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M ACHINE LEARNING AND data science are key tools 
in science, public policy, and the design of products 
and services thanks to the increasing affordability of 
collecting, storing, and processing large quantities of 
data. But centralized collection can expose individuals 
to privacy risks and organizations to legal risks if data 
is not properly managed. Starting with early work in 
2016,13,15 an expanding community of researchers has 
explored how data ownership and provenance can be 
made first-class concepts in systems for learning and 
analytics in areas now known as federated learning (FL) 
and federated analytics (FA).

With this expanding community, interest has 
broadened from the initial work on federations of 
mobile devices to include FL across organizational silos, 
Internet of Things (IoT) devices, and more. In light of 
this, Kairouz et al.10 proposed a broader definition:

Federated learning is a machine 
learning setting where multiple entities 
(clients) collaborate in solving a machine 
learning problem, under the coordina-
tion of a central server or service pro-
vider. Each client’s raw data is stored 
locally and not exchanged or transferred; 
instead, focused updates intended for im-
mediate aggregation are used to achieve 
the learning objective.

An approach very similar in both 
philosophy and implementation, fed-
erated analytics17 can be taken to allow 
data scientists to generate analytical 
insight from the combined informa-
tion in decentralized datasets. While 
the focus here is on FL, much of the 
discussion on technology and privacy 
applies equally well to FA use cases.

This article provides a brief intro-
duction to key concepts in federated 
learning and analytics with an empha-
sis on how privacy technologies may be 
combined in real-world systems and 
how their use charts a path toward so-
cietal benefit from aggregate statistics 
in new domains and with minimized 
risk to individuals and to the organiza-
tions who are custodians of the data.

Privacy Principles for 
Learning and Analytics
To ground a more detailed discussion 
of FL, let’s begin by clarifying the rel-
evant notions of privacy. Privacy is 
an inherently multifaceted concept, 
even when restricted to the realm of 
the products and services offered by 
a technology company, which is the 
focus here. Three key components of 
privacy are highlighted in this con-
text: transparency and consent; data 
minimization; and anonymization of 
released aggregates.

Transparency and consent are 
foundational to privacy: they are how 
users of the product/service both un-
derstand and approve of the ways in 
which their data will be used. Privacy 
technology cannot replace transparen-
cy and consent, but data-stewardship 
approaches based on strong privacy 
technologies make it easier for all par-
ties involved to reason about which 
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types of data usage might be possible 
(and which are ruled out by design), 
thereby enabling clearer privacy state-
ments that are simpler to understand, 
verify, and enforce.

The role of privacy technology be-
comes clearer when considering spe-
cific goals that can be advanced by 
computation on privacy-sensitive user 
data; for example, improving a mobile 
keyboard’s suggestions based on user 
input to the virtual keyboard. How can 
the keyboard be improved in as mini-
mally invasive a manner as possible?

The computation goals are primar-
ily the training of machine learning 
(ML) models (FL) and the calculation 
of metrics or other aggregate statistics 
on user data (FA). As we will see, both 
analytics and machine learning can be 
accomplished via appropriately cho-

sen aggregations over (possibly pre-
processed) user data. In this context, 
specializations of two broad privacy 
principles apply:

The principle of data minimization, 
as applied to aggregations, includes 
the objective to collect only the data 
needed for the specific computation 
(focused collection), to limit access to 
data at all stages, to process individu-
als’ data as early as possible (early ag-
gregation), and to discard both col-
lected and processed data as soon as 
possible (minimal retention). That is, 
data minimization implies restrict-
ing access to all data to the smallest 
set of people possible, often accom-
plished via security mechanisms, such 
as encryption at rest and on the wire, 
access-control lists, and more nascent 
technologies such as secure multiparty 

computation and trusted execution 
environments, to be discussed later.

