
#WWDC18

© 2018 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Shane Owara, Darwin Runtime
Chad Woolf, Instruments

•Measuring Performance Using Logging
•Signposts and Instruments
• Session 405

Your mission: Improve performance

Introducing Signposts

Signposts
• Part of the os_log family
• Performance-focused time markers

Instruments
• Aggregate and analyze signpost data
• Visualize activity over time

Signposts

Application Instruments

NEW

let logHandle = OSLog(subsystem: "com.example.widget", category: "Setup")

os_log(.info, log: logHandle, "Hello, %{public}s!", world)

Our new logging system was introduced at WWDC 2016
• Built for debugging with efficiency and privacy in mind

Logging

Unified Logging and Activity Tracing WWDC 2016

https://developer.apple.com/documentation/os/logging

let logHandle = OSLog(subsystem: "com.example.widget", category: "Setup")

os_log(.info, log: logHandle, "Hello, %{public}s!", world)

Our new logging system was introduced at WWDC 2016
• Built for debugging with efficiency and privacy in mind

Signposts created for investigating performance
• Built for performance use case and integration with developer tools

Logging

Unified Logging and Activity Tracing WWDC 2016

https://developer.apple.com/documentation/os/logging

•Adopting signposts
•Overlapping operations
•Adding metadata
•Controlling signposts
•Investigating with Instruments

•Measuring Intervals with Signposts

• • •

• • •

Fetch Asset X

Time

Fetch Asset Y Fetch Asset Z

Fetch Asset X

Time

Fetch Asset ZFetch Asset Y

Fetch Asset X

Time

Fetch Asset Y Fetch Asset Z

b e
os_signpost(.begin, ...) os_signpost(.end, ...)

for element in panel.elements {

 fetchAsset(for: element)

}

import os.signpost

for element in panel.elements {

 fetchAsset(for: element)

}

import os.signpost

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")

for element in panel.elements {

 fetchAsset(for: element)

}

Category: Use for grouping

import os.signpost

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")

for element in panel.elements {
 os_signpost(.begin, log: refreshLog, name: "Fetch Asset")
 fetchAsset(for: element)
 os_signpost(.end, log: refreshLog, name: "Fetch Asset")
}

NEW

Signpost name: A string literal
that identifies interval

Fetch Asset X

Time

Fetch Asset Y Fetch Asset Z

Fetch Asset X

Time

Fetch Asset Y Fetch Asset Z

b e b e b e

import os.signpost

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")

for element in panel.elements {
 os_signpost(.begin, log: refreshLog, name: "Fetch Asset")
 fetchAsset(for: element)
 os_signpost(.end, log: refreshLog, name: "Fetch Asset")
}

import os.signpost

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")

os_signpost(.begin, log: refreshLog, name: "Refresh Panel")
for element in panel.elements {
 os_signpost(.begin, log: refreshLog, name: "Fetch Asset")
 fetchAsset(for: element)
 os_signpost(.end, log: refreshLog, name: "Fetch Asset")
}
os_signpost(.end, log: refreshLog, name: "Refresh Panel")

A different signpost name
for this different interval

Fetch Asset X

Time

Fetch Asset Y Fetch Asset Z

b e b e b e

Fetch Asset X

Time

Fetch Asset Y Fetch Asset Z

b e b e b eb e

•Measuring Asynchronous Intervals

Fetch Asset X

Time

Fetch Asset Y Fetch Asset Z

Fetch Asset X

Fetch Asset Y

Fetch Asset Z

Time

Asynchronous Operation X

Asynchronous Operation Y

Asynchronous Operation Z

Fetch Asset X

Fetch Asset Y

Fetch Asset Z

b eb eb e

Time

Asynchronous Operation X

Asynchronous Operation Y

Asynchronous Operation Z

Signpost Names

os_signpost(.begin, log: refreshLog, name: "Fetch Asset")
 
os_signpost(.end, log: refreshLog, name: "Fetch Asset")

