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Performance 

Reduce footprint  

Device health 



•Efficient image assets 
•File system metadata 
•Syncing to disk 
•Serialized data files 
•Core Data 
•SQLite 
•



•Efficient Image Assets



Increasing screen resolutions 
• iPhone 6s — 1334 x 750 
• iPhone Xs — 2436 x 1125 

Higher resolution cameras 

Harder to manage

Image Assets 
Growing in size
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~50% smaller files than JPEG at comparable quality  

Smaller on disk footprint 

Faster network downloads and uploads 

Faster to load and save to disk

HEIC 
A more efficient and capable alternative to JPEG
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HEIC 
A more efficient and capable alternative to JPEG

Store auxiliary images (depth, disparity, and so on) 

Supports alpha 

Lossless compression  

Multiple images in a single container



Available starting with 
• iOS 11 
• macOS High Sierra

HEIC 
A more efficient and capable alternative to JPEG
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Asset Catalog 
Simple app resource management

App icon 

Device and scale variants 

On demand resources 
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Asset Catalog 
Storage and performance benefits

Storage efficiency 
• On-disk foot print 
• App slicing (iOS) 

Performance 
• Image loading 
• App launch (up to 10% faster!)
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Asset Catalog 
Easy GPU based compression

Lossless by default  

Lossy image compression available 
• Hardware accelerated decompression 
• Lower memory footprint 
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Image Assets 
Growing in size 

JPEG Size: 24.6MB 

HEIC Size: 17.9MB 

AssetCatalog: 14.9MB



Use HEIC and Asset Catalogs  
to reduce footprint
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File System Metadata 
Modifying a plist

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
PropertyList-1.0.dtd"> 
<plist version="1.0"> 
<dict> 
 <key>last_app_launch</key> 
 <date>2019-06-07T07:26:49Z</date> 
</dict> 
</plist> 



On launch our demo app reads and updates this plist
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On launch our demo app reads and updates this plist 
• One read 
• Three writes 
•  fsync

File System Metadata 
Modifying a plist



File system metadata writes happen as a result of 
• Creating a file 
• Deleting a file 
• Renaming a file 
• Updating a file 
• And other file system operations

File System Metadata 
Why three writes instead of one?
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File System Metadata 
What is file system metadata?

Name 

Size 

Location 

Dates 

And more



File System TreeObject Map

4k

File System Metadata 
Writing a 240 byte NSDictionary to a file
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File System Tree

4k

New
Node: 123Node: 123

Original New

Transaction ID: 1 Transaction ID: 2

File System Metadata 
Writing a 240 byte NSDictionary to a file



Update file system node

New

File System TreeObject Map

4k
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Update file system node 

Update object map

New

File System TreeObject Map
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New!
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Update file system node (4K) 

Update object map (4K) 

Total Metadata: 8K 

File itself  New

File System TreeObject Map

New!

4k
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Update file system node (4K) 

Update object map (4K) 

Total Metadata: 8K 

File itself (4K) New

File System TreeObject Map

New!

4k

4K

File System Metadata 
Writing a 240 byte NSDictionary to a file



Update file system node (4K) 

Update object map (4K) 

Total Metadata: 8K 

File itself (4K) 

Total data: 12K

New

File System TreeObject Map

New!

4k

4K

File System Metadata 
Writing a 240 byte NSDictionary to a file
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File System Metadata 
Book keeping workload for common operations

Create a file: 8K 

Delete a file: 8K 

Rename a file: 16K 

Modifying a file: 8K



File system metadata  
updates are not free.
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File System Metadata 
Efficient non-persistent files

Create a file 

Keep it open and unlinked 

Do not call fsync() 



File System Metadata 
More information on APFS 

developer.apple.com/support/apple-file-system/Apple-File-System-Reference.pdf



•Syncing to Disk
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Flushes cached data to disk 
• Moves data from the OS cache to the disk cache 
• Data may not be written to permanent  
storage immediately 

• Does not guarantee write ordering 
• Expensive 
• Done periodically by the OS

fsync() 

App

OS Cache

Disk Cache

Permanent Storage



Drive flush its cache to disk

F_FULLFSYNC
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F_FULLFSYNC

Drive flush its cache to disk 
• Causes all data in disk cache to be flushed  
• Expensive  
• Done periodically by OS

App

OS Cache

Disk Cache

Permanent Storage
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F_BARRIERFSYNC

Enforces I/O ordering  
• fsync() with a barrier 

Much less expensive than F_FULLFSYNC



Enforcing I/O Ordering

Ensures I/O ordering for the specified data

Indiscriminately commits all disk cache data 
to permanent storage

F_FULLFSYNC

F_BARRIERFSYNC



•Serialized Data Files
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Plists, XML, and JSON 

The good 
• Convenient 
• Excellent for infrequently written data 
• Easy to parse 
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Plists, XML, and JSON 

The trade off 
• Entire file must be rewritten for every change 
• Scales poorly 
• Easy to misuse 
• Metadata intensive 

Not meant to be a database



NSDictionary 
Create, read, and modify example



NSDictionary 
Modify example



NSDictionary 
Modify example



•Core Data
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Core Data 

Core Data management  
• Built on SQLite 
• Manages object graphs and relationships  
• Change tracking and notifications  
• Automatic version tracking and multi-writer conflict resolution  
- Automatic connection pooling 
• CloudKit integration (new with iOS 13) 
• Live queries
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Core Data 

Core Data management  
• Automatic memory management 
• Statement aggregation in transactions 
• Schema migrations 
• Denormalization (new with iOS 13) 
• And so much more!



