dev | [local] |

2014-11-06 20:29:37 | test001 | test | 10.49.42.138 | 11111

2014-11-05 20:30:29 | rdsdb | dev | 10.49.42.138 | 33333

2014-11-05 20:28:35 | rdsdb | dev | [local] |
(4 rows)

The following example reflects a failed authentication attempt and a successful connection and
disconnection.

select event, recordtime, remotehost, username
from stl_connection_log order by recordtime;

 event | recordtime | remotehost | username

STL views for logging 2504

Amazon Redshift Database Developer Guide

-----------------------+---------------------------+--------------+---------
authentication failure | 2012-10-25 14:41:56.96391 | 10.49.42.138 | john

authenticated | 2012-10-25 14:42:10.87613 | 10.49.42.138 | john

initiating session | 2012-10-25 14:42:10.87638 | 10.49.42.138 | john

disconnecting session | 2012-10-25 14:42:19.95992 | 10.49.42.138 | john

(4 rows)

The following example shows the version of the ODBC driver, the operating system on the client
machine, and the plugin used to connect to the Amazon Redshift cluster. In this example, the
plugin used is for standard ODBC driver authentication using a login name and password.

select driver_version, os_version, plugin_name from stl_connection_log;

driver_version | os_version |
 plugin_name
--+-----------------------------------
+--------------------
Amazon Redshift ODBC Driver 1.4.15.0001 | Darwin 18.7.0 x86_64 | none
Amazon Redshift ODBC Driver 1.4.15.0001 | Linux 4.15.0-101-generic x86_64 | none

The following example shows the version of the operating system on the client machine, the driver
version, and the protocol version.

select os_version, driver_version, protocol_version from stl_connection_log;

os_version | driver_version | protocol_version
--------------------------------+------------------------------+--------------------
Linux 4.15.0-101-generic x86_64 | Redshift JDBC Driver 2.0.0.0 | 2
Linux 4.15.0-101-generic x86_64 | Redshift JDBC Driver 2.0.0.0 | 2
Linux 4.15.0-101-generic x86_64 | Redshift JDBC Driver 2.0.0.0 | 2

STL_DDLTEXT

Captures the following DDL statements that were run on the system.

These DDL statements include the following queries and objects:

• CREATE SCHEMA, TABLE, VIEW

STL views for logging 2505

Amazon Redshift Database Developer Guide

• DROP SCHEMA, TABLE, VIEW

• ALTER SCHEMA, TABLE

See also STL_QUERYTEXT, STL_UTILITYTEXT, and SVL_STATEMENTTEXT. These views provide a
timeline of the SQL commands that are run on the system; this history is useful for troubleshooting
and for creating an audit trail of all system activities.

Use the STARTTIME and ENDTIME columns to find out which statements were logged during
a given time period. Long blocks of SQL text are broken into lines 200 characters long; the
SEQUENCE column identifies fragments of text that belong to a single statement.

STL_DDLTEXT is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

xid bigint Transaction ID associated with the statement.

pid integer Process ID associated with the statement.

label character(320) Either the name of the file used to run the query or a
label defined with a SET QUERY_GROUP command. If the
query is not file-based or the QUERY_GROUP parameter
is not set, this field is blank.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

STL views for logging 2506

Amazon Redshift Database Developer Guide

Column
name

Data type Description

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

sequence integer When a single statement contains more than 200
characters, additional rows are logged for that statement.
Sequence 0 is the first row, 1 is the second, and so on.

text character(200) SQL text, in 200-character increments. This field might
contain special characters such as backslash (\\) and
newline (\n).

Sample queries

The following query returns records that include previously run DDL statements.

select xid, starttime, sequence, substring(text,1,40) as text
from stl_ddltext order by xid desc, sequence;

The following is sample output that shows four CREATE TABLE statements. The DDL statements
appear in the text column, which is truncated for readability.

 xid | starttime | sequence | text
------+----------------------------+----------
+--
 1806 | 2013-10-23 00:11:14.709851 | 0 | CREATE TABLE supplier (s_suppkey int4
 N
 1806 | 2013-10-23 00:11:14.709851 | 1 | s_comment varchar(101) NOT NULL)
 1805 | 2013-10-23 00:11:14.496153 | 0 | CREATE TABLE region (r_regionkey int4
 N
 1804 | 2013-10-23 00:11:14.285986 | 0 | CREATE TABLE partsupp (ps_partkey int8
 1803 | 2013-10-23 00:11:14.056901 | 0 | CREATE TABLE part (p_partkey int8 NOT
 N
 1803 | 2013-10-23 00:11:14.056901 | 1 | ner char(10) NOT NULL , p_retailprice
 nu

STL views for logging 2507

Amazon Redshift Database Developer Guide

(6 rows)

Reconstructing Stored SQL

The following SQL lists rows stored in the text column of STL_DDLTEXT. The rows are ordered
by xid and sequence. If the original SQL was longer than 200 characters multiple rows,
STL_DDLTEXT can contain multiple rows by sequence.

SELECT xid, sequence, LISTAGG(CASE WHEN LEN(RTRIM(text)) = 0 THEN text ELSE RTRIM(text)
 END, '') WITHIN GROUP (ORDER BY sequence) as query_statement
FROM stl_ddltext GROUP BY xid, sequence ORDER BY xid, sequence;

xid | sequence | query_statement
--------+-----------+-----------------
7886671 0 create external schema schema_spectrum_uddh\nfrom data catalog
\ndatabase 'spectrum_db_uddh'\niam_role ''\ncreate external database if not exists;
7886752 0 CREATE EXTERNAL TABLE schema_spectrum_uddh.soccer_league\n(\n
 league_rank smallint,\n prev_rank smallint,\n club_name varchar(15),\n
 league_name varchar(20),\n league_off decimal(6,2),\n le
7886752 1 ague_def decimal(6,2),\n league_spi decimal(6,2),\n
 league_nspi smallint\n)\nROW FORMAT DELIMITED \n FIELDS TERMINATED BY ',' \n
 LINES TERMINATED BY '\\n\\l'\nstored as textfile\nLOCATION 's
7886752 2 3://mybucket-spectrum-uddh/'\ntable properties
 ('skip.header.line.count'='1');
...

To reconstruct the SQL stored in the text column of STL_DDLTEXT, run the following SQL
statement. It puts together DDL statements from one or more segments in the text column.
Before running the reconstructed SQL, replace any (\n) special characters with a new line in your
SQL client. The results of the following SELECT statement puts together three rows in sequence
order to reconstruct the SQL, in the query_statement field.

SELECT LISTAGG(CASE WHEN LEN(RTRIM(text)) = 0 THEN text ELSE RTRIM(text) END) WITHIN
 GROUP (ORDER BY sequence) as query_statement
FROM stl_ddltext GROUP BY xid, endtime order by xid, endtime;

query_statement

STL views for logging 2508

Amazon Redshift Database Developer Guide

create external schema schema_spectrum_uddh\nfrom data catalog\ndatabase
 'spectrum_db_uddh'\niam_role ''\ncreate external database if not exists;
CREATE EXTERNAL TABLE schema_spectrum_uddh.soccer_league\n(\n league_rank smallint,
\n prev_rank smallint,\n club_name varchar(15),\n league_name varchar(20),\n
 league_off decimal(6,2),\n league_def decimal(6,2),\n league_spi decimal(6,2),
\n league_nspi smallint\n)\nROW FORMAT DELIMITED \n FIELDS TERMINATED BY ',' \n
 LINES TERMINATED BY '\\n\\l'\nstored as textfile\nLOCATION 's3://mybucket-spectrum-
uddh/'\ntable properties ('skip.header.line.count'='1');

STL_DELETE

Analyzes delete execution steps for queries.

STL_DELETE is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_DELETE only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

STL views for logging 2509

Amazon Redshift Database Developer Guide

Column
name

Data type Description

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

tbl integer Table ID.

Sample queries

In order to create a row in STL_DELETE, the following example inserts a row into the EVENT table
and then deletes it.

First, insert a row into the EVENT table and verify that it was inserted.

insert into event(eventid,venueid,catid,dateid,eventname)
values ((select max(eventid)+1 from event),95,9,1857,'Lollapalooza');

select * from event
where eventname='Lollapalooza'
order by eventid;

 eventid | venueid | catid | dateid | eventname | starttime
---------+---------+-------+--------+--------------+---------------------

STL views for logging 2510

Amazon Redshift Database Developer Guide

 4274 | 102 | 9 | 1965 | Lollapalooza | 2008-05-01 19:00:00
 4684 | 114 | 9 | 2105 | Lollapalooza | 2008-10-06 14:00:00
 5673 | 128 | 9 | 1973 | Lollapalooza | 2008-05-01 15:00:00
 5740 | 51 | 9 | 1933 | Lollapalooza | 2008-04-17 15:00:00
 5856 | 119 | 9 | 1831 | Lollapalooza | 2008-01-05 14:00:00
 6040 | 126 | 9 | 2145 | Lollapalooza | 2008-11-15 15:00:00
 7972 | 92 | 9 | 2026 | Lollapalooza | 2008-07-19 19:30:00
 8046 | 65 | 9 | 1840 | Lollapalooza | 2008-01-14 15:00:00
 8518 | 48 | 9 | 1904 | Lollapalooza | 2008-03-19 15:00:00
 8799 | 95 | 9 | 1857 | Lollapalooza |
(10 rows)

Now, delete the row that you added to the EVENT table and verify that it was deleted.

delete from event
where eventname='Lollapalooza' and eventid=(select max(eventid) from event);

select * from event
where eventname='Lollapalooza'
order by eventid;

 eventid | venueid | catid | dateid | eventname | starttime
---------+---------+-------+--------+--------------+---------------------
 4274 | 102 | 9 | 1965 | Lollapalooza | 2008-05-01 19:00:00
 4684 | 114 | 9 | 2105 | Lollapalooza | 2008-10-06 14:00:00
 5673 | 128 | 9 | 1973 | Lollapalooza | 2008-05-01 15:00:00
 5740 | 51 | 9 | 1933 | Lollapalooza | 2008-04-17 15:00:00
 5856 | 119 | 9 | 1831 | Lollapalooza | 2008-01-05 14:00:00
 6040 | 126 | 9 | 2145 | Lollapalooza | 2008-11-15 15:00:00
 7972 | 92 | 9 | 2026 | Lollapalooza | 2008-07-19 19:30:00
 8046 | 65 | 9 | 1840 | Lollapalooza | 2008-01-14 15:00:00
 8518 | 48 | 9 | 1904 | Lollapalooza | 2008-03-19 15:00:00
(9 rows)

Then query stl_delete to see the execution steps for the deletion. In this example, the query
returned over 300 rows, so the output below is shortened for display purposes.

select query, slice, segment, step, tasknum, rows, tbl from stl_delete order by query;

 query | slice | segment | step | tasknum | rows | tbl

STL views for logging 2511

Amazon Redshift Database Developer Guide

-------+-------+---------+------+---------+------+--------
 7 | 0 | 0 | 1 | 0 | 0 | 100000
 7 | 1 | 0 | 1 | 0 | 0 | 100000
 8 | 0 | 0 | 1 | 2 | 0 | 100001
 8 | 1 | 0 | 1 | 2 | 0 | 100001
 9 | 0 | 0 | 1 | 4 | 0 | 100002
 9 | 1 | 0 | 1 | 4 | 0 | 100002
 10 | 0 | 0 | 1 | 6 | 0 | 100003
 10 | 1 | 0 | 1 | 6 | 0 | 100003
 11 | 0 | 0 | 1 | 8 | 0 | 100253
 11 | 1 | 0 | 1 | 8 | 0 | 100253
 12 | 0 | 0 | 1 | 0 | 0 | 100255
 12 | 1 | 0 | 1 | 0 | 0 | 100255
 13 | 0 | 0 | 1 | 2 | 0 | 100257
 13 | 1 | 0 | 1 | 2 | 0 | 100257
 14 | 0 | 0 | 1 | 4 | 0 | 100259
 14 | 1 | 0 | 1 | 4 | 0 | 100259
 ...

STL_DISK_FULL_DIAG

Logs information about errors recorded when the disk is full.

STL_DISK_FULL_DIAG is visible only to superusers. For more information, see Visibility of data in
system tables and views.

Table columns

Column
name

Data type Description

currentti
me

bigint The day and time the error was generated in
microseconds since January 1, 2000.

node_numbigint The identifier for the node.

query_id bigint The identifier for the query that caused the
error.

temp_bloc
ks

bigint The number of temporary blocks created by
the query.

STL views for logging 2512

Amazon Redshift Database Developer Guide

Sample queries

The following example returns details about the data stored when there is a disk-full error.

select * from stl_disk_full_diag

The following example converts the currenttime to a timestamp.

select '2000-01-01'::timestamp + (currenttime/1000000.0)* interval '1 second' as
 currenttime,node_num,query_id,temp_blocks from pg_catalog.stl_disk_full_diag;

 currenttime | node_num | query_id | temp_blocks
----------------------------+----------+----------+-------------
 2019-05-18 19:19:18.609338 | 0 | 569399 | 70982
 2019-05-18 19:37:44.755548 | 0 | 569580 | 70982
 2019-05-20 13:37:20.566916 | 0 | 597424 | 70869

STL_DIST

Logs information about network activity during execution of query steps that distribute data.
Network traffic is captured by numbers of rows, bytes, and packets that are sent over the network
during a given step on a given slice. The duration of the step is the difference between the logged
start and end times.

To identify distribution steps in a query, look for dist labels in the QUERY_SUMMARY view or run
the EXPLAIN command and then look for step attributes that include dist.

STL_DIST is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_DIST only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

STL views for logging 2513

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

bytes bigint Size, in bytes, of all the output rows for the step.

packets integer Total number of packets sent over the network.

STL views for logging 2514

Amazon Redshift Database Developer Guide

Sample queries

The following example returns distribution information for queries with one or more packets and
duration greater than zero.

select query, slice, step, rows, bytes, packets,
datediff(seconds, starttime, endtime) as duration
from stl_dist
where packets>0 and datediff(seconds, starttime, endtime)>0
order by query
limit 10;

 query | slice | step | rows | bytes | packets | duration
--------+-------+------+--------+---------+---------+-----------
 567 | 1 | 4 | 49990 | 6249564 | 707 | 1
 630 | 0 | 5 | 8798 | 408404 | 46 | 2
 645 | 1 | 4 | 8798 | 408404 | 46 | 1
 651 | 1 | 5 | 192497 | 9226320 | 1039 | 6
 669 | 1 | 4 | 192497 | 9226320 | 1039 | 4
 675 | 1 | 5 | 3766 | 194656 | 22 | 1
 696 | 0 | 4 | 3766 | 194656 | 22 | 1
 705 | 0 | 4 | 930 | 44400 | 5 | 1
 111525 | 0 | 3 | 68 | 17408 | 2 | 1
(9 rows)

STL_ERROR

Records internal processing errors generated by the Amazon Redshift database engine.
STL_ERROR does not record SQL errors or messages. The information in STL_ERROR is useful for
troubleshooting certain errors. An AWS support engineer might ask you to provide this information
as part of the troubleshooting process.

STL_ERROR is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

STL views for logging 2515

Amazon Redshift Database Developer Guide

For a list of error codes that can be generated while loading data with the Copy command, see
Load error reference.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

process character(12) Process that threw the exception.

recordtime timestamp Time that the error occurred.

pid integer Process ID. The STL_QUERY table contains process IDs
and unique query IDs for completed queries.

errcode integer Error code corresponding to the error category.

file character(90) Name of the source file where the error occurred.

linenum integer Line number in the source file where the error occurred.

context character(100) Cause of the error.

error character(512) Error message.

Sample queries

The following example retrieves the error information from STL_ERROR.

select process, errcode, linenum as line,
trim(error) as err
from stl_error;

 process | errcode | line | err
--------------+---------+------
+--
 padbmaster | 8001 | 194 | Path prefix: s3://redshift-downloads/testnulls/
venue.txt*

STL views for logging 2516

Amazon Redshift Database Developer Guide

 padbmaster | 8001 | 529 | Listing bucket=redshift-downloads prefix=tests/
category-csv-quotes
 padbmaster | 2 | 190 | database "template0" is not currently accepting
 connections
 padbmaster | 32 | 1956 | pq_flush: could not send data to client: Broken pipe
(4 rows)

STL_EXPLAIN

Displays the EXPLAIN plan for a query that has been submitted for execution.

STL_EXPLAIN is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_EXPLAIN only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

nodeid integer Plan node identifier, where a node maps to one or more
steps in the execution of the query.

parentid integer Plan node identifier for a parent node. A parent node has
some number of child nodes. For example, a merge join is
the parent of the scans on the joined tables.

STL views for logging 2517

Amazon Redshift Database Developer Guide

Column
name

Data type Description

plannode character(400) The node text from the EXPLAIN output. Plan nodes that
refer to execution on compute nodes are prefixed with XN in
the EXPLAIN output.

info character(400) Qualifier and filter information for the plan node. For
example, join conditions and WHERE clause restrictions are
included in this column.

Sample queries

Consider the following EXPLAIN output for an aggregate join query:

explain select avg(datediff(day, listtime, saletime)) as avgwait
from sales, listing where sales.listid = listing.listid;
 QUERY PLAN

--
 XN Aggregate (cost=6350.30..6350.31 rows=1 width=16)
 -> XN Hash Join DS_DIST_NONE (cost=47.08..6340.89 rows=3766 width=16)
 Hash Cond: ("outer".listid = "inner".listid)
 -> XN Seq Scan on listing (cost=0.00..1924.97 rows=192497 width=12)
 -> XN Hash (cost=37.66..37.66 rows=3766 width=12)
 -> XN Seq Scan on sales (cost=0.00..37.66 rows=3766 width=12)
(6 rows)

If you run this query and its query ID is 10, you can use the STL_EXPLAIN table to see the same
kind of information that the EXPLAIN command returns:

select query,nodeid,parentid,substring(plannode from 1 for 30),
substring(info from 1 for 20) from stl_explain
where query=10 order by 1,2;

query| nodeid |parentid| substring | substring
-----+--------+--------+--------------------------------+-------------------
10 | 1 | 0 |XN Aggregate (cost=6717.61..6 |
10 | 2 | 1 | -> XN Merge Join DS_DIST_NO | Merge Cond:("outer"
10 | 3 | 2 | -> XN Seq Scan on lis |

STL views for logging 2518

Amazon Redshift Database Developer Guide

10 | 4 | 2 | -> XN Seq Scan on sal |
(4 rows)

Consider the following query:

select event.eventid, sum(pricepaid)
from event, sales
where event.eventid=sales.eventid
group by event.eventid order by 2 desc;

eventid | sum
--------+----------
 289 | 51846.00
 7895 | 51049.00
 1602 | 50301.00
 851 | 49956.00
 7315 | 49823.00
...

If this query's ID is 15, the following system view query returns the plan nodes that were
completed. In this case, the order of the nodes is reversed to show the actual order of execution:

select query,nodeid,parentid,substring(plannode from 1 for 56)
from stl_explain where query=15 order by 1, 2 desc;

query|nodeid|parentid| substring
-----+------+--------+--
15 | 8 | 7 | -> XN Seq Scan on eve
15 | 7 | 5 | -> XN Hash(cost=87.98..87.9
15 | 6 | 5 | -> XN Seq Scan on sales(cos
15 | 5 | 4 | -> XN Hash Join DS_DIST_OUTER(cos
15 | 4 | 3 | -> XN HashAggregate(cost=862286577.07..
15 | 3 | 2 | -> XN Sort(cost=1000862287175.47..10008622871
15 | 2 | 1 | -> XN Network(cost=1000862287175.47..1000862287197.
15 | 1 | 0 |XN Merge(cost=1000862287175.47..1000862287197.46 rows=87
(8 rows)

The following query retrieves the query IDs for any query plans that contain a window function:

select query, trim(plannode) from stl_explain
where plannode like '%Window%';

STL views for logging 2519

Amazon Redshift Database Developer Guide

query| btrim
-----+--
26 | -> XN Window(cost=1000985348268.57..1000985351256.98 rows=170 width=33)
27 | -> XN Window(cost=1000985348268.57..1000985351256.98 rows=170 width=33)
(2 rows)

STL_FILE_SCAN

Returns the files that Amazon Redshift read while loading data by using the COPY command.

Querying this view can help troubleshoot data load errors. STL_FILE_SCAN can be particularly
helpful with pinpointing issues in parallel data loads, because parallel data loads typically load
many files with a single COPY command.

STL_FILE_SCAN is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Note

STL_FILE_SCAN only contains queries run on main clusters. It doesn't contain queries
run on concurrency scaling clusters. To access queries run on both main and concurrency
scaling clusters, we recommend that you use the SYS monitoring view SYS_LOAD_DETAIL .
The data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

name character(90) Full path and name of the file that was loaded.

STL views for logging 2520

Amazon Redshift Database Developer Guide

Column
name

Data type Description

lines bigint Number of lines read from the file.

bytes bigint Number of bytes read from the file.

loadtime bigint Amount of time spent loading the file (in microseconds).

curtime Timestamp Timestamp representing the time that Amazon Redshift
started processing the file.

is_partial integer Value that if true (1) indicates the input file is split into
ranges during a COPY operation. If this value is false (0), the
input file isn't split.

start_offset bigint Value that, if the input file is split during a COPY operation
, indicates the offset value of the split (in bytes). If the file
isn't split, this value is 0.

Sample queries

The following query retrieves the names and load times of any files that took over 1,000,000
microseconds for Amazon Redshift to read.

select trim(name)as name, loadtime from stl_file_scan
where loadtime > 1000000;

This query returns the following example output.

 name | loadtime
---------------------------+----------
 listings_pipe.txt | 9458354
 allusers_pipe.txt | 2963761
 allevents_pipe.txt | 1409135
 tickit/listings_pipe.txt | 7071087
 tickit/allevents_pipe.txt | 1237364
 tickit/allusers_pipe.txt | 2535138
 listings_pipe.txt | 6706370
 allusers_pipe.txt | 3579461

STL views for logging 2521

Amazon Redshift Database Developer Guide

 allevents_pipe.txt | 1313195
 tickit/allusers_pipe.txt | 3236060
 tickit/listings_pipe.txt | 4980108
(11 rows)

STL_HASH

Analyzes hash execution steps for queries.

STL_HASH is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_HASH only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision

STL views for logging 2522

Amazon Redshift Database Developer Guide

Column
name

Data type Description

for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

bytes bigint Size, in bytes, of all the output rows for the step.

slots integer Total number of hash buckets.

occupied integer Total number of slots that contain records.

maxlength integer Size of the largest slot.

tbl integer Table ID.

is_diskba
sed

character(1) If true (t), the query was performed as a disk-base
d operation. If false (f), the query was performed in
memory.

workmem bigint Total number of bytes of working memory assigned to
the step.

num_parts integer Total number of partitions that a hash table was divided
into during a hash step.

est_rows bigint Estimated number of rows to be hashed.

STL views for logging 2523

Amazon Redshift Database Developer Guide

Column
name

Data type Description

num_block
s_permitt
ed

integer This information is for internal use only.

resizes integer This information is for internal use only.

checksum bigint This information is for internal use only.

runtime_f
ilter_size

integer Size of the runtime filter in bytes.

max_runti
me_filter
_size

integer Maximum size of the runtime filter in bytes.

Sample queries

The following example returns information about the number of partitions that were used in a
hash for query 720, and indicates that none of the steps ran on disk.

select slice, rows, bytes, occupied, workmem, num_parts, est_rows,
 num_blocks_permitted, is_diskbased
from stl_hash
where query=720 and segment=5
order by slice;

 slice | rows | bytes | occupied | workmem | num_parts | est_rows |
 num_blocks_permitted | is_diskbased
-------+------+--------+----------+----------+-----------+----------
+----------------------+--------------
 0 | 145 | 585800 | 1 | 88866816 | 16 | 1 |
 52 f
 1 | 0 | 0 | 0 | 0 | 16 | 1 |
 52 f
(2 rows)

STL views for logging 2524

Amazon Redshift Database Developer Guide

STL_HASHJOIN

Analyzes hash join execution steps for queries.

STL_HASHJOIN is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Note

STL_HASHJOIN only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision

STL views for logging 2525

Amazon Redshift Database Developer Guide

Column
name

Data type Description

for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

tbl integer Table ID.

num_parts integer Total number of partitions that a hash table was divided
into during a hash step.

join_type integer The type of join for the step:

• 0. The query used an inner join.

• 1. The query used a left outer join.

• 2. The query used a full outer join.

• 3. The query used a right outer join.

• 4. The query used a UNION operator.

• 5. The query used an IN condition.

• 6. This information is for internal use only.

• 7. This information is for internal use only.

• 8. This information is for internal use only.

• 9. This information is for internal use only.

• 10. This information is for internal use only.

• 11. This information is for internal use only.

• 12. This information is for internal use only.

hash_loop
ed

character(1) This information is for internal use only.

STL views for logging 2526

Amazon Redshift Database Developer Guide

Column
name

Data type Description

switched_
parts

character(1) Indicates whether the build (or outer) and probe (or inner)
sides have switched.

used_pref
etching

character(1) This information is for internal use only.

hash_segm
ent

integer The segment of the corresponding hash step.

hash_step integer The step number of the corresponding hash step.

checksum bigint This information is for internal use only.

distribut
ion

integer This information is for internal use only.

Sample queries

The following example returns the number of partitions used in a hash join for query 720.

select query, slice, tbl, num_parts
from stl_hashjoin
where query=720 limit 10;

 query | slice | tbl | num_parts
-------+-------+-----+-----------
 720 | 0 | 243 | 1
 720 | 1 | 243 | 1
(2 rows)

STL_INSERT

Analyzes insert execution steps for queries.

STL_INSERT is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

STL views for logging 2527

Amazon Redshift Database Developer Guide

Note

STL_INSERT only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

STL views for logging 2528

Amazon Redshift Database Developer Guide

Column
name

Data type Description

tbl integer Table ID.

inserted_
mega_valu
e

character(1) This information is for internal use only. This informati
on shows whether the given insert step has inserted a
large value. A large value will be stored in multiple blocks.
Block size is 1 MB by default, a large value is greater than
1 MB in a default setting.

Sample queries

The following example returns insert execution steps for the most recent query.

select slice, segment, step, tasknum, rows, tbl
from stl_insert
where query=pg_last_query_id();

 slice | segment | step | tasknum | rows | tbl
-------+---------+------+---------+-------+--------
 0 | 2 | 2 | 15 | 24958 | 100548
 1 | 2 | 2 | 15 | 25032 | 100548
(2 rows)

STL_LIMIT

Analyzes the execution steps that occur when a LIMIT clause is used in a SELECT query.

STL_LIMIT is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_LIMIT only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

STL views for logging 2529

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

checksum bigint This information is for internal use only.

Sample queries

In order to generate a row in STL_LIMIT, this example first runs the following query against the
VENUE table using the LIMIT clause.

STL views for logging 2530

Amazon Redshift Database Developer Guide

select * from venue
order by 1
limit 10;

 venueid | venuename | venuecity | venuestate | venueseats
---------+----------------------------+-----------------+------------+------------
 1 | Toyota Park | Bridgeview | IL | 0
 2 | Columbus Crew Stadium | Columbus | OH | 0
 3 | RFK Stadium | Washington | DC | 0
 4 | CommunityAmerica Ballpark | Kansas City | KS | 0
 5 | Gillette Stadium | Foxborough | MA | 68756
 6 | New York Giants Stadium | East Rutherford | NJ | 80242
 7 | BMO Field | Toronto | ON | 0
 8 | The Home Depot Center | Carson | CA | 0
 9 | Dick's Sporting Goods Park | Commerce City | CO | 0
 10 | Pizza Hut Park | Frisco | TX | 0
(10 rows)

Next, run the following query to find the query ID of the last query you ran against the VENUE
table.

select max(query)
from stl_query;

 max

 127128
(1 row)

Optionally, you can run the following query to verify that the query ID corresponds to the LIMIT
query you previously ran.

select query, trim(querytxt)
from stl_query
where query=127128;

 query | btrim
--------+--
 127128 | select * from venue order by 1 limit 10;

STL views for logging 2531

Amazon Redshift Database Developer Guide

(1 row)

Finally, run the following query to return information about the LIMIT query from the STL_LIMIT
table.

select slice, segment, step, starttime, endtime, tasknum
from stl_limit
where query=127128
order by starttime, endtime;

 slice | segment | step | starttime | endtime |
 tasknum
 -------+---------+------+----------------------------+----------------------------
+---------
 1 | 1 | 3 | 2013-09-06 22:56:43.608114 | 2013-09-06 22:56:43.609383 |
 15
 0 | 1 | 3 | 2013-09-06 22:56:43.608708 | 2013-09-06 22:56:43.609521 |
 15
 10000 | 2 | 2 | 2013-09-06 22:56:43.612506 | 2013-09-06 22:56:43.612668 |
 0
(3 rows)

STL_LOAD_COMMITS

Returns information to track or troubleshoot a data load.

This view records the progress of each data file as it is loaded into a database table.

STL_LOAD_COMMITS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Note

STL_LOAD_COMMITS only contains queries run on main clusters. It doesn't contain queries
run on concurrency scaling clusters. To access queries run on both main and concurrency
scaling clusters, we recommend that you use the SYS monitoring view SYS_LOAD_DETAIL .
The data in the SYS monitoring view is formatted to be easier to use and understand.

STL views for logging 2532

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Slice loaded for this entry.

name character(256) System-defined value.

filename character(256) Name of file being tracked.

byte_offset integer This information is for internal use only.

lines_sca
nned

integer Number of lines scanned from the load file. This number
may not match the number of rows that are actually loaded.
For example, the load may scan but tolerate a number of
bad records, based on the MAXERROR option in the COPY
command.

errors integer This information is for internal use only.

curtime timestamp Time that this entry was last updated.

status integer This information is for internal use only.

file_format character(16) Format of the load file. Possible values are as follows:

• Avro

• JSON

• ORC

• Parquet

• Text

STL views for logging 2533

Amazon Redshift Database Developer Guide

Column
name

Data type Description

is_partial integer Value that if true (1) indicates the input file is split into
ranges during a COPY operation. If this value is false (0), the
input file isn't split.

start_offset bigint Value that, if the input file is split during a COPY operation
, indicates the offset value of the split (in bytes). Each file
split is logged as a separate record with the corresponding
start_offset value. If the file isn't split, this value is 0.

copy_job_id bigint The copy job identifier. A 0 indicates no job identifier.

Sample queries

The following example returns details for the last COPY operation.

select query, trim(filename) as file, curtime as updated
from stl_load_commits
where query = pg_last_copy_id();

 query | file | updated
-------+----------------------------------+----------------------------
 28554 | s3://dw-tickit/category_pipe.txt | 2013-11-01 17:14:52.648486
(1 row)

The following query contains entries for a fresh load of the tables in the TICKIT database:

select query, trim(filename), curtime
from stl_load_commits
where filename like '%tickit%' order by query;

 query | btrim | curtime
-------+---------------------------+----------------------------
 22475 | tickit/allusers_pipe.txt | 2013-02-08 20:58:23.274186
 22478 | tickit/venue_pipe.txt | 2013-02-08 20:58:25.070604
 22480 | tickit/category_pipe.txt | 2013-02-08 20:58:27.333472
 22482 | tickit/date2008_pipe.txt | 2013-02-08 20:58:28.608305

STL views for logging 2534

Amazon Redshift Database Developer Guide

 22485 | tickit/allevents_pipe.txt | 2013-02-08 20:58:29.99489
 22487 | tickit/listings_pipe.txt | 2013-02-08 20:58:37.632939
 22593 | tickit/allusers_pipe.txt | 2013-02-08 21:04:08.400491
 22596 | tickit/venue_pipe.txt | 2013-02-08 21:04:10.056055
 22598 | tickit/category_pipe.txt | 2013-02-08 21:04:11.465049
 22600 | tickit/date2008_pipe.txt | 2013-02-08 21:04:12.461502
 22603 | tickit/allevents_pipe.txt | 2013-02-08 21:04:14.785124
 22605 | tickit/listings_pipe.txt | 2013-02-08 21:04:20.170594

(12 rows)

The fact that a record is written to the log file for this system view does not mean that the load
committed successfully as part of its containing transaction. To verify load commits, query the
STL_UTILITYTEXT view and look for the COMMIT record that corresponds with a COPY transaction.
For example, this query joins STL_LOAD_COMMITS and STL_QUERY based on a subquery against
STL_UTILITYTEXT:

select l.query,rtrim(l.filename),q.xid
from stl_load_commits l, stl_query q
where l.query=q.query
and exists
(select xid from stl_utilitytext where xid=q.xid and rtrim("text")='COMMIT');

 query | rtrim | xid
-------+---------------------------+-------
 22600 | tickit/date2008_pipe.txt | 68311
 22480 | tickit/category_pipe.txt | 68066
 7508 | allusers_pipe.txt | 23365
 7552 | category_pipe.txt | 23415
 7576 | allevents_pipe.txt | 23429
 7516 | venue_pipe.txt | 23390
 7604 | listings_pipe.txt | 23445
 22596 | tickit/venue_pipe.txt | 68309
 22605 | tickit/listings_pipe.txt | 68316
 22593 | tickit/allusers_pipe.txt | 68305
 22485 | tickit/allevents_pipe.txt | 68071
 7561 | allevents_pipe.txt | 23429
 7541 | category_pipe.txt | 23415
 7558 | date2008_pipe.txt | 23428
 22478 | tickit/venue_pipe.txt | 68065
 526 | date2008_pipe.txt | 2572
 7466 | allusers_pipe.txt | 23365
 22482 | tickit/date2008_pipe.txt | 68067

STL views for logging 2535

Amazon Redshift Database Developer Guide

 22598 | tickit/category_pipe.txt | 68310
 22603 | tickit/allevents_pipe.txt | 68315
 22475 | tickit/allusers_pipe.txt | 68061
 547 | date2008_pipe.txt | 2572
 22487 | tickit/listings_pipe.txt | 68072
 7531 | venue_pipe.txt | 23390
 7583 | listings_pipe.txt | 23445
(25 rows)

The following examples highlight is_partial and start_offset column values.

-- Single large file copy without scan range
SELECT count(*) FROM stl_load_commits WHERE query = pg_last_copy_id();
1

-- Single large uncompressed, delimited file copy with scan range
SELECT count(*) FROM stl_load_commits WHERE query = pg_last_copy_id();
16

-- Scan range offset logging in the file at 64MB boundary.
SELECT start_offset FROM stl_load_commits
WHERE query = pg_last_copy_id() ORDER BY start_offset;
0
67108864
134217728
201326592
268435456
335544320
402653184
469762048
536870912
603979776
671088640
738197504
805306368
872415232
939524096
1006632960

STL_LOAD_ERRORS

Displays the records of all Amazon Redshift load errors.

STL views for logging 2536

Amazon Redshift Database Developer Guide

STL_LOAD_ERRORS contains a history of all Amazon Redshift load errors. See Load error reference
for a comprehensive list of possible load errors and explanations.

Query STL_LOADERROR_DETAIL for additional details, such as the exact data row and column
where a parse error occurred, after you query STL_LOAD_ERRORS to find out general information
about the error.

STL_LOAD_ERRORS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Note

STL_LOAD_ERRORS only contains queries run on main clusters. It doesn't contain
queries run on concurrency scaling clusters. To access queries run on both main and
concurrency scaling clusters, we recommend that you use the SYS monitoring view
SYS_LOAD_ERROR_DETAIL . The data in the SYS monitoring view is formatted to be easier
to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

slice integer Slice where the error occurred.

tbl integer Table ID.

starttime timestamp Start time in UTC for the load.

session integer Session ID for the session performing the load.

query integer Query ID. The query column can be used to join other
system tables and views.

filename character(256) Complete path to the input file for the load.

STL views for logging 2537

Amazon Redshift Database Developer Guide

Column
name

Data type Description

line_numb
er

bigint Line number in the load file with the error. For COPY from
JSON, the line number of the last line of the JSON object
with the error.

colname character(127) Field with the error.

type character(10) Data type of the field.

col_length character(10) Column length, if applicable. This field is populated when
the data type has a limit length. For example, for a column
with a data type of "character(3)", this column will contain
the value "3".

position integer Position of the error in the field.

raw_line character(1024) Raw load data that contains the error. Multibyte characters
in the load data are replaced with a period.

raw_field
_value

char(1024) The pre-parsing value for the field "colname" that lead to
the parsing error.

err_code integer Error code.

err_reason character(100) Explanation for the error.

is_partial integer Value that if true (1) indicates the input file is split into
ranges during a COPY operation. If this value is false (0),
the input file isn't split.

start_off
set

bigint Value that, if the input file is split during a COPY operation
, indicates the offset value of the split (in bytes). If the line
number in the file is unknown, the line number is -1. If the
file isn't split, this value is 0.

copy_job_
id

bigint The copy job identifier. A 0 indicates no job identifier.

STL views for logging 2538

Amazon Redshift Database Developer Guide

Sample queries

The following query joins STL_LOAD_ERRORS to STL_LOADERROR_DETAIL to view the details
errors that occurred during the most recent load.

select d.query, substring(d.filename,14,20),
d.line_number as line,
substring(d.value,1,16) as value,
substring(le.err_reason,1,48) as err_reason
from stl_loaderror_detail d, stl_load_errors le
where d.query = le.query
and d.query = pg_last_copy_id();

 query | substring | line | value | err_reason
-------+-------------------+------+----------+----------------------------
 558| allusers_pipe.txt | 251 | 251 | String contains invalid or
 unsupported UTF8 code
 558| allusers_pipe.txt | 251 | ZRU29FGR | String contains invalid or
 unsupported UTF8 code
 558| allusers_pipe.txt | 251 | Kaitlin | String contains invalid or
 unsupported UTF8 code
 558| allusers_pipe.txt | 251 | Walter | String contains invalid or
 unsupported UTF8 code

The following example uses STL_LOAD_ERRORS with STV_TBL_PERM to create a new view, and
then uses that view to determine what errors occurred while loading data into the EVENT table:

create view loadview as
(select distinct tbl, trim(name) as table_name, query, starttime,
trim(filename) as input, line_number, colname, err_code,
trim(err_reason) as reason
from stl_load_errors sl, stv_tbl_perm sp
where sl.tbl = sp.id);

Next, the following query actually returns the last error that occurred while loading the EVENT
table:

select table_name, query, line_number, colname, starttime,
trim(reason) as error
from loadview
where table_name ='event'

STL views for logging 2539

Amazon Redshift Database Developer Guide

order by line_number limit 1;

The query returns the last load error that occurred for the EVENT table. If no load errors occurred,
the query returns zero rows. In this example, the query returns a single error:

 table_name | query | line_number | colname | error | starttime
------+-----+----+----+--
+----------------------
event | 309 | 0 | 5 | Error in Timestamp value or format [%Y-%m-%d %H:%M:%S] |
 2014-04-22 15:12:44

(1 row)

In cases where the COPY command automatically splits large, uncompressed, text-delimited
file data to facilitate parallelism, the line_number, is_partial, and start_offset columns show
information pertaining to splits. (The line number can be unknown in cases where the line number
from the original file is unavailable.)

--scan ranges information
SELECT line_number, POSITION, btrim(raw_line), btrim(raw_field_value),
btrim(err_reason), is_partial, start_offset FROM stl_load_errors
WHERE query = pg_last_copy_id();

--result
-1,51,"1008771|13463413|463414|2|28.00|38520.72|0.06|0.07|NO|1998-08-30|1998-09-25|
1998-09-04|TAKE BACK RETURN|RAIL|ans cajole sly","NO","Char length exceeds DDL
 length",1,67108864

STL_LOADERROR_DETAIL

Displays a log of data parse errors that occurred while using a COPY command to load tables. To
conserve disk space, a maximum of 20 errors per node slice are logged for each load operation.

A parse error occurs when Amazon Redshift cannot parse a field in a data row while loading it into
a table. For example, if a table column is expecting an integer data type and the data file contains a
string of letters in that field, it causes a parse error.

Query STL_LOADERROR_DETAIL for additional details, such as the exact data row and column
where a parse error occurred, after you query STL_LOAD_ERRORS to find out general information
about the error.

STL views for logging 2540

Amazon Redshift Database Developer Guide

The STL_LOADERROR_DETAIL view contains all data columns including and prior to the column
where the parse error occurred. Use the VALUE field to see the data value that was actually parsed
in this column, including the columns that parsed correctly up to the error.

This view is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_LOADERROR_DETAIL only contains queries run on main clusters. It doesn't contain
queries run on concurrency scaling clusters. To access queries run on both main and
concurrency scaling clusters, we recommend that you use the SYS monitoring view
SYS_LOAD_ERROR_DETAIL . The data in the SYS monitoring view is formatted to be easier
to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

slice integer Slice where the error occurred.

session integer Session ID for the session performing the load.

query integer Query ID. The query column can be used to join other
system tables and views.

filename character(256) Complete path to the input file for the load.

line_numb
er

bigint Line number in the load file with the error.

field integer Field with the error.

colname character(1024) Column name.

STL views for logging 2541

Amazon Redshift Database Developer Guide

Column
name

Data type Description

value character(1024) Parsed data value of the field. (May be truncated.)
Multibyte characters in the load data are replaced with a
period.

is_null integer Whether or not the parsed value is null.

type character(10) Data type of the field.

col_length character(10) Column length, if applicable. This field is populated when
the data type has a limit length. For example, for a column
with a data type of "character(3)", this column will contain
the value "3".

Sample query

The following query joins STL_LOAD_ERRORS to STL_LOADERROR_DETAIL to view the details of a
parse error that occurred while loading the EVENT table, which has a table ID of 100133:

select d.query, d.line_number, d.value,
le.raw_line, le.err_reason
from stl_loaderror_detail d, stl_load_errors le
where
d.query = le.query
and tbl = 100133;

The following sample output shows the columns that loaded successfully, including the column
with the error. In this example, two columns successfully loaded before the parse error occurred in
the third column, where a character string was incorrectly parsed for a field expecting an integer.
Because the field expected an integer, it parsed the string "aaa", which is uninitialized data, as a
null and generated a parse error. The output shows the raw value, parsed value, and error reason:

query | line_number | value | raw_line | err_reason
-------+-------------+-------+----------+----------------
4 | 3 | 1201 | 1201 | Invalid digit
4 | 3 | 126 | 126 | Invalid digit
4 | 3 | | aaa | Invalid digit

STL views for logging 2542

Amazon Redshift Database Developer Guide

(3 rows)

When a query joins STL_LOAD_ERRORS and STL_LOADERROR_DETAIL, it displays an error reason
for each column in the data row, which simply means that an error occurred in that row. The last
row in the results is the actual column where the parse error occurred.

STL_MERGE

Analyzes merge execution steps for queries. These steps occur when the results of parallel
operations (such as sorts and joins) are merged for subsequent processing.

STL_MERGE is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_MERGE only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

STL views for logging 2543

Amazon Redshift Database Developer Guide

Column
name

Data type Description

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

Sample queries

The following example returns 10 merge execution results.

select query, step, starttime, endtime, tasknum, rows
from stl_merge
limit 10;

 query | step | starttime | endtime | tasknum | rows
-------+------+---------------------+---------------------+---------+------
 9 | 0 | 2013-08-12 20:08:14 | 2013-08-12 20:08:14 | 0 | 0
 12 | 0 | 2013-08-12 20:09:10 | 2013-08-12 20:09:10 | 0 | 0
 15 | 0 | 2013-08-12 20:10:24 | 2013-08-12 20:10:24 | 0 | 0
 20 | 0 | 2013-08-12 20:11:27 | 2013-08-12 20:11:27 | 0 | 0
 26 | 0 | 2013-08-12 20:12:28 | 2013-08-12 20:12:28 | 0 | 0
 32 | 0 | 2013-08-12 20:14:33 | 2013-08-12 20:14:33 | 0 | 0
 38 | 0 | 2013-08-12 20:16:43 | 2013-08-12 20:16:43 | 0 | 0
 44 | 0 | 2013-08-12 20:17:05 | 2013-08-12 20:17:05 | 0 | 0
 50 | 0 | 2013-08-12 20:18:48 | 2013-08-12 20:18:48 | 0 | 0
 56 | 0 | 2013-08-12 20:20:48 | 2013-08-12 20:20:48 | 0 | 0
(10 rows)

STL views for logging 2544

Amazon Redshift Database Developer Guide

STL_MERGEJOIN

Analyzes merge join execution steps for queries.

STL_MERGEJOIN is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Note

STL_MERGEJOIN only contains queries run on main clusters. It doesn't contain queries
run on concurrency scaling clusters. To access queries run on both main and concurrency
scaling clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL
. The data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision

STL views for logging 2545

Amazon Redshift Database Developer Guide

Column
name

Data type Description

for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

tbl integer Table ID. This is the ID for the inner table that was used in
the merge join.

checksum bigint This information is for internal use only.

Sample queries

The following example returns merge join results for the most recent query.

select sum(s.qtysold), e.eventname
from event e, listing l, sales s
where e.eventid=l.eventid
and l.listid= s.listid
group by e.eventname;

select * from stl_mergejoin where query=pg_last_query_id();

 userid | query | slice | segment | step | starttime | endtime |
 tasknum | rows | tbl
--------+-------+-------+---------+------+---------------------+---------------------
+---------+------+-----
 100 | 27399 | 3 | 4 | 4 | 2013-10-02 16:30:41 | 2013-10-02 16:30:41 |
 19 |43428 | 240
 100 | 27399 | 0 | 4 | 4 | 2013-10-02 16:30:41 | 2013-10-02 16:30:41 |
 19 |43159 | 240
 100 | 27399 | 2 | 4 | 4 | 2013-10-02 16:30:41 | 2013-10-02 16:30:41 |
 19 |42778 | 240
 100 | 27399 | 1 | 4 | 4 | 2013-10-02 16:30:41 | 2013-10-02 16:30:41 |
 19 |43091 | 240

STL views for logging 2546

Amazon Redshift Database Developer Guide

STL_MV_STATE

The STL_MV_STATE view contains a row for every state transition of a materialized view.

For more information about materialized views, see Creating materialized views in Amazon
Redshift.

STL_MV_STATE is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view SYS_MV_STATE.
The data in the SYS monitoring view is formatted to be easier to use and understand. We
recommend that you use the SYS monitoring view for your queries.

Table columns

Column name Data type Description

userid bigint The ID of the user who created the event.

starttime timestamp The start time of the event.

xid bigint The transaction id of the event.

event_desc char(500) The event that prompted the state change. Some
example values include the following:

• Column type was changed

• Column was dropped

• Column was renamed

• Schema name was changed

• Small table conversion

• TRUNCATE

• Vacuum

Note that there are other possible values for this
column.

STL views for logging 2547

Amazon Redshift Database Developer Guide

Column name Data type Description

db_name char(128) The database that contains the materialized
view.

base_tabl
e_schema

char(128) The schema of the base table.

base_tabl
e_name

char(128) The name of the base table.

mv_schema char(128) The schema of the materialized view.

mv_name char(128) The name of the materialized view.

state character(32) The changed state of the materialized view as
follows:

• Recompute

• Unrefreshable

The following table shows example combinations of event_desc and state.

 event_desc | state
-------------------------+---------------
 TRUNCATE | Recompute
 TRUNCATE | Recompute
 Small table conversion | Recompute
 Vacuum | Recompute
 Column was renamed | Unrefreshable
 Column was dropped | Unrefreshable
 Table was renamed | Unrefreshable
 Column type was changed | Unrefreshable
 Schema name was changed | Unrefreshable

Sample query

To view the log of state transitions of materialized views, run the following query.

STL views for logging 2548

Amazon Redshift Database Developer Guide

select * from stl_mv_state;

This query returns the following sample output:

 userid | starttime | xid | event_desc | db_name |
 base_table_schema | base_table_name | mv_schema | mv_name |
 state
--------+----------------------------+------+-----------------------------+---------
+----------------------+----------------------+----------------------+---------------
+---------------
 138 | 2020-02-14 02:21:25.578885 | 5180 | TRUNCATE | dev |
 public | mv_base_table | public | mv_test |
 Recompute
 138 | 2020-02-14 02:21:56.846774 | 5275 | Column was dropped | dev |
 | mv_base_table | public | mv_test |
 Unrefreshable
 100 | 2020-02-13 22:09:53.041228 | 1794 | Column was renamed | dev |
 | mv_base_table | public | mv_test |
 Unrefreshable
 1 | 2020-02-13 22:10:23.630914 | 1893 | ALTER TABLE ALTER SORTKEY | dev |
 public | mv_base_table_sorted | public | mv_test |
 Recompute
 1 | 2020-02-17 22:57:22.497989 | 8455 | ALTER TABLE ALTER DISTSTYLE | dev |
 public | mv_base_table | public | mv_test |
 Recompute
 173 | 2020-02-17 22:57:23.591434 | 8504 | Table was renamed | dev |
 | mv_base_table | public | mv_test |
 Unrefreshable
 173 | 2020-02-17 22:57:27.229423 | 8592 | Column type was changed | dev |
 | mv_base_table | public | mv_test |
 Unrefreshable
 197 | 2020-02-17 22:59:06.212569 | 9668 | TRUNCATE | dev |
 schemaf796e415850f4f | mv_base_table | schemaf796e415850f4f | mv_test |
 Recompute
 138 | 2020-02-14 02:21:55.705655 | 5226 | Column was renamed | dev |
 | mv_base_table | public | mv_test |
 Unrefreshable
 1 | 2020-02-14 02:22:26.292434 | 5325 | ALTER TABLE ALTER SORTKEY | dev |
 public | mv_base_table_sorted | public | mv_test |
 Recompute

STL views for logging 2549

Amazon Redshift Database Developer Guide

STL_NESTLOOP

Analyzes nested-loop join execution steps for queries.

STL_NESTLOOP is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Note

STL_NESTLOOP only contains queries run on main clusters. It doesn't contain queries
run on concurrency scaling clusters. To access queries run on both main and concurrency
scaling clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL
. The data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision

STL views for logging 2550

Amazon Redshift Database Developer Guide

Column
name

Data type Description

for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

tbl integer Table ID.

checksum bigint This information is for internal use only.

Sample queries

Because the following query neglects to join the CATEGORY table, it produces a partial Cartesian
product, which is not recommended. It is shown here to illustrate a nested loop.

select count(event.eventname), event.eventname, category.catname, date.caldate
from event, category, date
where event.dateid = date.dateid
group by event.eventname, category.catname, date.caldate;

The following query shows the results from the previous query in the STL_NESTLOOP view.

select query, slice, segment as seg, step,
datediff(msec, starttime, endtime) as duration, tasknum, rows, tbl
from stl_nestloop
where query = pg_last_query_id();

 query | slice | seg | step | duration | tasknum | rows | tbl
-------+-------+-----+------+----------+---------+-------+-----
 6028 | 0 | 4 | 5 | 41 | 22 | 24277 | 240
 6028 | 1 | 4 | 5 | 26 | 23 | 24189 | 240
 6028 | 3 | 4 | 5 | 25 | 23 | 24376 | 240
 6028 | 2 | 4 | 5 | 54 | 22 | 23936 | 240

STL views for logging 2551

Amazon Redshift Database Developer Guide

STL_PARSE

Analyzes query steps that parse strings into binary values for loading.

STL_PARSE is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_PARSE only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision

STL views for logging 2552

Amazon Redshift Database Developer Guide

Column
name

Data type Description

for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

Sample queries

The following example returns all query step results for slice 1 and segment 0 where strings were
parsed into binary values.

select query, step, starttime, endtime, tasknum, rows
from stl_parse
where slice=1 and segment=0;

 query | step | starttime | endtime | tasknum | rows
-------+------+---------------------+---------------------+---------+--------
 669 | 1 | 2013-08-12 22:35:13 | 2013-08-12 22:35:17 | 32 | 192497
 696 | 1 | 2013-08-12 22:35:49 | 2013-08-12 22:35:49 | 32 | 0
 525 | 1 | 2013-08-12 22:32:03 | 2013-08-12 22:32:03 | 13 | 49990
 585 | 1 | 2013-08-12 22:33:18 | 2013-08-12 22:33:19 | 13 | 202
 621 | 1 | 2013-08-12 22:34:03 | 2013-08-12 22:34:03 | 27 | 365
 651 | 1 | 2013-08-12 22:34:47 | 2013-08-12 22:34:53 | 35 | 192497
 590 | 1 | 2013-08-12 22:33:28 | 2013-08-12 22:33:28 | 19 | 0
 599 | 1 | 2013-08-12 22:33:39 | 2013-08-12 22:33:39 | 31 | 11
 675 | 1 | 2013-08-12 22:35:26 | 2013-08-12 22:35:27 | 38 | 3766
 567 | 1 | 2013-08-12 22:32:47 | 2013-08-12 22:32:48 | 23 | 49990
 630 | 1 | 2013-08-12 22:34:17 | 2013-08-12 22:34:17 | 36 | 0
 572 | 1 | 2013-08-12 22:33:04 | 2013-08-12 22:33:04 | 29 | 0
 645 | 1 | 2013-08-12 22:34:37 | 2013-08-12 22:34:38 | 29 | 8798
 604 | 1 | 2013-08-12 22:33:47 | 2013-08-12 22:33:47 | 37 | 0
(14 rows)

STL views for logging 2553

Amazon Redshift Database Developer Guide

STL_PLAN_INFO

Use the STL_PLAN_INFO view to look at the EXPLAIN output for a query in terms of a set of rows.
This is an alternative way to look at query plans.

STL_PLAN_INFO is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Note

STL_PLAN_INFO only contains queries run on main clusters. It doesn't contain queries
run on concurrency scaling clusters. To access queries run on both main and concurrency
scaling clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL
. The data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

nodeid integer Plan node identifier, where a node maps to one or more
steps in the execution of the query.

segment integer Number that identifies the query segment.

step integer Number that identifies the query step.

locus integer Location where the step runs. 0 if on a compute node and 1
if on the leader node.

plannode integer Enumerated value of the plan node. See the following
table for enums for plannode. (The PLANNODE column in
STL_EXPLAIN contains the plan node text.)

STL views for logging 2554

Amazon Redshift Database Developer Guide

Column
name

Data type Description

startupcost double precision The estimated relative cost of returning the first row for this
step.

totalcost double precision The estimated relative cost of executing the step.

rows bigint The estimated number of rows that will be produced by the
step.

bytes bigint The estimated number of bytes that will be produced by the
step.

Sample queries

The following examples compare the query plans for a simple SELECT query returned by using the
EXPLAIN command and by querying the STL_PLAN_INFO view.

explain select * from category;
QUERY PLAN

XN Seq Scan on category (cost=0.00..0.11 rows=11 width=49)
(1 row)

select * from category;
catid | catgroup | catname | catdesc
-------+----------+-----------+--
1 | Sports | MLB | Major League Baseball
3 | Sports | NFL | National Football League
5 | Sports | MLS | Major League Soccer
...

select * from stl_plan_info where query=256;

query | nodeid | segment | step | locus | plannode | startupcost | totalcost
| rows | bytes
-------+--------+---------+------+-------+----------+-------------+-----------+------
+-------
256 | 1 | 0 | 1 | 0 | 104 | 0 | 0.11 | 11 | 539
256 | 1 | 0 | 0 | 0 | 104 | 0 | 0.11 | 11 | 539

STL views for logging 2555

Amazon Redshift Database Developer Guide

(2 rows)

In this example, PLANNODE 104 refers to the sequential scan of the CATEGORY table.

select distinct eventname from event order by 1;

eventname
--
.38 Special
3 Doors Down
70s Soul Jam
A Bronx Tale
...

explain select distinct eventname from event order by 1;

QUERY PLAN

XN Merge (cost=1000000000136.38..1000000000137.82 rows=576 width=17)
Merge Key: eventname
-> XN Network (cost=1000000000136.38..1000000000137.82 rows=576
width=17)
Send to leader
-> XN Sort (cost=1000000000136.38..1000000000137.82 rows=576
width=17)
Sort Key: eventname
-> XN Unique (cost=0.00..109.98 rows=576 width=17)
-> XN Seq Scan on event (cost=0.00..87.98 rows=8798
width=17)
(8 rows)

select * from stl_plan_info where query=240 order by nodeid desc;

query | nodeid | segment | step | locus | plannode | startupcost |
totalcost | rows | bytes
-------+--------+---------+------+-------+----------+------------------
+------------------+------+--------
240 | 5 | 0 | 0 | 0 | 104 | 0 | 87.98 | 8798 | 149566
240 | 5 | 0 | 1 | 0 | 104 | 0 | 87.98 | 8798 | 149566
240 | 4 | 0 | 2 | 0 | 117 | 0 | 109.975 | 576 | 9792
240 | 4 | 0 | 3 | 0 | 117 | 0 | 109.975 | 576 | 9792
240 | 4 | 1 | 0 | 0 | 117 | 0 | 109.975 | 576 | 9792
240 | 4 | 1 | 1 | 0 | 117 | 0 | 109.975 | 576 | 9792

STL views for logging 2556

Amazon Redshift Database Developer Guide

240 | 3 | 1 | 2 | 0 | 114 | 1000000000136.38 | 1000000000137.82 | 576 | 9792
240 | 3 | 2 | 0 | 0 | 114 | 1000000000136.38 | 1000000000137.82 | 576 | 9792
240 | 2 | 2 | 1 | 0 | 123 | 1000000000136.38 | 1000000000137.82 | 576 | 9792
240 | 1 | 3 | 0 | 0 | 122 | 1000000000136.38 | 1000000000137.82 | 576 | 9792
(10 rows)

STL_PROJECT

Contains rows for query steps that are used to evaluate expressions.

STL_PROJECT is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Note

STL_PROJECT only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision

STL views for logging 2557

Amazon Redshift Database Developer Guide

Column
name

Data type Description

for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

checksum bigint This information is for internal use only.

Sample queries

The following example returns all rows for query steps that were used to evaluate expressions for
slice 0 and segment 1.

select query, step, starttime, endtime, tasknum, rows
from stl_project
where slice=0 and segment=1;

 query | step | starttime | endtime | tasknum | rows
--------+------+---------------------+---------------------+---------+------
 86399 | 2 | 2013-08-29 22:01:21 | 2013-08-29 22:01:21 | 25 | -1
 86399 | 3 | 2013-08-29 22:01:21 | 2013-08-29 22:01:21 | 25 | -1
 719 | 1 | 2013-08-12 22:38:33 | 2013-08-12 22:38:33 | 7 | -1
 86383 | 1 | 2013-08-29 21:58:35 | 2013-08-29 21:58:35 | 7 | -1
 714 | 1 | 2013-08-12 22:38:17 | 2013-08-12 22:38:17 | 2 | -1
 86375 | 1 | 2013-08-29 21:57:59 | 2013-08-29 21:57:59 | 2 | -1
 86397 | 2 | 2013-08-29 22:01:20 | 2013-08-29 22:01:20 | 19 | -1
 627 | 1 | 2013-08-12 22:34:13 | 2013-08-12 22:34:13 | 34 | -1
 86326 | 2 | 2013-08-29 21:45:28 | 2013-08-29 21:45:28 | 34 | -1
 86326 | 3 | 2013-08-29 21:45:28 | 2013-08-29 21:45:28 | 34 | -1
 86325 | 2 | 2013-08-29 21:45:27 | 2013-08-29 21:45:27 | 28 | -1

STL views for logging 2558

Amazon Redshift Database Developer Guide

 86371 | 1 | 2013-08-29 21:57:42 | 2013-08-29 21:57:42 | 4 | -1
 111100 | 2 | 2013-09-03 19:04:45 | 2013-09-03 19:04:45 | 12 | -1
 704 | 2 | 2013-08-12 22:36:34 | 2013-08-12 22:36:34 | 37 | -1
 649 | 2 | 2013-08-12 22:34:47 | 2013-08-12 22:34:47 | 38 | -1
 649 | 3 | 2013-08-12 22:34:47 | 2013-08-12 22:34:47 | 38 | -1
 632 | 2 | 2013-08-12 22:34:22 | 2013-08-12 22:34:22 | 13 | -1
 705 | 2 | 2013-08-12 22:36:48 | 2013-08-12 22:36:49 | 13 | -1
 705 | 3 | 2013-08-12 22:36:48 | 2013-08-12 22:36:49 | 13 | -1
 3 | 1 | 2013-08-12 20:07:40 | 2013-08-12 20:07:40 | 3 | -1
 86373 | 1 | 2013-08-29 21:57:58 | 2013-08-29 21:57:58 | 3 | -1
 107976 | 1 | 2013-09-03 04:05:12 | 2013-09-03 04:05:12 | 3 | -1
 86381 | 1 | 2013-08-29 21:58:35 | 2013-08-29 21:58:35 | 8 | -1
 86396 | 1 | 2013-08-29 22:01:20 | 2013-08-29 22:01:20 | 15 | -1
 711 | 1 | 2013-08-12 22:37:10 | 2013-08-12 22:37:10 | 20 | -1
 86324 | 1 | 2013-08-29 21:45:27 | 2013-08-29 21:45:27 | 24 | -1
(26 rows)

STL_QUERY

Returns execution information about a database query.

Note

The STL_QUERY and STL_QUERYTEXT views only contain information about queries,
not other utility and DDL commands. For a listing and information on all statements
run by Amazon Redshift, you can also query the STL_DDLTEXT and STL_UTILITYTEXT
views. For a complete listing of all statements run by Amazon Redshift, you can query the
SVL_STATEMENTTEXT view.

STL_QUERY is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

STL views for logging 2559

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

label character(320) Either the name of the file used to run the query or a
label defined with a SET QUERY_GROUP command.
If the query is not file-based or the QUERY_GROUP
parameter is not set, this field value is default.

xid bigint Transaction ID.

pid integer Process ID. Normally, all of the queries in a session are
run in the same process, so this value usually remains
constant if you run a series of queries in the same
session. Following certain internal events, Amazon
Redshift might restart an active session and assign
a new PID. For more information, see STL_RESTA
RTED_SESSIONS.

database character(32) The name of the database the user was connected to
when the query was issued.

querytxt character(4000) Actual query text for the query.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

STL views for logging 2560

Amazon Redshift Database Developer Guide

Column
name

Data type Description

aborted integer If a query was stopped by the system or canceled by
the user, this column contains 1. If the query ran to
completion (including returning results to the client),
this column contains 0. If a client disconnects before
receiving the results, the query will be marked as
canceled (1), even if it completed successfully in the
backend.

insert_pr
istine

integer Whether write queries are/were able to run while the
current query is/was running. 1 = no write queries
allowed. 0 = write queries allowed. This column is
intended for use in debugging.

concurren
cy_scalin
g_status

integer Indicates whether the query ran on the main cluster or
on a concurrency scaling cluster. Possible values are as
follows:

0 - Ran on the main cluster

1 - Ran on a concurrency scaling cluster

Greater than 1 - Ran on the main cluster

Sample queries

The following query lists the five most recent queries.

select query, trim(querytxt) as sqlquery
from stl_query
order by query desc limit 5;

query | sqlquery
------+--
129 | select query, trim(querytxt) from stl_query order by query;
128 | select node from stv_disk_read_speeds;
127 | select system_status from stv_gui_status
126 | select * from systable_topology order by slice

STL views for logging 2561

Amazon Redshift Database Developer Guide

125 | load global dict registry
(5 rows)

The following query returns the time elapsed in descending order for queries that ran on February
15, 2013.

select query, datediff(seconds, starttime, endtime),
trim(querytxt) as sqlquery
from stl_query
where starttime >= '2013-02-15 00:00' and endtime < '2013-02-16 00:00'
order by date_diff desc;

 query | date_diff | sqlquery
-------+-----------+---
 55 | 119 | padb_fetch_sample: select count(*) from category
121 | 9 | select * from svl_query_summary;
181 | 6 | select * from svl_query_summary where query in(179,178);
172 | 5 | select * from svl_query_summary where query=148;
...
(189 rows)

The following query shows the queue time and execution time for queries. Queries with
concurrency_scaling_status = 1 ran on a concurrency scaling cluster. All other queries ran
on the main cluster.

SELECT w.service_class AS queue
 , q.concurrency_scaling_status
 , COUNT(*) AS queries
 , SUM(q.aborted) AS aborted
 , SUM(ROUND(total_queue_time::NUMERIC / 1000000,2)) AS queue_secs
 , SUM(ROUND(total_exec_time::NUMERIC / 1000000,2)) AS exec_secs
FROM stl_query q
 JOIN stl_wlm_query w
 USING (userid,query)
WHERE q.userid > 1
 AND service_class > 5
 AND q.starttime > '2019-03-01 16:38:00'
 AND q.endtime < '2019-03-01 17:40:00'
GROUP BY 1,2
ORDER BY 1,2;

STL views for logging 2562

Amazon Redshift Database Developer Guide

STL_QUERY_METRICS

Contains metrics information, such as the number of rows processed, CPU usage, input/output, and
disk use, for queries that have completed running in user-defined query queues (service classes).
To view metrics for active queries that are currently running, see the STV_QUERY_METRICS system
view.

Query metrics are sampled at one second intervals. As a result, different runs of the same query
might return slightly different times. Also, query segments that run in less than one second might
not be recorded.

STL_QUERY_METRICS tracks and aggregates metrics at the query, segment, and step level. For
information about query segments and steps, see Query planning and execution workflow. Many
metrics (such as max_rows, cpu_time, and so on) are summed across node slices. For more
information about node slices, see Data warehouse system architecture.

To determine the level at which the row reports metrics, examine the segment and step_type
columns.

• If both segment and step_type are -1, then the row reports metrics at the query level.

• If segment is not -1 and step_type is -1, then the row reports metrics at the segment level.

• If both segment and step_type are not -1, then the row reports metrics at the step level.

