
90 COMMUNICATIONS OF THE ACM | APRIL 2022 | VOL. 65 | NO. 4

practice
DOI:10.1145/3500240

	� Article development led by
queue.acm.org

Building privacy-preserving systems
for machine learning and data science
on decentralized data.

BY KALLISTA BONAWITZ, PETER KAIROUZ,
BRENDAN MCMAHAN, AND DANIEL RAMAGE

M ACHINE LEARNING AND data science are key tools
in science, public policy, and the design of products
and services thanks to the increasing affordability of
collecting, storing, and processing large quantities of
data. But centralized collection can expose individuals
to privacy risks and organizations to legal risks if data
is not properly managed. Starting with early work in
2016,13,15 an expanding community of researchers has
explored how data ownership and provenance can be
made first-class concepts in systems for learning and
analytics in areas now known as federated learning (FL)
and federated analytics (FA).

With this expanding community, interest has
broadened from the initial work on federations of
mobile devices to include FL across organizational silos,
Internet of Things (IoT) devices, and more. In light of
this, Kairouz et al.10 proposed a broader definition:

Federated learning is a machine
learning setting where multiple entities
(clients) collaborate in solving a machine
learning problem, under the coordina-
tion of a central server or service pro-
vider. Each client’s raw data is stored
locally and not exchanged or transferred;
instead, focused updates intended for im-
mediate aggregation are used to achieve
the learning objective.

An approach very similar in both
philosophy and implementation, fed-
erated analytics17 can be taken to allow
data scientists to generate analytical
insight from the combined informa-
tion in decentralized datasets. While
the focus here is on FL, much of the
discussion on technology and privacy
applies equally well to FA use cases.

This article provides a brief intro-
duction to key concepts in federated
learning and analytics with an empha-
sis on how privacy technologies may be
combined in real-world systems and
how their use charts a path toward so-
cietal benefit from aggregate statistics
in new domains and with minimized
risk to individuals and to the organiza-
tions who are custodians of the data.

Privacy Principles for
Learning and Analytics
To ground a more detailed discussion
of FL, let’s begin by clarifying the rel-
evant notions of privacy. Privacy is
an inherently multifaceted concept,
even when restricted to the realm of
the products and services offered by
a technology company, which is the
focus here. Three key components of
privacy are highlighted in this con-
text: transparency and consent; data
minimization; and anonymization of
released aggregates.

Transparency and consent are
foundational to privacy: they are how
users of the product/service both un-
derstand and approve of the ways in
which their data will be used. Privacy
technology cannot replace transparen-
cy and consent, but data-stewardship
approaches based on strong privacy
technologies make it easier for all par-
ties involved to reason about which

Federated
Learning
and Privacy

http://dx.doi.org/10.1145/3500240
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3500240&domain=pdf&date_stamp=2022-03-19

APRIL 2022 | VOL. 65 | NO. 4 | COMMUNICATIONS OF THE ACM 91

I
M

A
G

E
 B

Y
 V

L
A

D
G

R
I

N

types of data usage might be possible
(and which are ruled out by design),
thereby enabling clearer privacy state-
ments that are simpler to understand,
verify, and enforce.

The role of privacy technology be-
comes clearer when considering spe-
cific goals that can be advanced by
computation on privacy-sensitive user
data; for example, improving a mobile
keyboard’s suggestions based on user
input to the virtual keyboard. How can
the keyboard be improved in as mini-
mally invasive a manner as possible?

The computation goals are primar-
ily the training of machine learning
(ML) models (FL) and the calculation
of metrics or other aggregate statistics
on user data (FA). As we will see, both
analytics and machine learning can be
accomplished via appropriately cho-

sen aggregations over (possibly pre-
processed) user data. In this context,
specializations of two broad privacy
principles apply:

The principle of data minimization,
as applied to aggregations, includes
the objective to collect only the data
needed for the specific computation
(focused collection), to limit access to
data at all stages, to process individu-
als’ data as early as possible (early ag-
gregation), and to discard both col-
lected and processed data as soon as
possible (minimal retention). That is,
data minimization implies restrict-
ing access to all data to the smallest
set of people possible, often accom-
plished via security mechanisms, such
as encryption at rest and on the wire,
access-control lists, and more nascent
technologies such as secure multiparty

computation and trusted execution
environments, to be discussed later.