The principle of data anonymization 
captures the objective that the final 
released output of the computation 
does not reveal anything unique to 
an individual. When this principle is 
specialized to anonymous aggregation, 
the goal is that data contributed by any 
individual user to the computation has 
only a small (limited, measured, and/
or mitigated) influence on the final ag-
gregate output. For example, aggregate 
statistics, including model parame-
ters, when released to an engineer—or 
beyond—should not vary significantly 
based on whether any particular us-
er’s data was included in the aggrega-
tion. The XKCD comic shown here il-
lustrates a humorous example where 
this principle is not respected, but this 
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data decentralized and learning via 
aggregation. This assumption of lo-
cally generated data—often heteroge-
neous in distribution and quantity—
distinguishes FL from more typical 
datacenter-based distributed learning 
settings, where data can be arbitrarily 
distributed and shuffled, and any 
worker node in the computation can 
access any of the data.

The role of a central orchestrator is 
practically useful and often necessary, 
as in the case of mobile devices that 
lack fixed IP addresses and require a 
central server to mediate device-to-
device communication. It further con-
strains the space of relevant algorithms 
and helps to distinguish FL from more 
general forms of decentralized learn-
ing, including peer-to-peer approaches.

From the basic definition, two FL set-
tings have received particular attention:

	˲ Cross-device FL, where the clients are 
large numbers of mobile or IoT devices.

	˲ Cross-silo FL, where the clients are 
a typically smaller number of organiza-
tions, institutions, or other data silos.

The accompanying table, adapted 
from Kairouz et al.,10 summarizes the 
key characteristics of the FL settings and 
highlights some of the key differences 
between the cross-device and cross-
silo settings, as well as contrasting with 
datacenter distributed learning.

Cross-device FL is now used by 
both Google6 and Apple16 for Android 
and iOS phones, respectively, for 
many applications such as mobile 
keyboard prediction; cross-silo FA is 
being explored for problems such as 
health research (for example, Google 
Health Studiesa).

Cross-silo FL has received consid-
erable attention as well. Health and 
medical applications are a primary mo-
tivation, with significant investments 
from Nvidia, IBM, and Intel, as well as 
numerous startups. Another applica-
tion that is on the rise is finance, with 
investments from WeBank, Credit Su-
isse, Intel, and others.

Algorithms for Cross-Device 
Federated Learning
Modern ML approaches, particularly 
deep learning, are generally data hungry 
and compute-intensive, and so the fea-

a	 https://blog.google/technology/health/google-
health-studies-app/

memorization phenomenon has been 
shown to be a real issue for modern 
deep networks.7,8

Another way to view these principles 
is that data minimization pertains to 
how the computation is executed and 
data is handled, while data anonymiza-
tion pertains to what is computed and 
released.

By design, FL structurally embodies 
data minimization. Figure 1 compares 
the federated approach to more stan-
dard centralized techniques. Criti-
cally, data collection and aggregation 
are inseparable in the federated ap-
proach—purpose-specific transforma-
tions of client data are collected for 
immediate aggregation, with analysts 
having no access to per-client messag-
es. FL and FA are instances of a general 
federated computation schema that 
embodies data-minimization practic-
es. The more typical approach of cen-
tralized processing replaces on-device 
preprocessing and aggregation with 
data collection, with the primary mini-
mization happening on the server dur-
ing the processing of the logged data.

The ML and analytics goals con-
sidered here are compatible with the 
objective of anonymous aggregation. 
With ML, the goal is to train a model 
that predicts accurately for all us-
ers, without overfitting (memorizing) 
the data used for training. Similarly, 
with statistical queries the goal is to 
estimate population statistics, which 
should again not be too significantly 
influenced by any one user’s data.

FL can be combined with other 

techniques (particularly differential 
privacy and privacy/memorization 
auditing, treated in more depth later) 
to ensure released aggregates are suf-
ficiently anonymous. This situation 
contrasts the privacy relationship you 
might have with a bank or healthcare 
provider, where the data anonymiza-
tion principle may not apply since 
direct access by the provider to an 
individual’s sensitive data cannot be 
avoided; in these interactions, trust 
in the provider to use the data only 
for the intended purpose is the funda-
mental tenet.