The SVL_QUERY_METRICS view and the SVL_QUERY_METRICS_SUMMARY view aggregate the data
in this view and present the information in a more accessible form.

STL_QUERY_METRICS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column name Data type Description

userid integer ID of the user that ran the query that generated the entry.

STL views for logging 2563

Amazon Redshift Database Developer Guide

Column name Data type Description

service_class integer ID for the service class. Query queues are defined in the
WLM configuration. Metrics are reported only for user-defi
ned queues.

query integer Query ID. The query column can be used to join other
system tables and views.

segment integer Segment number. A query consists of multiple segments,
and each segment consists of one or more steps. Query
segments can run in parallel. Each segment runs in a single
process. If the segment value is -1, metrics segment values
are rolled up to the query level.

step_type integer Type of step that ran. For a description of step types, see
Step types.

starttime timestamp Time in UTC that the query started executing, with 6 digits
of precision for fractional seconds. For example: 2009-06-1
2 11:29:19.131358 .

slices integer Number of slices for the cluster.

max_rows bigint Maximum number of rows output for a step, aggregated
across all slices.

rows bigint Number of rows processed by a step.

max_cpu_time bigint Maximum CPU time used, in microseconds. At the segment
level, the maximum CPU time used by the segment across
all slices. At the query level, the maximum CPU time used by
any query segment.

cpu_time bigint CPU time used, in microseconds. At the segment level, the
total CPU time for the segment across all slices. At the query
level, the sum of CPU time for the query across all slices and
segments.

STL views for logging 2564

Amazon Redshift Database Developer Guide

Column name Data type Description

max_block
s_read

bigint Maximum number of 1 MB blocks read by the segment,
aggregated across all slices. At the segment level, the
maximum number of 1 MB blocks read for the segment
across all slices. At the query level, the maximum number of
1 MB blocks read by any query segment.

blocks_read bigint Number of 1 MB blocks read by the query or segment.

max_run_time bigint The maximum elapsed time for a segment, in microseco
nds. At the segment level, the maximum run time for the
segment across all slices. At the query level, the maximum
run time for any query segment.

run_time bigint Total run time, summed across slices. Run time doesn't
include wait time.

At the segment level, the run time for the segment, summed
across all slices. At the query level, the run time for the
query summed across all slices and segments. Because this
value is a sum, run time is not related to query execution
time.

max_block
s_to_disk

bigint The maximum amount of disk space used to write intermedi
ate results, in MB blocks. At the segment level, the
maximum amount of disk space used by the segment across
all slices. At the query level, the maximum amount of disk
space used by any query segment.

blocks_to_disk bigint The amount of disk space used by a query or segment to
write intermediate results, in MB blocks.

step integer Query step that ran.

max_query
_scan_size

bigint The maximum size of data scanned by a query, in MB. At the
segment level, the maximum size of data scanned by the
segment across all slices. At the query level, the maximum
size of data scanned by any query segment.

STL views for logging 2565

Amazon Redshift Database Developer Guide

Column name Data type Description

query_scan_size bigint The size of data scanned by a query, in MB.

query_priority integer The priority of the query. Possible values are -1, 0, 1, 2, 3,
and 4, where -1 means that query priority isn't supported.

query_que
ue_time

bigint The amount of time in microseconds that the query was
queued.

service_c
lass_name

character
(64)

The name of the service class.

Sample query

To find queries with high CPU time (more the 1,000 seconds), run the following query.

Select query, cpu_time / 1000000 as cpu_seconds
from stl_query_metrics where segment = -1 and cpu_time > 1000000000
order by cpu_time;

query | cpu_seconds
------+------------
25775 | 9540

To find active queries with a nested loop join that returned more than one million rows, run the
following query.

select query, rows
from stl_query_metrics
where step_type = 15 and rows > 1000000
order by rows;

query | rows
------+-----------
25775 | 2621562702

To find active queries that have run for more than 60 seconds and have used less than 10 seconds
of CPU time, run the following query.

STL views for logging 2566

Amazon Redshift Database Developer Guide

select query, run_time/1000000 as run_time_seconds
from stl_query_metrics
where segment = -1 and run_time > 60000000 and cpu_time < 10000000;

query | run_time_seconds
------+-----------------
25775 | 114

STL_QUERYTEXT

Captures the query text for SQL commands.

Query the STL_QUERYTEXT view to capture the SQL that was logged for the following statements:

• SELECT, SELECT INTO

• INSERT, UPDATE, DELETE

• COPY

• UNLOAD

• The queries generated by running VACUUM and ANALYZE

• CREATE TABLE AS (CTAS)

To query activity for these statements over a given time period, join the STL_QUERYTEXT and
STL_QUERY views.

Note

The STL_QUERY and STL_QUERYTEXT views only contain information about queries,
not other utility and DDL commands. For a listing and information on all statements
run by Amazon Redshift, you can also query the STL_DDLTEXT and STL_UTILITYTEXT
views. For a complete listing of all statements run by Amazon Redshift, you can query the
SVL_STATEMENTTEXT view.

See also STL_DDLTEXT, STL_UTILITYTEXT, and SVL_STATEMENTTEXT.

STL_QUERYTEXT is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

STL views for logging 2567

Amazon Redshift Database Developer Guide

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_TEXT. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

xid bigint Transaction ID.

pid integer Process ID. Normally, all of the queries in a session are
run in the same process, so this value usually remains
constant if you run a series of queries in the same session.
Following certain internal events, Amazon Redshift might
restart an active session and assign a new PID. For more
information, see STL_RESTARTED_SESSIONS. You can use
this column to join to the STL_ERROR view.

query integer Query ID. The query column can be used to join other
system tables and views.

sequence integer When a single statement contains more than 200
characters, additional rows are logged for that statement.
Sequence 0 is the first row, 1 is the second, and so on.

text character(200) SQL text, in 200-character increments. This field might
contain special characters such as backslash (\\) and
newline (\n).

Sample queries

You can use the PG_BACKEND_PID() function to retrieve information for the current session. For
example, the following query returns the query ID and a portion of the query text for queries
completed in the current session.

select query, substring(text,1,60)

STL views for logging 2568

Amazon Redshift Database Developer Guide

from stl_querytext
where pid = pg_backend_pid()
order by query desc;

 query | substring
-------+--
 28262 | select query, substring(text,1,80) from stl_querytext where
 28252 | select query, substring(path,0,80) as path from stl_unload_l
 28248 | copy category from 's3://dw-tickit/manifest/category/1030_ma
 28247 | Count rows in target table
 28245 | unload ('select * from category') to 's3://dw-tickit/manifes
 28240 | select query, substring(text,1,40) from stl_querytext where
(6 rows)

Reconstructing stored SQL

To reconstruct the SQL stored in the text column of STL_QUERYTEXT, run a SELECT statement
to create SQL from 1 or more parts in the text column. Before running the reconstructed SQL,
replace any (\n) special characters with a new line. The result of the following SELECT statement is
rows of reconstructed SQL in the query_statement field.

SELECT query, LISTAGG(CASE WHEN LEN(RTRIM(text)) = 0 THEN text ELSE RTRIM(text) END)
 WITHIN GROUP (ORDER BY sequence) as query_statement, COUNT(*) as row_count
FROM stl_querytext GROUP BY query ORDER BY query desc;

For example, the following query selects 3 columns. The query itself is longer than 200 characters
and is stored in parts in STL_QUERYTEXT.

select
1 AS a0123456789012345678901234567890123456789012345678901234567890,
2 AS b0123456789012345678901234567890123456789012345678901234567890,
3 AS b012345678901234567890123456789012345678901234
FROM stl_querytext;

In this example, the query is stored in 2 parts (rows) in the text column of STL_QUERYTEXT.

select query, sequence, text
from stl_querytext where query=pg_last_query_id() order by query desc, sequence limit
 10;

STL views for logging 2569

Amazon Redshift Database Developer Guide

query | sequence |
 text

-------+----------
+---
 45 | 0 | select\n1 AS
 a0123456789012345678901234567890123456789012345678901234567890,\n2 AS
 b0123456789012345678901234567890123456789012345678901234567890,\n3 AS
 b012345678901234567890123456789012345678901234
 45 | 1 | \nFROM stl_querytext;

To reconstruct the SQL stored in STL_QUERYTEXT, run the following SQL.

select LISTAGG(CASE WHEN LEN(RTRIM(text)) = 0 THEN text ELSE RTRIM(text) END, '')
 within group (order by sequence) AS text
from stl_querytext where query=pg_last_query_id();

To use the resulting reconstructed SQL in your client, replace any (\n) special characters with a new
line.

 text

--
 select\n1 AS a0123456789012345678901234567890123456789012345678901234567890,
\n2 AS b0123456789012345678901234567890123456789012345678901234567890,\n3 AS
 b012345678901234567890123456789012345678901234\nFROM stl_querytext;

STL_REPLACEMENTS

Displays a log that records when invalid UTF-8 characters were replaced by the COPY command
with the ACCEPTINVCHARS option. A log entry is added to STL_REPLACEMENTS for each of the
first 100 rows on each node slice that required at least one replacement.

STL_REPLACEMENTS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

STL views for logging 2570

Amazon Redshift Database Developer Guide

Note

STL_NESTLOOP only contains queries run on main clusters. It doesn't contain
queries run on concurrency scaling clusters. To access queries run on both main and
concurrency scaling clusters, we recommend that you use the SYS monitoring view
SYS_COPY_REPLACEMENTS . The data in the SYS monitoring view is formatted to be easier
to use and understand.

Table columns

Column name Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other system
tables and views.

slice integer Node slice number where the replacement occurred.

tbl integer Table ID.

starttime timestamp Start time in UTC for the COPY command.

session integer Session ID for the session performing the COPY command.

filename character
(256)

Complete path to the input file for the COPY command.

line_number bigint Line number in the input data file that contained an invalid
UTF-8 character. A -1 indicates that the line number is not
available, such as, when copying from a columnar data file.

colname character
(127)

First field that contained an invalid UTF-8 character.

raw_line character
(1024)

Raw load data that contained an invalid UTF-8 character.

STL views for logging 2571

Amazon Redshift Database Developer Guide

Sample queries

The following example returns replacements for the most recent COPY operation.

select query, session, filename, line_number, colname
from stl_replacements
where query = pg_last_copy_id();

 query | session | filename | line_number | colname
 ------+---------+-----------------------------------+-------------+--------
 96 | 6314 | s3://mybucket/allusers_pipe.txt | 251 | city
 96 | 6314 | s3://mybucket/allusers_pipe.txt | 317 | city
 96 | 6314 | s3://mybucket/allusers_pipe.txt | 569 | city
 96 | 6314 | s3://mybucket/allusers_pipe.txt | 623 | city
 96 | 6314 | s3://mybucket/allusers_pipe.txt | 694 | city
...

STL_RESTARTED_SESSIONS

To maintain continuous availability following certain internal events, Amazon Redshift might
restart an active session with a new process ID (PID). When Amazon Redshift restarts a session,
STL_RESTARTED_SESSIONS records the new PID and the old PID.

For more information, see the examples following in this section.

STL_RESTARTED_SESSIONS is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_SESSION_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column name Data type Description

currenttime timestamp Time of the event.

dbname character
(50)

Name of the database associated with the session.

newpid integer Process ID for the restarted session.

STL views for logging 2572

Amazon Redshift Database Developer Guide

Column name Data type Description

oldpid integer Process ID for the original session.

username character
(50)

Name of the user associated with the session.

remotehost character
(45)

Name or IP address of the remote host.

remoteport character
(32)

Port number of the remote host.

parkedtime timestamp This information is for internal use only.

session_vars character
(2000)

This information is for internal use only.

Sample queries

The following example joins STL_RESTARTED_SESSIONS with STL_SESSIONS to show user names
for sessions that have been restarted.

select process, stl_restarted_sessions.newpid, user_name
from stl_sessions
inner join stl_restarted_sessions on stl_sessions.process =
 stl_restarted_sessions.oldpid
order by process;

...

STL_RETURN

Contains details for return steps in queries. A return step returns the results of queries completed
on the compute nodes to the leader node. The leader node then merges the data and returns the
results to the requesting client. For queries completed on the leader node, a return step returns
results to the client.

A query consists of multiple segments, and each segment consists of one or more steps. For more
information, see Query processing.

STL views for logging 2573

Amazon Redshift Database Developer Guide

STL_RETURN is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_RETURN only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other system
tables and views.

slice integer Number that identifies the slice where the query was running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes queuing
and execution. with 6 digits of precision for fractional seconds. For
example: 2009-06-12 11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes queuing
and execution. with 6 digits of precision for fractional seconds. For
example: 2009-06-12 11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to run the
step.

rows bigint Total number of rows that were processed.

STL views for logging 2574

Amazon Redshift Database Developer Guide

Column
name

Data type Description

bytes bigint Size, in bytes, of all the output rows for the step.

packets integer Total number of packets sent over the network.

checksum bigint This information is for internal use only.

Sample queries

The following query shows which steps in the most recent query were performed on each slice.

SELECT query, slice, segment, step, endtime, rows, packets
from stl_return where query = pg_last_query_id();

 query | slice | segment | step | endtime | rows | packets
-------+--------+---------+------+----------------------------+------+---------
 4 | 2 | 3 | 2 | 2013-12-27 01:43:21.469043 | 3 | 0
 4 | 3 | 3 | 2 | 2013-12-27 01:43:21.473321 | 0 | 0
 4 | 0 | 3 | 2 | 2013-12-27 01:43:21.469118 | 2 | 0
 4 | 1 | 3 | 2 | 2013-12-27 01:43:21.474196 | 0 | 0
 4 | 4 | 3 | 2 | 2013-12-27 01:43:21.47704 | 2 | 0
 4 | 5 | 3 | 2 | 2013-12-27 01:43:21.478593 | 0 | 0
 4 | 12811| 4 | 1 | 2013-12-27 01:43:21.480755 | 0 | 0
(7 rows)

STL_S3CLIENT

Records transfer time and other performance metrics.

Use the STL_S3CLIENT table to find the time spent transferring data from Amazon S3.

STL_S3CLIENT is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

userid integer ID of the user who generated the entry.

STL views for logging 2575

Amazon Redshift Database Developer Guide

Column name Data type Description

query integer Query ID. The query column can be used to join other system
tables and views.

slice integer Number that identifies the slice where the query was
running.

recordtime timestamp Time the record is logged.

pid integer Process ID. All of the queries in a session are run in the same
process, so this value remains constant if you run a series of
queries in the same session.

http_method character
(64)

HTTP method name corresponding to the Amazon S3
request.

bucket character
(64)

S3 bucket name.

key character
(256)

Key corresponding to the Amazon S3 object.

transfer_size bigint Number of bytes transferred.

data_size bigint Number of bytes of data. This value is the same as transfer_
size for uncompressed data. If compression was used, this is
the size of the uncompressed data.

start_time bigint Time when the transfer began (in microseconds since
January 1, 2000).

end_time bigint Time when the transfer ended (in microseconds since
January 1, 2000).

transfer_time bigint Time taken by the transfer (in microseconds).

compression_time bigint Portion of the transfer time that was spent uncompressing
data (in microseconds).

STL views for logging 2576

Amazon Redshift Database Developer Guide

Column name Data type Description

connect_time bigint Time from the start until the connect to the remote server
was completed (in microseconds).

app_conne
ct_time

bigint Time from the start until the SSL connect/handshake with
the remote host was completed (in microseconds).

retries bigint Number of times the transfer was retried.

request_id char(32) Request ID from Amazon S3 HTTP response header

extended_
request_id

char(128) Extended request ID from Amazon S3 HTTP header response
(x-amz-id-2).

ip_address char(64) IP address of the server (ip V4 or V6).

is_partial integer Value that if true (1) indicates the input file is split into
ranges during a COPY operation. If this value is false (0), the
input file isn't split.

start_offset bigint Value that, if the input file is split during a COPY operation
, indicates the offset value of the split (in bytes). If the file
isn't split, this value is 0.

Sample query

The following query returns the time taken to load files using a COPY command.

select slice, key, transfer_time
from stl_s3client
where query = pg_last_copy_id();

Result

 slice | key | transfer_time
 ------+-----------------------------+---------------
 0 | listing10M0003_part_00 | 16626716
 1 | listing10M0001_part_00 | 12894494
 2 | listing10M0002_part_00 | 14320978

STL views for logging 2577

Amazon Redshift Database Developer Guide

 3 | listing10M0000_part_00 | 11293439
 3371 | prefix=listing10M;marker= | 99395

The following query converts the start_time and end_time to a timestamp.

select userid,query,slice,pid,recordtime,start_time,end_time,
'2000-01-01'::timestamp + (start_time/1000000.0)* interval '1 second' as start_ts,
'2000-01-01'::timestamp + (end_time/1000000.0)* interval '1 second' as end_ts
from stl_s3client where query> -1 limit 5;

 userid | query | slice | pid | recordtime | start_time |
 end_time | start_ts | end_ts
--------+-------+-------+-------+----------------------------+-----------------
+-----------------+----------------------------+----------------------------
 0 | 0 | 0 | 23449 | 2019-07-14 16:27:17.207839 | 616436837154256 |
 616436837207838 | 2019-07-14 16:27:17.154256 | 2019-07-14 16:27:17.207838
 0 | 0 | 0 | 23449 | 2019-07-14 16:27:17.252521 | 616436837208208 |
 616436837252520 | 2019-07-14 16:27:17.208208 | 2019-07-14 16:27:17.25252
 0 | 0 | 0 | 23449 | 2019-07-14 16:27:17.284376 | 616436837208460 |
 616436837284374 | 2019-07-14 16:27:17.20846 | 2019-07-14 16:27:17.284374
 0 | 0 | 0 | 23449 | 2019-07-14 16:27:17.285307 | 616436837208980 |
 616436837285306 | 2019-07-14 16:27:17.20898 | 2019-07-14 16:27:17.285306
 0 | 0 | 0 | 23449 | 2019-07-14 16:27:17.353853 | 616436837302216 |
 616436837353851 | 2019-07-14 16:27:17.302216 | 2019-07-14 16:27:17.353851

STL_S3CLIENT_ERROR

Records errors encountered by a slice while loading a file from Amazon S3.

Use the STL_S3CLIENT_ERROR to find details for errors encountered while transferring data from
Amazon S3 as part of a COPY command.

STL_S3CLIENT_ERROR is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

STL views for logging 2578

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other system
tables and views. The query ID -1 is for internal use.

sliceid integer Number that identifies the slice where the query was
running.

recordtime timestamp Time the record is logged.

pid integer Process ID. All of the queries in a session are run in the same
process, so this value remains constant if you run a series of
queries in the same session.

http_method character
(64)

HTTP method name corresponding to the Amazon S3
request.

bucket character
(64)

Amazon S3 bucket name.

key character
(256)

Key corresponding to the Amazon S3 object.

error character
(1024)

Error message.

is_partial integer Value that, if true (1), indicates the input file is split into
ranges during a COPY operation. If this value is false (0), the
input file isn't split.

start_offset bigint Value that, if the input file is split during a COPY operation
, indicates the offset value of the split (in bytes). If the file
isn't split, this value is 0.

STL views for logging 2579

Amazon Redshift Database Developer Guide

Usage notes

If you see multiple errors with "Connection timed out", you might have a networking issue. If you're
using Enhanced VPC Routing, verify that you have a valid network path between your cluster's VPC
and your data resources. For more information, see Amazon Redshift Enhanced VPC Routing.

Sample query

The following query returns the errors from COPY commands completed during the current
session.

select query, sliceid, substring(key from 1 for 20) as file,
substring(error from 1 for 35) as error
from stl_s3client_error
where pid = pg_backend_pid()
order by query desc;

Result

 query | sliceid | file | error

--------+---------+--------------------+------------------------------------
 362228 | 12 | part.tbl.25.159.gz | transfer closed with 1947655 bytes
 362228 | 24 | part.tbl.15.577.gz | transfer closed with 1881910 bytes
 362228 | 7 | part.tbl.22.600.gz | transfer closed with 700143 bytes r
 362228 | 22 | part.tbl.3.34.gz | transfer closed with 2334528 bytes
 362228 | 11 | part.tbl.30.274.gz | transfer closed with 699031 bytes r
 362228 | 30 | part.tbl.5.509.gz | Unknown SSL protocol error in conne
 361999 | 10 | part.tbl.23.305.gz | transfer closed with 698959 bytes r
 361999 | 19 | part.tbl.26.582.gz | transfer closed with 1881458 bytes
 361999 | 4 | part.tbl.15.629.gz | transfer closed with 2275907 bytes
 361999 | 20 | part.tbl.6.456.gz | transfer closed with 692162 bytes r
(10 rows)

STL_SAVE

Contains details for save steps in queries. A save step saves the input stream to a transient table. A
transient table is a temporary table that stores intermediate results during query execution.

A query consists of multiple segments, and each segment consists of one or more steps. For more
information, see Query processing.

STL views for logging 2580

https://docs.aws.amazon.com/redshift/latest/mgmt/enhanced-vpc-routing.html

Amazon Redshift Database Developer Guide

STL_SAVE is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_SAVE only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other system
tables and views.

slice integer Number that identifies the slice where the query was running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes queuing
and execution. with 6 digits of precision for fractional seconds. For
example: 2009-06-12 11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes queuing
and execution. with 6 digits of precision for fractional seconds. For
example: 2009-06-12 11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to run the
step.

rows bigint Total number of rows that were processed.

STL views for logging 2581

Amazon Redshift Database Developer Guide

Column
name

Data type Description

bytes bigint Size, in bytes, of all the output rows for the step.

tbl integer ID of the materialized transient table.

is_diskba
sed

character(1) Whether this step of the query was performed as a disk-based
operation: true (t) or false (f).

workmem bigint Number of bytes of working memory assigned to the step.

Sample queries

The following query shows which save steps in the most recent query were performed on each
slice.

select query, slice, segment, step, tasknum, rows, tbl
from stl_save where query = pg_last_query_id();

 query | slice | segment | step | tasknum | rows | tbl
-------+-------+---------+------+---------+------+-----
 52236 | 3 | 0 | 2 | 21 | 0 | 239
 52236 | 2 | 0 | 2 | 20 | 0 | 239
 52236 | 2 | 2 | 2 | 20 | 0 | 239
 52236 | 3 | 2 | 2 | 21 | 0 | 239
 52236 | 1 | 0 | 2 | 21 | 0 | 239
 52236 | 0 | 0 | 2 | 20 | 0 | 239
 52236 | 0 | 2 | 2 | 20 | 0 | 239
 52236 | 1 | 2 | 2 | 21 | 0 | 239
(8 rows)

STL_SCAN

Analyzes table scan steps for queries. The step number for rows in this table is always 0 because a
scan is the first step in a segment.

STL_SCAN is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

STL views for logging 2582

Amazon Redshift Database Developer Guide

Note

STL_SCAN only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

STL views for logging 2583

Amazon Redshift Database Developer Guide

Column
name

Data type Description

bytes bigint Size, in bytes, of all the output rows for the step.

fetches bigint This information is for internal use only.

type integer ID of the scan type. For a list of valid values, see the
following table.

tbl integer Table ID.

is_rrscan character(1) If true (t), indicates that range-restricted scan was used
on the step.

is_delaye
d_scan

character(1) This information is for internal use only.

rows_pre_
filter

bigint For scans of permanent tables, the total number of rows
emitted before filtering rows marked for deletion (ghost
rows) and before applying user-defined query filters.

rows_pre_
user_filter

bigint For scans of permanent tables, the number of rows
processed after filtering rows marked for deletion (ghost
rows) but before applying user-defined query filters.

perm_tabl
e_name

character(136) For scans of permanent tables, the name of the table
scanned.

is_rlf_scan character(1) If true (t), indicates that row-level filtering was used on
the step.

is_rlf_sc
an_reason

integer This information is for internal use only.

num_em_bl
ocks

integer This information is for internal use only.

checksum bigint This information is for internal use only.

STL views for logging 2584

Amazon Redshift Database Developer Guide

Column
name

Data type Description

runtime_f
iltering

character(1) If true (t), indicates that runtime filters are applied.

scan_regi
on

integer This information is for internal use only.

num_sortk
ey_as_pre
dicate

integer This information is for internal use only.

row_fetch
er_state

integer This information is for internal use only.

consumed_
scan_rang
es

bigint This information is for internal use only.

work_stea
ling_reas
on

bigint This information is for internal use only.

is_vector
ized_scan

character(1) This information is for internal use only.

is_vector
ized_scan
_reason

integer This information is for internal use only.

row_fetch
er_reason

bigint This information is for internal use only.

topology_
signature

bigint This information is for internal use only.

use_tpm_p
artition

character(1) This information is for internal use only.

STL views for logging 2585

Amazon Redshift Database Developer Guide

Column
name

Data type Description

is_rrscan
_expr

character(1) This information is for internal use only.

scanned_m
ega_value

character(1) This information is for internal use only. This informati
on shows whether the given scan step has scanned a
large value. A large value will be stored in multiple blocks.
Block size is 1 MB by default, a large value is greater than
1 MB in a default setting.

Scan types

Type ID Description

1 Data from the network.

2 Permanent user tables in compressed shared memory.

3 Transient row-wise tables.

21 Load files from Amazon S3.

22 Load tables from Amazon DynamoDB.

23 Load data from a remote SSH connection.

24 Load data from remote cluster (sorted region). This is used for resizing.

25 Load data from remote cluster(unsorted region). This is used for resizing.

28 Read data from a time series view with UNION ALL on multiple tables.

29 Read data from Amazon S3 external tables.

30 Read partition information of an Amazon S3 external table.

33 Read data from a remote Postgres table.

STL views for logging 2586

Amazon Redshift Database Developer Guide

Type ID Description

36 Read data from a remote MySQL table.

37 Read data from a remote Kinesis stream.

Usage notes

Ideally rows should be relatively close to rows_pre_filter. A large difference between
rows and rows_pre_filter is an indication that the execution engine is scanning rows
that are later discarded, which is inefficient. The difference between rows_pre_filter and
rows_pre_user_filter is the number of ghost rows in the scan. Run a VACUUM to remove rows
marked for deletion. The difference between rows and rows_pre_user_filter is the number of
rows filtered by the query. If a lot of rows are discarded by the user filter, review your choice of sort
column or, if this is due to a large unsorted region, run a vacuum.

Sample queries

The following example shows that rows_pre_filter is larger than rows_pre_user_filter
because the table has deleted rows that have not been vacuumed (ghost rows).

SELECT query, slice, segment,step,rows, rows_pre_filter, rows_pre_user_filter
from stl_scan where query = pg_last_query_id();

 query | slice | segment | step | rows | rows_pre_filter | rows_pre_user_filter
-------+--------+---------+------+-------+-----------------+----------------------
 42915 | 0 | 0 | 0 | 43159 | 86318 | 43159
 42915 | 0 | 1 | 0 | 1 | 0 | 0
 42915 | 1 | 0 | 0 | 43091 | 86182 | 43091
 42915 | 1 | 1 | 0 | 1 | 0 | 0
 42915 | 2 | 0 | 0 | 42778 | 85556 | 42778
 42915 | 2 | 1 | 0 | 1 | 0 | 0
 42915 | 3 | 0 | 0 | 43428 | 86856 | 43428
 42915 | 3 | 1 | 0 | 1 | 0 | 0
 42915 | 10000 | 2 | 0 | 4 | 0 | 0
(9 rows)

STL views for logging 2587

Amazon Redshift Database Developer Guide

STL_SCHEMA_QUOTA_VIOLATIONS

Records the occurrence, timestamp, XID, and other useful information when a schema quota is
exceeded.

STL_SCHEMA_QUOTA_VIOLATIONS is visible to all users. Superusers can see all rows; regular users
can see only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_SCHEMA_QUOTA_VIOLATIONS. The data in the SYS monitoring view is formatted to be easier
to use and understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

ownerid integer The ID of the schema owner.

xid bigint The transaction ID associated with the statement.

pid integer The process ID associated with the statement.

userid integer The ID of the user who generated the entry.

schema_id integer The namespace or schema ID.

schema_na
me

character
(128)

The namespace or schema name.

quota integer The amount of disk space (in MB) that the schema can use.

disk_usage integer The disk space (in MB) that is currently used by the schema.

disk_usag
e_pct

double
precision

The disk space percentage that is currently used by the schema
out of the configured quota.

timestamp timestamp
without time
zone

The time when the violation occurred.

STL views for logging 2588

Amazon Redshift Database Developer Guide

Sample queries

The following query shows the result of quota violation:

SELECT userid, TRIM(SCHEMA_NAME) "schema_name", quota, disk_usage, disk_usage_pct,
 timestamp FROM
stl_schema_quota_violations WHERE SCHEMA_NAME = 'sales_schema' ORDER BY timestamp DESC;

This query returns the following sample output for the specified schema:

userid | schema_name | quota | disk_usage | disk_usage_pct |timestamp
-------+--------------+-------+------------+----------------
+----------------------------
104 | sales_schema | 2048 | 2798 | 136.62 | 2020-04-20
 20:09:25.494723
(1 row)

STL_SESSIONS

Returns information about user session history.

STL_SESSIONS differs from STV_SESSIONS in that STL_SESSIONS contains session history, where
STV_SESSIONS contains the current active sessions.

STL_SESSIONS is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_SESSION_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

starttime timestamp Time in UTC that the session started.

STL views for logging 2589

Amazon Redshift Database Developer Guide

Column
name

Data type Description

endtime timestamp Time in UTC that the session ended.

process integer Process ID for the session.

user_name character(50) User name associated with the session.

db_name character(50) Name of the database associated with the
session.

timeout_s
ec

int The maximum time in seconds that a session
remains inactive or idle before timing out. 0
indicates that no timeout is set.

timed_out int A value that indicates if a session has timed out:
1 if it has timed out, 0 otherwise.

Sample queries

To view session history for the TICKIT database, type the following query:

select starttime, process, user_name, timeout_sec, timed_out
from stl_sessions
where db_name='tickit' order by starttime;

This query returns the following sample output:

 starttime | process | user_name | timeout_sec | timed_out
---------------------------+---------+------------------------+-------------
+-------------
2008-09-15 09:54:06.746705 | 32358 | dwuser | 120 | 1
2008-09-15 09:56:34.30275 | 32744 | dwuser | 60 | 1
2008-09-15 11:20:34.694837 | 14906 | dwuser | 0 | 0
2008-09-15 11:22:16.749818 | 15148 | dwuser | 0 | 0
2008-09-15 14:32:44.66112 | 14031 | dwuser | 0 | 0
2008-09-15 14:56:30.22161 | 18380 | dwuser | 0 | 0
2008-09-15 15:28:32.509354 | 24344 | dwuser | 0 | 0

STL views for logging 2590

Amazon Redshift Database Developer Guide

2008-09-15 16:01:00.557326 | 30153 | dwuser | 120 | 1
2008-09-15 17:28:21.419858 | 12805 | dwuser | 0 | 0
2008-09-15 20:58:37.601937 | 14951 | dwuser | 60 | 1
2008-09-16 11:12:30.960564 | 27437 | dwuser | 60 | 1
2008-09-16 14:11:37.639092 | 23790 | dwuser | 3600 | 1
2008-09-16 15:13:46.02195 | 1355 | dwuser | 120 | 1
2008-09-16 15:22:36.515106 | 2878 | dwuser | 120 | 1
2008-09-16 15:44:39.194579 | 6470 | dwuser | 120 | 1
2008-09-16 16:50:27.02138 | 17254 | dwuser | 120 | 1
2008-09-17 12:05:02.157208 | 8439 | dwuser | 3600 | 0
(17 rows)

STL_SORT

Displays sort execution steps for queries, such as steps that use ORDER BY processing.

STL_SORT is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_SORT only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

STL views for logging 2591

Amazon Redshift Database Developer Guide

Column
name

Data type Description

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

bytes bigint Size, in bytes, of all the output rows for the step.

tbl integer Table ID.

is_diskba
sed

character(1) If true (t), the query was performed as a disk-base
d operation. If false (f), the query was performed in
memory.

workmem bigint Total number of bytes in working memory that were
assigned to the step.

checksum bigint This information is for internal use only.

Sample queries

The following example returns sort results for slice 0 and segment 1.

STL views for logging 2592

Amazon Redshift Database Developer Guide

select query, bytes, tbl, is_diskbased, workmem
from stl_sort
where slice=0 and segment=1;

 query | bytes | tbl | is_diskbased | workmem
-------+---------+-----+--------------+-----------
 567 | 3126968 | 241 | f | 383385600
 604 | 5292 | 242 | f | 383385600
 675 | 104776 | 251 | f | 383385600
 525 | 3126968 | 251 | f | 383385600
 585 | 5068 | 241 | f | 383385600
 630 | 204808 | 266 | f | 383385600
 704 | 0 | 242 | f | 0
 669 | 4606416 | 241 | f | 383385600
 696 | 104776 | 241 | f | 383385600
 651 | 4606416 | 254 | f | 383385600
 632 | 0 | 256 | f | 0
 599 | 396 | 241 | f | 383385600
 86397 | 0 | 242 | f | 0
 621 | 5292 | 241 | f | 383385600
 86325 | 0 | 242 | f | 0
 572 | 5068 | 242 | f | 383385600
 645 | 204808 | 241 | f | 383385600
 590 | 396 | 242 | f | 383385600
(18 rows)

STL_SSHCLIENT_ERROR

Records all errors seen by the SSH client.

STL_SSHCLIENT_ERROR is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

STL views for logging 2593

Amazon Redshift Database Developer Guide

Column
name

Data type Description

query integer Query ID. The query column can be used to join other system
tables and views.

slice integer Number that identifies the slice where the query was running.

recordtime timestamp Time that the error was logged.

pid integer Process that logged the error.

ssh_usern
ame

character
(1024)

The SSH user name.

endpoint character
(1024)

The SSH endpoint.

command character
(4096)

The complete SSH command.

error character
(1024)

The error message.

STL_STREAM_SEGS

Lists the relationship between streams and concurrent segments.

Streams in this context are Amazon Redshift streams. This system view doesn't pertain to
Streaming ingestion.

STL_STREAM_SEGS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Note

STL_STREAM_SEGS only contains queries run on main clusters. It doesn't contain queries
run on concurrency scaling clusters. To access queries run on both main and concurrency

STL views for logging 2594

Amazon Redshift Database Developer Guide

scaling clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL
. The data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other system
tables and views.

stream integer The set of concurrent segments of a query.

segment integer Number that identifies the query segment.

Sample queries

To view the relationship between streams and concurrent segments for the most recent query, type
the following query:

select *
from stl_stream_segs
where query = pg_last_query_id();

 query | stream | segment
-------+--------+---------
 10 | 1 | 2
 10 | 0 | 0
 10 | 2 | 4
 10 | 1 | 3
 10 | 0 | 1
(5 rows)

STL_TR_CONFLICT

Displays information to identify and resolve transaction conflicts with database tables.

STL views for logging 2595

Amazon Redshift Database Developer Guide

A transaction conflict occurs when two or more users are querying and modifying data rows from
tables such that their transactions cannot be serialized. The transaction that runs a statement that
would break serializability is stopped and rolled back. Every time a transaction conflict occurs,
Amazon Redshift writes a data row to the STL_TR_CONFLICT system table containing details about
the canceled transaction. For more information, see Serializable isolation.

STL_TR_CONFLICT is visible only to superusers. For more information, see Visibility of data in
system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_TRANSACTION_HISTORY. The data in the SYS monitoring view is formatted to be easier to use
and understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column name Data type Description

xact_id bigint Transaction ID for the rolled back transaction.

process_id bigint Process associated with the transaction that was
rolled back.

xact_start_ts timestamp Timestamp (UTC) when the transaction started.

abort_time timestamp Timestamp (UTC) when the transaction was
stopped.

table_id bigint Table ID for the table where the conflict
occurred.

Sample query

To return information about conflicts that involved a particular table, run a query that specifies the
table ID:

select * from stl_tr_conflict where table_id=100234
order by xact_start_ts;

xact_id|process_| xact_start_ts | abort_time |table_

STL views for logging 2596

Amazon Redshift Database Developer Guide

 |id | | |id
-------+--------+--------------------------+--------------------------+------
 1876 | 8551 |2010-03-30 09:19:15.852326|2010-03-30 09:20:17.582499|100234
 1928 | 15034 |2010-03-30 13:20:00.636045|2010-03-30 13:20:47.766817|100234
 1991 | 23753 |2010-04-01 13:05:01.220059|2010-04-01 13:06:06.94098 |100234
 2002 | 23679 |2010-04-01 13:17:05.173473|2010-04-01 13:18:27.898655|100234
(4 rows)

You can get the table ID from the DETAIL section of the error message for serializability violations
(error 1023).

STL_UNDONE

Displays information about transactions that have been undone.

STL_UNDONE is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_TRANSACTION_HISTORY. The data in the SYS monitoring view is formatted to be easier to use
and understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

xact_id bigint ID for the undo transaction.

xact_id_u
ndone

bigint ID for the transaction that was undone.

undo_star
t_ts

timestamp Start time for the undo transaction.

undo_end_
ts

timestamp End time for the undo transaction.

table_id bigint ID for the table that was affected by the undo transaction.

STL views for logging 2597

Amazon Redshift Database Developer Guide

Sample query

To view a concise log of all undone transactions, type the following command:

select xact_id, xact_id_undone, table_id from stl_undone;

This command returns the following sample output:

 xact_id | xact_id_undone | table_id
---------+----------------+----------
1344 | 1344 | 100192
1326 | 1326 | 100192
1551 | 1551 | 100192
(3 rows)

STL_UNIQUE

Analyzes execution steps that occur when a DISTINCT function is used in the SELECT list or when
duplicates are removed in a UNION or INTERSECT query.

STL_UNIQUE is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

STL_UNIQUE only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

STL views for logging 2598

Amazon Redshift Database Developer Guide

Column
name

Data type Description

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

type character(6) The type of step. Valid values are:

• HASHED. Indicates that the step used grouped,
unsorted aggregation.

• PLAIN. Indicates that the step used ungrouped, scalar
aggregation.

• SORTED. Indicates that the step used grouped, sorted
aggregation.

is_diskba
sed

character(1) If true (t), the query was performed as a disk-base
d operation. If false (f), the query was performed in
memory.

slots integer Total number of hash buckets.

STL views for logging 2599

Amazon Redshift Database Developer Guide

Column
name

Data type Description

workmem bigint Total number of bytes in working memory that were
assigned to the step.

max_buffe
rs_used

bigint Maximum number of buffers used in the hash table
before going to disk.

resizes integer This information is for internal use only.

occupied integer This information is for internal use only.

flushable integer This information is for internal use only.

used_uniq
ue_prefet
ching

character(1) This information is for internal use only.

bytes biginit The number of bytes of all the output rows for the step.

Sample queries

Suppose you run the following query:

select distinct eventname
from event order by 1;

Assuming the ID for the previous query is 6313, the following example shows the number of rows
produced by the unique step for each slice in segments 0 and 1.

select query, slice, segment, step, datediff(msec, starttime, endtime) as msec,
 tasknum, rows
from stl_unique where query = 6313
order by query desc, slice, segment, step;

 query | slice | segment | step | msec | tasknum | rows
-------+-------+---------+------+------+---------+------
 6313 | 0 | 0 | 2 | 0 | 22 | 550

STL views for logging 2600

Amazon Redshift Database Developer Guide

 6313 | 0 | 1 | 1 | 256 | 20 | 145
 6313 | 1 | 0 | 2 | 1 | 23 | 540
 6313 | 1 | 1 | 1 | 42 | 21 | 127
 6313 | 2 | 0 | 2 | 1 | 22 | 540
 6313 | 2 | 1 | 1 | 255 | 20 | 158
 6313 | 3 | 0 | 2 | 1 | 23 | 542
 6313 | 3 | 1 | 1 | 38 | 21 | 146
(8 rows)

STL_UNLOAD_LOG

Records the details for an unload operation.

STL_UNLOAD_LOG records one row for each file created by an UNLOAD statement. For example, if
an UNLOAD creates 12 files, STL_UNLOAD_LOG will contain 12 corresponding rows.

STL_UNLOAD_LOG is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Note

STL_UNLOAD_LOG only contains queries run on main clusters. It doesn't contain
queries run on concurrency scaling clusters. To access queries run on both main and
concurrency scaling clusters, we recommend that you use the SYS monitoring view
SYS_UNLOAD_HISTORY and SYS_UNLOAD_DETAIL . The data in the SYS monitoring view is
formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer The query ID.

slice integer Number that identifies the slice where the query was
running.

STL views for logging 2601

Amazon Redshift Database Developer Guide

Column
name

Data type Description

pid integer Process ID associated with the query statement.

path character(1280) The complete Amazon S3 object path for the file.

start_time timestamp Start time for the transaction.

end_time timestamp End time for the transaction.

line_count bigint Number of lines (rows) unloaded to the file.

transfer_
size

bigint Number of bytes transferred.

file_format character(10) Format of unloaded file.

Sample query

To get a list of the files that were written to Amazon S3 by an UNLOAD command, you can call an
Amazon S3 list operation after the UNLOAD completes. You can also query STL_UNLOAD_LOG.

The following query returns the pathname for files that were created by an UNLOAD for the last
query completed:

select query, substring(path,0,40) as path
from stl_unload_log
where query = pg_last_query_id()
order by path;

This command returns the following sample output:

 query | path
-------+--------------------------------------
 2320 | s3://my-bucket/venue0000_part_00
 2320 | s3://my-bucket/venue0001_part_00
 2320 | s3://my-bucket/venue0002_part_00
 2320 | s3://my-bucket/venue0003_part_00
(4 rows)

STL views for logging 2602

Amazon Redshift Database Developer Guide

STL_USAGE_CONTROL

The STL_USAGE_CONTROL view contains information that is logged when a usage limit is reached.
For more information about usage limits, see Managing Usage Limits in the Amazon Redshift
Management Guide.

STL_USAGE_CONTROL is visible only to superusers. For more information, see Visibility of data in
system tables and views.

Table columns

Column
name

Data type Description

eventtime timestamp The time (UTC) when the query exceeded a usage limit.

query integer The query identifier. You can use this ID to join various
other system tables and views.

xid bigint The transaction identifier.

pid integer The process identifier associated with the query.

usage_lim
it_id

character(40) A universally unique identifier (UUID) generated by
Amazon Redshift, for example 25d9297e-3e7b-41c8
-9f4d-c4b6eb731c09 .

feature_t
ype

character(30) The feature whose usage limit was exceeded. Possible
values include CONCURRENCY_SCALING and
SPECTRUM.

Sample query

The following SQL example returns some of the information logged when a usage limit is reached.

select query, pid, eventtime, feature_type
from stl_usage_control
order by eventtime desc
limit 5;

STL views for logging 2603

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-usage-limits.html

Amazon Redshift Database Developer Guide

STL_USERLOG

Records details for the following changes to a database user:

• Create user

• Drop user

• Alter user (rename)

• Alter user (alter properties)

STL_USERLOG is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view SYS_USERLOG.
The data in the SYS monitoring view is formatted to be easier to use and understand. We
recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer ID of the user affected by the change.

username character(50) User name of the user affected by the change.

olduserna
me

character(50) For a rename action, the original user name. For any other
action, this field is empty.

action character(10) Action that occurred. Valid values:

• Alter

• Create

• Drop

• Rename

usecreate
db

integer If true (1), indicates that the user has create database
privileges.

STL views for logging 2604

Amazon Redshift Database Developer Guide

Column
name

Data type Description

usesuper integer If true (1), indicates that the user is a superuser.

usecatupd integer If true (1), indicates that the user can update system
catalogs.

valuntil timestamp Password expiration date.

pid integer Process ID.

xid bigint Transaction ID.

recordtime timestamp Time in UTC that the query started.

Sample queries

The following example performs four user actions, then queries the STL_USERLOG view.

create user userlog1 password 'Userlog1';
alter user userlog1 createdb createuser;
alter user userlog1 rename to userlog2;
drop user userlog2;

select userid, username, oldusername, action, usecreatedb, usesuper from stl_userlog
 order by recordtime desc;

 userid | username | oldusername | action | usecreatedb | usesuper
--------+-----------+-------------+---------+-------------+----------
 108 | userlog2 | | drop | 1 | 1
 108 | userlog2 | userlog1 | rename | 1 | 1
 108 | userlog1 | | alter | 1 | 1
 108 | userlog1 | | create | 0 | 0
 (4 rows)

STL views for logging 2605

Amazon Redshift Database Developer Guide

STL_UTILITYTEXT

Captures the text of non-SELECT SQL commands run on the database.

Query the STL_UTILITYTEXT view to capture the following subset of SQL statements that were run
on the system:

• ABORT, BEGIN, COMMIT, END, ROLLBACK

• ANALYZE

• CALL

• CANCEL

• COMMENT

• CREATE, ALTER, DROP DATABASE

• CREATE, ALTER, DROP USER

• EXPLAIN

• GRANT, REVOKE

• LOCK

• RESET

• SET

• SHOW

• TRUNCATE

See also STL_DDLTEXT, STL_QUERYTEXT, and SVL_STATEMENTTEXT.

Use the STARTTIME and ENDTIME columns to find out which statements were logged during
a given time period. Long blocks of SQL text are broken into lines 200 characters long; the
SEQUENCE column identifies fragments of text that belong to a single statement.

STL_UTILITYTEXT is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

STL views for logging 2606

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

xid bigint Transaction ID.

pid integer Process ID associated with the query statement.

label character(320) Either the name of the file used to run the query or a
label defined with a SET QUERY_GROUP command. If the
query is not file-based or the QUERY_GROUP parameter
is not set, this field is blank.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

sequence integer When a single statement contains more than 200
characters, additional rows are logged for that statement.
Sequence 0 is the first row, 1 is the second, and so on.

text character(200) SQL text, in 200-character increments. This field might
contain special characters such as backslash (\\) and
newline (\n).

Sample queries

The following query returns the text for "utility" commands that were run on January 26th, 2012.
In this case, some SET commands and a SHOW ALL command were run:

STL views for logging 2607

Amazon Redshift Database Developer Guide

select starttime, sequence, rtrim(text)
from stl_utilitytext
where starttime like '2012-01-26%'
order by starttime, sequence;

starttime | sequence | rtrim
---------------------------+-----+----------------------------------
2012-01-26 13:05:52.529235 | 0 | show all;
2012-01-26 13:20:31.660255 | 0 | SET query_group to ''
2012-01-26 13:20:54.956131 | 0 | SET query_group to 'soldunsold.sql'
...

Reconstructing Stored SQL

To reconstruct the SQL stored in the text column of STL_UTILITYTEXT, run a SELECT statement
to create SQL from 1 or more parts in the text column. Before running the reconstructed SQL,
replace any (\n) special characters with a new line. The result of the following SELECT statement is
rows of reconstructed SQL in the query_statement field.

SELECT LISTAGG(CASE WHEN LEN(RTRIM(text)) = 0 THEN text ELSE RTRIM(text) END) WITHIN
 GROUP (ORDER BY sequence) as query_statement
FROM stl_utilitytext GROUP BY xid order by xid;

For example, the following query sets the query_group to a string of zeros. The query itself is
longer than 200 characters and is stored in parts in STL_UTILITYTEXT.

set query_group to
 '00
00
 000000';

In this example, the query is stored in 2 parts (rows) in the text column of STL_UTILITYTEXT.

select query, sequence, text
from stl_utilitytext where query=pg_last_query_id() order by query desc, sequence limit
 10;

STL views for logging 2608

Amazon Redshift Database Developer Guide

 starttime | sequence |
 text

----------------------------+----------
+--
 2019-07-23 22:55:34.926198 | 0 | set query_group to
 '00\n00
 2019-07-23 22:55:34.926198 | 1 | 000000';

To reconstruct the SQL stored in STL_UTILITYTEXT, run the following SQL.

select LISTAGG(CASE WHEN LEN(RTRIM(text)) = 0 THEN text ELSE RTRIM(text) END, '')
 within group (order by sequence) AS query_statement
from stl_utilitytext where query=pg_last_query_id();

To use the resulting reconstructed SQL in your client, replace any (\n) special characters with a new
line.

 query_statement

 set query_group to
 '00\n00
 000000';

STL_VACUUM

Displays row and block statistics for tables that have been vacuumed.

The view shows information specific to when each vacuum operation started and finished, and
demonstrates the benefits of running the operation. For information about the requirements for
running this command, see the VACUUM command description.

STL_VACUUM is visible only to superusers. For more information, see Visibility of data in system
tables and views.

STL views for logging 2609

Amazon Redshift Database Developer Guide

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_VACUUM_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column name Data type Description

userid integer The ID of the user who generated the entry.

xid bigint The transaction ID for the VACUUM statement. You
can join this table to the STL_QUERY view to see
the individual SQL statements that are run for a
given VACUUM transaction. If you vacuum the whole
database, each table is vacuumed in a separate transacti
on.

table_id integer The Table ID.

status character(30) The status of the VACUUM operation for each table.
Possible values are the following:

• Started

• Started Delete Only

• Started Delete Only (Sorted >= nn%)

Only the delete phase was started for a VACUUM
FULL. The sort phase was skipped because the table
was already sorted at or above the sort threshold.

• Started Sort Only

• Started Ranged Partition

• Started Reindex

• Finished

Time the operation completed for the table. To find
out how long a vacuum operation took on a specific
table, subtract the Started time from the Finished
time for a particular transaction ID and table ID.

STL views for logging 2610

Amazon Redshift Database Developer Guide

Column name Data type Description

• Skipped

The table was skipped because the table was fully
sorted and no rows were marked for deletion.

• Skipped (delete only)

The table was skipped because DELETE ONLY was
specified and no rows were marked for deletion.

• Skipped (sort only)

The table was skipped because SORT ONLY was
specified and the table was already sorted fully
sorted.

• Skipped (sort only, sorted>=xx%)

The table was skipped because SORT ONLY was
specified and the table was already sorted at or above
the sort threshold.

• Skipped (0 rows)

The table was skipped because it was empty.

• VacuumBG

An automatic vacuum operation was performed
in the background. This status is prepended to
other statuses when they're performed automatic
ally. For example, a delete only vacuum performed
automatically would have a starting row with the
status [VacuumBG] Started Delete Only .

For more information about the VACUUM sort threshold
setting, see VACUUM.

STL views for logging 2611

Amazon Redshift Database Developer Guide

Column name Data type Description

rows bigint The actual number of rows in the table plus any
deleted rows that are still stored on disk (waiting to be
vacuumed). This column shows the count before the
vacuum started for rows with a Started status, and
the count after the vacuum for rows with a Finished
status.

sortedrows integer The number of rows in the table that are sorted. This
column shows the count before the vacuum started for
rows with Started in the Status column, and the count
after the vacuum for rows with Finished in the Status
column.

blocks integer The total number of data blocks used to store the
table data before the vacuum operation (rows with
a Started status) and after the vacuum operation
(Finished column). Each data block uses 1 MB.

max_merge_partitio
ns

integer This column is used for performance analysis and
represents the maximum number of partitions that
vacuum can process for the table per merge phase
iteration. (Vacuum sorts the unsorted region into one
or more sorted partitions. Depending on the number of
columns in the table and the current Amazon Redshift
configuration, the merge phase can process a maximum
number of partitions in a single merge iteration. The
merge phase will still work if the number of sorted
partitions exceeds the maximum number of merge
partitions, but more merge iterations will be required.)

eventtime timestamp When the vacuum operation started or finished.

STL views for logging 2612

Amazon Redshift Database Developer Guide

Column name Data type Description

reclaimable_rows bigint The number of reclaimable rows for the current
cutoff_xid. This column shows Redshift's estimated
number of reclaimable rows before the vacuum started
for rows with a Started status, and the actual number
of reclaimable rows remaining after the vacuum for
rows with a Finished status.

reclaimable_space_
mb

bigint Reclaimable space in MB for the current cutoff_xid.
This column shows Redshift's estimated amount of
reclaimable space before the vacuum started for rows
with a Started status, and the actual amount of
reclaimable space remaining after the vacuum for rows
with a Finished status.

cutoff_xid bigint The cutoff transaction ID for the VACUUM operation.
Any transactions after the cutoff are not included in the
VACUUM operation.

is_recluster integer If 1 (true), the VACUUM operation executed the recluster
algorithm, If 0 (false), it was not.

Sample queries

The following query reports vacuum statistics for table 108313. The table was vacuumed following
a series of inserts and deletes.

select xid, table_id, status, rows, sortedrows, blocks, eventtime,
 reclaimable_rows, reclaimable_space_mb
from stl_vacuum where table_id=108313 order by eventtime;

 xid | table_id | status | rows | sortedrows | blocks | eventtime
 | reclaimable_rows | reclaimable_space_mb
-------+----------+-------------------------+------+------------+--------
+----------------------+------------------+----------------------
 14294 | 108313 | Started | 1950 | 408 | 28 | 2016-05-19
 17:36:01 | 984 | 17

STL views for logging 2613

Amazon Redshift Database Developer Guide

 14294 | 108313 | Finished | 966 | 966 | 11 | 2016-05-19
 18:26:13 | 0 | 0
 15126 | 108313 | Skipped(sorted>=95%) | 966 | 966 | 11 | 2016-05-19
 18:26:38 | 0 | 0

At the start of the VACUUM, the table contained 1,950 rows stored in 28 1 MB blocks. Amazon
Redshift estimated it could reclaim 984, or 17 blocks of disk space, with a vacuum operation.

In the row for the Finished status, the ROWS column shows a value of 966, and the BLOCKS
column value is 11, down from 28. The vacuum reclaimed the estimated amount of disk space, with
no reclaimable rows or space remaining after the vacuum operation completed.

In the sort phase (transaction 15126), the vacuum was able to skip the table because the rows were
inserted in sort key order.

The following example shows the statistics for a SORT ONLY vacuum on the SALES table (table
110116 in this example) after a large INSERT operation:

vacuum sort only sales;

select xid, table_id, status, rows, sortedrows, blocks, eventtime
from stl_vacuum order by xid, table_id, eventtime;

xid |table_id| status | rows |sortedrows|blocks| eventtime
----+--------+-----------------+-------+----------+------+--------------------
...
2925| 110116 |Started Sort Only|1379648| 172456 | 132 | 2011-02-24 16:25:21...
2925| 110116 |Finished |1379648| 1379648 | 132 | 2011-02-24 16:26:28...

STL_WINDOW

Analyzes query steps that perform window functions.

STL_WINDOW is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Note

STL_WINDOW only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling

STL views for logging 2614

Amazon Redshift Database Developer Guide

clusters, we recommend that you use the SYS monitoring view SYS_QUERY_DETAIL . The
data in the SYS monitoring view is formatted to be easier to use and understand.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

slice integer Number that identifies the slice where the query was
running.

segment integer Number that identifies the query segment.

step integer Query step that ran.

starttime timestamp Time in UTC that the query started. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

endtime timestamp Time in UTC that the query finished. Total time includes
queuing and execution. with 6 digits of precision
for fractional seconds. For example: 2009-06-12
11:29:19.131358 .

tasknum integer Number of the query task process that was assigned to
run the step.

rows bigint Total number of rows that were processed.

is_diskba
sed

character(1) If true (t), the query was performed as a disk-base
d operation. If false (f), the query was performed in
memory.

STL views for logging 2615

Amazon Redshift Database Developer Guide

Column
name

Data type Description

workmem bigint Total number of bytes in working memory that were
assigned to the step.

Sample queries

The following example returns window function results for slice 0 and segment 3.

select query, tasknum, rows, is_diskbased, workmem
from stl_window
where slice=0 and segment=3;

 query | tasknum | rows | is_diskbased | workmem
-------+---------+------+--------------+----------
 86326 | 36 | 1857 | f | 95256616
 705 | 15 | 1857 | f | 95256616
 86399 | 27 | 1857 | f | 95256616
 649 | 10 | 0 | f | 95256616
(4 rows)

STL_WLM_ERROR

Records all WLM-related errors as they occur.

STL_WLM_ERROR is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

recordtime timestamp Time that the error occurred.

pid integer ID for the process that generated the error.

STL views for logging 2616

Amazon Redshift Database Developer Guide

Column
name

Data type Description

error_str
ing

character(256) Error description.

STL_WLM_RULE_ACTION

Records details about actions resulting from WLM query monitoring rules associated with user-
defined queues. For more information, see WLM query monitoring rules.

STL_WLM_RULE_ACTION is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

userid integer User that ran the query.

query integer Query ID.

service_c
lass

integer ID for the service class. Query queues are defined in the
WLM configuration. Service classes greater than 5 are
user-defined queues.

rule character(256) Name of a query monitoring rule.

action character(256) Resulting action. Possible values are as follows:

• log

• hop(reassign)

• hop(restart)

• abort

• change_query_priority

• none

STL views for logging 2617

Amazon Redshift Database Developer Guide

Column
name

Data type Description

A value of none indicates that the rule’s predicates were
met but the action was superseded by another rule with a
higher severity action.

recordtime timestamp Time the action was logged in UTC.

action_va
lue

character(256) If action is change_query_priority , then possible
values are highest, high, normal, low, and lowest.

If action is log, hop, or abort then the value is empty.

service_c
lass_name

character(64) The name of the service class.

Sample queries

The following example finds queries that were stopped by a query monitoring rule.

Select query, rule
from stl_wlm_rule_action
where action = 'abort'
order by query;

STL_WLM_QUERY

Contains a record of each attempted execution of a query in a service class handled by WLM.

STL_WLM_QUERY is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

STL views for logging 2618

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

userid integer ID of the user who generated the entry.

xid integer Transaction ID of the query or subquery.

task integer ID used to track a query through the workload
manager. Can be associated with multiple query IDs.
If a query is restarted, the query is assigned a new
query ID but not a new task ID.

query integer Query ID. If a query is restarted, the query is
assigned a new query ID but not a new task ID.

service_class integer ID for the service class. For a list of service class IDs,
see WLM service class IDs.

slot_count integer Number of WLM query slots that a query uses
according to the concurrency level set for the
queue. Default is 1. For more information, see
wlm_query_slot_count.

service_class_star
t_time

timestamp Time that the query was assigned to the service
class. This time is in the UTC time zone.

queue_start_time timestamp Time that the query entered the queue for the
service class. This time is in the UTC time zone.

queue_end_time timestamp Time when the query left the queue for the service
class. This time is in the UTC time zone.

total_queue_time bigint Total number of microseconds that the query spent
in the queue

exec_start_time timestamp Time that the query began executing in the service
class. This time is in the UTC time zone.

STL views for logging 2619

https://docs.aws.amazon.com/redshift/latest/dg/r_wlm_query_slot_count.html
https://docs.aws.amazon.com/redshift/latest/dg/r_wlm_query_slot_count.html

Amazon Redshift Database Developer Guide

Column name Data type Description

exec_end_time timestamp Time that the query completed execution in the
service class. This time is in the UTC time zone.

total_exec_time bigint Number of microseconds that the query spent
executing.

service_class_end_
time

timestamp Time that the query left the service class. This time
is in the UTC time zone.

final_state character(16) Reserved for system use.

est_peak_mem bigint Reserved for system use.

query_priority char(20) The priority of the query. Possible values are n/a,
lowest, low, normal, high, and highest, where
n/a means that query priority isn't supported.

service_class_name character(64) The service class name. For more information about
service classes, see WLM system tables and views.

Sample queries

View average query Time in queues and executing

The following queries display the current configuration for service classes greater than 4. For a list
of service class IDs, see WLM service class IDs.

The following query returns the average time (in microseconds) that each query spent in query
queues and executing for each service class.

select service_class as svc_class, count(*),
avg(datediff(microseconds, queue_start_time, queue_end_time)) as avg_queue_time,
avg(datediff(microseconds, exec_start_time, exec_end_time)) as avg_exec_time
from stl_wlm_query
where service_class > 4
group by service_class
order by service_class;

STL views for logging 2620

https://docs.aws.amazon.com/redshift/latest/dg/cm-c-wlm-system-tables-and-views.html

Amazon Redshift Database Developer Guide

This query returns the following sample output:

 svc_class | count | avg_queue_time | avg_exec_time
-----------+-------+----------------+---------------
 5 | 20103 | 0 | 80415
 5 | 3421 | 34015 | 234015
 6 | 42 | 0 | 944266
 7 | 196 | 6439 | 1364399
(4 rows)

View maximum query time in queues and executing

The following query returns the maximum amount of time (in microseconds) that a query spent in
any query queue and executing for each service class.

select service_class as svc_class, count(*),
max(datediff(microseconds, queue_start_time, queue_end_time)) as max_queue_time,
max(datediff(microseconds, exec_start_time, exec_end_time)) as max_exec_time
from stl_wlm_query
where svc_class > 5
group by service_class
order by service_class;

 svc_class | count | max_queue_time | max_exec_time
-----------+-------+----------------+---------------
 6 | 42 | 0 | 3775896
 7 | 197 | 37947 | 16379473
(4 rows)

STV tables for snapshot data

STV tables are virtual system tables that contain snapshots of the current system data.

Topics

• STV_ACTIVE_CURSORS

• STV_BLOCKLIST

• STV_CURSOR_CONFIGURATION

• STV_DB_ISOLATION_LEVEL

• STV_EXEC_STATE

STV tables for snapshot data 2621

Amazon Redshift Database Developer Guide

• STV_INFLIGHT

• STV_LOAD_STATE

• STV_LOCKS

• STV_ML_MODEL_INFO

• STV_MV_DEPS

• STV_MV_INFO

• STV_NODE_STORAGE_CAPACITY

• STV_PARTITIONS

• STV_QUERY_METRICS

• STV_RECENTS

• STV_SESSIONS

• STV_SLICES

• STV_STARTUP_RECOVERY_STATE

• STV_TBL_PERM

• STV_TBL_TRANS

• STV_WLM_CLASSIFICATION_CONFIG

• STV_WLM_QMR_CONFIG

• STV_WLM_QUERY_QUEUE_STATE

• STV_WLM_QUERY_STATE

• STV_WLM_QUERY_TASK_STATE

• STV_WLM_SERVICE_CLASS_CONFIG

• STV_WLM_SERVICE_CLASS_STATE

• STV_XRESTORE_ALTER_QUEUE_STATE

STV_ACTIVE_CURSORS

STV_ACTIVE_CURSORS displays details for currently open cursors. For more information, see
DECLARE.

STV_ACTIVE_CURSORS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views. A user can
only view cursors opened by that user. A superuser can view all cursors.

STV tables for snapshot data 2622

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data
type

Description

userid integer ID of user who generated entry.

name character
(256)

Cursor name.

xid bigint Transaction context.

pid integer Leader process running the query.

starttime timestampTime when the cursor was declared.

row_count bigint Number of rows in the cursor result set.

byte_count bigint Number of bytes in the cursor result set.

fetched_r
ows

bigint Number of rows currently fetched from the cursor result set.

STV_BLOCKLIST

STV_BLOCKLIST contains the number of 1 MB disk blocks that are used by each slice, table, or
column in a database.

Use aggregate queries with STV_BLOCKLIST, as the following examples show, to determine the
number of 1 MB disk blocks allocated per database, table, slice, or column. You can also use
STV_PARTITIONS to view summary information about disk utilization.

STV_BLOCKLIST is visible only to superusers. For more information, see Visibility of data in system
tables and views.

STV tables for snapshot data 2623

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data
type

Description

slice integer Node slice.

col integer Zero-based index for the column. Every table you create has three
hidden columns appended to it: INSERT_XID, DELETE_XID, and ROW_ID
(OID). A table with 3 user-defined columns contains 6 actual columns,
and the user-defined columns are internally numbered as 0, 1, and 2.
The INSERT_XID, DELETE_XID, and ROW_ID columns are numbered 3,
4, and 5, respectively, in this example.

tbl integer Table ID for the database table.

blocknum integer ID for the data block.

num_values integer Number of values contained on the block.

extended_
limits

integer For internal use.

minvalue bigint Minimum data value of the block. Stores first eight characters as 64-bit
integer for non-numeric data. Used for disk scanning.

maxvalue bigint Maximum data value of the block. Stores first eight characters as 64-bit
integer for non-numeric data. Used for disk scanning.

sb_pos integer Internal Amazon Redshift identifier for super block position on the
disk.

pinned integer Whether or not the block is pinned into memory as part of pre-load. 0
= false; 1 = true. Default is false.

on_disk integer Whether or not the block is automatically stored on disk. 0 = false; 1 =
true. Default is false.

modified integer Whether or not the block has been modified. 0 = false; 1 = true. Default
is false.

STV tables for snapshot data 2624

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

hdr_modif
ied

integer Whether or not the block header has been modified. 0 = false; 1 = true.
Default is false.

unsorted integer Whether or not a block is unsorted. 0 = false; 1 = true. Default is true.

tombstone integer For internal use.

preferred
_diskno

integer Disk number that the block should be on, unless the disk has failed.
Once the disk has been fixed, the block will move back to this disk.

temporary integer Whether or not the block contains temporary data, such as from a
temporary table or intermediate query results. 0 = false; 1 = true.
Default is false.

newblock integer Indicates whether or not a block is new (true) or was never committed
to disk (false). 0 = false; 1 = true.

num_reade
rs

integer Number of references on each block.

flags integer Internal Amazon Redshift flags for the block header.

Sample queries

STV_BLOCKLIST contains one row per allocated disk block, so a query that selects all the rows
potentially returns a very large number of rows. We recommend using only aggregate queries with
STV_BLOCKLIST.

The SVV_DISKUSAGE view provides similar information in a more user-friendly format; however,
the following example demonstrates one use of the STV_BLOCKLIST table.