The principle of data anonymization
captures the objective that the final
released output of the computation
does not reveal anything unique to
an individual. When this principle is
specialized to anonymous aggregation,
the goal is that data contributed by any
individual user to the computation has
only a small (limited, measured, and/
or mitigated) influence on the final ag-
gregate output. For example, aggregate
statistics, including model parame-
ters, when released to an engineer—or
beyond—should not vary significantly
based on whether any particular us-
er’s data was included in the aggrega-
tion. The XKCD comic shown here il-
lustrates a humorous example where
this principle is not respected, but this

92 COMMUNICATIONS OF THE ACM | APRIL 2022 | VOL. 65 | NO. 4

practice

data decentralized and learning via
aggregation. This assumption of lo-
cally generated data—often heteroge-
neous in distribution and quantity—
distinguishes FL from more typical
datacenter-based distributed learning
settings, where data can be arbitrarily
distributed and shuffled, and any
worker node in the computation can
access any of the data.

The role of a central orchestrator is
practically useful and often necessary,
as in the case of mobile devices that
lack fixed IP addresses and require a
central server to mediate device-to-
device communication. It further con-
strains the space of relevant algorithms
and helps to distinguish FL from more
general forms of decentralized learn-
ing, including peer-to-peer approaches.

From the basic definition, two FL set-
tings have received particular attention:

	˲ Cross-device FL, where the clients are
large numbers of mobile or IoT devices.

	˲ Cross-silo FL, where the clients are
a typically smaller number of organiza-
tions, institutions, or other data silos.

The accompanying table, adapted
from Kairouz et al.,10 summarizes the
key characteristics of the FL settings and
highlights some of the key differences
between the cross-device and cross-
silo settings, as well as contrasting with
datacenter distributed learning.

Cross-device FL is now used by
both Google6 and Apple16 for Android
and iOS phones, respectively, for
many applications such as mobile
keyboard prediction; cross-silo FA is
being explored for problems such as
health research (for example, Google
Health Studiesa).

Cross-silo FL has received consid-
erable attention as well. Health and
medical applications are a primary mo-
tivation, with significant investments
from Nvidia, IBM, and Intel, as well as
numerous startups. Another applica-
tion that is on the rise is finance, with
investments from WeBank, Credit Su-
isse, Intel, and others.

Algorithms for Cross-Device
Federated Learning
Modern ML approaches, particularly
deep learning, are generally data hungry
and compute-intensive, and so the fea-

a	 https://blog.google/technology/health/google-
health-studies-app/

memorization phenomenon has been
shown to be a real issue for modern
deep networks.7,8

Another way to view these principles
is that data minimization pertains to
how the computation is executed and
data is handled, while data anonymiza-
tion pertains to what is computed and
released.

By design, FL structurally embodies
data minimization. Figure 1 compares
the federated approach to more stan-
dard centralized techniques. Criti-
cally, data collection and aggregation
are inseparable in the federated ap-
proach—purpose-specific transforma-
tions of client data are collected for
immediate aggregation, with analysts
having no access to per-client messag-
es. FL and FA are instances of a general
federated computation schema that
embodies data-minimization practic-
es. The more typical approach of cen-
tralized processing replaces on-device
preprocessing and aggregation with
data collection, with the primary mini-
mization happening on the server dur-
ing the processing of the logged data.

The ML and analytics goals con-
sidered here are compatible with the
objective of anonymous aggregation.
With ML, the goal is to train a model
that predicts accurately for all us-
ers, without overfitting (memorizing)
the data used for training. Similarly,
with statistical queries the goal is to
estimate population statistics, which
should again not be too significantly
influenced by any one user’s data.

FL can be combined with other

techniques (particularly differential
privacy and privacy/memorization
auditing, treated in more depth later)
to ensure released aggregates are suf-
ficiently anonymous. This situation
contrasts the privacy relationship you
might have with a bank or healthcare
provider, where the data anonymiza-
tion principle may not apply since
direct access by the provider to an
individual’s sensitive data cannot be
avoided; in these interactions, trust
in the provider to use the data only
for the intended purpose is the funda-
mental tenet.

Federated Learning
Settings and Applications
As indicated earlier, the defining char-
acteristics of FL include keeping raw

Figure 1. Data minimization in federated vs. centralized approaches.

Preprocessing

Aggregation
Aggregate
Processing

Centralized
Federated

Preprocessing

At Client Device/Silo Clients + Server Server

Preprocessing

Preprocessing

APRIL 2022 | VOL. 65 | NO. 4 | COMMUNICATIONS OF THE ACM 93

practice

sibility of the federated training of
production-quality models was far
from a foregone conclusion. Much of
our early work, particularly the 2017
paper, “Communication-efficient
Learning of Deep Networks from
Decentralized Data,”13 focused on
establishing a proof of concept. This
work introduced the federated aver-
aging algorithm, which continues
to see widespread use, though many
variations and improvements have
since been proposed.

