
© 2019 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC19

Adam Driscoll, Core Location Engineer 
Andrea Guzzo, Core Location Engineer

•What’s New in Core Location 
•Privacy, authorization, and a dash of new API







CL



CL



Allow “Travel Eats” to 
access your location?

Your location is used to find 
restaurants around you.

Allow Once

Don’t Allow

Allow While in Use



•Always Authorization: Deferred 
•WhenInUse Authorization: Empowered 
•Temporary Authorization: New 
•Ranging: In Context



Allow “Travel Eats” to 
access your location?

Your location is used to find 
restaurants around you.

Allow Once

Don’t Allow

Allow While in Use



// Requesting an Authorization prompt 

// CLLocationManagers need to have a long lifecycle, so an App Delegate var is ideal 
var locationManager = CLLocationManager() 

// If you do not need Always authorization, request a prompt for WhenInUse authorization 
locationManager.requestWhenInUseAuthorization() 

// -- OR -- 

// If you do need Always authorization, request a prompt for that 
locationManager.requestAlwaysAuthorization() 



// Requesting an Authorization prompt 

// CLLocationManagers need to have a long lifecycle, so an App Delegate var is ideal 
var locationManager = CLLocationManager() 

// If you do not need Always authorization, request a prompt for WhenInUse authorization 
locationManager.requestWhenInUseAuthorization() 

// -- OR -- 

// If you do need Always authorization, request a prompt for that 
locationManager.requestAlwaysAuthorization() 



Allow “Travel Eats” to 
access your location?

Your location is used to find 
restaurants around you.

Allow Once

Don’t Allow

Allow While in Use



What Your App Sees

Provisional Always Authorization

The User Perspective

Settings shows 
While In Use

User picked 
While In Use

Start using 
Always powers

Delegate receives  
AlwaysApp requested Always



What Your App Sees

Provisional Always Authorization

The User Perspective

An event occurs

User prompted: 
Allow Always?

Start using 
Always powers

Delegate receives  
Always



Allow “Travel Eats” to access 
your location even when you 

are not using the app?

Your location is used to find 
restaurants around you. If you 

always allow access, you’ll never 
miss nearby Top Eats.

Keep Only While Using

Change to Always Allow



What Your App Sees

Provisional Always Authorization

The User Perspective

Start using 
Always Powers

Delegate Receives 
Always

An event occurs

User prompted 
Allow Always?



What Your App Sees

The User Perspective Agreement

Provisional Always Authorization

Start using 
Always Powers

Delegate Receives 
Always

An event occurs WhenInUse

User prompted 
Allow Always?

Always



Nothing until the user says “Always” 

Prompt will display later 

One shot only 

Request can be made 
• Directly 
• As an upgrade

Deferred Always Authorization Details



Event Delivery Details

Delivered if app is granted Always 

Not delivered if 
• User granted WhenInUse instead 
• User has not yet been prompted 
• Event replaced by a newer event 
• Just stale



tvOS does not support Always 

watchOS does not need Always* 

macOS does not have Always or WhenInUse 

iPad Apps for Mac may use either Always or WhenInUse

Other Platforms



•Always Authorization: Deferred 
•WhenInUse Authorization: Empowered 
•Temporary Authorization: New 
•Ranging: In Context

•Always Authorization: Deferred 
•WhenInUse Authorization: Empowered 
•Temporary Authorization: New 
•Ranging: In Context



Allow “Travel Eats” to 
access your location?

Your location is used to find 
restaurants around you.

Allow Once

Don’t Allow

Allow While in Use



Always WhenInUse

Receive Location

Range Beacons

Continue Location in the Background

Start Location in the Background

Use Significant Location Change Monitoring

Use Region Monitoring

Use Visit Monitoring

Authorization, iOS 12



NEW

Will Core Location API 
yield events when my app is

Always WhenInUse

In use?

Not in use?

