
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

System Frameworks #WWDC16

Session 720

Concurrent Programming
with GCD in Swift 3

Matt Wright Darwin Runtime Engineer
Pierre Habouzit Darwin Runtime Engineer

Main Thread

User Interface

Main Thread

User Interface

Main Thread

Data Transform

User Interface

Main Thread

Data Transform

Concurrency

--

Concurrency

Threads allow execution of code at the
same time

--

Concurrency

Threads allow execution of code at the
same time
CPU cores can each execute a single thread
at any given time

--

Concurrency

Threads allow execution of code at the
same time
CPU cores can each execute a single thread
at any given time
Maintaining code invariants is more difficult
with concurrency

Dispatch Queues and Run Loops

Dispatch Queue

Dispatch Queues and Run Loops

Dispatch Queue () -> ()

Dispatch Queues and Run Loops

Dispatch Queue () -> ()

Dispatch Queues and Run Loops

Worker

Dispatch Queue

Dispatch Queues and Run Loops

Worker

Dispatch Queue

Dispatch Queues and Run Loops

Worker

Dispatch Queue

Dispatch Queues and Run Loops

Thread

Worker

Run Loop

Dispatch Queue

Dispatch Queues and Run Loops

Thread

Worker

Run Loop

Dispatch Queue

Dispatch Queues and Run Loops

Main Thread

Thread

Worker

Run Loop

Dispatch Queue

Main Run Loop Main Queue

Dispatch Queues and Run Loops

Main Thread

Thread

Worker

Dispatch Queue

Asynchronous Execution

Dispatch Queue

Asynchronous Execution

() -> ()

Dispatch Queue

Asynchronous Execution

() -> ()() -> ()

Dispatch Queue () -> ()

Asynchronous Execution

() -> ()() -> ()

Dispatch Queue () -> ()

Asynchronous Execution

() -> ()() -> ()Worker

Dispatch Queue () -> ()

Asynchronous Execution

() -> ()Worker

Dispatch Queue () -> ()

Asynchronous Execution

Worker

Dispatch Queue

Asynchronous Execution

Worker

Dispatch Queue

Asynchronous Execution

Synchronous Execution

Thread

Dispatch QueueWorker

Synchronous Execution

Thread

Dispatch Queue () -> ()Worker

Synchronous Execution

Thread

Dispatch Queue () -> ()

() -> ()

Worker

Synchronous Execution

Thread

Dispatch Queue () -> ()

() -> ()

() -> ()Worker

Synchronous Execution

Thread

Dispatch Queue () -> ()() -> ()

() -> ()

() -> ()Worker

Synchronous Execution

Thread

Dispatch Queue () -> ()() -> ()

() -> ()

() -> ()Worker

Synchronous Execution

Thread

Dispatch Queue () -> ()

() -> ()

() -> ()Worker

Synchronous Execution

Thread Dispatch Queue

() -> ()

() -> ()

() -> ()Worker

Synchronous Execution

Thread Dispatch Queue

() -> ()Worker

Synchronous Execution

Thread

Dispatch Queue () -> ()Worker

Synchronous Execution

Thread

Dispatch QueueWorker

Synchronous Execution

Thread

Dispatch Queue

Getting Work Off Your Main Thread

User Interface

Main Thread

Getting Work Off Your Main Thread

User Interface

Main Thread

Transform

Getting Work Off Your Main Thread

User Interface

Main Thread

Transform

Getting Work Off Your Main Thread

User Interface

Main Thread Dispatch Queue

Transform

Getting Work Off Your Main Thread

User Interface

Main Thread Dispatch Queue

Transform

Data

Getting Work Off Your Main Thread

User Interface

Main Thread Dispatch Queue

TransformData

Getting Work Off Your Main Thread

User Interface

Main Thread Dispatch Queue

TransformData

Getting Work Off Your Main Thread

User Interface

Main Thread Dispatch Queue

Transform

Data

Getting Work Off Your Main Thread

Create a Dispatch Queue to which you submit work

let queue = DispatchQueue(label: "com.example.imagetransform")

queue.async {

 let smallImage = image.resize(to: rect)

}

Getting Work Off Your Main Thread

Create a Dispatch Queue to which you submit work

let queue = DispatchQueue(label: "com.example.imagetransform")

queue.async {

 let smallImage = image.resize(to: rect)