The core idea builds on the classic
stochastic gradient descent (SGD) al-
gorithm, which is widely used for the
training of ML models in more tradi-
tional settings. The model is given as
a function from training examples to
predictions, parameterized by a vec-
tor of model weights, and a loss func-
tion that measures the error between
the prediction and the true output
(label). SGD proceeds by sampling a
batch of training examples (typically
from tens to thousands), comput-
ing the average gradient of the loss
function with respect to the model
weights, and then adjusting the mod-
el weights in the opposite direction of
the gradient. By appropriately tuning
the size of the steps taken on each it-
eration, SGD can be shown to have de-
sirable convergence properties, even
for nonconvex functions.

The simplest extension of SGD
to the federated setting would be to
broadcast the current model weights
to a random set of clients, have
them each compute the gradient of
the loss on their local data, average
these gradients across clients at the

server, and then update the global
model weights. SGD, however, of-
ten requires 105 or more iterations
to produce a high-accuracy model.
Back-of-the-envelope calculations
suggest a single iteration might take
minutes in the federated setting, im-
plying federated training might take
between a month and a year—outside
the realm of practicality.

The key idea of federated averaging
is intuitive: Decrease communication
and startup costs by taking multiple
steps of SGD locally on each device, and
then average the resulting models (or
model updates) less frequently. If mod-
els are averaged after each local step,
this reduces to SGD (and is probably
too slow); if models are averaged too
infrequently, they might diverge, and
averaging could produce a worse mod-
el. Is there a sweet spot in between?
Empirically, the 2017 paper13 showed
the answer is yes, demonstrating that
moderate-sized language models (for
example, for next-word prediction)
and image-classification models could
be trained in fewer than 1,000 com-
munication rounds. This reduces the
expected training time to a few days—
still much slower than would be possi-
ble with a high-performance compute
cluster on centralized data, but within
the realm of feasibility for real-world
production use.

This algorithm also demonstrates
the key privacy point mentioned ear-
lier—that model training can be re-
duced to the (repeated) application of
a federated aggregation (the averaging
of model gradients or updates), as in
Figure 1.

Workflows and Systems for
Cross-Device Federated Learning
Having a feasible algorithm for FL is
a necessary starting point but making
cross-device FL a productive approach
for ML-driven product teams requires
much more. Based on Google’s ex-
perience deploying cross-device FL
across multiple Google products, the
typical workflow often includes the
following steps:

1.	 Identifying a problem well-suited
for FL. Typically this means a mod-
erately sized (1MB–50MB) on-device
model is desired; training data poten-
tially available on-device is richer or
more representative than data avail-
able in the datacenter; there are pri-
vacy or other reasons to prefer not to
centralize the data; and the feedback
signals (labels) necessary to train the
model are readily available on-device
(for example, a model for next-word
prediction can naturally be trained
based on what users type if they ignore
predicted next words; an image-classi-
fication model would more difficult to
train unless interaction with the app
naturally led to labeled images).

2.	 Model development and evalua-
tion. As with any ML task, choosing the
right model architecture and hyperpa-
rameters (learning rates, batch sizes,
regularization) is critical to success in
FL. The challenge can be bigger in the
federated setting, which introduces a
number of new hyperparameters (for
example, number of clients partici-
pating in each round, how many local
steps to take before averaging). Often
the starting point is to do coarse model
selection and tuning using a simulation

Typical FL settings and of traditional distributed learning.

Datacenter Distributed Learning Cross-Silo Federated Learning Cross-Device Federated Learning

Setting Training a model on a large but “flat”
dataset. Clients are compute nodes
in a single cluster or datacenter.

Training a model on siloed data.
Clients are different organizations
(for example, medical or financial) or
datacenters in different geographical regions.

The clients are a very large number of mobile
or IoT devices.

Data distribution Data is centrally stored, so it can
be shuffled and balanced across
clients. Any client can read any
part of the dataset.

Data is generated locally and remains decentralized. Each client stores
its own data and cannot read the data of other clients. Data is not independently
or identically distributed.

Orchestration Centrally orchestrated. A central orchestration server/service organizes the training, but never sees raw data.

Distribution scale Typically 1—1,000 clients. Typically 2—100 clients. Up to 1010 clients.

Client properties Clients are reliable and almost always available to participate
in computations. Clients may be directly addressed, and can maintain
state across computation rounds.

Clients are often unavailable and can
only be accessed by random sampling from
available devices. For large populations
a single client will typically only participate
once in a given computation.

94 COMMUNICATIONS OF THE ACM | APRIL 2022 | VOL. 65 | NO. 4

practice

interacting with the system can access
only aggregated data. The fundamen-
tal role of aggregates in the federated
approach makes it natural to limit the
influence of any individual client on
the output, but algorithms need to be
carefully designed if the goal is to pro-
vide more formal guarantees such as
differential privacy.