To determine the number of 1 MB blocks used by each column in the VENUE table, type the
following query:

select col, count(*)
from stv_blocklist, stv_tbl_perm
where stv_blocklist.tbl = stv_tbl_perm.id

STV tables for snapshot data 2625

Amazon Redshift Database Developer Guide

and stv_blocklist.slice = stv_tbl_perm.slice
and stv_tbl_perm.name = 'venue'
group by col
order by col;

This query returns the number of 1 MB blocks allocated to each column in the VENUE table, shown
by the following sample data:

 col | count
-----+-------
 0 | 4
 1 | 4
 2 | 4
 3 | 4
 4 | 4
 5 | 4
 7 | 4
 8 | 4
(8 rows)

The following query shows whether or not table data is actually distributed over all slices:

select trim(name) as table, stv_blocklist.slice, stv_tbl_perm.rows
from stv_blocklist,stv_tbl_perm
where stv_blocklist.tbl=stv_tbl_perm.id
and stv_tbl_perm.slice=stv_blocklist.slice
and stv_blocklist.id > 10000 and name not like '%#m%'
and name not like 'systable%'
group by name, stv_blocklist.slice, stv_tbl_perm.rows
order by 3 desc;

This query produces the following sample output, showing the even data distribution for the table
with the most rows:

table | slice | rows
----------+-------+-------
listing | 13 | 10527
listing | 14 | 10526
listing | 8 | 10526
listing | 9 | 10526
listing | 7 | 10525

STV tables for snapshot data 2626

Amazon Redshift Database Developer Guide

listing | 4 | 10525
listing | 17 | 10525
listing | 11 | 10525
listing | 5 | 10525
listing | 18 | 10525
listing | 12 | 10525
listing | 3 | 10525
listing | 10 | 10525
listing | 2 | 10524
listing | 15 | 10524
listing | 16 | 10524
listing | 6 | 10524
listing | 19 | 10524
listing | 1 | 10523
listing | 0 | 10521
...
(180 rows)

The following query determines whether any tombstoned blocks were committed to disk:

select slice, col, tbl, blocknum, newblock
from stv_blocklist
where tombstone > 0;

slice | col | tbl | blocknum | newblock
-------+-----+--------+----------+----------
4 | 0 | 101285 | 0 | 1
4 | 2 | 101285 | 0 | 1
4 | 4 | 101285 | 1 | 1
5 | 2 | 101285 | 0 | 1
5 | 0 | 101285 | 0 | 1
5 | 1 | 101285 | 0 | 1
5 | 4 | 101285 | 1 | 1
...
(24 rows)

STV_CURSOR_CONFIGURATION

STV_CURSOR_CONFIGURATION displays cursor configuration constraints. For more information,
see Cursor constraints.

STV_CURSOR_CONFIGURATION is visible only to superusers. For more information, see Visibility of
data in system tables and views.

STV tables for snapshot data 2627

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data
type

Description

current_c
ursor_count

integer Number of cursors currently open.

max_disks
pace_usable

integer Amount of disk space available for cursors, in megabytes. This
constraint is based on the maximum cursor result set size for the
cluster.

current_d
iskspace_
used

integer Amount of disk space currently used by cursors, in megabytes.

STV_DB_ISOLATION_LEVEL

STV_DB_ISOLATION_LEVEL displays the current isolation level for databases. For more information
about isolation levels, see CREATE DATABASE.

STV_DB_ISOLATION_LEVEL is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data
type

Description

db_name character
(128)

The database name.

isolation
_level

character
(20)

The isolation level of the database. Possible values include Serializa
ble and Snapshot Isolation .

STV tables for snapshot data 2628

Amazon Redshift Database Developer Guide

STV_EXEC_STATE

Use the STV_EXEC_STATE table to find out information about queries and query steps that are
actively running on compute nodes.

This information is usually used only to troubleshoot engineering issues. The views
SVV_QUERY_STATE and SVL_QUERY_SUMMARY extract their information from STV_EXEC_STATE.

STV_EXEC_STATE is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer ID of user who generated entry.

query integer Query ID. Can be used to join various other system tables
and views.

slice integer Node slice where the step completed.

segment integer Segment of the query that ran. A query segment is a
series of steps.

step integer Step of the query segment that completed. A step is the
smallest unit that a query performs.

starttime timestamp Time that the step ran.

currenttime timestamp Current time.

tasknum integer Query task process that is assigned to complete the step.

rows bigint Number of rows processed.

STV tables for snapshot data 2629

Amazon Redshift Database Developer Guide

Column
name

Data type Description

bytes bigint Number of bytes processed.

label char(256) Step label, which consists of a query step name and,
when applicable, table ID and table name (for example,
scan tbl=100448 name =user). Three-digit table
IDs usually refer to scans of transient tables. When you
see tbl=0, it usually refers to a scan of a constant value.

is_diskba
sed

char(1) Whether this step of the query was completed as a disk-
based operation: true (t) or false (f). Only certain steps,
such as hash, sort, and aggregate steps, can go to disk.
Many types of steps are always completed in memory.

workmem bigint Number of bytes of working memory assigned to the
step.

num_parts integer Number of partitions a hash table is divided into during
a hash step. A positive number in this column does not
imply that the hash step ran as a disk-based operation
. Check the value in the IS_DISKBASED column to see if
the hash step was disk-based.

is_rrscan char(1) If true (t), indicates that range-restricted scan was used
on the step. Default is false (f).

is_delaye
d_scan

char(1) If true (t), indicates that delayed scan was used on the
step. Default is false (f).

Sample queries

Rather than querying STV_EXEC_STATE directly, Amazon Redshift recommends querying
SVL_QUERY_SUMMARY or SVV_QUERY_STATE to obtain the information in STV_EXEC_STATE
in a more user-friendly format. See the SVL_QUERY_SUMMARY or SVV_QUERY_STATE table
documentation for more details.

STV tables for snapshot data 2630

Amazon Redshift Database Developer Guide

STV_INFLIGHT

Use the STV_INFLIGHT table to determine what queries are currently running on the cluster. If
you're troubleshooting, it's helpful for checking the status of long-running queries.

STV_INFLIGHT does not show leader-node only queries. For more information, see Leader node–
only functions. STV_INFLIGHT is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Troubleshooting with STV_INFLIGHT

If you use STV_INFLIGHT to troubleshoot performance for a query, or a collection of queries, note
the following:

• Long-running open transactions generally increase load. These open transactions can result in
longer running times for other queries.

• Long-running COPY and ETL jobs can affect other queries running on the cluster, if they're taking
a lot of compute resources. In most cases, moving these long-running jobs to times of low use
increases performance for reporting or analytics workloads.

• There are views that provide related information to STV_INFLIGHT. These include
STL_QUERYTEXT, which captures the query text for SQL commands, and SVV_QUERY_INFLIGHT,
which joins STV_INFLIGHT to STL_QUERYTEXT. You can also use STV_RECENTS with
STV_INFLIGHT for troubleshooting. For example, STV_RECENTS can indicate if specific queries
are in a Running or Done state. Combining this information with results from STV_INFLIGHT can
give you more information about a query's properties and compute-resource impact.

You can also monitor running queries using the Amazon Redshift console.

Table columns

Column
name

Data type Description

userid integer ID of user who generated entry.

STV tables for snapshot data 2631

Amazon Redshift Database Developer Guide

Column
name

Data type Description

slice integer Slice where the query is running.

query integer Query ID. Can be used to join various other system tables
and views.

label character(320) Either the name of the file used to run the query or a
label defined with a SET QUERY_GROUP command. If the
query is not file-based or the QUERY_GROUP parameter
is not set, this field is blank.

xid bigint Transaction ID.

pid integer Process ID. All of the queries in a session are run in the
same process, so this value remains constant if you run
a series of queries in the same session. You can use this
column to join to the STL_ERROR table.

starttime timestamp Time that the query started.

text character(100) Query text, truncated to 100 characters if the statement
exceeds that limit.

suspended integer Whether the query is suspended or not. 0 = false; 1 =
true.

insert_pr
istine

integer Whether write queries are/were able to run while the
current query is/was running. 1 = no write queries
allowed. 0 = write queries allowed. This column is
intended for use in debugging.

STV tables for snapshot data 2632

Amazon Redshift Database Developer Guide

Column
name

Data type Description

concurren
cy_scalin
g_status

integer Indicates whether the query ran on the main cluster or
on a concurrency scaling cluster, Possible values are as
follows:

0 - Ran on the main cluster

1 - Ran on a concurrency scaling cluster

Sample queries

To view all active queries currently running on the database, type the following query:

select * from stv_inflight;

The sample output below shows two queries currently running, including the STV_INFLIGHT query
itself and a query that was run from a script called avgwait.sql:

select slice, query, trim(label) querylabel, pid,
starttime, substring(text,1,20) querytext
from stv_inflight;

slice|query|querylabel | pid | starttime | querytext
-----+-----+-----------+-----+--------------------------+--------------------
1011 | 21 | | 646 |2012-01-26 13:23:15.645503|select slice, query,
1011 | 20 |avgwait.sql| 499 |2012-01-26 13:23:14.159912|select avg(datediff(
(2 rows)

The following query selects several columns, including concurrency_scaling_status. This column
indicates whether queries are being sent to the concurrency-scaling cluster. If the value is 1 for
some results, it's an indication that concurrency-scaling compute resources are being used. For
more information, see Working with concurrency scaling.

select userid,
query,
pid,
starttime,

STV tables for snapshot data 2633

Amazon Redshift Database Developer Guide

text,
suspended,
concurrency_scaling_status
 from STV_INFLIGHT;

The sample output shows one query being sent to the concurrency scaling cluster.

 query | pid | starttime | text | suspended
 | concurrency_scaling_status
--------+---------
+----------------------------|------------------------|---------------|-------------------------------
1234567 | 123456 | 2012-01-26 13:23:15.645503 | select userid, query... 0
 1
2345678 | 234567 | 2012-01-26 13:23:14.159912 | select avg(datediff(... 0
 0
(2 rows)

For more tips on troubleshooting query performance, see Troubleshooting queries.

STV_LOAD_STATE

Use the STV_LOAD_STATE table to find information about current state of ongoing COPY
statements.

The COPY command updates this table after every million records are loaded.

STV_LOAD_STATE is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

userid integer ID of user who generated entry.

session integer Session PID of process doing the load.

query integer Query ID. Can be used to join various other system tables
and views.

slice integer Node slice number.

STV tables for snapshot data 2634

Amazon Redshift Database Developer Guide

Column name Data type Description

pid integer Process ID. All of the queries in a session are run in the
same process, so this value remains constant if you run a
series of queries in the same session.

recordtime timestamp Time the record is logged.

bytes_to_load bigint Total number of bytes to be loaded by this slice. This is 0 if
the data being loaded is compressed

bytes_loaded bigint Number of bytes loaded by this slice. If the data being
loaded is compressed, this is the number of bytes loaded
after the data is uncompressed.

bytes_to_
load_compressed

bigint Total number of bytes of compressed data to be loaded
by this slice. This is 0 if the data being loaded is not
compressed.

bytes_loa
ded_compressed

bigint Number of bytes of compressed data loaded by this slice.
This is 0 if the data being loaded is not compressed.

lines integer Number of lines loaded by this slice.

num_files integer Number of files to be loaded by this slice.

num_files_complete integer Number of files loaded by this slice.

current_file character
(256)

Name of the file being loaded by this slice.

pct_complete integer Percentage of data load completed by this slice.

Sample query

To view the progress of each slice for a COPY command, type the following query. This example
uses the PG_LAST_COPY_ID() function to retrieve information for the last COPY command.

select slice , bytes_loaded, bytes_to_load , pct_complete from stv_load_state where
 query = pg_last_copy_id();

STV tables for snapshot data 2635

Amazon Redshift Database Developer Guide

 slice | bytes_loaded | bytes_to_load | pct_complete
-------+--------------+---------------+--------------
 2 | 0 | 0 | 0
 3 | 12840898 | 39104640 | 32
(2 rows)

STV_LOCKS

Use the STV_LOCKS table to view any current updates on tables in the database.

Amazon Redshift locks tables to prevent two users from updating the same table at the same time.
While the STV_LOCKS table shows all current table updates, query the STL_TR_CONFLICT table to
see a log of lock conflicts. Use the SVV_TRANSACTIONS view to identify open transactions and lock
contention issues.

STV_LOCKS is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Table columns

Column name Data type Description

table_id bigint Table ID for the table acquiring the lock.

last_commit timestamp Timestamp for the last commit in the table.

last_update timestamp Timestamp for the last update for the table.

lock_owner bigint Transaction ID associated with the lock.

lock_owner_pid bigint Process ID associated with the lock.

lock_owne
r_start_ts

timestamp Timestamp for the transaction start time.

lock_owne
r_end_ts

timestamp Timestamp for the transaction end time.

STV tables for snapshot data 2636

Amazon Redshift Database Developer Guide

Column name Data type Description

lock_status character (22) Status of the process either waiting for or
holding a lock.

Sample query

To view all locks taking place in current transactions, type the following command:

select table_id, last_update, lock_owner, lock_owner_pid from stv_locks;

This query returns the following sample output, which displays three locks currently in effect:

 table_id | last_update | lock_owner | lock_owner_pid
----------+----------------------------+------------+----------------
100004 | 2008-12-23 10:08:48.882319 | 1043 | 5656
100003 | 2008-12-23 10:08:48.779543 | 1043 | 5656
100140 | 2008-12-23 10:08:48.021576 | 1043 | 5656
(3 rows)

STV_ML_MODEL_INFO

State information about the current state of the machine learning model.

STV_ML_MODEL_INFO is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

schema_name char(128) The namespace of the model.

user_name char(128) The owner of the model.

model_name char(128) The name of the model.

life_cycle char(20) The lifecycle status of the model.

STV tables for snapshot data 2637

Amazon Redshift Database Developer Guide

Column name Data type Description

is_refreshable integer The state of the model whether it is refreshab
le if original tables and columns in the training
query still exist and the user still has the
permissions to them. Possible values are: 1
(refreshable) and 0 (not refreshable).

model_state char(128) The current state of the model.

Sample query

The following query displays the current state of machine learning models.

SELECT schema_name, model_name, model_state
FROM stv_ml_model_info;

 schema_name | model_name | model_state
-------------+------------------------------+--------------------------------------
 public | customer_churn_auto_model | Train Model On SageMaker In Progress
 public | customer_churn_xgboost_model | Model is Ready
(2 row)

STV_MV_DEPS

The STV_MV_DEPS table shows the dependencies of materialized views on other materialized
views within Amazon Redshift.

For more information about materialized views, see Creating materialized views in Amazon
Redshift.

STV_MV_DEPS is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

STV tables for snapshot data 2638

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

db_name char(128) The database that contains the specified
 materialized view.

schema char(128) The schema of the materialized view.

name char(128) The name of the materialized view.

ref_schema char(128) The materialized view schema on which this
materialized view depends.

ref_name char(128) The name of the materialized view on which this
materialized view depends.

ref_datab
ase_name

char(128) The name of the database on which this
materialized view depends.

Sample query

The following query returns an output row that indicates that the materialized view mv_over_foo
uses the materialized view mv_foo in its definition as a dependency.

CREATE SCHEMA test_ivm_setup;
CREATE TABLE test_ivm_setup.foo(a INT);
CREATE MATERIALIZED VIEW test_ivm_setup.mv_foo AS SELECT * FROM test_ivm_setup.foo;
CREATE MATERIALIZED VIEW test_ivm_setup.mv_over_foo AS SELECT * FROM
 test_ivm_setup.mv_foo;

SELECT * FROM stv_mv_deps;

 db_name | schema | name | ref_schema | ref_name |
 ref_database_name
---------+-----------------+-------------+----------------+----------
+------------------
 dev | test_ivm_setup | mv_over_foo | test_ivm_setup | mv_foo | dev

STV tables for snapshot data 2639

Amazon Redshift Database Developer Guide

STV_MV_INFO

The STV_MV_INFO table contains a row for every materialized view, whether the data is stale, and
state information.

For more information about materialized views, see Creating materialized views in Amazon
Redshift.

STV_MV_INFO is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column name Data type Description

db_name char(128) The database that contains the materialized
view.

schema char(128) The schema of the database.

name char(128) The materialized view name.

updated_u
pto_xid

bigint Reserved for internal use.

is_stale char(1) A t indicates that the materialized view is stale.
A stale materialized view is one where the base
tables have been updated but the materialized
view hasn't been refreshed. The information
might not be accurate if a refresh hasn't been
run since the last restart.

The is_stale column is always set to t if
the materialized view depends on a mutable
function. A mutable function returns a different
result when given the same argument or
arguments. For instance, most functions
that return a date or timestamp are mutable
functions.

STV tables for snapshot data 2640

Amazon Redshift Database Developer Guide

Column name Data type Description

owner_use
r_name

char(128) The user who owns the materialized view.

state integer The state of the materialized view as follows:

• 0 – The materialized view is fully recomputed
when refreshed.

• 1 – The materialized view is incremental.

• 101 – The materialized view can't be refreshed
 due to a dropped column. This constraint
applies even if the column isn't used in the
materialized view.

• 102 – The materialized view can't be refreshed
 due to a changed column type. This constrain
t applies even if the column isn't used in the
materialized view.

• 103 – The materialized view can't be refreshed
 due to a renamed table.

• 104 – The materialized view can't be refreshed
 due to a renamed column. This constraint
applies even if the column isn't used in the
materialized view.

• 105 – The materialized view can't be refreshed
 due to a renamed schema.

autorewrite char(1) A t indicates that the materialized view is
eligible for automatic rewriting of queries.

autorefresh char(1) A t indicates that the materialized view can be
automatically refreshed.

Sample query

To view the state of all materialized views, run the following query.

STV tables for snapshot data 2641

Amazon Redshift Database Developer Guide

select * from stv_mv_info;

This query returns the following sample output.

 db_name | schema | name | updated_upto_xid | is_stale | owner_user_name
 | state | autorefresh | autorewrite
---------+--------------------+---------+------------------+----------
+-----------------+-------+-------------+------------
 dev | test_ivm_setup | mv | 1031 | f | catch-22
 | 1 | 1 | 0
 dev | test_ivm_setup | old_mv | 988 | t | lotr
 | 1 | 0 | 1

STV_NODE_STORAGE_CAPACITY

The STV_NODE_STORAGE_CAPACITY table shows details of total storage capacity and total used
capacity for each node in a cluster. It contains a row for each node.

STV_NODE_STORAGE_CAPACITY is visible only to superusers. For more information, see Visibility
of data in system tables and views.

Table columns

Column name Data type Description

node integer The node number.

used integer The number of 1 MB disk blocks currently in use
on the node. For RA3 node types, used blocks
include both locally cached blocks and blocks
persisted in Amazon S3.

capacity integer The total storage capacity provisioned for the
node in 1 MB blocks. The capacity includes space
that is reserved by Amazon Redshift on DC2
node types for internal use. The capacity is larger
than the nominal node capacity, which is the
amount of node space available for user data.

STV tables for snapshot data 2642

Amazon Redshift Database Developer Guide

Column name Data type Description

For RA3 node types, this capacity is the same
as the total managed storage quota for the
cluster. For more information about capacity by
node type, see Node type details in the Amazon
Redshift Management Guide.

Sample queries

Note

The results of the following examples vary based on the node specifications of your cluster.
Add column capacity to your SQL SELECT to retrieve the capacity of your cluster.

The following query returns used space and total capacity in 1 MB disk blocks. This example ran on
a two-node dc2.8xlarge cluster.

select node, used from stv_node_storage_capacity order by node;

This query returns the following sample output.

 node | used
------+-------
 0 | 30597
 1 | 27089

The following query returns used space and total capacity in 1 MB disk blocks. This example ran on
a two-node ra3.16xlarge cluster.

select node, used from stv_node_storage_capacity order by node;

This query returns the following sample output.

STV tables for snapshot data 2643

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-clusters.html#working-with-clusters-overview

Amazon Redshift Database Developer Guide

 node | used
------+-------
 0 | 30591
 1 | 27103

STV_PARTITIONS

Use the STV_PARTITIONS table to find out the disk speed performance and disk utilization for
Amazon Redshift.

STV_PARTITIONS contains one row per node per logical disk volume.

STV_PARTITIONS is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Table columns

Column name Data type Description

owner integer Disk node that owns the partition.

host integer Node that is physically attached to the partition.

diskno integer Disk containing the partition.

part_begin bigint Offset of the partition. Raw devices are logically partitioned
to open space for mirror blocks.

part_end bigint End of the partition.

used integer Number of 1 MB disk blocks currently in use on the partition
.

tossed integer Number of blocks that are ready to be deleted but are
not yet removed because it is not safe to free their disk
addresses. If the addresses were freed immediately, a
pending transaction could write to the same location on
disk. Therefore, these tossed blocks are released as of the
next commit. Disk blocks might be marked as tossed, for

STV tables for snapshot data 2644

Amazon Redshift Database Developer Guide

Column name Data type Description

example, when a table column is dropped, during INSERT
operations, or during disk-based query operations.

capacity integer Total capacity of the partition in 1 MB disk blocks.

reads bigint Number of reads that have occurred since the last cluster
restart.

writes bigint Number of writes that have occurred since the last cluster
restart.

seek_forward integer Number of times that a request is not for the subsequent
address given the previous request address.

seek_back integer Number of times that a request is not for the previous
address given the subsequent address.

is_san integer Whether the partition belongs to a SAN. Valid values are 0
(false) or 1 (true).

failed integer This column is deprecated.

mbps integer Disk speed in megabytes per second.

mount character
(256)

Directory path to the device.

Sample query

The following query returns the disk space used and capacity, in 1 MB disk blocks, and calculates
disk utilization as a percentage of raw disk space. The raw disk space includes space that is reserved
by Amazon Redshift for internal use, so it is larger than the nominal disk capacity, which is the
amount of disk space available to the user. The Percentage of Disk Space Used metric on the
Performance tab of the Amazon Redshift Management Console reports the percentage of nominal
disk capacity used by your cluster. We recommend that you monitor the Percentage of Disk Space
Used metric to maintain your usage within your cluster's nominal disk capacity.

STV tables for snapshot data 2645

Amazon Redshift Database Developer Guide

Important

We strongly recommend that you do not exceed your cluster's nominal disk capacity. While
it might be technically possible under certain circumstances, exceeding your nominal disk
capacity decreases your cluster's fault tolerance and increases your risk of losing data.

This example was run on a two-node cluster with six logical disk partitions per node. Space is being
used very evenly across the disks, with approximately 25% of each disk in use.

select owner, host, diskno, used, capacity,
(used-tossed)/capacity::numeric *100 as pctused
from stv_partitions order by owner;

 owner | host | diskno | used | capacity | pctused
-------+------+--------+--------+----------+---------
 0 | 0 | 0 | 236480 | 949954 | 24.9
 0 | 0 | 1 | 236420 | 949954 | 24.9
 0 | 0 | 2 | 236440 | 949954 | 24.9
 0 | 1 | 2 | 235150 | 949954 | 24.8
 0 | 1 | 1 | 237100 | 949954 | 25.0
 0 | 1 | 0 | 237090 | 949954 | 25.0
 1 | 1 | 0 | 236310 | 949954 | 24.9
 1 | 1 | 1 | 236300 | 949954 | 24.9
 1 | 1 | 2 | 236320 | 949954 | 24.9
 1 | 0 | 2 | 237910 | 949954 | 25.0
 1 | 0 | 1 | 235640 | 949954 | 24.8
 1 | 0 | 0 | 235380 | 949954 | 24.8

(12 rows)

STV_QUERY_METRICS

Contains metrics information, such as the number of rows processed, CPU usage, input/output, and
disk use, for active queries running in user-defined query queues (service classes). To view metrics
for queries that have completed, see the STL_QUERY_METRICS system table.

Query metrics are sampled at one second intervals. As a result, different runs of the same query
might return slightly different times. Also, query segments that run in less than 1 second might not
be recorded.

STV tables for snapshot data 2646

Amazon Redshift Database Developer Guide

STV_QUERY_METRICS tracks and aggregates metrics at the query, segment, and step level. For
information about query segments and steps, see Query planning and execution workflow. Many
metrics (such as max_rows, cpu_time, and so on) are summed across node slices. For more
information about node slices, see Data warehouse system architecture.

To determine the level at which the row reports metrics, examine the segment and step_type
columns:

• If both segment and step_type are -1, then the row reports metrics at the query level.

• If segment is not -1 and step_type is -1, then the row reports metrics at the segment level.

• If both segment and step_type are not -1, then the row reports metrics at the step level.

STV_QUERY_METRICS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column name Data type Description

userid integer ID of the user that ran the query that generated the entry.

service_class integer ID for the WLM query queue (service class). Query queues
are defined in the WLM configuration. Metrics are reported
only for user-defined queues.

query integer Query ID. The query column can be used to join other
system tables and views.

starttime timestamp Time in UTC that the query started executing, with 6 digits
of precision for fractional seconds. For example: 2009-06-1
2 11:29:19.131358 .

slices integer Number of slices for the cluster.

STV tables for snapshot data 2647

Amazon Redshift Database Developer Guide

Column name Data type Description

segment integer Segment number. A query consists of multiple segments,
and each segment consists of one or more steps. Query
segments can run in parallel. Each segment runs in a single
process. If the segment value is -1, metrics segment values
are rolled up to the query level.

step_type integer Type of step that ran. For a description of step types, see
Step types.

rows bigint Number of rows processed by a step.

max_rows bigint Maximum number of rows output for a step, aggregated
across all slices.

cpu_time bigint CPU time used, in microseconds. At the segment level, the
total CPU time for the segment across all slices. At the query
level, the sum of CPU time for the query across all slices and
segments.

max_cpu_time bigint Maximum CPU time used, in microseconds. At the segment
level, the maximum CPU time used by the segment across
all slices. At the query level, the maximum CPU time used by
any query segment.

blocks_read bigint Number of 1 MB blocks read by the query or segment.

max_block
s_read

bigint Maximum number of 1 MB blocks read by the segment,
aggregated across all slices. At the segment level, the
maximum number of 1 MB blocks read for the segment
across all slices. At the query level, the maximum number of
1 MB blocks read by any query segment.

STV tables for snapshot data 2648

Amazon Redshift Database Developer Guide

Column name Data type Description

run_time bigint Total run time, summed across slices. Run time doesn't
include wait time.

At the segment level, the run time for the segment, summed
across all slices. At the query level, the run time for the
query summed across all slices and segments. Because this
value is a sum, run time is not related to query execution
time.

max_run_time bigint The maximum elapsed time for a segment, in microseco
nds. At the segment level, the maximum run time for the
segment across all slices. At the query level, the maximum
run time for any query segment.

max_block
s_to_disk

bigint The maximum amount of disk space used to write intermedi
ate results, in 1 MB blocks. At the segment level, the
maximum amount of disk space used by the segment across
all slices. At the query level, the maximum amount of disk
space used by any query segment.

blocks_to_disk bigint The amount of disk space used by a query or segment to
write intermediate results, in 1 MB blocks.

step integer Query step that ran.

max_query
_scan_size

bigint The maximum size of data scanned by a query, in MB. At the
segment level, the maximum size of data scanned by the
segment across all slices. At the query level, the maximum
size of data scanned by any query segment.

query_scan_size bigint The size of data scanned by a query, in MB.

query_priority integer The priority of the query. Possible values are -1, 0, 1, 2, 3,
and 4, where -1 means that query priority isn't supported.

query_que
ue_time

bigint The amount of time in microseconds that the query was
queued.

STV tables for snapshot data 2649

Amazon Redshift Database Developer Guide

Step types

The following table lists step types relevant to database users. The table doesn't list step types that
are for internal use only. If step type is -1, the metric is not reported at the step level.

Step type Description

1 Scan table

2 Insert rows

3 Aggregate rows

6 Sort step

7 Merge step

8 Distribution step

9 Broadcast distribution step

10 Hash join

11 Merge join

12 Save step

14 Hash

15 Nested loop join

16 Project fields and expressions

17 Limit the number of rows returned

18 Unique

20 Delete rows

26 Limit the number of sorted rows returned

29 Compute a window function

STV tables for snapshot data 2650

Amazon Redshift Database Developer Guide

Step type Description

32 UDF

33 Unique

37 Return rows from the leader node to the client

38 Return rows from the compute nodes to the leader node

40 Spectrum scan.

Sample query

To find active queries with high CPU time (more the 1,000 seconds), run the following query.

select query, cpu_time / 1000000 as cpu_seconds
from stv_query_metrics where segment = -1 and cpu_time > 1000000000
order by cpu_time;

query | cpu_seconds
------+------------
25775 | 9540

To find active queries with a nested loop join that returned more than one million rows, run the
following query.

select query, rows
from stv_query_metrics
where step_type = 15 and rows > 1000000
order by rows;

query | rows
------+-----------
25775 | 1580225854

To find active queries that have run for more than 60 seconds and have used less than 10 seconds
of CPU time, run the following query.

select query, run_time/1000000 as run_time_seconds

STV tables for snapshot data 2651

Amazon Redshift Database Developer Guide

from stv_query_metrics
where segment = -1 and run_time > 60000000 and cpu_time < 10000000;

query | run_time_seconds
------+-----------------
25775 | 114

STV_RECENTS

Use the STV_RECENTS table to find out information about the currently active and recently run
queries against a database.

STV_RECENTS is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Troubleshooting with STV_RECENTS

STV_RECENTS is particularly helpful for determining if a query or collection of queries is currently
running or done. It also shows the duration a query has been running. This is helpful for getting a
sense for which queries are long running.

You can join STV_RECENTS to other system views, such as STV_INFLIGHT, to gather additional
metadata about running queries. (There's an example that shows how to do this in the sample
queries section.) You can also use returned records from this view along with the monitoring
features in the Amazon Redshift console for troubleshooting in real time.

System views that compliment STV_RECENTS include STL_QUERYTEXT, which retrieves the
query text for SQL commands, and SVV_QUERY_INFLIGHT, which joins STV_INFLIGHT to
STL_QUERYTEXT.

Table columns

Column
name

Data type Description

userid integer ID of user who generated entry.

STV tables for snapshot data 2652

Amazon Redshift Database Developer Guide

Column
name

Data type Description

status character(20) Query status. Valid values are Running, Done.

starttime timestamp Time that the query started.

duration integer Number of microseconds since the session started.

user_name character(50) User name who ran the process.

db_name character(50) Name of the database.

query character(600) Query text, up to 600 characters. Any additional character
s are truncated.

pid integer Process ID for the session associated with the query, which
is always -1 for queries that have completed.

Sample queries

To determine which queries are currently running against the database, run the following query:

select user_name, db_name, pid, query
from stv_recents
where status = 'Running';

The sample output below shows a single query running on the TICKIT database:

user_name | db_name | pid | query
----------+---------+---------+-------------
dwuser | tickit | 19996 |select venuename, venueseats from
venue where venueseats > 50000 order by venueseats desc;

The following example returns a list of queries (if any) that are running or waiting in a queue to
run:

select * from stv_recents where status<>'Done';

STV tables for snapshot data 2653

Amazon Redshift Database Developer Guide

status | starttime | duration |user_name|db_name| query | pid
-------+---------------------+----------+---------+-------+-----------+------
Running| 2010-04-21 16:11... | 281566454| dwuser |tickit | select ...| 23347

This query does not return results unless you are running a number of concurrent queries and some
of those queries are in a queue.

The following example extends the previous example. In this case, queries that are truly "in
flight" (running, not waiting) are excluded from the result:

select * from stv_recents where status<>'Done'
and pid not in (select pid from stv_inflight);
...

For more tips on troubleshooting query performance, see Troubleshooting queries.

STV_SESSIONS

Use the STV_SESSIONS table to view information about the active user sessions for Amazon
Redshift.

To view the session history, use the STL_SESSIONS table, rather than STV_SESSIONS.

STV_SESSIONS is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_SESSION_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

starttime timestamp Time that the session started.

process integer Process ID for the session.

STV tables for snapshot data 2654

Amazon Redshift Database Developer Guide

Column
name

Data type Description

user_name character(50) User associated with the session.

db_name character(50) Name of the database associated with the session.

timeout_s
ec

int The maximum time in seconds that a session remains
inactive or idle before timing out. 0 indicates that no
timeout is set.

Sample queries

To perform a quick check to see if any other users are currently logged into Amazon Redshift, type
the following query:

select count(*)
from stv_sessions;

If the result is greater than one, then at least one other user is currently logged in to the database.

To view all active sessions for Amazon Redshift, type the following query:

select *
from stv_sessions;

The following result shows four active sessions running on Amazon Redshift:

 starttime | process |user_name | db_name
 | timeout_sec
-------------------------+---------+----------------------------
+----------------------------+-------------
 2018-08-06 08:44:07.50 | 13779 | IAMA:aws_admin:admin_grp | dev
 | 0
 2008-08-06 08:54:20.50 | 19829 | dwuser | dev
 | 120
 2008-08-06 08:56:34.50 | 20279 | dwuser | dev
 | 120

STV tables for snapshot data 2655

Amazon Redshift Database Developer Guide

 2008-08-06 08:55:00.50 | 19996 | dwuser | tickit
 | 0
(3 rows)

The user name prefixed with IAMA indicates that the user signed on using federated single sign-on.
For more information, see Using IAM authentication to generate database user credentials.

STV_SLICES

Use the STV_SLICES table to view the current mapping of a slice to a node.

The information in STV_SLICES is used mainly for investigation purposes.

STV_SLICES is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data
type

Description

node integer Cluster node where the slice is located.

slice integer Node slice.

localslice integer This information is for internal use only.

type character
(1)

This information is for internal use only.

Sample query

To view which cluster nodes are managing which slices, type the following query:

select node, slice from stv_slices;

This query returns the following sample output:

 node | slice

STV tables for snapshot data 2656

https://docs.aws.amazon.com/redshift/latest/mgmt/generating-user-credentials.html

Amazon Redshift Database Developer Guide

------+-------
 0 | 2
 0 | 3
 0 | 1
 0 | 0
(4 rows)

STV_STARTUP_RECOVERY_STATE

Records the state of tables that are temporarily locked during cluster restart operations. Amazon
Redshift places a temporary lock on tables while they are being processed to resolve stale
transactions following a cluster restart.

STV_STARTUP_RECOVERY_STATE is visible to all users. Superusers can see all rows; regular users
can see only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

db_id integer Database ID.

table_id integer Table ID.

table_nam
e

character(137) Table name.

Sample queries

To monitor which tables are temporarily locked, run the following query after a cluster restart.

select * from STV_STARTUP_RECOVERY_STATE;

 db_id | tbl_id | table_name
--------+--------+------------
 100044 | 100058 | lineorder
 100044 | 100068 | part
 100044 | 100072 | customer
 100044 | 100192 | supplier

STV tables for snapshot data 2657

Amazon Redshift Database Developer Guide

(4 rows)

STV_TBL_PERM

The STV_TBL_PERM table contains information about the permanent tables in Amazon Redshift,
including temporary tables created by a user for the current session. STV_TBL_PERM contains
information for all tables in all databases.

This table differs from STV_TBL_TRANS, which contains information about transient database
tables that the system creates during query processing.

STV_TBL_PERM is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Table columns

Column
name

Data type Description

slice integer Node slice allocated to the table.

id integer Table ID.

name character
(72)

Table name.

rows bigint Number of data rows in the slice.

sorted_ro
ws

bigint Number of rows in the slice that are already sorted on disk. If this
number does not match the ROWS number, vacuum the table to
resort the rows.

temp integer Whether or not the table is a temporary table. 0 = false; 1 = true.

db_id integer ID of the database where the table was created.

insert_pr
istine

integer For internal use.

delete_pr
istine

integer For internal use.

STV tables for snapshot data 2658

Amazon Redshift Database Developer Guide

Column
name

Data type Description

backup integer Value that indicates whether the table is included in cluster
snapshots. 0 = no; 1 = yes. For more information, see the BACKUP
parameter for the CREATE TABLE command.

dist_style integer Distribution style of the table that the slice belongs to. For
information on the values, see Viewing distribution styles. For
information on distribution styles, see Distribution styles.

block_cou
nt

integer Number of blocks used by the slice. The value is -1 when the block
count can't be calculated.

Sample queries

The following query returns a list of distinct table IDs and names:

select distinct id, name
from stv_tbl_perm order by name;

 id | name
--------+-------------------------
 100571 | category
 100575 | date
 100580 | event
 100596 | listing
 100003 | padb_config_harvest
 100612 | sales
...

Other system tables use table IDs, so knowing which table ID corresponds to a certain table can
be very useful. In this example, SELECT DISTINCT is used to remove the duplicates (tables are
distributed across multiple slices).

To determine the number of blocks used by each column in the VENUE table, type the following
query:

select col, count(*)
from stv_blocklist, stv_tbl_perm

STV tables for snapshot data 2659

Amazon Redshift Database Developer Guide

where stv_blocklist.tbl = stv_tbl_perm.id
and stv_blocklist.slice = stv_tbl_perm.slice
and stv_tbl_perm.name = 'venue'
group by col
order by col;

 col | count
-----+-------
 0 | 8
 1 | 8
 2 | 8
 3 | 8
 4 | 8
 5 | 8
 6 | 8
 7 | 8
(8 rows)

Usage notes

The ROWS column includes counts of deleted rows that have not been vacuumed (or have been
vacuumed but with the SORT ONLY option). Therefore, the SUM of the ROWS column in the
STV_TBL_PERM table might not match the COUNT(*) result when you query a given table directly.
For example, if 2 rows are deleted from VENUE, the COUNT(*) result is 200 but the SUM(ROWS)
result is still 202:

delete from venue
where venueid in (1,2);

select count(*) from venue;
count

200
(1 row)

select trim(name) tablename, sum(rows)
from stv_tbl_perm where name='venue' group by name;

tablename | sum
-----------+-----
venue | 202
(1 row)

STV tables for snapshot data 2660

Amazon Redshift Database Developer Guide

To synchronize the data in STV_TBL_PERM, run a full vacuum the VENUE table.

vacuum venue;

select trim(name) tablename, sum(rows)
from stv_tbl_perm
where name='venue'
group by name;

tablename | sum
-----------+-----
venue | 200
(1 row)

STV_TBL_TRANS

Use the STV_TBL_TRANS table to find out information about the transient database tables that are
currently in memory.

Transient tables are typically temporary row sets that are used as intermediate results while
a query runs. STV_TBL_TRANS differs from STV_TBL_PERM in that STV_TBL_PERM contains
information about permanent database tables.

STV_TBL_TRANS is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Table columns

Column name Data type Description

slice integer Node slice allocated to the table.

id integer Table ID.

rows bigint Number of data rows in the table.

size bigint Number of bytes allocated to the table.

query_id bigint Query ID.

ref_cnt integer Number of references.

STV tables for snapshot data 2661

Amazon Redshift Database Developer Guide

Column name Data type Description

from_suspended integer Whether or not this table was created during a query
that is now suspended.

prep_swap integer Whether or not this transient table is prepared to
swap to disk if needed. (The swap will only occur in
situations where memory is low.)

Sample queries

To view transient table information for a query with a query ID of 90, type the following command:

select slice, id, rows, size, query_id, ref_cnt
from stv_tbl_trans
where query_id = 90;

This query returns the transient table information for query 90, as shown in the following sample
output:

slice | id | rows | size | query_ | ref_ | from_ | prep_
 | | | | id | cnt | suspended | swap
------+----+------+------+--------+------+-----------+-------
 1013 | 95 | 0 | 0 | 90 | 4 | 0 | 0
 7 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 10 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 17 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 14 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 3 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 1013 | 99 | 0 | 0 | 90 | 4 | 0 | 0
 9 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 5 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 19 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 2 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 1013 | 98 | 0 | 0 | 90 | 4 | 0 | 0
 13 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 1 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 1013 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 6 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 11 | 96 | 0 | 0 | 90 | 4 | 0 | 0

STV tables for snapshot data 2662

Amazon Redshift Database Developer Guide

 15 | 96 | 0 | 0 | 90 | 4 | 0 | 0
 18 | 96 | 0 | 0 | 90 | 4 | 0 | 0

In this example, you can see that the query data involves tables 95, 96, and 98. Because zero bytes
are allocated to this table, this query can run in memory.

STV_WLM_CLASSIFICATION_CONFIG

Contains the current classification rules for WLM.

STV_WLM_CLASSIFICATION_CONFIG is visible only to superusers. For more information, see
Visibility of data in system tables and views.

Table columns

Column name Data type Description

id integer Service class ID. For a list of service class IDs, see WLM
service class IDs.

condition character(128) Query conditions.

action_seq integer Reserved for system use.

action character(64) Reserved for system use.

action_se
rvice_class

integer The service class where the action takes place.

Sample query

select * from STV_WLM_CLASSIFICATION_CONFIG;

id | condition | action_seq | action |
 action_service_class
---+---+------------+--------
+---------------------
 1 | (system user) and (query group: health) | 0 | assign |
 1
 2 | (system user) and (query group: metrics) | 0 | assign |
 2

STV tables for snapshot data 2663

Amazon Redshift Database Developer Guide

 3 | (system user) and (query group: cmstats) | 0 | assign |
 3
 4 | (system user) | 0 | assign |
 4
 5 | (super user) and (query group: superuser) | 0 | assign |
 5
 6 | (query group: querygroup1) | 0 | assign |
 6
 7 | (user group: usergroup1) | 0 | assign |
 6
 8 | (user group: usergroup2) | 0 | assign |
 7
 9 | (query group: querygroup3) | 0 | assign |
 8
10 | (query group: querygroup4) | 0 | assign |
 9
11 | (user group: usergroup4) | 0 | assign |
 9
12 | (query group: querygroup*) | 0 | assign |
 10
13 | (user group: usergroup*) | 0 | assign |
 10
14 | (querytype: any) | 0 | assign |
 11
(4 rows)

STV_WLM_QMR_CONFIG

Records the configuration for WLM query monitoring rules (QMR). For more information, see WLM
query monitoring rules.

STV_WLM_QMR_CONFIG is visible only to superusers. For more information, see Visibility of data
in system tables and views.

Table columns

Column name Data type Description

service_class integer ID for the WLM query queue (service class). Query queues
are defined in the WLM configuration. Rules can be
defined only for user-defined queues. For a list of service
class IDs, see WLM service class IDs.

STV tables for snapshot data 2664

Amazon Redshift Database Developer Guide

Column name Data type Description

rule_name character(256) Name of the query monitoring rule.

action character(256) Rule action. Possible values are log, hop, abort, and
change_query_priority .

metric_name character(256) Name of the metric.

metric_op
erator

character(256) The metric operator. Possible values are >, =, <.

metric_value double The threshold value for the specified metric that triggers
an action.

action_value character(256) If action is change_query_priority , then possible
values are highest, high, normal, low, and lowest.

If action is log, hop, or abort then the value is empty.

Sample query

To view the QMR rule definitions for all service classes greater than 5 (which includes user-defined
queues), run the following query. For a list of service class IDs, see WLM service class IDs.

Select *
from stv_wlm_qmr_config
where service_class > 5
order by service_class;

STV_WLM_QUERY_QUEUE_STATE

Records the current state of the query queues for the service classes.

STV_WLM_QUERY_QUEUE_STATE is visible to all users. Superusers can see all rows; regular users
can see only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

STV tables for snapshot data 2665

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

service_c
lass

integer ID for the service class. For a list of service class IDs, see
WLM service class IDs.

position integer Position of the query in the queue. The query with the
smallest position value runs next.

task integer ID used to track a query through the workload manager.
Can be associated with multiple query IDs. If a query is
restarted, the query is assigned a new query ID but not a
new task ID.

query integer Query ID. If a query is restarted, the query is assigned a
new query ID but not a new task ID.

slot_count integer Number of WLM query slots.

start_time timestamp Time that the query entered the queue.

queue_tim
e

bigint Number of microseconds that the query has been in the
queue.

Sample query

The following query shows the queries in the queue for service classes greater than 4.

select * from stv_wlm_query_queue_state
where service_class > 4
order by service_class;

This query returns the following sample output.

 service_class | position | task | query | slot_count | start_time |
 queue_time

STV tables for snapshot data 2666

Amazon Redshift Database Developer Guide

---------------+----------+------+-------+------------+----------------------------
+------------
 5 | 0 | 455 | 476 | 5 | 2010-10-06 13:18:24.065838 |
 20937257
 6 | 1 | 456 | 478 | 5 | 2010-10-06 13:18:26.652906 |
 18350191
(2 rows)

STV_WLM_QUERY_STATE

Records the current state of queries being tracked by WLM.

STV_WLM_QUERY_STATE is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

xid integer Transaction ID of the query or subquery.

task integer ID used to track a query through the workload manager.
Can be associated with multiple query IDs. If a query is
restarted, the query is assigned a new query ID but not a
new task ID.

query integer Query ID. If a query is restarted, the query is assigned a
new query ID but not a new task ID.

service_c
lass

integer ID for the service class. For a list of service class IDs, see
WLM service class IDs.

slot_count integer Number of WLM query slots.

wlm_start
_time

timestamp Time that the query entered the system table queue or
short query queue.

STV tables for snapshot data 2667

Amazon Redshift Database Developer Guide

Column
name

Data type Description

state character(16) Current state of the query or subquery.

Possible values are the following:

• Classified – Query has been assigned to a service
class.

• Completed – Query is finished running. The query
either ran successfully or was canceled. For the final
state, check the results of STL_QUERY.

• Dequeued – Internal use only.

• Evicted – Query has been evicted from the service
class for restart.

• Evicting – Query is being evicted from the service
class for restart.

• Initialized – Internal use only.

• Invalid – Internal use only.

• Queued – Query was sent to the query queue because
no slots were available to run it.

• QueuedWaiting – Query is waiting in the query
queue.

• Rejected – Internal use only.

• Returning – Query is returning results to the client.

• Running – Query is running.

• TaskAssigned – Internal use only.

queue_tim
e

bigint Number of microseconds that the query has spent in the
queue.

exec_time bigint Number of microseconds that the query has been
running.

STV tables for snapshot data 2668

Amazon Redshift Database Developer Guide

Column
name

Data type Description

query_pri
ority

char(20) The priority of the query. Possible values are n/a,
lowest, low, normal, high, and highest, where n/a
means that query priority isn't supported.

Sample query

The following query displays all currently executing queries in service classes greater than 4. For a
list of service class IDs, see WLM service class IDs.

select xid, query, trim(state) as state, queue_time, exec_time
from stv_wlm_query_state
where service_class > 4;

This query returns the following sample output:

xid | query | state | queue_time | exec_time
-------+-------+---------+------------+-----------
100813 | 25942 | Running | 0 | 1369029
100074 | 25775 | Running | 0 | 2221589242

STV_WLM_QUERY_TASK_STATE

Contains the current state of service class query tasks.

STV_WLM_QUERY_TASK_STATE is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

service_c
lass

integer ID for the service class. For a list of service class IDs, see
WLM service class IDs.

STV tables for snapshot data 2669

Amazon Redshift Database Developer Guide

Column
name

Data type Description

task integer ID used to track a query through the workload manager.
Can be associated with multiple query IDs. If a query is
restarted, the query is assigned a new query ID but not a
new task ID.

query integer Query ID. If a query is restarted, the query is assigned a
new query ID but not a new task ID.

slot_count integer Number of WLM query slots.

start_time timestamp Time that the query began executing.

exec_time bigint Number of microseconds that the query has been
executing.

Sample query

The following query displays the current state of queries in service classes greater than 4. For a list
of service class IDs, see WLM service class IDs.

select * from stv_wlm_query_task_state
where service_class > 4;

This query returns the following sample output:

service_class | task | query | start_time | exec_time
--------------+------+-------+----------------------------+-----------
 5 | 466 | 491 | 2010-10-06 13:29:23.063787 | 357618748
(1 row)

STV_WLM_SERVICE_CLASS_CONFIG

Records the service class configurations for WLM.

STV_WLM_SERVICE_CLASS_CONFIG is visible only to superusers. For more information, see
Visibility of data in system tables and views.

STV tables for snapshot data 2670

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

service_class integer ID for the service class. For a list of service class IDs, see
WLM service class IDs.

queueing_
strategy

character(32) Reserved for system use.

num_query_tasks integer Current actual concurrency level of the service class. If
num_query_tasks and target_num_query_tasks
are different, a dynamic WLM transition is in process. A
value of -1 indicates that Auto WLM is configured.

target_nu
m_query_tasks

integer Concurrency level set by the most recent WLM configura
tion change.

evictable character(8) Reserved for system use.

eviction_
threshold

bigint Reserved for system use.

query_wor
king_mem

integer Current actual amount of working memory, in MB per
slot, per node, assigned to the service class. If query_wor
king_mem and target_query_working_mem are
different, a dynamic WLM transition is in process. A value
of -1 indicates than Auto WLM is configured.

target_qu
ery_worki
ng_mem

integer The amount of working memory, in MB per slot, per node,
set by the most recent WLM configuration change.

min_step_mem integer Reserved for system use.

name character(64) The name of the service class.

max_execu
tion_time

bigint Number of milliseconds that the query can run before
being terminated.

STV tables for snapshot data 2671

Amazon Redshift Database Developer Guide

Column name Data type Description

user_grou
p_wild_card

Boolean If TRUE, the WLM queue treats an asterisk (*) as a wildcard
character in user group strings in the WLM configuration.

query_gro
up_wild_card

Boolean If TRUE, the WLM queue treats an asterisk (*) as a wildcard
character in query group strings in the WLM configura
tion.

concurren
cy_scaling

character(20) Describes if the concurrency scaling is on or off.

query_priority character(20) The value of the query priority.

user_role
_wild_card

Boolean If TRUE, the WLM queue treats an asterisk (*) as a wildcard
character in user user strings in the WLM configuration.

Sample query

The first user-defined service class is service class 6, which is named Service class #1. The following
query displays the current configuration for service classes greater than 4. For a list of service class
IDs, see WLM service class IDs.

select rtrim(name) as name,
num_query_tasks as slots,
query_working_mem as mem,
max_execution_time as max_time,
user_group_wild_card as user_wildcard,
query_group_wild_card as query_wildcard
from stv_wlm_service_class_config
where service_class > 4;

name | slots | mem | max_time | user_wildcard | query_wildcard
-----------------------------+-------+-----+----------+---------------+---------------
Service class for super user | 1 | 535 | 0 | false | false
Queue 1 | 5 | 125 | 0 | false | false
Queue 2 | 5 | 125 | 0 | false | false
Queue 3 | 5 | 125 | 0 | false | false
Queue 4 | 5 | 627 | 0 | false | false
Queue 5 | 5 | 125 | 0 | true | true

STV tables for snapshot data 2672

Amazon Redshift Database Developer Guide

Default queue | 5 | 125 | 0 | false | false

The following query shows the status of a dynamic WLM transition. While the transition is in
process, num_query_tasks and target_query_working_mem are updated until they equal the
target values. For more information, see WLM dynamic and static configuration properties.

select rtrim(name) as name,
num_query_tasks as slots,
target_num_query_tasks as target_slots,
query_working_mem as memory,
target_query_working_mem as target_memory
from stv_wlm_service_class_config
where num_query_tasks > target_num_query_tasks
or query_working_mem > target_query_working_mem
and service_class > 5;

 name | slots | target_slots | memory | target_mem
------------------+-------+--------------+--------+------------
 Queue 3 | 5 | 15 | 125 | 375
 Queue 5 | 10 | 5 | 250 | 125
 (2 rows)

STV_WLM_SERVICE_CLASS_STATE

Contains the current state of the service classes.

STV_WLM_SERVICE_CLASS_STATE is visible only to superusers. For more information, see Visibility
of data in system tables and views.

Table columns

Column name Data type Description

service_class integer ID for the service class. For a list of service class IDs, see
WLM service class IDs.

num_queued_queries integer Number of queries currently in the queue.

num_executing_quer
ies

integer Number of queries currently executing.

STV tables for snapshot data 2673

Amazon Redshift Database Developer Guide

Column name Data type Description

num_serviced_queri
es

integer Number of queries that have ever been in the service
class.

num_executed_queri
es

integer Number of queries that have run since Amazon Redshift
was restarted.

num_evicted_queries integer Number of queries that have been evicted since Amazon
Redshift was restarted. Some of the reasons for an evicted
query include a WLM timeout, a QMR hop action, and a
query failing on a concurrency scaling cluster.

num_concurrency_sc
aling_queries

integer Number of queries run on a concurrency scaling cluster
since Amazon Redshift was restarted.

Sample query

The following query displays the state for service classes greater than 5. For a list of service class
IDs, see WLM service class IDs.

select service_class, num_executing_queries,
num_executed_queries
from stv_wlm_service_class_state
where service_class > 5
order by service_class;

 service_class | num_executing_queries | num_executed_queries
---------------+-----------------------+----------------------
 6 | 1 | 222
 7 | 0 | 135
 8 | 1 | 39
(3 rows)

STV_XRESTORE_ALTER_QUEUE_STATE

Use STV_XRESTORE_ALTER_QUEUE_STATE to monitor the migration progress of each table
during a classic resize. This is specifically applicable when the target node type is RA3. For more
information about classic resize to RA3 nodes, go to Classic resize.

STV tables for snapshot data 2674

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-operations.html#classic-resize-faster

Amazon Redshift Database Developer Guide

STV_XRESTORE_ALTER_QUEUE_STATE is visible only to superusers. For more information, see
Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_RESTORE_STATE. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer The ID of the user who initiated the resize.

db_id integer The ID of the database.

schema char(128) The name of the schema.

table_nam
e

char(128) The name of the table.

tbl integer The ID of the table.

status char(64) The status of the migration progress of the table. Possible values
are as follows.

• Waiting: Waiting for redistribution to start

• Applying: Currently redistributing

• Finished: Finished redistributing

task_type integer The redistribution type for the table. Possible values are as
follows.

• 1: KEY

• 2: EVEN

For more information about distribution styles, see Distribution
styles.

STV tables for snapshot data 2675

Amazon Redshift Database Developer Guide

Sample query

The following query shows the number of tables in a database that are waiting to be resized, are
currently being resized, and are finished resizing.

select db_id, status, count(*)
from stv_xrestore_alter_queue_state
group by 1,2 order by 3 desc

db_id | status | count
-------+------------+------
694325 | Waiting | 323
694325 | Finished | 60
694325 | Applying | 1

SVCS views for main and concurrency scaling clusters

SVCS system views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the tables with the prefix STL except that the
STL tables provide information only for queries run on the main cluster.

Topics

• SVCS_ALERT_EVENT_LOG

• SVCS_COMPILE

• SVCS_CONCURRENCY_SCALING_USAGE

• SVCS_EXPLAIN

• SVCS_PLAN_INFO

• SVCS_QUERY_SUMMARY

• SVCS_S3LIST

• SVCS_S3LOG

• SVCS_S3PARTITION_SUMMARY

• SVCS_S3QUERY_SUMMARY

• SVCS_STREAM_SEGS

• SVCS_UNLOAD_LOG

SVCS views for main and concurrency scaling clusters 2676

Amazon Redshift Database Developer Guide

SVCS_ALERT_EVENT_LOG

Records an alert when the query optimizer identifies conditions that might indicate performance
issues. This view is derived from the STL_ALERT_EVENT_LOG system table but doesn't show slice-
level for queries run on a concurrency scaling cluster. Use the SVCS_ALERT_EVENT_LOG table to
identify opportunities to improve query performance.

A query consists of multiple segments, and each segment consists of one or more steps. For more
information, see Query processing.

Note

System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the tables with the prefix STL except
that the STL tables provide information only for queries run on the main cluster.

SVCS_ALERT_EVENT_LOG is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other system
tables and views.

segment integer Number that identifies the query segment.

step integer Query step that ran.

pid integer Process ID associated with the statement and slice. The same
query might have multiple PIDs if it runs on multiple slices.

xid bigint Transaction ID associated with the statement.

SVCS views for main and concurrency scaling clusters 2677

Amazon Redshift Database Developer Guide

Column
name

Data type Description

event character
(1024)

Description of the alert event.

solution character
(1024)

Recommended solution.

event_time timestamp Time in UTC that the query started. Total time includes queuing
and execution. with 6 digits of precision for fractional seconds. For
example: 2009-06-12 11:29:19.131358 .

Usage notes

You can use the SVCS_ALERT_EVENT_LOG to identify potential issues in your queries, then follow
the practices in Tuning query performance to optimize your database design and rewrite your
queries. SVCS_ALERT_EVENT_LOG records the following alerts:

• Missing statistics

Statistics are missing. Run ANALYZE following data loads or significant updates and use
STATUPDATE with COPY operations. For more information, see Amazon Redshift best practices
for designing queries.

• Nested loop

A nested loop is usually a Cartesian product. Evaluate your query to ensure that all participating
tables are joined efficiently.

• Very selective filter

The ratio of rows returned to rows scanned is less than 0.05. Rows scanned is the value of
rows_pre_user_filter and rows returned is the value of rows in the STL_SCAN system table.
Indicates that the query is scanning an unusually large number of rows to determine the result
set. This can be caused by missing or incorrect sort keys. For more information, see Working with
sort keys.

• Excessive ghost rows

SVCS views for main and concurrency scaling clusters 2678

Amazon Redshift Database Developer Guide

A scan skipped a relatively large number of rows that are marked as deleted but not vacuumed,
or rows that have been inserted but not committed. For more information, see Vacuuming
tables.

• Large distribution

More than 1,000,000 rows were redistributed for hash join or aggregation. For more information,
see Working with data distribution styles.

• Large broadcast

More than 1,000,000 rows were broadcast for hash join. For more information, see Working with
data distribution styles.

• Serial execution

A DS_DIST_ALL_INNER redistribution style was indicated in the query plan, which forces
serial execution because the entire inner table was redistributed to a single node. For more
information, see Working with data distribution styles.

Sample queries

The following query shows alert events for four queries.

SELECT query, substring(event,0,25) as event,
substring(solution,0,25) as solution,
trim(event_time) as event_time from svcs_alert_event_log order by query;

 query | event | solution | event_time

-------+-------------------------------+------------------------------
+---------------------
 6567 | Missing query planner statist | Run the ANALYZE command | 2014-01-03
 18:20:58
 7450 | Scanned a large number of del | Run the VACUUM command to rec| 2014-01-03
 21:19:31
 8406 | Nested Loop Join in the query | Review the join predicates to| 2014-01-04
 00:34:22
 29512 | Very selective query filter:r | Review the choice of sort key| 2014-01-06
 22:00:00

(4 rows)

SVCS views for main and concurrency scaling clusters 2679

Amazon Redshift Database Developer Guide

SVCS_COMPILE

Records compile time and location for each query segment of queries, including queries run on a
scaling cluster as well as queries run on the main cluster.

Note

System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the views with the prefix SVL except
that the SVL views provide information only for queries run on the main cluster.

SVCS_COMPILE is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

For information about SCL_COMPILE, see SVL_COMPILE.

Table columns

Column
name

Data
type

Description

userid integer The ID of the user who generated the entry.

xid bigint The transaction ID associated with the statement.

pid integer The process ID associated with the statement.

query integer The query ID. You can use this ID to join various other system tables
and views.

segment integer The query segment to be compiled.

locus integer The location where the segment runs, 1 if on a compute node and 2
if on the leader node.

starttime timestamp The time in Universal Coordinated Time (UTC) that the compile
started.

endtime timestamp The time in UTC that the compile ended.

SVCS views for main and concurrency scaling clusters 2680

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

compile integer A value that is 0 if the compile was reused and 1 if the segment was
compiled.

Sample queries

In this example, queries 35878 and 35879 ran the same SQL statement. The compile column for
query 35878 shows 1 for four query segments, which indicates that the segments were compiled.
Query 35879 shows 0 in the compile column for every segment, indicating that the segments did
not need to be compiled again.

select userid, xid, pid, query, segment, locus,
datediff(ms, starttime, endtime) as duration, compile
from svcs_compile
where query = 35878 or query = 35879
order by query, segment;

 userid | xid | pid | query | segment | locus | duration | compile
--------+--------+-------+-------+---------+-------+----------+---------
 100 | 112780 | 23028 | 35878 | 0 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 1 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 2 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 3 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 4 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 5 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 6 | 1 | 1380 | 1
 100 | 112780 | 23028 | 35878 | 7 | 1 | 1085 | 1
 100 | 112780 | 23028 | 35878 | 8 | 1 | 1197 | 1
 100 | 112780 | 23028 | 35878 | 9 | 2 | 905 | 1
 100 | 112782 | 23028 | 35879 | 0 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 1 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 2 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 3 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 4 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 5 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 6 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 7 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 8 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 9 | 2 | 0 | 0

SVCS views for main and concurrency scaling clusters 2681

Amazon Redshift Database Developer Guide

(20 rows)

SVCS_CONCURRENCY_SCALING_USAGE

Records the usage periods for concurrency scaling. Each usage period is a consecutive duration
where an individual concurrency scaling cluster is actively processing queries.

SVCS_CONCURRENCY_SCALING_USAGE This table is visible to superusers. The database's
superuser can choose to open it up to all users.

Table columns

Column
name

Data type Description

start_time timestamp
without
time zone

When the usage period starts.

end_time timestamp
without
time zone

When the usage period ends.

queries bigint Number of queries run during this usage period.

usage_in_
seconds

numeric(2
7,0)

Total seconds in this usage period.

Sample queries

To view the usage duration in seconds for a specific period, enter the following query:

select * from svcs_concurrency_scaling_usage order by start_time;

start_time | end_time | queries | usage_in_seconds
----------------------------+----------------------------+---------+------------------
2019-02-14 18:43:53.01063 | 2019-02-14 19:16:49.781649 | 48 | 1977

SVCS views for main and concurrency scaling clusters 2682

Amazon Redshift Database Developer Guide

SVCS_EXPLAIN

Displays the EXPLAIN plan for a query that has been submitted for execution.

Note

System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the tables with the prefix STL except
that the STL tables provide information only for queries run on the main cluster.

SVCS_EXPLAIN is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

nodeid integer Plan node identifier, where a node maps to one or more
steps in the execution of the query.

parentid integer Plan node identifier for a parent node. A parent node has
some number of child nodes. For example, a merge join is
the parent of the scans on the joined tables.

plannode character(400) The node text from the EXPLAIN output. Plan nodes that
refer to execution on compute nodes are prefixed with XN in
the EXPLAIN output.

info character(400) Qualifier and filter information for the plan node. For
example, join conditions and WHERE clause restrictions are
included in this column.

SVCS views for main and concurrency scaling clusters 2683

Amazon Redshift Database Developer Guide

Sample queries

Consider the following EXPLAIN output for an aggregate join query:

explain select avg(datediff(day, listtime, saletime)) as avgwait
from sales, listing where sales.listid = listing.listid;
 QUERY PLAN

--
 XN Aggregate (cost=6350.30..6350.31 rows=1 width=16)
 -> XN Hash Join DS_DIST_NONE (cost=47.08..6340.89 rows=3766 width=16)
 Hash Cond: ("outer".listid = "inner".listid)
 -> XN Seq Scan on listing (cost=0.00..1924.97 rows=192497 width=12)
 -> XN Hash (cost=37.66..37.66 rows=3766 width=12)
 -> XN Seq Scan on sales (cost=0.00..37.66 rows=3766 width=12)
(6 rows)

If you run this query and its query ID is 10, you can use the SVCS_EXPLAIN table to see the same
kind of information that the EXPLAIN command returns:

select query,nodeid,parentid,substring(plannode from 1 for 30),
substring(info from 1 for 20) from svcs_explain
where query=10 order by 1,2;

query| nodeid |parentid| substring | substring
-----+--------+--------+--------------------------------+-------------------
10 | 1 | 0 |XN Aggregate (cost=6717.61..6 |
10 | 2 | 1 | -> XN Merge Join DS_DIST_NO| Merge Cond:("outer"
10 | 3 | 2 | -> XN Seq Scan on lis |
10 | 4 | 2 | -> XN Seq Scan on sal |
(4 rows)

Consider the following query:

select event.eventid, sum(pricepaid)
from event, sales
where event.eventid=sales.eventid
group by event.eventid order by 2 desc;

eventid | sum
--------+----------
 289 | 51846.00

SVCS views for main and concurrency scaling clusters 2684

Amazon Redshift Database Developer Guide

 7895 | 51049.00
 1602 | 50301.00
 851 | 49956.00
 7315 | 49823.00
...

If this query's ID is 15, the following system table query returns the plan nodes that were
performed. In this case, the order of the nodes is reversed to show the actual order of execution:

select query,nodeid,parentid,substring(plannode from 1 for 56)
from svcs_explain where query=15 order by 1, 2 desc;

query|nodeid|parentid| substring
-----+------+--------+--
15 | 8 | 7 | -> XN Seq Scan on eve
15 | 7 | 5 | -> XN Hash(cost=87.98..87.9
15 | 6 | 5 | -> XN Seq Scan on sales(cos
15 | 5 | 4 | -> XN Hash Join DS_DIST_OUTER(cos
15 | 4 | 3 | -> XN HashAggregate(cost=862286577.07..
15 | 3 | 2 | -> XN Sort(cost=1000862287175.47..10008622871
15 | 2 | 1 | -> XN Network(cost=1000862287175.47..1000862287197.
15 | 1 | 0 |XN Merge(cost=1000862287175.47..1000862287197.46 rows=87
(8 rows)

The following query retrieves the query IDs for any query plans that contain a window function:

select query, trim(plannode) from svcs_explain
where plannode like '%Window%';

query| btrim
-----+--
26 | -> XN Window(cost=1000985348268.57..1000985351256.98 rows=170 width=33)
27 | -> XN Window(cost=1000985348268.57..1000985351256.98 rows=170 width=33)
(2 rows)

SVCS_PLAN_INFO

Use the SVCS_PLAN_INFO table to look at the EXPLAIN output for a query in terms of a set of
rows. This is an alternative way to look at query plans.