Authorization, iOS 13



When is an App In Use? 
Foreground

Entered Foreground

In Use Not In Use

Entered Background Entered Foreground

In Use Not In Use

Entered Background



Background Mode: Location updates

Still In Use

When is an App In Use? 
Continuous Background Updates

Not In Use

Entered Background

startUpdatingLocation allowsBackgroundLocationUpdates = true allowsBackgroundLocationUpdates = false

Entered ForegroundEntered Foreground

In Use

Entered Background



When is an App In Use? 
Complications on the Watch

Always In Use



When is an App In Use? 
Local notification bootstrap

Notification becomes 
relevant

Post a location-triggered 
notification

Entered Foreground

In Use

User taps through

Not In Use

Entered Background



WhenInUse Authorization, iOS 13
NEW

Will Core Location API 
yield events when my app is

Always WhenInUse

In use?

Not in use?



•Always Authorization: Deferred 
•WhenInUse Authorization: Empowered 
•Temporary Authorization: New 
•Ranging: In Context

•Always Authorization: Deferred 
•WhenInUse Authorization: Empowered 
•Temporary Authorization: New 
•Ranging: In Context



Allow “Travel Eats” to 
access your location?

Your location is used to find 
restaurants around you.

Allow Once

Don’t Allow

Allow While in Use



ArrowAnchor

Authorization States, iOS 12

.notDetermined .authorizedWhenInUse

.authorizedAlways

.denied



Authorization States, iOS 13

.notDetermined

.authorizedWhenInUse

.authorizedAlways

NEW

.authorizedAlways 
(Provisional)

.authorizedWhenInUse 
(Temporary)



Grants authorization temporarily 

Yields .authorizedWhenInUse 

Request authorization again next time 

Very sensitive to end-of-use

Allow Once 
Temporary authorization NEW



Temporary Authorization Case Study 
Foreground

Entered Foreground

In Use Not In Use

Entered Background Entered Foreground

In Use Not In Use

Entered Background



Temporary Authorization Case Study 
Foreground

Entered Foreground

In Use

Entered Background Entered Foreground

Not In Use

Entered Background

Request Authorization

Not In Use



Temporary Authorization Case Study 
Foreground

Entered Foreground

In Use Not In Use

Entered Background Entered Foreground

In Use Not In Use

Entered Background



Temporary Authorization Case Study 
Foreground

Entered Foreground

In Use Not In Use

Entered Background Entered Foreground

In Use Not In Use

Entered Background

Request Authorization



Temporary Authorization Case Study 
Continuous Background Updates

Entered Foreground

In Use

Entered Background Entered Foreground

Not In Use

Entered Background

startUpdatingLocation allowsBackgroundLocationUpdates = true allowsBackgroundLocationUpdates = false

Request Authorization



Temporary Authorization Case Study 
Continuous foreground updates

Entered Foreground

In Use Not In Use

Entered Background Entered Foreground

In Use Not In Use

Entered Background

Request Authorization Request Authorization



•Always Authorization: Deferred 
•WhenInUse Authorization: Empowered 
•Temporary Authorization: New 
•Ranging: In Context

•Always Authorization: Deferred 
•WhenInUse Authorization: Empowered 
•Temporary Authorization: New 
•Ranging: In Context



•Beacon Ranging Overview 
•API Changes 
•Example



Beacon Ranging

Introduced in iOS 7 as extension of the Region Monitoring API 

Region Monitoring to initiate ranging 

Region Monitoring no longer requires Always Authorization



     
    open func startRangingBeacons(in region: CLBeaconRegion) 

    open func stopRangingBeacons(in region: CLBeaconRegion)

Beacon Ranging API, iOS 12

 CLBeaconRegion 

UUID minormajoruuid minormajor

CLRegion



 CLBeaconRegion 

UUID minormajoruuid minormajor

CLRegion

**

Beacon Ranging API Updates

CLBeacon

uuid

minor

major

CLBeacon

uuid

minor

major

CLBeacon

uuid

minor

major

CLBeacon

uuid

minor

major

CLBeacon

uuid

minor

major

CLBeacon

uuid

minor

major



    open func startRangingBeacons(satisfying constraint: CLBeaconIdentityConstraint) 
    
    open func stopRangingBeacons(satisfying constraint: CLBeaconIdentityConstraint)