Researchers at Google and beyond
are strengthening the privacy guaran-
tees that an FL system can make. While
the basic FL approach has proven fea-
sible and gained substantial adoption,
its combination with other techniques
described in this section is still far
from “on by default for most uses of
FL.” Even as the state-of-the-art ad-
vances, inherent tensions with other
objectives (including fairness, accu-
racy, development velocity, and com-
putational cost) will likely prevent a
one-size-fits-all approach to data mini-
mization and anonymization. Thus,
practitioners benefit from continued
advancement of research ideas and
software implementations for com-
posable privacy enhancing techniques.
Ultimately, decisions about privacy
technology deployment are made by
product or service teams in consulta-
tion with domain-specific privacy, pol-
icy, and legal experts. Our obligation
as privacy technologists is twofold: to
enable products to offer more privacy
through usable FL systems and, per-
haps more importantly, to help policy
experts strengthen privacy definitions
and requirements over time.

In analyzing the privacy proper-
ties of a federated system, it is useful
to consider access points and threat
models. Building on Figure 2, one can
ask what private information an ac-
tor might learn with access to various
parts of the system. With access to the
physical device or network? With root
or physical access to the servers provid-
ing the FL service? To the models and
metrics released to the ML engineer?
To the final deployed model?

The number of potentially mali-
cious parties varies dramatically as in-
formation flows through this system.
A very small number of parties should
have physical or root access to the coor-
dinating server, for example, but nearly
anyone might be able to access the fi-
nal model shipped out to a large fleet
of smartphones.

of FL based on proxy data available in
the datacenter. Final tuning and evalu-
ation must be conducted using feder-
ated training on real devices, however,
as the differences in data distribution,
real-world device fleet characteristics,
and many other factors are impossible
to capture fully in simulation. Evalua-
tion must also be conducted in a fed-
erated manner: Independent from the
training process, the candidate global
model is sent to (held-out) devices so
that accuracy metrics can be computed
on these devices’ local datasets and ag-
gregated by the server (both simple av-
erages and histograms over per-client
performance are important). Taken to-
gether, these needs give rise to two key
infrastructure requirements: providing
high-performance FL simulation infra-
structure that allows a smooth transi-
tion to running on real devices; and a
cross-device infrastructure that makes
it easy to manage multiple simultane-
ous training and evaluation tasks.

3.	 Deployment. Once a high-quality
candidate model is selected in step 2,
the deployment of that model (for ex-
ample, making user-visible next-word
predictions in a mobile keyboard) typi-
cally follows the same procedures that
are used for a datacenter-trained mod-
el: additional validation and testing
(potentially including manual quality
assurance), live A/B testing to compare
to the previous production model, and
a staged rollout to the full device fleet
(potentially several orders of magni-

tude more devices than actually par-
ticipated in the training of the model).

It is worth emphasizing that all the
work in step 2 has no impact on the
user experience of the devices par-
ticipating in training and evaluation;
models being trained with FL don’t
make predictions visible to the user
unless they go through the deployment
step. Ensuring that this processing
doesn’t otherwise negatively impact
the device is a key infrastructure chal-
lenge. For example, heavyweight com-
putation might execute only when the
devices are idle, plugged in, and on an
unmetered Wi-Fi network.

Figure 2 illustrates the model devel-
opment and deployment workflows.
Building a scalable infrastructure and
compelling developer APIs for these
workflows is a significant challenge. A
paper by Bonawitz et al.6 provides an
overview of Google’s production sys-
tem as of 2019.

Privacy for Federated Computations
FL provides a variety of privacy advan-
tages out of the box. In the spirit of
data minimization, the raw data stays
on the device, and updates sent to the
server are focused on a particular pur-
pose, ephemeral, and aggregated as
soon as possible. No non-aggregated
data is persisted on the server, end-to-
end encryption protects data in transit,
and both the decryption keys and de-
crypted values are held only ephemer-
ally in RAM. ML engineers and analysts

Figure 2. Components and phases of a cross-device FL system.

Client Devices
for example, 100 randomly

selected each round
from a population

of 107

Federated
Training

for example, 1000 rounds
to train a model

Model Development
for example, train 10s

of models to tune
architecture and
hyperparameters

Model
Deployment

for example, choose
best model with
federated eval,
test, deploy to
 all 107 devices

engineer

APRIL 2022 | VOL. 65 | NO. 4 | COMMUNICATIONS OF THE ACM 95

practice

Privacy claims must therefore be
assessed for a complete end-to-end
system. A guarantee the final deployed
model has not memorized user data
may not matter if suitable security
precautions are not taken to protect
the raw data on the device or an inter-
mediate computation state in transit.
Other techniques can provide even
stronger guarantees.