SVCS views for main and concurrency scaling clusters 2685

Amazon Redshift Database Developer Guide

Note

System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the tables with the prefix STL except
that the STL tables provide information only for queries run on the main cluster.

SVCS_PLAN_INFO is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

nodeid integer Plan node identifier, where a node maps to one or more
steps in the execution of the query.

segment integer Number that identifies the query segment.

step integer Number that identifies the query step.

locus integer Location where the step runs. 0 if on a compute node and 1
if on the leader node.

plannode integer Enumerated value of the plan node. See the following
table for enums for plannode. (The PLANNODE column in
SVCS_EXPLAIN contains the plan node text.)

startupcost double precision The estimated relative cost of returning the first row for this
step.

totalcost double precision The estimated relative cost of executing the step.

SVCS views for main and concurrency scaling clusters 2686

Amazon Redshift Database Developer Guide

Column
name

Data type Description

rows bigint The estimated number of rows that will be produced by the
step.

bytes bigint The estimated number of bytes that will be produced by the
step.

Sample queries

The following examples compare the query plans for a simple SELECT query returned by using the
EXPLAIN command and by querying the SVCS_PLAN_INFO table.

explain select * from category;
QUERY PLAN

XN Seq Scan on category (cost=0.00..0.11 rows=11 width=49)
(1 row)

select * from category;
catid | catgroup | catname | catdesc
-------+----------+-----------+--
1 | Sports | MLB | Major League Baseball
3 | Sports | NFL | National Football League
5 | Sports | MLS | Major League Soccer
...

select * from svcs_plan_info where query=256;

query | nodeid | segment | step | locus | plannode | startupcost | totalcost
| rows | bytes
-------+--------+---------+------+-------+----------+-------------+-----------+------
+-------
256 | 1 | 0 | 1 | 0 | 104 | 0 | 0.11 | 11 | 539
256 | 1 | 0 | 0 | 0 | 104 | 0 | 0.11 | 11 | 539
(2 rows)

In this example, PLANNODE 104 refers to the sequential scan of the CATEGORY table.

select distinct eventname from event order by 1;

SVCS views for main and concurrency scaling clusters 2687

Amazon Redshift Database Developer Guide

eventname
--
.38 Special
3 Doors Down
70s Soul Jam
A Bronx Tale
...

explain select distinct eventname from event order by 1;

QUERY PLAN

XN Merge (cost=1000000000136.38..1000000000137.82 rows=576 width=17)
Merge Key: eventname
-> XN Network (cost=1000000000136.38..1000000000137.82 rows=576
width=17)
Send to leader
-> XN Sort (cost=1000000000136.38..1000000000137.82 rows=576
width=17)
Sort Key: eventname
-> XN Unique (cost=0.00..109.98 rows=576 width=17)
-> XN Seq Scan on event (cost=0.00..87.98 rows=8798
width=17)
(8 rows)

select * from svcs_plan_info where query=240 order by nodeid desc;

query | nodeid | segment | step | locus | plannode | startupcost |
totalcost | rows | bytes
-------+--------+---------+------+-------+----------+------------------
+------------------+------+--------
240 | 5 | 0 | 0 | 0 | 104 | 0 | 87.98 | 8798 | 149566
240 | 5 | 0 | 1 | 0 | 104 | 0 | 87.98 | 8798 | 149566
240 | 4 | 0 | 2 | 0 | 117 | 0 | 109.975 | 576 | 9792
240 | 4 | 0 | 3 | 0 | 117 | 0 | 109.975 | 576 | 9792
240 | 4 | 1 | 0 | 0 | 117 | 0 | 109.975 | 576 | 9792
240 | 4 | 1 | 1 | 0 | 117 | 0 | 109.975 | 576 | 9792
240 | 3 | 1 | 2 | 0 | 114 | 1000000000136.38 | 1000000000137.82 | 576 | 9792
240 | 3 | 2 | 0 | 0 | 114 | 1000000000136.38 | 1000000000137.82 | 576 | 9792
240 | 2 | 2 | 1 | 0 | 123 | 1000000000136.38 | 1000000000137.82 | 576 | 9792
240 | 1 | 3 | 0 | 0 | 122 | 1000000000136.38 | 1000000000137.82 | 576 | 9792
(10 rows)

SVCS views for main and concurrency scaling clusters 2688

Amazon Redshift Database Developer Guide

SVCS_QUERY_SUMMARY

Use the SVCS_QUERY_SUMMARY view to find general information about the execution of a query.

Note that the information in SVCS_QUERY_SUMMARY is aggregated from all nodes.

Note

The SVCS_QUERY_SUMMARY view only contains information about queries completed
by Amazon Redshift, not other utility and DDL commands. For a complete listing and
information on all statements completed by Amazon Redshift, including DDL and utility
commands, you can query the SVL_STATEMENTTEXT view.
System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the views with the prefix SVL except
that the SVL views provide information only for queries run on the main cluster.

SVCS_QUERY_SUMMARY is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

For information about SVL_QUERY_SUMMARY, see SVL_QUERY_SUMMARY.

Table columns

Column
name

Data type Description

userid integer ID of user who generated entry.

query integer Query ID. Can be used to join various other system tables and
views.

stm integer Stream: A set of concurrent segments in a query. A query has one
or more streams.

SVCS views for main and concurrency scaling clusters 2689

Amazon Redshift Database Developer Guide

Column
name

Data type Description

seg integer Segment number. A query consists of multiple segments, and
each segment consists of one or more steps. Query segments can
run in parallel. Each segment runs in a single process.

step integer Query step that ran.

maxtime bigint Maximum amount of time for the step to run (in microseconds).

avgtime bigint Average time for the step to run (in microseconds).

rows bigint Number of data rows involved in the query step.

bytes bigint Number of data bytes involved in the query step.

rate_row double
precision

Query execution rate per row.

rate_byte double
precision

Query execution rate per byte.

label text Step label, which consists of a query step name and, when
applicable, table ID and table name (for example, scan tbl=10044
8 name =user). Three-digit table IDs usually refer to scans of
transient tables. When you see tbl=0, it usually refers to a scan
of a constant value.

is_diskba
sed

character(1) Whether this step of the query was performed as a disk-based
operation on any node in the cluster: true (t) or false (f). Only
certain steps, such as hash, sort, and aggregate steps, can go to
disk. Many types of steps are always run in memory.

workmem bigint Amount of working memory (in bytes) assigned to the query step.

is_rrscan character(1) If true (t), indicates that range-restricted scan was used on the
step. Default is false (f).

SVCS views for main and concurrency scaling clusters 2690

Amazon Redshift Database Developer Guide

Column
name

Data type Description

is_delaye
d_scan

character(1) If true (t), indicates that delayed scan was used on the step.
Default is false (f).

rows_pre_
filter

bigint For scans of permanent tables, the total number of rows emitted
before filtering rows marked for deletion (ghost rows).

Sample queries

Viewing processing information for a query step

The following query shows basic processing information for each step of query 87:

select query, stm, seg, step, rows, bytes
from svcs_query_summary
where query = 87
order by query, seg, step;

This query retrieves the processing information about query 87, as shown in the following sample
output:

 query | stm | seg | step | rows | bytes
-------+-----+-----+------+--------+---------
87 | 0 | 0 | 0 | 90 | 1890
87 | 0 | 0 | 2 | 90 | 360
87 | 0 | 1 | 0 | 90 | 360
87 | 0 | 1 | 2 | 90 | 1440
87 | 1 | 2 | 0 | 210494 | 4209880
87 | 1 | 2 | 3 | 89500 | 0
87 | 1 | 2 | 6 | 4 | 96
87 | 2 | 3 | 0 | 4 | 96
87 | 2 | 3 | 1 | 4 | 96
87 | 2 | 4 | 0 | 4 | 96
87 | 2 | 4 | 1 | 1 | 24
87 | 3 | 5 | 0 | 1 | 24
87 | 3 | 5 | 4 | 0 | 0
(13 rows)

Determining whether query steps spilled to disk

SVCS views for main and concurrency scaling clusters 2691

Amazon Redshift Database Developer Guide

The following query shows whether or not any of the steps for the query with query ID 1025 (see
the SVL_QLOG view to learn how to obtain the query ID for a query) spilled to disk or if the query
ran entirely in-memory:

select query, step, rows, workmem, label, is_diskbased
from svcs_query_summary
where query = 1025
order by workmem desc;

This query returns the following sample output:

query| step| rows | workmem | label | is_diskbased
-----+-----+--------+-----------+---------------+--------------
1025 | 0 |16000000| 141557760 |scan tbl=9 | f
1025 | 2 |16000000| 135266304 |hash tbl=142 | t
1025 | 0 |16000000| 128974848 |scan tbl=116536| f
1025 | 2 |16000000| 122683392 |dist | f
(4 rows)

By scanning the values for IS_DISKBASED, you can see which query steps went to disk. For query
1025, the hash step ran on disk. Steps might run on disk include hash, aggr, and sort steps. To view
only disk-based query steps, add and is_diskbased = 't' clause to the SQL statement in the
above example.

SVCS_S3LIST

Use the SVCS_S3LIST view to get details about Amazon Redshift Spectrum queries at the segment
level. One segment can perform one external table scan. This view is derived from the SVL_S3LIST
system view but doesn't show slice-level for queries run on a concurrency scaling cluster.

Note

System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the views with the prefix SVL except
that the SVL views provide information only for queries run on the main cluster.

SVCS_S3LIST is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

SVCS views for main and concurrency scaling clusters 2692

Amazon Redshift Database Developer Guide

For information about SVL_S3LIST, see SVL_S3LIST.

Table columns

Column
name

Data type Description

query integer The query ID.

segment integer The segment number. A query consists of multiple
segments.

node integer The node number.

eventtime timestamp The time in UTC that the event is recorded.

bucket char(256) The Amazon S3 bucket name.

prefix char(256) The prefix of the Amazon S3 bucket location.

recursive char(1) Whether there is recursive scan for subfolders.

retrieved
_files

integer The number of listed files.

max_file_
size

bigint The maximum file size among listed files.

avg_file_
size

double precision The average file size among listed files.

generated
_splits

integer The number of file splits.

avg_split
_length

double precision The average length of file splits in bytes.

duration bigint The duration of file listing, in microseconds.

SVCS views for main and concurrency scaling clusters 2693

Amazon Redshift Database Developer Guide

Sample query

The following example queries SVCS_S3LIST for the last query performed.

select *
from svcs_s3list
where query = pg_last_query_id()
order by query,segment;

SVCS_S3LOG

Use the SVCS_S3LOG view to get troubleshooting details about Redshift Spectrum queries at the
segment level. One segment can perform one external table scan. This view is derived from the
SVL_S3LOG system view but doesn't show slice-level for queries run on a concurrency scaling
cluster.

Note

System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the views with the prefix SVL except
that the SVL views provide information only for queries run on the main cluster.

SVCS_S3LOG is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

For information about SVL_S3LOG, see SVL_S3LOG.

Table columns

Column
name

Data type Description

pid integer The process ID.

query integer The query ID.

segment integer The segment number. A query consists of multiple
segments, and each segment consists of one or more
steps.

SVCS views for main and concurrency scaling clusters 2694

Amazon Redshift Database Developer Guide

Column
name

Data type Description

step integer The query step that ran.

node integer The node number.

eventtime timestamp The time in UTC that the event is recorded.

message char(512) The message for the log entry.

Sample query

The following example queries SVCS_S3LOG for the last query that ran.

select *
from svcs_s3log
where query = pg_last_query_id()
order by query,segment;

SVCS_S3PARTITION_SUMMARY

Use the SVCS_S3PARTITION_SUMMARY view to get a summary of Redshift Spectrum queries
partition processing at the segment level. One segment can perform one external table scan.

Note

System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the views with the prefix SVL except
that the SVL views provide information only for queries run on the main cluster.

SVCS_S3PARTITION_SUMMARY is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

For information about SVL_S3PARTITION, see SVL_S3PARTITION.

SVCS views for main and concurrency scaling clusters 2695

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

query integer The query ID. You can use this value to join various other
system tables and views.

segment integer The segment number. A query consists of multiple
segments.

assignmen
t

char(1) The type of partition assignment across nodes.

min_start
time

timestamp The time in UTC that the partition processing started.

max_endti
me

timestamp The time in UTC that the partition processing completed.

min_durat
ion

bigint The minimum partition processing time used by a node
for this query (in microseconds).

max_durat
ion

bigint The maximum partition processing time used by a node
for this query (in microseconds).

avg_durat
ion

bigint The average partition processing time used by a node for
this query (in microseconds).

total_par
titions

integer The total number of partitions in an external table.

qualified
_partitions

integer The total number of qualified partitions.

min_assig
ned_parti
tions

integer The minimum number of partitions assigned on one
node.

SVCS views for main and concurrency scaling clusters 2696

Amazon Redshift Database Developer Guide

Column
name

Data type Description

max_assig
ned_parti
tions

integer The maximum number of partitions assigned on one
node.

avg_assig
ned_parti
tions

bigint The average number of partitions assigned on one node.

Sample query

The following example gets the partition scan details for the last query performed.

select query, segment, assignment, min_starttime, max_endtime, min_duration,
 avg_duration
from svcs_s3partition_summary
where query = pg_last_query_id()
order by query,segment;

SVCS_S3QUERY_SUMMARY

Use the SVCS_S3QUERY_SUMMARY view to get a summary of all Redshift Spectrum queries (S3
queries) that have been run on the system. One segment can perform one external table scan.

Note

System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the views with the prefix SVL except
that the SVL views provide information only for queries run on the main cluster.

SVCS_S3QUERY_SUMMARY is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

For information about SVL_S3QUERY, see SVL_S3QUERY.

SVCS views for main and concurrency scaling clusters 2697

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

userid integer The ID of the user that generated the given entry.

query integer The query ID. You can use this value to join various other
system tables and views.

xid bigint The transaction ID.

pid integer The process ID.

segment integer The segment number. A query consists of multiple
segments, and each segment consists of one or more
steps.

step integer The query step that ran.

starttime timestamp The time in UTC that the Redshift Spectrum query in this
segment started running. One segment can have one
external table scan.

endtime timestamp The time in UTC that the Redshift Spectrum query in this
segment completed. One segment can have one external
table scan.

elapsed integer The length of time that it took the Redshift Spectrum
query in this segment to run (in microseconds).

aborted integer If a query was stopped by the system or canceled by the
user, this column contains 1. If the query ran to completio
n, this column contains 0.

external_
table_nam
e

char(136) The internal format of name of the external name of the
table for the external table scan.

file_format character(16) The file format of the external table data.

SVCS views for main and concurrency scaling clusters 2698

Amazon Redshift Database Developer Guide

Column
name

Data type Description

is_partit
ioned

char(1) If true (t), this column value indicates that the external
table is partitioned.

is_rrscan char(1) If true (t), this column value indicates that a range-res
tricted scan was applied.

is_nested varchar(1) If true (t), this column value indicates that the nested
column data type is accessed.

s3_scanne
d_rows

bigint The number of rows scanned from Amazon S3 and sent
to the Redshift Spectrum layer.

s3_scanne
d_bytes

bigint The number of bytes scanned from Amazon S3 and sent
to the Redshift Spectrum layer, based on compressed
data.

s3query_r
eturned_r
ows

bigint The number of rows returned from the Redshift Spectrum
layer to the cluster.

s3query_r
eturned_b
ytes

bigint The number of bytes returned from the Redshift
Spectrum layer to the cluster. A large amount of data
returned to Amazon Redshift might affect system
performance.

files integer The number of files that were processed for this Redshift
Spectrum query. A small number of files limits the
benefits of parallel processing.

files_max integer The maximum number of file processed on one slice.

files_avg integer The average number of file processed on one slice.

SVCS views for main and concurrency scaling clusters 2699

Amazon Redshift Database Developer Guide

Column
name

Data type Description

splits bigint The number of splits processed for this segment. The
number of splits processed on this slice. With large
splitable data files, for example, data files larger than
about 512 MB, Redshift Spectrum tries to split the files
into multiple S3 requests for parallel processing.

splits_max integer The maximum number of splits processed on this slice.

splits_avg bigint The average number of splits processed on this slice.

total_spl
it_size

bigint The total size of all splits processed.

max_split
_size

bigint The maximum split size processed, in bytes.

avg_split
_size

bigint The average split size processed, in bytes.

total_ret
ries

bigint The total number of retries for the Redshift Spectrum
query in this segment.

max_retri
es

integer The maximum number of retries for one individual
processed file.

max_reque
st_durati
on

bigint The maximum duration of an individual file request (in
microseconds). Long running queries might indicate a
bottleneck.

avg_reque
st_durati
on

bigint The average duration of the file requests (in microseco
nds).

max_reque
st_parall
elism

integer The maximum number of parallel requests at one slice for
this Redshift Spectrum query.

SVCS views for main and concurrency scaling clusters 2700

Amazon Redshift Database Developer Guide

Column
name

Data type Description

avg_reque
st_parall
elism

double precision The average number of parallel requests at one slice for
this Redshift Spectrum query.

total_slo
wdown_cou
nt

bigint The total number of Amazon S3 requests with a slow
down error that occurred during the external table scan.

max_slowd
own_count

integer The maximum number of Amazon S3 requests with a
slow down error that occurred during the external table
scan on one slice.

Sample query

The following example gets the scan step details for the last query run.

select query, segment, elapsed, s3_scanned_rows, s3_scanned_bytes,
 s3query_returned_rows, s3query_returned_bytes, files
from svcs_s3query_summary
where query = pg_last_query_id()
order by query,segment;

query | segment | elapsed | s3_scanned_rows | s3_scanned_bytes | s3query_returned_rows
 | s3query_returned_bytes | files
------+---------+---------+-----------------+------------------+-----------------------
+------------------------+------
 4587 | 2 | 67811 | 0 | 0 | 0
 | 0 | 0
 4587 | 2 | 591568 | 172462 | 11260097 | 8513
 | 170260 | 1
 4587 | 2 | 216849 | 0 | 0 | 0
 | 0 | 0
 4587 | 2 | 216671 | 0 | 0 | 0
 | 0 | 0

SVCS views for main and concurrency scaling clusters 2701

Amazon Redshift Database Developer Guide

SVCS_STREAM_SEGS

Lists the relationship between streams and concurrent segments.

Note

System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the tables with the prefix STL except
that the STL tables provide information only for queries run on the main cluster.

SVCS_STREAM_SEGS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. The query column can be used to join other system
tables and views.

stream integer The set of concurrent segments of a query.

segment integer Number that identifies the query segment.

Sample queries

To view the relationship between streams and concurrent segments for the most recent query, type
the following query:

select *
from svcs_stream_segs
where query = pg_last_query_id();

 query | stream | segment
-------+--------+---------

SVCS views for main and concurrency scaling clusters 2702

Amazon Redshift Database Developer Guide

 10 | 1 | 2
 10 | 0 | 0
 10 | 2 | 4
 10 | 1 | 3
 10 | 0 | 1
(5 rows)

SVCS_UNLOAD_LOG

Use the SVCS_UNLOAD_LOG to get details of UNLOAD operations.

SVCS_UNLOAD_LOG records one row for each file created by an UNLOAD statement. For example,
if an UNLOAD creates 12 files, SVCS_UNLOAD_LOG contains 12 corresponding rows. This view is
derived from the STL_UNLOAD_LOG system table but doesn't show slice-level for queries run on a
concurrency scaling cluster.

Note

System views with the prefix SVCS provide details about queries on both the main and
concurrency scaling clusters. The views are similar to the tables with the prefix STL except
that the STL tables provide information only for queries run on the main cluster.

SVCS_UNLOAD_LOG is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

userid integer The ID of the user who generated the entry.

query integer The query ID.

pid integer The process ID associated with the query statement.

path character(1280) The complete Amazon S3 object path for the file.

start_time timestamp The start time for the UNLOAD operation.

SVCS views for main and concurrency scaling clusters 2703

Amazon Redshift Database Developer Guide

Column
name

Data type Description

end_time timestamp The end time for the UNLOAD operation.

line_count bigint The number of lines (rows) unloaded to the file.

transfer_
size

bigint The number of bytes transferred.

file_format character(10) The format of unloaded file.

Sample query

To get a list of the files that were written to Amazon S3 by an UNLOAD command, you can call
an Amazon S3 list operation after the UNLOAD completes; however, depending on how quickly
you issue the call, the list might be incomplete because an Amazon S3 list operation is eventually
consistent. To get a complete, authoritative list immediately, query SVCS_UNLOAD_LOG.

The following query returns the path name for files that were created by an UNLOAD for the last
query completed:

select query, substring(path,0,40) as path
from svcs_unload_log
where query = pg_last_query_id()
order by path;

This command returns the following sample output:

 query | path
 ------+---------------------------------
 2320 | s3://my-bucket/venue0000_part_00
 2320 | s3://my-bucket/venue0001_part_00
 2320 | s3://my-bucket/venue0002_part_00
 2320 | s3://my-bucket/venue0003_part_00
(4 rows)

SVCS views for main and concurrency scaling clusters 2704

Amazon Redshift Database Developer Guide

SVL views for main cluster

SVL views are system views in Amazon Redshift that contain references to STL tables and logs for
more detailed information.

These views provide quicker and easier access to commonly queried data found in those tables.

Note

The SVL_QUERY_SUMMARY view only contains information about queries run by Amazon
Redshift, not other utility and DDL commands. For a complete listing and information on
all statements run by Amazon Redshift, including DDL and utility commands, you can query
the SVL_STATEMENTTEXT view.

Topics

• SVL_AUTO_WORKER_ACTION

• SVL_COMPILE

• SVL_DATASHARE_CHANGE_LOG

• SVL_DATASHARE_CROSS_REGION_USAGE

• SVL_DATASHARE_USAGE_CONSUMER

• SVL_DATASHARE_USAGE_PRODUCER

• SVL_FEDERATED_QUERY

• SVL_MULTI_STATEMENT_VIOLATIONS

• SVL_MV_REFRESH_STATUS

• SVL_QERROR

• SVL_QLOG

• SVL_QUERY_METRICS

• SVL_QUERY_METRICS_SUMMARY

• SVL_QUERY_QUEUE_INFO

• SVL_QUERY_REPORT

• SVL_QUERY_SUMMARY

• SVL_RESTORE_ALTER_TABLE_PROGRESS

SVL views for main cluster 2705

Amazon Redshift Database Developer Guide

• SVL_S3LIST

• SVL_S3LOG

• SVL_S3PARTITION

• SVL_S3PARTITION_SUMMARY

• SVL_S3QUERY

• SVL_S3QUERY_SUMMARY

• SVL_S3RETRIES

• SVL_SPATIAL_SIMPLIFY

• SVL_SPECTRUM_SCAN_ERROR

• SVL_STATEMENTTEXT

• SVL_STORED_PROC_CALL

• SVL_STORED_PROC_MESSAGES

• SVL_TERMINATE

• SVL_UDF_LOG

• SVL_USER_INFO

• SVL_VACUUM_PERCENTAGE

SVL_AUTO_WORKER_ACTION

Records automated actions taken by Amazon Redshift on tables defined for automatic
optimization.

SVL_AUTO_WORKER_ACTION is visible only to superusers. For more information, see Visibility of
data in system tables and views.

Table columns

Column
name

Data
type

Description

table_id integer The table identifier.

type character
(32)

The type of recommendation. Possible values are distkey and
sortkey.

SVL views for main cluster 2706

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

status character
(128)

The completion status of the recommendation. Possible values are
Start, Complete, Skipped, Abort, Checkpoint, and Failed.

eventtime timestamp The timestamp of the status column.

sequence integer The sequence number of a truncated previous_state value.
When a single previous_state contains more than 200 character
s, additional rows are logged for that value. Sequence is 0 is the first
row, 1 is the second, and so on.

previous_
state

character
(200)

The previous distribution style and sort keys of the table before
applying the recommendation. The value is truncated into 200-chara
cter increments.

Some examples of values of the status column are as follows:

• Skipped:Table not found.

• Skipped:Recommendation is empty.

• Skipped:Apply sortkey recommendation is disabled.

• Skipped:Retry exceeds the maximum limit for a table.

• Skipped:Table column has changed.

• Abort:This table is not AUTO.

• Abort:This table has been recently converted.

• Abort:This table exceeds table size threshold.

• Abort:This table is already the recommended style.

• Checkpoint: progress 21.9963%.

Sample queries

In the following example, the rows in the result show actions taken by Amazon Redshift.

select table_id, type, status, eventtime, sequence, previous_state

SVL views for main cluster 2707

Amazon Redshift Database Developer Guide

from SVL_AUTO_WORKER_ACTION;

 table_id | type | status |
 eventtime | sequence | previous_state
----------+---------+--
+----------------------------+----------+----------------
 118082 | sortkey | Start | 2020-08-22
 19:42:20.727049 | 0 |
 118078 | sortkey | Start | 2020-08-22
 19:43:54.728819 | 0 |
 118082 | sortkey | Start | 2020-08-22
 19:42:52.690264 | 0 |
 118072 | sortkey | Start | 2020-08-22
 19:44:14.793572 | 0 |
 118082 | sortkey | Failed | 2020-08-22
 19:42:20.728917 | 0 |
 118078 | sortkey | Complete | 2020-08-22
 19:43:54.792705 | 0 | SORTKEY: None;
 118086 | sortkey | Complete | 2020-08-22
 19:42:00.72635 | 0 | SORTKEY: None;
 118082 | sortkey | Complete | 2020-08-22
 19:43:34.728144 | 0 | SORTKEY: None;
 118072 | sortkey | Skipped:Retry exceeds the maximum limit for a table. | 2020-08-22
 19:44:46.706155 | 0 |
 118086 | sortkey | Start | 2020-08-22
 19:42:00.685255 | 0 |
 118082 | sortkey | Start | 2020-08-22
 19:43:34.69531 | 0 |
 118072 | sortkey | Start | 2020-08-22
 19:44:46.703331 | 0 |
 118082 | sortkey | Checkpoint: progress 14.755079% | 2020-08-22
 19:42:52.692828 | 0 |
 118072 | sortkey | Failed | 2020-08-22
 19:44:14.796071 | 0 |
 116723 | sortkey | Abort:This table is not AUTO. | 2020-10-28
 05:12:58.479233 | 0 |
 110203 | distkey | Abort:This table is not AUTO. | 2020-10-28
 05:45:54.67259 | 0 |

SVL_COMPILE

Records compile time and location for each query segment of queries.

SVL views for main cluster 2708

Amazon Redshift Database Developer Guide

SVL_COMPILE is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Note

SVL_COMPILE only contains queries run on main clusters. It doesn't contain queries run on
concurrency scaling clusters. To access queries run on both main and concurrency scaling
clusters, we recommend that you use the SYS monitoring view SYS_QUERY_HISTORY . The
data in the SYS monitoring view is formatted to be easier to use and understand.

For information about SVCS_COMPILE, see SVCS_COMPILE.

Table columns

Column
name

Data
type

Description

userid integer ID of the user who generated the entry.

xid bigint Transaction ID associated with the statement.

pid integer Process ID associated with the statement.

query integer Query ID. Can be used to join various other system tables and views.

segment integer The query segment to be compiled.

locus integer Location where the segment runs. 1 if on a compute node and 2 if
on the leader node.

starttime timestamp Time in UTC that the compile started.

endtime timestamp Time in UTC that the compile ended.

compile integer 0 if the compile was reused, 1 if the segment was compiled.

SVL views for main cluster 2709

Amazon Redshift Database Developer Guide

Sample queries

In this example, queries 35878 and 35879 ran the same SQL statement. The compile column for
query 35878 shows 1 for four query segments, which indicates that the segments were compiled.
Query 35879 shows 0 in the compile column for every segment, indicating that the segments did
not need to be compiled again.

select userid, xid, pid, query, segment, locus,
datediff(ms, starttime, endtime) as duration, compile
from svl_compile
where query = 35878 or query = 35879
order by query, segment;

 userid | xid | pid | query | segment | locus | duration | compile
--------+--------+-------+-------+---------+-------+----------+---------
 100 | 112780 | 23028 | 35878 | 0 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 1 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 2 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 3 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 4 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 5 | 1 | 0 | 0
 100 | 112780 | 23028 | 35878 | 6 | 1 | 1380 | 1
 100 | 112780 | 23028 | 35878 | 7 | 1 | 1085 | 1
 100 | 112780 | 23028 | 35878 | 8 | 1 | 1197 | 1
 100 | 112780 | 23028 | 35878 | 9 | 2 | 905 | 1
 100 | 112782 | 23028 | 35879 | 0 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 1 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 2 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 3 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 4 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 5 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 6 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 7 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 8 | 1 | 0 | 0
 100 | 112782 | 23028 | 35879 | 9 | 2 | 0 | 0
(20 rows)

SVL_DATASHARE_CHANGE_LOG

Records the consolidated view for tracking changes to datashares on both producer and consumer
clusters.

SVL views for main cluster 2710

Amazon Redshift Database Developer Guide

SVL_DATASHARE_CHANGE_LOG is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_DATASHARE_CHANGE_LOG. The data in the SYS monitoring view is formatted to be easier to
use and understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data
type

Description

userid integer The ID of the user taking the action.

username varchar(1
28)

The name of the user taking the action.

pid integer The ID of the process.

xid bigint The ID of the transaction.

share_id integer The ID of the datashare affected.

share_name varchar(1
28)

The name of the datashare.

source_da
tabase_id

integer The ID of the database to which the datashare belongs.

source_da
tabase_na
me

varchar(1
28)

The name of the database to which the datashare belongs.

consumer_
database_id

integer The ID of the database imported from the datashare.

consumer_
database_
name

varchar(1
28)

The name of the database imported from the datashare.

SVL views for main cluster 2711

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

arn varchar(1
92)

The ARN of the resource backing the imported database.

recordtime timestamp The timestamp of the action.

action varchar(1
28)

The action being run. Possible values are CREATE DATASHARE, DROP
DATASHARE, GRANT ALTER, REVOKE ALTER, GRANT SHARE, REVOKE
SHARE, ALTER ADD, ALTER REMOVE, ALTER SET, GRANT USAGE,
REVOKE USAGE, CREATE DATABASE, GRANT or REVOKE USAGE
on a shared database, DROP SHARED DATABASE, ALTER SHARED
DATABASE.

status integer The status of the action. Possible values are SUCCESS and ERROR-
ERROR CODE.

share_obj
ect_type

varchar(6
4)

The type of database object that was added to or removed from the
datashare. Possible values are schemas, tables, columns, functions,
and views. This is a field for the producer cluster.

share_obj
ect_id

integer The ID of database object that was added to or removed from the
datashare. This is a field for the producer cluster.

share_obj
ect_name

varchar(1
28)

The name of database object that was added to or removed from
the datashare. This is a field for the producer cluster.

target_us
er_type

varchar(1
6)

The type of users or groups that a privilege was granted to. This is a
field for both the producer and consumer cluster.

target_us
erid

integer The ID of users or groups that a privilege was granted to. This is a
field for both the producer and consumer cluster.

target_us
ername

varchar(1
28)

The name of users or groups that a privilege was granted to. This is a
field for both the producer and consumer cluster.

consumer_
account

varchar(1
6)

The account ID of the data consumer. This is a field for the producer
cluster.

SVL views for main cluster 2712

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

consumer_
namespace

varchar(6
4)

The namespace of the data consumer account. This is a field for the
producer cluster.

producer_
account

varchar(1
6)

The account ID of the producer account that the datashare belongs
to. This is a field for the consumer cluster.

producer_
namespace

varchar(6
4)

The namespace of the product account that the datashare belongs
to. This is a field for the consumer cluster.

attribute
_name

varchar(6
4)

The name of an attribute of the datashare or shared database.

attribute
_value

varchar(1
28)

The value of an attribute of the datashare or shared database.

message varchar(5
12)

The error message when an action fails.

Sample queries

The following example shows a SVL_DATASHARE_CHANGE_LOG view.

SELECT DISTINCT action
FROM svl_datashare_change_log
WHERE share_object_name LIKE 'tickit%';

 action

 "ALTER DATASHARE ADD"

SVL_DATASHARE_CROSS_REGION_USAGE

Use the SVL_DATASHARE_CROSS_REGION_USAGE view to get a summary of
cross-Region data transferred usage caused by cross-Region datasharing query.
SVL_DATASHARE_CROSS_REGION_USAGE aggregates details at the segment level.

SVL views for main cluster 2713

Amazon Redshift Database Developer Guide

SVL_DATASHARE_CROSS_REGION_USAGE is visible to all users. Superusers can see all rows; regular
users can see only their own data. For more information, see Visibility of data in system tables and
views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_DATASHARE_CROSS_REGION_USAGE. The data in the SYS monitoring view is formatted to
be easier to use and understand. We recommend that you use the SYS monitoring view for your
queries.

Table columns

Column
name

Data
type

Description

query integer The ID of the query. Use this value to join other system tables and
views.

segment bigint The number of the segment. A query consists of multiple segments,
and each segment consists of one or more steps.

start_time time The time in UTC that the data transfer began.

end_time time The time in UTC that the data transfer ended.

transferr
ed_data

bigint The number of bytes of data transferred from a producer Region to a
consumer Region.

source_re
gion

char(25) The producer Region that the query transferred data from.

recordtime timestamp The time when the action is recorded.

Sample queries

The following example shows a SVL_DATASHARE_CROSS_REGION_USAGE view.

SELECT query, segment, transferred_data, source_region
from svl_datashare_cross_region_usage
where query = pg_last_query_id()
order by query,segment;

SVL views for main cluster 2714

Amazon Redshift Database Developer Guide

 query | segment | transferred_data | source_region
--------+---------+------------------+---------------
 200048 | 2 | 4194304 | us-west-1
 200048 | 2 | 4194304 | us-east-2

SVL_DATASHARE_USAGE_CONSUMER

Records the activity and usage of datashares. This view is only relevant on the consumer cluster.

SVL_DATASHARE_USAGE_CONSUMER is visible to all users. Superusers can see all rows; regular
users can see only their own data. For more information, see Visibility of data in system tables and
views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_DATASHARE_USAGE_CONSUMER. The data in the SYS monitoring view is formatted to be
easier to use and understand. We recommend that you use the SYS monitoring view for your
queries.

Table columns

Column
name

Data
type

Description

userid integer The ID of the user issuing the request.

pid integer The ID of the leader process running the query.

xid bigint The context of the current transaction.

request_id varchar(5
0)

The unique ID of the requested API call.

request_t
ype

varchar(2
5)

The type of the request made to the producer cluster.

transacti
on_uid

varchar(5
0)

The unique ID of the transaction.

recordtime timestamp The time when the action is recorded.

SVL views for main cluster 2715

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

status integer The status of the requested API call.

error varchar(5
12)

The message for an error.

Sample queries

The following example shows a SVL_DATASHARE_USAGE_CONSUMER view.

SELECT request_type, status, trim(error) AS error
FROM svl_datashare_usage_consumer

 request_type | status | error
----------------+--------+--------
 "GET RELATION" | 0 |

SVL_DATASHARE_USAGE_PRODUCER

Records the activity and usage of datashares. This view is only relevant on the producer cluster.

SVL_DATASHARE_USAGE_PRODUCER is visible to all users. Superusers can see all rows; regular
users can see only their own data. For more information, see Visibility of data in system tables and
views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_DATASHARE_USAGE_PRODUCER. The data in the SYS monitoring view is formatted to be
easier to use and understand. We recommend that you use the SYS monitoring view for your
queries.

Table columns

Column
name

Data
type

Description

share_id integer The object ID (OID) of the datashare.

SVL views for main cluster 2716

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

share_name varchar(1
28)

The name of the datashare.

request_id varchar(5
0)

The unique ID of the requested API call.

request_t
ype

varchar(2
5)

The type of the request made to the producer cluster.

object_type varchar(6
4)

The type of the object being shared from the datashare. Possible
values are schemas, tables, columns, functions, and views.

object_oid integer The ID of the object being shared from the datashare.

object_name varchar(1
28)

The name of the object being shared from the datashare.

consumer_
account

varchar(1
6)

The account of the consumer account that the datashare is shared
to.

consumer_
namespace

varchar(6
4)

The namespace of the consumer account that the datashare is
shared to.

consumer_
transacti
on_uid

varchar(5
0)

The unique transaction ID of the statement on the consumer cluster.

recordtime timestamp The time when the action is recorded.

status integer The status of the datashare.

error varchar(5
12)

The message for an error.

consumer_
region

char(64) The Region that the consumer cluster is in.

SVL views for main cluster 2717

Amazon Redshift Database Developer Guide

Sample queries

The following example shows a SVL_DATASHARE_USAGE_PRODUCER view.

SELECT DISTINCT request_type
FROM svl_datashare_usage_producer
WHERE object_name LIKE 'tickit%';

 request_type

 "GET RELATION"

SVL_FEDERATED_QUERY

Use the SVL_FEDERATED_QUERY view to view information about a federated query call.

SVL_FEDERATED_QUERY is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_EXTERNAL_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to
use and understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column name Data type Description

userid integer The ID of the user running the
query.

xid bigint The transaction ID.

pid integer The ID of the leader process
running the query.

query integer The query ID of a federated
call.

sourcetype character (32) The federated call source
type, for example "PG".

SVL views for main cluster 2718

Amazon Redshift Database Developer Guide

Column name Data type Description

recordtime timestamp The time when a query is sent
for federation. UTC is used.

querytext character (4000) The query string sent to the
remote PostgreSQL engine
for execution.

num_rows bigint The number of rows returned
by the federated query.

num_bytes bigint The number of bytes returned
by the federated query.

duration bigint The time (microseconds)
spent fetching rows from
cursor calls. It is the time
spent running the federated
query, as well as, getting
results back.

Sample queries

To show information about federated query calls, run the following query.

select query, trim(sourcetype) as type, recordtime, trim(querytext) as "PG Subquery"
 from svl_federated_query where query = 4292;

 query | type | recordtime | pg subquery
-------+------+----------------------------
+---
 4292 | PG | 2020-03-27 04:29:58.485126 | SELECT "level" FROM functional.employees
 WHERE ("level" >= 6)
(1 row)

SVL views for main cluster 2719

Amazon Redshift Database Developer Guide

SVL_MULTI_STATEMENT_VIOLATIONS

Use the SVL_MULTI_STATEMENT_VIOLATIONS view to get a complete record of all of the SQL
commands run on the system that violates transaction block restrictions.

Violations occur when you run any of the following SQL commands that Amazon Redshift restricts
inside a transaction block or multi-statement requests:

• CREATE DATABASE

• DROP DATABASE

• ALTER TABLE APPEND

• CREATE EXTERNAL TABLE

• DROP EXTERNAL TABLE

• RENAME EXTERNAL TABLE

• ALTER EXTERNAL TABLE

• CREATE TABLESPACE

• DROP TABLESPACE

• CREATE LIBRARY

• DROP LIBRARY

• REBUILDCAT

• INDEXCAT

• REINDEX DATABASE

• VACUUM

• GRANT

• COPY

Note

If there are any entries in this view, then change your corresponding applications and SQL
scripts. We recommend changing your application code to move the use of these restricted
SQL commands outside of the transaction block. If you need further assistance, contact
AWS Support.

SVL views for main cluster 2720

Amazon Redshift Database Developer Guide

SVL_MULTI_STATEMENT_VIOLATIONS is visible to all users. Superusers can see all rows; regular
users can see only their own data. For more information, see Visibility of data in system tables and
views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer The ID of the user who caused the violation.

database character(32) The name of the database that the user was connected
to.

cmdname character(20) The name of the command that cannot run inside
a transaction block or multi-statement request. For
example, CREATE DATABASE, DROP DATABASE, ALTER
TABLE APPEND, CREATE EXTERNAL TABLE, DROP
EXTERNAL TABLE, RENAME EXTERNAL TABLE, ALTER
EXTERNAL TABLE, CREATE LIBRARY, DROP LIBRARY,
REBUILDCAT, INDEXCAT, REINDEX DATABASE, VACUUM,
GRANT on external resources, CLUSTER, COPY, CREATE
TABLESPACE, and DROP TABLESPACE.

xid bigint The transaction ID associated with the statement.

pid integer The process ID for the statement.

label character(320) Either the name of the file used to run the query or a
label defined with a SET QUERY_GROUP command. If the
query is not file-based or the QUERY_GROUP parameter
is not set, this field is blank.

SVL views for main cluster 2721

Amazon Redshift Database Developer Guide

Column
name

Data type Description

starttime timestamp The exact time when the statement started executing
, with 6 digits of precision for fractional seconds, for
example: 2009-06-12 11:29:19.131358

endtime timestamp The exact time when the statement finished executing
, with 6 digits of precision for fractional seconds, for
example: 2009-06-12 11:29:19.193640

sequence integer When a single statement contains more than 200
characters, additional rows are logged for that statement.
Sequence 0 is the first row, 1 is the second, and so on.

type varchar(10) The type of SQL statement: QUERY, DDL, or UTILITY.

text character(200) The SQL text, in 200-character increments. This field
might contain special characters such as backslash (\\)
and newline (\n).

Sample query

The following query returns multiple statements that have violations.

select * from svl_multi_statement_violations order by starttime asc;

userid | database | cmdname | xid | pid | label | starttime | endtime | sequence | type
 | text
==
1 | dev | CREATE DATABASE | 1034 | 5729 |label1 | ********* | ******* | 0 | DDL |
 create table c(b int);
1 | dev | CREATE DATABASE | 1034 | 5729 |label1 | ********* | ******* | 0 | UTILITY |
 create database b;
1 | dev | CREATE DATABASE | 1034 | 5729 |label1 | ********* | ******* | 0 | UTILITY |
 COMMIT
...

SVL views for main cluster 2722

Amazon Redshift Database Developer Guide

SVL_MV_REFRESH_STATUS

The SVL_MV_REFRESH_STATUS view contains a row for the refresh activity of materialized views.

For more information about materialized views, see Creating materialized views in Amazon
Redshift.

SVL_MV_REFRESH_STATUS is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_MV_REFRESH_HISTORY. The data in the SYS monitoring view is formatted to be easier to use
and understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column name Data type Description

db_name char(128) The database that contains the materialized
view.

userid bigint The ID of the user who performed the refresh.

schema_name char(128) The schema of the materialized view.

mv_name char(128) The materialized view name.

xid bigint The transaction ID of the refresh.

starttime timestamp The start time of the refresh.

endtime timestamp The end time of the refresh.

status text The status of the refresh. Example values include
the following:

• Refresh successfully updated MV incrementally

If it's a materialized view for streaming, the
message might have additional qualifier
s regarding the number of records. These
include the following:

SVL views for main cluster 2723

Amazon Redshift Database Developer Guide

Column name Data type Description

• Stream returned no new data – There were
no records retrieved.

• All records received from the stream were
skipped – Records were retrieved, but due to
errors all were skipped.

• Some stream records were skipped – Records
were retrieved, but due to errors some were
skipped.

If there are no qualifiers, then at least one
record was retrieved and all records are
available in the materialized view. There is one
remaining possible qualifier:

• The stream may contain more data – The
refresh ended before Amazon Redshift
determined that there were no further
records to consume. The stream can be up
to date, but it hasn't been confirmed by
Amazon Redshift.

• Refresh successfully recomputed MV from
scratch

• Refresh partially updated MV incrementally up
to an active transaction

• MV was already updated

• Refresh failed. A base table column was
renamed

• Refresh failed. A base table column type was
changed

• Refresh failed. A base table was renamed

• Refresh failed due to an internal error

• Refresh failed. A base table column was
dropped

SVL views for main cluster 2724

Amazon Redshift Database Developer Guide

Column name Data type Description

• Refresh failed. Schema of MV was renamed

• Refresh failed. MV was not found

• Auto refresh aborted due to excessive user
workload

• Refresh failed. Serializable isolation violation

refresh_type char(32) The definition of the refresh type. Example
values include Manual and Auto.

Sample query

To view the refresh status of materialized views, run the following query.

select * from svl_mv_refresh_status;

This query returns the following sample output:

 db_name | userid | schema | name | xid | starttime |
 endtime | status |
 refresh_type
---------+--------+-----------+---------+-------+----------------------------
+----------------------------+---
+-----------------
 dev | 169 | mv_schema | mv_test | 6640 | 2020-02-14 02:26:53.497935 |
 2020-02-14 02:26:53.556156 | Refresh successfully recomputed MV from scratch |
 Manual
 dev | 166 | mv_schema | mv_test | 6517 | 2020-02-14 02:26:39.287438 |
 2020-02-14 02:26:39.349539 | Refresh successfully updated MV incrementally |
 Auto
 dev | 162 | mv_schema | mv_test | 6388 | 2020-02-14 02:26:27.863426 |
 2020-02-14 02:26:27.918307 | Refresh successfully recomputed MV from scratch |
 Manual
 dev | 161 | mv_schema | mv_test | 6323 | 2020-02-14 02:26:20.020717 |
 2020-02-14 02:26:20.080002 | Refresh successfully updated MV incrementally |
 Auto

SVL views for main cluster 2725

Amazon Redshift Database Developer Guide

 dev | 161 | mv_schema | mv_test | 6301 | 2020-02-14 02:26:05.796146 |
 2020-02-14 02:26:07.853986 | Refresh successfully recomputed MV from scratch |
 Manual
 dev | 153 | mv_schema | mv_test | 6024 | 2020-02-14 02:25:18.762335 |
 2020-02-14 02:25:20.043462 | MV was already updated |
 Manual
 dev | 143 | mv_schema | mv_test | 5557 | 2020-02-14 02:24:23.100601 |
 2020-02-14 02:24:23.100633 | MV was already updated |
 Manual
 dev | 141 | mv_schema | mv_test | 5447 | 2020-02-14 02:23:54.102837 |
 2020-02-14 02:24:00.310166 | Refresh successfully updated MV incrementally |
 Auto
 dev | 1 | mv_schema | mv_test | 5329 | 2020-02-14 02:22:26.328481 |
 2020-02-14 02:22:28.369217 | Refresh successfully recomputed MV from scratch |
 Auto
 dev | 138 | mv_schema | mv_test | 5290 | 2020-02-14 02:21:56.885093 |
 2020-02-14 02:21:56.885098 | Refresh failed. MV was not found |
 Manual

SVL_QERROR

The SVL_QERROR view is deprecated.

SVL_QLOG

The SVL_QLOG view contains a log of all queries run against the database.

Amazon Redshift creates the SVL_QLOG view as a readable subset of information from the
STL_QUERY table. Use this table to find the query ID for a recently run query or to see how long it
took a query to complete.

SVL_QLOG is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

SVL views for main cluster 2726

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

userid integer ID of the user who generated the entry.

query integer Query ID. You can use this ID to join various other system
tables and views.

xid bigint Transaction ID.

pid integer Process ID associated with the query.

starttime timestamp Exact time when the statement started executing, with
six digits of precision for fractional seconds—for example:
2009-06-12 11:29:19.131358

endtime timestamp Exact time when the statement finished executing, with
six digits of precision for fractional seconds—for example:
2009-06-12 11:29:19.193640

elapsed bigint Length of time that it took the query to run (in microseco
nds).

aborted integer If a query was stopped by the system or canceled by the
user, this column contains 1. If the query ran to completio
n, this column contains 0. Queries that are canceled
for workload management purposes and subsequently
restarted also have a value of 1 in this column.

label character(320) Either the name of the file used to run the query, or a
label defined with a SET QUERY_GROUP command. If the
query is not file-based or the QUERY_GROUP parameter
is not set, this field value is default.

substring character(60) Truncated query text.

SVL views for main cluster 2727

Amazon Redshift Database Developer Guide

Column
name

Data type Description

source_qu
ery

integer If the query used result caching, the query ID of the query
that was the source of the cached results. If result caching
was not used, this field value is NULL.

concurren
cy_scalin
g_status_
txt

text A description of whether the query ran on the main
cluster or concurrency scaling cluster.

from_sp_c
all

integer If the query was called from a stored procedure, the
query ID of the procedure call. If the query wasn't run as
part of a stored procedure, this field is NULL.

Sample queries

The following example returns the query ID, execution time, and truncated query text for the five
most recent database queries run by the user with userid = 100.

select query, pid, elapsed, substring from svl_qlog
where userid = 100
order by starttime desc
limit 5;

 query | pid | elapsed | substring
--------+-------+----------+---
 187752 | 18921 | 18465685 | select query, elapsed, substring from svl_...
 204168 | 5117 | 59603 | insert into testtable values (100);
 187561 | 17046 | 1003052 | select * from pg_table_def where tablename...
 187549 | 17046 | 1108584 | select * from STV_WLM_SERVICE_CLASS_CONFIG
 187468 | 17046 | 5670661 | select * from pg_table_def where schemaname...
(5 rows)

The following example returns the SQL script name (LABEL column) and elapsed time for a query
that was cancelled (aborted=1):

select query, elapsed, trim(label) querylabel

SVL views for main cluster 2728

Amazon Redshift Database Developer Guide

from svl_qlog where aborted=1;

 query | elapsed | querylabel
-------+----------+-------------------------
 16 | 6935292 | alltickittablesjoin.sql
(1 row)

SVL_QUERY_METRICS

The SVL_QUERY_METRICS view shows the metrics for completed queries. This view is derived
from the STL_QUERY_METRICS system table. Use the values in this view as an aid to determine
threshold values for defining query monitoring rules. For more information, see WLM query
monitoring rules.

SVL_QUERY_METRICS is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column name Data type Description

userid integer ID of the user that ran the query that generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

service_class integer ID for the WLM query queue (service class). Query queues
are defined in the WLM configuration. Metrics are reported
only for user-defined queues. For a list of service class IDs,
see WLM service class IDs.

dimension varchar(24) Dimension on which the metric is reported. Possible values
are query, segment, and step.

segment integer Segment number. A query consists of multiple segments,
and each segment consists of one or more steps. Query

SVL views for main cluster 2729

Amazon Redshift Database Developer Guide

Column name Data type Description

segments can run in parallel. Each segment runs in a single
process. If the segment value is 0, metrics segment values
are rolled up to the query level.

step integer ID for the type of step performed. The description for the
step type is shown in the step_label column. .

step_label varchar(30) Type of step performed.

query_cpu_time bigint CPU time used by the query, in seconds. CPU time is distinct
from query run time.

query_blo
cks_read

bigint Number of 1 MB blocks read by the query.

query_exe
cution_time

bigint Elapsed execution time for a query, in seconds. Execution
time doesn’t include time spent waiting in a queue. See
query_queue_time for the time queued.

query_cpu
_usage_percent

bigint Percent of CPU capacity used by the query.

query_tem
p_blocks_
to_disk

bigint The amount of disk space used by a query to write intermedi
ate results, in MB.

segment_e
xecution_time

bigint Elapsed execution time for a single segment, in seconds.

cpu_skew numeric(3
8,2)

The ratio of maximum CPU usage for any slice to average
CPU usage for all slices. This metric is defined at the
segment level.

io_skew numeric(3
8,2)

The ratio of maximum blocks read (I/O) for any slice to
average blocks read for all slices.

SVL views for main cluster 2730

Amazon Redshift Database Developer Guide

Column name Data type Description

scan_row_count bigint The number of rows in a scan step. The row count is the
total number of rows emitted before filtering rows marked
for deletion (ghost rows) and before applying user-defined
query filters.

join_row_count bigint The number of rows processed in a join step.

nested_lo
op_join_r
ow_count

bigint The number of rows in a nested loop join.

return_ro
w_count

bigint The number of rows returned by the query.

spectrum_
scan_row_count

bigint The number of rows scanned by Amazon Redshift Spectrum
in Amazon S3.

spectrum_
scan_size_mb

bigint The amount of data, in MB, scanned by Amazon Redshift
Spectrum in Amazon S3.

query_que
ue_time

bigint The amount of time in seconds that the query was queued.

SVL_QUERY_METRICS_SUMMARY

The SVL_QUERY_METRICS_SUMMARY view shows the maximum values of metrics for completed
queries. This view is derived from the STL_QUERY_METRICS system table. Use the values in
this view as an aid to determine threshold values for defining query monitoring rules. For more
information about rules and metrics for query monitoring for Amazon Redshift, see WLM query
monitoring rules.

SVL_QUERY_METRICS_SUMMARY is visible to all users. Superusers can see all rows; regular users
can see only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

SVL views for main cluster 2731

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

userid integer ID of the user that ran the query that generated the entry.

query integer Query ID. The query column can be used to join other
system tables and views.

service_class integer ID for the WLM query queue (service class). Query queues
are defined in the WLM configuration. Metrics are reported
only for user-defined queues. For a list of service class IDs,
see WLM service class IDs.

query_cpu_time bigint CPU time used by the query, in seconds. CPU time is distinct
from query run time.

query_blo
cks_read

bigint Number of 1 MB blocks read by the query.

query_exe
cution_time

bigint Elapsed execution time for a query, in seconds. Execution
time doesn’t include time spent waiting in a queue.

query_cpu
_usage_percent

numeric(3
8,2)

Percent of CPU capacity used by the query.

query_tem
p_blocks_
to_disk

bigint The amount of disk space used by a query to write intermedi
ate results, in MB.

segment_e
xecution_time

bigint Elapsed execution time for a single segment, in seconds.

cpu_skew numeric(3
8,2)

The ratio of maximum CPU usage for any slice to average
CPU usage for all slices. This metric is defined at the
segment level.

io_skew numeric(3
8,2)

The ratio of maximum blocks read (I/O) for any slice to
average blocks read for all slices.

SVL views for main cluster 2732

Amazon Redshift Database Developer Guide

Column name Data type Description

scan_row_count bigint The number of rows in a scan step. The row count is the
total number of rows emitted before filtering rows marked
for deletion (ghost rows) and before applying user-defined
query filters.

join_row_count bigint The number of rows processed in a join step.

nested_lo
op_join_r
ow_count

bigint The number of rows in a nested loop join.

return_ro
w_count

bigint The number of rows returned by the query.

spectrum_
scan_row_count

bigint The number of rows scanned by Amazon Redshift Spectrum
in Amazon S3.

spectrum_
scan_size_mb

bigint The amount of data, in MB, scanned by Amazon Redshift
Spectrum in Amazon S3.

query_que
ue_time

bigint The amount of time in seconds that the query was queued.

SVL_QUERY_QUEUE_INFO

Summarizes details for queries that spent time in a workload management (WLM) query queue or a
commit queue.

The SVL_QUERY_QUEUE_INFO view filters queries performed by the system and shows only
queries performed by a user.

The SVL_QUERY_QUEUE_INFO view summarizes information from the STL_QUERY,
STL_WLM_QUERY, and STL_COMMIT_STATS system tables.

SVL_QUERY_QUEUE_INFO is visible only to superusers. For more information, see Visibility of data
in system tables and views.

SVL views for main cluster 2733

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

database text The name of the database the user was connected to
when the query was issued.

query integer Query ID.

xid bigint Transaction ID.

userid integer ID of the user that generated the query.

querytxt text First 100 characters of the query text.

queue_sta
rt_time

timestamp Time in UTC when the query entered the WLM queue.

exec_star
t_time

timestamp Time in UTC when query execution started.

service_c
lass

integer ID for the service class. Service classes are defined in the
WLM configuration file.

slots integer Number of WLM query slots.

queue_ela
psed

bigint Time that the query spent waiting in a WLM queue (in
seconds).

exec_elap
sed

bigint Time spent executing the query (in seconds).

wlm_total
_elapsed

bigint Time that the query spent in a WLM queue (queue_el
apsed), plus time spent executing the query (exec_ela
psed).

commit_qu
eue_elaps
ed

bigint Time that the query spent waiting in the commit queue
(in seconds).

SVL views for main cluster 2734

Amazon Redshift Database Developer Guide

Column
name

Data type Description

commit_ex
ec_time

bigint Time that the query spent in the commit operation (in
seconds).

service_c
lass_name

character(64) The name of the service class.

Sample queries

The following example shows the time that queries spent in WLM queues.

select query, service_class, queue_elapsed, exec_elapsed, wlm_total_elapsed
from svl_query_queue_info
where wlm_total_elapsed > 0;

 query | service_class | queue_elapsed | exec_elapsed | wlm_total_elapsed
---------+---------------+---------------+--------------+-------------------
 2742669 | 6 | 2 | 916 | 918
 2742668 | 6 | 4 | 197 | 201
(2 rows)

SVL_QUERY_REPORT

Amazon Redshift creates the SVL_QUERY_REPORT view from a UNION of a number of Amazon
Redshift STL system tables to provide information about completed query steps.

This view breaks down the information about completed queries by slice and by step, which can
help with troubleshooting node and slice issues in the Amazon Redshift cluster.

SVL_QUERY_REPORT is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

SVL views for main cluster 2735

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data
type

Description

userid integer ID of user who generated entry.

query integer Query ID. Can be used to join various other system tables and views.

slice integer Data slice where the step ran.

segment integer Segment number.

A query consists of multiple segments, and each segment consists of
one or more steps. Query segments can run in parallel. Each segment
runs in a single process.

step integer Query step that completed.

start_time timestamp Exact time in UTC when the segment started executing, with 6 digits
of precision for fractional seconds. For example: 2012-12-12
11:29:19.131358

end_time timestamp Exact time in UTC when the segment finished executing, with 6 digits
of precision for fractional seconds. For example: 2012-12-12
11:29:19.131467

elapsed_t
ime

bigint Time (in microseconds) that it took the segment to run.

rows bigint Number of rows produced by the step (per slice). This number
represents the number of rows for the slice that result from the
execution of the step, not the number of rows received or processed
by the step. In other words, this is the number of rows that survive the
step and are passed on to the next step.

bytes bigint Number of bytes produced by the step (per slice).

label char(256) Step label, which consists of a query step name and, when applicabl
e, table ID and table name (for example, scan tbl=100448 name

SVL views for main cluster 2736

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

=user). Three-digit table IDs usually refer to scans of transient tables.
When you see tbl=0, it usually refers to a scan of a constant value.

is_diskba
sed

character
(1)

Whether this step of the query was performed as a disk-based
operation: true (t) or false (f). Only certain steps, such as hash, sort,
and aggregate steps, can go to disk. Many types of steps are always
performed in memory.

workmem bigint Amount of working memory (in bytes) assigned to the query step. This
value is the query_working_mem threshold allocated for use during
execution, not the amount of memory that was actually used

is_rrscan character
(1)

If true (t), indicates that range-restricted scan was used on the step.

is_delaye
d_scan

character
(1)

If true (t), indicates that delayed scan was used on the step.

rows_pre_
filter

bigint For scans of permanent tables, the total number of rows emitted
before filtering rows marked for deletion (ghost rows) and before
applying user-defined query filters.

Sample queries

The following query demonstrates the data skew of the returned rows for the query with query ID
279. Use this query to determine if database data is evenly distributed over the slices in the data
warehouse cluster:

select query, segment, step, max(rows), min(rows),
case when sum(rows) > 0
then ((cast(max(rows) -min(rows) as float)*count(rows))/sum(rows))
else 0 end
from svl_query_report
where query = 279
group by query, segment, step
order by segment, step;

SVL views for main cluster 2737

Amazon Redshift Database Developer Guide

This query should return data similar to the following sample output:

query | segment | step | max | min | case
------+---------+------+----------+----------+----------------------
279 | 0 | 0 | 19721687 | 19721687 | 0
279 | 0 | 1 | 19721687 | 19721687 | 0
279 | 1 | 0 | 986085 | 986084 | 1.01411202804304e-06
279 | 1 | 1 | 986085 | 986084 | 1.01411202804304e-06
279 | 1 | 4 | 986085 | 986084 | 1.01411202804304e-06
279 | 2 | 0 | 1775517 | 788460 | 1.00098637606408
279 | 2 | 2 | 1775517 | 788460 | 1.00098637606408
279 | 3 | 0 | 1775517 | 788460 | 1.00098637606408
279 | 3 | 2 | 1775517 | 788460 | 1.00098637606408
279 | 3 | 3 | 1775517 | 788460 | 1.00098637606408
279 | 4 | 0 | 1775517 | 788460 | 1.00098637606408
279 | 4 | 1 | 1775517 | 788460 | 1.00098637606408
279 | 4 | 2 | 1 | 1 | 0
279 | 5 | 0 | 1 | 1 | 0
279 | 5 | 1 | 1 | 1 | 0
279 | 6 | 0 | 20 | 20 | 0
279 | 6 | 1 | 1 | 1 | 0
279 | 7 | 0 | 1 | 1 | 0
279 | 7 | 1 | 0 | 0 | 0
(19 rows)

SVL_QUERY_SUMMARY

Use the SVL_QUERY_SUMMARY view to find general information about the execution of a query.

The SVL_QUERY_SUMMARY view contains a subset of data from the SVL_QUERY_REPORT view.
Note that the information in SVL_QUERY_SUMMARY is aggregated from all nodes.

Note

The SVL_QUERY_SUMMARY view only contains information about queries performed
by Amazon Redshift, not other utility and DDL commands. For a complete listing and
information on all statements performed by Amazon Redshift, including DDL and utility
commands, you can query the SVL_STATEMENTTEXT view.

SVL_QUERY_SUMMARY is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

SVL views for main cluster 2738

Amazon Redshift Database Developer Guide

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

For information about SVCS_QUERY_SUMMARY, see SVCS_QUERY_SUMMARY.

Table columns

Column
name

Data type Description

userid integer ID of user who generated entry.

query integer Query ID. Can be used to join various other system tables and
views.

stm integer Stream: A set of concurrent segments in a query. A query has one
or more streams.

seg integer Segment number. A query consists of multiple segments, and
each segment consists of one or more steps. Query segments can
run in parallel. Each segment runs in a single process.

step integer Query step that ran.

maxtime bigint Maximum amount of time for the step to run (in microseconds).

avgtime bigint Average time for the step to run (in microseconds).

rows bigint Number of data rows involved in the query step.

bytes bigint Number of data bytes involved in the query step.

rate_row double
precision

Query execution rate per row.

rate_byte double
precision

Query execution rate per byte.

label text Step label, which consists of a query step name and, when
applicable, table ID and table name (for example, scan tbl=10044

SVL views for main cluster 2739

Amazon Redshift Database Developer Guide

Column
name

Data type Description

8 name =user). Three-digit table IDs usually refer to scans of
transient tables. When you see tbl=0, it usually refers to a scan
of a constant value.

is_diskba
sed

character(1) Whether this step of the query was performed as a disk-based
operation on any node in the cluster: true (t) or false (f). Only
certain steps, such as hash, sort, and aggregate steps, can go to
disk. Many types of steps are always performed in memory.

workmem bigint Amount of working memory (in bytes) assigned to the query step.

is_rrscan character(1) If true (t), indicates that range-restricted scan was used on the
step. Default is false (f).

is_delaye
d_scan

character(1) If true (t), indicates that delayed scan was used on the step.
Default is false (f).

rows_pre_
filter

bigint For scans of permanent tables, the total number of rows emitted
before filtering rows marked for deletion (ghost rows).

Sample queries

Viewing processing information for a query step

The following query shows basic processing information for each step of query 87:

select query, stm, seg, step, rows, bytes
from svl_query_summary
where query = 87
order by query, seg, step;

This query retrieves the processing information about query 87, as shown in the following sample
output:

 query | stm | seg | step | rows | bytes
-------+-----+-----+------+--------+---------

SVL views for main cluster 2740

Amazon Redshift Database Developer Guide

87 | 0 | 0 | 0 | 90 | 1890
87 | 0 | 0 | 2 | 90 | 360
87 | 0 | 1 | 0 | 90 | 360
87 | 0 | 1 | 2 | 90 | 1440
87 | 1 | 2 | 0 | 210494 | 4209880
87 | 1 | 2 | 3 | 89500 | 0
87 | 1 | 2 | 6 | 4 | 96
87 | 2 | 3 | 0 | 4 | 96
87 | 2 | 3 | 1 | 4 | 96
87 | 2 | 4 | 0 | 4 | 96
87 | 2 | 4 | 1 | 1 | 24
87 | 3 | 5 | 0 | 1 | 24
87 | 3 | 5 | 4 | 0 | 0
(13 rows)

Determining whether query steps spilled to disk

The following query shows whether or not any of the steps for the query with query ID 1025 (see
the SVL_QLOG view to learn how to obtain the query ID for a query) spilled to disk or if the query
ran entirely in-memory:

select query, step, rows, workmem, label, is_diskbased
from svl_query_summary
where query = 1025
order by workmem desc;

This query returns the following sample output:

query| step| rows | workmem | label | is_diskbased
-----+-----+--------+-----------+---------------+--------------
1025 | 0 |16000000| 141557760 |scan tbl=9 | f
1025 | 2 |16000000| 135266304 |hash tbl=142 | t
1025 | 0 |16000000| 128974848 |scan tbl=116536| f
1025 | 2 |16000000| 122683392 |dist | f
(4 rows)

By scanning the values for IS_DISKBASED, you can see which query steps went to disk. For query
1025, the hash step ran on disk. Steps might run on disk include hash, aggr, and sort steps. To view
only disk-based query steps, add and is_diskbased = 't' clause to the SQL statement in the
above example.

SVL views for main cluster 2741

Amazon Redshift Database Developer Guide

SVL_RESTORE_ALTER_TABLE_PROGRESS

Use SVL_RESTORE_ALTER_TABLE_PROGRESS to monitor the migration progress of each table
in the cluster during a classic resize to RA3 nodes. It captures the historic throughput of data
migration during the resize operation. For more information about classic resize to RA3 nodes, go
to Classic resize.

SVL_RESTORE_ALTER_TABLE_PROGRESS is visible only to superusers. For more information, see
Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_RESTORE_LOG. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Note

Rows with a progress of 100.00% or ABORTED are deleted after 7 days.
Rows for tables dropped during or after a classic resize can still appear in
SVL_RESTORE_ALTER_TABLE_PROGRESS.