Federated Learning 
Settings and Applications
As indicated earlier, the defining char-
acteristics of FL include keeping raw 

Figure 1. Data minimization in federated vs. centralized approaches.
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sibility of the federated training of 
production-quality models was far 
from a foregone conclusion. Much of 
our early work, particularly the 2017 
paper, “Communication-efficient 
Learning of Deep Networks from 
Decentralized Data,”13 focused on 
establishing a proof of concept. This 
work introduced the federated aver-
aging algorithm, which continues 
to see widespread use, though many 
variations and improvements have 
since been proposed.

The core idea builds on the classic 
stochastic gradient descent (SGD) al-
gorithm, which is widely used for the 
training of ML models in more tradi-
tional settings. The model is given as 
a function from training examples to 
predictions, parameterized by a vec-
tor of model weights, and a loss func-
tion that measures the error between 
the prediction and the true output 
(label). SGD proceeds by sampling a 
batch of training examples (typically 
from tens to thousands), comput-
ing the average gradient of the loss 
function with respect to the model 
weights, and then adjusting the mod-
el weights in the opposite direction of 
the gradient. By appropriately tuning 
the size of the steps taken on each it-
eration, SGD can be shown to have de-
sirable convergence properties, even 
for nonconvex functions.

The simplest extension of SGD 
to the federated setting would be to 
broadcast the current model weights 
to a random set of clients, have 
them each compute the gradient of 
the loss on their local data, average 
these gradients across clients at the 

server, and then update the global 
model weights. SGD, however, of-
ten requires 105 or more iterations 
to produce a high-accuracy model. 
Back-of-the-envelope calculations 
suggest a single iteration might take 
minutes in the federated setting, im-
plying federated training might take 
between a month and a year—outside 
the realm of practicality.

The key idea of federated averaging 
is intuitive: Decrease communication 
and startup costs by taking multiple 
steps of SGD locally on each device, and 
then average the resulting models (or 
model updates) less frequently. If mod-
els are averaged after each local step, 
this reduces to SGD (and is probably 
too slow); if models are averaged too 
infrequently, they might diverge, and 
averaging could produce a worse mod-
el. Is there a sweet spot in between? 
Empirically, the 2017 paper13 showed 
the answer is yes, demonstrating that 
moderate-sized language models (for 
example, for next-word prediction) 
and image-classification models could 
be trained in fewer than 1,000 com-
munication rounds. This reduces the 
expected training time to a few days—
still much slower than would be possi-
ble with a high-performance compute 
cluster on centralized data, but within 
the realm of feasibility for real-world 
production use.

This algorithm also demonstrates 
the key privacy point mentioned ear-
lier—that model training can be re-
duced to the (repeated) application of 
a federated aggregation (the averaging 
of model gradients or updates), as in 
Figure 1.

Workflows and Systems for  
Cross-Device Federated Learning
Having a feasible algorithm for FL is 
a necessary starting point but making 
cross-device FL a productive approach 
for ML-driven product teams requires 
much more. Based on Google’s ex-
perience deploying cross-device FL 
across multiple Google products, the 
typical workflow often includes the 
following steps:

1.	 Identifying a problem well-suited 
for FL. Typically this means a mod-
erately sized (1MB–50MB) on-device 
model is desired; training data poten-
tially available on-device is richer or 
more representative than data avail-
able in the datacenter; there are pri-
vacy or other reasons to prefer not to 
centralize the data; and the feedback 
signals (labels) necessary to train the 
model are readily available on-device 
(for example, a model for next-word 
prediction can naturally be trained 
based on what users type if they ignore 
predicted next words; an image-classi-
fication model would more difficult to 
train unless interaction with the app 
naturally led to labeled images).

