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Concurrency

Threads allow execution of code at the 
same time
CPU cores can each execute a single thread 
at any given time
Maintaining code invariants is more difficult 
with concurrency
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Getting Work Off Your Main Thread

Create a Dispatch Queue to which you submit work
Dispatch Queues execute work items in FIFO order
Use .async to execute your work on the queue

let queue = DispatchQueue(label: "com.example.imagetransform") 

queue.async { 

 let smallImage = image.resize(to: rect) 
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Getting Back to Your Main Thread

Dispatch main queue executes all items on the main thread
Simple to chain work between queues

let queue = DispatchQueue(label: "com.example.imagetransform") 

queue.async { 

 let smallImage = image.resize(to: rect) 

 DispatchQueue.main.async { 

  imageView.image = smallImage 

 } 

}
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Structuring Your Application

Identify areas of data flow in  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Queues at subsystem granularity

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue



Chaining vs. Grouping Work

Chaining Grouping



Chaining vs. Grouping Work

Chaining Grouping



Chaining vs. Grouping Work

Chaining Grouping



Chaining vs. Grouping Work

Chaining Grouping



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

let group = DispatchGroup()



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

let group = DispatchGroup()

queue.async(group: group) { … }

1



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group
1

queue.async(group: group) { … }

let group = DispatchGroup()



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group
1

queue2.async(group: group) { … }

queue.async(group: group) { … }

let group = DispatchGroup()
2



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

queue2.async(group: group) { … }

2

queue.async(group: group) { … }

let group = DispatchGroup()



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

queue2.async(group: group) { … }

2

queue.async(group: group) { … }

let group = DispatchGroup()

queue3.async(group: group) { … }

3



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

queue2.async(group: group) { … }

queue.async(group: group) { … }

let group = DispatchGroup()
12

queue3.async(group: group) { … }

3



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

group.notify(queue: DispatchQueue.main) { … }

queue2.async(group: group) { … }

queue.async(group: group) { … }

let group = DispatchGroup()
12

queue3.async(group: group) { … }

3



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

group.notify(queue: DispatchQueue.main) { … }

queue2.async(group: group) { … }

queue.async(group: group) { … }

let group = DispatchGroup()
12



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

group.notify(queue: DispatchQueue.main) { … }

queue2.async(group: group) { … }

let group = DispatchGroup()
1



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

group.notify(queue: DispatchQueue.main) { … }

let group = DispatchGroup()



Grouping Work Together

Database

Dispatch Queue

Data Transform

Dispatch Queue

Networking

Dispatch Queue

User Interface

Main Queue

Dispatch Group

let group = DispatchGroup()



Synchronizing Between Subsystems

Can use subsystem serial queues for  mutual exclusion



Synchronizing Between Subsystems

var count: Int { 
 queue.sync { self.connections.count } 
}

Can use subsystem serial queues for  mutual exclusion
Use .sync to safely access properties from subsystems



Synchronizing Between Subsystems

var count: Int { 
 queue.sync { self.connections.count } 
}

Can use subsystem serial queues for  mutual exclusion
Use .sync to safely access properties from subsystems
Be aware of “lock ordering” introduced between subsystems



Synchronizing Between Subsystems

var count: Int { 
 queue.sync { self.connections.count } 
}

Can use subsystem serial queues for  mutual exclusion
Use .sync to safely access properties from subsystems
Be aware of “lock ordering” introduced between subsystems



Synchronizing Between Subsystems

var count: Int { 
 queue.sync { self.connections.count } 
}

Can use subsystem serial queues for  mutual exclusion
Use .sync to safely access properties from subsystems
Be aware of “lock ordering” introduced between subsystems
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var count: Int { 
 queue.sync { self.connections.count } 
}

Can use subsystem serial queues for  mutual exclusion
Use .sync to safely access properties from subsystems
Be aware of “lock ordering” introduced between subsystems
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Using Quality of Service Classes

Use .async to submit work with a specific QoS class
Dispatch helps resolve priority inversions
Create single-purpose queues with a specific QoS class

queue.async(qos: .background) { 

 print("Maintenance work") 

} 

queue.async(qos: .userInitiated) { 

 print(“Button tapped”) 

}
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DispatchWorkItem

By default .async captures execution context at time of submission
Create DispatchWorkItem from closures to control execution properties
Use .assignCurrentContext to capture current QoS at time of creation

let item = DispatchWorkItem(flags: .assignCurrentContext) { 

 print("Hello WWDC 2016!") 