Figure 3 shows threat models for
an end-to-end FL system and the role
of data minimization and anonymous
aggregation. Data minimization ad-
dresses potential threats to the device,
network, and server by, for example,
improving security and minimizing
the retention of data and intermedi-
ate results. When models and metrics
are released to the model engineer or
deployed to production, anonymous
aggregation protects individuals’ data
from parties with access to these re-
leased outputs.

Data Minimization for Aggregation
At several points in a federated compu-
tation, the participants expect one an-
other to take the appropriate actions,
and only those actions. For example,
the server expects the clients to execute
their preprocessing step accurately;
the clients expect the server to keep
their individual updates a secret until
they have been aggregated; both the
clients and the server expect that nei-
ther the data analyst nor the deployed
ML model user will be able to extract
an individual’s data; and so on.

Privacy-preserving technologies
support the structural enforcement of
these interparty expectations, prevent-
ing participants from deviating even if
they happen to be malicious or com-
promised. In fact, FL systems can be
viewed as a kind of privacy-preserving
technology in themselves, structurally
preventing the server from accessing
anything about a client’s data that was
not included in the update submitted
by that client.

Take, for example, the aggrega-
tion phase of FL. An idealized system
might imagine a completely trusted
third party who aggregates the clients’
updates and reveals only the final ag-
gregate to the server. In reality, no
such mutually trusted third party typi-
cally exists to play this role, but vari-
ous technologies allow an FL system

to simulate such a third party under a
wide range of conditions.

For example, a server could run the
aggregation procedure within a secure
enclave—a specially constructed piece
of hardware that can not only prove to
the clients what code it is running, but
also ensure no one (not even the hard-
ware’s owner) can observe or tamper
with the execution of that code. Cur-
rently, however, the availability of se-
cure enclaves is limited, both in the
cloud and on consumer devices, and
available enclaves may implement only
some of the desired enclave properties
(secure measurement, confidentiality,
and integrity19). Moreover, even when
available and full-featured, secure en-
claves may come with additional limi-
tations, including very limited memory
or speed; vulnerability to data exposure
via side channels (for example, cache-
timing attacks); difficult-to-verify cor-
rectness (because of proprietary imple-
mentation details); dependence on
manufacturer-provided attestation ser-
vices (and key secrecy); and so on.

Distributed cryptographic protocols
for secure multiparty computation can
be used collaboratively to simulate a
trusted third party without the need for
specialized hardware, so long as a suf-
ficiently large number of the partici-
pants behave honestly. While secure
multiparty computation for arbitrary
functions remains computationally
prohibitive in most cases, specialized
secure aggregation algorithms for vec-

tor summation in the federated setting
have been developed that provably pre-
serve privacy even against an adversary
that observes the server and controls a
significant fraction of the clients, while
maintaining robustness against cli-
ents dropping out of the computation.5
Such algorithms are both:

	˲ Communication efficient - O(log n + )
communication per client, where n is
the number of users and  is the vec-
tor length, with small constants yield-
ing less than twice the communication
of aggregation in the clear for a wide
range of practical settings; and

	˲ Computation efficient - O(log2 n + 
log n) computation per client.3

Cryptographic secure aggregation
protocols have been deployed in com-
mercial federated computing systems
for years.6,17

Beyond private aggregation, privacy-
preserving technologies can be used
to secure other parts of an FL system.
For example, either secure enclaves
or cryptographic techniques (for ex-
ample, zero-knowledge proofs) can
ensure that the server can trust that cli-
ents have preprocessed faithfully. Even
the model broadcast stage can benefit:
For many learning tasks, an individual
client may have data relevant to only a
small portion of the model; in this case,
the client can privately retrieve just
that segment of the model for train-
ing, again using either secure enclaves
or cryptographic techniques (for ex-
ample, private information retrieval) to

Figure 3. Threat models for a FL system.

What private information might an actor learn with access to...

Federated
Training

Model
Development

Model
Deployment

... the released
models and

metrics?

... the
server?

... the
device?

... the
deployed
model?

... the
network?

96 COMMUNICATIONS OF THE ACM | APRIL 2022 | VOL. 65 | NO. 4

practice

plaintext) to the server. Under distrib-
uted DP, clients first compute minimal
application-specific reports, perturb
these slightly with random noise, and
then execute a private aggregation pro-
tocol. The server then has access only
to the output of the private aggrega-
tion protocol. The noise added by in-
dividual clients is typically insufficient
for a meaningful local DP guarantee
on its own. After private aggregation,
however, the output of the private ag-
gregation protocol provides a stronger
DP guarantee based on the total sum
of noise added across all clients. This
applies even to someone with access to
the server under the security assump-
tions necessary for the private aggrega-
tion protocol.

