
© 2019 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

#WWDC19

Kai Kaahaaina, CoreOS
Alejandro Lucena, Developer Tools

•Optimizing Storage in Your App
•Better performance and efficiency

Optimizing Storage in Your App
Better performance and efficiency

Optimizing Storage in Your App
Better performance and efficiency

Battery life

Optimizing Storage in Your App
Better performance and efficiency

Battery life

Performance

Optimizing Storage in Your App
Better performance and efficiency

Battery life

Performance

Reduce footprint

Optimizing Storage in Your App
Better performance and efficiency

Battery life

Performance

Reduce footprint

Device health

•Efficient image assets
•File system metadata
•Syncing to disk
•Serialized data files
•Core Data
•SQLite
•

•Efficient Image Assets

Increasing screen resolutions
• iPhone 6s — 1334 x 750
• iPhone Xs — 2436 x 1125

Higher resolution cameras

Harder to manage

Image Assets
Growing in size

Image Assets
Growing in size

Image Assets
Growing in size

JPEG Size: 24.6MB

HEIC
A more efficient and capable alternative to JPEG

~50% smaller files than JPEG at comparable quality

HEIC
A more efficient and capable alternative to JPEG

~50% smaller files than JPEG at comparable quality

Smaller on disk footprint

HEIC
A more efficient and capable alternative to JPEG

~50% smaller files than JPEG at comparable quality

Smaller on disk footprint

Faster network downloads and uploads

HEIC
A more efficient and capable alternative to JPEG

~50% smaller files than JPEG at comparable quality

Smaller on disk footprint

Faster network downloads and uploads

Faster to load and save to disk

HEIC
A more efficient and capable alternative to JPEG

Store auxiliary images (depth, disparity, and so on)

HEIC
A more efficient and capable alternative to JPEG

HEIC
A more efficient and capable alternative to JPEG

Store auxiliary images (depth, disparity, and so on)

Supports alpha

HEIC
A more efficient and capable alternative to JPEG

Store auxiliary images (depth, disparity, and so on)

Supports alpha

Lossless compression

HEIC
A more efficient and capable alternative to JPEG

Store auxiliary images (depth, disparity, and so on)

Supports alpha

Lossless compression

Multiple images in a single container

Available starting with
• iOS 11
• macOS High Sierra

HEIC
A more efficient and capable alternative to JPEG

Image Assets
Growing in size

JPEG Size: 24.6MB

Image Assets
Growing in size

JPEG Size: 24.6MB

HEIC Size: 17.9MB

Asset Catalog
Simple app resource management

Asset Catalog
Simple app resource management

App icon

Asset Catalog
Simple app resource management

App icon

Device and scale variants

Asset Catalog
Simple app resource management

App icon

Device and scale variants

On demand resources

Asset Catalog
Storage and performance benefits

Storage efficiency

Asset Catalog
Storage and performance benefits

Storage efficiency
• On-disk foot print

Asset Catalog
Storage and performance benefits

Storage efficiency
• On-disk foot print
• App slicing (iOS)

Asset Catalog
Storage and performance benefits

Storage efficiency
• On-disk foot print
• App slicing (iOS)

Performance

Asset Catalog
Storage and performance benefits

Storage efficiency
• On-disk foot print
• App slicing (iOS)

Performance
• Image loading

Asset Catalog
Storage and performance benefits

Storage efficiency
• On-disk foot print
• App slicing (iOS)

Performance
• Image loading
• App launch

Asset Catalog
Storage and performance benefits

Storage efficiency
• On-disk foot print
• App slicing (iOS)

Performance
• Image loading
• App launch (up to 10% faster!)

Asset Catalog
Easy GPU based compression

Lossless by default

Asset Catalog
Easy GPU based compression

Lossless by default

Lossy image compression available

Asset Catalog
Easy GPU based compression

Lossless by default

Lossy image compression available
• Hardware accelerated decompression

Asset Catalog
Easy GPU based compression

Lossless by default

Lossy image compression available
• Hardware accelerated decompression
• Lower memory footprint

Image Assets
Growing in size

JPEG Size: 24.6MB

HEIC Size: 17.9MB

Image Assets
Growing in size

JPEG Size: 24.6MB

HEIC Size: 17.9MB

AssetCatalog: 14.9MB

Use HEIC and Asset Catalogs  
to reduce footprint

•File System Metadata

File System Metadata
Modifying a plist

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>last_app_launch</key>
 <date>2019-06-07T07:26:49Z</date>
</dict>
</plist>