}

Getting Work Off Your Main Thread

Create a Dispatch Queue to which you submit work
Dispatch Queues execute work items in FIFO order

let queue = DispatchQueue(label: "com.example.imagetransform")

queue.async {

 let smallImage = image.resize(to: rect)

}

Getting Work Off Your Main Thread

Create a Dispatch Queue to which you submit work
Dispatch Queues execute work items in FIFO order
Use .async to execute your work on the queue

let queue = DispatchQueue(label: "com.example.imagetransform")

queue.async {

 let smallImage = image.resize(to: rect)

}

Getting Back to Your Main Thread

Dispatch main queue executes all items on the main thread

let queue = DispatchQueue(label: "com.example.imagetransform")

queue.async {

 let smallImage = image.resize(to: rect)

 DispatchQueue.main.async {

 imageView.image = smallImage

 }

}

Getting Back to Your Main Thread

Dispatch main queue executes all items on the main thread

let queue = DispatchQueue(label: "com.example.imagetransform")

queue.async {

 let smallImage = image.resize(to: rect)

 DispatchQueue.main.async {

 imageView.image = smallImage

 }

}

Getting Back to Your Main Thread

Dispatch main queue executes all items on the main thread
Simple to chain work between queues

let queue = DispatchQueue(label: "com.example.imagetransform")

queue.async {

 let smallImage = image.resize(to: rect)

 DispatchQueue.main.async {

 imageView.image = smallImage

 }

}

Controlling Concurrency

Controlling Concurrency

Thread pool will limit concurrency

Controlling Concurrency

Thread pool will limit concurrency
Worker threads that block can cause more to spawn

Controlling Concurrency

Thread pool will limit concurrency
Worker threads that block can cause more to spawn
Choosing the right number of queues to use is important

Controlling Concurrency

Thread pool will limit concurrency
Worker threads that block can cause more to spawn
Choosing the right number of queues to use is important

Building Responsive and Efficient Apps with GCD WWDC 2015

Structuring Your Application

Structuring Your Application

Identify areas of data flow in  
your application DatabaseData TransformNetworkingUser Interface

Main Queue

Structuring Your Application

Identify areas of data flow in  
your application
Split into distinct subsystems

Database

Data Transform

Networking

User Interface

Main Queue

Structuring Your Application

Identify areas of data flow in  
your application
Split into distinct subsystems
Queues at subsystem granularity

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Chaining vs. Grouping Work

Chaining Grouping

Chaining vs. Grouping Work

Chaining Grouping

Chaining vs. Grouping Work

Chaining Grouping

Chaining vs. Grouping Work

Chaining Grouping

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

let group = DispatchGroup()

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

let group = DispatchGroup()

queue.async(group: group) { … }

1

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group
1

queue.async(group: group) { … }

let group = DispatchGroup()

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group
1

queue2.async(group: group) { … }

queue.async(group: group) { … }

let group = DispatchGroup()
2

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

queue2.async(group: group) { … }

2

queue.async(group: group) { … }

let group = DispatchGroup()

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

queue2.async(group: group) { … }

2

queue.async(group: group) { … }

let group = DispatchGroup()

queue3.async(group: group) { … }

3

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

queue2.async(group: group) { … }

queue.async(group: group) { … }

let group = DispatchGroup()
12

queue3.async(group: group) { … }

3

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

group.notify(queue: DispatchQueue.main) { … }

queue2.async(group: group) { … }

queue.async(group: group) { … }

let group = DispatchGroup()
12

queue3.async(group: group) { … }

3

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

group.notify(queue: DispatchQueue.main) { … }

queue2.async(group: group) { … }

queue.async(group: group) { … }

let group = DispatchGroup()
12

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

group.notify(queue: DispatchQueue.main) { … }

queue2.async(group: group) { … }

let group = DispatchGroup()
1

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

group.notify(queue: DispatchQueue.main) { … }

let group = DispatchGroup()

Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

let group = DispatchGroup()

Synchronizing Between Subsystems

Can use subsystem serial queues for mutual exclusion

Synchronizing Between Subsystems

var count: Int {
 queue.sync { self.connections.count }
}

Can use subsystem serial queues for mutual exclusion
Use .sync to safely access properties from subsystems