Table columns

Column
name

Data type Description

tbl integer The ID of the table.

progress char(32) The status of redistribution progress of the table. Possible values
are percentages from 0.00% to 100.00% and the message
ABORTED. ABORTED means that the redistribution was stopped
without finishing, with the reason explained in the message
column.

message char(256) The message associated with the redistribution progress of the
table.

SVL views for main cluster 2742

https://docs.aws.amazon.com/redshift/latest/mgmt/managing-cluster-operations.html#classic-resize-faster

Amazon Redshift Database Developer Guide

Sample query

The following query returns running and queued queries.

select * from svl_restore_alter_table_progress;

tbl | progress | message
--------+----------+---
105614 | ABORTED | Abort:Table no longer contains the prior dist key column.
105610 | ABORTED | Abort:Table no longer contains the prior dist key column.
105594 | 0.00% | Table waiting for alter diststyle conversion.
105602 | ABORTED | Abort:Table no longer contains the prior dist key column.
105606 | ABORTED | Abort:Table no longer contains the prior dist key column.
105598 | 100.00% | Restored to distkey successfully.

SVL_S3LIST

Use the SVL_S3LIST view to get details about Amazon Redshift Spectrum queries at the segment
level.

SVL_S3LIST is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

SVL_S3LIST only contains queries run on main clusters. It doesn't contain queries
run on concurrency scaling clusters. To access queries run on both main and
concurrency scaling clusters, we recommend that you use the SYS monitoring view
SYS_EXTERNAL_QUERY_DETAIL . The data in the SYS monitoring view is formatted to be
easier to use and understand.

Table columns

Column
name

Data type Description

query integer The query ID.

SVL views for main cluster 2743

Amazon Redshift Database Developer Guide

Column
name

Data type Description

segment integer The segment number. A query consists of multiple
segments.

node integer The node number.

slice integer The data slice that a particular segment ran against.

eventtime timestamp The time in UTC that the event is recorded.

bucket text The Amazon S3 bucket name.

prefix text The prefix of the Amazon S3 bucket location.

recursive char(1) Whether there is recursive scan for subfolders.

retrieved
_files

integer The number of listed files.

max_file_
size

bigint The maximum file size among listed files.

avg_file_
size

double precision The average file size among listed files.

generated
_splits

integer The number of file splits.

avg_split
_length

double precision The average length of file splits in bytes.

duration bigint The duration of file listing, in microseconds.

Sample query

The following example queries SVL_S3LIST for the last query to run.

select *

SVL views for main cluster 2744

Amazon Redshift Database Developer Guide

from svl_s3list
where query = pg_last_query_id()
order by query,segment;

SVL_S3LOG

Use the SVL_S3LOG view to get details about Amazon Redshift Spectrum queries at the segment
and node slice level.

SVL_S3LOG is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

Note

SVL_S3LOG only contains queries run on main clusters. It doesn't contain queries
run on concurrency scaling clusters. To access queries run on both main and
concurrency scaling clusters, we recommend that you use the SYS monitoring view
SYS_EXTERNAL_QUERY_DETAIL . The data in the SYS monitoring view is formatted to be
easier to use and understand.

Table columns

Column
name

Data type Description

pid integer The process ID.

query integer The query ID.

segment integer The segment number. A query consists of multiple
segments, and each segment consists of one or more
steps.

step integer The query step that ran.

node integer The node number.

slice integer The data slice that a particular segment ran against.

SVL views for main cluster 2745

Amazon Redshift Database Developer Guide

Column
name

Data type Description

eventtime timestamp Time in UTC that the step started executing.

message text Message for the log entry.

Sample query

The following example queries SVL_S3LOG for the last query that ran.

select *
from svl_s3log
where query = pg_last_query_id()
order by query,segment,slice;

SVL_S3PARTITION

Use the SVL_S3PARTITION view to get details about Amazon Redshift Spectrum partitions at the
segment and node slice level.

SVL_S3PARTITION is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Note

SVL_S3PARTITION only contains queries run on main clusters. It doesn't contain
queries run on concurrency scaling clusters. To access queries run on both main and
concurrency scaling clusters, we recommend that you use the SYS monitoring view
SYS_EXTERNAL_QUERY_DETAIL . The data in the SYS monitoring view is formatted to be
easier to use and understand.

SVL views for main cluster 2746

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

query integer The query ID.

segment integer A segment number. A query consists of multiple
segments, and each segment consists of one or more
steps.

node integer The node number.

slice integer The data slice that a particular segment ran against.

starttime timestamp without
time zone

Time in UTC that the partition pruning started executing.

endtime timestamp without
time zone

Time in UTC that the partition pruning completed.

duration bigint Elapsed time (in microseconds).

total_par
titions

integer Number of total partitions.

qualified
_partitions

integer Number of qualified partitions.

assigned_
partitions

integer Number of assigned partitions on the slice.

assignmen
t

character Type of assignment.

Sample query

The following example gets the partition details for the last query completed.

SELECT query, segment,

SVL views for main cluster 2747

Amazon Redshift Database Developer Guide

 MIN(starttime) AS starttime,
 MAX(endtime) AS endtime,
 datediff(ms,MIN(starttime),MAX(endtime)) AS dur_ms,
 MAX(total_partitions) AS total_partitions,
 MAX(qualified_partitions) AS qualified_partitions,
 MAX(assignment) as assignment_type
FROM svl_s3partition
WHERE query=pg_last_query_id()
GROUP BY query, segment

query | segment | starttime | endtime | dur_ms|
 total_partitions | qualified_partitions | assignment_type
------+---------+-------------------------------+-----------------------------+-------
+------------------+----------------------+----------------
99232 | 0 | 2018-04-17 22:43:50.201515 | 2018-04-17 22:43:54.674595 | 4473 |
 2526 | 334 | p

SVL_S3PARTITION_SUMMARY

Use the SVL_S3PARTITION_SUMMARY view to get a summary of Redshift Spectrum queries
partition processing at the segment level.

SVL_S3PARTITION_SUMMARY is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

For information about SVCS_S3PARTITION, see SVCS_S3PARTITION_SUMMARY.

Table columns

Column
name

Data type Description

query integer The query ID. You can use this value to join various other
system tables and views.

segment integer The segment number. A query consists of multiple
segments.

assignmen
t

char(1) The type of partition assignment across nodes.

SVL views for main cluster 2748

Amazon Redshift Database Developer Guide

Column
name

Data type Description

min_start
time

timestamp The time in UTC that the partition processing started.

max_endti
me

timestamp The time in UTC that the partition processing completed.

min_durat
ion

bigint The minimum partition processing time used by a node
for this query (in microseconds).

max_durat
ion

bigint The maximum partition processing time used by a node
for this query (in microseconds).

avg_durat
ion

bigint The average partition processing time used by a node for
this query (in microseconds).

total_par
titions

integer The total number of partitions in an external table.

qualified
_partitions

integer The total number of qualified partitions.

min_assig
ned_parti
tions

integer The minimum number of partitions assigned on one
node.

max_assig
ned_parti
tions

integer The maximum number of partitions assigned on one
node.

avg_assig
ned_parti
tions

bigint The average number of partitions assigned on one node.

Sample query

The following example gets the partition scan details for the last query completed.

SVL views for main cluster 2749

Amazon Redshift Database Developer Guide

select query, segment, assignment, min_starttime, max_endtime, min_duration,
 avg_duration
from svl_s3partition_summary
where query = pg_last_query_id()
order by query,segment;

SVL_S3QUERY

Use the SVL_S3QUERY view to get details about Amazon Redshift Spectrum queries at the
segment and node slice level.

SVL_S3QUERY is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Note

SVL_S3QUERY only contains queries run on main clusters. It doesn't contain
queries run on concurrency scaling clusters. To access queries run on both main and
concurrency scaling clusters, we recommend that you use the SYS monitoring view
SYS_EXTERNAL_QUERY_DETAIL . The data in the SYS monitoring view is formatted to be
easier to use and understand.

Table columns

Column
name

Data type Description

userid integer The ID of user who generated a given entry.

query integer The query ID.

segment integer A segment number. A query consists of multiple
segments, and each segment consists of one or more
steps.

step integer The query step that ran.

node integer The node number.

SVL views for main cluster 2750

Amazon Redshift Database Developer Guide

Column
name

Data type Description

slice integer The data slice that a particular segment ran against.

starttime timestamp Time in UTC that the query started executing.

endtime timestamp Time in UTC that the query execution completed

elapsed integer Elapsed time (in microseconds).

external_
table_nam
e

char(136) Internal format of external table name for the s3 scan
step.

is_partit
ioned

char(1) If true (t), this column value indicates that the external
table is partitioned.

is_rrscan char(1) If true (t), this column value indicates that a range-res
tricted scan was applied.

s3_scanne
d_rows

bigint The number of rows scanned from Amazon S3 and sent
to the Redshift Spectrum layer.

s3_scanne
d_bytes

bigint The number of bytes scanned from Amazon S3 and sent
to the Redshift Spectrum layer.

s3query_r
eturned_r
ows

bigint The number of rows returned from the Redshift Spectrum
layer to the cluster.

s3query_r
eturned_b
ytes

bigint The number of bytes returned from the Redshift
Spectrum layer to the cluster.

files integer The number of files that were processed for this S3 scan
step on this slice.

SVL views for main cluster 2751

Amazon Redshift Database Developer Guide

Column
name

Data type Description

splits int The number of splits processed on this slice. With large
splitable data files, for example, data files larger than
about 512 MB, Redshift Spectrum tries to split the files
into multiple S3 requests for parallel processing.

total_spl
it_size

bigint The total size of all splits processed on this slice, in bytes.

max_split
_size

bigint The maximum split size processed for this slice, in bytes.

total_ret
ries

integer The total number of retries for the processed files.

max_retri
es

integer The maximum number of retries for an individual
processed file.

max_reque
st_durati
on

integer The maximum duration of an individual Redshift
Spectrum request (in microseconds).

avg_reque
st_durati
on

double precision The average duration of the Redshift Spectrum requests
(in microseconds).

max_reque
st_parall
elism

integer The maximum number of outstanding Redshift Spectrum
on this slice for this S3 scan step.

avg_reque
st_parall
elism

double precision The average number of parallel Redshift Spectrum
requests on this slice for this S3 scan step.

Sample query

The following example gets the scan step details for the last query completed.

SVL views for main cluster 2752

Amazon Redshift Database Developer Guide

select query, segment, slice, elapsed, s3_scanned_rows, s3_scanned_bytes,
 s3query_returned_rows, s3query_returned_bytes, files
from svl_s3query
where query = pg_last_query_id()
order by query,segment,slice;

query | segment | slice | elapsed | s3_scanned_rows | s3_scanned_bytes |
 s3query_returned_rows | s3query_returned_bytes | files
------+---------+-------+---------+-----------------+------------------
+-----------------------+------------------------+------
 4587 | 2 | 0 | 67811 | 0 | 0 |
 0 | 0 | 0
 4587 | 2 | 1 | 591568 | 172462 | 11260097 |
 8513 | 170260 | 1
 4587 | 2 | 2 | 216849 | 0 | 0 |
 0 | 0 | 0
 4587 | 2 | 3 | 216671 | 0 | 0 |
 0 | 0 | 0

SVL_S3QUERY_SUMMARY

Use the SVL_S3QUERY_SUMMARY view to get a summary of all Amazon Redshift Spectrum queries
(S3 queries) that have been run on the system. SVL_S3QUERY_SUMMARY aggregates detail from
SVL_S3QUERY at the segment level.

SVL_S3QUERY_SUMMARY is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_EXTERNAL_QUERY_DETAIL. The data in the SYS monitoring view is formatted to be easier to
use and understand. We recommend that you use the SYS monitoring view for your queries.

For SVCS_S3QUERY_SUMMARY, see SVCS_S3QUERY_SUMMARY.

Table columns

Column
name

Data type Description

userid integer The ID of the user that generated the given entry.

SVL views for main cluster 2753

Amazon Redshift Database Developer Guide

Column
name

Data type Description

query integer The query ID. You can use this value to join various other
system tables and views.

xid bigint The transaction ID.

pid integer The process ID.

segment integer The segment number. A query consists of multiple
segments, and each segment consists of one or more
steps.

step integer The query step that ran.

starttime timestamp Time in UTC that the query started executing.

endtime timestamp Time in UTC that the query completed.

elapsed integer The length of time that it took the query to run (in
microseconds).

aborted integer If a query was stopped by the system or canceled by the
user, this column contains 1. If the query ran to completio
n, this column contains 0.

external_
table_nam
e

char(136) The internal format of name of the external name of the
table for the external table scan.

file_format character(16) The file format of the external table data.

is_partit
ioned

char(1) If true (t), this column value indicates that the external
table is partitioned.

is_rrscan char(1) If true (t), this column value indicates that a range-res
tricted scan was applied.

SVL views for main cluster 2754

Amazon Redshift Database Developer Guide

Column
name

Data type Description

is_nested char(1) If true (t), this column value indicates that the nested
column data type is accessed.

s3_scanne
d_rows

bigint The number of rows scanned from Amazon S3 and sent
to the Redshift Spectrum layer.

s3_scanne
d_bytes

bigint The number of bytes scanned from Amazon S3 and sent
to the Redshift Spectrum layer, based on compressed
data.

s3query_r
eturned_r
ows

bigint The number of rows returned from the Redshift Spectrum
layer to the cluster.

s3query_r
eturned_b
ytes

bigint The number of bytes returned from the Redshift
Spectrum layer to the cluster. A large amount of data
returned to Amazon Redshift might affect system
performance.

files integer The number of files that were processed for this Redshift
Spectrum query. A small number of files limits the
benefits of parallel processing.

files_max integer The maximum number of files processed on one slice.

files_avg integer The average number of files processed on one slice.

splits int The number of splits processed for this segment. The
number of splits processed on this slice. With large
splitable data files, for example, data files larger than
about 512 MB, Redshift Spectrum tries to split the files
into multiple S3 requests for parallel processing.

splits_max int The maximum number of splits processed on this slice.

splits_avg int The average number of splits processed on this slice.

SVL views for main cluster 2755

Amazon Redshift Database Developer Guide

Column
name

Data type Description

total_spl
it_size

bigint The total size of all splits processed.

max_split
_size

bigint The maximum split size processed, in bytes.

avg_split
_size

bigint The average split size processed, in bytes.

total_ret
ries

integer The total number of retries for one individual processed
file.

max_retri
es

integer The maximum number of retries for any of processed
files.

max_reque
st_durati
on

integer The maximum duration of an individual file request (in
microseconds). Long running queries might indicate a
bottleneck.

avg_reque
st_durati
on

double precision The average duration of the file requests (in microseco
nds).

max_reque
st_parall
elism

integer The maximum number of parallel requests at one slice for
this Redshift Spectrum query.

avg_reque
st_parall
elism

double precision The average number of parallel requests at one slice for
this Redshift Spectrum query.

total_slo
wdown_cou
nt

bigint The total number of Amazon S3 requests with a slow
down error that occurred during the external table scan.

SVL views for main cluster 2756

Amazon Redshift Database Developer Guide

Column
name

Data type Description

max_slowd
own_count

integer The maximum number of Amazon S3 requests with a
slow down error that occurred during the external table
scan on one slice.

Sample query

The following example gets the scan step details for the last query completed.

select query, segment, elapsed, s3_scanned_rows, s3_scanned_bytes,
 s3query_returned_rows, s3query_returned_bytes, files
from svl_s3query_summary
where query = pg_last_query_id()
order by query,segment;

query | segment | elapsed | s3_scanned_rows | s3_scanned_bytes | s3query_returned_rows
 | s3query_returned_bytes | files
------+---------+---------+-----------------+------------------+-----------------------
+------------------------+------
 4587 | 2 | 67811 | 0 | 0 | 0
 | 0 | 0
 4587 | 2 | 591568 | 172462 | 11260097 | 8513
 | 170260 | 1
 4587 | 2 | 216849 | 0 | 0 | 0
 | 0 | 0
 4587 | 2 | 216671 | 0 | 0 | 0
 | 0 | 0

SVL_S3RETRIES

Use the SVL_S3RETRIES view to get information about why an Amazon Redshift Spectrum query
based on Amazon S3 has failed.

SVL_S3RETRIES is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

SVL views for main cluster 2757

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

query integer The query ID.

segment integer Segment number.

A query consists of
multiple segments, and
each segment consists
of one or more steps.
Query segments can
run in parallel. Each
segment runs in a
single process.

node integer The node number.

slice integer The data slice that a
particular segment ran
against.

eventtime timestamp without
time zone

Time in UTC that the
step started executing.

retries integer The number of retries
for the query.

successfu
l_fetches

integer The number of times
data was returned.

file_size bigint This size of the file in
bytes.

location text The location of the
table.

SVL views for main cluster 2758

Amazon Redshift Database Developer Guide

Column
name

Data type Description

message text The error message.

Sample query

The following example retrieves data about failed S3 queries.

SELECT svl_s3retries.query, svl_s3retries.segment, svl_s3retries.node,
 svl_s3retries.slice, svl_s3retries.eventtime, svl_s3retries.retries,
svl_s3retries.successful_fetches, svl_s3retries.file_size,
 btrim((svl_s3retries."location")::text) AS "location",
 btrim((svl_s3retries.message)::text)
AS message FROM svl_s3retries;

SVL_SPATIAL_SIMPLIFY

You can query the system view SVL_SPATIAL_SIMPLIFY to get information about simplified spatial
geometry objects using the COPY command. When you use COPY on a shapefile, you can specify
SIMPLIFY tolerance, SIMPLIFY AUTO, and SIMPLIFY AUTO max_tolerance ingestion options.
The result of the simplification is summarized in SVL_SPATIAL_SIMPLIFY system view.

When SIMPLIFY AUTO max_tolerance is set, this view contains a row for each geometry that
exceeded the maximum size. When SIMPLIFY tolerance is set, then one row for the entire
COPY operation is stored. This row references the COPY query ID and the specified simplification
tolerance.

SVL_SPATIAL_SIMPLIFY is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_SPATIAL_SIMPLIFY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

SVL views for main cluster 2759

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

query integer The ID of the query (COPY command) that generated this
row.

line_numb
er

integer When COPY SIMPLIFY AUTO option is specified, this
value is the record number of the simplified record in the
shapefile.

maximum_t
olerance

double The distance tolerance value specified in the COPY
command. This is either the maximum tolerance value
using the SIMPLIFY AUTO option, or the fixed tolerance
value using the SIMPLIFY option.

initial_size integer The size in bytes of the GEOMETRY data value before
simplification.

simplified char(1) When the COPY SIMPLIFY AUTO option is specified, t if
the geometry was successfully simplified, or f otherwise.
The geometry might not be simplified successfully if after
the simplification with the given maximum tolerance its
size is still larger than the maximum geometry size.

final_size integer When the COPY SIMPLIFY AUTO option is specified, this
is the size in bytes of the geometry after simplification.

final_tol
erance

double

Sample query

The following query returns the list of records that COPY simplified.

SELECT * FROM svl_spatial_simplify WHERE query = pg_last_copy_id();
 query | line_number | maximum_tolerance | initial_size | simplified | final_size |
 final_tolerance

SVL views for main cluster 2760

Amazon Redshift Database Developer Guide

-------+-------------+-------------------+--------------+------------+------------
+----------------------
 20 | 1184704 | -1 | 1513736 | t | 1008808 |
 1.276386653895e-05
 20 | 1664115 | -1 | 1233456 | t | 1023584 |
 6.11707814796635e-06

SVL_SPECTRUM_SCAN_ERROR

You can query the system view SVL_SPECTRUM_SCAN_ERROR to get information about Redshift
Spectrum scan errors.

SVL_SPECTRUM_SCAN_ERROR is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_EXTERNAL_QUERY_ERROR. The data in the SYS monitoring view is formatted to be easier to
use and understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Displays a sample of logged errors. The default is 10 entries per query.

Column
name

Data type Description

userid integer The ID of the user that generated this row.

query integer The ID of the query that generated this row.

location character(128) The location of the data being queried.

rowid character(128) The location of the error within the file. The rowid parts
are separated with a : (colon) and additional parts might
be added in the future.

row_offset :row_group :row_id

A row_offset is the offset (in bytes) of the row within the
file and is set to -1 for unsupported file formats. A table

SVL views for main cluster 2761

Amazon Redshift Database Developer Guide

Column
name

Data type Description

is divided into row_groups, and each group has rows with
distinct row_ids.

colname character(128) The name of the column returned by the query.

original_
value

character(128) Original value queried.

modified_
value

character(128) Modified value returned based on the data handling
configuration option specified in the query.

trigger character(128) Data handling option specified in the query.

action character(128) Action associated with the data handling option specified
in the query.

action_va
lue

character(128) Value of action parameter associated with the data
handling option specified in the query.

error_code integer Result code of the data handling option specified in the
query.

Sample query

The following query returns the list of rows for which data handling operations were performed.

SELECT * FROM svl_spectrum_scan_error;

The query returns results similar to the following.

 userid query location rowid colname
 original_value modified_value trigger action
 action_valueerror_code

SVL views for main cluster 2762

Amazon Redshift Database Developer Guide

 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:0 league_name
 Barclays Premier League Barclays Premier Lea UNSPECIFIED TRUNCATE
 156
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:0 league_nspi
 34595 32767 UNSPECIFIED
 OVERFLOW_VALUE 199
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:1 league_nspi
 34151 32767 UNSPECIFIED
 OVERFLOW_VALUE 199
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:2 league_name
 Barclays Premier League Barclays Premier Lea UNSPECIFIED TRUNCATE
 156
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:2 league_nspi
 33223 32767 UNSPECIFIED
 OVERFLOW_VALUE 199
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:3 league_name
 Barclays Premier League Barclays Premier Lea UNSPECIFIED TRUNCATE
 156
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:3 league_nspi
 32808 32767 UNSPECIFIED
 OVERFLOW_VALUE 199
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:4 league_nspi
 32790 32767 UNSPECIFIED
 OVERFLOW_VALUE 199
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:5 league_name
 Spanish Primera Division Spanish Primera Divi UNSPECIFIED TRUNCATE
 156
 100 1574007 s3://spectrum-uddh/league/spi_global_rankings.0:6 league_name
 Spanish Primera Division Spanish Primera Divi UNSPECIFIED TRUNCATE
 156

SVL_STATEMENTTEXT

Use the SVL_STATEMENTTEXT view to get a complete record of all of the SQL commands that have
been run on the system.

The SVL_STATEMENTTEXT view contains the union of all of the rows in the STL_DDLTEXT,
STL_QUERYTEXT, and STL_UTILITYTEXT tables. This view also includes a join to the STL_QUERY
table.

SVL_STATEMENTTEXT is visible to all users. Superusers can see all rows; regular users can see only
their own data. For more information, see Visibility of data in system tables and views.

SVL views for main cluster 2763

Amazon Redshift Database Developer Guide

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer ID of user who generated entry.

xid bigint Transaction ID associated with the statement.

pid integer Process ID for the statement.

label character(320) Either the name of the file used to run the query or a
label defined with a SET QUERY_GROUP command. If the
query is not file-based or the QUERY_GROUP parameter
is not set, this field is blank.

starttime timestamp Exact time when the statement started executing, with
6 digits of precision for fractional seconds. For example:
2009-06-12 11:29:19.131358

endtime timestamp Exact time when the statement finished executing, with
6 digits of precision for fractional seconds. For example:
2009-06-12 11:29:19.193640

sequence integer When a single statement contains more than 200
characters, additional rows are logged for that statement.
Sequence 0 is the first row, 1 is the second, and so on.

type varchar(10) Type of SQL statement: QUERY, DDL, or UTILITY.

text character(200) SQL text, in 200-character increments. This field might
contain special characters such as backslash (\\) and
newline (\n).

SVL views for main cluster 2764

Amazon Redshift Database Developer Guide

Sample query

The following query returns DDL statements that were run on June 16th, 2009:

select starttime, type, rtrim(text) from svl_statementtext
where starttime like '2009-06-16%' and type='DDL' order by starttime asc;

starttime	type	rtrim
2009-06-16 10:36:50.625097 | DDL | create table ddltest(c1 int);
2009-06-16 15:02:16.006341 | DDL | drop view alltickitjoin;
2009-06-16 15:02:23.65285 | DDL | drop table sales;
2009-06-16 15:02:24.548928 | DDL | drop table listing;
2009-06-16 15:02:25.536655 | DDL | drop table event;
...

Reconstructing stored SQL

To reconstruct the SQL stored in the text column of SVL_STATEMENTTEXT, run a SELECT
statement to create SQL from 1 or more parts in the text column. Before running the
reconstructed SQL, replace any (\n) special characters with a new line. The result of the following
SELECT statement is rows of reconstructed SQL in the query_statement field.

select LISTAGG(CASE WHEN LEN(RTRIM(text)) = 0 THEN text ELSE RTRIM(text) END, '')
 within group (order by sequence) AS query_statement
from SVL_STATEMENTTEXT where pid=pg_backend_pid();

For example, the following query selects 3 columns. The query itself is longer than 200 characters
and is stored in parts in SVL_STATEMENTTEXT.

select
1 AS a0123456789012345678901234567890123456789012345678901234567890,
2 AS b0123456789012345678901234567890123456789012345678901234567890,
3 AS b012345678901234567890123456789012345678901234
FROM stl_querytext;

In this example, the query is stored in 2 parts (rows) in the text column of SVL_STATEMENTTEXT.

select sequence, text from SVL_STATEMENTTEXT where pid = pg_backend_pid() order by
 starttime, sequence;

SVL views for main cluster 2765

Amazon Redshift Database Developer Guide

 sequence |
 text

+---
 0 | select\n1 AS
 a0123456789012345678901234567890123456789012345678901234567890,\n2 AS
 b0123456789012345678901234567890123456789012345678901234567890,\n3 AS
 b012345678901234567890123456789012345678901234
 1 | \nFROM stl_querytext;

To reconstruct the SQL stored in STL_STATEMENTTEXT, run the following SQL.

select LISTAGG(CASE WHEN LEN(RTRIM(text)) = 0 THEN text ELSE RTRIM(text) END, '')
 within group (order by sequence) AS text
from SVL_STATEMENTTEXT where pid=pg_backend_pid();

To use the resulting reconstructed SQL in your client, replace any (\n) special characters with a new
line.

 text

--
 select\n1 AS a0123456789012345678901234567890123456789012345678901234567890,
\n2 AS b0123456789012345678901234567890123456789012345678901234567890,\n3 AS
 b012345678901234567890123456789012345678901234\nFROM stl_querytext;

SVL_STORED_PROC_CALL

You can query the system view SVL_STORED_PROC_CALL to get information about stored
procedure calls, including start time, end time, and whether a call is canceled. Each stored
procedure call receives a query ID.

SVL_STORED_PROC_CALL is visible to all users. Superusers can see all rows; regular users can see
only their own data. For more information, see Visibility of data in system tables and views.

SVL views for main cluster 2766

Amazon Redshift Database Developer Guide

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_PROCEDURE_CALL. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer The ID of the user whose privileges were used to run
the statement. If this call was nested within a SECURITY
DEFINER stored procedure, then this is the userid of the
owner of that stored procedure.

session_u
serid

integer The ID of the user that created the session and is the
invoker of the top-level stored procedure call.

query integer The query ID of the procedure call.

label character(320) Either the name of the file used to run the query or a
label defined with a SET QUERY_GROUP command. If the
query is not file-based or the QUERY_GROUP parameter
isn't set, this field value is default.

xid bigint The transaction ID.

pid integer The process ID. Usually, all of the queries in a session are
run in the same process, so this value usually remains
constant if you run a series of queries in the same session.
Following certain internal events, Amazon Redshift might
restart an active session and assign a new pid value. For
more information, see STL_RESTARTED_SESSIONS.

database character(32) The name of the database that the user was connected to
when the query was issued.

querytxt character(4000) The actual text of the procedure call query.

SVL views for main cluster 2767

Amazon Redshift Database Developer Guide

Column
name

Data type Description

starttime timestamp The time in UTC that the query started running, with six
digits of precision for fractional seconds, for example:
2009-06-12 11:29:19.131358.

endtime timestamp The time in UTC that the query finished running, with six
digits of precision for fractional seconds, for example:
2009-06-12 11:29:19.131358.

aborted integer If a stored procedure was stopped by the system or
canceled by the user, this column contains 1. If the call
runs to completion, this column contains 0.

from_sp_c
all

integer If the procedure call was invoked by another procedure
call, this column contains the query ID of the outer call.
Otherwise, the field is NULL.

Sample query

The following query returns the elapsed time in descending order and the completion status for
stored procedure calls in the past day.

select query, datediff(seconds, starttime, endtime) as elapsed_time, aborted,
 trim(querytxt) as call from svl_stored_proc_call where starttime >= getdate() -
 interval '1 day' order by 2 desc;

 query | elapsed_time | aborted | call
--------+--------------+---------
+---
 4166 | 7 | 0 | call search_batch_status(35,'succeeded');
 2433 | 3 | 0 | call test_batch (123456)
 1810 | 1 | 0 | call prod_benchmark (123456)
 1836 | 1 | 0 | call prod_testing (123456)
 1808 | 1 | 0 | call prod_portfolio ('N', 123456)
 1816 | 1 | 1 | call prod_portfolio ('Y', 123456)

SVL views for main cluster 2768

Amazon Redshift Database Developer Guide

SVL_STORED_PROC_MESSAGES

You can query the system view SVL_STORED_PROC_MESSAGES to get information about stored
procedure messages. Raised messages are logged even if the stored procedure call is canceled.
Each stored procedure call receives a query ID. For more information about how to set the
minimum level for logged messages, see stored_proc_log_min_messages.

SVL_STORED_PROC_MESSAGES is visible to all users. Superusers can see all rows; regular users can
see only their own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_PROCEDURE_MESSAGES. The data in the SYS monitoring view is formatted to be easier to use
and understand. We recommend that you use the SYS monitoring view for your queries.

Table columns

Column
name

Data type Description

userid integer The ID of the user whose privileges were used to run
the statement. If this call was nested within a SECURITY
DEFINER stored procedure, then this is the userid of the
owner of that stored procedure.

session_u
serid

integer The ID of the user that created the session and is the
invoker of the top-level stored procedure call.

pid integer The process ID.

xid bigint The transaction ID of the procedure call query.

query integer The query ID of the procedure call.

recordtime timestamp The time in UTC that the message was raised.

loglevel integer The numeric value of the log level of the raised message.
Possible values: 20 – for LOG 30 – for INFO 40 – for
NOTICE 50 – for WARNING 60 – for EXCEPTION

SVL views for main cluster 2769

Amazon Redshift Database Developer Guide

Column
name

Data type Description

loglevel_
text

character(10) The log level that corresponds to the numeric value in
loglevel. Possible values: LOG, INFO, NOTICE, WARNING,
and EXCEPTION.

message character(1024) The text of the raised message.

linenum integer The line number of the raised statement.

querytext character(500) The actual text of the procedure call query.

label character(320) Either the name of the file used to run the query or a
label defined with a SET QUERY_GROUP command. If the
query is not file-based or the QUERY_GROUP parameter
isn't set, this field value is default.

aborted integer If a stored procedure was stopped by the system or
canceled by the user, this column contains 1. If the call
runs to completion, this column contains 0.

message_x
id

bigint The transaction ID of the raised message.

Sample query

The following SQL statements show how to use SVL_STORED_PROC_MESSAGES to review raised
messages.

-- Create and run a stored procedure
CREATE OR REPLACE PROCEDURE test_proc1(f1 int) AS
$$
BEGIN
 RAISE INFO 'Log Level: Input f1 is %',f1;
 RAISE NOTICE 'Notice Level: Input f1 is %',f1;
 EXECUTE 'select invalid';
 RAISE NOTICE 'Should not print this';

EXCEPTION WHEN OTHERS THEN

SVL views for main cluster 2770

Amazon Redshift Database Developer Guide

 raise exception 'EXCEPTION level: Exception Handling';
END;
$$ LANGUAGE plpgsql;

-- Call this stored procedure
CALL test_proc1(2);

-- Show raised messages with level higher than INFO
SELECT query, recordtime, loglevel, loglevel_text, trim(message) as message, aborted
 FROM svl_stored_proc_messages
 WHERE loglevel > 30 AND query = 193 ORDER BY recordtime;

 query | recordtime | loglevel | loglevel_text | message
 | aborted
-------+----------------------------+----------+---------------
+-------------------------------------+---------
 193 | 2020-03-17 23:57:18.277196 | 40 | NOTICE | Notice Level: Input f1
 is 2 | 1
 193 | 2020-03-17 23:57:18.277987 | 60 | EXCEPTION | EXCEPTION level:
 Exception Handling | 1
(2 rows)

-- Show raised messages at EXCEPTION level
SELECT query, recordtime, loglevel, loglevel_text, trim(message) as message, aborted
 FROM svl_stored_proc_messages
 WHERE loglevel_text = 'EXCEPTION' AND query = 193 ORDER BY recordtime;

 query | recordtime | loglevel | loglevel_text | message
 | aborted
-------+----------------------------+----------+---------------
+-------------------------------------+---------
 193 | 2020-03-17 23:57:18.277987 | 60 | EXCEPTION | EXCEPTION level:
 Exception Handling | 1

The following SQL statements show how to use SVL_STORED_PROC_MESSAGES to review raised
messages with the SET option when creating a stored procedure. Because test_proc() has a
minimum log level of NOTICE, only NOTICE, WARNING, and EXCEPTION level messages are logged
in SVL_STORED_PROC_MESSAGES.

-- Create a stored procedure with minimum log level of NOTICE
CREATE OR REPLACE PROCEDURE test_proc() AS
$$
BEGIN

SVL views for main cluster 2771

Amazon Redshift Database Developer Guide

 RAISE LOG 'Raise LOG messages';
 RAISE INFO 'Raise INFO messages';
 RAISE NOTICE 'Raise NOTICE messages';
 RAISE WARNING 'Raise WARNING messages';
 RAISE EXCEPTION 'Raise EXCEPTION messages';
 RAISE WARNING 'Raise WARNING messages again'; -- not reachable
END;
$$ LANGUAGE plpgsql SET stored_proc_log_min_messages = NOTICE;

-- Call this stored procedure
CALL test_proc();

-- Show the raised messages
SELECT query, recordtime, loglevel_text, trim(message) as message, aborted FROM
 svl_stored_proc_messages
 WHERE query = 149 ORDER BY recordtime;

 query | recordtime | loglevel_text | message |
 aborted
-------+----------------------------+---------------+--------------------------
+---------
 149 | 2020-03-16 21:51:54.847627 | NOTICE | Raise NOTICE messages |
 1
 149 | 2020-03-16 21:51:54.84766 | WARNING | Raise WARNING messages |
 1
 149 | 2020-03-16 21:51:54.847668 | EXCEPTION | Raise EXCEPTION messages |
 1
(3 rows)

SVL_TERMINATE

Records the time when a user cancels or terminates a process.

SELECT PG_TERMINATE_BACKEND(pid), SELECT PG_CANCEL_BACKEND(pid), and CANCEL pid
creates a log entry in SVL_TERMINATE.

SVL_TERMINATE is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_QUERY_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

SVL views for main cluster 2772

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data
type

Description

pid integer The process ID of the canceled or terminated process.

eventtime timestamp The time when the process is canceled or terminated.

userid integer The user ID of the user running the command.

type string The type of termination. It can be CANCEL or TERMINATE.

The following command shows the latest cancelled query.

select * from svl_terminate order by eventtime desc limit 1;
 pid | eventtime | userid | type
------+----------------------------+--------+--------
 8324 | 2020-03-24 09:42:07.298937 | 1 | CANCEL
(1 row)

SVL_UDF_LOG

Records system-defined error and warning messages generating during user-defined function
(UDF) execution.

SVL_UDF_LOG is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view SYS_UDF_LOG.
The data in the SYS monitoring view is formatted to be easier to use and understand. We
recommend that you use the SYS monitoring view for your queries.

SVL views for main cluster 2773

Amazon Redshift Database Developer Guide

Table columns

Column name Data type Description

query bigint The query ID. You can use
this ID to join various other
system tables and views.

message char(4096) The message generated by
the function.

created timestamp The time that the log was
created.

traceback char(4096) If available, this value
provides a stack traceback for
the UDF. For more informati
on, see traceback in the
Python Standard Library.

funcname character(256) The name of the UDF that is
executing.

node integer The node where the message
was generated.

slice integer The slice where the message
was generated.

seq integer The sequence of the message
on the slice.

Sample queries

The following example shows how UDFs handle system-defined errors. The first block shows the
definition for a UDF function that returns the inverse of an argument. When you run the function
and provide a 0 argument, as the second block shows, the function returns an error. The third
statement reads the error message that is logged in SVL_UDF_LOG

SVL views for main cluster 2774

https://docs.python.org/2/library/traceback.html

Amazon Redshift Database Developer Guide

-- Create a function to find the inverse of a number

CREATE OR REPLACE FUNCTION f_udf_inv(a int)
 RETURNS float IMMUTABLE
AS $$
 return 1/a
$$ LANGUAGE plpythonu;

-- Run the function with a 0 argument to create an error
Select f_udf_inv(0) from sales;

-- Query SVL_UDF_LOG to view the message

Select query, created, message::varchar
from svl_udf_log;

 query | created | message
-------+----------------------------
+---
 2211 | 2015-08-22 00:11:12.04819 | ZeroDivisionError: long division or modulo by
 zero\nNone

The following example adds logging and a warning message to the UDF so that a divide by zero
operation results in a warning message instead of stopping with an error message.

-- Create a function to find the inverse of a number and log a warning

CREATE OR REPLACE FUNCTION f_udf_inv_log(a int)
 RETURNS float IMMUTABLE
 AS $$
 import logging
 logger = logging.getLogger() #get root logger
 if a==0:
 logger.warning('You attempted to divide by zero.\nReturning zero instead of error.
\n')
 return 0
 else:
 return 1/a
$$ LANGUAGE plpythonu;

The following example runs the function, then queries SVL_UDF_LOG to view the message.

SVL views for main cluster 2775

Amazon Redshift Database Developer Guide

-- Run the function with a 0 argument to trigger the warning
Select f_udf_inv_log(0) from sales;

-- Query SVL_UDF_LOG to view the message

Select query, created, message::varchar
from svl_udf_log;

query | created | message
------+----------------------------+----------------------------------
 0 | 2015-08-22 00:11:12.04819 | You attempted to divide by zero.
 Returning zero instead of error.

SVL_USER_INFO

You can retrieve data about Amazon Redshift database users with the SVL_USER_INFO view.

SVL_USER_INFO is visible only to superusers. For more information, see Visibility of data in system
tables and views.

Table columns

Column
name

Data
type

Description

usename text The user name for the role.

usesysid integer The user ID for the user.

usecreate
db

boolean A value that indicates whether the user has permissions to create
databases.

usesuper boolean A value that indicates whether the user is a superuser.

usecatupd boolean A value that indicates whether the user can update system catalogs.

useconnli
mit

text The number of connections that the user can open.

SVL views for main cluster 2776

Amazon Redshift Database Developer Guide

Column
name

Data
type

Description

syslogacc
ess

text A value that indicates whether the user has access to the system logs.
The two possible values are RESTRICTED and UNRESTRICTED .
RESTRICTED means that users that are not superusers can see their
own records. UNRESTRICTED means that user that are not superuser
s can see all records in the system views and tables to which they have
SELECT privileges.

last_ddl_
ts

timestamp The timestamp for the last data definition language (DDL) create
statement run by the user.

sessionti
meout

integer The maximum time in seconds that a session remains inactive or idle
before timing out. 0 indicates that no timeout is set. For information
about the cluster's idle or inactive timeout setting, see Quotas and
limits in Amazon Redshift in the Amazon Redshift Management Guide.

external_
id

text Unique identifier of the user in the third-party identity provider.

Sample queries

The following command retrieves user information from SVL_USER_INFO.

SELECT * FROM SVL_USER_INFO;

SVL_VACUUM_PERCENTAGE

The SVL_VACUUM_PERCENTAGE view reports the percentage of data blocks allocated to a table
after performing a vacuum. This percentage number shows how much disk space was reclaimed.
See the VACUUM command for more information about the vacuum utility.

SVL_VACUUM_PERCENTAGE is visible only to superusers. For more information, see Visibility of
data in system tables and views.

Some or all of the data in this table can also be found in the SYS monitoring view
SYS_VACUUM_HISTORY. The data in the SYS monitoring view is formatted to be easier to use and
understand. We recommend that you use the SYS monitoring view for your queries.

SVL views for main cluster 2777

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html
https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

xid bigint Transaction ID for the vacuum statement.

table_id integer Table ID for the vacuumed table.

percentag
e

bigint Percentage of data blocks after a vacuum (relative to the number
of blocks in the table before the vacuum was run).

Sample query

The following query displays the percentage for a specific operation on table 100238:

select * from svl_vacuum_percentage
where table_id=100238 and xid=2200;

xid | table_id | percentage
-----+----------+------------
1337 | 100238 | 60
(1 row)

After this vacuum operation, the table contained 60 percent of the original blocks.

System catalog tables

Topics

• PG_ATTRIBUTE_INFO

• PG_CLASS_INFO

• PG_DATABASE_INFO

• PG_DEFAULT_ACL

• PG_EXTERNAL_SCHEMA

• PG_LIBRARY

• PG_PROC_INFO

System catalog tables 2778

Amazon Redshift Database Developer Guide

• PG_STATISTIC_INDICATOR

• PG_TABLE_DEF

• PG_USER_INFO

• Querying the catalog tables

The system catalogs store schema metadata, such as information about tables and columns.
System catalog tables have a PG prefix.

The standard PostgreSQL catalog tables are accessible to Amazon Redshift users. For more
information about PostgreSQL system catalogs, see PostgreSQL system tables

PG_ATTRIBUTE_INFO

PG_ATTRIBUTE_INFO is an Amazon Redshift system view built on the PostgreSQL catalog table
PG_ATTRIBUTE and the internal catalog table PG_ATTRIBUTE_ACL. PG_ATTRIBUTE_INFO includes
details about columns of a table or view, including column access control lists, if any.

Table columns

PG_ATTRIBUTE_INFO shows the following column in addition to the columns in PG_ATTRIBUTE.

Column
name

Data type Description

attacl aclitem[] The column-level access privileges, if any, that have been
granted specifically on this column.

PG_CLASS_INFO

PG_CLASS_INFO is an Amazon Redshift system view built on the PostgreSQL catalog tables
PG_CLASS and PG_CLASS_EXTENDED. PG_CLASS_INFO includes details about table creation time
and the current distribution style. For more information, see Working with data distribution styles.

PG_CLASS_INFO is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

PG_ATTRIBUTE_INFO 2779

https://www.postgresql.org/docs/8.0/static/catalogs.html#CATALOGS-OVERVIEW

Amazon Redshift Database Developer Guide

Table columns

PG_CLASS_INFO shows the following columns in addition to the columns in PG_CLASS. The oid
column in PG_CLASS is called relid in the PG_CLASS_INFO table.

Column
name

Data type Description

relcreati
ontime

timestamp Time in UTC that the table was created.

releffect
ivedistst
yle

integer The distribution style of a table or, if the table uses
automatic distribution, the current distribution style
assigned by Amazon Redshift.

The RELEFFECTIVEDISTSTYLE column in PG_CLASS_INFO indicates the current distribution style
for the table. If the table uses automatic distribution, RELEFFECTIVEDISTSTYLE is 10, 11, or 12,
which indicates whether the effective distribution style is AUTO (ALL), AUTO (EVEN), or AUTO
(KEY). If the table uses automatic distribution, the distribution style might initially show AUTO
(ALL), then change to AUTO (EVEN) when the table grows or AUTO (KEY) if a column is found to be
useful as a distribution key.

The following table gives the distribution style for each value in RELEFFECTIVEDISTSTYLE column:

RELEFFECTIVEDISTSTYLE Current distribution style

0 EVEN

1 KEY

8 ALL

10 AUTO (ALL)

11 AUTO (EVEN)

12 AUTO (KEY)

PG_CLASS_INFO 2780

Amazon Redshift Database Developer Guide

Example

The following query returns the current distribution style of tables in the catalog.

select reloid as tableid,trim(nspname) as schemaname,trim(relname) as
 tablename,reldiststyle,releffectivediststyle,
CASE WHEN "reldiststyle" = 0 THEN 'EVEN'::text
 WHEN "reldiststyle" = 1 THEN 'KEY'::text
 WHEN "reldiststyle" = 8 THEN 'ALL'::text
 WHEN "releffectivediststyle" = 10 THEN 'AUTO(ALL)'::text
 WHEN "releffectivediststyle" = 11 THEN 'AUTO(EVEN)'::text
 WHEN "releffectivediststyle" = 12 THEN 'AUTO(KEY)'::text ELSE '<<UNKNOWN>>'::text
 END as diststyle,relcreationtime
from pg_class_info a left join pg_namespace b on a.relnamespace=b.oid;

 tableid | schemaname | tablename | reldiststyle | releffectivediststyle | diststyle |
 relcreationtime
---------+------------+-----------+--------------+-----------------------+------------
+----------------------------
 3638033 | public | customer | 0 | 0 | EVEN |
 2019-06-13 15:02:50.666718
 3638037 | public | sales | 1 | 1 | KEY |
 2019-06-13 15:03:29.595007
 3638035 | public | lineitem | 8 | 8 | ALL |
 2019-06-13 15:03:01.378538
 3638039 | public | product | 9 | 10 | AUTO(ALL) |
 2019-06-13 15:03:42.691611
 3638041 | public | shipping | 9 | 11 | AUTO(EVEN) |
 2019-06-13 15:03:53.69192
 3638043 | public | support | 9 | 12 | AUTO(KEY) |
 2019-06-13 15:03:59.120695
(6 rows)

PG_DATABASE_INFO

PG_DATABASE_INFO is an Amazon Redshift system view that extends the PostgreSQL catalog table
PG_DATABASE.

PG_DATABASE_INFO is visible to all users.

PG_DATABASE_INFO 2781

Amazon Redshift Database Developer Guide

Table columns

PG_DATABASE_INFO contains the following columns in addition to columns in PG_DATABASE.
The oid column in PG_DATABASE is called datid in the PG_DATABASE_INFO table. For more
information, see the PostgreSQL documentation.

Column
name

Data type Description

datid oid The object identifier (OID) used internally by system
tables.

datconnli
mit

text The maximum number of concurrent connections that
can be made to this database. A value of -1 means no
limit.

PG_DEFAULT_ACL

Stores information about default access privileges. For more information on default access
privileges, see ALTER DEFAULT PRIVILEGES.

PG_DEFAULT_ACL is visible to all users. Superusers can see all rows; regular users can see only their
own data. For more information, see Visibility of data in system tables and views.

Table columns

Column
name

Data type Description

defacluser integer ID of the user to which the listed privileges are applied.

defaclnam
espace

oid The object ID of the schema where default privileges are
applied. The default value is 0 if no schema is specified.

defaclobj
type

character The type of object to which default privileges are applied.
Valid values are as follows:

• r–relation (table or view)

PG_DEFAULT_ACL 2782

https://www.postgresql.org/docs/8.0/catalog-pg-database.html

Amazon Redshift Database Developer Guide

Column
name

Data type Description

• f–function

• p–stored procedure

PG_DEFAULT_ACL 2783

Amazon Redshift Database Developer Guide

Column
name

Data type Description

defaclacl aclitem[] A string that defines the default privileges for the
specified user or user group and object type.

If the privileges are granted to a user, the string is in the
following form:

{ username=privilegestring/grantor }

username

The name of the user to which privileges are granted.
If username is omitted, the privileges are granted to
PUBLIC.

If the privileges are granted to a user group, the string is
in the following form:

{ "group groupname=privilegestring/g
rantor" }

privilegestring

A string that specifies which privileges are granted.

Valid values are:

• r–SELECT (read)

• a–INSERT (append)

• w–UPDATE (write)

• d–DELETE

• x–Grants the privilege to create a foreign key constraint
(REFERENCES).

• X–EXECUTE

• *–Indicates that the user receiving the preceding
privilege can in turn grant the same privilege to others
(WITH GRANT OPTION).

PG_DEFAULT_ACL 2784

Amazon Redshift Database Developer Guide

Column
name

Data type Description

grantor

The name of the user that granted the privileges.

The following example indicates that the user admin
granted all privileges, including WITH GRANT OPTION, to
the user dbuser.

dbuser=r*a*w*d*x*X*/admin

Example

The following query returns all default privileges defined for the database.

select pg_get_userbyid(d.defacluser) as user,
n.nspname as schema,
case d.defaclobjtype when 'r' then 'tables' when 'f' then 'functions' end
as object_type,
array_to_string(d.defaclacl, ' + ') as default_privileges
from pg_catalog.pg_default_acl d
left join pg_catalog.pg_namespace n on n.oid = d.defaclnamespace;

 user | schema | object_type | default_privileges
-------+--------+-------------+---
 admin | tickit | tables | user1=r/admin + "group group1=a/admin" + user2=w/admin

The result in the preceding example shows that for all new tables created by user admin in the
tickit schema, admin grants SELECT privileges to user1, INSERT privileges to group1, and
UPDATE privileges to user2.

PG_EXTERNAL_SCHEMA

Stores information about external schemas.

PG_EXTERNAL_SCHEMA is visible to all users. Superusers can see all rows; regular users can see
only metadata to which they have access. For more information, see CREATE EXTERNAL SCHEMA.

PG_EXTERNAL_SCHEMA 2785

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

esoid oid External schema ID.

eskind integer Kind of external schema.

esdbname text External database name.

esoptions text External schema options.

Example

The following example shows details for external schemas.

select esoid, nspname as schemaname, nspowner, esdbname as external_db, esoptions
from pg_namespace a,pg_external_schema b where a.oid=b.esoid;

esoid | schemaname | nspowner | external_db | esoptions

-------+-----------------+----------+-------------
+---
100134 | spectrum_schema | 100 | spectrum_db |
 {"IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"}
100135 | spectrum | 100 | spectrumdb |
 {"IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"}
100149 | external | 100 | external_db |
 {"IAM_ROLE":"arn:aws:iam::123456789012:role/mySpectrumRole"}

PG_LIBRARY

Stores information about user-defined libraries.

PG_LIBRARY is visible to all users. Superusers can see all rows; regular users can see only their own
data. For more information, see Visibility of data in system tables and views.

PG_LIBRARY 2786

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

name name Library name.

language_
oid

oid Reserved for system use.

file_stor
e_id

integer Reserved for system use.

owner integer User ID of the library owner.

Example

The following example returns information for user-installed libraries.

select * from pg_library;

name | language_oid | file_store_id | owner
-----------+--------------+---------------+------
f_urlparse | 108254 | 2000 | 100

PG_PROC_INFO

PG_PROC_INFO is an Amazon Redshift system view built on the PostgreSQL catalog table
PG_PROC and the internal catalog table PG_PROC_EXTENDED. PG_PROC_INFO includes details
about stored procedures and functions, including information related to output arguments, if any.

Table columns

PG_PROC_INFO shows the following columns in addition to the columns in PG_PROC. The oid
column in PG_PROC is called prooid in the PG_PROC_INFO table.

PG_PROC_INFO 2787

Amazon Redshift Database Developer Guide

Column
name

Data type Description

prooid oid The object ID of the function or stored procedure.

prokind "char" A value that indicates the type of functions or stored
procedures. This value is 'f' for regular functions, 'p' for
stored procedures, and 'a' for aggregate functions.

proargmod
es

"char"[] An array with the modes of the procedure arguments,
encoded as 'i' for IN arguments, 'o' for OUT arguments,
and 'b' for INOUT arguments. If all the arguments are IN
arguments, this field is NULL. Subscripts correspond to
positions in the proallargtypes array.

proallarg
types

oid[] An array with the data types of the procedure arguments.
This array includes all types of arguments (including OUT
and INOUT arguments). However, if all the arguments
are IN arguments, this field is NULL. Subscripting is one-
based. In contrast, proargtypes is subscripted from zero.

The field proargnames in PG_PROC_INFO contains the names of all types of arguments (including
OUT and INOUT), if any.

PG_STATISTIC_INDICATOR

Stores information about the number of rows inserted or deleted since the last ANALYZE. The
PG_STATISTIC_INDICATOR table is updated frequently following DML operations, so statistics are
approximate.

PG_STATISTIC_INDICATOR is visible only to superusers. For more information, see Visibility of data
in system tables and views.

PG_STATISTIC_INDICATOR 2788

Amazon Redshift Database Developer Guide

Table columns

Column
name

Data type Description

stairelid oid Table ID

stairows float Total number of rows in the table.

staiins float Number of rows inserted since the last ANALYZE.

staidels float Number of rows deleted or updated since the last
ANALYZE.

Example

The following example returns information for table changes since the last ANALYZE.

select * from pg_statistic_indicator;

stairelid | stairows | staiins | staidels
----------+----------+---------+---------
 108271 | 11 | 0 | 0
 108275 | 365 | 0 | 0
 108278 | 8798 | 0 | 0
 108280 | 91865 | 0 | 100632
 108267 | 89981 | 49990 | 9999
 108269 | 808 | 606 | 374
 108282 | 152220 | 76110 | 248566

PG_TABLE_DEF

Stores information about table columns.

PG_TABLE_DEF only returns information about tables that are visible to the user. If PG_TABLE_DEF
does not return the expected results, verify that the search_path parameter is set correctly to
include the relevant schemas.

PG_TABLE_DEF 2789

Amazon Redshift Database Developer Guide

You can use SVV_TABLE_INFO to view more comprehensive information about a table, including
data distribution skew, key distribution skew, table size, and statistics.

Table columns

Column
name

Data type Description

schemanam
e

name Schema name.

tablename name Table name.

column name Column name.

type text Datatype of column.

encoding character(32) Encoding of column.

distkey boolean True if this column is the distribution key for the table.

sortkey integer Order of the column in the sort key. If the table uses
a compound sort key, then all columns that are part
of the sort key have a positive value that indicates the
position of the column in the sort key. If the table uses
an interleaved sort key, then each column that is part
of the sort key has a value that is alternately positive or
negative, where the absolute value indicates the position
of the column in the sort key. If 0, the column is not part
of a sort key.

notnull boolean True if the column has a NOT NULL constraint.

Example

The following example shows the compound sort key columns for the LINEORDER_COMPOUND
table.

select "column", type, encoding, distkey, sortkey, "notnull"

PG_TABLE_DEF 2790

Amazon Redshift Database Developer Guide

from pg_table_def
where tablename = 'lineorder_compound'
and sortkey <> 0;

column | type | encoding | distkey | sortkey | notnull
-------------+---------+----------+---------+---------+--------
lo_orderkey | integer | delta32k | false | 1 | true
lo_custkey | integer | none | false | 2 | true
lo_partkey | integer | none | true | 3 | true
lo_suppkey | integer | delta32k | false | 4 | true
lo_orderdate | integer | delta | false | 5 | true
(5 rows)

The following example shows the interleaved sort key columns for the LINEORDER_INTERLEAVED
table.

select "column", type, encoding, distkey, sortkey, "notnull"
from pg_table_def
where tablename = 'lineorder_interleaved'
and sortkey <> 0;

column | type | encoding | distkey | sortkey | notnull
-------------+---------+----------+---------+---------+--------
lo_orderkey | integer | delta32k | false | -1 | true
lo_custkey | integer | none | false | 2 | true
lo_partkey | integer | none | true | -3 | true
lo_suppkey | integer | delta32k | false | 4 | true
lo_orderdate | integer | delta | false | -5 | true
(5 rows)

PG_TABLE_DEF will only return information for tables in schemas that are included in the search
path. For more information, see search_path.

For example, suppose you create a new schema and a new table, then query PG_TABLE_DEF.

create schema demo;
create table demo.demotable (one int);
select * from pg_table_def where tablename = 'demotable';

schemaname|tablename|column| type | encoding | distkey | sortkey | notnull
----------+---------+------+------+----------+---------+---------+--------

PG_TABLE_DEF 2791

Amazon Redshift Database Developer Guide

The query returns no rows for the new table. Examine the setting for search_path.

show search_path;

 search_path

 $user, public
(1 row)

Add the demo schema to the search path and run the query again.

set search_path to '$user', 'public', 'demo';

select * from pg_table_def where tablename = 'demotable';

schemaname| tablename |column| type | encoding |distkey|sortkey| notnull
----------+-----------+------+---------+----------+-------+-------+--------
demo | demotable | one | integer | none | f | 0 | f
(1 row)

PG_USER_INFO

PG_USER_INFO is an Amazon Redshift system view that shows user information, such as user ID
and password expiration time.

Only superusers can see PG_USER_INFO.

Table columns

PG_USER_INFO contains the following columns. For more information, see the PostgreSQL
documentation.

Column
name

Data type Description

usename name The username.

usesysid integer The user ID.

usecreate
db

boolean True if the user can create databases.

PG_USER_INFO 2792

https://www.postgresql.org/docs/8.0/view-pg-user.html
https://www.postgresql.org/docs/8.0/view-pg-user.html

Amazon Redshift Database Developer Guide

Column
name

Data type Description

usesuper boolean True if the user is a superuser.

usecatupd boolean True if the user can update system catalogs.

passwd text The password.

valuntil abstime The password's expiration date and time.

useconfig text[] The session defaults for run-time variables.

useconnli
mit

text The number of connections that the user can open.

Querying the catalog tables

Topics

• Examples of catalog queries

In general, you can join catalog tables and views (relations whose names begin with PG_) to
Amazon Redshift tables and views.

The catalog tables use a number of data types that Amazon Redshift does not support. The
following data types are supported when queries join catalog tables to Amazon Redshift tables:

• bool

• "char"

• float4

• int2

• int4

• int8

• name

• oid

• text

Querying the catalog tables 2793

Amazon Redshift Database Developer Guide

• varchar

If you write a join query that explicitly or implicitly references a column that has an unsupported
data type, the query returns an error. The SQL functions that are used in some of the catalog tables
are also unsupported, except for those used by the PG_SETTINGS and PG_LOCKS tables.

For example, the PG_STATS table cannot be queried in a join with an Amazon Redshift table
because of unsupported functions.

The following catalog tables and views provide useful information that can be joined to
information in Amazon Redshift tables. Some of these tables allow only partial access because
of data type and function restrictions. When you query the partially accessible tables, select or
reference their columns carefully.

The following tables are completely accessible and contain no unsupported types or functions:

• pg_attribute

• pg_cast

• pg_depend

• pg_description

• pg_locks

• pg_opclass

The following tables are partially accessible and contain some unsupported types, functions, and
truncated text columns. Values in text columns are truncated to varchar(256) values.

• pg_class

• pg_constraint

• pg_database

• pg_group

• pg_language

• pg_namespace

• pg_operator

• pg_proc

• pg_settings

Querying the catalog tables 2794

https://www.postgresql.org/docs/8.0/static/catalog-pg-attribute.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-cast.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-depend.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-description.html
https://www.postgresql.org/docs/8.0/static/view-pg-locks.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-opclass.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-class.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-constraint.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-database.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-group.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-language.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-namespace.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-operator.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-proc.html
https://www.postgresql.org/docs/8.0/static/view-pg-settings.html

Amazon Redshift Database Developer Guide

• pg_statistic

• pg_tables

• pg_type

• pg_user

• pg_views

The catalog tables that are not listed here are either inaccessible or unlikely to be useful to Amazon
Redshift administrators. However, you can query any catalog table or view openly if your query
does not involve a join to an Amazon Redshift table.

You can use the OID columns in the Postgres catalog tables as joining columns. For example, the
join condition pg_database.oid = stv_tbl_perm.db_id matches the internal database
object ID for each PG_DATABASE row with the visible DB_ID column in the STV_TBL_PERM table.
The OID columns are internal primary keys that are not visible when you select from the table. The
catalog views do not have OID columns.

Some Amazon Redshift functions must run only on the compute nodes. If a query references a
user-created table, the SQL runs on the compute nodes.

A query that references only catalog tables (tables with a PG prefix, such as PG_TABLE_DEF) or that
does not reference any tables, runs exclusively on the leader node.

If a query that uses a compute-node function doesn't reference a user-defined table or Amazon
Redshift system table returns the following error.

[Amazon](500310) Invalid operation: One or more of the used functions must be applied
 on at least one user created table.

The following Amazon Redshift functions are compute-node only functions:

System information functions

• LISTAGG

• MEDIAN

• PERCENTILE_CONT

• PERCENTILE_DISC and APPROXIMATE PERCENTILE_DISC

Querying the catalog tables 2795

https://www.postgresql.org/docs/8.0/static/catalog-pg-statistic.html
https://www.postgresql.org/docs/8.0/static/view-pg-tables.html
https://www.postgresql.org/docs/8.0/static/catalog-pg-type.html
https://www.postgresql.org/docs/8.0/static/view-pg-user.html
https://www.postgresql.org/docs/8.0/static/view-pg-views.html

Amazon Redshift Database Developer Guide

Examples of catalog queries

The following queries show a few of the ways in which you can query the catalog tables to get
useful information about an Amazon Redshift database.

View table ID, database, schema, and table name

The following view definition joins the STV_TBL_PERM system table with the PG_CLASS,
PG_NAMESPACE, and PG_DATABASE system catalog tables to return the table ID, database name,
schema name, and table name.

create view tables_vw as
select distinct(id) table_id
,trim(datname) db_name
,trim(nspname) schema_name
,trim(relname) table_name
from stv_tbl_perm
join pg_class on pg_class.oid = stv_tbl_perm.id
join pg_namespace on pg_namespace.oid = relnamespace
join pg_database on pg_database.oid = stv_tbl_perm.db_id;

The following example returns the information for table ID 117855.

select * from tables_vw where table_id = 117855;

table_id | db_name | schema_name | table_name
---------+-----------+-------------+-----------
 117855 | dev | public | customer

List the number of columns per Amazon Redshift table

The following query joins some catalog tables to find out how many columns each Amazon
Redshift table contains. Amazon Redshift table names are stored in both PG_TABLES and
STV_TBL_PERM; where possible, use PG_TABLES to return Amazon Redshift table names.

This query does not involve any Amazon Redshift tables.

select nspname, relname, max(attnum) as num_cols
from pg_attribute a, pg_namespace n, pg_class c
where n.oid = c.relnamespace and a.attrelid = c.oid

Querying the catalog tables 2796

Amazon Redshift Database Developer Guide

and c.relname not like '%pkey'
and n.nspname not like 'pg%'
and n.nspname not like 'information%'
group by 1, 2
order by 1, 2;

nspname | relname | num_cols
--------+----------+----------
public | category | 4
public | date | 8
public | event | 6
public | listing | 8
public | sales | 10
public | users | 18
public | venue | 5
(7 rows)

List the schemas and tables in a database

The following query joins STV_TBL_PERM to some PG tables to return a list of tables in the TICKIT
database and their schema names (NSPNAME column). The query also returns the total number
of rows in each table. (This query is helpful when multiple schemas in your system have the same
table names.)

select datname, nspname, relname, sum(rows) as rows
from pg_class, pg_namespace, pg_database, stv_tbl_perm
where pg_namespace.oid = relnamespace
and pg_class.oid = stv_tbl_perm.id
and pg_database.oid = stv_tbl_perm.db_id
and datname ='tickit'
group by datname, nspname, relname
order by datname, nspname, relname;

datname | nspname | relname | rows
--------+---------+----------+--------
tickit | public | category | 11
tickit | public | date | 365
tickit | public | event | 8798
tickit | public | listing | 192497
tickit | public | sales | 172456
tickit | public | users | 49990
tickit | public | venue | 202

Querying the catalog tables 2797

Amazon Redshift Database Developer Guide

(7 rows)

List table IDs, data types, column names, and table names

The following query lists some information about each user table and its columns: the table ID, the
table name, its column names, and the data type of each column:

select distinct attrelid, rtrim(name), attname, typname
from pg_attribute a, pg_type t, stv_tbl_perm p
where t.oid=a.atttypid and a.attrelid=p.id
and a.attrelid between 100100 and 110000
and typname not in('oid','xid','tid','cid')
order by a.attrelid asc, typname, attname;

attrelid | rtrim | attname | typname
---------+----------+----------------+-----------
 100133 | users | likebroadway | bool
 100133 | users | likeclassical | bool
 100133 | users | likeconcerts | bool
...
 100137 | venue | venuestate | bpchar
 100137 | venue | venueid | int2
 100137 | venue | venueseats | int4
 100137 | venue | venuecity | varchar
...

Count the number of data blocks for each column in a table

The following query joins the STV_BLOCKLIST table to PG_CLASS to return storage information for
the columns in the SALES table.

select col, count(*)
from stv_blocklist s, pg_class p
where s.tbl=p.oid and relname='sales'
group by col
order by col;

col | count
----+-------
 0 | 4
 1 | 4
 2 | 4

Querying the catalog tables 2798

Amazon Redshift Database Developer Guide

 3 | 4
 4 | 4
 5 | 4
 6 | 4
 7 | 4
 8 | 4
 9 | 8
 10 | 4
 12 | 4
 13 | 8
(13 rows)

Querying the catalog tables 2799

Amazon Redshift Database Developer Guide

Configuration reference

Topics

• Modifying the server configuration

• analyze_threshold_percent

• cast_super_null_on_error

• datashare_break_glass_session_var

• datestyle

• default_geometry_encoding

• describe_field_name_in_uppercase

• downcase_delimited_identifier

• enable_case_sensitive_identifier

• enable_case_sensitive_super_attribute

• enable_numeric_rounding

• enable_result_cache_for_session

• enable_vacuum_boost

• error_on_nondeterministic_update

• extra_float_digits

• interval_forbid_composite_literals

• json_serialization_enable

• json_serialization_parse_nested_strings

• max_concurrency_scaling_clusters

• max_cursor_result_set_size

• mv_enable_aqmv_for_session

• navigate_super_null_on_error

• parse_super_null_on_error

• pg_federation_repeatable_read

• query_group

• search_path

2800

Amazon Redshift Database Developer Guide

• spectrum_enable_pseudo_columns

• enable_spectrum_oid

• spectrum_query_maxerror

• statement_timeout

• stored_proc_log_min_messages

• timezone

• use_fips_ssl

• wlm_query_slot_count

Modifying the server configuration

You can change the server configuration in the following ways:

• By using a SET command to override a setting for the duration of the current session only.

