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Your mission: Improve performance



Introducing Signposts

Signposts 
• Part of the os_log family 
• Performance-focused time markers 

Instruments 
• Aggregate and analyze signpost data 
• Visualize activity over time

Signposts

Application Instruments

NEW



let logHandle = OSLog(subsystem: "com.example.widget", category: "Setup") 

os_log(.info, log: logHandle, "Hello, %{public}s!", world) 

Our new logging system was introduced at WWDC 2016 
• Built for debugging with efficiency and privacy in mind

Logging

Unified Logging and Activity Tracing WWDC 2016

https://developer.apple.com/documentation/os/logging



let logHandle = OSLog(subsystem: "com.example.widget", category: "Setup") 

os_log(.info, log: logHandle, "Hello, %{public}s!", world) 

Our new logging system was introduced at WWDC 2016 
• Built for debugging with efficiency and privacy in mind 

Signposts created for investigating performance 
• Built for performance use case and integration with developer tools

Logging

Unified Logging and Activity Tracing WWDC 2016

https://developer.apple.com/documentation/os/logging





•Adopting signposts 
•Overlapping operations 
•Adding metadata 
•Controlling signposts 
•Investigating with Instruments



•Measuring Intervals with Signposts



• • •

• • •
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Fetch Asset X

Time

Fetch Asset Y Fetch Asset Z

b e
os_signpost(.begin, ...) os_signpost(.end, ...)



for element in panel.elements { 

    fetchAsset(for: element) 

} 



import os.signpost 

for element in panel.elements { 

    fetchAsset(for: element) 

} 



import os.signpost 

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 

for element in panel.elements { 

    fetchAsset(for: element) 

} 

Category: Use for grouping



import os.signpost 

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 

for element in panel.elements { 
    os_signpost(.begin, log: refreshLog, name: "Fetch Asset") 
    fetchAsset(for: element) 
    os_signpost(.end, log: refreshLog, name: "Fetch Asset") 
} 

NEW

Signpost name: A string literal 
that identifies interval
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import os.signpost 

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 

for element in panel.elements { 
    os_signpost(.begin, log: refreshLog, name: "Fetch Asset") 
    fetchAsset(for: element) 
    os_signpost(.end, log: refreshLog, name: "Fetch Asset") 
} 



import os.signpost 

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 

os_signpost(.begin, log: refreshLog, name: "Refresh Panel") 
for element in panel.elements { 
    os_signpost(.begin, log: refreshLog, name: "Fetch Asset") 
    fetchAsset(for: element) 
    os_signpost(.end, log: refreshLog, name: "Fetch Asset") 
} 
os_signpost(.end, log: refreshLog, name: "Refresh Panel") 

A different signpost name 
for this different interval
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•Measuring Asynchronous Intervals
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Signpost Names

os_signpost(.begin, log: refreshLog, name: "Fetch Asset") 
 
os_signpost(.end, log: refreshLog, name: "Fetch Asset") 

The string literal identifies signpost intervals 

The name must match at .begin and .end



Signpost IDs

let spid = OSSignpostID(log: refreshLog) 
os_signpost(.begin, log: refreshLog, name: "Fetch Asset", signpostID: spid) 
 
os_signpost(.end, log: refreshLog, name: "Fetch Asset", signpostID: spid) 

Use signpost IDs to tell overlapping operations apart 

While running, use the same IDs for each pair of .begin and .end



Making Signpost IDs

let spid = OSSignpostID(log: refreshLog) 

let spid = OSSignpostID(log: refreshLog, object: element) 

Signpost IDs are process-scoped 

Making from object is convenient if you have the same object at .begin and .end
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Signpost IDs



let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 

os_signpost(.begin, log: refreshLog, name: "Refresh Panel") 

for element in panel.elements { 

    os_signpost(.begin, log: refreshLog, name: "Fetch Asset") 
    fetchAsset(for: element) 
    os_signpost(.end, log: refreshLog, name: "Fetch Asset") 

} 

os_signpost(.end, log: refreshLog, name: "Refresh Panel") 



let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 

os_signpost(.begin, log: refreshLog, name: "Refresh Panel") 

for element in panel.elements { 

    os_signpost(.begin, log: refreshLog, name: "Fetch Asset") 
    fetchAssetAsync(for: element) { 
        os_signpost(.end, log: refreshLog, name: "Fetch Asset") 
    } 
} 
notifyWhenDone { 
    os_signpost(.end, log: refreshLog, name: "Refresh Panel") 
}

Completion handler for one asset

Completion handler for all assets



let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 

let spidForRefresh = OSSignpostID(log: refreshLog) 
os_signpost(.begin, log: refreshLog, name: "Refresh Panel") 

for element in panel.elements { 
    let spid = OSSignpostID(log: refreshLog, object: element) 
    os_signpost(.begin, log: refreshLog, name: "Fetch Asset") 
    fetchAssetAsync(for: element) { 
        os_signpost(.end, log: refreshLog, name: "Fetch Asset") 
    } 
} 
notifyWhenDone { 
    os_signpost(.end, log: refreshLog, name: "Refresh Panel") 
}



let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 

let spidForRefresh = OSSignpostID(log: refreshLog) 
os_signpost(.begin, log: refreshLog, name: "Refresh Panel", signpostID: spidForRefresh) 

for element in panel.elements { 
    let spid = OSSignpostID(log: refreshLog, object: element) 
    os_signpost(.begin, log: refreshLog, name: "Fetch Asset", signpostID: spid) 
    fetchAssetAsync(for: element) { 
        os_signpost(.end, log: refreshLog, name: "Fetch Asset", signpostID: spid) 
    } 
} 
notifyWhenDone { 
    os_signpost(.end, log: refreshLog, name: "Refresh Panel", signpostID: spidForRefresh) 
}