Synchronizing Between Subsystems

var count: Int {
 queue.sync { self.connections.count }
}

Can use subsystem serial queues for mutual exclusion
Use .sync to safely access properties from subsystems
Be aware of “lock ordering” introduced between subsystems

Synchronizing Between Subsystems

var count: Int {
 queue.sync { self.connections.count }
}

Can use subsystem serial queues for mutual exclusion
Use .sync to safely access properties from subsystems
Be aware of “lock ordering” introduced between subsystems

Synchronizing Between Subsystems

var count: Int {
 queue.sync { self.connections.count }
}

Can use subsystem serial queues for mutual exclusion
Use .sync to safely access properties from subsystems
Be aware of “lock ordering” introduced between subsystems

Synchronizing Between Subsystems

var count: Int {
 queue.sync { self.connections.count }
}

Can use subsystem serial queues for mutual exclusion
Use .sync to safely access properties from subsystems
Be aware of “lock ordering” introduced between subsystems

Dispatch Inside Subsystems

Choosing a Quality of Service

QoS provides explicit classification of work User Interactive

User Initiated

Utility

Background

Choosing a Quality of Service

QoS provides explicit classification of work
Indicates developer intent

User Interactive

User Initiated

Utility

Background

Choosing a Quality of Service

QoS provides explicit classification of work
Indicates developer intent
Affects execution properties of your work

User Interactive

User Initiated

Utility

Background

Choosing a Quality of Service

QoS provides explicit classification of work
Indicates developer intent
Affects execution properties of your work

User Interactive

User Initiated

Utility

Background

Building Responsive and Efficient Apps with GCD WWDC 2015

Using Quality of Service Classes

queue.async(qos: .background) {

 print("Maintenance work")

}

queue.async(qos: .userInitiated) {

 print(“Button tapped”)

}

Using Quality of Service Classes

Use .async to submit work with a specific QoS class

queue.async(qos: .background) {

 print("Maintenance work")

}

queue.async(qos: .userInitiated) {

 print(“Button tapped”)

}

Using Quality of Service Classes

Use .async to submit work with a specific QoS class
Dispatch helps resolve priority inversions

queue.async(qos: .background) {

 print("Maintenance work")

}

queue.async(qos: .userInitiated) {

 print(“Button tapped”)

}

Using Quality of Service Classes

Use .async to submit work with a specific QoS class
Dispatch helps resolve priority inversions
Create single-purpose queues with a specific QoS class

queue.async(qos: .background) {

 print("Maintenance work")

}

queue.async(qos: .userInitiated) {

 print(“Button tapped”)

}

DispatchWorkItem

By default .async captures execution context at time of submission

DispatchWorkItem

By default .async captures execution context at time of submission
Create DispatchWorkItem from closures to control execution properties

let item = DispatchWorkItem(flags: .assignCurrentContext) {

 print("Hello WWDC 2016!")

}

queue.async(execute: item)

DispatchWorkItem

By default .async captures execution context at time of submission
Create DispatchWorkItem from closures to control execution properties
Use .assignCurrentContext to capture current QoS at time of creation

let item = DispatchWorkItem(flags: .assignCurrentContext) {

 print("Hello WWDC 2016!")

}

queue.async(execute: item)

Waiting for Work Items

QueueMain Thread

Waiting for Work Items

Use .wait on work items to signal  
that this item needs to execute

QueueMain Thread

.wait

Waiting for Work Items

Use .wait on work items to signal  
that this item needs to execute
Dispatch elevates priority of queued  
work ahead

QueueMain Thread

.wait

Waiting for Work Items

Use .wait on work items to signal  
that this item needs to execute
Dispatch elevates priority of queued  
work ahead

QueueMain Thread

.wait

Waiting for Work Items

Use .wait on work items to signal  
that this item needs to execute
Dispatch elevates priority of queued  
work ahead
Waiting with a DispatchWorkItem  
gives ownership information

QueueMain Thread

.wait

Waiting for Work Items

Use .wait on work items to signal  
that this item needs to execute
Dispatch elevates priority of queued  
work ahead
Waiting with a DispatchWorkItem  
gives ownership information
Semaphores and Groups do not admit  
a concept of ownership

QueueMain Thread

.wait

Shared State Synchronization

Pierre Habouzit Darwin Runtime Engineer

Synchronization is not part of the language in Swift 3
Swift 3 and Synchronization

Global variables are initialized atomically

Synchronization is not part of the language in Swift 3
Swift 3 and Synchronization

Global variables are initialized atomically
Class properties are not atomic

Synchronization is not part of the language in Swift 3
Swift 3 and Synchronization

Global variables are initialized atomically
Class properties are not atomic
Lazy properties are not initialized atomically

“There is no such thing as a benign race.”