For an algorithm to provide a for-
mal user-level DP guarantee, it must
not only bound the sensitivity of the
model to each user’s data, but also add
noise proportional to that sensitivity.
While the addition of sufficient ran-
dom noise is required to ensure a small
enough ε for the DP definition itself to
offer a strong guarantee, empirically it
has been observed that limiting sensi-
tivity even with small amounts of noise
(or no noise at all) can significantly re-
duce memorization.18 This gap is to be
expected, as DP assumes a “worst-case
adversary’’ with infinite computation
and access to arbitrary side informa-
tion. These assumptions are often un-
realistic in practice. Thus, there are
substantial advantages to training us-
ing a DP algorithm that limits each us-
er’s influence, even if the explicit ran-
dom noise introduced into the training
process is not enough to ensure a small
ε formally. Nevertheless, designing
practical FL and FA algorithms that
achieve small ε guarantees is an impor-
tant area of ongoing research.

Model auditing techniques can be
used to further quantify the advan-
tages of training with DP.7,8,18 These
techniques are empirical in nature and
can be applied during or after train-
ing. They broadly include techniques
that quantify how much a model over-
learns (or memorizes) unique or rare
training examples, and techniques
that quantify to what extent it is pos-
sible to infer whether or not a user’s
examples were used during training.
These auditing techniques are useful
even when a large ε is used, as they can

ensure the server learns nothing about
the segment of the model for which the
client has relevant training data.

Computing and Verifying
Anonymous Aggregates
While secure enclaves and private ag-
gregation techniques can strengthen
data minimization, they are not de-
signed specifically to produce anony-
mous aggregates—for example, limit-
ing the influence of a user on the model
being trained. Indeed, a growing body
of research suggests that the learned
model can (in some cases) leak sensi-
tive information.8

The gold-standard approach to data
anonymization is differential privacy
(DP).9 For a generic procedure that
aggregates records in a database, DP
requires bounding any record’s con-
tribution to the aggregate and then
adding an appropriately scaled ran-
dom perturbation. For example, in DP-
SGD (differentially private stochastic
gradient descent) you clip the 2 norm
of the gradients, aggregate the clipped
gradients, and add Gaussian noise in
each training round.1

Differentially private algorithms are
necessarily randomized, and hence
you can consider the distribution of
models produced by an algorithm on a
particular dataset. Intuitively, differen-
tial privacy says this distribution over
models is similar when the algorithm
is run on input datasets that differ by
a single record. Formally, DP is quan-
tified by privacy loss parameters (ε, δ),
where a smaller (ε, δ) pair corresponds
to increased privacy. A randomized al-
gorithm A is (ε, δ)-differentially private
if for all possible outputs (for example,
models) m, and for all datasets D and D′
that differ in, at most, one record:

P(A(D) = m) ≤ eε P (A (D′) = m) + δ.

This goes beyond simply bounding
the sensitivity of the model to each re-
cord by adding noise proportional to
any record’s influence, therefore ensur-
ing sufficient randomness to mask any
one record’s contribution to the output.

In the context of cross-device FL, a
record is defined as all the training ex-
amples of a single user/client.14 This no-
tion of DP is referred to as user-level DP
and is stronger than example-level DP,
where a record corresponds to a single

training example, because in general
one user may contribute many training
examples. Even in centralized settings,
FL algorithms are well suited for train-
ing with user-level DP guarantees, be-
cause they compute a single update to
the model from all of a user’s data, mak-
ing it much easier to bound each user’s
total influence on the model update
(and hence on the final model).

Providing formal (ε, δ) guarantees in
the context of cross-device FL systems
can be particularly challenging be-
cause the set of all eligible users is dy-
namic and not known in advance, and
the participating users may drop out at
any point in the protocol. While the re-
cent work of Balle et al.2 suggests these
challenges can be overcome in theory,
building an end-to-end protocol that
works in production FL systems is still
an important problem to solve.

In the context of cross-silo FL, the
unit of privacy can take on a different
meaning. For example, it is possible to
define a record as all the examples on a
data silo if the participating institutions
want to ensure an adversary who has
access to the model iterations or to the
final model cannot determine whether
or not a particular institution’s dataset
was used in the training of that model.
User-level DP can still be meaningful in
cross-silo settings where each silo holds
data for multiple users. Enforcing user-
level privacy, however, may be more
challenging if multiple institutions
have records from the same user.