2.	 Model development and evalua-
tion. As with any ML task, choosing the 
right model architecture and hyperpa-
rameters (learning rates, batch sizes, 
regularization) is critical to success in 
FL. The challenge can be bigger in the 
federated setting, which introduces a 
number of new hyperparameters (for 
example, number of clients partici-
pating in each round, how many local 
steps to take before averaging). Often 
the starting point is to do coarse model 
selection and tuning using a simulation 

Typical FL settings and of traditional distributed learning.

Datacenter Distributed Learning Cross-Silo Federated Learning Cross-Device Federated Learning

Setting Training a model on a large but “flat” 
dataset. Clients are compute nodes  
in a single cluster or datacenter.

Training a model on siloed data.  
Clients are different organizations  
(for example, medical or financial) or 
datacenters in different geographical regions.

The clients are a very large number of mobile  
or IoT devices.

Data distribution Data is centrally stored, so it can  
be shuffled and balanced across  
clients. Any client can read any  
part of the dataset.

Data is generated locally and remains decentralized. Each client stores  
its own data and cannot read the data of other clients. Data is not independently  
or identically distributed.

Orchestration Centrally orchestrated. A central orchestration server/service organizes the training, but never sees raw data.

Distribution scale Typically 1—1,000 clients. Typically 2—100 clients. Up to 1010 clients.

Client properties Clients are reliable and almost always available to participate  
in computations. Clients may be directly addressed, and can maintain  
state across computation rounds.

Clients are often unavailable and can  
only be accessed by random sampling from 
available devices. For large populations  
a single client will typically only participate 
once in a given computation.
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interacting with the system can access 
only aggregated data. The fundamen-
tal role of aggregates in the federated 
approach makes it natural to limit the 
influence of any individual client on 
the output, but algorithms need to be 
carefully designed if the goal is to pro-
vide more formal guarantees such as 
differential privacy.

Researchers at Google and beyond 
are strengthening the privacy guaran-
tees that an FL system can make. While 
the basic FL approach has proven fea-
sible and gained substantial adoption, 
its combination with other techniques 
described in this section is still far 
from “on by default for most uses of 
FL.” Even as the state-of-the-art ad-
vances, inherent tensions with other 
objectives (including fairness, accu-
racy, development velocity, and com-
putational cost) will likely prevent a 
one-size-fits-all approach to data mini-
mization and anonymization. Thus, 
practitioners benefit from continued 
advancement of research ideas and 
software implementations for com-
posable privacy enhancing techniques. 
Ultimately, decisions about privacy 
technology deployment are made by 
product or service teams in consulta-
tion with domain-specific privacy, pol-
icy, and legal experts. Our obligation 
as privacy technologists is twofold: to 
enable products to offer more privacy 
through usable FL systems and, per-
haps more importantly, to help policy 
experts strengthen privacy definitions 
and requirements over time.

In analyzing the privacy proper-
ties of a federated system, it is useful 
to consider access points and threat 
models. Building on Figure 2, one can 
ask what private information an ac-
tor might learn with access to various 
parts of the system. With access to the 
physical device or network? With root 
or physical access to the servers provid-
ing the FL service? To the models and 
metrics released to the ML engineer? 
To the final deployed model?

The number of potentially mali-
cious parties varies dramatically as in-
formation flows through this system. 
A very small number of parties should 
have physical or root access to the coor-
dinating server, for example, but nearly 
anyone might be able to access the fi-
nal model shipped out to a large fleet 
of smartphones.

of FL based on proxy data available in 
the datacenter. Final tuning and evalu-
ation must be conducted using feder-
ated training on real devices, however, 
as the differences in data distribution, 
real-world device fleet characteristics, 
and many other factors are impossible 
to capture fully in simulation. Evalua-
tion must also be conducted in a fed-
erated manner: Independent from the 
training process, the candidate global 
model is sent to (held-out) devices so 
that accuracy metrics can be computed 
on these devices’ local datasets and ag-
gregated by the server (both simple av-
erages and histograms over per-client 
performance are important). Taken to-
gether, these needs give rise to two key 
infrastructure requirements: providing 
high-performance FL simulation infra-
structure that allows a smooth transi-
tion to running on real devices; and a 
cross-device infrastructure that makes 
it easy to manage multiple simultane-
ous training and evaluation tasks.