On launch our demo app reads and updates this plist

File System Metadata
Modifying a plist

On launch our demo app reads and updates this plist
• One read

File System Metadata
Modifying a plist

On launch our demo app reads and updates this plist
• One read
• Three writes

File System Metadata
Modifying a plist

On launch our demo app reads and updates this plist
• One read
• Three writes
• fsync

File System Metadata
Modifying a plist

File system metadata writes happen as a result of
• Creating a file
• Deleting a file
• Renaming a file
• Updating a file
• And other file system operations

File System Metadata
Why three writes instead of one?

File System Metadata
What is file system metadata?

Name

File System Metadata
What is file system metadata?

Name

Size

File System Metadata
What is file system metadata?

Name

Size

Location

File System Metadata
What is file system metadata?

Name

Size

Location

Dates

File System Metadata
What is file system metadata?

Name

Size

Location

Dates

And more

File System TreeObject Map

4k

File System Metadata
Writing a 240 byte NSDictionary to a file

Update

File System TreeObject MapUpdate file system node

4k

File System Metadata
Writing a 240 byte NSDictionary to a file

File System Tree

4k

File System Metadata
Writing a 240 byte NSDictionary to a file

File System Tree

4k

New

File System Metadata
Writing a 240 byte NSDictionary to a file

File System Tree

4k

New
Node: 123Node: 123

Original New

Transaction ID: 1 Transaction ID: 2

File System Metadata
Writing a 240 byte NSDictionary to a file

Update file system node

New

File System TreeObject Map

4k

File System Metadata
Writing a 240 byte NSDictionary to a file

Update file system node

Update object map

New

File System TreeObject Map

4k

New!

File System Metadata
Writing a 240 byte NSDictionary to a file

Update file system node

Update object map

Total Metadata: 8K
New

File System TreeObject Map

4k

New!

File System Metadata
Writing a 240 byte NSDictionary to a file

Update file system node (4K)

Update object map

Total Metadata: 8K
New

File System TreeObject Map

4k

New!

File System Metadata
Writing a 240 byte NSDictionary to a file

Update file system node (4K)

Update object map (4K)

Total Metadata: 8K
New

File System TreeObject Map

4k

New!

File System Metadata
Writing a 240 byte NSDictionary to a file

Update file system node (4K)

Update object map (4K)

Total Metadata: 8K

File itself New

File System TreeObject Map

New!

4k

4K

File System Metadata
Writing a 240 byte NSDictionary to a file

Update file system node (4K)

Update object map (4K)

Total Metadata: 8K

File itself (4K) New

File System TreeObject Map

New!

4k

4K

File System Metadata
Writing a 240 byte NSDictionary to a file

Update file system node (4K)

Update object map (4K)

Total Metadata: 8K

File itself (4K)

Total data: 12K

New

File System TreeObject Map

New!

4k

4K

File System Metadata
Writing a 240 byte NSDictionary to a file

File System Metadata
Book keeping workload for common operations

Create a file: 8K

File System Metadata
Book keeping workload for common operations

Create a file: 8K

Delete a file: 8K

File System Metadata
Book keeping workload for common operations

Create a file: 8K

Delete a file: 8K

Rename a file: 16K

File System Metadata
Book keeping workload for common operations

Create a file: 8K

Delete a file: 8K

Rename a file: 16K

Modifying a file: 8K

File system metadata  
updates are not free.

File System Metadata
Efficient non-persistent files

Create a file

File System Metadata
Efficient non-persistent files

Create a file

Keep it open and unlinked

File System Metadata
Efficient non-persistent files

Create a file

Keep it open and unlinked

Do not call fsync()

File System Metadata
More information on APFS

developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf

•Syncing to Disk

App

OS Cache

Disk Cache

Permanent Storage

User Space

Kernel

Hardware

App

OS Cache

Disk Cache

Permanent Storage

User Space

Kernel

Hardware

App

OS Cache

Disk Cache

Permanent Storage

User Space

Kernel

Hardware

Logical I/O

App

OS Cache

Disk Cache

Permanent Storage

User Space

Kernel

Hardware

Logical I/O

App

OS Cache

Disk Cache

Permanent Storage

User Space

Kernel

Hardware

Logical I/O

App

OS Cache

Disk Cache

Permanent Storage

User Space

Kernel

Hardware

Logical I/O

Physical I/O

App

OS Cache

Disk Cache

Permanent Storage

User Space

Kernel

Hardware

Logical I/O

Physical I/O

Flushes cached data to disk

fsync()