} 

queue.async(execute: item)
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Waiting for Work Items

Use .wait  on work items to signal  
that this item needs to execute
Dispatch elevates priority of queued  
work ahead
Waiting with a DispatchWorkItem  
gives ownership information
Semaphores and Groups do not admit  
a concept of ownership

QueueMain Thread

.wait



Shared State Synchronization

Pierre Habouzit Darwin Runtime Engineer



Synchronization is not part of the language in Swift 3
Swift 3 and Synchronization

Global variables are initialized atomically



Synchronization is not part of the language in Swift 3
Swift 3 and Synchronization

Global variables are initialized atomically
Class properties are not atomic



Synchronization is not part of the language in Swift 3
Swift 3 and Synchronization

Global variables are initialized atomically
Class properties are not atomic
Lazy properties are not initialized atomically
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Traditional C Locks in Swift

The Darwin module exposes traditional C lock types 
• correct use of  C struct based locks such as pthread_mutex_t is incredibly hard
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Foundation.Lock  can be used safely because it is a class
Derive an Objective-C base class with struct based locks as ivars

@implementation LockableObject { 

   os_unfair_lock _lock; 

} 

- (instancetype)init ... 

- (void)lock   { os_unfair_lock_lock(&_lock); } 

- (void)unlock { os_unfair_lock_unlock(&_lock); } 

@end



Use GCD for Synchronization

Use DispatchQueue.sync(execute:) 
• harder to misuse than traditional locks, more robust
• better instrumentation (Xcode, assertions, …)
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// Use Explicit Synchronization 

class MyObject { 

   private let internalState: Int 

   private let internalQueue: DispatchQueue 

   var state: Int { 

      get { 

         return internalQueue.sync { internalState } 

      } 

      set (newState) { 

         internalQueue.sync { internalState = newState } 

      } 

   } 

}
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Avoid data corruption
Preconditions

GCD lets you express several preconditions
• Code is running on a given queue
• Code is not running on a given queue

NEW

dispatchPrecondition(.onQueue(expectedQueue)))

dispatchPrecondition(.notOnQueue(unexpectedQueue)))
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Activation
Invalidated

Deallocation

Setup
Activated

class BusyController: SubsystemObserving { 

   init(...) { ... } 

   func activate() { 

      DataTransform.sharedInstance.register(observer: self, queue: DispatchQueue.main) 

   } 

}



Active State Machine Setup
Activated

Invalidated

Deallocation

class BusyController: SubsystemObserving { 

   func systemStarted(...) { /* ... */ } 

   func systemDone(...) { /* ... */ } 

}

My App



class BusyController: SubsystemObserving { 

   deinit { 

      DataTransform.sharedInstance.unregister(observer: self) 

   } 

}

Deallocation Setup

Invalidated

Deallocation

Activated



Deallocation

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Setup

Invalidated

Deallocation

Activated



Deallocation

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Setup

Invalidated

Deallocation

Activated



Deallocation

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

Setup

Invalidated

Deallocation

Activated



Deallocation

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

Abandoned memory

Setup

Invalidated

Deallocation

Activated



Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

BusyController
1

Dispatch Queue

Observers



Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

12

Dispatch Queue

Observers



Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers



Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers



Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers



Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers



Deallocation

Main Queue

User Interface

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers



Deallocation

Main Queue

User Interface

Deadlocks

Setup

Invalidated

Deallocation

Activated

Main Queue

User Interface

Dispatch Queue

Data Transform

BusyController
1

Observers

2

Abandoned memory

Data Transform

Octopus
BusyController

1

Dispatch Queue

Observers



// Deadlocks on Serial Queues Assert 

Application Specific Information: 
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class BusyController: SubsystemObserving { 

   func invalidate() { 

      dispatchPrecondition(.onQueue(DispatchQueue.main)) 