3.	 Deployment. Once a high-quality 
candidate model is selected in step 2, 
the deployment of that model (for ex-
ample, making user-visible next-word 
predictions in a mobile keyboard) typi-
cally follows the same procedures that 
are used for a datacenter-trained mod-
el: additional validation and testing 
(potentially including manual quality 
assurance), live A/B testing to compare 
to the previous production model, and 
a staged rollout to the full device fleet 
(potentially several orders of magni-

tude more devices than actually par-
ticipated in the training of the model).

It is worth emphasizing that all the 
work in step 2 has no impact on the 
user experience of the devices par-
ticipating in training and evaluation; 
models being trained with FL don’t 
make predictions visible to the user 
unless they go through the deployment 
step. Ensuring that this processing 
doesn’t otherwise negatively impact 
the device is a key infrastructure chal-
lenge. For example, heavyweight com-
putation might execute only when the 
devices are idle, plugged in, and on an 
unmetered Wi-Fi network.

Figure 2 illustrates the model devel-
opment and deployment workflows. 
Building a scalable infrastructure and 
compelling developer APIs for these 
workflows is a significant challenge. A 
paper by Bonawitz et al.6 provides an 
overview of Google’s production sys-
tem as of 2019.

Privacy for Federated Computations
FL provides a variety of privacy advan-
tages out of the box. In the spirit of 
data minimization, the raw data stays 
on the device, and updates sent to the 
server are focused on a particular pur-
pose, ephemeral, and aggregated as 
soon as possible. No non-aggregated 
data is persisted on the server, end-to-
end encryption protects data in transit, 
and both the decryption keys and de-
crypted values are held only ephemer-
ally in RAM. ML engineers and analysts 

Figure 2. Components and phases of a cross-device FL system.
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Privacy claims must therefore be 
assessed for a complete end-to-end 
system. A guarantee the final deployed 
model has not memorized user data 
may not matter if suitable security 
precautions are not taken to protect 
the raw data on the device or an inter-
mediate computation state in transit. 
Other techniques can provide even 
stronger guarantees.

Figure 3 shows threat models for 
an end-to-end FL system and the role 
of data minimization and anonymous 
aggregation. Data minimization ad-
dresses potential threats to the device, 
network, and server by, for example, 
improving security and minimizing 
the retention of data and intermedi-
ate results. When models and metrics 
are released to the model engineer or 
deployed to production, anonymous 
aggregation protects individuals’ data 
from parties with access to these re-
leased outputs.

Data Minimization for Aggregation
At several points in a federated compu-
tation, the participants expect one an-
other to take the appropriate actions, 
and only those actions. For example, 
the server expects the clients to execute 
their preprocessing step accurately; 
the clients expect the server to keep 
their individual updates a secret until 
they have been aggregated; both the 
clients and the server expect that nei-
ther the data analyst nor the deployed 
ML model user will be able to extract 
an individual’s data; and so on.

Privacy-preserving technologies 
support the structural enforcement of 
these interparty expectations, prevent-
ing participants from deviating even if 
they happen to be malicious or com-
promised. In fact, FL systems can be 
viewed as a kind of privacy-preserving 
technology in themselves, structurally 
preventing the server from accessing 
anything about a client’s data that was 
not included in the update submitted 
by that client.

Take, for example, the aggrega-
tion phase of FL. An idealized system 
might imagine a completely trusted 
third party who aggregates the clients’ 
updates and reveals only the final ag-
gregate to the server. In reality, no 
such mutually trusted third party typi-
cally exists to play this role, but vari-
ous technologies allow an FL system 

to simulate such a third party under a 
wide range of conditions.