Reduction in code to support the model layer

50–70%



•SQLite



•Connections 
•Journaling 
•Transactions 
•File size and privacy 
•Partial indexes  

•



•Connections



Opening and Closing Connections

Can cause expensive operations! 
• Consistency checking 
• Journal recovery 
• Journal checkpointing



Opening and Closing Connections

Can cause expensive operations! 
• Consistency checking 
• Journal recovery 
• Journal checkpointing 

Recommended usage model 
• Keep connections open as long as possible 
• Close only when necessary 
• Pool connections on multi-threaded processes



•Journaling



Delete Mode Journaling

Default SQLite journaling mode



How Does Delete Mode Journaling Work?
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Database



WAL Mode Journaling Reduces Writes

PRAGMA journal_mode=WAL; 

Write Ahead Logging 

Combines multiple writes to the same page 

Uses fewer barriers 

Supports multiple readers at the same time as a writer 

Supports snapshots 
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How Does WAL Mode Journaling Work?

Database

Write Ahead Log



WAL mode is more  
efficient for most use cases.



•Transactions



Transactions Help Reduce Writes

Use for multiple INSERT, UPDATE, and DELETE statements 



Transactions Help Reduce Writes

Use for multiple INSERT, UPDATE, and DELETE statements 

Pages that are changed by multiple statements are only written once 



Multiple Single Statement Transactions

Transaction #1

Transaction #2

Transaction #3



Multiple Statement Transaction

with multiple statementsTransaction #1



Transactions Help Reduce Writes

Use for multiple INSERT, UPDATE, and DELETE statements 

Pages that are changed by multiple statements are only written once 

Useful for aggregating changes over time!



•File Size and Privacy



File Size and Privacy

What happens when we delete data from a database? 

Space containing the deleted data is marked as free 

While no longer part of the database the deleted data is still on disk



File Size and Privacy

PRAGMA schema.secure_delete=FAST; 

How do we securely delete sensitive data? 



File Size and Privacy
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File Size and Privacy

PRAGMA schema.secure_delete=FAST; 

How do we securely delete sensitive data? 
• Automatically zeros deleted data 
• No cost for data within the same page as the header 
• Default behavior starting with iOS 13



File Size and Privacy

Don't use VACUUM 



File Size and Privacy

Don't use VACUUM 
• VACUUM is a slow I/O intensive operation
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Why Is VACUUM Expensive?

Database



File Size and Privacy

Don't use VACUUM 
• VACUUM is a slow I/O intensive operation 
•All valid data gets written at least twice! 



File Size and Privacy

PRAGMA schema.auto_vacuum=INCREMENTAL; 

PRAGMA schema.incremental_vacuum=(N); 
// ’N’ is the number pages to be vacuumed



How Is Incremental Auto Vacuum More Efficient?

Database

Write Ahead Log



How Is Incremental Auto Vacuum More Efficient?

Write Ahead Log

Database

Updated parent node Pages to migrate



How Is Incremental Auto Vacuum More Efficient?

Write Ahead Log

Database

Updated parent node Truncated Database

Migrated page Migrated page



Use incremental auto vacuum and  
fast secure delete to manage  
both file size and privacy.



•Partial Indexes



Indexes

Faster ORDER BY, GROUP BY, and WHERE clauses  

Each index adds additional I/O when writing to the database 



Partial Indexes

Indexes with a WHERE clause 

Partial indexes only store data which matches the WHERE clause 

Queries that do not match the WHERE clause cannot use the index



•SQLite Summary
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Keep database connections open 

Use WAL mode 

Multiple statements per transaction 

Fast secure delete and auto vacuum incremental 

Partial indexes

SQLite Summary 
Best practices



Alejandro Lucena, Developer Tools
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File Activity Instrument

•Supports all Apple devices

•Support for tracing single processes and all processes

•Obtains both logical and physical I/O information

•Offers automated reasoning
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Automated Reasoning
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•Excessive physical writes

•Failed I/O related calls



Automated Reasoning

•Excessive physical writes

•Failed I/O related calls

•Suboptimal caching



File Activity Instrument



File Activity Instrument
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Open and Close as Needed 
Filesystem Suggestions — Detail view
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Delete Mode Journaling 
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WAL Mode Journaling 



Journaling Comparison 
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Journaling Mode Comparison

WAL Journaling Delete Mode Journaling
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Multiple Statement Transaction



Transactions Comparison

Multiple Statement Single Statement
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Multiple Statement Single Statement



Full Vacuum



Full Vacuum



Incremental Vacuum



Incremental Vacuum



Vacuuming Comparison

Incremental Full
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Summary

Apply these lessons

Profile with File Activity Instrument

Continue optimizing storage!



More Information
developer.apple.com/wwdc19/419

Making Apps with Core Data WWDC 2019

Performance, Power, Crashes, and Debugging Lab Friday, 3:00




