
#WWDC18

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Guillem Viñals Gangolells, GPU Software Performance
Ohad Frenkel, Game Technologies

•Metal Game Performance Optimization
•Session 612

Develop awesome games

technicallyDevelop awesome games

The Talos Principle
Croteam / Devolver Digital

Features supported in iOS

Physically-based HDR rendering

Dynamic shadows

Real-time reflections

Multi-threaded rendering

Full-screen anti-aliasing

Post processing effects

•Profiling Tools
•Frame Pacing
•Thread Priorities
•Thermal States
•Unnecessary GPU Work

•Profiling Tools

Profile early and often

Know Your Tools

Instruments

Xcode Metal Frame Debugger

Game Performance Template
NEW

Game Performance

Game Performance Template
NEW

Game Performance Template
NEW

System Trace

Game Performance Template
NEW

System Trace Time Profiler

Game Performance Template
NEW

System Trace Time Profiler Metal System Trace

System Trace and Time Profiler

System Trace and Time Profiler

System Trace and Time Profiler

System Trace in Depth WWDC 2016

Using Time Profiler in Instruments WWDC 2016

Metal System Trace

Metal System Trace

Metal System Trace

Metal Performance Optimization Techniques WWDC 2015

Metal 2 Optimization and Debugging WWDC 2017

Thread States View
NEW

Thread States View
NEW

CPU

CPU

•Frame Pacing

40 FPS 30 FPS

Micro Stuttering

Inconsistent frame rate
• Frame time higher than display refresh interval
• Game logic timing errors

Naive Approach

Present as fast as possible

// Render Scene

...

// Get drawable and present

if let drawable = view.currentDrawable {

 // Render Final Pass

 ...

 commandBuffer.present(drawable)

}
commandBuffer.commit()

Naive Approach

Present as fast as possible

// Render Scene

...

// Get drawable and present

if let drawable = view.currentDrawable {

 // Render Final Pass

 ...

 commandBuffer.present(drawable)

}
commandBuffer.commit()

Do not usleep() to pace frames!

Naive Approach

Present as fast as possible

CPU

GPU

Display

VSYNC 0 1 8 1097 82 53 64

Naive Approach

Present as fast as possible

B

A

CCPU

GPU

Display

VSYNC 0 1 8 1097 82 53 64

Naive Approach

Present as fast as possible

B

A

C

C

A

CPU

GPU

Display

VSYNC 0 1 8 1097 82 53 64

Naive Approach

Present as fast as possible

B

A

B

A

C

C

A

CPU

GPU

Display

VSYNC 0 1 8 1097 82 53 64

Naive Approach

Present as fast as possible

B

A

B

A

C

C

A

CPU

GPU

Display

VSYNC

A

B

B

C A

C

C

B

A

A

B

C

B

C

A

0 1 8 1097 82 53 64

Naive Approach

Present as fast as possible

B

A

B

A

C

C

A

CPU

GPU

Display

VSYNC

A

B

B

C A

C

C

B

A

A

B

C

B

C

A

0 1 8 1097 82 53 64

•Demo

Best Practice

Target explicit frame rate

Use the following APIs (iOS 10.3+)
• MTLDrawable addPresentedHandler
• MTLCommandBuffer presentDrawable afterMinimumDuration
• MTLCommandBuffer presentDrawable atTime

Explicit Frame Pacing

Minimum frame duration of 33ms

0 1 8 1097 82 53 64

CPU

GPU

Display

VSYNC

Explicit Frame Pacing

Minimum frame duration of 33ms

CB

C

A

0 1 8 1097 82 53 64

CPU

GPU

Display

VSYNC

Explicit Frame Pacing

Minimum frame duration of 33ms

CB

C

A

B

B

C

A

A

B B

A

A

C

C

A

0 1 8 1097 82 53 64

CPU

GPU

Display

VSYNC

Explicit Frame Pacing

Minimum frame duration of 33ms

CB

C

A

B

B

C

A

A

B B

A

A

C

C

A

0 1 8 1097 82 53 64

CPU

GPU

Display

VSYNC

Explicit Frame Pacing

Minimum frame duration of 33ms

// Render Scene

...

// Get drawable and present at 30 FPS

if let drawable = view.currentDrawable {

 // Render Final Pass

 ...

 let duration = 33.0 / 1000.0 // Duration of 33 ms

 commandBuffer.present(drawable, afterMinimumDuration: duration)

}
commandBuffer.commit()

Explicit Frame Pacing

Minimum frame duration of 33ms

// Render Scene

...

// Get drawable and present at 30 FPS

if let drawable = view.currentDrawable {

 // Render Final Pass

 ...

 let duration = 33.0 / 1000.0 // Duration of 33 ms

 commandBuffer.present(drawable, afterMinimumDuration: duration)

}
commandBuffer.commit()

•Thread Priorities

Thread Stalling

Render thread gets preempted due to low priority
• Priority decay
• Priority inversion