For example, a server could run the 
aggregation procedure within a secure 
enclave—a specially constructed piece 
of hardware that can not only prove to 
the clients what code it is running, but 
also ensure no one (not even the hard-
ware’s owner) can observe or tamper 
with the execution of that code. Cur-
rently, however, the availability of se-
cure enclaves is limited, both in the 
cloud and on consumer devices, and 
available enclaves may implement only 
some of the desired enclave properties 
(secure measurement, confidentiality, 
and integrity19). Moreover, even when 
available and full-featured, secure en-
claves may come with additional limi-
tations, including very limited memory 
or speed; vulnerability to data exposure 
via side channels (for example, cache-
timing attacks); difficult-to-verify cor-
rectness (because of proprietary imple-
mentation details); dependence on 
manufacturer-provided attestation ser-
vices (and key secrecy); and so on.

Distributed cryptographic protocols 
for secure multiparty computation can 
be used collaboratively to simulate a 
trusted third party without the need for 
specialized hardware, so long as a suf-
ficiently large number of the partici-
pants behave honestly. While secure 
multiparty computation for arbitrary 
functions remains computationally 
prohibitive in most cases, specialized 
secure aggregation algorithms for vec-

tor summation in the federated setting 
have been developed that provably pre-
serve privacy even against an adversary 
that observes the server and controls a 
significant fraction of the clients, while 
maintaining robustness against cli-
ents dropping out of the computation.5 
Such algorithms are both:

	˲ Communication efficient - O(log n + ) 
communication per client, where n is 
the number of users and  is the vec-
tor length, with small constants yield-
ing less than twice the communication 
of aggregation in the clear for a wide 
range of practical settings; and

	˲ Computation efficient - O(log2 n +  
log n) computation per client.3

Cryptographic secure aggregation 
protocols have been deployed in com-
mercial federated computing systems 
for years.6,17

Beyond private aggregation, privacy-
preserving technologies can be used 
to secure other parts of an FL system. 
For example, either secure enclaves 
or cryptographic techniques (for ex-
ample, zero-knowledge proofs) can 
ensure that the server can trust that cli-
ents have preprocessed faithfully. Even 
the model broadcast stage can benefit: 
For many learning tasks, an individual 
client may have data relevant to only a 
small portion of the model; in this case, 
the client can privately retrieve just 
that segment of the model for train-
ing, again using either secure enclaves 
or cryptographic techniques (for ex-
ample, private information retrieval) to 

Figure 3. Threat models for a FL system.
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plaintext) to the server. Under distrib-
uted DP, clients first compute minimal 
application-specific reports, perturb 
these slightly with random noise, and 
then execute a private aggregation pro-
tocol. The server then has access only 
to the output of the private aggrega-
tion protocol. The noise added by in-
dividual clients is typically insufficient 
for a meaningful local DP guarantee 
on its own. After private aggregation, 
however, the output of the private ag-
gregation protocol provides a stronger 
DP guarantee based on the total sum 
of noise added across all clients. This 
applies even to someone with access to 
the server under the security assump-
tions necessary for the private aggrega-
tion protocol.

For an algorithm to provide a for-
mal user-level DP guarantee, it must 
not only bound the sensitivity of the 
model to each user’s data, but also add 
noise proportional to that sensitivity. 
While the addition of sufficient ran-
dom noise is required to ensure a small 
enough ε for the DP definition itself to 
offer a strong guarantee, empirically it 
has been observed that limiting sensi-
tivity even with small amounts of noise 
(or no noise at all) can significantly re-
duce memorization.18 This gap is to be 
expected, as DP assumes a “worst-case 
adversary’’ with infinite computation 
and access to arbitrary side informa-
tion. These assumptions are often un-
realistic in practice. Thus, there are 
substantial advantages to training us-
ing a DP algorithm that limits each us-
er’s influence, even if the explicit ran-
dom noise introduced into the training 
process is not enough to ensure a small 
ε formally. Nevertheless, designing 
practical FL and FA algorithms that 
achieve small ε guarantees is an impor-
tant area of ongoing research.