Herb Sutter Chair of the ISO C++ standards committee

“There is no such thing as a benign race.”

Herb Sutter Chair of the ISO C++ standards committee

Thread Sanitizer and Static Analysis Mission Thursday 10:00AM

Traditional C Locks in Swift

The Darwin module exposes traditional C lock types
• correct use of C struct based locks such as pthread_mutex_t is incredibly hard

Correct Use of Traditional Locks

Foundation.Lock can be used safely because it is a class

Correct Use of Traditional Locks

Foundation.Lock can be used safely because it is a class
Derive an Objective-C base class with struct based locks as ivars

@implementation LockableObject {

 os_unfair_lock _lock;

}

- (instancetype)init ...

- (void)lock { os_unfair_lock_lock(&_lock); }

- (void)unlock { os_unfair_lock_unlock(&_lock); }

@end

Correct Use of Traditional Locks

Foundation.Lock can be used safely because it is a class
Derive an Objective-C base class with struct based locks as ivars

@implementation LockableObject {

 os_unfair_lock _lock;

}

- (instancetype)init ...

- (void)lock { os_unfair_lock_lock(&_lock); }

- (void)unlock { os_unfair_lock_unlock(&_lock); }

@end

Use GCD for Synchronization

Use DispatchQueue.sync(execute:)
• harder to misuse than traditional locks, more robust
• better instrumentation (Xcode, assertions, …)

// Use Explicit Synchronization

class MyObject {

 private let internalState: Int

 private let internalQueue: DispatchQueue

}

// Use Explicit Synchronization

class MyObject {

 private let internalState: Int

 private let internalQueue: DispatchQueue

 var state: Int {

 get {

 return internalQueue.sync { internalState }

 }

 }

}

// Use Explicit Synchronization

class MyObject {

 private let internalState: Int

 private let internalQueue: DispatchQueue

 var state: Int {

 get {

 return internalQueue.sync { internalState }

 }

 set (newState) {

 internalQueue.sync { internalState = newState }

 }

 }

}

Avoid data corruption
Preconditions

GCD lets you express several preconditions

NEW

Avoid data corruption
Preconditions

GCD lets you express several preconditions
• Code is running on a given queue

NEW

dispatchPrecondition(.onQueue(expectedQueue)))

Avoid data corruption
Preconditions

GCD lets you express several preconditions
• Code is running on a given queue
• Code is not running on a given queue

NEW

dispatchPrecondition(.onQueue(expectedQueue)))

dispatchPrecondition(.notOnQueue(unexpectedQueue)))

Object Lifecycle in a Concurrent World

Object Lifecycle in a Concurrent World

Object Lifecycle in a Concurrent World

1. Single threaded setup

Setup

Object Lifecycle in a Concurrent World

1. Single threaded setup
2. activate the concurrent state machine

Setup

Activated

Object Lifecycle in a Concurrent World

1. Single threaded setup
2. activate the concurrent state machine
3. invalidate the concurrent state machine

Setup

Activated

Invalidated

Object Lifecycle in a Concurrent World

1. Single threaded setup
2. activate the concurrent state machine
3. invalidate the concurrent state machine
4. Single threaded deallocation

Setup

Activated

Invalidated

Deallocation

Object Lifecycle in a Concurrent World

1. Single threaded setup
2. activate the concurrent state machine
3. invalidate the concurrent state machine
4. Single threaded deallocation

Setup

Activated

Invalidated

Deallocation

Observer Pattern

Database

Dispatch Queue Dispatch Queue

Networking

Main Queue

User Interface

Dispatch Queue

Data Transform

Observer Pattern

Main Queue

User Interface

Dispatch Queue

Data Transform

Observer Pattern

My App

Main Queue

User Interface

Dispatch Queue

Data Transform

Observer Pattern

My App

protocol SubsystemObserving {

 func systemStarted(...)

 func systemDone(...)