Render thread gets preempted due to low priority

Naive Approach

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

Render thread gets preempted due to low priority

Naive Approach

B

C

C

A

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

Render thread gets preempted due to low priority

Naive Approach

B

C

C

A

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

Render thread gets preempted due to low priority

Naive Approach

B

C

C

A

A

B

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

Render thread gets preempted due to low priority

Naive Approach

B

C

C

A

A

B

A

A

C A

C

C

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

Render thread gets preempted due to low priority

Naive Approach

B

C

C

A

A

B

A

A

C A

C

C

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

•Demo

Best Practice

Configure the render thread
• Priority 45
• Opt out of Quality of Service

Correct Thread Priority

Priority set to 45 and no Quality of Service

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

Correct Thread Priority

Priority set to 45 and no Quality of Service

CB

C

A

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

Correct Thread Priority

Priority set to 45 and no Quality of Service

CB

C

A

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

Correct Thread Priority

Priority set to 45 and no Quality of Service

CB

C

A

A

A

B

B

B

C B

A

A

C

C

A C

B

B

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

Correct Thread Priority

Priority set to 45 and no Quality of Service

CB

C

A

A

A

B

B

B

C B

A

A

C

C

A C

B

B

0 1 8 10 11 1297 82 53 64

CPU

GPU

Display

VSYNC

Correct Thread Priority

Priority set to 45 and no Quality of Service

...
r = pthread_attr_init(&attr);

r = pthread_attr_setschedpolicy(&attr, SCHED_RR); // Opt out of Quality of Service
struct sched_param param = {.sched_priority = 45}; // Configure priority 45
r = pthread_attr_setschedparam(&attr, ¶m); // Set priority

r = pthread_create(&posixThreadID, &attr, &PosixThreadMainRoutine, NULL);
r = pthread_attr_destroy(&attr);
...

Correct Thread Priority

Priority set to 45 and no Quality of Service

...
r = pthread_attr_init(&attr);

r = pthread_attr_setschedpolicy(&attr, SCHED_RR); // Opt out of Quality of Service
struct sched_param param = {.sched_priority = 45}; // Configure priority 45
r = pthread_attr_setschedparam(&attr, ¶m); // Set priority

r = pthread_create(&posixThreadID, &attr, &PosixThreadMainRoutine, NULL);
r = pthread_attr_destroy(&attr);
...

•Thermal States

Design for sustained performance

Thermal Throttling

Impact on system performance
• High device temperature
• Low power mode enabled

Best Practice

Adjust the workload to the system state

Use the following APIs
• (iOS 11.0+) NSProcessInfo thermalState
• (iOS 9.0+) NSProcessInfo lowPowerModeEnabled
• (iOS 10.3+) MTLCommandBuffer GPUStartTime/GPUEndTime

// Determine thermal state

switch ProcessInfo.processInfo.thermalState {
case .fair:
 // Thermals are fair
 // Consider taking proactive measures to prevent higher thermals
case .serious:
 // Thermals are highly elevated
 // Help the system by taking corrective action
case .critical:
 // Thermals are extremely elevated
 // Help the system by taking immediate corrective action
default:
 // Thermals are okay
 // Go about your business
}

// Determine thermal state

switch ProcessInfo.processInfo.thermalState {
case .fair:
 // Thermals are fair
 // Consider taking proactive measures to prevent higher thermals
case .serious:
 // Thermals are highly elevated
 // Help the system by taking corrective action
case .critical:
 // Thermals are extremely elevated
 // Help the system by taking immediate corrective action
default:
 // Thermals are okay
 // Go about your business
}

// Determine thermal state

switch ProcessInfo.processInfo.thermalState {
case .fair:
 // Thermals are fair
 // Consider taking proactive measures to prevent higher thermals
case .serious:
 // Thermals are highly elevated
 // Help the system by taking corrective action
case .critical:
 // Thermals are extremely elevated
 // Help the system by taking immediate corrective action
default:
 // Thermals are okay
 // Go about your business
}

// Determine thermal state

switch ProcessInfo.processInfo.thermalState {
case .fair:
 // Thermals are fair
 // Consider taking proactive measures to prevent higher thermals
case .serious:
 // Thermals are highly elevated
 // Help the system by taking corrective action
case .critical:
 // Thermals are extremely elevated
 // Help the system by taking immediate corrective action
default:
 // Thermals are okay
 // Go about your business
}

// Determine thermal state

switch ProcessInfo.processInfo.thermalState {
case .fair:
 // Thermals are fair
 // Consider taking proactive measures to prevent higher thermals
case .serious:
 // Thermals are highly elevated
 // Help the system by taking corrective action
case .critical:
 // Thermals are extremely elevated
 // Help the system by taking immediate corrective action
default:
 // Thermals are okay
 // Go about your business
}

Adjust the Workload

Target sustainable framerate

Reduce the resolution

Simplify the shadow maps

Use smaller textures

Decrease the level of detail (LOD) for geometry

Simplify post-processing and effects

•Unnecessary GPU Work

Ohad Frenkel, Game Technologies

Wasted GPU Time

Waste of power and GPU budget
• Large resources
• Unused GPU work

Best Practice

Profile the GPU
• Understand the cost of every rendering feature
• Remove excessive work

Metal System Trace

Accurate timing for Vertex, Fragment, and Compute work

Ideal to measure GPU budget

Metal System Trace

Accurate timing for Vertex, Fragment, and Compute work

Ideal to measure GPU budget

Dependency Viewer

Dependency Viewer

Dependency Viewer

Dependency Viewer

Dependency Viewer

Dependency Viewer

Dependency Viewer

•Demo

Finding Hidden Complexity

Shadow map

Main pass

HUD

Composite pass

Shadow map

HUDMain pass

Composite 
Pass

Cascaded shadow maps (3 passes)

SSAO (5 passes)

Main pass

HDR

Post-process (5 passes)

Composite pass

And more…

Finding Hidden Complexity

Shadows

SSAO

Main
pass HDR

Post-
process

HUD Composite

Final blur

Profile!

Take-Away

Profile early and often

Target a consistent frame rate

Set the correct thread priorities

Adapt to system load and thermals

Don’t submit unnecessary work to the GPU

More Information
https://developer.apple.com/wwdc18/612

Metal Shader Debugging and Profiling WWDC 2018

Metal Debugging and Profiling Lab Technology Lab 5 Fri 12:00 PM

Metal for Game Developers WWDC 2018