Model auditing techniques can be 
used to further quantify the advan-
tages of training with DP.7,8,18 These 
techniques are empirical in nature and 
can be applied during or after train-
ing. They broadly include techniques 
that quantify how much a model over-
learns (or memorizes) unique or rare 
training examples, and techniques 
that quantify to what extent it is pos-
sible to infer whether or not a user’s 
examples were used during training. 
These auditing techniques are useful 
even when a large ε is used, as they can 

ensure the server learns nothing about 
the segment of the model for which the 
client has relevant training data.

Computing and Verifying 
Anonymous Aggregates
While secure enclaves and private ag-
gregation techniques can strengthen 
data minimization, they are not de-
signed specifically to produce anony-
mous aggregates—for example, limit-
ing the influence of a user on the model 
being trained. Indeed, a growing body 
of research suggests that the learned 
model can (in some cases) leak sensi-
tive information.8

The gold-standard approach to data 
anonymization is differential privacy 
(DP).9 For a generic procedure that 
aggregates records in a database, DP 
requires bounding any record’s con-
tribution to the aggregate and then 
adding an appropriately scaled ran-
dom perturbation. For example, in DP-
SGD (differentially private stochastic 
gradient descent) you clip the 2 norm 
of the gradients, aggregate the clipped 
gradients, and add Gaussian noise in 
each training round.1

Differentially private algorithms are 
necessarily randomized, and hence 
you can consider the distribution of 
models produced by an algorithm on a 
particular dataset. Intuitively, differen-
tial privacy says this distribution over 
models is similar when the algorithm 
is run on input datasets that differ by 
a single record. Formally, DP is quan-
tified by privacy loss parameters (ε, δ), 
where a smaller (ε, δ) pair corresponds 
to increased privacy. A randomized al-
gorithm A is (ε, δ)-differentially private 
if for all possible outputs (for example, 
models) m, and for all datasets D and D′ 
that differ in, at most, one record:

P(A(D) = m) ≤ eε  P (A (D′) = m) + δ.

This goes beyond simply bounding 
the sensitivity of the model to each re-
cord by adding noise proportional to 
any record’s influence, therefore ensur-
ing sufficient randomness to mask any 
one record’s contribution to the output.

In the context of cross-device FL, a 
record is defined as all the training ex-
amples of a single user/client.14 This no-
tion of DP is referred to as user-level DP 
and is stronger than example-level DP, 
where a record corresponds to a single 

training example, because in general 
one user may contribute many training 
examples. Even in centralized settings, 
FL algorithms are well suited for train-
ing with user-level DP guarantees, be-
cause they compute a single update to 
the model from all of a user’s data, mak-
ing it much easier to bound each user’s 
total influence on the model update 
(and hence on the final model).

Providing formal (ε, δ) guarantees in 
the context of cross-device FL systems 
can be particularly challenging be-
cause the set of all eligible users is dy-
namic and not known in advance, and 
the participating users may drop out at 
any point in the protocol. While the re-
cent work of Balle et al.2 suggests these 
challenges can be overcome in theory, 
building an end-to-end protocol that 
works in production FL systems is still 
an important problem to solve.

In the context of cross-silo FL, the 
unit of privacy can take on a different 
meaning. For example, it is possible to 
define a record as all the examples on a 
data silo if the participating institutions 
want to ensure an adversary who has 
access to the model iterations or to the 
final model cannot determine whether 
or not a particular institution’s dataset 
was used in the training of that model. 
User-level DP can still be meaningful in 
cross-silo settings where each silo holds 
data for multiple users. Enforcing user-
level privacy, however, may be more 
challenging if multiple institutions 
have records from the same user.