      DataTransform.sharedInstance.unregister(observer: self) 

   } 

   deinit { 

   } 

}



class BusyController: SubsystemObserving { 

   private var invalidated: Bool = false 

   func invalidate() { 

      dispatchPrecondition(.onQueue(DispatchQueue.main)) 

      invalidated = true 

      DataTransform.sharedInstance.unregister(observer: self) 
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   deinit { 
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   } 
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class BusyController: SubsystemObserving { 

   private var invalidated: Bool = false 

   func invalidate() { 

      dispatchPrecondition(.onQueue(DispatchQueue.main)) 

      invalidated = true 

      DataTransform.sharedInstance.unregister(observer: self) 

   } 

   deinit { 
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class BusyController: SubsystemObserving { 

   private var invalidated: Bool = false 

   func systemStarted(...) { 

      if invalidated { return } 

      /* ... */ 

   } 

   deinit { 

      precondition(invalidated) 

   } 

}

Invalidation as a State Setup
Activated

Invalidated

Deallocation
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Setup

Attributes and target queue

Setup
Activated

Deallocation

Invalidated

let q = DispatchQueue(label: "com.example.queue", attributes: [.autoreleaseWorkItem]) 

let source = DispatchSource.read(fileDescriptor: fd, queue: q)



Setup

Attributes and target queue
Source handlers

Setup
Activated

Deallocation

Invalidated

source.setEventHandler { /* handle your event here */ } 

source.setCancelHandler { close(fd) }

let q = DispatchQueue(label: "com.example.queue", attributes: [.autoreleaseWorkItem]) 

let source = DispatchSource.read(fileDescriptor: fd, queue: q)



Properties of dispatch objects must not be mutated after activation

Activation Setup

Deallocation

Activated

Invalidated

extension DispatchObject { 

   func activate() 

}



Properties of dispatch objects must not be mutated after activation

Activation NEW
Setup

Deallocation

Activated

Invalidated

extension DispatchObject { 

   func activate() 

}



Properties of dispatch objects must not be mutated after activation
• Queues can also be created inactive

Activation NEW
Setup

Deallocation

Activated

Invalidated

extension DispatchObject { 

   func activate() 

}

let queue = DispatchQueue(label: “com.example.queue”, attributes: [.initiallyInactive])



Cancellation

Sources require explicit cancellation
• Event monitoring is stopped

Setup
Activated

Deallocation

Invalidated

extension DispatchSource { 

   func cancel() 

}



Cancellation

Sources require explicit cancellation
• Event monitoring is stopped
• Cancellation handler runs

Setup
Activated

Deallocation

Invalidated

let source = DispatchSource.read(fileDescriptor: fd, queue: q) 

source.setCancelHandler { close(fd) }



Cancellation

Sources require explicit cancellation
• Event monitoring is stopped
• Cancellation handler runs
• All handlers are deallocated

Setup
Activated

Deallocation

Invalidated

let source = DispatchSource.read(fileDescriptor: fd, queue: q) 

source.setCancelHandler { close(fd) }



Deallocation Hygiene

GCD Objects expect to be in a defined state at deallocation
• Activated
• Not suspended

Setup

Deallocation

Activated

Invalidated



Summary

Organize your application around data flows into independent subsystems
Synchronize state with Dispatch Queues
Use the activate/invalidate pattern



More Information

https://developer.apple.com/wwdc16/720



Related Sessions

Thread Sanitizer and Static Analysis Mission Thursday 10:00AM

Going Server-side with Swift Open Source Mission Friday 9:00AM

Optimizing I/O for Performance and Battery Life Nob Hill Friday 11:00AM



Labs

GCD Lab Frameworks Lab D Tuesday 5:00PM