The string literal identifies signpost intervals

The name must match at .begin and .end

Signpost IDs

let spid = OSSignpostID(log: refreshLog)
os_signpost(.begin, log: refreshLog, name: "Fetch Asset", signpostID: spid)
 
os_signpost(.end, log: refreshLog, name: "Fetch Asset", signpostID: spid)

Use signpost IDs to tell overlapping operations apart

While running, use the same IDs for each pair of .begin and .end

Making Signpost IDs

let spid = OSSignpostID(log: refreshLog)

let spid = OSSignpostID(log: refreshLog, object: element)

Signpost IDs are process-scoped

Making from object is convenient if you have the same object at .begin and .end

Fetch Asset X

Fetch Asset Y

Fetch Asset Z

b eb eb e

Time

Asynchronous Operation X

Asynchronous Operation Y

Asynchronous Operation Z

Fetch Asset X

Fetch Asset Y

Fetch Asset Z

b eb eb e
X Y Z X Y Z

Time
Signpost IDs

Asynchronous Operation X

Asynchronous Operation Y

Asynchronous Operation Z

Fetch Asset X

Fetch Asset Y

Fetch Asset Z

b eb eb e
X Y Z X YZ

Time

Asynchronous Operation X

Asynchronous Operation Y

Asynchronous Operation Z

Signpost IDs

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")

os_signpost(.begin, log: refreshLog, name: "Refresh Panel")

for element in panel.elements {

 os_signpost(.begin, log: refreshLog, name: "Fetch Asset")
 fetchAsset(for: element)
 os_signpost(.end, log: refreshLog, name: "Fetch Asset")

}

os_signpost(.end, log: refreshLog, name: "Refresh Panel")

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")

os_signpost(.begin, log: refreshLog, name: "Refresh Panel")

for element in panel.elements {

 os_signpost(.begin, log: refreshLog, name: "Fetch Asset")
 fetchAssetAsync(for: element) {
 os_signpost(.end, log: refreshLog, name: "Fetch Asset")
 }
}
notifyWhenDone {
 os_signpost(.end, log: refreshLog, name: "Refresh Panel")
}

Completion handler for one asset

Completion handler for all assets

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")

let spidForRefresh = OSSignpostID(log: refreshLog)
os_signpost(.begin, log: refreshLog, name: "Refresh Panel")

for element in panel.elements {
 let spid = OSSignpostID(log: refreshLog, object: element)
 os_signpost(.begin, log: refreshLog, name: "Fetch Asset")
 fetchAssetAsync(for: element) {
 os_signpost(.end, log: refreshLog, name: "Fetch Asset")
 }
}
notifyWhenDone {
 os_signpost(.end, log: refreshLog, name: "Refresh Panel")
}

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")

let spidForRefresh = OSSignpostID(log: refreshLog)
os_signpost(.begin, log: refreshLog, name: "Refresh Panel", signpostID: spidForRefresh)

for element in panel.elements {
 let spid = OSSignpostID(log: refreshLog, object: element)
 os_signpost(.begin, log: refreshLog, name: "Fetch Asset", signpostID: spid)
 fetchAssetAsync(for: element) {
 os_signpost(.end, log: refreshLog, name: "Fetch Asset", signpostID: spid)
 }
}
notifyWhenDone {
 os_signpost(.end, log: refreshLog, name: "Refresh Panel", signpostID: spidForRefresh)
}

Example Represents

Log category "RefreshOperations" Related operations

Signpost name "Fetch Asset" An operation to measure

Signpost ID spid Single interval

log = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")

os_signpost(.begin, log: log, name: "Fetch Asset", signpostID: spid)

Log category

Signpost IDSignpost name

Organizing Signposts: A Hierarchy

•Adding Metadata to Signposts

Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics")

Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics",
 "for particle")

Add context to the .begin and .end

Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics",
 "%d %d %d %d",
 x1, y1, x2, y2)

Add context to the .begin and .end

Pass arguments with os_log format string literal

Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics",
 "%.1f %.1f %.2f %.1f %.1f",
 x1, y1, m, x2, y2)