For example:

set extra_float_digits to 2;

• By modifying the parameter group settings for the cluster. The parameter group settings include
additional parameters that you can configure. For more information, see Amazon Redshift
Parameter Groups in the Amazon Redshift Management Guide.

• By using the ALTER USER command to set a configuration parameter to a new value for all
sessions run by the specified user.

ALTER USER username SET parameter { TO | = } { value | DEFAULT }

Use the SHOW command to view the current parameter settings. Use SHOW ALL to view all the
settings that you can configure by using the SET command.

SHOW ALL;

name | setting
--------------------------+--------------
analyze_threshold_percent | 10
datestyle | ISO, MDY

Modifying the server configuration 2801

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html

Amazon Redshift Database Developer Guide

extra_float_digits | 2
query_group | default
search_path | $user, public
statement_timeout | 0
timezone | UTC
wlm_query_slot_count | 1

Note

Note that configuration parameters are applied to the database you are connected to in
your data warehouse.

analyze_threshold_percent

Values (default in bold)

10, 0 to 100.0

Description

Sets the threshold for percentage of rows changed for analyzing a table. To reduce processing
time and improve overall system performance, Amazon Redshift skips ANALYZE for any table
that has a lower percentage of changed rows than specified by analyze_threshold_percent.
For example, if a table contains 100,000,000 rows and 9,000,000 rows have changed since
the last ANALYZE, then by default the table is skipped because fewer than 10 percent of
the rows have changed. To analyze tables when only a small number of rows have changed,
set analyze_threshold_percent to an arbitrarily small number. For example, if you set
analyze_threshold_percent to 0.01, then a table with 100,000,000 rows will not be skipped
if at least 10,000 rows have changed. To analyze all tables even if no rows have changed, set
analyze_threshold_percent to 0.

You can modify the analyze_threshold_percent parameter for the current session only by
using a SET command. The parameter can't be modified in a parameter group.

Example

set analyze_threshold_percent to 15;

analyze_threshold_percent 2802

Amazon Redshift Database Developer Guide

set analyze_threshold_percent to 0.01;
set analyze_threshold_percent to 0;

cast_super_null_on_error

Values (default in bold)

on, off

Description

Specifies that when you try to access a nonexistent member of an object or element of an array,
Amazon Redshift returns a NULL value if your query is run in the default lax mode.

datashare_break_glass_session_var

Values (default in bold)

There is no default. The value can be any character string generated by Amazon Redshift when an
operation occurs that isn't recommended, as described following.

Description

Applies a permission that allows certain operations that generally aren't recommended for an AWS
Data Exchange datashare.

In general, we recommend that you don't drop or alter an AWS Data Exchange datashare using the
DROP DATASHARE or ALTER DATASHARE SET PUBLICACCESSIBLE statement. To allow dropping
or altering an AWS Data Exchange datashare to turn off the publicly accessible setting, set the
datashare_break_glass_session_var variable to a one-time value. This one-time value is
generated by Amazon Redshift and provided in an error message after the initial attempt at the
operation in question.

After setting the variable to the one-time generated value, run the DROP DATASHARE or ALTER
DATASHARE statement again.

For more information, see ALTER DATASHARE usage notes or DROP DATASHARE usage notes.

cast_super_null_on_error 2803

Amazon Redshift Database Developer Guide

Example

set datashare_break_glass_session_var to '620c871f890c49';

datestyle

Values (default in bold)

Format specification (ISO, Postgres, SQL, or German), and year/month/day ordering (DMY, MDY,
YMD).

• ISO – uses the datestyle of YYYY-MM-DD HH:MM:SS.

• Postgres – uses the datestyle of MM-DD HH:MM:SS YYYY.

• SQL – uses the datestyle of MM-DD-YYYY HH:MM:SS.

• German – uses the datestyle of DD-MM-YYYY HH:MM:SS.

Description

Sets the display format for date and time values and also the rules for interpreting ambiguous date
input values. The string contains two parameters that you can change separately or together.

Example

show datestyle;
DateStyle

ISO, MDY
(1 row)

set datestyle to 'SQL,DMY';

default_geometry_encoding

Values (default in bold)

1, 2

Example 2804

Amazon Redshift Database Developer Guide

Description

A session configuration that specifies if spatial geometries created during this session are encoded
with a bounding box. If default_geometry_encoding is 1, then geometries are not encoded
with a bounding box. If default_geometry_encoding is 2, then geometries are encoded with a
bounding box. For more information about support for bounding boxes, see Bounding box.

describe_field_name_in_uppercase

Values (default in bold)

off (false), on (true)

Description

Specifies whether column names returned by SELECT statements are uppercase or lowercase. If this
parameter is on, column names are returned in uppercase. If this parameter is off, column names
are returned in lowercase. Amazon Redshift stores column names in lowercase regardless of the
setting for describe_field_name_in_uppercase.

Example

set describe_field_name_in_uppercase to on;

show describe_field_name_in_uppercase;

DESCRIBE_FIELD_NAME_IN_UPPERCASE

on

downcase_delimited_identifier

Values (default in bold)

on, off

Description

This configuration is being retired. Instead use enable_case_sensitive_identifier.

Description 2805

Amazon Redshift Database Developer Guide

Enables the super parser to read JSON fields that are in uppercase or mixed case. Also enables
federated query support to supported PostgreSQL databases with mixed-case names of database,
schema, table, and column. To use case-sensitive identifiers, set this parameter to off.

Usage Notes

• If you're using row-level security or dynamic data masking features, we recommend setting the
downcase_delimited_identifier value in your cluster or workgroup's parameter group.
This ensures that downcase_delimited_identifier stays constant throughout creating
and attaching a policy, and then querying a relation that has a policy applied. For information
on row-level security, see Row-level security. For information on dynamic data masking, see
Dynamic data masking.

• When you set downcase_delimited_identifier to off and create a table, you can set case
sensitive column names. When you set downcase_delimited_identifier to on and query
the table, the column names are downcased. This can produce query results different from when
downcase_delimited_identifier is set to off. Consider the following example:

SET downcase_delimited_identifier TO off;
--Amazon Redshift preserves case for column names and other identifiers.

--Create a table with two columns that are identical except for the case.
CREATE TABLE t ("c" int, "C" int);

INSERT INTO t VALUES (1, 2);

SELECT * FROM t;

 c | C
---+---
 1 | 2
(1 row)

SET enable_downcase_delimited_identifier TO on;
--Amazon Redshift no longer preserves case for column names and other identifiers.

SELECT * FROM t;

 c | c
---+---
 1 | 1

Usage Notes 2806

Amazon Redshift Database Developer Guide

(1 row)

• We recommend that regular users querying tables with dynamic data masking or row-level
security policies attached have the default downcase_delimited_identifier setting. For more
information, see For information on row-level security, see Row-level security. For information
on dynamic data masking, see Dynamic data masking.

enable_case_sensitive_identifier

Values (default in bold)

true, false

Description

A configuration value that determines whether name identifiers of databases, tables, and columns
are case sensitive. The case of name identifiers is preserved when enclosed within double quotation
marks. When you set enable_case_sensitive_identifier to true, the case of name
identifiers is preserved. When you set enable_case_sensitive_identifier to false, the
case of name identifiers is not preserved.

The case of a username enclosed in double quotation marks is always preserved regardless of the
setting of the enable_case_sensitive_identifier configuration option.

Examples

The following example shows how to create and use case sensitive identifiers for a table and
column name.

-- To create and use case sensitive identifiers
SET enable_case_sensitive_identifier TO true;

-- Create tables and columns with case sensitive identifiers
CREATE TABLE "MixedCasedTable" ("MixedCasedColumn" int);

CREATE TABLE MixedCasedTable (MixedCasedColumn int);

-- Now query with case sensitive identifiers
SELECT "MixedCasedColumn" FROM "MixedCasedTable";

enable_case_sensitive_identifier 2807

Amazon Redshift Database Developer Guide

MixedCasedColumn

(0 rows)

SELECT MixedCasedColumn FROM MixedCasedTable;

mixedcasedcolumn

(0 rows)

The following example shows when the case of identifiers is not preserved.

-- To not use case sensitive identifiers
RESET enable_case_sensitive_identifier;

-- Mixed case identifiers are lowercased
CREATE TABLE "MixedCasedTable2" ("MixedCasedColumn" int);

CREATE TABLE MixedCasedTable2 (MixedCasedColumn int);

ERROR: Relation "mixedcasedtable2" already exists

SELECT "MixedCasedColumn" FROM "MixedCasedTable2";

 mixedcasedcolumn

(0 rows)

SELECT MixedCasedColumn FROM MixedCasedTable2;

 mixedcasedcolumn

(0 rows)

Usage Notes

• If you're using autorefresh for materialized views, we recommend setting the
enable_case_sensitive_identifier value in your cluster or workgroup's parameter
group. This ensures that enable_case_sensitive_identifier stays constant when your

Usage Notes 2808

Amazon Redshift Database Developer Guide

materialized views are refreshed. For information on autorefresh for materialized views, see
Refreshing a materialized view. For information on setting configuration values in parameter
groups, see Amazon Redshift parameter groups in the Amazon Redshift Management Guide.

• If you're using row-level security or dynamic data masking features, we recommend setting the
enable_case_sensitive_identifier value in your cluster or workgroup's parameter group.
This ensures that enable_case_sensitive_identifier stays constant throughout creating
and attaching a policy, and then querying a relation that has a policy applied. For information
on row-level security, see Row-level security. For information on dynamic data masking, see
Dynamic data masking.

• When you set enable_case_sensitive_identifier to on and create a table, you can set
case sensitive column names. When you set enable_case_sensitive_identifier to off and
query the table, the column names are downcased. This can produce query results different from
when enable_case_sensitive_identifier is set to on. Consider the following example:

SET enable_case_sensitive_identifier TO on;
--Amazon Redshift preserves case for column names and other identifiers.

--Create a table with two columns that are identical except for the case.
CREATE TABLE t ("c" int, "C" int);

INSERT INTO t VALUES (1, 2);

SELECT * FROM t;

 c | C
---+---
 1 | 2
(1 row)

SET enable_case_sensitive_identifier TO off;
--Amazon Redshift no longer preserves case for column names and other identifiers.

SELECT * FROM t;

 c | c
---+---
 1 | 1
(1 row)

Usage Notes 2809

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html

Amazon Redshift Database Developer Guide

• We recommend that regular users querying tables with dynamic data masking or row-level
security policies attached have the default enable_case_sensitive_identifier setting. For
information on row-level security, see Row-level security. For information on dynamic data
masking, see Dynamic data masking.

enable_case_sensitive_super_attribute

Values (default in bold)

true, false

Description

A configuration value that determines whether navigating SUPER data type
structures with non-delimited attribute names is case sensitive. When you set
enable_case_sensitive_super_attribute to true, navigating SUPER type structures with
non-delimited attribute names is case sensitive. When you set the value to false, navigating
SUPER type structures with non-delimited attribute names is not case sensitive.

When you enclose an attribute name in double quotation marks and set
enable_case_sensitive_identifier to true, case is always preserved, regardless of the
setting of the enable_case_sensitive_super_attribute configuration option.

enable_case_sensitive_super_attribute only applies to columns with the SUPER data
type. For all other columns, consider using enable_case_sensitive_identifier instead.

For more information on the SUPER data type, see SUPER type and Ingesting and querying
semistructured data in Amazon Redshift.

Examples

The following example shows the results of selecting SUPER values with
enable_case_sensitive_super_attribute enabled and with it disabled.

--Create a table with a SUPER column.
CREATE TABLE tbl (col SUPER);

--Insert values.
INSERT INTO tbl VALUES (json_parse('{

enable_case_sensitive_super_attribute 2810

Amazon Redshift Database Developer Guide

 "A": "A", "a": "a"
}'));

SET enable_case_sensitive_super_attribute TO ON;

SELECT col.A FROM tbl;
 a

 "A"
(1 row)

SELECT col.a FROM tbl;
 a

 "a"
(1 row)

SET enable_case_sensitive_super_attribute TO OFF;

SELECT col.A FROM tbl;
 a

 "a"
(1 row)

SELECT col.a FROM tbl;
 a

 "a"
(1 row)

Usage Notes

• Views and materialized views follow the value of
enable_case_sensitive_super_attribute at the time of their creation. Late-
binding views, stored procedures, and user-defined functions follow the value of
enable_case_sensitive_super_attribute at the time of querying.

• If you're using autorefresh for materialized views, we recommend setting the
enable_case_sensitive_identifier value in your cluster or workgroup's parameter
group. This ensures that enable_case_sensitive_identifier stays constant when your
materialized views are refreshed. For information on autorefresh for materialized views, see

Usage Notes 2811

Amazon Redshift Database Developer Guide

Refreshing a materialized view. For information on setting configuration values in parameter
groups, see Amazon Redshift parameter groups in the Amazon Redshift Management Guide.

• The column name in statement results is always downcased, regardless of the value of
enable_case_sensitive_super_attribute. To make the column name case sensitive as
well, enable enable_case_sensitive_identifier.

• We recommend that regular users querying tables with row-level security policies attached have
the default enable_case_sensitive_identifier setting. For more information, see For
information on row-level security, see Row-level security.

enable_numeric_rounding

Values (default in bold)

on (true), off (false)

Description

Specifies whether to use numeric rounding. If enable_numeric_rounding is on, Amazon
Redshift rounds NUMERIC values when casting them to other numeric types, such as INTEGER or
DECIMAL. If enable_numeric_rounding is off, Amazon Redshift truncates NUMERIC values
when casting them to other numeric types. For more information on numeric types, see Numeric
types.

Example

--Create a table and insert the numeric value 1.5 into it.
CREATE TABLE t (a numeric(10, 2));

INSERT INTO t VALUES (1.5);

SET enable_numeric_rounding to ON;
--Amazon Redshift now rounds NUMERIC values when casting to other numeric types.

SELECT a::int FROM t;

 a

 2
(1 row)

enable_numeric_rounding 2812

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html

Amazon Redshift Database Developer Guide

SELECT a::decimal(10, 0) FROM t;

 a

 2
(1 row)

 SELECT a::decimal(10, 5) FROM t;

 a

 1.50000
(1 row)

SET enable_numeric_rounding to OFF;
--Amazon Redshift now truncates NUMERIC values when casting to other numeric types.

SELECT a::int FROM t;

 a

 1
(1 row)

SELECT a::decimal(10, 0) FROM t;

 a

 1
(1 row)

SELECT a::decimal(10, 5) FROM t;

 a

 1.50000
(1 row)

Example 2813

Amazon Redshift Database Developer Guide

enable_result_cache_for_session

Values (default in bold)

on (true), off (false)

Description

Specifies whether to use query results caching. If enable_result_cache_for_session is on,
Amazon Redshift checks for a valid, cached copy of the query results when a query is submitted.
If a match is found in the result cache, Amazon Redshift uses the cached results and doesn’t run
the query. If enable_result_cache_for_session is off, Amazon Redshift ignores the results
cache and runs all queries when they are submitted.

Example

SET enable_result_cache_for_session TO off;
--Amazon Redshift now ignores the results cache

enable_vacuum_boost

Values (default in bold)

false, true

Description

Specifies whether to enable the vacuum boost option for all VACUUM commands run in a session.
If enable_vacuum_boost is true, Amazon Redshift runs all VACUUM commands in the session
with the BOOST option. If enable_vacuum_boost is false, Amazon Redshift doesn't run with
the BOOST option by default. For more information about the BOOST option, see VACUUM.

error_on_nondeterministic_update

Values (default in bold)

false, true

enable_result_cache_for_session 2814

Amazon Redshift Database Developer Guide

Description

Specifies whether UPDATE queries with multiple matches per row return an error.

Example

SET error_on_nondeterministic_update TO true;

CREATE TABLE t1(x1 int, y1 int);

CREATE TABLE t2(x2 int, y2 int);

INSERT INTO t1 VALUES (1,10), (2,20), (3,30);

INSERT INTO t2 VALUES (2,40), (2,50);

UPDATE t1 SET y1=y2 FROM t2 WHERE x1=x2;

ERROR: Found multiple matches to update the same tuple.

extra_float_digits

Values (default in bold)

0, -15 to 2

Description

Sets the number of digits displayed for floating-point values, including float4 and float8. The value
is added to the standard number of digits (FLT_DIG or DBL_DIG as appropriate). The value can be
set as high as 2, to include partially significant digits. This is especially useful for outputting float
data that must be restored exactly. Or it can be set negative to suppress unwanted digits.

Example

The following example sets extra_float_digits to -2. First, show the current parameter
setting.

show all;
 name | setting
--------------------------+----------------

Description 2815

Amazon Redshift Database Developer Guide

analyze_threshold_percent | 10
datestyle | ISO, MDY
extra_float_digits | 2
query_group | default
search_path | $user, public
statement_timeout | 0
timezone | UTC
wlm_query_slot_count | 1

Then, set the new value to -2.

set extra_float_digits to -2;

Finally show the updated parameter setting.

show all;
 name | setting
--------------------------+----------------
analyze_threshold_percent | 10
datestyle | ISO, MDY
extra_float_digits | -2
query_group | default
search_path | $user, public
statement_timeout | 0
timezone | UTC
wlm_query_slot_count | 1

interval_forbid_composite_literals

Values (default in bold)

false, true

Description

A session configuration that modifies the value of an interval that contain both YEAR TO MONTH
and DAY TO SECOND parts.

If interval_forbid_composite_literals is true, an error is returned if an interval with
both YEAR TO MONTH and DAY TO SECOND parts is encountered. For example, the following SQL
contains an INTERVAL DAY TO SECOND with both YEAR TO MONTH and DAY TO SECOND parts.

interval_forbid_composite_literals 2816

Amazon Redshift Database Developer Guide

SELECT INTERVAL '1 year 1 day' DAY TO SECOND;
ERROR: Interval Day To Second literal cannot contain year-month parts. Disable the GUC
 interval_forbid_composite_literals to suppress this error and silently discard the
 year-month part.

If interval_forbid_composite_literals is false, Amazon Redshift suppresses an error and
truncates the YEAR TO MONTH part from an INTERVAL DAY TO SECOND value. For example, the
following SQL contains an INTERVAL DAY TO SECOND with both YEAR TO MONTH and DAY TO
SECOND parts.

SET interval_forbid_composite_literals to "false";
SELECT INTERVAL '1 year 1 day' DAY TO SECOND;

 intervald2s

1 days 0 hours 0 mins 0.0 secs

json_serialization_enable

Values (default in bold)

false, true

Description

A session configuration that modifies the JSON serialization behavior of ORC, JSON, Ion, and
Parquet formatted data. If json_serialization_enable is true, all top-level collections are
automatically serialized to JSON and returned as VARCHAR(65535). Noncomplex columns are not
affected or serialized. Because collection columns are serialized as VARCHAR(65535), their nested
subfields can no longer be accessed directly as part of the query syntax (that is, in the filter clause).
If json_serialization_enable is false, top-level collections are not serialized to JSON. For
more information about nested JSON serialization, see Serializing complex nested JSON.

json_serialization_parse_nested_strings

Values (default in bold)

false, true

json_serialization_enable 2817

Amazon Redshift Database Developer Guide

Description

A session configuration that modifies the JSON serialization behavior of ORC, JSON, Ion, and
Parquet formatted data. When both json_serialization_parse_nested_strings and
json_serialization_enable are true, string values that are stored in complex types (such as,
maps, structures, or arrays) are parsed and written inline directly into the result if they are valid
JSON. If json_serialization_parse_nested_strings is false, strings within nested complex
types are serialized as escaped JSON strings. For more information, see Serializing complex types
containing JSON strings.

max_concurrency_scaling_clusters

Values (default in bold)

1, 0 to 10

Description

Sets the maximum number of concurrency scaling clusters allowed when concurrency scaling is
enabled. Increase this value if more concurrency scaling is required. Decrease this value to reduce
the usage of concurrency scaling clusters and the resulting billing charges.

The maximum number of concurrency scaling clusters is an adjustable quota. For more
information, see Amazon Redshift quotas in the Amazon Redshift Management Guide.

max_cursor_result_set_size

Values (default in bold)

0 (defaults to maximum) - 14400000 MB

Description

The max_cursor_result_set_size parameter is no longer used. For more information about
cursor result set size, see Cursor constraints.

Description 2818

https://docs.aws.amazon.com/redshift/latest/mgmt/amazon-redshift-limits.html#amazon-redshift-limits-quota

Amazon Redshift Database Developer Guide

mv_enable_aqmv_for_session

Values (default in bold)

true, false

Description

Specifies whether Amazon Redshift can perform automatic query rewriting of materialized views at
the session level.

navigate_super_null_on_error

Values (default in bold)

on, off

Description

Specifies that when you try to navigate a nonexistent member of an object or element of an array,
Amazon Redshift returns a NULL value if your query is run in the default lax mode.

parse_super_null_on_error

Values (default in bold)

off, on

Description

Specifies that when Amazon Redshift tries to parse a nonexistent member of an object or element
of an array, Amazon Redshift returns a NULL value if your query is run in the strict mode.

pg_federation_repeatable_read

Values (default in bold)

true, false

mv_enable_aqmv_for_session 2819

Amazon Redshift Database Developer Guide

Description

Specifies the federated query transaction isolation level for the results from the PostgreSQL
database.

• When pg_federation_repeatable_read is true, federated transactions are processed with
REPEATABLE READ isolation level semantics. This is the default.

• When pg_federation_repeatable_read is false, federated transactions are processed with
READ COMMITTED isolation level semantics.

For more information, see the following:

• Considerations when accessing federated data with Amazon Redshift.

• Managing concurrent write operations.

Examples

The following command sets pg_federation_repeatable_read to on for a session. The show
command shows the value of the set value.

set pg_federation_repeatable_read to on;

show pg_federation_repeatable_read;

pg_federation_repeatable_read

on

query_group

Values (default in bold)

No default; the value can be any character string.

Description 2820

Amazon Redshift Database Developer Guide

Description

Applies a user-defined label to a group of queries that are run during the same session. This
label is captured in the query logs. You can use it to constrain results from the STL_QUERY and
STV_INFLIGHT tables and the SVL_QLOG view. For example, you can apply a separate label to
every query that you run to uniquely identify queries without having to look up their IDs.

This parameter doesn't exist in the server configuration file and must be set at runtime with a
SET command. Although you can use a long character string as a label, the label is truncated to
30 characters in the LABEL column of the STL_QUERY table and the SVL_QLOG view (and to 15
characters in STV_INFLIGHT).

In the following example, query_group is set to Monday, then several queries are run with that
label.

set query_group to 'Monday';
SET
select * from category limit 1;
...
...
select query, pid, substring, elapsed, label
from svl_qlog where label ='Monday'
order by query;

query | pid | substring | elapsed | label
------+------+------------------------------------+-----------+--------
789 | 6084 | select * from category limit 1; | 65468 | Monday
790 | 6084 | select query, trim(label) from ... | 1260327 | Monday
791 | 6084 | select * from svl_qlog where .. | 2293547 | Monday
792 | 6084 | select count(*) from bigsales; | 108235617 | Monday
...

search_path

Values (default in bold)

'$user', public, schema_names

A comma-separated list of existing schema names. If '$user' is present, then the schema having the
same name as SESSION_USER is substituted, otherwise it is ignored.

Description 2821

Amazon Redshift Database Developer Guide

Description

Specifies the order in which schemas are searched when an object (such as a table or a function) is
referenced by a simple name with no schema component:

• Search paths aren't supported with external schemas and external tables. External tables must
be explicitly qualified by an external schema.

• When objects are created without a specific target schema, they are placed in the first schema
listed in the search path. If the search path is empty, the system returns an error.

• When objects with identical names exist in different schemas, the one found first in the search
path is used.

• An object that isn't in any of the schemas in the search path can only be referenced by specifying
its containing schema with a qualified (dotted) name.

• The system catalog schema, pg_catalog, is always searched. If it is mentioned in the path, it is
searched in the specified order. If not, it is searched before any of the path items.

• The current session's temporary-table schema, pg_temp_nnn, is always searched if it exists. It
can be explicitly listed in the path by using the alias pg_temp. If it is not listed in the path, it is
searched first (even before pg_catalog). However, the temporary schema is only searched for
relation names (tables, views). It is not searched for function names.

Example

The following example creates the schema ENTERPRISE and sets the search_path to the new
schema.

create schema enterprise;
set search_path to enterprise;
show search_path;

 search_path

 enterprise
(1 row)

The following example adds the schema ENTERPRISE to the default search_path.

set search_path to '$user', public, enterprise;

Description 2822

Amazon Redshift Database Developer Guide

show search_path;

 search_path

 "$user", public, enterprise
(1 row)

The following example adds the table FRONTIER to the schema ENTERPRISE.

create table enterprise.frontier (c1 int);

When the table PUBLIC.FRONTIER is created in the same database, and the user does not specify
the schema name in a query, PUBLIC.FRONTIER takes precedence over ENTERPRISE.FRONTIER.

create table public.frontier(c1 int);
insert into enterprise.frontier values(1);
select * from frontier;

frontier

(0 rows)

select * from enterprise.frontier;

c1

1
(1 row)

spectrum_enable_pseudo_columns

Values (default in bold)

true, false

Description

You can disable the creation of pseudocolumns for a session by setting the
spectrum_enable_pseudo_columns configuration parameter to false.

spectrum_enable_pseudo_columns 2823

Amazon Redshift Database Developer Guide

Example

The following command disables the creation of pseudocolumns for a session.

set spectrum_enable_pseudo_columns to false;

enable_spectrum_oid

Values (default in bold)

true, false

Description

You can also disable only the $spectrum_oid pseudocolumn by setting the
enable_spectrum_oid configuration parameter to false.

Example

The following command disables the $spectrum_oid pseudocolumn by setting the
enable_spectrum_oid configuration parameter to false.

set enable_spectrum_oid to false;

spectrum_query_maxerror

Values (default in bold)

-1, integer

Description

You can specify an integer to indicate the maximum number of errors to accept before canceling
the query. A negative value turns off maximum error data handling. The results are logged in
SVL_SPECTRUM_SCAN_ERROR.

Example 2824

Amazon Redshift Database Developer Guide

Example

The following example assumes ORC data that contains surplus characters and characters that are
not valid. The column definition for my_string specifies a length of 3 characters. Following is the
sample data for this example:

my_string

abcdef
gh�
ab

The following commands set the maximum number of errors to 1 and perform the query.

set spectrum_query_maxerror to 1;
SELECT my_string FROM orc_data;

The query stops and the results are logged in SVL_SPECTRUM_SCAN_ERROR.

statement_timeout

Values (default in bold)

0 (turns off limitation), x milliseconds

Description

Stops any statement that takes over the specified number of milliseconds.

The statement_timeout value is the maximum amount of time a query can run before Amazon
Redshift terminates it. This time includes planning, queueing in workload management (WLM),
and execution time. Compare this time to WLM timeout (max_execution_time) and a QMR
(query_execution_time), which include only execution time.

If WLM timeout (max_execution_time) is also specified as part of a WLM configuration, the lower of
statement_timeout and max_execution_time is used. For more information, see WLM timeout.

Example

Because the following query takes longer than 1 millisecond, it times out and is canceled.

Example 2825

Amazon Redshift Database Developer Guide

set statement_timeout = 1;

select * from listing where listid>5000;
ERROR: Query (150) canceled on user's request

stored_proc_log_min_messages

Values (default in bold)

LOG, INFO, NOTICE, WARNING, EXCEPTION

Description

Specifies the minimum logging level of raised stored procedure messages. Messages at or above
the specified level are logged. The default is LOG (all messages are logged). The order of log levels
from highest to lowest is as follows:

1. EXCEPTION

2. WARNING

3. NOTICE

4. INFO

5. LOG

For example if you specify a value of NOTICE, then messages are only logged for NOTICE,
WARNING, and EXCEPTION.

timezone

Values (default in bold)

UTC, time zone

Syntax

SET timezone { TO | = } [time_zone | DEFAULT]

stored_proc_log_min_messages 2826

Amazon Redshift Database Developer Guide

SET time zone [time_zone | DEFAULT]

Description

Sets the time zone for the current session. The time zone can be the offset from Universal
Coordinated Time (UTC) or a time zone name.

Note

You can't set the timezone configuration parameter by using a cluster parameter group.
The time zone can be set only for the current session by using a SET command. To set the
time zone for all sessions run by a specific database user, use the ALTER USER command.
ALTER USER … SET TIMEZONE changes the time zone for subsequent sessions, not for the
current session.

When you set the time zone using the SET timezone (one word) command with either TO or
=, you can specify time_zone as a time zone name, a POSIX-style format offset, or an ISO-8601
format offset, as shown following.

SET timezone { TO | = } time_zone

When you set the time zone using the SET time zone command without TO or =, you can specify
time_zone using an INTERVAL and also a time zone name, a POSIX-style format offset, or an
ISO-8601 format offset, as shown following.

SET time zone time_zone

Time zone formats

Amazon Redshift supports the following time zone formats:

• Time zone name

• INTERVAL

• POSIX-style time zone specification

• ISO-8601 offset

Description 2827

Amazon Redshift Database Developer Guide

Because time zone abbreviations, such as PST or PDT, are defined as a fixed offset from UTC
and don't include daylight savings time rules, the SET command doesn't support time zone
abbreviations.

For more details on time zone formats, see the following.

Time zone name – The full time zone name, such as America/New_York. Full time zone names can
include daylight savings rules.

The following are examples of time zone names:

• Etc/Greenwich

• America/New_York

• CST6CDT

• GB

Note

Many time zone names, such as EST, MST, NZ, and UCT, are also abbreviations.

To view a list of valid time zone names, run the following command.

select pg_timezone_names();

INTERVAL – An offset from UTC. For example, PST is –8:00 or –8 hours.

The following are examples of INTERVAL time zone offsets:

• –8:00

• –8 hours

• 30 minutes

POSIX-style format – A time zone specification in the form STDoffset or STDoffsetDST, where
STD is a time zone abbreviation, offset is the numeric offset in hours west from UTC, and DST is
an optional daylight-savings zone abbreviation. Daylight savings time is assumed to be one hour
ahead of the given offset.

Time zone formats 2828

Amazon Redshift Database Developer Guide

POSIX-style time zone formats use positive offsets west of Greenwich, in contrast to the ISO-8601
convention, which uses positive offsets east of Greenwich.

The following are examples of POSIX-style time zones:

• PST8

• PST8PDT

• EST5

• EST5EDT

Note

Amazon Redshift doesn't validate POSIX-style time zone specifications, so it is possible to
set the time zone to an invalid value. For example, the following command doesn't return
an error, even though it sets the time zone to an invalid value.

set timezone to ‘xxx36’;

ISO-8601 Offset – The offset from UTC in the form ±[hh]:[mm].

The following are examples of ISO-8601 offsets:

• -8:00

• +7:30

Examples

The following example sets the time zone for the current session to New York.

set timezone = 'America/New_York';

The following example sets the time zone for the current session to UTC–8 (PST).

set timezone to '-8:00';

The following example uses INTERVAL to set the time zone to PST.

Examples 2829

Amazon Redshift Database Developer Guide

set timezone interval '-8 hours'

The following example resets the time zone for the current session to the system default time zone
(UTC).

set timezone to default;

To set the time zone for database user, use an ALTER USER … SET statement. The following
example sets the time zone for dbuser to New York. The new value persists for the user for all
subsequent sessions.

ALTER USER dbuser SET timezone to 'America/New_York';

use_fips_ssl

Values (default in bold)

true, false

Description

A parameter group value that specifies if FIPS-compliant SSL mode is used. If use_fips_ssl is
true, then FIPS-compliant SSL mode is used. If use_fips_ssl is false, then FIPS-compliant SSL
mode is not used. For more information, see Configuring security options for connections in the
Amazon Redshift Management Guide.

To configure parameters for an Amazon Redshift provisioned cluster, see About parameter groups
in the Amazon Redshift Management Guide. To configure parameters for Redshift Serverless,
see Configuring a FIPS-compliant SSL connection to Amazon Redshift Serverless in the Amazon
Redshift Management Guide, and CreateWorkgroup or UpdateWorkgroup in the Redshift Serverless
API Reference.

wlm_query_slot_count

Values (default in bold)

1, 1 to 50 (cannot exceed number of available slots (concurrency level) for the service class)

use_fips_ssl 2830

https://docs.aws.amazon.com/redshift/latest/mgmt/connecting-ssl-support.html
https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html
https://docs.aws.amazon.com/redshift/latest/mgmt/serverless-connecting.html#serverless_secure-fips-ssl
https://docs.aws.amazon.com/redshift-serverless/latest/APIReference/API_CreateWorkgroup.html
https://docs.aws.amazon.com/redshift-serverless/latest/APIReference/API_UpdateWorkgroup.html

Amazon Redshift Database Developer Guide

Description

Sets the number of query slots that a query uses.

Workload management (WLM) reserves slots in a service class according to the concurrency level
set for the queue. For example, if concurrency level is set to 5, then the service class has 5 slots.
WLM allocates the available memory for a service class equally to each slot. For more information,
see Implementing workload management.

Note

If the value of wlm_query_slot_count is larger than the number of available slots
(concurrency level) for the service class, the query fails. If you encounter an error, decrease
wlm_query_slot_count to an allowable value.

For operations where performance is heavily affected by the amount of memory allocated, such as
vacuuming, increasing the value of wlm_query_slot_count can improve performance. In particular,
for slow vacuum commands, inspect the corresponding record in the SVV_VACUUM_SUMMARY
view. If you see high values (close to or higher than 100) for sort_partitions and merge_increments
in the SVV_VACUUM_SUMMARY view, consider increasing the value for wlm_query_slot_count the
next time you run Vacuum against that table.

Increasing the value of wlm_query_slot_count limits the number of concurrent queries
that can be run. For example, suppose that the service class has a concurrency level of 5
and wlm_query_slot_count is set to 3. While a query is running within the session with
wlm_query_slot_count set to 3, a maximum of 2 more concurrent queries can be run within the
same service class. Subsequent queries wait in the queue until currently running queries complete
and slots are freed.

Examples

Use the SET command to set the value of wlm_query_slot_count for the duration of the current
session.

set wlm_query_slot_count to 3;

Description 2831

Amazon Redshift Database Developer Guide

Document history

Note

For a description of new features in Amazon Redshift, see What's new.

The following table describes the important documentation changes to the Amazon Redshift
Database Developer Guide after May 2018. For notification about updates to this documentation,
you can subscribe to an RSS feed.

API version: 2012-12-01

For a list of the changes to the Amazon Redshift Management Guide, see Amazon Redshift
Management Guide Document History.

For more information about new features, including a list of fixes and the associated cluster version
numbers for each release, see Cluster Version History.

Change Description Date

Support for spatial 3D and 4D
geometries and new spatial
functions

You can now use additiona
l spatial functions and 3D
and 4D geometry support is
added to some functions.

August 19, 2021

Support for column compressi
on encoding for automatic
table optimization

You can specify the ENCODE
AUTO option for a table
to automatically manage
compression encoding for all
columns in the table.

August 3, 2021

Support for multiple SQL
statements or an SQL
statement with parameters
using the Amazon Redshift
Data API

You can now run multiple SQL
statements or a statement
with parameters with the
Amazon Redshift Data API.

July 28, 2021

2832

https://aws.amazon.com/redshift/whats-new
https://docs.aws.amazon.com/redshift/latest/mgmt/document-history.html
https://docs.aws.amazon.com/redshift/latest/mgmt/document-history.html
http://docs.aws.amazon.com/redshift/latest/mgmt/rs-mgmt-cluster-version-notes.html
https://docs.aws.amazon.com/redshift/latest/dg/geospatial-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/geospatial-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/geospatial-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_encodings.html
https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_encodings.html
https://docs.aws.amazon.com/redshift/latest/dg/c_Compression_encodings.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html

Amazon Redshift Database Developer Guide

Support for case-insensitive
collation with column level
overrides

You can now use the COLLATE
clause within a CREATE
DATABASE statement to
specify the default collation.

June 24, 2021

Support for data sharing
across accounts

You can now share data
across AWS accounts.

April 30, 2021

Support for hierarchical data
queries with recursive CTE

You can now use a recursive
common table expression
(CTE) in your SQL.

April 29, 2021

Support for cross-database
queries

You can now query data
across databases in a cluster.

March 10, 2021

Support for fine-grained
access control on COPY and
UNLOAD commands

You can now grant the
privilege to run COPY and
UNLOAD commands to
specific users and groups in
your Amazon Redshift cluster
to create more fine-grained
access control policy.

January 12, 2021

Support for native JSON and
semi-structured data

You can now define the
SUPER data type.

December 9, 2020

Support for federated query
to MySQL

You can now write a
federated query to a
supported MySQL engine.

December 9, 2020

Support for data sharing You can now share data
across Amazon Redshift
clusters.

December 9, 2020

Support for automatic table
optimization

You can now define automatic
distribution and sort keys.

December 9, 2020

2833

https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATABASE.html#r_CREATE_DATABASE-collation
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATABASE.html#r_CREATE_DATABASE-collation
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_DATABASE.html#r_CREATE_DATABASE-collation
https://docs.aws.amazon.com/redshift/latest/dg/across-account.html
https://docs.aws.amazon.com/redshift/latest/dg/across-account.html
https://docs.aws.amazon.com/redshift/latest/dg/r_WITH_clause.html
https://docs.aws.amazon.com/redshift/latest/dg/r_WITH_clause.html
https://docs.aws.amazon.com/redshift/latest/dg/cross-database-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/cross-database-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT-usage-notes.html#r_GRANT-usage-notes-assumerole
https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT-usage-notes.html#r_GRANT-usage-notes-assumerole
https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT-usage-notes.html#r_GRANT-usage-notes-assumerole
https://docs.aws.amazon.com/redshift/latest/dg/super-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/super-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/federated-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/federated-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/datashare-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Creating_tables.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Creating_tables.html

Amazon Redshift Database Developer Guide

Support for Amazon Redshift
ML

You can now create, train, and
deploy machine learning (ML)
models.

December 8, 2020

Support for automatic refresh
and query rewrite of materiali
zed views

You can now keep materiali
zed views up-to-date with
automatic refresh and query
performance can be improved
with automatic rewrite.

November 11, 2020

Support for TIME and TIMETZ
data types

You can now create tables
with TIME and TIMETZ data
types. TIME data type stores
the time of day without
timezone information, and
TIMETZ stores the time of day
including timezone informati
on

November 11, 2020

Support for Lambda UDFs
and tokenization

You can now can write
Lambda UDFs to enable
external tokenization of data.

October 26, 2020

Support for altering a table
column encoding

You can now alter a table
column encoding.

October 20, 2020

Support for querying across
databases

Amazon Redshift can now
query across databases in a
cluster.

October 15, 2020

Support for HyperLogLog
Sketches

Amazon Redshift can now
store and process HyperLogL
ogSketches.

October 2, 2020

Support for Apache Hudi and
Delta Lake

Enhancements to creating
external tables for Redshift
Spectrum.

September 24, 2020

2834

https://docs.aws.amazon.com/redshift/latest/dg/machine_learning.html
https://docs.aws.amazon.com/redshift/latest/dg/machine_learning.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/r_Datetime_types.html
https://docs.aws.amazon.com/redshift/latest/dg/r_Datetime_types.html
https://docs.aws.amazon.com/redshift/latest/dg/udf-creating-a-lambda-sql-udf.html
https://docs.aws.amazon.com/redshift/latest/dg/udf-creating-a-lambda-sql-udf.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/cross-database-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/cross-database-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/hyperloglog-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/hyperloglog-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-external-tables.html

Amazon Redshift Database Developer Guide

Support for enhancements to
querying spatial data

Enhancements include
loading a shapefile and
several new spatial SQL
functions.

September 15, 2020

Materialized view support
external tables

You can create materialized
views in Amazon Redshift
that reference external data
sources.

June 19, 2020

Support to write to external
table

You can write to external
tables by running CREATE
EXTERNAL TABLE AS SELECT
to write to a new external
table or INSERT INTO to
insert data into an existing
external table.

June 8, 2020

Support for storage controls
for schemas

Updates to commands and
views that manage storage
controls for schemas.

June 2, 2020

Support for federated query
general availability

Updated information about
querying data with federated
queries.

April 16, 2020

Support for additional spatial
functions

Added descriptions of
additional spatial functions.

April 2, 2020

Support for materialized
views general availability

Materialized views are
generally available starting
with cluster version 1.0.13059
.

February 19, 2020

Support for column-level
privileges

Column-level privileges are
available starting with cluster
version 1.0.13059.

February 19, 2020

2835

https://docs.aws.amazon.com/redshift/latest/dg/geospatial-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/geospatial-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_SCHEMA.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_SCHEMA.html
https://docs.aws.amazon.com/redshift/latest/dg/federated-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/federated-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/spatial-functions.html
https://docs.aws.amazon.com/redshift/latest/dg/spatial-functions.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/materialized-view-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT.html
https://docs.aws.amazon.com/redshift/latest/dg/r_GRANT.html

Amazon Redshift Database Developer Guide

ALTER TABLE You can use an ALTER TABLE
command with the ALTER
DISTSTYLE ALL clause to
change the distribution style
of a table.

February 11, 2020

Support for federated query Updated the guide to describe
federated query with an
updated CREATE EXTERNAL
SCHEMA.

December 3, 2019

Support for data lake export Updated the guide to describe
new parameters of the
UNLOAD command.

December 3, 2019

Support for spatial data Updated the guide to describe
support for spatial data.

November 21, 2019

Support for the new console Updated the guide to describe
the new Amazon Redshift
console.

November 11, 2019

Support for automatic table
sort

Amazon Redshift can
automatically sort table data.

November 7, 2019

Support for VACUUM BOOST
option

You can use the BOOST
option when vacuuming
tables.

November 7, 2019

Support for default IDENTITY
columns

You can create tables with
default IDENTITY columns.

September 19, 2019

Support for AZ64 compressi
on encoding

You can encode some
columns with AZ64 compressi
on encoding.

September 19, 2019

Support for query priority You can set the query priority
of an automatic WLM queue.

August 22, 2019

2836

https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/federated-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html
https://docs.aws.amazon.com/redshift/latest/dg/geospatial-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/welcome.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage_space202.html
https://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage_space202.html
https://docs.aws.amazon.com/redshift/latest/dg/r_VACUUM_command.html
https://docs.aws.amazon.com/redshift/latest/dg/r_VACUUM_command.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html
https://docs.aws.amazon.com/redshift/latest/dg/az64-encoding.html
https://docs.aws.amazon.com/redshift/latest/dg/az64-encoding.html
https://docs.aws.amazon.com/redshift/latest/dg/query-priority.html

Amazon Redshift Database Developer Guide

Support for AWS Lake
Formation

You can use a Lake Formation
Data Catalog with Amazon
Redshift Spectrum.

August 8, 2019

COMPUPDATE PRESET You can use a COPY command
with COMPUPDATE PRESET
to enable Amazon Redshift
to choose the compression
encoding.

June 13, 2019

ALTER COLUMN You can use an ALTER TABLE
command with ALTER
COLUMN to increase the size
of a VARCHAR column.

May 22, 2019

Support for stored procedures You can define PL/pgSQL
stored procedures in Amazon
Redshift.

April 24, 2019

Support for an automatic
workload management (WLM)
configuration

You can enable Amazon
Redshift to run with
automatic WLM.

April 24, 2019

UNLOAD to Zstandard You can use the UNLOAD
command to apply Zstandard
compression to text and
comma-separated value
(CSV) files unloaded to
Amazon S3.

April 3, 2019

Concurrency scaling When concurrency scaling is
enabled, Amazon Redshift
automatically adds additiona
l cluster capacity when you
need it to process an increase
in concurrent read queries.

March 21, 2019

2837

https://docs.aws.amazon.com/redshift/latest/dg/spectrum-lake-formation.html
https://docs.aws.amazon.com/redshift/latest/dg/spectrum-lake-formation.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-parameters-data-load.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/stored-procedure-overview.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-implementing-workload-management.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-implementing-workload-management.html
https://docs.aws.amazon.com/redshift/latest/dg/cm-c-implementing-workload-management.html
https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html
https://docs.aws.amazon.com/redshift/latest/dg/concurrency-scaling.html

Amazon Redshift Database Developer Guide

UNLOAD to CSV You can use the UNLOAD
command to unload to a file
formatted as CSV text.

March 13, 2019

AUTO distribution style To enable automatic distribut
ion, you can specify the AUTO
distribution style with a
CREATE TABLE statement.
When you enable automatic
distribution, Amazon
Redshift assigns an optimal
distribution style based on
the table data. The change
 in distribution occurs in the
background, in a few seconds.

January 23, 2019

COPY from Parquet supports
SMALLINT

COPY now supports loading
from Parquet formatted files
into columns that use the
SMALLINT data type. For
more information, see COPY
from Columnar Data Formats

January 2, 2019

DROP EXTERNAL DATABASE You can drop an external
database by including the
DROP EXTERNAL DATABASE
 clause with a DROP SCHEMA
command.

December 3, 2018

Cross-region UNLOAD You can UNLOAD to an
Amazon S3 bucket in another
AWS Region by specifying the
REGION parameter.

October 31, 2018

2838

https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html
https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-usage_notes-copy-from-columnar.html
https://docs.aws.amazon.com/redshift/latest/dg/copy-usage_notes-copy-from-columnar.html
https://docs.aws.amazon.com/redshift/latest/dg/r_DROP_SCHEMA.html
https://docs.aws.amazon.com/redshift/latest/dg/r_DROP_SCHEMA.html
https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html

Amazon Redshift Database Developer Guide

Automatic vacuum delete Amazon Redshift automatic
ally runs a VACUUM DELETE
operation in the background,
so you rarely, if ever, need to
run a DELETE ONLY vacuum.
Amazon Redshift schedules
the VACUUM DELETE to run
during periods of reduced
load and pauses the operation
during periods of high load.

October 31, 2018

Automatic distribution When you don't specify a
distribution style with a
CREATE TABLE statement,
Amazon Redshift assigns an
optimal distribution style
 based on the table data. The
change in distribution occurs
in the background, in a few
seconds.

October 31, 2018

Fine grained access control
for the AWS Glue Data
Catalog

You can now specify levels of
access to data stored in the
AWS Glue Data Catalog.

October 15, 2018

UNLOAD with data types You can specify the MANIFEST
VERBOSE option with an
UNLOAD command to add
metadata to the manifest file,
including the names and data
types of columns, file sizes,
and row counts.

October 10, 2018

2839

https://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage_space202.html
https://docs.aws.amazon.com/redshift/latest/dg/r_VACUUM_command.html
https://docs.aws.amazon.com/redshift/latest/dg/c_choosing_dist_sort.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_TABLE_NEW.html
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-iam-policies.html#c-spectrum-glue-acess
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-iam-policies.html#c-spectrum-glue-acess
https://docs.aws.amazon.com/redshift/latest/dg/c-spectrum-iam-policies.html#c-spectrum-glue-acess
https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html
https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html

Amazon Redshift Database Developer Guide

Add multiple partitions
using a single ALTER TABLE
statement

For Redshift Spectrum
external tables, you can
combine multiple PARTITION
 clauses in a single ALTER
TABLE ADD statement. For
more information, see Alter
External Table Examples.

October 10, 2018

UNLOAD with header You can specify the HEADER
option with an UNLOAD
command to add a header
line containing column names
at the top of each output file.

September 19, 2018

New system table and views SVL_S3Retries, SVL_USER_
INFO, and STL_DISK_
FULL_DIAG documentation
added.

August 31, 2018

Support for nested data in
Amazon Redshift Spectrum

You can now query nested
data stored in Amazon
Redshift Spectrum tables.
For more information, see
Tutorial: Querying Nested
Data with Amazon Redshift
 Spectrum.

August 8, 2018

SQA on by default Short query acceleration
(SQA) is now enabled by
default for all new clusters.
 SQA uses machine learning
to provide higher performan
ce, faster results, and better
predictability of query
execution times. For more
information, see Short Query
Acceleration.

August 8, 2018

2840

https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE_external-table.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE_external-table.html
https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html
https://docs.aws.amazon.com/redshift/latest/dg/r_UNLOAD.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVL_S3RETRIES.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVL_S3RETRIES.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVL_USER_INFO.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SVL_USER_INFO.html
https://docs.aws.amazon.com/redshift/latest/dg/r_STL_DISK_FULL_DIAG.html
https://docs.aws.amazon.com/redshift/latest/dg/r_STL_DISK_FULL_DIAG.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://docs.aws.amazon.com/redshift/latest/dg/tutorial-query-nested-data.html
https://docs.aws.amazon.com/redshift/latest/dg/wlm-short-query-acceleration.html
https://docs.aws.amazon.com/redshift/latest/dg/wlm-short-query-acceleration.html
https://docs.aws.amazon.com/redshift/latest/dg/wlm-short-query-acceleration.html

Amazon Redshift Database Developer Guide

Amazon Redshift Advisor You can now get tailored
recommendations on how to
improve cluster performance
and reduce operating costs
from the Amazon Redshift
Advisor. For more informat
ion, see Amazon Redshift
Advisor.

July 26, 2018

Immediate alias reference You can now refer to an
aliased expression immediate
ly after you define it. For
more information, see SELECT
List.

July 18, 2018

Specify compression type
when creating an external
table

You can now specify
compression type when
creating an external table
with Amazon Redshift
Spectrum. For more informati
on, see Create External
Tables.

June 27, 2018

PG_LAST_UNLOAD_ID Documentation added for
a new System Informati
on function: PG_LAST_U
NLOAD_ID. For more
information, see PG_LAST_U
NLOAD_ID.

June 27, 2018

ALTER TABLE RENAME
COLUMN

ALTER TABLE now supports
renaming columns for
external tables. For more
 information, see Alter
External Table Examples.

June 7, 2018

2841

https://docs.aws.amazon.com/redshift/latest/dg/advisor.html
https://docs.aws.amazon.com/redshift/latest/dg/advisor.html
https://docs.aws.amazon.com/redshift/latest/dg/advisor.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SELECT_list.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SELECT_list.html
https://docs.aws.amazon.com/redshift/latest/dg/r_SELECT_list.html
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html#r_CREATE_EXTERNAL_TABLE-parameters
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html#r_CREATE_EXTERNAL_TABLE-parameters
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html#r_CREATE_EXTERNAL_TABLE-parameters
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html#r_CREATE_EXTERNAL_TABLE-parameters
https://docs.aws.amazon.com/redshift/latest/dg/r_CREATE_EXTERNAL_TABLE.html#r_CREATE_EXTERNAL_TABLE-parameters
https://docs.aws.amazon.com/redshift/latest/dg/PG_LAST_UNLOAD_ID.html
https://docs.aws.amazon.com/redshift/latest/dg/PG_LAST_UNLOAD_ID.html
https://docs.aws.amazon.com/redshift/latest/dg/PG_LAST_UNLOAD_ID.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE_external-table.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE_external-table.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE_external-table.html
https://docs.aws.amazon.com/redshift/latest/dg/r_ALTER_TABLE_external-table.html

Amazon Redshift Database Developer Guide

Earlier updates

The following table describes the important changes in each release of the Amazon Redshift
Database Developer Guide before June 2018.

Change Description Date changed

COPY from
Parquet includes
SMALLINT

COPY now supports loading from Parquet formatted
files into columns that use the SMALLINT data type.
For more information, see COPY from columnar data
formats

January 2, 2019

COPY from
columnar formats

COPY now supports loading from files on Amazon S3
that use Parquet and ORC columnar data formats.
For more information, see COPY from columnar data
formats

May 17, 2018

Dynamic
maximum run
time for SQA

By default, workload management (WLM) now
dynamically assigns a value for the short query
acceleration (SQA) maximum run time based
 on analysis of your cluster's workload. For more
information, see Maximum runtime for short queries.

May 17, 2018

New column
in STL_LOAD_
COMMITS

The STL_LOAD_COMMITS system table has a new
column, file_format .

May 10, 2018

New columns in
STL_HASHJOIN
and other system
log tables

The STL_HASHJOIN system table has three new
columns, hash_segment , hash_step , and
checksum. Also, a checksum was added to
STL_MERGEJOIN, STL_NESTLOOP, STL_HASH,
STL_SCAN, STL_SORT, STL_LIMIT, and STL_PROJECT.

May 17, 2018

New columns in
STL_AGGR

The STL_AGGR system table has two new columns,
resizes and flushable .

April 19, 2018

New options for
REGEX functions

For the REGEXP_INSTR and REGEXP_SUBSTR
functions, you can now specify which occurence of

March 22, 2018

Earlier updates 2842

Amazon Redshift Database Developer Guide

Change Description Date changed

a match to use and whether to perform a case-sens
itive match. REGEXP_INSTR also allows you specify
whether to return the position of the first character
of the match or the position of the first character
following the end of the match.

New columns in
system tables

The tombstonedblocks, tossedblocks, and batched_b
y columns were added to the STL_COMMIT_STATS
system table. The localslice column was added to the
STV_SLICES system view.

March 22, 2018

Add and drop
columns in
external tables

ALTER TABLE now supports ADD COLUMN and DROP
COLUMN for Amazon Redshift Spectrum external
tables.

March 22, 2018

Redshift
Spectrum new
AWS Regions

Redshift Spectrum is now available in the Mumbai
and São Paulo Regions. For a list of supported
Regions, see Amazon Redshift Spectrum Regions.

March 22, 2018

Table limit
increased to
20,000

The maximum number of tables is now 20,000 for
8xlarge cluster node types. The limit for large and
xlarge node types is 9,900. For more information, see
Limits and quotas.

March 13, 2018

Redshift
Spectrum support
for JSON and Ion

Using Redshift Spectrum, you can reference files with
scalar data in JSON or Ion data formats. For more
information, see CREATE EXTERNAL TABLE.

February 26, 2018

IAM role chaining
for Redshift
Spectrum

You can chain AWS Identity and Access Managemen
t (IAM) roles so that your cluster can assume other
roles not attached to the cluster, including roles belo
nging to another AWS account. For more information,
see Chaining IAM roles in Amazon Redshift Spectrum.

February 1, 2018

ADD PARTITION
supports IF NOT
EXISTS

The ADD PARTITION clause for ALTER TABLE now
supports an IF NOT EXISTS option. For more
information, see ALTER TABLE.

January 11, 2018

Earlier updates 2843

Amazon Redshift Database Developer Guide

Change Description Date changed

DATE data for
external tables

Redshift Spectrum external tables now support the
DATE data type. For more information, see CREATE
EXTERNAL TABLE.

January 11, 2018

Redshift
Spectrum new
AWS Regions

Redshift Spectrum is now available in the Singapore
, Sydney, Seoul, and Frankfurt Regions. For a list
of supported AWS Regions, see Amazon Redshift
Spectrum Regions.

November 16,
2017

Short query
acceleration
in Amazon
Redshift workload
management
(WLM)

Short query acceleration (SQA) prioritizes selected
short-running queries ahead of longer-running
queries. SQA executes short-running queries in a
dedicated space, so that SQA queries aren't forced
to wait in queues behind longer queries. With SQA,
short-running queries begin executing more quickly
and users see results sooner. For more information,
see Working with short query acceleration.

November 16,
2017

WLM reassigns
hopped queries

Instead of canceling and restarting a hopped query,
Amazon Redshift workload management (WLM)
now reassigns eligible queries to a new queue. When
WLM reassigns a query, it moves the query to the
new queue and continues execution, which saves
time and system resources. Hopped queries that
 are not eligible to be reassigned are restarted or
canceled. For more information, see WLM query
queue hopping.

November 16,
2017

System log access
for users

In most system log tables that are visible to users,
rows generated by another user are invisible to a
regular user by default. To permit a regular user to
see all rows in user-visible tables, including rows
 generated by another user, run ALTER USER or
CREATE USER and set the SYSLOG ACCESS parameter
to UNRESTRICTED.

November 16,
2017

Earlier updates 2844

Amazon Redshift Database Developer Guide

Change Description Date changed

Result caching With Result caching , when you run a query Amazon
Redshift caches the result. When you run the query
again, Amazon Redshift checks for a valid, cached
copy of the query result. If a match is found in the
result cache, Amazon Redshift uses the cached result
and doesn't run the query. Result caching is turned
on by default. To turn off result caching, set the
enable_result_cache_for_session configuration
 parameter to off.

November 16,
2017

Column metadata
functions

PG_GET_COLS and PG_GET_LATE_BINDIN
G_VIEW_COLS return column metadata for Amazon
Redshift tables, views, and late-binding views.

November 16,
2017

WLM queue
hopping for CTAS

Amazon Redshift workload management (WLM) now
supports query queue hopping for CREATE TABLE
AS (CTAS) statements as well as read-only queries,
such as SELECT statements. For more information,
see WLM query queue hopping.

October 19, 2017

Amazon Redshift
Spectrum
manifest files

When you create a Redshift Spectrum external table,
you can specify a manifest file that lists the locations
of data files on Amazon S3. For more information,
see CREATE EXTERNAL TABLE.

October 19, 2017

Amazon Redshift
Spectrum new
AWS Regions

Redshift Spectrum is now available in the EU (Ireland)
and Asia Pacific (Tokyo) Regions. For a list of
supported AWS Regions, see Amazon Redshift
Spectrum considerations.

October 19, 2017

Amazon Redshift
Spectrum added
file formats

You can now create Redshift Spectrum external
tables based on Regex, OpenCSV, and Avro data
file formats. For more information, see CREATE
EXTERNAL TABLE.

October 5, 2017

Earlier updates 2845

Amazon Redshift Database Developer Guide

Change Description Date changed

Pseudocol
umns for
Amazon Redshift
Spectrum
external tables

You can select the $path and $size pseudocolu
mns in a Redshift Spectrum external table to view
the location and size of the referenced data files in
Amazon S3. For more information, see Pseudocol
umns.

October 5, 2017

Functions to
validate JSON

You can use the IS_VALID_JSON and IS_VALID_
JSON_ARRAY functions to check for valid JSON
formatting. The other JSON functions now have an
optional null_if_invalid argument.

October 5, 2017

LISTAGG
DISTINCT

You can use the DISTINCT clause with the LISTAGG
aggregate function and the LISTAGG window func
tion to eliminate duplicate values from the specified
expression before concatenating.

October 5, 2017

View column
names in
uppercase

To view column names in SELECT results in uppercase
, you can set the describe_field_name_in_uppercase
configuration parameter to true.

October 5, 2017

Skip header lines
in external tables

You can set the skip.header.line.count
property in the CREATE EXTERNAL TABLE command
to skip header lines at the beginning of Redshift
Spectrum data files.

October 5, 2017

Scan row count WLM query monitor rules uses the scan_row_count
metric to return the number of rows in a scan step.
The row count is the total number of rows emitted
before filtering rows marked for deletion (ghost rows)
and before applying user-defined query filters. For
more information, see Query monitoring metrics for
Amazon Redshift provisioned.

September 21,
2017

Earlier updates 2846

Amazon Redshift Database Developer Guide

Change Description Date changed

SQL user-defined
functions

A scalar SQL user-defined function (UDF) incorpora
tes a SQL SELECT clause that executes when the
function is called and returns a single value. For
more information, see Creating a scalar SQL UDF.

August 31, 2017

Late-binding
views

A late-binding view is not bound to the underlyin
g database objects, such as tables and user-defi
ned functions. As a result, there is no dependency
between the view and the objects it references. You
can create a view even if the referenced objects don't
exist. Because there is no dependency, you can drop
or alter a referenced object without affecting the
view. Amazon Redshift doesn't check for dependenc
ies until the view is queried. To create a late-bind
ing view, specify the WITH NO SCHEMA BINDING
clause with your CREATE VIEW statement. For more
information, see CREATE VIEW.

August 31, 2017

OCTET_LENGTH
function

OCTET_LENGTH returns the length of the specified
string as the number of bytes.

August 18, 2017

ORC and Grok
files types
supported

Amazon Redshift Spectrum now supports the ORC
and Grok data formats for Redshift Spectrum data
files. For more information, see Creating data files for
queries in Amazon Redshift Spectrum.

August 18, 2017

RegexSerDe now
supported

Amazon Redshift Spectrum now supports the
RegexSerDe data format. For more information, see
Creating data files for queries in Amazon Redshift
Spectrum.

July 19, 2017

New columns
added to
SVV_TABLES and
SVV_COLUMNS

The columns domain_name and remarks were
 added to SVV_COLUMNS. A remarks column was
added to SVV_TABLES.

July 19, 2017

Earlier updates 2847

Amazon Redshift Database Developer Guide

Change Description Date changed

SVV_TABLES and
SVV_COLUMNS
system views

The SVV_TABLES and SVV_COLUMNS system views
provide information about columns and other details
for local and external tables and views.

July 7, 2017

VPC no longer
required for
Amazon Redshift
Spectrum with
Amazon EMR
Hive metastore

Redshift Spectrum removed the requirement that
the Amazon Redshift cluster and the Amazon EMR
cluster must be in the same VPC and the same subnet
when using an Amazon EMR Hive metastore. For
more information, see Working with external catalogs
in Amazon Redshift Spectrum.

July 7, 2017

UNLOAD to
smaller file sizes

By default, UNLOAD creates multiple files on Amazon
S3 with a maximum size of 6.2 GB. To create smaller
files, specify the MAXFILESIZE with the UNLOAD
command. You can specify a maximum file size
between 5 MB and 6.2 GB. For more information, see
UNLOAD.

July 7, 2017

TABLE PROPERTIE
S

You can now set the TABLE PROPERTIES numRows
parameter for CREATE EXTERNAL TABLE or ALTER
TABLE to update table statistics to reflect the
number of rows in the table.

June 6, 2017

ANALYZE
PREDICATE
COLUMNS

To save time and cluster resources, you can choose
to analyze only the columns that are likely to be
used as predicates. When you run ANALYZE with the
PREDICATE COLUMNS clause, the analyze operation
 includes only columns that have been used in a join,
filter condition, or group by clause, or are used as a
sort key or distribution key. For more information,
see Analyzing tables.

May 25, 2017

Earlier updates 2848

Amazon Redshift Database Developer Guide

Change Description Date changed

IAM policies for
Amazon Redshift
Spectrum

To grant access to an Amazon S3 bucket only using
Redshift Spectrum, you can include a condition that
allows access for the user agent AWS Redshift/
Spectrum . For more information, see IAM policies
for Amazon Redshift Spectrum.

May 25, 2017

Amazon Redshift
Spectrum
Recursive Scan

Redshift Spectrum now scans files in subfolders as
well as the specified folder in Amazon S3. For more
information, see Creating external tables for Redshift
Spectrum.

May 25, 2017

Query monitoring
rules

Using WLM query monitoring rules, you can define
metrics-based performance boundaries for WLM
queues and specify what action to take when a query
goes beyond those boundaries—log, hop, or abort.
You define query monitoring rules as part of your
workload management (WLM) configuration. For
more information, see WLM query monitoring rules.

April 21, 2017

Amazon Redshift
Spectrum

Using Redshift Spectrum, you can efficiently query
and retrieve data from files in Amazon S3 without
having to load the data into tables. Redshift Sp
ectrum queries execute very fast against large
datasets because Redshift Spectrum scans the data
files directly in Amazon S3. Much of the processing
occurs in the Amazon Redshift Spectrum layer, and
most of the data remains in Amazon S3. Multiple
clusters can concurrently query the same datase
t on Amazon S3 without the need to make copies
of the data for each cluster. For more information,
see Querying external data using Amazon Redshift
Spectrum

April 19, 2017

Earlier updates 2849

Amazon Redshift Database Developer Guide

Change Description Date changed

New system
tables to
support Redshift
Spectrum

The following new system views have been added to
support Redshift Spectrum:

•
SVL_S3QUERY

•
SVL_S3QUERY_SUMMARY

•
SVV_EXTERNAL_COLUMNS

•
SVV_EXTERNAL_DATABASES

•
SVV_EXTERNAL_PARTITIONS

•
SVV_EXTERNAL_TABLES

•
PG_EXTERNAL_SCHEMA

April 19, 2017

APPROXIMA
TE PERCENTIL
E_DISC aggregate
function

The APPROXIMATE PERCENTILE_DISC aggregate f
unction is now available.

April 4, 2017

Server-side
encryption with
KMS

You can now unload data to Amazon S3 using server-
side encryption with an AWS Key Managemen
t Service key (SSE-KMS). In addition, COPY now
transparently loads KMS-encrypted data files from
Amazon S3. For more information, see UNLOAD.

February 9, 2017

Earlier updates 2850

Amazon Redshift Database Developer Guide

Change Description Date changed

New authoriza
tion syntax

You can now use the IAM_ROLE, MASTER_SY
MMETRIC_KEY, ACCESS_KEY_ID, SECRET_ACCESS_
KEY, and SESSION_TOKEN parameters to provide
authorization and access information for COPY,
UNLOAD, and CREATE LIBRARY commands. The
new authorization syntax provides a more flexible
alternative to providing a single string argument to
the CREDENTIALS parameter. For more information,
see Authorization parameters.

February 9, 2017

Schema limit
increase

You can now create up to 9,900 schemas per cluster.
For more information, see CREATE SCHEMA.