App

OS Cache

Disk Cache

Permanent Storage

fsync()

Flushes cached data to disk
• Moves data from the OS cache to the disk cache

App

OS Cache

Disk Cache

Permanent Storage

Flushes cached data to disk
• Moves data from the OS cache to the disk cache
• Data may not be written to permanent  
storage immediately

fsync()

App

OS Cache

Disk Cache

Permanent Storage

Flushes cached data to disk
• Moves data from the OS cache to the disk cache
• Data may not be written to permanent  
storage immediately

• Does not guarantee write ordering

fsync()

App

OS Cache

Disk Cache

Permanent Storage

Flushes cached data to disk
• Moves data from the OS cache to the disk cache
• Data may not be written to permanent  
storage immediately

• Does not guarantee write ordering
• Expensive

fsync()

App

OS Cache

Disk Cache

Permanent Storage

Flushes cached data to disk
• Moves data from the OS cache to the disk cache
• Data may not be written to permanent  
storage immediately

• Does not guarantee write ordering
• Expensive
• Done periodically by the OS

fsync()

App

OS Cache

Disk Cache

Permanent Storage

Drive flush its cache to disk

F_FULLFSYNC

App

OS Cache

Disk Cache

Permanent Storage

F_FULLFSYNC

Drive flush its cache to disk
• Causes all data in disk cache to be flushed

App

OS Cache

Disk Cache

Permanent Storage

F_FULLFSYNC

Drive flush its cache to disk
• Causes all data in disk cache to be flushed
• Expensive

App

OS Cache

Disk Cache

Permanent Storage

F_FULLFSYNC

Drive flush its cache to disk
• Causes all data in disk cache to be flushed
• Expensive
• Done periodically by OS

App

OS Cache

Disk Cache

Permanent Storage

F_BARRIERFSYNC

Enforces I/O ordering

F_BARRIERFSYNC

Enforces I/O ordering
• fsync() with a barrier

F_BARRIERFSYNC

Enforces I/O ordering
• fsync() with a barrier

Much less expensive than F_FULLFSYNC

Enforcing I/O Ordering

Ensures I/O ordering for the specified data

Indiscriminately commits all disk cache data
to permanent storage

F_FULLFSYNC

F_BARRIERFSYNC

•Serialized Data Files

Plists, XML, and JSON

The good
• Convenient

Plists, XML, and JSON

The good
• Convenient
• Excellent for infrequently written data

Plists, XML, and JSON

The good
• Convenient
• Excellent for infrequently written data
• Easy to parse

Plists, XML, and JSON

The trade off

Plists, XML, and JSON

The trade off
• Entire file must be rewritten for every change

Plists, XML, and JSON

The trade off
• Entire file must be rewritten for every change
• Scales poorly

Plists, XML, and JSON

The trade off
• Entire file must be rewritten for every change
• Scales poorly
• Easy to misuse

Plists, XML, and JSON

The trade off
• Entire file must be rewritten for every change
• Scales poorly
• Easy to misuse
• Metadata intensive

Plists, XML, and JSON

The trade off
• Entire file must be rewritten for every change
• Scales poorly
• Easy to misuse
• Metadata intensive

Not meant to be a database

NSDictionary
Create, read, and modify example

NSDictionary
Modify example

NSDictionary
Modify example

•Core Data

Core Data

Core Data management
• Built on SQLite

Core Data

Core Data management
• Built on SQLite
• Manages object graphs and relationships

Core Data

Core Data management
• Built on SQLite
• Manages object graphs and relationships
• Change tracking and notifications

Core Data

Core Data management
• Built on SQLite
• Manages object graphs and relationships
• Change tracking and notifications
• Automatic version tracking and multi-writer conflict resolution
- Automatic connection pooling

Core Data

Core Data management
• Built on SQLite
• Manages object graphs and relationships
• Change tracking and notifications
• Automatic version tracking and multi-writer conflict resolution
- Automatic connection pooling
• CloudKit integration