Over the past decade, an extensive 
set of techniques has been developed 
for differentially private data analysis, 
particularly for the central or trusted-
aggregator setting, where the raw (or 
minimized) data is collected by a trust-
ed service provider that implements the 
DP algorithm. More recently, there has 
been great interest in the local model 
of DP,12 where the data is perturbed on 
the client side before it is collected by 
a service provider. Local DP avoids the 
need for a fully trusted aggregator, but 
it is now well established that local DP 
leads to a steep hit in accuracy.

To recover the utility of central DP 
without having to rely on a fully trust-
ed central server, an emerging set of 
approaches, often referred to as dis-
tributed DP, can be used.4,11 The goal 
is to render the output differentially 
private before it becomes visible (in 
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quantify the gap between DP’s worst-
case adversaries and realistic ones 
with limited computational power and 
side information. They can also serve 
as a complementary technology for 
pressure-testing DP implementations: 
unlike the formal mathematical state-
ments of DP, these auditing techniques 
are applied to complete end-to-end 
systems, potentially catching software 
bugs or mis-chosen parameters.

Federated Analytics
The focus of this article so far has pri-
marily been on FL. Beyond learning 
ML models, data analysts are often in-
terested in applying data science meth-
ods to the analysis of raw data that is 
stored locally on users’ devices. For 
example, analysts may be interested 
in learning aggregate model metrics, 
popular trends and activities, or geo-
spatial location heatmaps. All of this 
can be done using FA.17 Similar to FL, 
FA works by running local computa-
tions over each device’s data and mak-
ing only the aggregated results avail-
able to product engineers. Unlike FL, 
however, FA aims to support basic data 
science needs, such as counts, aver-
ages, histograms, quantiles, and other 
SQL-like queries.

Consider an application where an 
analyst wants to use FA to learn the 10 
most frequently played songs in a mu-
sic library shared by many users. The 
same federated and privacy techniques 
described previously can be used to 
perform this task. For example, clients 
can encode which songs they have lis-
tened to into a binary vector of length 
equal to the size of the library and use 
distributed DP to ensure that the server 
sees only a differentially private sum of 
these vectors, giving a DP histogram of 
how many users have played each song. 
As this example illustrates, however, FA 
tasks can differ from FL ones in several 
ways:

1.	 FA algorithms are often noninter-
active and involve rounds with a large 
number of clients. In other words, un-
like FL applications, there are no di-
minishing returns from having more 
clients in a round. Therefore, applying 
DP is less challenging in FA since each 
round can contain a large number of 
clients, and fewer rounds are needed.

2.	 There is no need for the same 
clients to participate again in later 

rounds. In fact, clients that participate 
again may bias the results of the algo-
rithm. Therefore, an FA task is best 
served by an infrastructure that limits 
the number of times any individual can 
participate.

3.	 FA tasks are typically sparse, mak-
ing efficient private sparse aggregation a 
particularly important topic; many open 
research questions exist in this space.

It is worth noting that while limiting 
client participation and sparse aggre-
gation are particularly relevant to FA, 
they have applications for FL problems 
as well.

Conclusion
We are optimistic that FL will continue 
to expand, both as a research field and 
as a set of practical tools and software 
systems that allow application by more 
people to more types of data and prob-
lem domains.

For those interested in learning 
more about active research directions, 
the recently updated Advances and 
Open Problems in Federated Learning 
provides a broad survey, with cover-
age of important topics not covered in 
this article, including personalization, 
robustness, fairness, and systems chal-
lenges.10 If you are interested in a more 
hands-on introduction to FL, such as 
trying out algorithms in a simulation 
environment on either your own data 
or standard datasets, the TensorFlow 
Federated tutorialsb are a great place to 
start—they can be executed and modi-
fied on the fly in the browser using 
Google Colab.
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