February 9, 2017

Default table
encoding

CREATE TABLE and ALTER TABLE now assign
LZO compression encoding to most new columns.
Columns defined as sort keys, columns that are
defined as BOOLEAN, REAL, or DOUBLE PRECISION
data types, and temporary tables are assigned RAW
encoding by default. For more information, see
ENCODE.

February 6, 2017

ZSTD compressi
on encoding

Amazon Redshift now supports ZSTD column
compression encoding.

January 19, 2017

PERCENTIL
E_CONT and
MEDIAN
aggregate
functions

PERCENTILE_CONT and MEDIAN are now available as
aggregate functions as well as window functions.

January 19, 2017

User-defined
function (UDF)
User Logging

You can use the Python logging module to create
user-defined error and warning messages in your
UDFs. Following query execution, you can query
the SVL_UDF_LOG system view to retrieve logged
messages. For more information about user-defined
messages, see Logging errors and warnings in UDFs

December 8, 2016

Earlier updates 2851

Amazon Redshift Database Developer Guide

Change Description Date changed

ANALYZE
COMPRESSI
ON estimated
reduction

The ANALYZE COMPRESSION command now reports
an estimate for percentage reduction in disk space
for each column. For more information, see ANALYZE
COMPRESSION.

November 10,
2016

Connection limits You can now set a limit on the number of database
connections a user is permitted to have open
concurrently. You can also limit the number of
 concurrent connections for a database. For more
information, see CREATE USER and CREATE
DATABASE.

November 10,
2016

COPY sort order
enhancement

COPY now automatically adds new rows to the
table's sorted region when you load your data in sort
key order. For specific requirements to enable this
enhancement, see Loading your data in sort key order

November 10,
2016

CTAS with
compression

CREATE TABLE AS (CTAS) now automatically assigns
compression encodings to new tables based on
the column's data type. For more information, see
Inheritance of column and table attributes.

October 28, 2016

Time stamp with
time zone data
type

Amazon Redshift now supports a timestamp with
time zone (TIMESTAMPTZ) data type. Also, several
new functions have been added to support the new
data type. For more information, see Date and time
functions.

September 29,
2016

Analyze threshold To reduce processing time and improve overall
system performance for ANALYZE operations,
 Amazon Redshift skips analyzing a table if the
percentage of rows that have changed since the last
ANALYZE command run is lower than the analyze
threshold specified by the analyze_threshold_percent
parameter. By default, analyze_threshold_
percent is 10.

August 9, 2016

Earlier updates 2852

Amazon Redshift Database Developer Guide

Change Description Date changed

New STL_RESTA
RTED_SESSIONS
system table

When Amazon Redshift restarts a session, STL_RESTA
RTED_SESSIONS records the new process ID (PID)
and the old PID.

August 9, 2016

Updated the
Date and Time
Functions
documentation

Added a summary of functions with links to the Date
and time functions, and updated the function re
ferences for consistency.

June 24, 2016

New columns
in STL_CONNE
CTION_LOG

The STL_CONNECTION_LOG system table has
two new columns to track SSL connections. If you
routinely load audit logs to an Amazon Redshift
table, you will need to add the following new
columns to the target table: sslcompression and
sslexpansion.

May 5, 2016

MD5-hash
password

You can specify the password for a CREATE USER or
ALTER USER command by supplying the MD5-hash st
ring of the password and user name.

April 21, 2016

New column in
STV_TBL_PERM

The backup column in the STV_TBL_PERM system
view indicates whether the table is included in
cluster snapshots. For more information, see BACKUP.

April 21, 2016

No-backup tables For tables, such as staging tables, that won't contain
critical data, you can specify BACKUP NO in your
CREATE TABLE or CREATE TABLE AS statement to
prevent Amazon Redshift from including the table
in automated or manual snapshots. Using no-
backup tables saves processing time when creating
snapshots and restoring from snapshots and reduces
storage space on Amazon S3.

April 7, 2016

Earlier updates 2853

Amazon Redshift Database Developer Guide

Change Description Date changed

VACUUM delete
threshold

By default, the VACUUM command now reclaims
space such that at least 95 percent of the remaining
rows are not marked for deletion. As a result,
VACUUM usually needs much less time for the delete
phase compared to reclaiming 100 percent of deleted
rows. You can change the default threshold for a
single table by including the TO threshold PERCENT
parameter when you run the VACUUM command.

April 7, 2016

SVV_TRANS
ACTIONS system
table

The SVV_TRANSACTIONS system view records
information about transactions that currently hold
locks on tables in the database.

April 7, 2016

Using IAM roles to
access other AWS
resources

To move data between your cluster and another
AWS resource, such as Amazon S3, DynamoDB,
Amazon EMR, or Amazon EC2, your cluster must
 have permission to access the resource and perform
the necessary actions. As a more secure alternati
ve to providing an access key pair with COPY,
UNLOAD, or CREATE LIBRARY commands, you can
now you specify an IAM role that your cluster uses
for authentication and authorization. For more
information, see Role-based access control.

March 29, 2016

VACUUM sort
threshold

The VACUUM command now skips the sort phase for
any table where more than 95 percent of the table's
rows are already sorted. You can change the default
sort threshold for a single table by including the TO
 threshold PERCENT parameter when you run the
 VACUUM command.

March 17, 2016

Earlier updates 2854

Amazon Redshift Database Developer Guide

Change Description Date changed

New columns
in STL_CONNE
CTION_LOG

The STL_CONNECTION_LOG system table has three
new columns. If you routinely load audit logs to an
Amazon Redshift table, you will need to add the
following new columns to the target table: sslversio
n, sslcipher, and mtu.

March 17, 2016

UNLOAD with
bzip2 compressi
on

You now have the option to UNLOAD using bzip2
compression.

February 8, 2016

ALTER TABLE
APPEND

ALTER TABLE APPEND appends rows to a target
 table by moving data from an existing source table.
ALTER TABLE APPEND is usually much faster than a
similar CREATE TABLE AS or INSERT INTO operation
because data is moved, not duplicated.

February 8, 2016

WLM query queue
hopping

If workload management (WLM) cancels a read-only
query, such as a SELECT statement, due to a WLM
timeout, WLM attempts to route the query to the
next matching queue. For more information, see WLM
query queue hopping

January 7, 2016

ALTER DEFAULT
PRIVILEGES

You can use the ALTER DEFAULT PRIVILEGES
command to define the default set of access
privileges to be applied to objects that are created in
the future by the specified user.

December 10,
2015

bzip2 file
compression

The COPY command supports loading data from files
that were compressed using bzip2.

December 10,
2015

NULLS FIRST and
NULLS LAST

You can specify whether an ORDER BY clause should
rank NULLS first or last in the result set. For more
information, see ORDER BY clause and Window
function syntax summary.

November 19,
2015

Earlier updates 2855

Amazon Redshift Database Developer Guide

Change Description Date changed

REGION keyword
for CREATE
LIBRARY

If the Amazon S3 bucket that contains the UDF
library files does not reside in the same AWS Region
as your Amazon Redshift cluster, you can use the
 REGION option to specify the region in which the
data is located. For more information, see CREATE
LIBRARY.

November 19,
2015

User-defined
scalar functions
(UDFs)

You can now create custom user-defined scalar
functions to implement non-SQL processing
functionality provided either by Amazon Redshift-
supported modules in the Python 2.7 Standard
Library or your own custom UDFs based on the
Python programming language. For more informati
on, see Creating user-defined functions.

September 11,
2015

Dynamic
properties in WLM
configuration

The WLM configuration parameter now supports
applying some properties dynamically. Other
properties remain static changes and require that
 associated clusters be rebooted so that the configura
tion changes can be applied. For more information,
see WLM dynamic and static configuration properties
and Implementing workload management.

August 3, 2015

LISTAGG function The LISTAGG function and LISTAGG window function
return a string created by concatenating a set of
column values.

July 30, 2015

Deprecated
parameter

The max_cursor_result_set_size configura
tion parameter is deprecated. The size of cursor
result sets are constrained based on the cluster's
node type. For more information, see Cursor
constraints.

July 24, 2015

Revised COPY
command
documentation

The COPY command reference has been extensive
ly revised to make the material friendlier and more
 accessible.

July 15, 2015

Earlier updates 2856

Amazon Redshift Database Developer Guide

Change Description Date changed

COPY from Avro
format

The COPY command supports loading data in Avro
format from data files on Amazon S3, Amazon
EMR, and from remote hosts using SSH. For more
information, see AVRO and Copy from Avro examples.

July 8, 2015

STV_START
UP_RECOVE
RY_STATE

The STV_STARTUP_RECOVERY_STATE system table
records the state of tables that are temporarily
locked during cluster restart operations. Amazon
Redshift places a temporary lock on tables while they
are being processed to resolve stale transactions
following a cluster restart.

May 25, 2015

ORDER BY
optional for
ranking functions

The ORDER BY clause is now optional for certain
window ranking functions. For more information, see
CUME_DIST window function, DENSE_RANK window
function, RANK window function, NTILE window
function, PERCENT_RANK window function, and
ROW_NUMBER window function.

May 25, 2015

Interleaved sort
keys

Interleaved sort keys give equal weight to each
column in the sort key. Using interleaved sort keys
instead of the default compound keys significantly
improves performance for queries that use restricti
ve predicates on secondary sort columns, especiall
y for large tables. Interleaved sorting also improves
overall performance when multiple queries filter on
different columns in the same table. For more inform
ation, see Working with sort keys and CREATE TABLE.

May 11, 2015

Earlier updates 2857

Amazon Redshift Database Developer Guide

Change Description Date changed

Revised tuning
query performan
ce topic

Tuning query performance has been expanded to
include new queries for analyzing query performan
ce and more examples. Also, the topic has been
revised to be clearer and more complete. Amazon
Redshift best practices for designing queries has
more information about how to write queries to
improve performance.

March 23, 2015

SVL_QUERY
_QUEUE_INFO

The SVL_QUERY_QUEUE_INFO view summarizes
details for queries that spent time in a WLM query
queue or commit queue.

February 19, 2015

SVV_TABLE_INFO You can use the SVV_TABLE_INFO view to diagnose
and address table design issues that can influence
query performance, including issues with compressi
on encoding, distribution keys, sort style, data distri
bution skew, table size, and statistics.

February 19, 2015

UNLOAD uses
server-side file
encryption

The UNLOAD command now automatically uses
Amazon S3 server-side encryption (SSE) to encrypt
all unload data files. Server-side encryption adds
another layer of data security with little or no change
in performance.

October 31, 2014

CUME_DIST
window function

The CUME_DIST window function calculates the
cumulative distribution of a value within a window or
 partition.

October 31, 2014

MONTHS_BE
TWEEN function

The MONTHS_BETWEEN function determines the
number of months between two dates.

October 31, 2014

NEXT_DAY
function

The NEXT_DAY function returns the date of the first
instance of a specified day that is later than the
 given date.

October 31, 2014

Earlier updates 2858

Amazon Redshift Database Developer Guide

Change Description Date changed

PERCENT_RANK
window function

The PERCENT_RANK window function calculates the
percent rank of a given row.

October 31, 2014

RATIO_TO_
REPORT window
function

The RATIO_TO_REPORT window function calculate
s the ratio of a value to the sum of the values in a
window or partition.

October 31, 2014

TRANSLATE
function

The TRANSLATE function replaces all occurrences of
specified characters within a given expression with
specified substitutes.

October 31, 2014

NVL2 function The NVL2 function returns one of two values based
on whether a specified expression evaluates to NULL
or NOT NULL.

October 16, 2014

MEDIAN window
function

The MEDIAN window function calculates the median
value for the range of values in a window or partitio
n.

October 16, 2014

ON ALL TABLES
IN SCHEMA
schema_name
clause for GRANT
and REVOKE
commands

The GRANT and REVOKE commands have been
 updated with an ON ALL TABLES IN SCHEMA
schema_name clause. This clause allows you to use a
single command to change privileges for all tables in
a schema.

October 16, 2014

IF EXISTS clause
for DROP
SCHEMA, DROP
TABLE, DROP
USER, and DROP
 VIEW commands

The DROP SCHEMA, DROP TABLE, DROP USER, and
DROP VIEW commands have been updated with an
IF EXISTS clause. This clause causes the command
to make no changes and return a message rather
than terminating with an error if the specified object
doesn’t exist.

October 16, 2014

Earlier updates 2859

Amazon Redshift Database Developer Guide

Change Description Date changed

IF NOT EXISTS
clause for CREATE
SCHEMA and
CREATE TABLE
 commands

The CREATE SCHEMA and CREATE TABLE commands
have been updated with an IF NOT EXISTS clause.
This clause causes the command to make no changes
and return a message rather than terminating with an
error if the specified object already exists.

October 16, 2014

COPY support for
UTF-16 encoding

The COPY command now supports loading from
data files that use UTF-16 encoding as well as UTF-8
encoding. For more information, see ENCODING.

September 29,
2014

New workload
management
tutorial

Tutorial: Configuring manual workload managemen
t (WLM) queues walks you through the process of
configuring Workload Management (WLM) queues to
 improve query processing and resource allocation.

September 25,
2014

AES 128-bit
encryption

The COPY command now supports AES 128-bit
encryption as well as AES 256-bit encryption when
loading from data files encrypted using Amazon S3
 client-side encryption. For more information, see
Loading encrypted data files from Amazon S3.

September 29,
2014

PG_LAST_U
NLOAD_COUNT
function

The PG_LAST_UNLOAD_COUNT function returns the
number of rows that were processed in the most
recent UNLOAD operation. For more information, see
PG_LAST_UNLOAD_COUNT.

September 15,
2014

New troublesh
ooting queries
section

Troubleshooting queries provides a quick reference
 for identifying and addressing some of the most
common and most serious issues you are likely to
encounter with Amazon Redshift queries.

July 7, 2014

New loading data
tutorial

Tutorial: Loading data from Amazon S3 walks you
through the process of loading data into your
Amazon Redshift database tables from data files in
an Amazon S3 bucket, from beginning to end.

July 1, 2014

Earlier updates 2860

Amazon Redshift Database Developer Guide

Change Description Date changed

PERCENTIL
E_CONT window
function

PERCENTILE_CONT window function is an inverse
distribution function that assumes a continuous
distribution model. It takes a percentile value and a
sort specification, and returns an interpolated value
that would fall into the given percentile value with
respect to the sort specification.

June 30, 2014

PERCENTILE_DISC
window function

PERCENTILE_DISC window function is an inverse
distribution function that assumes a discrete
distribution model. It takes a percentile value and a
sort specification and returns an element from the
set.

June 30, 2014

GREATEST and
LEAST functions

The GREATEST and LEAST functions functions return
the largest or smallest value from a list of expressi
ons.

June 30, 2014

Cross-region
COPY

The COPY command supports loading data from
an Amazon S3 bucket or Amazon DynamoDB table
that is located in a different region than the Amazon
Redshift cluster. For more information, see REGION
in the COPY command reference.

June 30, 2014

Best Practices
expanded

Amazon Redshift best practices has been expanded,
reorganized, and moved to the top of the navigation
hierarchy to make it more discoverable.

May 28, 2014

UNLOAD to a
single file

The UNLOAD command can optionally unload table
data serially to a single file on Amazon S3 by adding
 the PARALLEL OFF option. If the size of the data
is greater than the maximum file size of 6.2 GB,
UNLOAD creates additional files.

May 6, 2014

REGEXP functions The REGEXP_COUNT, REGEXP_INSTR, and
REGEXP_REPLACE functions manipulate strings based
on regular expression pattern matching.

May 6, 2014

Earlier updates 2861

Amazon Redshift Database Developer Guide

Change Description Date changed

COPY from
Amazon EMR

The COPY command supports loading data directly
from Amazon EMR clusters. For more information,
see Loading data from Amazon EMR.

April 18, 2014

WLM concurrency
limit increase

You can now configure workload management (WLM)
to run up to 50 queries concurrently in user-defined
query queues. This increase gives users more flexibili
ty for managing system performance by modifyi
ng WLM configurations. For more information, see
Implementing manual WLM

April 18, 2014

New configura
tion parameter
to manage cursor
size

The max_cursor_result_set_size configura
tion parameter defines the maximum size of data, in
megabytes, that can be returned per cursor result set
of a larger query. This parameter value also affects
the number of concurrent cursors for the cluster, e
nabling you to configure a value that increases or
decreases the number of cursors for your cluster.

For more information, see DECLARE in this guide and
Configure Maximum Size of a Cursor Result Set in the
 Amazon Redshift Management Guide.

March 28, 2014

COPY from JSON
format

The COPY command supports loading data in JSON
format from data files on Amazon S3 and from
remote hosts using SSH. For more information, see
COPY from JSON format usage notes.

March 25, 2014

New system table
STL_PLAN_INFO

The STL_PLAN_INFO table supplements the EXPLAIN
command as another way to look at query plans.

March 25, 2014

New function
REGEXP_SUBSTR

The REGEXP_SUBSTR function returns the character
s extracted from a string by searching for a regular
expression pattern.

March 25, 2014

Earlier updates 2862

https://docs.aws.amazon.com/redshift/latest/mgmt/working-with-parameter-groups.html#max-cursor-result-set-size-param

Amazon Redshift Database Developer Guide

Change Description Date changed

New columns
for STL_COMMI
T_STATS

The STL_COMMIT_STATS table has two new
columns: numxids and oldestxid .

March 6, 2014

COPY from SSH
support for gzip
and lzop

The COPY command supports gzip and lzop
compression when loading data through an SSH
 connection.

February 13, 2014

New functions The ROW_NUMBER window function returns the
number of the current row. The STRTOL function
converts a string expression of a number of the
specified base to the equivalent integer value.
PG_CANCEL_BACKEND and PG_TERMINATE_BACKE
ND enable users to cancel queries and session
connections. The LAST_DAY function has been added
for Oracle compatibility.

February 13, 2014

New system table The STL_COMMIT_STATS system table provides
metrics related to commit performance, including
the timing of the various stages of commit and the
number of blocks committed.

February 13, 2014

FETCH with
single-node
clusters

When using a cursor on a single-node cluster, the
maximum number of rows that can be fetched using
the FETCH command is 1000. FETCH FORWARD ALL is
not supported for single-node clusters.

February 13, 2014

DS_DIST_A
LL_INNER
redistribution
strategy

DS_DIST_ALL_INNER in the Explain plan output
indicates that the entire inner table was redistrib
uted to a single slice because the outer table uses
DISTSTYLE ALL. For more information, see Join type
examples and Evaluating the query plan.

January 13, 2014

Earlier updates 2863

Amazon Redshift Database Developer Guide

Change Description Date changed

New system
tables for queries

Amazon Redshift has added new system tables that
customers can use to evaluate query execution
for tuning and troubleshooting. For more inform
ation, see SVL_COMPILE, STL_SCAN, STL_RETURN,
STL_SAVE STL_ALERT_EVENT_LOG.

January 13, 2014

Single-node
cursors

Cursors are now supported for single-node clusters.
A single-node cluster can have two cursors open at
a time, with a maximum result set of 32 GB. On a
single-node cluster, we recommend setting the ODBC
Cache Size parameter to 1,000. For more informati
on, see DECLARE.

December 13,
2013

ALL distribution
style

ALL distribution can dramatically shorter execution
times for certain types of queries. When a table uses
ALL distribution style, a copy of the table is distribut
ed to every node. Because the table is effectively
 collocated with every other table, no redistribution
is needed during query execution. ALL distribution
is not appropriate for all tables because it increases
storage requirements and load time. For more inform
ation, see Working with data distribution styles.

November 11,
2013

COPY from
remote hosts

In addition to loading tables from data files on
Amazon S3 and from Amazon DynamoDB tables,
the COPY command can load text data from Amazon
EMR clusters, Amazon EC2 instances, and other
remote hosts by using SSH connections. Amazon
Redshift uses multiple simultaneous SSH connections
to read and load data in parallel. For more informati
on, see Loading data from remote hosts.

November 11,
2013

Earlier updates 2864

Amazon Redshift Database Developer Guide

Change Description Date changed

WLM memory
percent used

You can balance workload by designating a specific
percentage of memory for each queue in your
workload management (WLM) configuration. For
more information, see Implementing manual WLM.

November 11,
2013

APPROXIMATE
COUNT(DISTINCT)

Queries that use APPROXIMATE COUNT(DISTINCT)
execute much faster, with a relative error of about
2%. The APPROXIMATE COUNT(DISTINCT) function
uses a HyperLogLog algorithm. For more information,
see the COUNT function.

November 11,
2013

New SQL
functions to
retrieve recent
query details

Four new SQL functions retrieve details about recent
queries and COPY commands. The new functions
make it easier to query the system log tables, and
in many cases provide necessary details without
needing to access the system tables. For more
information, see PG_BACKEND_PID, PG_LAST_C
OPY_ID, PG_LAST_COPY_COUNT, PG_LAST_Q
UERY_ID.

November 1,
2013

MANIFEST option
for UNLOAD

The MANIFEST option for the UNLOAD command
complements the MANIFEST option for the COPY
command. Using the MANIFEST option with UNLOAD
 automatically creates a manifest file that explicitl
y lists the data files that were created on Amazon
S3 by the unload operation. You can then use the
same manifest file with a COPY command to load the
data. For more information, see Unloading data to
Amazon S3 and UNLOAD examples.

November 1,
2013

MANIFEST option
for COPY

You can use the MANIFEST option with the COPY
command to explicitly list the data files that will be
loaded from Amazon S3.

October 18, 2013

Earlier updates 2865

Amazon Redshift Database Developer Guide

Change Description Date changed

System tables for
troubleshooting
queries

Added documentation for system tables that are
used to troubleshoot queries. The STL views for
logging section now contains documentation for
the following system tables: STL_AGGR, STL_BCAST
, STL_DIST, STL_DELETE, STL_HASH, STL_HASHJOIN,
STL_INSERT, STL_LIMIT, STL_MERGE, STL_MERGE
JOIN, STL_NESTLOOP, STL_PARSE, STL_PROJECT,
 STL_SCAN, STL_SORT, STL_UNIQUE, STL_WINDOW.

October 3, 2013

CONVERT_T
IMEZONE
function

The CONVERT_TIMEZONE function converts a
timestamp from one time zone to another, with the
option to automatically adjust for daylight savings
time.

October 3, 2013

SPLIT_PART
function

The SPLIT_PART function splits a string on the
specified delimiter and returns the part at the
specified position.

October 3, 2013

STL_USERLOG
system table

STL_USERLOG records details for changes that occur
when a database user is created, altered, or deleted.

October 3, 2013

LZO column
encoding and
LZOP file
compression.

LZO column compression encoding combines a very
high compression ratio with good performance.
COPY from Amazon S3 supports loading from files
compressed using LZOP compression.

September 19,
2013

JSON, regular
expressions, and
cursors

Added support for parsing JSON strings, pattern
matching using regular expressions, and using
cursors to retrieve large data sets over an ODBC
connection. For more information, see JSON
functions, Pattern-matching conditions, and
DECLARE.

September 10,
2013

ACCEPTINVCHAR
option for COPY

You can successfully load data that contains invalid
UTF-8 characters by specifying the ACCEPTINVCHAR
option with the COPY command.

August 29, 2013

Earlier updates 2866

Amazon Redshift Database Developer Guide

Change Description Date changed

CSV option for
COPY

The COPY command now supports loading from CSV
formatted input files.

August 9, 2013

CRC32 The CRC32 function performs cyclic redundancy
checks.

August 9, 2013

WLM wildcards Workload management (WLM) supports wildcards for
adding user groups and query groups to queues. For
more information, see Wildcards.

August 1, 2013

WLM timeout To limit the amount of time that queries in a given
WLM queue are permitted to use, you can set
the WLM timeout value for each queue. For more
information, see WLM timeout.

August 1, 2013

New COPY
options 'auto' and
'epochsecs'

The COPY command performs automatic recogniti
on of date and time formats. New time formats, 'e
pochsecs' and 'epochmillisecs' enable COPY to load
data in epoch format.

July 25, 2013

CONVERT_T
IMEZONE
function

The CONVERT_TIMEZONE function converts a
timestamp from one timezone to another.

July 25, 2013

FUNC_SHA1
function

The FUNC_SHA1 function converts a string using the
SHA1 algorithm.

July 15, 2013

max_execu
tion_time

To limit the amount of time queries are permitted to
use, you can set the max_execution_time parameter
as part of the WLM configuration. For more informati
on, see Modifying the WLM configuration.

July 22, 2013

Four-byte UTF-8
characters

The VARCHAR data type now supports four-byte
UTF-8 characters. Five-byte or longer UTF-8
characters are not supported. For more information,
see Storage and ranges.

July 18, 2013

Earlier updates 2867

Amazon Redshift Database Developer Guide

Change Description Date changed

SVL_QERROR The SVL_QERROR system view has been deprecated. July 12, 2013

Revised
Document History

The Document History page now shows the date the
documentation was updated.

July 12, 2013

STL_UNLOA
D_LOG

STL_UNLOAD_LOG records the details for an unload
operation.

July 5, 2013

JDBC fetch size
parameter

To avoid client-side out of memory errors when
retrieving large data sets using JDBC, you can enable
your client to fetch data in batches by setting the
JDBC fetch size parameter. For more information, see
Setting the JDBC fetch size parameter.

June 27, 2013

UNLOAD
encrypted files

UNLOAD now supports unloading table data to
encrypted files on Amazon S3.

May 22, 2013

Temporary
credentials

COPY and UNLOAD now support the use of temporar
y credentials.

April 11, 2013

Added clarifica
tions

Clarified and expanded discussions of Designing
Tables and Loading Data.

February 14, 2013

Added best
practices

Added Amazon Redshift best practices for designing
 tables and Amazon Redshift best practices for
loading data.

February 14, 2013

Clarified password
constraints

Clarified password constraints for CREATE USER and
ALTER USER, various minor revisions.

February 14, 2013

New guide This is the first release of the Amazon Redshift
Developer Guide.

February 14, 2013

Earlier updates 2868

	Amazon Redshift
	Table of Contents
	Introduction
	Prerequisites
	Are you a database developer?
	System and architecture overview
	Data warehouse system architecture
	Performance
	Massively parallel processing
	Columnar data storage
	Data compression
	Query optimizer
	Result caching
	Compiled code

	Columnar storage
	Workload management
	Using Amazon Redshift with other services
	Moving data between Amazon Redshift and Amazon S3
	Using Amazon Redshift with Amazon DynamoDB
	Importing data from remote hosts over SSH
	Automating data loads using AWS Data Pipeline
	Migrating data using AWS Database Migration Service (AWS DMS)

	Sample database
	CATEGORY table
	DATE table
	EVENT table
	VENUE table
	USERS table
	LISTING table
	SALES table

	Amazon Redshift best practices
	Conduct a proof of concept (POC) for Amazon Redshift
	Step 1: Scope your POC
	Step 2: Launch Amazon Redshift
	Set up Amazon Redshift Serverless

	Step 3: Load your data
	Upload a local file
	Load an Amazon S3 file
	Continuous data ingestion
	Load your streaming data

	Step 4: Analyze your data
	Query using Amazon Redshift query editor v2
	Run a load test using Apache JMeter

	Step 5: Optimize
	Test drive

	Amazon Redshift best practices for designing tables
	Choose the best sort key
	Choose the best distribution style
	Let COPY choose compression encodings
	Define primary key and foreign key constraints
	Use the smallest possible column size
	Use date/time data types for date columns

	Amazon Redshift best practices for loading data
	Take the loading data tutorial
	Use a COPY command to load data
	Use a single COPY command to load from multiple files
	Loading data files
	Loading data from files that can be split
	Loading data from files that can't be split

	Compressing your data files
	Verify data files before and after a load
	Use a multi-row insert
	Use a bulk insert
	Load data in sort key order
	Load data in sequential blocks
	Use time-series tables
	Schedule around maintenance windows

	Amazon Redshift best practices for designing queries
	Working with recommendations from Amazon Redshift Advisor
	Amazon Redshift Regions
	Viewing Amazon Redshift Advisor recommendations
	Viewing Amazon Redshift Advisor recommendations on the Amazon Redshift provisioned console
	Viewing Amazon Redshift Advisor recommendations using Amazon Redshift API operations
	Viewing Amazon Redshift Advisor recommendations using AWS Command Line Interface operations

	Amazon Redshift Advisor recommendations
	Compress Amazon S3 file objects loaded by COPY
	Isolate multiple active databases
	Reallocate workload management (WLM) memory
	Skip compression analysis during COPY
	Split Amazon S3 objects loaded by COPY
	Update table statistics
	Enable short query acceleration
	Alter distribution keys on tables
	Alter sort keys on tables
	Alter compression encodings on columns
	Data type recommendations

	Tutorials for Amazon Redshift
	Working with automatic table optimization
	Enabling automatic table optimization
	Removing automatic table optimization from a table
	Monitoring actions of automatic table optimization
	Working with column compression
	Compression encodings
	Raw encoding
	AZ64 encoding
	Byte-dictionary encoding
	Delta encoding
	LZO encoding
	Mostly encoding
	Run length encoding
	Text255 and Text32k encodings
	Zstandard encoding

	Testing compression encodings
	Example: Choosing compression encodings for the CUSTOMER table

	Working with data distribution styles
	Data distribution concepts
	Distribution styles
	Viewing distribution styles
	Evaluating query patterns
	Designating distribution styles
	Evaluating the query plan
	Query plan example
	Distribution examples
	DISTKEY examples
	DISTSTYLE EVEN example
	DISTSTYLE ALL example

	Working with sort keys
	Multidimensional data layout sorting (preview)
	Compound sort key
	Interleaved sort key

	Defining table constraints

	Loading data
	Using a COPY command to load data
	Credentials and access permissions
	Role-based access control
	Key-based access control

	Preparing your input data
	Loading data from Amazon S3
	Loading data from compressed and uncompressed files
	Loading data from multiple compressed files
	Loading data from uncompressed, delimited files

	Uploading files to Amazon S3
	Managing data consistency
	Uploading encrypted data to Amazon S3
	Server-side encryption
	Client-side encryption
	Example: Uploading client-side encrypted data

	Verifying that the correct files are present in your bucket

	Using the COPY command to load from Amazon S3
	Using a manifest to specify data files
	Using a manifest created by UNLOAD

	Loading compressed data files from Amazon S3
	Loading fixed-width data from Amazon S3
	Loading multibyte data from Amazon S3
	Loading encrypted data files from Amazon S3

	Loading data from Amazon EMR
	Process for loading data from Amazon EMR
	Step 1: Configure IAM permissions
	Step 2: Create an Amazon EMR cluster
	Step 3: Retrieve the Amazon Redshift cluster public key and cluster node IP addresses
	Step 4: Add the Amazon Redshift cluster public key to each Amazon EC2 host's authorized keys file
	Step 5: Configure the hosts to accept all of the Amazon Redshift cluster's IP addresses
	Step 6: Run the COPY command to load the data

	Loading data from remote hosts
	Before you begin
	Loading data process
	Step 1: Retrieve the cluster public key and cluster node IP addresses
	Step 2: Add the Amazon Redshift cluster public key to the host's authorized keys file
	Step 3: Configure the host to accept all of the Amazon Redshift cluster's IP addresses
	Step 4: Get the public key for the host
	Step 5: Create a manifest file
	Step 6: Upload the manifest file to an Amazon S3 bucket
	Step 7: Run the COPY command to load the data

	Loading data from an Amazon DynamoDB table
	Provisioned throughput with automatic compression
	Loading multibyte data from Amazon DynamoDB

	Verifying that the data loaded correctly
	Validating input data
	Loading tables with automatic compression
	How automatic compression works
	Automatic compression example

	Optimizing storage for narrow tables
	Loading default column values
	Troubleshooting data loads
	S3ServiceException errors
	Invalid credentials string
	Invalid access key ID
	Invalid secret access key
	Bucket is in a different Region
	Access denied

	System tables for troubleshooting data loads
	Multibyte character load errors
	Load error reference
	Load error codes

	Continuous file ingestion from Amazon S3 (preview)
	Updating tables with DML commands
	Updating and inserting new data
	Merge method 1: Replacing existing rows
	Merge method 2: Specifying a column list without using MERGE
	Creating a temporary staging table
	Performing a merge operation by replacing existing rows
	Performing a merge operation by specifying a column list without using the MERGE command
	Merge examples

	Performing a deep copy
	Analyzing tables
	Automatic analyze
	Analysis of new table data
	ANALYZE command history

	Vacuuming tables
	Automatic table sort
	Automatic vacuum delete
	VACUUM frequency
	Sort stage and merge stage
	Vacuum threshold
	Vacuum types
	Managing vacuum times
	Deciding whether to reindex
	Managing the size of the unsorted region
	Managing the volume of merged rows
	Loading your data in sort key order
	Using time series tables

	Managing concurrent write operations
	Serializable isolation
	Serializable isolation for system tables and catalog tables
	How to fix serializable isolation errors
	ERROR:1023 DETAIL: Serializable isolation violation on a table in Redshift
	ERROR:1018 DETAIL: Relation does not exist

	Write and read/write operations
	Potential deadlock situation for concurrent write transactions

	Concurrent write examples
	Concurrent COPY operations into the same table
	Concurrent DELETE operations from the same table
	Concurrent transactions with a mixture of read and write operations

	Tutorial: Loading data from Amazon S3
	Prerequisites
	Overview
	Steps
	Step 1: Create a cluster
	Next step

	Step 2: Download the data files
	Next step

	Step 3: Upload the files to an Amazon S3 bucket
	
	Next step

	Step 4: Create the sample tables
	Next step

	Step 5: Run the COPY commands
	COPY command syntax
	Loading the SSB tables
	Replace the bucket name and AWS credentials
	Load the PART table using NULL AS
	Load the SUPPLIER table using REGION
	Load the CUSTOMER table using MANIFEST
	Load the DWDATE table using DATEFORMAT
	Load the LINEORDER table using multiple files
	Next step

	Step 6: Vacuum and analyze the database
	Next step

	Step 7: Clean up your resources
	Next

	Summary

	Unloading data
	Unloading data to Amazon S3
	Unloading encrypted data files
	Unloading data in delimited or fixed-width format
	Reloading unloaded data

	Creating user-defined functions
	UDF security and privileges
	Creating a scalar SQL UDF
	Scalar SQL function example

	Naming UDFs
	Overloading function names
	Preventing UDF naming conflicts

	Creating a scalar Python UDF
	Scalar Python UDF example
	Python UDF data types
	ANYELEMENT data type
	Python language support for UDFs
	Importing custom Python library modules
	To import a custom Python module into your cluster

	UDF constraints
	Logging errors and warnings in UDFs

	Creating a scalar Lambda UDF
	Registering a Lambda UDF
	Managing Lambda UDF security and privileges
	Configuring the authorization parameter for Lambda UDFs
	Creating an IAM role for Lambda
	Associating an IAM role with the cluster
	Including the IAM role in the command

	Using the JSON interface between Amazon Redshift and AWS Lambda

	Example uses of user-defined functions (UDFs)

	Creating stored procedures in Amazon Redshift
	Overview of stored procedures in Amazon Redshift
	Naming stored procedures
	Overloading procedure names
	Preventing naming conflicts

	Security and privileges for stored procedures
	Returning a result set
	Returning a cursor
	Using a temp table

	Managing transactions
	Default mode stored procedure transaction management
	Nonatomic mode stored procedure transaction management

	Trapping errors
	Example

	Logging stored procedures
	Considerations for stored procedure support
	Differences between Amazon Redshift and PostgreSQL for stored procedure support
	Considerations and limits

	PL/pgSQL language reference
	PL/pgSQL reference conventions
	Structure of PL/pgSQL
	Block
	Variable declaration
	Alias declaration
	Built-in variables
	Record types

	Supported PL/pgSQL statements
	Assignment
	SELECT INTO
	No-op
	Dynamic SQL
	Return
	Conditionals: IF
	Conditionals: CASE
	Loops
	Cursors
	RAISE
	Transaction control

	Creating materialized views in Amazon Redshift
	Querying a materialized view
	Automatic query rewriting to use materialized views
	Usage notes
	Limitations

	Refreshing a materialized view
	Autorefreshing a materialized view

	Automated materialized views
	SQL scope and considerations for automated materialized views
	Automated materialized views limitations
	Billing for automated materialized views
	Additional resources

	Using a user-defined function (UDF) in a materialized view
	Referencing a UDF in a materialized view

	Streaming ingestion
	Data flow
	Streaming ingestion use cases
	Streaming ingestion considerations
	Streaming ingestion best practices and recommendations
	Using streaming ingestion compared with staging data in Amazon S3

	Considerations
	Getting started with streaming ingestion from Amazon Kinesis Data Streams
	Getting started with streaming ingestion from Amazon Managed Streaming for Apache Kafka
	Setting up IAM and performing streaming ingestion from Kafka

	Electric vehicle station-data streaming ingestion tutorial, using Kinesis

	Creating views in the AWS Glue Data Catalog (preview)
	Prerequisites
	End-to-end example
	Considerations and limitations

	Querying spatial data in Amazon Redshift
	Tutorial: Using spatial SQL functions with Amazon Redshift
	Prerequisites
	Step 1: Create tables and load test data
	Step 2: Query spatial data
	Step 3: Clean up your resources

	Loading a shapefile into Amazon Redshift
	Terminology for Amazon Redshift spatial data
	Bounding box
	Geometric validity
	Geometric simplicity
	H3

	Considerations when using spatial data with Amazon Redshift

	Querying data with federated queries in Amazon Redshift
	Getting started with using federated queries to PostgreSQL
	Getting started using federated queries to PostgreSQL with AWS CloudFormation
	Launching a CloudFormation stack for Redshift federated queries
	Querying data from the external schema

	Getting started with using federated queries to MySQL
	Creating a secret and an IAM role to use federated queries
	Prerequisites

	Examples of using a federated query
	Example of using a federated query with PostgreSQL
	Example of using a mixed-case name
	Example of using a federated query with MySQL

	Data type differences between Amazon Redshift and supported PostgreSQL and MySQL databases
	Considerations when accessing federated data with Amazon Redshift
	Supported versions of federated databases

	Querying external data using Amazon Redshift Spectrum
	Amazon Redshift Spectrum overview
	Amazon Redshift Spectrum Regions
	Amazon Redshift Spectrum considerations

	Getting started with Amazon Redshift Spectrum
	Prerequisites
	Getting started with Redshift Spectrum using AWS CloudFormation
	Getting started with Redshift Spectrum step by step
	Step 1. Create an IAM role for Amazon Redshift
	Step 2: Associate the IAM role with your cluster
	Step 3: Create an external schema and an external table
	Step 4: Query your data in Amazon S3
	Launch your AWS CloudFormation stack and then query your data in Amazon S3
	Querying your data in Amazon S3
	Joining an external table with a local table
	Viewing the query plan

	IAM policies for Amazon Redshift Spectrum
	Amazon S3 permissions
	Cross-account Amazon S3 permissions
	Policies to grant or restrict access using Redshift Spectrum
	Policies to grant minimum permissions
	Chaining IAM roles in Amazon Redshift Spectrum
	Controlling access to the AWS Glue Data Catalog
	Policy for database operations
	Policy for table operations
	Policy for partition operations

	Using Redshift Spectrum with AWS Lake Formation
	Using data filters for row-level and cell-level security

	Creating data files for queries in Amazon Redshift Spectrum
	Data formats for Redshift Spectrum
	Compression types for Redshift Spectrum
	Encryption for Redshift Spectrum

	Creating external schemas for Amazon Redshift Spectrum
	Working with external catalogs in Amazon Redshift Spectrum
	Viewing Redshift Spectrum databases in Athena and AWS Glue
	Registering an Apache Hive metastore database
	Enabling your Amazon Redshift cluster to access your Amazon EMR cluster

	Creating external tables for Redshift Spectrum
	Pseudocolumns
	Pseudocolumns example

	Partitioning Redshift Spectrum external tables
	Partitioning data examples
	Example 1: Partitioning with a single partition key
	Example 2: Partitioning with a multiple partition key

	Mapping external table columns to ORC columns
	Mapping by position
	Mapping by column name

	Creating external tables for data managed in Apache Hudi
	Creating external tables for data managed in Delta Lake
	Limitations and troubleshooting for Delta Lake tables

	Using Apache Iceberg tables with Amazon Redshift
	Considerations when using Apache Iceberg tables with Amazon Redshift
	Supported data types with Apache Iceberg tables

	Improving Amazon Redshift Spectrum query performance
	Setting data handling options
	Example: Performing correlated subqueries in Redshift Spectrum
	Monitoring metrics in Amazon Redshift Spectrum
	Troubleshooting queries in Amazon Redshift Spectrum
	Retries exceeded
	Access throttled
	Access throttled by Amazon S3
	Access throttled by AWS KMS

	Resource limit exceeded
	No rows returned for a partitioned table
	Not authorized error
	Incompatible data formats
	Syntax error when using Hive DDL in Amazon Redshift
	Permission to create temporary tables
	Invalid range
	Invalid Parquet version number

	Tutorial: Querying nested data with Amazon Redshift Spectrum
	Overview
	Prerequisites

	Step 1: Create an external table that contains nested data
	Step 2: Query your nested data in Amazon S3 with SQL extensions
	Extension 1: Access to columns of structs
	Extension 2: Ranging over arrays in a FROM clause
	Unnesting using inner joins
	Unnesting using left joins

	Extension 3: Accessing an array of scalars directly using an alias
	Extension 4: Accessing elements of maps

	Nested data use cases
	Ingesting nested data
	Aggregating nested data with subqueries
	Joining Amazon Redshift and nested data

	Nested data limitations (preview)
	Serializing complex nested JSON
	Serializing complex types containing JSON strings

	Using HyperLogLog sketches in Amazon Redshift
	Considerations
	Limitations
	Examples
	Example: Return cardinality in a subquery
	Example: Return an HLLSKETCH type from combined sketches in a subquery
	Example: Return a HyperLogLog sketch from combining multiple sketches
	Example: Generate HyperLogLog sketches over S3 data using external tables

	Querying data across databases
	Considerations
	Limitations

	Examples of using a cross-database query
	Using cross-database queries with the query editor

	Sharing data in Amazon Redshift
	Multi-warehouse writes in Amazon Redshift (preview)
	Overview of data sharing in Amazon Redshift
	Data sharing use cases for Amazon Redshift
	Data sharing write-access use cases (preview)

	Sharing data at different levels in Amazon Redshift
	Managing data consistency in Amazon Redshift
	Considerations when using data sharing in Amazon Redshift
	Managing cluster encryption
	Limitations for data sharing

	Regions where data sharing is available

	What is a datashare?
	Standard datashares
	AWS Data Exchange datashares
	How AWS Data Exchange datashares work
	Managing AWS Data Exchange datashares as a producer administrator
	Using AWS Data Exchange datashares as a consumer with an active AWS Data Exchange subscription

	Considerations when using AWS Data Exchange for Amazon Redshift

	AWS Lake Formation-managed datashares
	Considerations and limitations when using AWS Lake Formation with Amazon Redshift

	Datashare producers and consumers

	How data sharing works in Amazon Redshift
	Managing datashares at different states

	Sharing datashares
	Managing permissions for datashares in Amazon Redshift
	Granular sharing using WITH PERMISSIONS (preview)
	Enabling clusters or Serverless workgroups to query the datashare

	Working with views in Amazon Redshift data sharing
	Incremental refresh for materialized views in a datashare

	Managing access to data sharing API operations with IAM policies

	Querying datashares
	Accessing shared data in Amazon Redshift
	Accessing metadata for datashares in Amazon Redshift
	Integrating Amazon Redshift data sharing with business intelligence tools

	Monitoring and auditing data sharing in Amazon Redshift
	Integrating Amazon Redshift data sharing with AWS CloudTrail

	Managing data sharing tasks
	Managing data sharing using the SQL interface
	Sharing read access to data within an AWS account
	Sharing write access to data (Preview)
	Read-only data sharing vs. data sharing for reads and writes
	Permissions you can grant to datashares (preview)
	Requirements and limitations for datasharing in preview
	SQL statements supported
	Sharing data within an account with write permissions as the producer account administrator (preview)
	Sharing write permissions to data across accounts (preview)
	Associating shared data as the consumer data security administrator (preview)
	Authorizing datashares for writes as the producer security administrator (preview)

	Regions where data sharing is available (preview)

	Sharing data across AWS accounts
	Producer cluster administrator actions
	Consumer account administrator actions
	Consumer cluster administrator actions

	Sharing data across AWS Regions
	Managing cost control for cross-Region data sharing

	Sharing licensed Amazon Redshift data on AWS Data Exchange
	Working with AWS Data Exchange datashares as a producer
	Working with AWS Data Exchange datashares as a consumer

	Working with AWS Lake Formation-managed datashares
	Working with Lake Formation-managed datashares as a producer
	Working with Lake Formation-managed datashares as a consumer

	Managing data sharing using the console
	Connecting to a database
	Creating datashares
	Creating datashares
	Adding datashare objects to datashares
	Adding data consumers to datashares

	Authorizing or removing authorization from datashares
	Managing datashares from other accounts as a consumer
	Associating datashares
	Removing association of datashare from data consumers
	Declining datashares

	Managing existing datashares
	Viewing datashares
	Removing datashare objects from datashares
	Removing data consumers from datashares
	Editing datashares created in your account
	Deleting datashares created in your account

	Querying datashares
	Creating databases from datashares

	Managing AWS Data Exchange datashares
	Creating data sets on AWS Data Exchange
	Editing AWS Data Exchange datashares
	Deleting AWS Data Exchange datashares created in your account

	Managing data sharing with AWS CloudFormation
	
	Querying the datashare that you created

	Managing data sharing with writes using the console (preview)
	Connecting to a database (preview)
	Creating datashares and adding objects (preview)
	Creating datashares
	Adding data consumers to datashares

	Authorizing or removing authorization from datashares (preview)
	Associating or declining datashares as a consumer (preview)
	Associating datashares
	Removing association of datashare from data consumers
	Declining datashares

	Managing existing datashares (preview)
	Viewing datashares
	Removing datashare objects from datashares
	Removing data consumers from datashares
	Editing datashares created in your account
	Deleting datashares created in your account

	Querying datashares (preview)
	Creating databases from datashares

	Ingesting and querying semistructured data in Amazon Redshift
	Use cases for the SUPER data type
	Concepts for SUPER data type use
	Considerations for SUPER data
	SUPER sample dataset
	Loading semistructured data into Amazon Redshift
	Parsing JSON documents to SUPER columns
	Using COPY to load SUPER columns in Amazon Redshift
	Copying data from JSON and Avro
	Copying a JSON document into a single SUPER data column
	Copying a JSON document into multiple SUPER data columns
	Copying data from text and CSV
	Copying data from columnar-format Parquet and ORC

	Unloading semistructured data
	Unloading semistructured data in CSV or text formats
	Unloading semistructured data in the Parquet format

	Querying semistructured data
	Navigation
	Unnesting queries
	Object unpivoting
	Dynamic typing
	Dynamic and static typing
	Using dynamic typing for joins

	Lax semantics
	Types of introspection
	Order by

	Operators and functions
	Arithmetic operators
	Arithmetic functions
	Array functions

	SUPER configurations
	Lax and strict modes for SUPER
	Accessing JSON fields with uppercase and mixedcase field names or attributes
	Parsing options for SUPER

	Limitations
	Using SUPER data type with materialized views
	Accelerating PartiQL queries
	Shredding into SUPER columns with materialized views
	Creating Amazon Redshift scalar columns out of shredded data

	Limitations for using the SUPER data type with materialized views

	Using machine learning in Amazon Redshift
	Machine learning overview
	How machine learning can solve a problem
	Supervised learning in Amazon Redshift ML
	Unsupervised learning in Amazon Redshift ML

	Terms and concepts for Amazon Redshift ML

	Machine learning for novices and experts
	Costs for using Amazon Redshift ML
	Getting started with Amazon Redshift ML
	Cluster and configure setup for Amazon Redshift ML administration
	Cluster setup for using Amazon Redshift ML
	Managing permissions and ownership

	Using model explainability with Amazon Redshift ML
	Amazon Redshift ML probability metrics
	Create the model
	Get probabilities

	Tutorials for Amazon Redshift ML
	Tutorial: Building customer churn models
	Use case examples
	Prerequisites
	Step 1: Load the data from Amazon S3 to Amazon Redshift
	Step 2: Create the machine learning model
	Add permissions for server-side encryption (optional)
	Check the status of model training (optional)

	Step 3: Perform predictions with the model
	Related topics

	Tutorial: Building remote inference models
	Use case examples
	Prerequisites
	Step 1: Deploy the Amazon SageMaker model
	Step 2: Get the SageMaker model endpoint
	Step 3: Load the data from Amazon S3 to Amazon Redshift
	Step 4: Create a model with Amazon Redshift ML
	Check the model status (optional)

	Step 5: Perform predictions with the model
	Check for high and low anomalies (optional)

	Related topics

	Tutorial: Building K-means clustering models
	Use case examples
	Prerequisites
	Step 1: Load the data from Amazon S3 to Amazon Redshift
	Examine the training data (optional)

	Step 2: Create the machine learning model
	Check the status of model training (optional)

	Step 3: Perform predictions with the model
	Identify the clusters
	Check the distribution of data
	Determine the cluster centers
	Show information about data points in a cluster
	Show data about events with actors of the same ethnic code

	Related topics

	Tutorial: Building multi-class classification models
	Use case examples
	Prerequisites
	Step 1: Load the data from Amazon S3 to Amazon Redshift
	Split the data

	Step 2: Create the machine learning model
	Show the status of model training (optional)

	Step 3: Perform predictions with the model
	Run prediction queries against the validation data (optional)
	Predict how many customers miss entry (optional)

	Related topics

	Tutorial: Building XGBoost models
	Use case examples
	Prerequisites
	Step 1: Load the data from Amazon S3 to Amazon Redshift
	Step 2: Create the machine learning model
	Show the status of model training (optional)

	Step 3: Perform predictions with the model
	Check the accuracy of the model
	Predict the amount of original and counterfeit banknotes
	Find the average observation for an original and a counterfeit banknote

	Related topics

	Tutorial: Building regression models
	Use case examples
	Prerequisites
	Step 1: Load the data from Amazon S3 to Amazon Redshift
	View the sample data (optional)
	Show the correlation between attributes (optional)

	Step 2: Create the machine learning model
	Step 3: Validate the model
	Related topics

	Tutorial: Building regression models with linear learner
	Use case examples
	Prerequisites
	Step 1: Load the data from Amazon S3 to Amazon Redshift
	Step 2: Create the machine learning model
	Show the status of model training (optional)

	Step 3: Validate the model
	Related topics

	Tutorial: Building multi-class classification models with linear learner
	Use case examples
	Prerequisites
	Step 1: Load the data from Amazon S3 to Amazon Redshift
	Step 2: Create the machine learning model
	Show the status of model training (optional)

	Step 3: Validate the model
	Related topics

	Tuning query performance
	Query processing
	Query planning and execution workflow
	Query plan
	EXPLAIN operators
	Sequential scan operator
	Join operators
	Aggregate operators
	Sort operators
	UNION, INTERSECT, and EXCEPT operators
	Other operators

	Joins in EXPLAIN
	Join type examples
	Example: Hash join two tables
	Example: Merge join two tables
	Example: Join, aggregate, and sort

	Data redistribution

	Reviewing query plan steps
	Factors affecting query performance

	Analyzing and improving queries
	Query analysis workflow
	Reviewing query alerts
	Analyzing the query plan
	Analyzing the query summary
	Using the SVL_QUERY_SUMMARY view
	Using the SVL_QUERY_REPORT view
	Mapping the query plan to the query summary

	Improving query performance
	Table statistics missing or out of date
	Nested loop
	Hash join
	Ghost rows or uncommitted rows
	Unsorted or missorted rows
	Suboptimal data distribution
	Insufficient memory allocated to the query
	Suboptimal WHERE clause
	Insufficiently restrictive predicate
	Very large result set
	Large SELECT list

	Diagnostic queries for query tuning
	Identifying queries that are top candidates for tuning
	Identifying tables with data skew or unsorted rows
	Identifying queries with nested loops
	Reviewing queue wait times for queries
	Reviewing query alerts by table
	Identifying tables with missing statistics

	Troubleshooting queries
	Connection fails
	Query hangs
	Query takes too long
	Additional resources for troubleshooting long-running queries

	Load fails
	Load takes too long
	Load data is incorrect
	Setting the JDBC fetch size parameter

	Implementing workload management
	Modifying the WLM configuration
	Migrating from manual WLM to automatic WLM

	Implementing automatic WLM
	Priority
	Concurrency scaling mode
	User groups
	Query groups
	Wildcards
	Query monitoring rules
	Checking for automatic WLM
	Query priority
	Configuring queue priority
	Changing query priority with query monitoring rules
	Monitoring query priority

	Implementing manual WLM
	Concurrency scaling mode
	Concurrency level
	A manual WLM example

	User groups
	Query groups
	Wildcards
	WLM memory percent to use
	WLM timeout
	Query monitoring rules
	WLM query queue hopping
	WLM timeout actions
	WLM timeout queue hopping
	WLM timeout reassigned and restarted queries
	QMR hop actions
	QMR hop action reassigned and restarted queries

	Tutorial: Configuring manual workload management (WLM) queues
	Overview
	Prerequisites
	Sections

	Section 1: Understanding the default queue processing behavior
	Step 1: Create the WLM_QUEUE_STATE_VW view
	To create the WLM_QUEUE_STATE_VW view

	Step 2: Create the WLM_QUERY_STATE_VW view
	To create the WLM_QUERY_STATE_VW view

	Step 3: Run test queries
	To run the test queries

	Section 2: Modifying the WLM query queue configuration
	Section 3: Routing queries to queues based on user groups and query groups
	Step 1: View query queue configuration in the database
	To view the query queue configuration

	Step 2: Run a query using the query group queue
	To run a query using the query group queue

	Step 3: Create a database user and group
	To create a new database user and user group

	Step 4: Run a query using the user group queue
	To run a query using the user group queue

	Section 4: Using wlm_query_slot_count to temporarily override the concurrency level in a queue
	Step 1: Override the concurrency level using wlm_query_slot_count
	To override the concurrency level using wlm_query_slot_count

	Step 2: Run queries from different sessions
	To run queries from different sessions

	Section 5: Cleaning up your resources

	Working with concurrency scaling
	Concurrency scaling capabilities
	Concurrency scaling capabilities for write operations

	Limitations for concurrency scaling
	AWS Regions for concurrency scaling
	Concurrency scaling candidates
	Configuring concurrency scaling queues
	Monitoring concurrency scaling
	Concurrency scaling system views

	Working with short query acceleration
	Maximum runtime for short queries
	Monitoring SQA

	WLM queue assignment rules
	Queue assignments example

	Assigning queries to queues
	Assigning queries to queues based on user roles
	Assigning queries to queues based on user groups
	Assigning a query to a query group
	Assigning queries to the superuser queue

	WLM dynamic and static configuration properties
	WLM dynamic memory allocation
	Dynamic WLM example

	WLM query monitoring rules
	Defining a query monitoring rule
	Query monitoring metrics for Amazon Redshift provisioned
	Query monitoring metrics for Amazon Redshift Serverless
	Query monitoring rules templates
	System tables and views for query monitoring rules

	WLM system tables and views
	WLM service class IDs

	Managing database security
	Amazon Redshift security overview
	Default database user permissions
	Superusers
	Users
	Creating, altering, and deleting users

	Groups
	Creating, altering, and deleting groups
	Example for controlling user and group access

	Schemas
	Creating, altering, and deleting schemas
	Search path
	Schema-based permissions

	Role-based access control (RBAC)
	Role hierarchy
	Role assignment
	Amazon Redshift system-defined roles
	System-defined roles and users for data sharing

	System permissions for RBAC
	Database object permissions
	ALTER DEFAULT PRIVILEGES for RBAC
	Considerations for role usage in RBAC
	Managing roles in RBAC
	Tutorial: Creating roles and querying with RBAC
	Prerequisites
	Step 1: Create an administrator user
	Step 2: Set up schemas
	Step 3: Create a read-only user
	Step 4: Query the data as the read-only user
	Step 5: Create a read-write user
	Step 6: Query the data as the user with the inherited read-only role
	Step 7: Grant update and insert permissions to the read-write role
	Step 8: Query the data as the read-write user
	Step 9: Analyze and vacuum tables in a database as the administrator user
	Step 10: Truncate tables as the read-write user
	Create read-only and read-write roles for the marketing schema (optional)

	System functions for RBAC (optional)
	System views for RBAC (optional)
	Use row-level security with RBAC (optional)
	Related topics

	Row-level security
	Using RLS policies in SQL statements
	Combining multiple policies per user
	RLS policy ownership and management
	Policy-dependent objects and principles
	Considerations using RLS policies
	Limitations

	Best practices for RLS performance
	Safety of operators and functions
	Result caching
	Complex policies

	Creating, attaching, detaching, and dropping RLS policies

	Metadata security
	Dynamic data masking
	Overview
	End-to-end example
	Creating a masking policy
	Attaching a masking policy
	Altering a masking policy
	Detaching and dropping a masking policy

	Considerations when using dynamic data masking
	Managing dynamic data masking policies
	Masking policy hierarchy
	Using dynamic data masking with SUPER data type paths
	Examples

	Conditional dynamic data masking
	System views for dynamic data masking

	Scoped permissions
	Considerations for using scoped permissions

	SQL reference
	Amazon Redshift SQL
	SQL functions supported on the leader node
	Examples

	Amazon Redshift and PostgreSQL
	Amazon Redshift and PostgreSQL JDBC and ODBC
	Features that are implemented differently
	Unsupported PostgreSQL features
	Unsupported PostgreSQL data types
	Unsupported PostgreSQL functions

	Using SQL
	SQL reference conventions
	Basic elements
	Names and identifiers
	Standard identifiers
	Delimited identifiers
	Case-sensitive identifiers
	System column names
	Examples

	Literals
	Nulls
	Data types
	Multibyte characters
	Numeric types
	Integer types
	DECIMAL or NUMERIC type
	Notes about using 128-bit DECIMAL or NUMERIC columns
	Floating-Point types
	Computations with numeric values
	Return types for computations
	Precision and scale of computed DECIMAL results
	Notes on division operations
	Overflow conditions
	Numeric calculations with INTEGER and DECIMAL types

	Integer and floating-point literals
	Integer literals
	Syntax
	Examples
	Floating-point literals
	Syntax
	Arguments
	Examples

	Examples with numeric types
	CREATE TABLE statement
	Attempt to insert an integer that is out of range
	Insert a decimal value into an integer column
	Insert a decimal that succeeds because its scale is rounded
	Attempt to insert a decimal value that is out of range
	Insert variable-precision values into a REAL column

	Character types
	Storage and ranges
	CHAR or CHARACTER
	VARCHAR or CHARACTER VARYING
	NCHAR and NVARCHAR types
	TEXT and BPCHAR types
	Significance of trailing blanks
	Examples with character types
	CREATE TABLE statement
	Trailing blanks in variable-length character strings
	Results of the LENGTH function
	Values that exceed the length of the column

	Datetime types
	Storage and ranges
	DATE
	TIME
	TIMETZ
	TIMESTAMP
	TIMESTAMPTZ
	Examples with datetime types
	Date examples
	Time examples
	Time stamp examples

	Date, time, and timestamp literals
	Dates
	Times
	Timestamps
	Special datetime values

	Interval data types and literals
	Syntax of interval data type
	Syntax of interval literal
	Arguments
	Interval arithmetic
	Interval styles
	Examples of interval data type
	Examples of interval literals
	Examples of interval literals without qualifier syntax

	Boolean type
	Examples

	HLLSKETCH type
	SUPER type
	VARBYTE type
	Limitations when using the VARBYTE data type with Amazon Redshift

	Type compatibility and conversion
	Compatibility
	General compatibility and conversion rules
	Implicit conversion types
	Using dynamic typing for the SUPER data type

	Collation sequences

	Expressions
	Simple expressions
	Compound expressions
	Syntax
	Arguments
	Examples

	Expression lists
	Syntax
	Arguments
	Examples

	Scalar subqueries
	Example

	Function expressions
	Syntax
	Arguments
	Examples

	Conditions
	Syntax
	Comparison condition
	Usage notes
	Examples
	Examples with a TIME column
	Examples with a TIMETZ column

	Logical conditions
	Syntax
	Examples

	Pattern-matching conditions
	LIKE
	Syntax
	Arguments
	Examples

	SIMILAR TO
	Syntax
	Arguments
	Examples

	POSIX operators
	Syntax
	Arguments
	Examples

	BETWEEN range condition
	Syntax
	Examples

	Null condition
	Syntax
	Arguments
	Example

	EXISTS condition
	Syntax
	Arguments
	Example

	IN condition
	Syntax
	Arguments
	Examples
	Optimization for Large IN Lists

	SQL commands
	ABORT
	Syntax
	Parameters
	Example

	ALTER DATABASE
	Required privileges
	Syntax
	Parameters
	Usage notes
	Examples

	ALTER DATASHARE
	Required privileges
	Syntax
	Parameters
	ALTER DATASHARE usage notes
	Examples

	ALTER DEFAULT PRIVILEGES
	Required privileges
	Syntax
	Parameters
	Examples

	ALTER EXTERNAL VIEW (preview)
	Syntax
	Parameters
	Examples

	ALTER FUNCTION
	Syntax
	Parameters
	Examples

	ALTER GROUP
	Syntax
	Parameters
	Examples

	ALTER IDENTITY PROVIDER
	Syntax
	Parameters
	Examples

	ALTER MASKING POLICY
	Syntax
	Parameters

	ALTER MATERIALIZED VIEW
	Syntax
	Parameters
	Examples
	DISTSTYLE and SORTKEY examples

	ALTER RLS POLICY
	Syntax
	Parameters
	Examples

	ALTER ROLE
	Required permissions
	Syntax
	Parameters
	Examples

	ALTER PROCEDURE
	Syntax
	Parameters
	Examples

	ALTER SCHEMA
	Required privileges
	Syntax
	Parameters
	Examples

	ALTER SYSTEM
	Required privileges
	Syntax
	Parameters
	Usage notes
	Examples
	Setting a default identity namespace

	ALTER TABLE
	Required privileges
	Syntax
	Parameters
	Examples
	ALTER TABLE examples
	Rename a table or view
	Change the owner of a table or view
	Rename a column
	Drop a table constraint
	Alter a VARCHAR column
	Alter the compression encoding for a column
	Alter a DISTSTYLE KEY DISTKEY column
	Alter a table to DISTSTYLE ALL
	Alter a table SORTKEY
	Alter a table to ENCODE AUTO
	Alter row-level security control

	ALTER EXTERNAL TABLE examples
	ALTER TABLE ADD and DROP COLUMN examples
	ADD then DROP a basic column
	Dropping a column with a dependent object

	ALTER TABLE APPEND
	Required privileges
	Syntax
	Parameters
	ALTER TABLE APPEND usage notes
	ALTER TABLE APPEND examples

	ALTER USER
	Required privileges
	Syntax
	Parameters
	Usage notes
	Examples

	ANALYZE
	Required privileges
	Syntax
	Parameters
	Usage notes
	Analyze threshold

	Examples

	ANALYZE COMPRESSION
	Syntax
	Parameters
	Usage notes
	Examples

	ATTACH MASKING POLICY
	Syntax
	Parameters

	ATTACH RLS POLICY
	Syntax
	Parameters
	Usage notes
	Examples

	BEGIN
	Syntax
	Parameters
	Examples

	CALL
	Syntax
	Parameters
	Usage notes
	Nested calls
	Driver support

	Examples

	CANCEL
	Required privileges
	Syntax
	Parameters
	Usage notes
	Examples

	CLOSE
	Syntax
	Parameters
	CLOSE example

	COMMENT
	Syntax
	Parameters
	Usage notes
	Examples

	COMMIT
	Syntax
	Parameters
	Examples

	COPY
	Required permissions
	COPY syntax
	Required parameters
	Optional parameters
	Column mapping
	Data format parameters
	Data conversion parameters
	Data load operations

	Usage notes and additional resources for the COPY command
	COPY command examples
	COPY JOB (preview)
	Required permission
	Syntax
	Parameters
	Usage notes
	Examples

	COPY parameter reference
	Data sources
	COPY from Amazon S3
	Syntax
	Examples
	Parameters

	Optional parameters
	Unsupported parameters

	COPY from Amazon EMR
	Syntax
	Example
	Parameters
	Supported parameters
	Unsupported parameters

	COPY from remote host (SSH)
	Syntax
	Examples
	Parameters
	Optional parameters
	Unsupported parameters

	COPY from Amazon DynamoDB
	Syntax
	Examples
	Parameters

	Optional parameters
	Unsupported parameters

	Authorization parameters
	Column mapping options
	Column list
	JSONPaths file

	Data format parameters
	JSON data file
	JSONPaths file
	JSONPath expressions
	Using JSONPaths with Avro Data
	Columnar data format parameters

	File compression parameters
	Data conversion parameters
	Data load operations
	Alphabetical parameter list

	Usage notes
	Permissions to access other AWS Resources
	Role-based access control
	Key-based access control
	Temporary security credentials

	IAM permissions for COPY, UNLOAD, and CREATE LIBRARY

	Using COPY with Amazon S3 access point aliases
	Loading multibyte data from Amazon S3
	Loading a column of the GEOMETRY or GEOGRAPHY data type
	Loading the HLLSKETCH data type
	Loading a column of the VARBYTE data type
	Errors when reading multiple files
	COPY from JSON format
	COPY options for JSON
	JSONPath option
	Escape characters in JSON
	Loss of numeric precision