Core Data

Core Data management
• Built on SQLite
• Manages object graphs and relationships
• Change tracking and notifications
• Automatic version tracking and multi-writer conflict resolution
- Automatic connection pooling
• CloudKit integration (new with iOS 13)

Core Data

Core Data management
• Built on SQLite
• Manages object graphs and relationships
• Change tracking and notifications
• Automatic version tracking and multi-writer conflict resolution
- Automatic connection pooling
• CloudKit integration (new with iOS 13)
• Live queries

Core Data

Core Data management
• Automatic memory management

Core Data

Core Data management
• Automatic memory management
• Statement aggregation in transactions

Core Data

Core Data management
• Automatic memory management
• Statement aggregation in transactions
• Schema migrations

Core Data

Core Data management
• Automatic memory management
• Statement aggregation in transactions
• Schema migrations
• Denormalization

Core Data

Core Data management
• Automatic memory management
• Statement aggregation in transactions
• Schema migrations
• Denormalization (new with iOS 13)

Core Data

Core Data management
• Automatic memory management
• Statement aggregation in transactions
• Schema migrations
• Denormalization (new with iOS 13)
• And so much more!

Reduction in code to support the model layer

50–70%

•SQLite

•Connections
•Journaling
•Transactions
•File size and privacy
•Partial indexes

•

•Connections

Opening and Closing Connections

Can cause expensive operations!
• Consistency checking
• Journal recovery
• Journal checkpointing

Opening and Closing Connections

Can cause expensive operations!
• Consistency checking
• Journal recovery
• Journal checkpointing

Recommended usage model
• Keep connections open as long as possible
• Close only when necessary
• Pool connections on multi-threaded processes

•Journaling

Delete Mode Journaling

Default SQLite journaling mode

How Does Delete Mode Journaling Work?

Database

How Does Delete Mode Journaling Work?

Journal

Database

How Does Delete Mode Journaling Work?

Journal

Database

How Does Delete Mode Journaling Work?

Database

WAL Mode Journaling Reduces Writes

PRAGMA journal_mode=WAL;

Write Ahead Logging

Combines multiple writes to the same page

Uses fewer barriers

Supports multiple readers at the same time as a writer

Supports snapshots

How Does WAL Mode Journaling Work?

Database

How Does WAL Mode Journaling Work?

Database

Write Ahead Log

How Does WAL Mode Journaling Work?

Database

Write Ahead Log

How Does WAL Mode Journaling Work?

Database

Write Ahead Log

How Does WAL Mode Journaling Work?

Write Ahead Log

Database

How Does WAL Mode Journaling Work?

Database

Write Ahead Log

How Does WAL Mode Journaling Work?

Database

Write Ahead Log

WAL mode is more  
efficient for most use cases.

•Transactions

Transactions Help Reduce Writes

Use for multiple INSERT, UPDATE, and DELETE statements

Transactions Help Reduce Writes

Use for multiple INSERT, UPDATE, and DELETE statements

Pages that are changed by multiple statements are only written once

Multiple Single Statement Transactions

Transaction #1

Transaction #2

Transaction #3

Multiple Statement Transaction

with multiple statementsTransaction #1

Transactions Help Reduce Writes

Use for multiple INSERT, UPDATE, and DELETE statements

Pages that are changed by multiple statements are only written once

Useful for aggregating changes over time!

•File Size and Privacy

File Size and Privacy

What happens when we delete data from a database?

Space containing the deleted data is marked as free

While no longer part of the database the deleted data is still on disk

File Size and Privacy

PRAGMA schema.secure_delete=FAST;

How do we securely delete sensitive data?

File Size and Privacy

PRAGMA schema.secure_delete=FAST;

How do we securely delete sensitive data?

File Size and Privacy

PRAGMA schema.secure_delete=FAST;

How do we securely delete sensitive data?
• Automatically zeros deleted data
• No cost for data within the same page as the header
• Default behavior starting with iOS 13

File Size and Privacy

Don't use VACUUM

File Size and Privacy

Don't use VACUUM
• VACUUM is a slow I/O intensive operation

Why Is VACUUM Expensive?

Database

Why Is VACUUM Expensive?

Database

Journal

Why Is VACUUM Expensive?

Database

Journal

Why Is VACUUM Expensive?

Database

Journal

Why Is VACUUM Expensive?