}

Main Queue

User Interface

Dispatch Queue

Data Transform

class BusyController: SubsystemObserving {

 // ...

}

Observer Pattern

My App

protocol SubsystemObserving {

 func systemStarted(...)

 func systemDone(...)

}

Main Queue

User Interface

Dispatch Queue

Data Transform

class BusyController: SubsystemObserving {

 // ...

}

Observer Pattern

My App

protocol SubsystemObserving {

 func systemStarted(...)

 func systemDone(...)

}

Main Queue

User Interface

Dispatch Queue

Data Transform

class BusyController: SubsystemObserving {

 // ...

}

Setup Setup
Activated

Invalidated

Deallocation

class BusyController: SubsystemObserving {

 init(...) { ... }

}

Activation
Invalidated

Deallocation

Setup
Activated

class BusyController: SubsystemObserving {

 init(...) { ... }

 func activate() {

 DataTransform.sharedInstance.register(observer: self, queue: DispatchQueue.main)

 }

}

Active State Machine Setup
Activated

Invalidated

Deallocation

class BusyController: SubsystemObserving {

 func systemStarted(...) { /* ... */ }

 func systemDone(...) { /* ... */ }

}

My App

class BusyController: SubsystemObserving {

 deinit {

 DataTransform.sharedInstance.unregister(observer: self)

 }

}

Deallocation Setup

Invalidated

Deallocation

Activated

Deallocation

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Setup

Invalidated

Deallocation

Activated

Deallocation

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Setup

Invalidated

Deallocation

Activated

Deallocation

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

Setup

Invalidated

Deallocation

Activated

Deallocation

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

Abandoned memory

Setup

Invalidated

Deallocation

Activated

Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

BusyController
1

Dispatch Queue

Observers

Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

12

Dispatch Queue

Observers

Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers

Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers

Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers

Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers

Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers

Deallocation

Main Queue

User Interface

Deadlocks

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers

// Deadlocks on Serial Queues Assert

Application Specific Information:

BUG IN CLIENT OF LIBDISPATCH: dispatch_barrier_sync called on queue already owned by current

thread

Thread 1 Crashed:: Dispatch queue: com.example.queue

0 libdispatch.dylib 0x00007fff920b44ee _dispatch_barrier_sync_f_slow + 675

1 <YOUR APP> 0x000000010a3d7f26 __main_block_invoke_2 + 38

2 libdispatch.dylib 0x00007fff920a8ed6 _dispatch_client_callout + 8

3 libdispatch.dylib 0x00007fff920a9b0e _dispatch_barrier_sync_f_invoke + 83

4 <YOUR APP> 0x000000010a3d7ef6 __main_block_invoke + 38

5 libdispatch.dylib 0x00007fff920b1d54 _dispatch_call_block_and_release + 12

6 libdispatch.dylib 0x00007fff920a8ed6 _dispatch_client_callout + 8

7 libdispatch.dylib 0x00007fff920c2d34 _dispatch_queue_serial_drain + 896

...

// Deadlocks on Serial Queues Assert

Application Specific Information:

BUG IN CLIENT OF LIBDISPATCH: dispatch_barrier_sync called on queue already owned by current

thread

Thread 1 Crashed:: Dispatch queue: com.example.queue

0 libdispatch.dylib 0x00007fff920b44ee _dispatch_barrier_sync_f_slow + 675

1 <YOUR APP> 0x000000010a3d7f26 __main_block_invoke_2 + 38

2 libdispatch.dylib 0x00007fff920a8ed6 _dispatch_client_callout + 8

3 libdispatch.dylib 0x00007fff920a9b0e _dispatch_barrier_sync_f_invoke + 83

4 <YOUR APP> 0x000000010a3d7ef6 __main_block_invoke + 38

5 libdispatch.dylib 0x00007fff920b1d54 _dispatch_call_block_and_release + 12

6 libdispatch.dylib 0x00007fff920a8ed6 _dispatch_client_callout + 8

7 libdispatch.dylib 0x00007fff920c2d34 _dispatch_queue_serial_drain + 896

...