Over the past decade, an extensive
set of techniques has been developed
for differentially private data analysis,
particularly for the central or trusted-
aggregator setting, where the raw (or
minimized) data is collected by a trust-
ed service provider that implements the
DP algorithm. More recently, there has
been great interest in the local model
of DP,12 where the data is perturbed on
the client side before it is collected by
a service provider. Local DP avoids the
need for a fully trusted aggregator, but
it is now well established that local DP
leads to a steep hit in accuracy.

To recover the utility of central DP
without having to rely on a fully trust-
ed central server, an emerging set of
approaches, often referred to as dis-
tributed DP, can be used.4,11 The goal
is to render the output differentially
private before it becomes visible (in

APRIL 2022 | VOL. 65 | NO. 4 | COMMUNICATIONS OF THE ACM 97

practice

quantify the gap between DP’s worst-
case adversaries and realistic ones
with limited computational power and
side information. They can also serve
as a complementary technology for
pressure-testing DP implementations:
unlike the formal mathematical state-
ments of DP, these auditing techniques
are applied to complete end-to-end
systems, potentially catching software
bugs or mis-chosen parameters.

Federated Analytics
The focus of this article so far has pri-
marily been on FL. Beyond learning
ML models, data analysts are often in-
terested in applying data science meth-
ods to the analysis of raw data that is
stored locally on users’ devices. For
example, analysts may be interested
in learning aggregate model metrics,
popular trends and activities, or geo-
spatial location heatmaps. All of this
can be done using FA.17 Similar to FL,
FA works by running local computa-
tions over each device’s data and mak-
ing only the aggregated results avail-
able to product engineers. Unlike FL,
however, FA aims to support basic data
science needs, such as counts, aver-
ages, histograms, quantiles, and other
SQL-like queries.

Consider an application where an
analyst wants to use FA to learn the 10
most frequently played songs in a mu-
sic library shared by many users. The
same federated and privacy techniques
described previously can be used to
perform this task. For example, clients
can encode which songs they have lis-
tened to into a binary vector of length
equal to the size of the library and use
distributed DP to ensure that the server
sees only a differentially private sum of
these vectors, giving a DP histogram of
how many users have played each song.
As this example illustrates, however, FA
tasks can differ from FL ones in several
ways:

1.	 FA algorithms are often noninter-
active and involve rounds with a large
number of clients. In other words, un-
like FL applications, there are no di-
minishing returns from having more
clients in a round. Therefore, applying
DP is less challenging in FA since each
round can contain a large number of
clients, and fewer rounds are needed.

2.	 There is no need for the same
clients to participate again in later

rounds. In fact, clients that participate
again may bias the results of the algo-
rithm. Therefore, an FA task is best
served by an infrastructure that limits
the number of times any individual can
participate.

3.	 FA tasks are typically sparse, mak-
ing efficient private sparse aggregation a
particularly important topic; many open
research questions exist in this space.

It is worth noting that while limiting
client participation and sparse aggre-
gation are particularly relevant to FA,
they have applications for FL problems
as well.

Conclusion
We are optimistic that FL will continue
to expand, both as a research field and
as a set of practical tools and software
systems that allow application by more
people to more types of data and prob-
lem domains.

For those interested in learning
more about active research directions,
the recently updated Advances and
Open Problems in Federated Learning
provides a broad survey, with cover-
age of important topics not covered in
this article, including personalization,
robustness, fairness, and systems chal-
lenges.10 If you are interested in a more
hands-on introduction to FL, such as
trying out algorithms in a simulation
environment on either your own data
or standard datasets, the TensorFlow
Federated tutorialsb are a great place to
start—they can be executed and modi-
fied on the fly in the browser using
Google Colab.

Acknowledgments
The authors thank Alex Ingerman and
Marco Gruteser for their helpful feed-
back, as well as the many people at
Google who have helped develop these
ideas and bring them to practice.	

b	 https://www.tensorflow.org/federated/tutorials/
federated_learning_for_image_classification

References
1.	 Abadi, M., Chu, A., Goodfellow, I., McMahan,

H.B., Mironov, I., Talwar, K., Zhang, L. Deep
learning with differential privacy. In Proceedings
of the 2016 ACM SIGSAC Conf. Computer and
Communications Security, 308–318; https://dl.acm.
org/doi/10.1145/2976749.2978318.

2.	 Balle, B., Kairouz, P., McMahan, H.B., Thakkar, O.,
Thakurta, A. Privacy amplification via random check-
ins. arXiv, 2020; https://arxiv.org/pdf/2007.06605.pdf.

3.	 Bell, J.H., et al. Secure single-server aggregation
with (poly)logarithmic overhead. In Proceedings
of the 2020 ACM SIGSAC Conf. Computer and
Communications Security, 1253–1269; https://dl.acm.

org/doi/10.1145/3372297.3417885.
4.	 Bittau, A., et al. Prochlo: Strong privacy for analytics in

the crowd. In Proceedings of the 26th Symp. Operating
Systems Principles, 2017,441–459; https://dl.acm.org/
doi/10.1145/3132747.3132769.