Database

File Size and Privacy

Don't use VACUUM
• VACUUM is a slow I/O intensive operation
•All valid data gets written at least twice!

File Size and Privacy

PRAGMA schema.auto_vacuum=INCREMENTAL;

PRAGMA schema.incremental_vacuum=(N); 
// ’N’ is the number pages to be vacuumed

How Is Incremental Auto Vacuum More Efficient?

Database

Write Ahead Log

How Is Incremental Auto Vacuum More Efficient?

Write Ahead Log

Database

Updated parent node Pages to migrate

How Is Incremental Auto Vacuum More Efficient?

Write Ahead Log

Database

Updated parent node Truncated Database

Migrated page Migrated page

Use incremental auto vacuum and  
fast secure delete to manage  
both file size and privacy.

•Partial Indexes

Indexes

Faster ORDER BY, GROUP BY, and WHERE clauses

Each index adds additional I/O when writing to the database

Partial Indexes

Indexes with a WHERE clause

Partial indexes only store data which matches the WHERE clause

Queries that do not match the WHERE clause cannot use the index

•SQLite Summary

Keep database connections open

SQLite Summary
Best practices

Keep database connections open

Use WAL mode

SQLite Summary
Best practices

Keep database connections open

Use WAL mode

Multiple statements per transaction

SQLite Summary
Best practices

Keep database connections open

Use WAL mode

Multiple statements per transaction

Fast secure delete and auto vacuum incremental

SQLite Summary
Best practices

Keep database connections open

Use WAL mode

Multiple statements per transaction

Fast secure delete and auto vacuum incremental

Partial indexes

SQLite Summary
Best practices

Alejandro Lucena, Developer Tools

•File Activity Instrument

File Activity Instrument

File Activity Instrument

•Supports all Apple devices

File Activity Instrument

•Supports all Apple devices

•Support for tracing single processes and all processes

File Activity Instrument

•Supports all Apple devices

•Support for tracing single processes and all processes

•Obtains both logical and physical I/O information

File Activity Instrument

•Supports all Apple devices

•Support for tracing single processes and all processes

•Obtains both logical and physical I/O information

•Offers automated reasoning

Automated Reasoning

Automated Reasoning

•Excessive physical writes

Automated Reasoning

•Excessive physical writes

•Failed I/O related calls

Automated Reasoning

•Excessive physical writes

•Failed I/O related calls

•Suboptimal caching

File Activity Instrument

File Activity Instrument

Open and Close per Operation
Disk Usage

Open and Close per Operation
Disk Usage

Open and Close per Operation
Disk Usage — Detail view

Open and Close per Operation
Disk Usage — Detail view

Open and Close per Operation
Filesystem Suggestions

Open and Close per Operation
Filesystem Suggestions

Open and Close per Operation
Filesystem Suggestions — Detail view

Open and Close per Operation
Filesystem Activity

Open and Close per Operation
Filesystem Activity

Open and Close as Needed
Disk Usage

Open and Close as Needed
Disk Usage — Detail view

Open and Close as Needed
Disk Usage — Detail view

Open and Close as Needed
Filesystem Suggestions

Open and Close as Needed
Filesystem Suggestions — Detail view

Delete Mode Journaling

Delete Mode Journaling

WAL Mode Journaling

WAL Mode Journaling

WAL Mode Journaling

Journaling Comparison

WAL Journaling Delete Mode Journaling

Journaling Mode Comparison

WAL Journaling Delete Mode Journaling

Single Statement Transactions

Single Statement Transactions

Single Statement Transactions

Single Statement Transactions

Multiple Statement Transaction

Multiple Statement Transaction

Multiple Statement Transaction

Multiple Statement Transaction

Transactions Comparison

Multiple Statement Single Statement

Transactions Comparison

Multiple Statement Single Statement

Full Vacuum

Full Vacuum

Incremental Vacuum

Incremental Vacuum

Vacuuming Comparison

Incremental Full

Summary

Summary

Apply these lessons

Summary

Apply these lessons

Profile with File Activity Instrument

Summary

Apply these lessons

Profile with File Activity Instrument

Continue optimizing storage!

More Information
developer.apple.com/wwdc19/419

Making Apps with Core Data WWDC 2019

Performance, Power, Crashes, and Debugging Lab Friday, 3:00