	COPY from columnar data formats
	DATEFORMAT and TIMEFORMAT strings
	Example

	Using automatic recognition with DATEFORMAT and TIMEFORMAT

	COPY examples
	Load FAVORITEMOVIES from an DynamoDB table
	Load LISTING from an Amazon S3 bucket
	Load LISTING from an Amazon EMR cluster
	Using a manifest to specify data files
	Load LISTING from a pipe-delimited file (default delimiter)
	Load LISTING using columnar data in Parquet format
	Load LISTING using columnar data in ORC format
	Load EVENT with options
	Load VENUE from a fixed-width data file
	Load CATEGORY from a CSV file
	Load VENUE with explicit values for an IDENTITY column
	Load TIME from a pipe-delimited GZIP file
	Load a timestamp or datestamp
	Load data from a file with default values
	COPY data with the ESCAPE option
	Copy from JSON examples
	Load from JSON data using the 'auto' option
	Load from JSON data using the 'auto ignorecase' option
	Load from JSON data using a JSONPaths file
	Load from JSON arrays using a JSONPaths file

	Copy from Avro examples
	Load from Avro data using the 'auto' option
	Load from Avro data using the 'auto ignorecase' option
	Load from Avro data using a JSONPaths file

	Preparing files for COPY with the ESCAPE option
	Loading a shapefile into Amazon Redshift
	Loading a shapefile
	Ingesting data without simplification
	Ingesting data with simplification

	Loading from a compressed shapefile
	Loading data into a table with a different column order
	Loading data into a table with a geography column

	COPY command with the NOLOAD option

	CREATE DATABASE
	Syntax
	Parameters
	Syntax for using CREATE DATABASE with a datashare
	Parameters for using CREATE DATABASE with a datashare

	Usage notes for CREATE DATABASE for data sharing
	CREATE DATABASE from AWS Glue Data Catalog
	Create databases to receive results of zero-ETL integrations
	CREATE DATABASE limits
	Database collation
	Database collation limitations

	Examples
	Database collation examples

	CREATE DATASHARE
	Required privileges
	Syntax
	Parameters
	Usage notes
	Examples

	CREATE EXTERNAL FUNCTION
	Required privileges
	Syntax
	Parameters
	Usage notes
	Examples
	Scalar Lambda UDF example using a Node.js Lambda function
	Scalar Lambda UDF example using the RETRY_TIMEOUT attribute
	Scalar Lambda UDF example using a Python Lambda function

	CREATE EXTERNAL SCHEMA
	Syntax
	Parameters
	Usage notes
	Examples

	CREATE EXTERNAL TABLE
	Required privileges
	Syntax
	Parameters
	Examples
	Usage notes
	CREATE EXTERNAL TABLE AS
	Permissions to create and query external tables
	Pseudocolumns
	Setting data handling options

	Examples
	Partitioning examples
	Row format examples
	Data handling examples

	CREATE EXTERNAL VIEW (preview)
	Syntax
	Parameters
	Examples

	CREATE FUNCTION
	Required privileges
	Syntax
	Parameters
	Usage notes
	Nested functions
	UDF security and privileges

	Examples
	Scalar Python UDF example
	Scalar SQL UDF example

	CREATE GROUP
	Syntax
	Parameters
	Examples

	CREATE IDENTITY PROVIDER
	Syntax
	Parameters
	Examples

	CREATE LIBRARY
	Required privileges
	Syntax
	Parameters
	Examples

	CREATE MASKING POLICY
	Syntax
	Parameters

	CREATE MATERIALIZED VIEW
	Syntax
	Parameters
	Usage notes
	Incremental refresh for materialized views in a datashare
	DDL updates to materialized views or base tables
	Limitations
	Examples

	CREATE MODEL
	Prerequisites
	Required privileges
	Cost control
	Full CREATE MODEL
	Full CREATE MODEL syntax

	Parameters
	Usage notes
	Use cases
	Simple CREATE MODEL
	Simple CREATE MODEL syntax
	Simple CREATE MODEL parameters

	CREATE MODEL with user guidance
	CREATE MODEL with user guidance syntax
	CREATE MODEL with user guidance parameters

	CREATE XGBoost models with AUTO OFF
	CREATE XGBoost models with AUTO OFF syntax
	CREATE XGBoost models with AUTO OFF parameters

	Bring your own model (BYOM) - local inference
	CREATE MODEL syntax for local inference
	CREATE MODEL parameters for local inference
	CREATE MODEL for local inference example

	Bring your own model (BYOM) - remote inference
	CREATE MODEL syntax for remote inference
	CREATE MODEL parameters for remote inference
	CREATE MODEL for remote inference usage notes
	CREATE MODEL for remote inference example

	CREATE MODEL with K-MEANS
	CREATE MODEL with K-MEANS syntax
	CREATE MODEL with K-MEANS parameters

	CREATE MODEL with Forecast
	CREATE MODEL with Forecast syntax
	CREATE MODEL with Forecast parameters

	CREATE PROCEDURE
	Required privileges
	Syntax
	Parameters
	Usage notes
	Examples

	CREATE RLS POLICY
	Syntax
	Parameters
	Usage notes
	Examples

	CREATE ROLE
	Required permissions
	Syntax
	Parameters
	Examples

	CREATE SCHEMA
	Required privileges
	Syntax
	Parameters
	Limits
	Examples

	CREATE TABLE
	Required privileges
	Syntax
	Parameters
	Usage notes
	Limits and quotas
	Summary of column-level settings and table-level settings
	Distribution of incoming data
	Wide tables

	Examples
	Examples
	Create a table with a distribution key, a compound sort key, and compression
	Create a table using an interleaved sort key
	Create a table using IF NOT EXISTS
	Create a table with ALL distribution
	Create a Table with EVEN distribution
	Create a temporary table that is LIKE another table
	Create a table with an IDENTITY column
	Create a table with a default IDENTITY column
	Create a table with DEFAULT column values
	DISTSTYLE, DISTKEY, and SORTKEY options
	Create a table with the ENCODE AUTO option

	CREATE TABLE AS
	Syntax
	Parameters
	CTAS usage notes
	Limits
	Inheritance of column and table attributes
	Compression encoding
	Distribution of incoming data
	Automatic ANALYZE operations

	CTAS examples

	CREATE USER
	Required privileges
	Syntax
	Parameters
	Usage notes

	Examples

	CREATE VIEW
	Required privileges
	Syntax
	Parameters
	Usage notes
	Late-binding views

	Examples

	DEALLOCATE
	Syntax
	Parameters
	Usage Notes
	See Also

	DECLARE
	Syntax
	Parameters
	DECLARE CURSOR usage notes
	Cursor constraints
	Performance considerations when using cursors
	DECLARE CURSOR examples

	DELETE
	Syntax
	Parameters
	Examples

	DESC DATASHARE
	Syntax
	Parameters
	Usage Notes
	Examples

	DESC IDENTITY PROVIDER
	Syntax
	Parameters
	Example

	DETACH MASKING POLICY
	Syntax
	Parameters

	DETACH RLS POLICY
	Syntax
	Parameters
	Usage notes
	Examples

	DROP DATABASE
	Syntax
	Parameters
	DROP DATABASE usage notes
	Examples

	DROP DATASHARE
	Required privileges
	Syntax
	Parameters
	DROP DATASHARE usage notes
	Examples

	DROP EXTERNAL VIEW (preview)
	Syntax
	Parameters
	Examples

	DROP FUNCTION
	Required privileges
	Syntax
	Parameters
	Examples

	DROP GROUP
	Syntax
	Parameter
	Example

	DROP IDENTITY PROVIDER
	Syntax
	Parameters
	Example

	DROP LIBRARY
	Required privileges
	Syntax
	Parameters

	DROP MASKING POLICY
	Syntax
	Parameters

	DROP MODEL
	Required permissions
	Syntax
	Parameters
	Examples

	DROP MATERIALIZED VIEW
	Syntax
	Parameters
	Usage Notes
	Example

	DROP PROCEDURE
	Required privileges
	Syntax
	Parameters
	Examples

	DROP RLS POLICY
	Syntax
	Parameters
	Examples

	DROP ROLE
	Required privileges
	Syntax
	Parameters
	Examples

	DROP SCHEMA
	Required privileges
	Syntax
	Parameters
	Example

	DROP TABLE
	Required privileges
	Syntax
	Parameters
	Examples

	DROP USER
	Syntax
	Parameters
	Usage notes
	Examples

	DROP VIEW
	Required privileges
	Syntax
	Parameters
	Examples

	END
	Syntax
	Parameters
	Examples

	EXECUTE
	Syntax
	Parameters
	Usage notes
	See also

	EXPLAIN
	Syntax
	Parameters
	Usage notes
	Query planning and execution steps
	Using EXPLAIN for RLS
	AWS Lake Formation-RLS protected Redshift relations

	Examples

	FETCH
	Syntax
	Parameters
	FETCH example

	GRANT
	Syntax
	Granting column-level permissions for tables
	Granting ASSUMEROLE permissions
	Granting permissions for Redshift Spectrum integration with Lake Formation
	Granting datashare permissions
	Granting scoped permissions
	Granting machine learning permissions
	Granting role permissions
	Granting explain permissions for row-level security policy filters
	Granting permissions for RLS lookup tables to a policy object

	Parameters
	Usage notes
	Examples
	Usage notes
	Usage notes for column-level access control
	Usage notes for granting the ASSUMEROLE permission
	Usage notes for granting machine learning permissions

	Examples
	Examples of granting access to datashares
	Examples of granting scoped permissions
	Examples of granting the ASSUMEROLE privilege
	Examples of granting the ROLE privileges

	INSERT
	Syntax
	Parameters
	Usage notes
	INSERT examples

	INSERT (external table)
	Syntax
	Parameters
	Usage notes
	INSERT (external table) examples

	LOCK
	Syntax
	Parameters
	Example

	MERGE
	Syntax
	Parameters
	Usage notes
	Examples
	See also

	PREPARE
	Syntax
	Parameters
	Usage notes
	Examples
	See also

	REFRESH MATERIALIZED VIEW
	Syntax
	Parameters
	Usage notes
	Incremental refresh for materialized views in a datashare
	Limitations for incremental refresh
	Examples

	RESET
	Syntax
	Parameters
	Examples

	REVOKE
	Syntax
	Revoking column-level permissions for tables
	Revoking ASSUMEROLE permissions
	Revoking permissions for Redshift Spectrum for Lake Formation
	Revoking datashare permissions
	Revoking scoped permissions
	Revoking machine learning permissions
	Revoking role permissions
	Revoking explain permissions for row-level security policy filters

	Parameters
	Usage notes
	Examples
	Usage notes
	Usage notes for revoking the ASSUMEROLE permission
	Usage notes for revoking machine learning permissions

	Examples
	Examples of revoking the USAGE permission from databases created from datashares
	Examples of revoking scoped permissions
	Examples of revoking the ASSUMEROLE privilege
	Examples of revoking the ROLE privilege

	ROLLBACK
	Syntax
	Parameters
	Example

	SELECT
	Syntax
	WITH clause
	Syntax
	Parameters
	Usage notes
	Recursive common table expressions
	Examples
	Example: Recursive CTE

	SELECT list
	Syntax
	Parameters
	Usage notes
	Examples

	FROM clause
	Syntax
	Parameters
	Usage notes
	PIVOT and UNPIVOT examples
	PIVOT examples
	UNPIVOT examples

	JOIN examples

	WHERE clause
	Syntax
	condition
	Usage notes
	Example
	Oracle-Style outer joins in the WHERE clause
	Basic syntax
	Usage notes
	Examples

	GROUP BY clause
	Syntax
	Parameters
	Aggregation extensions
	GROUPING SETS
	ROLLUP
	CUBE
	GROUPING/GROUPING_ID functions
	Partial ROLLUP and CUBE
	Concatenated grouping
	Nested grouping
	Usage notes

	HAVING clause
	Syntax
	Usage notes
	Examples

	QUALIFY clause
	Syntax
	Examples

	UNION, INTERSECT, and EXCEPT
	Syntax
	Parameters
	Order of evaluation for set operators
	Usage notes
	Example UNION queries
	Example UNION ALL query
	Example INTERSECT queries
	Example EXCEPT query

	ORDER BY clause
	Syntax
	Parameters
	Usage notes
	Examples with ORDER BY

	CONNECT BY clause
	Syntax
	Parameters
	Operators
	Examples

	Subquery examples
	SELECT list subquery
	WHERE clause subquery
	WITH clause subqueries

	Correlated subqueries
	Correlated subquery patterns that are not supported

	SELECT INTO
	Syntax
	Examples

	SET
	Syntax
	Parameters
	Examples

	SET SESSION AUTHORIZATION
	Syntax
	Parameters
	Examples

	SET SESSION CHARACTERISTICS
	SHOW
	Syntax
	Parameters
	Examples

	SHOW COLUMNS
	Syntax
	Parameters
	Examples

	SHOW EXTERNAL TABLE
	Syntax
	Parameters
	Examples

	SHOW DATABASES
	Syntax
	Parameters
	Examples

	SHOW MODEL
	Syntax
	Parameters
	Usage notes
	Examples

	SHOW DATASHARES
	Syntax
	Parameters
	Examples

	SHOW PROCEDURE
	Syntax
	Parameters
	Examples

	SHOW SCHEMAS
	Syntax
	Parameters
	Examples

	SHOW TABLE
	Syntax
	Parameters
	Examples

	SHOW TABLES
	Syntax
	Parameters
	Examples

	SHOW VIEW
	Syntax
	Parameters
	Examples

	START TRANSACTION
	TRUNCATE
	Syntax
	Parameters
	Usage notes
	Examples

	UNLOAD
	Required privileges and permissions
	Syntax
	Parameters
	Usage notes
	Using ESCAPE for all delimited text UNLOAD operations
	Loss of floating-point precision
	Limit clause
	Unloading a column of the GEOMETRY data type
	Unloading the HLLSKETCH data type
	Unloading a column of the VARBYTE data type
	FORMAT AS PARQUET clause
	PARTITION BY clause
	Using the ASSUMEROLE privilege to grant access to an IAM role for UNLOAD operations
	UNLOAD doesn't support Amazon S3 access point aliases

	Examples
	UNLOAD examples
	Unload VENUE to a pipe-delimited file (default delimiter)
	Unload LINEITEM table to partitioned Parquet files
	Unload the VENUE table to a JSON file
	Unload VENUE to a CSV file
	Unload VENUE to a CSV file using a delimiter
	Unload VENUE with a manifest file
	Unload VENUE with MANIFEST VERBOSE
	Unload VENUE with a header
	Unload VENUE to smaller files
	Unload VENUE serially
	Load VENUE from unload files
	Unload VENUE to encrypted files
	Load VENUE from encrypted files
	Unload VENUE data to a tab-delimited file
	Unload VENUE to a fixed-width data file
	Unload VENUE to a set of tab-delimited GZIP-compressed files
	Unload VENUE to a GZIP-compressed text file
	Unload data that contains a delimiter
	Unload the results of a join query
	Unload using NULL AS
	Unload using ALLOWOVERWRITE parameter
	Unload EVENT table using PARALLEL and MANIFEST parameters
	Unload EVENT table using PARALLEL OFF and MANIFEST parameters
	Unload EVENT table using PARTITION BY and MANIFEST parameters
	Unload EVENT table using MAXFILESIZE, ROWGROUPSIZE, and MANIFEST parameters

	UPDATE
	Syntax
	Parameters
	Usage notes
	Examples of UPDATE statements
	Updating a table based on the result of a join condition
	Updates with outer joins in the FROM clause
	Updates with columns from another table in the SET clause

	VACUUM
	Required privileges
	Syntax
	Parameters
	Usage notes
	Examples

	SQL functions reference
	Leader node–only functions
	Compute node–only functions
	Aggregate functions
	ANY_VALUE function
	Syntax
	Arguments
	Returns
	Usage notes
	Examples

	APPROXIMATE PERCENTILE_DISC function
	Syntax
	Arguments
	Returns
	Usage notes
	Examples

	AVG function
	Syntax
	Arguments
	Data types
	Examples

	COUNT function
	Syntax
	Arguments
	Return type
	Examples

	LISTAGG function
	Syntax
	Arguments
	Returns
	Usage notes
	Examples

	MAX function
	Syntax
	Arguments
	Data types
	Examples

	MEDIAN function
	Syntax
	Arguments
	Data types
	Usage notes
	Examples

	MIN function
	Syntax
	Arguments
	Data types
	Examples

	PERCENTILE_CONT function
	Syntax
	Arguments
	Returns
	Usage notes
	Examples

	STDDEV_SAMP and STDDEV_POP functions
	Syntax
	Usage notes
	Examples

	SUM function
	Syntax
	Arguments
	Data types
	Examples

	VAR_SAMP and VAR_POP functions
	Syntax
	Usage notes
	Examples

	Array functions
	array function
	Syntax
	Argument
	Return type
	Example

	array_concat function
	Syntax
	Arguments
	Return type
	Example

	array_flatten function
	Syntax
	Arguments
	Return type
	Example

	get_array_length function
	Syntax
	Arguments
	Return type
	Example

	split_to_array function
	Syntax
	Arguments
	Return type
	Example

	subarray function
	Syntax
	Arguments
	Return type
	Examples

	Bit-wise aggregate functions
	Using NULLs in bit-wise aggregations
	DISTINCT support for bit-wise aggregations
	Overview examples for bit-wise functions
	BIT_AND function
	Syntax
	Arguments
	Examples

	BIT_OR function
	Syntax
	Arguments
	Example

	BOOL_AND function
	Syntax
	Arguments
	Examples

	BOOL_OR function
	Syntax
	Arguments
	Examples

	Conditional expressions
	CASE conditional expression
	Syntax
	Arguments
	Examples

	DECODE function
	Syntax
	Parameters
	Usage notes
	Examples

	GREATEST and LEAST functions
	Syntax
	Parameters
	Returns
	Example

	NVL and COALESCE functions
	Syntax
	Arguments
	Return type
	Examples

	NVL2 function
	Syntax
	Arguments
	Return type
	Usage notes
	Example

	NULLIF function
	Syntax
	Arguments
	Examples

	Data type formatting functions
	CAST function
	Syntax
	Arguments
	Return type
	Examples

	CONVERT function
	Syntax
	Arguments
	Return type
	Examples

	TO_CHAR
	Syntax
	Arguments
	Return type
	Examples

	TO_DATE function
	Syntax
	Arguments
	Return type
	Examples

	TO_NUMBER
	Syntax
	Arguments
	Return type
	Examples

	TEXT_TO_INT_ALT
	Syntax
	Arguments
	Return type
	Examples

	TEXT_TO_NUMERIC_ALT
	Syntax
	Arguments
	Return type
	Examples

	Datetime format strings
	Examples

	Numeric format strings
	Teradata-style formatting characters for numeric data
	Data formatting characters for Signed Zone Decimal, Teradata–style numeric data formatting

	Date and time functions
	Summary of date and time functions
	Date and time functions in transactions
	Deprecated leader node-only functions
	+ (Concatenation) operator
	Syntax
	Arguments
	Return type
	Examples
	Example setup
	Examples with a time column
	Examples with a TIMETZ column

	ADD_MONTHS function
	Syntax
	Arguments
	Return type
	Examples

	AT TIME ZONE function
	Syntax
	Arguments
	Return type
	Examples

	CONVERT_TIMEZONE function
	Syntax
	Arguments
	Return type
	Time zone usage notes
	Using a time zone name
	Using a time zone abbreviation
	Using POSIX-style format

	Examples

	CURRENT_DATE function
	Syntax
	Return type
	Examples

	DATE_CMP function
	Syntax
	Arguments
	Return type
	Examples

	DATE_CMP_TIMESTAMP function
	Syntax
	Arguments
	Return type
	Examples

	DATE_CMP_TIMESTAMPTZ function
	Syntax
	Arguments
	Return type
	Examples

	DATEADD function
	Syntax
	Arguments
	Return type
	Examples with a DATE column
	Examples with a TIME column
	Examples with a TIMETZ column
	Examples with a TIMESTAMP column
	Usage notes

	DATEDIFF function
	Syntax
	Arguments
	Return type
	Examples with a DATE column
	Examples with a TIME column
	Examples with a TIMETZ column

	DATE_PART function
	Syntax
	Arguments
	Return type
	Examples

	DATE_PART_YEAR function
	Syntax
	Argument
	Return type
	Examples

	DATE_TRUNC function
	Syntax
	Arguments
	Return type
	Examples

	EXTRACT function
	Syntax
	Arguments
	Return type
	Examples with TIMESTAMP
	Examples with TIMESTAMPTZ
	Examples with TIME
	Examples with TIMETZ
	Examples with INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND

	GETDATE function
	Syntax
	Return type
	Examples

	INTERVAL_CMP function
	Syntax
	Arguments
	Return type
	Examples

	LAST_DAY function
	Syntax
	Arguments
	Return type
	Examples

	MONTHS_BETWEEN function
	Syntax
	Arguments
	Return type
	Examples

	NEXT_DAY function
	Syntax
	Arguments
	Return type
	Examples

	SYSDATE function
	Syntax
	Return type
	Examples

	TIMEOFDAY function
	Syntax
	Return type
	Examples

	TIMESTAMP_CMP function
	Syntax
	Arguments
	Return type
	Examples

	TIMESTAMP_CMP_DATE function
	Syntax
	Arguments
	Return type
	Examples

	TIMESTAMP_CMP_TIMESTAMPTZ function
	Syntax
	Arguments
	Return type
	Examples

	TIMESTAMPTZ_CMP function
	Syntax
	Arguments
	Return type
	Examples

	TIMESTAMPTZ_CMP_DATE function
	Syntax
	Arguments
	Return type
	Examples

	TIMESTAMPTZ_CMP_TIMESTAMP function
	Syntax
	Arguments
	Return type
	Examples

	TIMEZONE function
	Syntax
	Arguments
	Return type
	Examples

	TO_TIMESTAMP function
	Syntax
	Arguments
	Return type
	Examples

	TRUNC function
	Syntax
	Arguments
	Return type
	Examples

	Date parts for date or timestamp functions
	Variations in results with seconds, milliseconds, and microseconds
	CENTURY, EPOCH, DECADE, and MIL notes

	Hash functions
	CHECKSUM function
	Syntax
	Argument
	Return type
	Example

	farmFingerprint64 function
	Syntax
	Argument
	Return type
	Example

	FUNC_SHA1 function
	FNV_HASH function
	Syntax
	Arguments
	Return type
	Example
	Usage notes

	MD5 function
	Syntax
	Arguments
	Return type
	Examples

	SHA function
	SHA1 function
	Syntax
	Arguments
	Return type
	Example

	SHA2 function
	Syntax
	Arguments
	Return type
	Example

	MURMUR3_32_HASH
	Syntax
	Arguments
	Return type
	Example
	Usage notes

	HyperLogLog functions
	HLL function
	Syntax
	Argument
	Return type
	Examples

	HLL_CREATE_SKETCH function
	Syntax
	Argument
	Return type
	Examples

	HLL_CARDINALITY function
	Syntax
	Argument
	Return type
	Examples

	HLL_COMBINE function
	Syntax
	Argument
	Return type
	Examples

	HLL_COMBINE_SKETCHES function
	Syntax
	Argument
	Return type
	Examples

	JSON functions
	IS_VALID_JSON function
	Syntax
	Arguments
	Return type
	Examples

	IS_VALID_JSON_ARRAY function
	Syntax
	Arguments
	Return type
	Examples

	JSON_ARRAY_LENGTH function
	Syntax
	Arguments
	Return type
	Examples

	JSON_EXTRACT_ARRAY_ELEMENT_TEXT function
	Syntax
	Arguments
	Return type
	Examples

	JSON_EXTRACT_PATH_TEXT function
	Syntax
	Arguments
	Return type
	Examples

	JSON_PARSE function
	Syntax
	Arguments
	Return type
	Examples

	CAN_JSON_PARSE function
	Syntax
	Arguments
	Return type
	Examples

	JSON_SERIALIZE function
	Syntax
	Arguments
	Return type
	Examples

	JSON_SERIALIZE_TO_VARBYTE function
	Syntax
	Arguments
	Return type
	Examples

	Machine learning functions
	EXPLAIN_MODEL function
	Syntax
	Argument
	Return type
	Examples

	Math functions
	Mathematical operator symbols
	Supported operators
	Examples

	ABS function
	Syntax
	Arguments
	Return type
	Examples

	ACOS function
	Syntax
	Arguments
	Return type
	Examples

	ASIN function
	Syntax
	Arguments
	Return type
	Examples

	ATAN function
	Syntax
	Arguments
	Return type
	Examples

	ATAN2 function
	Syntax
	Arguments
	Return type
	Examples

	CBRT function
	Syntax
	Arguments
	Return type
	Examples

	CEILING (or CEIL) function
	Syntax
	Arguments
	Return type
	Examples

	COS function
	Syntax
	Arguments
	Return type
	Examples

	COT function
	Syntax
	Argument
	Return type
	Examples

	DEGREES function
	Syntax
	Argument
	Return type
	Examples

	DEXP function
	Syntax
	Argument
	Return type
	Example

	DLOG1 function
	DLOG10 function
	Syntax
	Argument
	Return type
	Example

	EXP function
	Syntax
	Argument
	Return type
	Example

	FLOOR function
	Syntax
	Argument
	Return type
	Examples

	LN function
	Syntax
	Argument
	Return type
	Examples

	LOG function
	Syntax
	Parameters
	Return type
	Examples

	MOD function
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	PI function
	Syntax
	Return type
	Examples

	POWER function
	Syntax
	Arguments
	Return type
	Examples

	RADIANS function
	Syntax
	Argument
	Return type
	Examples

	RANDOM function
	Syntax
	Return type
	Usage notes
	Examples

	ROUND function
	Syntax
	Arguments
	Return type
	Examples

	SIN function
	Syntax
	Argument
	Return type
	Examples

	SIGN function
	Syntax
	Argument
	Return type
	Examples

	SQRT function
	Syntax
	Argument
	Return type
	Examples

	TAN function
	Syntax
	Argument
	Return type
	Examples

	TRUNC function
	Syntax
	Arguments
	Return type
	Examples

	Object functions
	LOWER_ATTRIBUTE_NAMES function
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	OBJECT function
	Syntax
	Arguments
	Rturn type
	Example

	OBJECT_TRANSFORM function
	Syntax
	Arguments
	Return type
	Usage notes
	Example

	UPPER_ATTRIBUTE_NAMES function
	Syntax
	Arguments
	Return type
	Examples

	Spatial functions
	AddBBox
	Syntax
	Arguments
	Return type
	Examples

	DropBBox
	Syntax
	Arguments
	Return type
	Examples

	GeometryType
	Syntax
	Arguments
	Return type
	Examples

	H3_FromLongLat
	Syntax
	Arguments
	Return type
	Examples

	H3_FromPoint
	Syntax
	Arguments
	Return type
	Examples

	H3_Polyfill
	Syntax
	Arguments
	Return type
	Examples

	ST_AddPoint
	Syntax
	Arguments
	Return type
	Examples

	ST_Angle
	Syntax
	Arguments
	Return type
	Examples

	ST_Area
	Syntax
	Arguments
	Return type
	Examples

	ST_AsBinary
	Syntax
	Arguments
	Return type
	Examples

	ST_AsEWKB
	Syntax
	Arguments
	Return type
	Examples

	ST_AsEWKT
	Syntax
	Arguments
	Return type
	Examples

	ST_AsGeoJSON
	Syntax
	Arguments
	Return type
	Examples

	ST_AsHexWKB
	Syntax
	Arguments
	Return type
	Examples

	ST_AsHexEWKB
	Syntax
	Arguments
	Return type
	Examples

	ST_AsText
	Syntax
	Arguments
	Return type
	Examples

	ST_Azimuth
	Syntax
	Arguments
	Return type
	Examples

	ST_Boundary
	Syntax
	Arguments
	Return type
	Examples

	ST_Buffer
	Syntax
	Arguments
	Return type
	Examples

	ST_Centroid
	Syntax
	Arguments
	Return type
	Examples

	ST_Collect
	Syntax
	Arguments
	Return type
	Examples

	ST_Contains
	Syntax
	Arguments
	Return type
	Examples

	ST_ContainsProperly
	Syntax
	Arguments
	Return type
	Examples

	ST_ConvexHull
	Syntax
	Arguments
	Return type
	Examples

	ST_CoveredBy
	Syntax
	Arguments
	Return type
	Examples

	ST_Covers
	Syntax
	Arguments
	Return type
	Examples

	ST_Crosses
	Syntax
	Arguments
	Return type
	Examples

	ST_Dimension
	Syntax
	Arguments
	Return type
	Examples

	ST_Disjoint
	Syntax
	Arguments
	Return type
	Examples

	ST_Distance
	Syntax
	Arguments
	Return type
	Examples

	ST_DistanceSphere
	Syntax
	Arguments
	Return type
	Examples

	ST_DWithin
	Syntax
	Arguments
	Return type
	Examples

	ST_EndPoint
	Syntax
	Arguments
	Return type
	Examples

	ST_Envelope
	Syntax
	Arguments
	Return type
	Examples

	ST_Equals
	Syntax
	Arguments
	Return type
	Examples

	ST_ExteriorRing
	Syntax
	Arguments
	Return type
	Examples

	ST_Force2D
	Syntax
	Arguments
	Return type
	Examples

	ST_Force3D
	ST_Force3DM
	Syntax
	Arguments
	Return type
	Examples

	ST_Force3DZ
	Syntax
	Arguments
	Return type
	Examples

	ST_Force4D
	Syntax
	Arguments
	Return type
	Examples

	ST_GeoHash
	Syntax
	Arguments
	Return type
	Examples

	ST_GeogFromText
	Syntax
	Arguments
	Return type
	Examples

	ST_GeogFromWKB
	Syntax
	Arguments
	Return type
	Examples

	ST_GeometryN
	Syntax
	Arguments
	Return type
	Examples

	ST_GeometryType
	Syntax
	Arguments
	Return type
	Examples

	ST_GeomFromEWKB
	Syntax
	Arguments
	Return type
	Examples

	ST_GeomFromEWKT
	Syntax
	Arguments
	Return type
	Examples

	ST_GeomFromGeoHash
	Syntax
	Arguments
	Return type
	Examples

	ST_GeomFromGeoJSON
	Syntax
	Arguments
	Return type
	Examples

	ST_GeomFromGeoSquare
	Syntax
	Arguments
	Return type
	Examples

	ST_GeomFromText
	Syntax
	Arguments
	Return type
	Examples

	ST_GeomFromWKB
	Syntax
	Arguments
	Return type
	Examples

	ST_GeoSquare
	Syntax
	Arguments
	Return type
	Examples

	ST_InteriorRingN
	Syntax
	Arguments
	Return type
	Examples

	ST_Intersects
	Syntax
	Arguments
	Return type
	Examples

	ST_Intersection
	Syntax
	Arguments
	Return type
	Examples

	ST_IsPolygonCCW
	Syntax
	Arguments
	Return type
	Examples

	ST_IsPolygonCW
	Syntax
	Arguments
	Return type
	Examples

	ST_IsClosed
	Syntax
	Arguments
	Return type
	Examples

	ST_IsCollection
	Syntax
	Arguments
	Return type
	Examples

	ST_IsEmpty
	Syntax
	Arguments
	Return type
	Examples

	ST_IsRing
	Syntax
	Arguments
	Return type
	Examples

	ST_IsSimple
	Syntax
	Arguments
	Return type
	Examples

	ST_IsValid
	Syntax
	Arguments
	Return type
	Examples

	ST_Length
	Syntax
	Arguments
	Return type
	Examples

	ST_LengthSphere
	Syntax
	Arguments
	Return type
	Examples

	ST_Length2D
	ST_LineFromMultiPoint
	Syntax
	Arguments
	Return type
	Examples

	ST_LineInterpolatePoint
	Syntax
	Arguments
	Return type
	Examples

	ST_M
	Syntax
	Arguments
	Return type
	Examples

	ST_MakeEnvelope
	Syntax
	Arguments
	Return type
	Examples

	ST_MakeLine
	Syntax
	Arguments
	Return type
	Examples

	ST_MakePoint
	Syntax
	Arguments
	Return type
	Examples

	ST_MakePolygon
	Syntax
	Arguments
	Return type
	Examples

	ST_MemSize
	Syntax
	Arguments
	Return type
	Examples

	ST_MMax
	Syntax
	Arguments
	Return type
	Examples

	ST_MMin
	Syntax
	Arguments
	Return type
	Examples

	ST_Multi
	Syntax
	Arguments
	Return type
	Examples

	ST_NDims
	Syntax
	Arguments
	Return type
	Examples

	ST_NPoints
	Syntax
	Arguments
	Return type
	Examples

	ST_NRings
	Syntax
	Arguments
	Return type
	Examples

	ST_NumGeometries
	Syntax
	Arguments
	Return type
	Examples

	ST_NumInteriorRings
	Syntax
	Arguments
	Return type
	Examples

	ST_NumPoints
	Syntax
	Arguments
	Return type
	Examples

	ST_Perimeter
	Syntax
	Arguments
	Return type
	Examples

	ST_Perimeter2D
	ST_Point
	Syntax
	Arguments
	Return type
	Examples

	ST_PointN
	Syntax
	Arguments
	Return type
	Examples

	ST_Points
	Syntax
	Arguments
	Return type
	Examples

	ST_Polygon
	Syntax
	Arguments
	Return type
	Examples

	ST_RemovePoint
	Syntax
	Arguments
	Return type
	Examples

	ST_Reverse
	Syntax
	Arguments
	Return type
	Examples

	ST_SetPoint
	Syntax
	Arguments
	Return type
	Examples

	ST_SetSRID
	Syntax
	Arguments
	Return type
	Examples

	ST_Simplify
	Syntax
	Arguments
	Return type
	Examples

	ST_SRID
	Syntax
	Arguments
	Return type
	Examples

	ST_StartPoint
	Syntax
	Arguments
	Return type
	Examples

	ST_Touches
	Syntax
	Arguments
	Return type
	Examples

	ST_Transform
	Syntax
	Arguments
	Return type
	Examples

	ST_Union
	Syntax
	Arguments
	Return type
	Examples

	ST_Within
	Syntax
	Arguments
	Return type
	Examples

	ST_X
	Syntax
	Arguments
	Return type
	Examples

	ST_XMax
	Syntax
	Arguments
	Return type
	Examples

	ST_XMin
	Syntax
	Arguments
	Return type
	Examples

	ST_Y
	Syntax
	Arguments
	Return type
	Examples

	ST_YMax
	Syntax
	Arguments
	Return type
	Examples

	ST_YMin
	Syntax
	Arguments
	Return type
	Examples

	ST_Z
	Syntax
	Arguments
	Return type
	Examples

	ST_ZMax
	Syntax
	Arguments
	Return type
	Examples

	ST_ZMin
	Syntax
	Arguments
	Return type
	Examples

	SupportsBBox
	Syntax
	Arguments
	Return type
	Examples

	String functions
	|| (Concatenation) operator
	Syntax
	Arguments
	Return type
	Examples

	ASCII function
	Syntax
	Argument
	Return type
	Examples

	BPCHARCMP function
	Syntax
	Arguments
	Return type
	Examples

	BTRIM function
	Syntax
	Arguments
	Return type
	Examples

	BTTEXT_PATTERN_CMP function
	CHAR_LENGTH function
	CHARACTER_LENGTH function
	CHARINDEX function
	Syntax
	Arguments
	Return type
	Examples

	CHR function
	Syntax
	Argument
	Return type
	Examples

	COLLATE function
	Syntax
	Arguments
	Return type
	Examples

	CONCAT function
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	CRC32 function
	Syntax
	Arguments
	Return type
	Examples

	DIFFERENCE function
	Syntax
	Arguments
	Return type
	Examples

	INITCAP function
	Syntax
	Argument
	Return type
	Usage notes
	Examples

	LEFT and RIGHT functions
	Syntax
	Arguments
	Return type
	Examples

	LEN function
	Syntax
	Argument
	Return type
	Usage notes
	Examples

	LENGTH function
	LOWER function
	Syntax
	Argument
	Return type
	Examples

	LPAD and RPAD functions
	Syntax
	Arguments
	Return type
	Examples

	LTRIM function
	Syntax
	Arguments
	Return type
	Examples

	OCTETINDEX function
	Syntax
	Arguments
	Return type
	Examples

	OCTET_LENGTH function
	Syntax
	Argument
	Return type
	Usage notes
	Examples

	POSITION function
	Syntax
	Arguments
	Return type
	Examples

	QUOTE_IDENT function
	Syntax
	Argument
	Return type
	Examples

	QUOTE_LITERAL function
	Syntax
	Argument
	Return type
	Examples

	REGEXP_COUNT function
	Syntax
	Arguments
	Return type
	Examples

	REGEXP_INSTR function
	Syntax
	Arguments
	Return type
	Examples

	REGEXP_REPLACE function
	Syntax
	Arguments
	Return type
	Examples

	REGEXP_SUBSTR function
	Syntax
	Arguments
	Return type
	Examples

	REPEAT function
	Syntax
	Arguments
	Return type
	Examples

	REPLACE function
	Syntax
	Arguments
	Return type
	Examples

	REPLICATE function
	REVERSE function
	Syntax
	Argument
	Return type
	Examples

	RTRIM function
	Syntax
	Arguments
	Return type
	Example

	SOUNDEX function
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	SPLIT_PART function
	Syntax
	Arguments
	Return type
	Examples

	STRPOS function
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	STRTOL function
	Syntax
	Arguments
	Return type
	Examples

	SUBSTRING function
	Syntax
	Arguments
	Return type
	Usage Notes
	Examples

	TEXTLEN function
	TRANSLATE function
	Syntax
	Arguments
	Return type
	Examples

	TRIM function
	Syntax
	Arguments
	Return type
	Examples

	UPPER function
	Syntax
	Arguments
	Return type
	Examples

	SUPER type information functions
	DECIMAL_PRECISION function
	Syntax
	Arguments
	Return type
	Examples

	DECIMAL_SCALE function
	Syntax
	Arguments
	Return type
	Examples

	IS_ARRAY function
	Syntax
	Arguments
	Return type
	Examples

	IS_BIGINT function
	Syntax
	Arguments
	Return type
	Examples

	IS_BOOLEAN function
	Syntax
	Arguments
	Return type
	Examples

	IS_CHAR function
	Syntax
	Arguments
	Return type
	Examples

	IS_DECIMAL function
	Syntax
	Arguments
	Return type
	Examples

	IS_FLOAT function
	Syntax
	Arguments
	Return type
	Examples

	IS_INTEGER function
	Syntax
	Arguments
	Return type
	Examples

	IS_OBJECT function
	Syntax
	Arguments
	Return type
	Examples

	IS_SCALAR function
	Syntax
	Arguments
	Return type
	Examples

	IS_SMALLINT function
	Syntax
	Arguments
	Return
	Examples

	IS_VARCHAR function
	Syntax
	Arguments
	Return type
	Examples

	JSON_SIZE function
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	JSON_TYPEOF function
	Syntax
	Arguments
	Return type
	Examples

	SIZE
	Syntax
	Arguments
	Return type
	Examples

	VARBYTE functions and operators
	VARBYTE operators
	Supported operators
	Examples

	FROM_HEX function
	Syntax
	Arguments
	Return type
	Examples

	FROM_VARBYTE function
	Syntax
	Arguments
	Return type
	Examples

	GETBIT function
	Syntax
	Arguments
	Return type
	Examples

	TO_HEX function
	Syntax
	Arguments
	Return type
	Examples

	TO_VARBYTE function
	Syntax
	Arguments
	Return type
	Examples

	Window functions
	Window function syntax summary
	Arguments

	Unique ordering of data for window functions
	Supported functions
	Sample table for window function examples
	AVG window function
	Syntax
	Arguments
	Data types
	Examples

	COUNT window function
	Syntax
	Arguments
	Data types
	Examples

	CUME_DIST window function
	Syntax
	Arguments
	Return type
	Examples

	DENSE_RANK window function
	Syntax
	Arguments
	Return type
	Examples

	FIRST_VALUE window function
	Syntax
	Arguments
	Return type
	Examples

	LAG window function
	Syntax
	Arguments
	Examples

	LAST_VALUE window function
	Syntax
	Arguments
	Return type
	Examples

	LEAD window function
	Syntax
	Arguments
	Examples

	LISTAGG window function
	Syntax
	Arguments
	Returns
	Examples

	MAX window function
	Syntax
	Arguments
	Data types
	Examples

	MEDIAN window function
	Syntax
	Arguments
	Data types
	Usage notes
	Examples

	MIN window function
	Syntax
	Arguments
	Data types
	Examples

	NTH_VALUE window function
	Syntax
	Arguments
	Examples

	NTILE window function
	Syntax
	Arguments
	Return type
	Examples

	PERCENT_RANK window function
	Syntax
	Arguments
	Return type
	Examples

	PERCENTILE_CONT window function
	Syntax
	Arguments
	Returns
	Usage notes
	Examples

	PERCENTILE_DISC window function
	Syntax
	Arguments
	Returns
	Examples

	RANK window function
	Syntax
	Arguments
	Return type
	Examples

	RATIO_TO_REPORT window function
	Syntax
	Arguments
	Return type
	Examples

	ROW_NUMBER window function
	Syntax
	Arguments
	Return type
	Examples

	STDDEV_SAMP and STDDEV_POP window functions
	Syntax
	Arguments
	Data types
	Examples

	SUM window function
	Syntax
	Arguments
	Data types
	Examples

	VAR_SAMP and VAR_POP window functions
	Syntax
	Arguments
	Data types

	System administration functions
	CHANGE_QUERY_PRIORITY
	Syntax
	Arguments
	Return Type
	Examples

	CHANGE_SESSION_PRIORITY
	Syntax
	Arguments
	Return type
	Examples

	CHANGE_USER_PRIORITY
	Syntax
	Arguments
	Return type
	Examples

	CURRENT_SETTING
	Syntax
	Arguments
	Return type
	Examples

	PG_CANCEL_BACKEND
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	PG_TERMINATE_BACKEND
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	REBOOT_CLUSTER
	Syntax

	SET_CONFIG
	Syntax
	Arguments
	Return type
	Examples

	System information functions
	CURRENT_AWS_ACCOUNT
	Syntax
	Return type
	Example

	CURRENT_DATABASE
	Syntax
	Return type
	Example

	CURRENT_NAMESPACE
	Syntax
	Return type
	Example

	CURRENT_SCHEMA
	Syntax
	Return type
	Examples

	CURRENT_SCHEMAS
	Syntax
	Argument
	Return type
	Examples

	CURRENT_USER
	Syntax
	Return type
	Usage notes
	Example

	CURRENT_USER_ID
	Syntax
	Return type
	Examples

	DEFAULT_IAM_ROLE
	Syntax
	Return type
	Example

	HAS_ASSUMEROLE_PRIVILEGE
	Syntax
	Arguments
	Return type
	Example

	HAS_DATABASE_PRIVILEGE
	Syntax
	Arguments
	Return type
	Example

	HAS_SCHEMA_PRIVILEGE
	Syntax
	Arguments
	Return type
	Example

	HAS_TABLE_PRIVILEGE
	Syntax
	Arguments
	Return type
	Examples

	LAST_USER_QUERY_ID
	Syntax
	Return type
	Example

	PG_BACKEND_PID
	Syntax
	Return type
	Example

	PG_GET_COLS
	Syntax
	Arguments
	Return type
	Usage notes
	Examples

	PG_GET_GRANTEE_BY_IAM_ROLE
	Syntax
	Arguments
	Return type
	Usage notes
	Example

	PG_GET_IAM_ROLE_BY_USER
	Syntax
	Arguments
	Return type
	Usage notes
	Example

	PG_GET_LATE_BINDING_VIEW_COLS
	Syntax
	Return type
	Usage notes
	Example

	PG_GET_SESSION_ROLES
	Syntax
	Return type
	Usage notes
	Examples

	PG_LAST_COPY_COUNT
	Syntax
	Return type
	Example

	PG_LAST_COPY_ID
	Syntax
	Return type
	Example

	PG_LAST_UNLOAD_ID
	Syntax
	Return type
	Example

	PG_LAST_QUERY_ID
	Syntax
	Return type
	Example

	PG_LAST_UNLOAD_COUNT
	Syntax
	Return type
	Example

	SLICE_NUM Function
	Syntax
	Return type
	Examples

	USER
	ROLE_IS_MEMBER_OF
	Syntax
	Arguments
	Return type
	Example

	USER_IS_MEMBER_OF
	Syntax
	Arguments
	Return type
	Example

	VERSION
	Syntax
	Return type
	Examples

	Reserved words

	System tables and views reference
	System tables and views
	Types of system tables and views
	Visibility of data in system tables and views
	Filtering system-generated queries

	Migrating provisioned-only queries to SYS monitoring view queries
	Migrating from provisioned clusters to Amazon Redshift Serverless
	Updating queries while staying on a provisioned cluster

	Improving query identifier tracking using the SYS monitoring views
	Example

	System table query, process, and sesssion ids
	SVV metadata views
	SVV_ACTIVE_CURSORS
	Table columns

	SVV_ALL_COLUMNS
	Table columns
	Sample queries

	SVV_ALL_SCHEMAS
	Table columns
	Sample query

	SVV_ALL_TABLES
	Table columns
	Sample queries

	SVV_ALTER_TABLE_RECOMMENDATIONS
	Table columns
	Sample queries

	SVV_ATTACHED_MASKING_POLICY
	Table columns
	Internal functions
	mask_get_policy_for_role_on_column
	Syntax
	Parameters

	mask_get_policy_for_user_on_column
	Syntax
	Parameters

	SVV_COLUMNS
	Table columns

	SVV_COLUMN_PRIVILEGES
	Table columns
	Sample query

	SVV_DATABASE_PRIVILEGES
	Table columns
	Sample query

	SVV_DATASHARE_PRIVILEGES
	Table columns
	Sample query

	SVV_DATASHARES
	Table columns
	Usage notes
	Sample query

	SVV_DATASHARE_CONSUMERS
	Table columns
	Sample query

	SVV_DATASHARE_OBJECTS
	Table columns
	Sample query

	SVV_DEFAULT_PRIVILEGES
	Table columns
	Sample query

	SVV_DISKUSAGE
	Table columns
	Sample queries

	SVV_EXTERNAL_COLUMNS
	Table columns

	SVV_EXTERNAL_DATABASES
	Table columns

	SVV_EXTERNAL_PARTITIONS
	Table columns

	SVV_EXTERNAL_SCHEMAS
	Table columns
	Example

	SVV_EXTERNAL_TABLES
	Table columns
	Example

	SVV_FUNCTION_PRIVILEGES
	Table columns
	Sample query

	SVV_GEOGRAPHY_COLUMNS
	Table columns
	Sample query

	SVV_GEOMETRY_COLUMNS
	Table columns
	Sample query

	SVV_IAM_PRIVILEGES
	Table columns
	Sample queries

	SVV_IDENTITY_PROVIDERS
	Table columns
	Sample queries

	SVV_INTEGRATION
	Table columns
	Sample queries

	SVV_INTEGRATION_TABLE_STATE
	Table columns
	Sample queries

	SVV_INTERLEAVED_COLUMNS
	Table columns
	Sample queries

	SVV_LANGUAGE_PRIVILEGES
	Table columns
	Sample query

	SVV_MASKING_POLICY
	Table columns

	SVV_ML_MODEL_INFO
	Table columns
	Sample query

	SVV_ML_MODEL_PRIVILEGES
	Table columns
	Sample query

	SVV_MV_DEPENDENCY
	Table columns
	Sample query

	SVV_MV_INFO
	Table columns
	Sample query

	SVV_QUERY_INFLIGHT
	Table columns
	Sample queries

	SVV_QUERY_STATE
	Table columns
	Sample queries

	SVV_REDSHIFT_COLUMNS
	Table columns
	Sample query

	SVV_REDSHIFT_DATABASES
	Table columns
	Sample query

	SVV_REDSHIFT_FUNCTIONS
	Table columns
	Sample query

	SVV_REDSHIFT_SCHEMA_QUOTA
	Table columns
	Sample query

	SVV_REDSHIFT_SCHEMAS
	Table columns
	Sample query

	SVV_REDSHIFT_TABLES
	Table columns
	Sample query

	SVV_RELATION_PRIVILEGES
	Table columns
	Sample query

	SVV_RLS_APPLIED_POLICY
	Table columns
	Sample query

	SVV_RLS_ATTACHED_POLICY
	Table columns
	Sample query

	SVV_RLS_POLICY
	Table columns
	Sample query

	SVV_RLS_RELATION
	Table columns
	Sample query

	SVV_ROLE_GRANTS
	Table columns
	Sample query

	SVV_ROLES
	Table columns
	Sample query

	SVV_SCHEMA_PRIVILEGES
	Table columns
	Sample query

	SVV_SCHEMA_QUOTA_STATE
	Table columns
	Sample query

	SVV_SYSTEM_PRIVILEGES
	Table columns
	Sample query

	SVV_TABLE_INFO
	Table columns
	Sample queries

	SVV_TABLES
	Table columns

	SVV_TRANSACTIONS
	Table columns
	Sample queries

	SVV_USER_GRANTS
	Table columns
	Sample queries

	SVV_USER_INFO
	Table columns
	Sample queries

	SVV_VACUUM_PROGRESS
	Table columns
	Sample queries

	SVV_VACUUM_SUMMARY
	Table columns
	Sample query

	SYS monitoring views
	SYS_ANALYZE_COMPRESSION_HISTORY
	Table columns
	Sample queries

	SYS_ANALYZE_HISTORY
	Table columns
	Sample queries

	SYS_APPLIED_MASKING_POLICY_LOG
	Table columns
	Sample queries

	SYS_AUTO_TABLE_OPTIMIZATION
	Table columns
	Sample queries

	SYS_CONNECTION_LOG
	Table columns
	Sample queries

	SYS_COPY_JOB (preview)
	Table columns

	SYS_COPY_REPLACEMENTS
	Table columns
	Sample queries

	SYS_DATASHARE_CHANGE_LOG
	Table columns
	Sample queries

	SYS_DATASHARE_CROSS_REGION_USAGE
	Table columns
	Sample queries

	SYS_DATASHARE_USAGE_CONSUMER
	Table columns
	Sample queries

	SYS_DATASHARE_USAGE_PRODUCER
	Table columns
	Sample queries

	SYS_EXTERNAL_QUERY_DETAIL
	Table columns
	Sample queries

	SYS_EXTERNAL_QUERY_ERROR
	Table columns
	Sample query

	SYS_INTEGRATION_ACTIVITY
	Table columns
	Sample queries

	SYS_INTEGRATION_TABLE_STATE_CHANGE
	Table columns
	Sample queries

	SYS_LOAD_DETAIL
	Table columns
	Sample queries

	SYS_LOAD_ERROR_DETAIL
	Table columns
	Sample queries

	SYS_LOAD_HISTORY
	Table columns
	Sample queries

	SYS_MV_REFRESH_HISTORY
	Table columns
	Sample queries

	SYS_MV_STATE
	Table columns
	Sample queries

	SYS_PROCEDURE_CALL
	Table columns
	Sample queries

	SYS_PROCEDURE_MESSAGES
	Table columns
	Sample queries

	SYS_QUERY_DETAIL
	Table columns
	Sample queries

	SYS_QUERY_HISTORY
	Table columns
	Sample queries

	SYS_QUERY_TEXT
	Table columns
	Sample queries

	SYS_RESTORE_LOG
	Table columns
	Sample queries

	SYS_RESTORE_STATE
	Table columns
	Sample queries

	SYS_SCHEMA_QUOTA_VIOLATIONS
	Table columns
	Sample queries

	SYS_SERVERLESS_USAGE
	Table columns
	Usage notes
	Example

	SYS_SESSION_HISTORY
	Table columns
	Example

	SYS_SPATIAL_SIMPLIFY
	Table columns
	Sample query

	SYS_STREAM_SCAN_ERRORS
	Table columns

	SYS_STREAM_SCAN_STATES
	Table columns

	SYS_TRANSACTION_HISTORY
	Table columns
	Sample queries

	SYS_UDF_LOG
	Table columns
	Sample queries

	SYS_UNLOAD_DETAIL
	Table columns
	Sample queries

	SYS_UNLOAD_HISTORY
	Table columns
	Sample queries

	SYS_USERLOG
	Table columns
	Sample queries

	SYS_VACUUM_HISTORY
	Table columns

	System view mapping for migrating to SYS monitoring views
	SYS_QUERY_HISTORY
	SYS_QUERY_DETAIL
	SYS_RESTORE_LOG
	SYS_RESTORE_STATE
	SYS_TRANSACTION_HISTORY
	SYS_QUERY_TEXT
	SYS_CONNECTION_LOG
	SYS_SESSION_HISTORY
	SYS_LOAD_DETAIL
	SYS_LOAD_HISTORY
	SYS_LOAD_ERROR_DETAIL
	SYS_UNLOAD_HISTORY
	SYS_UNLOAD_DETAIL
	SYS_COPY_REPLACEMENTS
	SYS_DATASHARE_USAGE_CONSUMER
	SYS_DATASHARE_USAGE_PRODUCER
	SYS_DATASHARE_CROSS_REGION_USAGE
	SYS_DATASHARE_CHANGE_LOG
	SYS_EXTERNAL_QUERY_DETAIL
	SYS_EXTERNAL_QUERY_ERROR
	SYS_VACUUM_HISTORY
	SYS_ANALYZE_HISTORY
	SYS_ANALYZE_COMPRESSION_HISTORY
	SYS_MV_REFRESH_HISTORY
	SYS_MV_STATE
	SYS_PROCEDURE_CALL
	SYS_PROCEDURE_MESSAGES
	SYS_UDF_LOG
	SYS_USERLOG
	SYS_SCHEMA_QUOTA_VIOLATIONS
	SYS_SPATIAL_SIMPLIFY

	System monitoring (provisioned only)
	STL views for logging
	STL_AGGR
	Table columns
	Sample queries

	STL_ALERT_EVENT_LOG
	Table columns
	Usage notes
	Sample queries

	STL_ANALYZE
	Table columns
	Sample queries

	STL_ANALYZE_COMPRESSION
	Table columns
	Sample queries

	STL_BCAST
	Table columns
	Sample queries

	STL_COMMIT_STATS
	Table columns
	Sample query

	STL_CONNECTION_LOG
	Table columns
	Sample queries

	STL_DDLTEXT
	Table columns
	Sample queries
	Reconstructing Stored SQL

	STL_DELETE
	Table columns
	Sample queries

	STL_DISK_FULL_DIAG
	Table columns
	Sample queries

	STL_DIST
	Table columns
	Sample queries

	STL_ERROR
	Table columns
	Sample queries

	STL_EXPLAIN
	Table columns
	Sample queries

	STL_FILE_SCAN
	Table columns
	Sample queries

	STL_HASH
	Table columns
	Sample queries

	STL_HASHJOIN
	Table columns
	Sample queries

	STL_INSERT
	Table columns
	Sample queries

	STL_LIMIT
	Table columns
	Sample queries

	STL_LOAD_COMMITS
	Table columns
	Sample queries

	STL_LOAD_ERRORS
	Table columns
	Sample queries

	STL_LOADERROR_DETAIL
	Table columns
	Sample query

	STL_MERGE
	Table columns
	Sample queries

	STL_MERGEJOIN
	Table columns
	Sample queries

	STL_MV_STATE
	Table columns
	Sample query

	STL_NESTLOOP
	Table columns
	Sample queries

	STL_PARSE
	Table columns
	Sample queries

	STL_PLAN_INFO
	Table columns
	Sample queries

	STL_PROJECT
	Table columns
	Sample queries

	STL_QUERY
	Table columns
	Sample queries

	STL_QUERY_METRICS
	Table columns
	Sample query

	STL_QUERYTEXT
	Table columns
	Sample queries
	Reconstructing stored SQL

	STL_REPLACEMENTS
	Table columns
	Sample queries

	STL_RESTARTED_SESSIONS
	Table columns
	Sample queries

	STL_RETURN
	Table columns
	Sample queries

	STL_S3CLIENT
	Table columns
	Sample query

	STL_S3CLIENT_ERROR
	Table columns
	Usage notes
	Sample query

	STL_SAVE
	Table columns
	Sample queries

	STL_SCAN
	Table columns
	Scan types
	Usage notes
	Sample queries

	STL_SCHEMA_QUOTA_VIOLATIONS
	Table columns
	Sample queries

	STL_SESSIONS
	Table columns
	Sample queries

	STL_SORT
	Table columns
	Sample queries

	STL_SSHCLIENT_ERROR
	Table columns

	STL_STREAM_SEGS
	Table columns
	Sample queries

	STL_TR_CONFLICT
	Table columns
	Sample query

	STL_UNDONE
	Table columns
	Sample query

	STL_UNIQUE
	Table columns
	Sample queries

	STL_UNLOAD_LOG
	Table columns
	Sample query

	STL_USAGE_CONTROL
	Table columns
	Sample query

	STL_USERLOG
	Table columns
	Sample queries

	STL_UTILITYTEXT
	Table columns
	Sample queries
	Reconstructing Stored SQL

	STL_VACUUM
	Table columns
	Sample queries

	STL_WINDOW
	Table columns
	Sample queries

	STL_WLM_ERROR
	Table columns

	STL_WLM_RULE_ACTION
	Table columns
	Sample queries

	STL_WLM_QUERY
	Table columns
	Sample queries

	STV tables for snapshot data
	STV_ACTIVE_CURSORS
	Table columns

	STV_BLOCKLIST
	Table columns
	Sample queries

	STV_CURSOR_CONFIGURATION
	Table columns

	STV_DB_ISOLATION_LEVEL
	Table columns

	STV_EXEC_STATE
	Table columns
	Sample queries

	STV_INFLIGHT
	Troubleshooting with STV_INFLIGHT
	Table columns
	Sample queries

	STV_LOAD_STATE
	Table columns
	Sample query

	STV_LOCKS
	Table columns
	Sample query

	STV_ML_MODEL_INFO
	Table columns
	Sample query

	STV_MV_DEPS
	Table columns
	Sample query

	STV_MV_INFO
	Table columns
	Sample query

	STV_NODE_STORAGE_CAPACITY
	Table columns
	Sample queries

	STV_PARTITIONS
	Table columns
	Sample query

	STV_QUERY_METRICS
	Table columns
	Step types
	Sample query

	STV_RECENTS
	Troubleshooting with STV_RECENTS
	Table columns
	Sample queries

	STV_SESSIONS
	Table columns
	Sample queries

	STV_SLICES
	Table columns
	Sample query

	STV_STARTUP_RECOVERY_STATE
	Table columns
	Sample queries

	STV_TBL_PERM
	Table columns
	Sample queries
	Usage notes

	STV_TBL_TRANS
	Table columns
	Sample queries

	STV_WLM_CLASSIFICATION_CONFIG
	Table columns
	Sample query

	STV_WLM_QMR_CONFIG
	Table columns
	Sample query

	STV_WLM_QUERY_QUEUE_STATE
	Table columns
	Sample query

	STV_WLM_QUERY_STATE
	Table columns
	Sample query

	STV_WLM_QUERY_TASK_STATE
	Table columns
	Sample query

	STV_WLM_SERVICE_CLASS_CONFIG
	Table columns
	Sample query

	STV_WLM_SERVICE_CLASS_STATE
	Table columns
	Sample query

	STV_XRESTORE_ALTER_QUEUE_STATE
	Table columns
	Sample query

	SVCS views for main and concurrency scaling clusters
	SVCS_ALERT_EVENT_LOG
	Table columns
	Usage notes
	Sample queries

	SVCS_COMPILE
	Table columns
	Sample queries

	SVCS_CONCURRENCY_SCALING_USAGE
	Table columns
	Sample queries

	SVCS_EXPLAIN
	Table columns
	Sample queries

	SVCS_PLAN_INFO
	Table columns
	Sample queries

	SVCS_QUERY_SUMMARY
	Table columns
	Sample queries

	SVCS_S3LIST
	Table columns
	Sample query

	SVCS_S3LOG
	Table columns
	Sample query

	SVCS_S3PARTITION_SUMMARY
	Table columns
	Sample query

	SVCS_S3QUERY_SUMMARY
	Table columns
	Sample query

	SVCS_STREAM_SEGS
	Table columns
	Sample queries

	SVCS_UNLOAD_LOG
	Table columns
	Sample query

	SVL views for main cluster
	SVL_AUTO_WORKER_ACTION
	Table columns
	Sample queries

	SVL_COMPILE
	Table columns
	Sample queries

	SVL_DATASHARE_CHANGE_LOG
	Table columns
	Sample queries

	SVL_DATASHARE_CROSS_REGION_USAGE
	Table columns
	Sample queries

	SVL_DATASHARE_USAGE_CONSUMER
	Table columns
	Sample queries

	SVL_DATASHARE_USAGE_PRODUCER
	Table columns
	Sample queries

	SVL_FEDERATED_QUERY
	Table columns
	Sample queries

	SVL_MULTI_STATEMENT_VIOLATIONS
	Table columns
	Sample query

	SVL_MV_REFRESH_STATUS
	Table columns
	Sample query

	SVL_QERROR
	SVL_QLOG
	Table columns
	Sample queries

	SVL_QUERY_METRICS
	Table columns

	SVL_QUERY_METRICS_SUMMARY
	Table columns

	SVL_QUERY_QUEUE_INFO
	Table columns
	Sample queries

	SVL_QUERY_REPORT
	Table columns
	Sample queries

	SVL_QUERY_SUMMARY
	Table columns
	Sample queries

	SVL_RESTORE_ALTER_TABLE_PROGRESS
	Table columns
	Sample query

	SVL_S3LIST
	Table columns
	Sample query

	SVL_S3LOG
	Table columns
	Sample query

	SVL_S3PARTITION
	Table columns
	Sample query

	SVL_S3PARTITION_SUMMARY
	Table columns
	Sample query

	SVL_S3QUERY
	Table columns
	Sample query

	SVL_S3QUERY_SUMMARY
	Table columns
	Sample query

	SVL_S3RETRIES
	Table columns
	Sample query

	SVL_SPATIAL_SIMPLIFY
	Table columns
	Sample query

	SVL_SPECTRUM_SCAN_ERROR
	Table columns
	Sample query

	SVL_STATEMENTTEXT
	Table columns
	Sample query
	Reconstructing stored SQL

	SVL_STORED_PROC_CALL
	Table columns
	Sample query

	SVL_STORED_PROC_MESSAGES
	Table columns
	Sample query

	SVL_TERMINATE
	Table columns

	SVL_UDF_LOG
	Table columns
	Sample queries

	SVL_USER_INFO
	Table columns
	Sample queries

	SVL_VACUUM_PERCENTAGE
	Table columns
	Sample query

	System catalog tables
	PG_ATTRIBUTE_INFO
	Table columns

	PG_CLASS_INFO
	Table columns
	Example

	PG_DATABASE_INFO
	Table columns

	PG_DEFAULT_ACL
	Table columns
	Example

	PG_EXTERNAL_SCHEMA
	Table columns
	Example

	PG_LIBRARY
	Table columns
	Example

	PG_PROC_INFO
	Table columns

	PG_STATISTIC_INDICATOR
	Table columns
	Example

	PG_TABLE_DEF
	Table columns
	Example

	PG_USER_INFO
	Table columns

	Querying the catalog tables
	Examples of catalog queries
	View table ID, database, schema, and table name
	List the number of columns per Amazon Redshift table
	List the schemas and tables in a database
	List table IDs, data types, column names, and table names
	Count the number of data blocks for each column in a table

	Configuration reference
	Modifying the server configuration
	analyze_threshold_percent
	Values (default in bold)
	Description
	Example

	cast_super_null_on_error
	Values (default in bold)
	Description

	datashare_break_glass_session_var
	Values (default in bold)
	Description
	Example

	datestyle
	Values (default in bold)
	Description
	Example

	default_geometry_encoding
	Values (default in bold)
	Description

	describe_field_name_in_uppercase
	Values (default in bold)
	Description
	Example

	downcase_delimited_identifier
	Values (default in bold)
	Description
	Usage Notes

	enable_case_sensitive_identifier
	Values (default in bold)
	Description
	Examples
	Usage Notes

	enable_case_sensitive_super_attribute
	Values (default in bold)
	Description
	Examples
	Usage Notes

	enable_numeric_rounding
	Values (default in bold)
	Description
	Example

	enable_result_cache_for_session
	Values (default in bold)
	Description
	Example

	enable_vacuum_boost
	Values (default in bold)
	Description

	error_on_nondeterministic_update
	Values (default in bold)
	Description
	Example

	extra_float_digits
	Values (default in bold)
	Description
	Example

	interval_forbid_composite_literals
	Values (default in bold)
	Description

	json_serialization_enable
	Values (default in bold)
	Description

	json_serialization_parse_nested_strings
	Values (default in bold)
	Description

	max_concurrency_scaling_clusters
	Values (default in bold)
	Description

	max_cursor_result_set_size
	Values (default in bold)
	Description

	mv_enable_aqmv_for_session
	Values (default in bold)
	Description

	navigate_super_null_on_error
	Values (default in bold)
	Description

	parse_super_null_on_error
	Values (default in bold)
	Description

	pg_federation_repeatable_read
	Values (default in bold)
	Description
	Examples

	query_group
	Values (default in bold)
	Description

	search_path
	Values (default in bold)
	Description
	Example

	spectrum_enable_pseudo_columns
	Values (default in bold)
	Description
	Example

	enable_spectrum_oid
	Values (default in bold)
	Description
	Example

	spectrum_query_maxerror
	Values (default in bold)
	Description
	Example

	statement_timeout
	Values (default in bold)
	Description
	Example

	stored_proc_log_min_messages
	Values (default in bold)
	Description

	timezone
	Values (default in bold)
	Syntax
	Description
	Time zone formats
	Examples

	use_fips_ssl
	Values (default in bold)
	Description

	wlm_query_slot_count
	Values (default in bold)
	Description
	Examples

	Document history
	Earlier updates