 CLBeaconRegion 

UUID minormajoruuid minormajor

CLRegion
CLRegion

 CLBeaconRegion 

CLBeaconIdentityConstraint 
uuid minormajor

Beacon Ranging API Updates, iOS 13
NEW

let beaconRegion = CLBeaconRegion(beaconIdentityConstraint: constraint, 
                                            identifier: myBeaconRegion)



 UUID: MyMuseum 
Major: PaintersRoom 
Minor: SomePainting

Install beacons in the exhibition rooms 

Determine when a visitor is in an  
exhibition room 

Find which objects are nearby 

Location-triggered notification at arrival

Example: Beacon Ranging in a museum



When in Use

Enter Region 

Exit Region 

Status Update

Start Ranging

Beacons Found

Stop Ranging

Monitor for 
BeaconRegion



 UUID: MyMuseum  UUID: MyMuseum 
Major: PaintersRoom 
Minor: SomePainting

When in Use

Enter Region 

Exit Region 

Status Update

Start Ranging

Beacons Found

Stop Ranging

Monitor for 
BeaconRegion



// Monitor for the beacon-defined region 

self.locationManager.requestWhenInUseAuthorization() 
                 
// Create a new constraint and add it to the dictionary. 
let constraint = CLBeaconIdentityConstraint(uuid: uuid) 
                
/* 
By monitoring for the beacon before ranging, the app is more 
energy efficient if the beacon is not immediately observable. 
*/ 
let beaconRegion = CLBeaconRegion(beaconIdentityConstraint: constraint, 

                                            identifier: uuid.uuidString) 
self.locationManager.startMonitoring(for: beaconRegion)



When in Use

Enter Region 

Exit Region 

Status Update

Start Ranging

Beacons Found

Monitor for 
BeaconRegion

Stop Ranging



When in Use

Enter Region 

Exit Region 

Status Update

Start Ranging

Beacons Found

Stop Ranging

Monitor for 
BeaconRegion



// React to entering/exiting the beacon-defined region 

func locationManager(_ manager: CLLocationManager, 
       didDetermineState state: CLRegionState, 
                    for region: CLRegion) 
{ 
    let beaconRegion = region as? CLBeaconRegion 
    if state == .inside { 
        // Start ranging when inside a region. 
        manager.startRangingBeacons(satisfying: beaconRegion!.beaconIdentityConstraint) 
    } else { 
        // Stop ranging when not inside a region. 
        manager.stopRangingBeacons(satisfying: beaconRegion!.beaconIdentityConstraint) 
    } 
}



When in Use

Enter Region 

Exit Region 

Status Update

Monitor for 
BeaconRegion

Start Ranging

Beacons Found

Stop Ranging



When in use

Enter Region 

Exit Region 

Status Update

Start Ranging

Beacons Found

Monitor for 
BeaconRegion

Stop Ranging



// Status update for what beacons are in proximity 
func locationManager(_ manager: CLLocationManager, 
              didRange beacons: [CLBeacon], 
   satisfying beaconConstraint: CLBeaconIdentityConstraint) 
{ 
    /* Beacons are categorized by proximity. */ 
    for range in [CLProximity.immediate, .near, .far, .unknown] { 
        let proximityBeacons = beacons.filter { $0.proximity == range } 
        // TODO: Do something with the matching beacons 
    } 
}



When in Use

Enter Region 

Exit Region 

Status Update

Start Ranging

Beacons Found

Stop Ranging

Monitor for 
BeaconRegion

On First Launch

UserNotification as 
Location-based 

Trigger



// Setup a location-triggered user notification 

let center = CLLocationCoordinate2D(latitude: 37.335400, longitude: -122.009201) 
let region = CLCircularRegion(center: center, radius: 2000.0, identifier: "Museum") 
region.notifyOnEntry = true 
region.notifyOnExit = false 
let trigger = UNLocationNotificationTrigger(region: region, repeats: false)



Recap

•Beacon Ranging 
•API Updates 
•Example: Ranging for beacons in a museum



Summary

We have some new authorization behaviors 

Test them 

Ranging opens a new way to deliver location-aware experiences



More Information

Core Location Lab Wednesday, 11:00

Designing for Privacy Wednesday, 2:00

Core Location Lab Friday, 1:00 

developer.apple.com/wwdc19/705