Example Represents

Log category "RefreshOperations" Related operations

Signpost name "Fetch Asset" An operation to measure

Signpost ID spid Single interval

log = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 

os_signpost(.begin, log: log, name: "Fetch Asset", signpostID: spid)

Log category

Signpost IDSignpost name

Organizing Signposts: A Hierarchy



•Adding Metadata to Signposts



Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics")



Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics", 
    "for particle") 

Add context to the .begin and .end



Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics", 
    "%d  %d  %d  %d", 
    x1, y1, x2, y2) 

Add context to the .begin and .end  

Pass arguments with os_log format string literal



Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics", 
    "%.1f  %.1f  %.2f  %.1f  %.1f", 
    x1, y1, m, x2, y2) 

Add context to the .begin and .end  

Pass arguments with os_log format string literal 

Pass many arguments with different types



Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics", 
    "%{public}s  %.1f  %.1f  %.2f  %.1f  %.1f", 
    description, x1, y1, m, x2, y2) 

Add context to the .begin and .end  

Pass arguments with os_log format string literal 

Pass many arguments with different types 

Pass dynamic strings



Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics", 
    "for %{public}s at (%.1f, %.1f) with mass %.2f and velocity (%.1f, %.1f)", 
    description, x1, y1, m, x2, y2) 

Add context to the .begin and .end  

Pass arguments with os_log format string literal 

Pass many arguments with different types 

Pass dynamic strings 

The format string is a fixed cost, so feel free to be descriptive!



•Adding Independent Events



Fetch Asset

b e

Time

os_signpost(.begin, ...) os_signpost(.end, ...)



Fetch Asset

b e

Time

os_signpost(.event, ...)

os_signpost(.begin, ...) os_signpost(.end, ...)



Signpost Events

os_signpost(.event, log: log, name: "Fetch Asset", 
    "Fetched first chunk, size %u", size) 

os_signpost(.event, log: log, name: "Swipe", 
    "For action 0x%x", actionCode) 

Marking a single point in time



Fetch Asset

b e

Time

Event: Connected to service

Event: Fetched first chunk



Fetch Asset

b e

Time

Event: Swipe to update



Fetch Asset

b e

Time

Events: Swiping to update 
over and over and over!

Event: Swipe to update



•Conditionally Enabling Signposts



Signposts Are Lightweight

Built to minimize observer effect 

Built for fine-grained measurement in a short time span



OSLog.disabled 

Take advantage of special log handle 

Just change the handle—can leave calling sites alone

Enabling and Disabling Signpost Categories



let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 

os_signpost(.begin, log: refreshLog, name: "Refresh Panel") 
for element in panel.elements { 
    os_signpost(.begin, log: refreshLog, name: "Fetch Asset") 
    fetchAsset(for: element) 
    os_signpost(.end, log: refreshLog, name: "Fetch Asset") 
} 
os_signpost(.end, log: refreshLog, name: "Refresh Panel") 



let refreshLog: OSLog 
if ProcessInfo.processInfo.environment.keys.contains("SIGNPOSTS_FOR_REFRESH") { 
    refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations") 
} else { 
    refreshLog = .disabled 
} 

os_signpost(.begin, log: refreshLog, name: "Refresh Panel") 
for element in panel.elements { 
    os_signpost(.begin, log: refreshLog, name: "Fetch Asset") 
    fetchAsset(for: element) 
    os_signpost(.end, log: refreshLog, name: "Fetch Asset") 
} 
os_signpost(.end, log: refreshLog, name: "Refresh Panel") 



if refreshLog.signpostsEnabled { 
    let information = copyDescription() 
    os_signpost(..., information) 
} 

For additional expensive code that is only useful for the signpost

Instrumentation-Specific Code



•Signposts in C



Signposts in C

Swift C

import os.signpost #include <os/signpost.h>

OSLog os_log_t, os_log_create()

.disabled OS_LOG_DISABLED

os_signpost(.begin, ...) os_signpost_interval_begin()

os_signpost(.end, ...) os_signpost_interval_end()

os_signpost(.event, ...) os_signpost_event_emit()

OSSignpostID os_signpost_id_t



Chad Woolf, Instruments

•Instruments



Instruments 10
NEW



Instruments 10

os_signpost

NEW



Instruments 10

os_signpost

Points of Interest

NEW



Instruments 10

os_signpost

Points of Interest

Custom instruments

NEW



•Demo 
•Visualizing signpost data



Summary

Annotate code with signposts 
• Easily mark intervals 
• Capture metadata of interest 

Use Instruments to view signpost data 
• Visualize where time is spent 
• Understand what program is doing



More Information
https://developer.apple.com/wwdc18/405

Creating Custom Instruments Lab Technology Lab 8 Wednesday 3:00PM

Creating Custom Instruments Hall 1 Thursday 11:00AM