5.	 Bonawitz, K., et al. Practical secure aggregation for
privacy-preserving machine learning. In Proceedings
of the 2017 ACM SIGSAC Conf. Computer and
Communications Security, 1175–1191; https://dl.acm.
org/doi/10.1145/3133956.3133982.

6.	 Bonawitz, K., et al. Towards federated learning at
scale: system design. In Proceedings of the 2nd SysML
Conference, Palo Alto, CA, USA, 2019; https://arxiv.
org/pdf/1902.01046.pdf.

7.	 Carlini, N., Liu, C., Erlingsson, U., Kos, J., Song, D.
The secret sharer: evaluating and testing unintended
memorization neural networks. In Proceedings of the
28th Usenix Security Symp. 2019, 267–284; https://
dl.acm.org/doi/10.5555/3361338.3361358.

8.	 Carlini, N., et al. Extracting training data from large
language models. arXiv, 2020; https://arxiv.org/
abs/2012.07805.

9.	 Dwork, C., McSherry, F., Nissim, K., Smith, A.D.
Calibrating noise to sensitivity in private data analysis.
In Proceedings of the Intern. Assoc. Cryptologic
Research Theory of Cryptography Conf., 2006,
265–284. Springer-Verlag; https://iacr.org/archive/
tcc2006/38760266/38760266.pdf.

10.	 Kairouz, P., et al. Advances and open problems
in federated learning. Foundations and Trends in
Machine Learning 14, 1–2 (2021); https://arxiv.org/
abs/1912.04977.

11.	 Kairouz, P., Liu, Z., Steinke, T. The distributed discrete
Gaussian mechanism for federated learning with
secure aggregation. In Proceedings of the 38th Intern.
Conf. Machine Learning 139 (2021), 5201–5212; http://
proceedings.mlr.press/v139/kairouz21a/kairouz21a.pdf.

12.	 Kasiviswanathan, S.P., Lee, H.K., Nissim, K.,
Raskhodnikova, S., Smith, A. What can we learn
privately? SIAM J. Computing 40, 3 (2011), 793–826;
https://dl.acm.org/doi/10.1137/090756090.

13.	 McMahan, H.B., Moore, E., Ramage, D., Hampson,
S., Agüera y Arcas, B. Communication-efficient
learning of deep networks from decentralized data.
In Proceedings of the 20th Intern. Conf. Artificial
Intelligence and Statistics, 2017, 1273–1282;
http://proceedings.mlr.press/v54/mcmahan17a/
mcmahan17a.pdf.

14.	 McMahan, H. B., Ramage, D., Talwar, K., Zhang, L.
Learning differentially private recurrent language
models. In Proceedings of the 2018 Intern. Conf.
Learning Representation; https://openreview.net/
pdf?id=BJ0hF1Z0b.

15.	 McMahan, H.B., Ramage, D. Federated learning:
Collaborative machine learning without centralized
training data. Google AI Blog (Apr. 6, 2017); https://
ai.googleblog.com/2017/04/federated-learning-
collaborative.html

16.	 Paulik, M., et al. Federated evaluation and tuning
for on-device personalization: system design
& applications. arXiv, 2021; https://arxiv.org/
abs/2102.08503.

17.	 Ramage, D., Mazzocchi, S. Federated analytics:
collaborative data science without data collection.
Google AI Blog (May 27, 2020); https://ai.googleblog.
com/2020/05/federated-analytics-collaborative-
data.html.

18.	 Ramaswamy, S., et al. Training production language
models without memorizing user data. arXiv, 2020;
https://arxiv.org/abs/2009.10031.

19.	 Subramanyan, P., Sinha, R., Lebedev, I., Devadas, S.,
Seshia, S.A. A formal foundation for secure remote
execution of enclaves. In Proceedings of the 2017
ACM SIGSAC Conf. Computer and Communications
Security, 2435–2450; https://dl.acm.org/
doi/10.1145/3133956.3134098.

Kallista Bonawitz (Cambridge, MA, USA), Peter Kairouz
(Seattle, WA, USA), Brendan McMahan (Seattle,
WA, USA) and Daniel Ramage (Seattle, WA, USA)
are researchers at Google, focusing on decentralized
and privacy-preserving machine learning. Their team
pioneered the concept of federated learning (https://bit.
ly/3xUOs6L) and continues to push the boundaries of what
is possible when working with decentralized data using
privacy-preserving techniques.

Copyright held by authors/owners.
Publication rights licensed to ACM.