Add context to the .begin and .end

Pass arguments with os_log format string literal

Pass many arguments with different types

Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics",
 "%{public}s %.1f %.1f %.2f %.1f %.1f",
 description, x1, y1, m, x2, y2)

Add context to the .begin and .end

Pass arguments with os_log format string literal

Pass many arguments with different types

Pass dynamic strings

Custom Metadata in Signpost Arguments

os_signpost(.begin, log: log, name: "Compute Physics",
 "for %{public}s at (%.1f, %.1f) with mass %.2f and velocity (%.1f, %.1f)",
 description, x1, y1, m, x2, y2)

Add context to the .begin and .end

Pass arguments with os_log format string literal

Pass many arguments with different types

Pass dynamic strings

The format string is a fixed cost, so feel free to be descriptive!

•Adding Independent Events

Fetch Asset

b e

Time

os_signpost(.begin, ...) os_signpost(.end, ...)

Fetch Asset

b e

Time

os_signpost(.event, ...)

os_signpost(.begin, ...) os_signpost(.end, ...)

Signpost Events

os_signpost(.event, log: log, name: "Fetch Asset",
 "Fetched first chunk, size %u", size)

os_signpost(.event, log: log, name: "Swipe",
 "For action 0x%x", actionCode)

Marking a single point in time

Fetch Asset

b e

Time

Event: Connected to service

Event: Fetched first chunk

Fetch Asset

b e

Time

Event: Swipe to update

Fetch Asset

b e

Time

Events: Swiping to update
over and over and over!

Event: Swipe to update

•Conditionally Enabling Signposts

Signposts Are Lightweight

Built to minimize observer effect

Built for fine-grained measurement in a short time span

OSLog.disabled

Take advantage of special log handle

Just change the handle—can leave calling sites alone

Enabling and Disabling Signpost Categories

let refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")

os_signpost(.begin, log: refreshLog, name: "Refresh Panel")
for element in panel.elements {
 os_signpost(.begin, log: refreshLog, name: "Fetch Asset")
 fetchAsset(for: element)
 os_signpost(.end, log: refreshLog, name: "Fetch Asset")
}
os_signpost(.end, log: refreshLog, name: "Refresh Panel")

let refreshLog: OSLog
if ProcessInfo.processInfo.environment.keys.contains("SIGNPOSTS_FOR_REFRESH") {
 refreshLog = OSLog(subsystem: "com.example.your-app", category: "RefreshOperations")
} else {
 refreshLog = .disabled
}

os_signpost(.begin, log: refreshLog, name: "Refresh Panel")
for element in panel.elements {
 os_signpost(.begin, log: refreshLog, name: "Fetch Asset")
 fetchAsset(for: element)
 os_signpost(.end, log: refreshLog, name: "Fetch Asset")
}
os_signpost(.end, log: refreshLog, name: "Refresh Panel")

if refreshLog.signpostsEnabled {
 let information = copyDescription()
 os_signpost(..., information)
}

For additional expensive code that is only useful for the signpost

Instrumentation-Specific Code

•Signposts in C

Signposts in C

Swift C

import os.signpost #include <os/signpost.h>

OSLog os_log_t, os_log_create()

.disabled OS_LOG_DISABLED

os_signpost(.begin, ...) os_signpost_interval_begin()

os_signpost(.end, ...) os_signpost_interval_end()

os_signpost(.event, ...) os_signpost_event_emit()

OSSignpostID os_signpost_id_t

Chad Woolf, Instruments

•Instruments

Instruments 10
NEW

Instruments 10

os_signpost

NEW

Instruments 10

os_signpost

Points of Interest

NEW

Instruments 10

os_signpost

Points of Interest

Custom instruments

NEW

•Demo
•Visualizing signpost data

Summary

Annotate code with signposts
• Easily mark intervals
• Capture metadata of interest

Use Instruments to view signpost data
• Visualize where time is spent
• Understand what program is doing

More Information
https://developer.apple.com/wwdc18/405

Creating Custom Instruments Lab Technology Lab 8 Wednesday 3:00PM

Creating Custom Instruments Hall 1 Thursday 11:00AM