Explicit Invalidation Setup
Activated

Deallocation

Invalidated

class BusyController: SubsystemObserving {

 func invalidate() {

 }

 deinit {

 }

}

Explicit Invalidation Setup
Activated

Deallocation

Invalidated

class BusyController: SubsystemObserving {

 func invalidate() {

 DataTransform.sharedInstance.unregister(observer: self)

 }

 deinit {

 }

}

Explicit Invalidation Setup
Activated

Deallocation

Invalidated

class BusyController: SubsystemObserving {

 func invalidate() {

 dispatchPrecondition(.onQueue(DispatchQueue.main))

 DataTransform.sharedInstance.unregister(observer: self)

 }

 deinit {

 }

}

class BusyController: SubsystemObserving {

 private var invalidated: Bool = false

 func invalidate() {

 dispatchPrecondition(.onQueue(DispatchQueue.main))

 invalidated = true

 DataTransform.sharedInstance.unregister(observer: self)

 }

 deinit {

 precondition(invalidated)

 }

}

Invalidation as a State Setup
Activated

Invalidated

Deallocation

class BusyController: SubsystemObserving {

 private var invalidated: Bool = false

 func invalidate() {

 dispatchPrecondition(.onQueue(DispatchQueue.main))

 invalidated = true

 DataTransform.sharedInstance.unregister(observer: self)

 }

 deinit {

 precondition(invalidated)

 }

}

Invalidation as a State Setup
Activated

Invalidated

Deallocation

class BusyController: SubsystemObserving {

 private var invalidated: Bool = false

 func systemStarted(...) {

 if invalidated { return }

 /* ... */

 }

 deinit {

 precondition(invalidated)

 }

}

Invalidation as a State Setup
Activated

Invalidated

Deallocation

GCD Object Lifecycle

Setup

Attributes and target queue

Setup
Activated

Deallocation

Invalidated

let q = DispatchQueue(label: "com.example.queue", attributes: [.autoreleaseWorkItem])

let source = DispatchSource.read(fileDescriptor: fd, queue: q)

Setup

Attributes and target queue
Source handlers

Setup
Activated

Deallocation

Invalidated

source.setEventHandler { /* handle your event here */ }

source.setCancelHandler { close(fd) }

let q = DispatchQueue(label: "com.example.queue", attributes: [.autoreleaseWorkItem])

let source = DispatchSource.read(fileDescriptor: fd, queue: q)

Properties of dispatch objects must not be mutated after activation

Activation Setup

Deallocation

Activated

Invalidated

extension DispatchObject {

 func activate()

}

Properties of dispatch objects must not be mutated after activation

Activation NEW
Setup

Deallocation

Activated

Invalidated

extension DispatchObject {

 func activate()

}

Properties of dispatch objects must not be mutated after activation
• Queues can also be created inactive

Activation NEW
Setup

Deallocation

Activated

Invalidated

extension DispatchObject {

 func activate()

}

let queue = DispatchQueue(label: “com.example.queue”, attributes: [.initiallyInactive])

Cancellation

Sources require explicit cancellation
• Event monitoring is stopped

Setup
Activated

Deallocation

Invalidated

extension DispatchSource {

 func cancel()

}

Cancellation

Sources require explicit cancellation
• Event monitoring is stopped
• Cancellation handler runs

Setup
Activated

Deallocation

Invalidated

let source = DispatchSource.read(fileDescriptor: fd, queue: q)

source.setCancelHandler { close(fd) }

Cancellation

Sources require explicit cancellation
• Event monitoring is stopped
• Cancellation handler runs
• All handlers are deallocated

Setup
Activated

Deallocation

Invalidated

let source = DispatchSource.read(fileDescriptor: fd, queue: q)

source.setCancelHandler { close(fd) }

Deallocation Hygiene

GCD Objects expect to be in a defined state at deallocation
• Activated
• Not suspended

Setup

Deallocation

Activated

Invalidated

Summary

Organize your application around data flows into independent subsystems
Synchronize state with Dispatch Queues
Use the activate/invalidate pattern

More Information

https://developer.apple.com/wwdc16/720

Related Sessions

Thread Sanitizer and Static Analysis Mission Thursday 10:00AM

Going Server-side with Swift Open Source Mission Friday 9:00AM

Optimizing I/O for Performance and Battery Life Nob Hill Friday 11:00AM

Labs

GCD Lab Frameworks Lab D Tuesday 5:00PM

