
© 2016 Apple Inc. All rights reserved. Redistribution or public display not permitted without written permission from Apple.

Forging and polishing your Metal shaders

Graphics and Games #WWDC16

Session 606

Advanced Metal Shader Optimization

Fiona Assembly Alchemist
Alex Kan GPU Software

Adopting Metal
Part One
• Fundamental Concepts
• Basic Drawing
• Lighting and Texturing

A look at the sessions
Metal at WWDC This Year

Part Two
• Dynamic Data Management
• CPU-GPU Synchronization
• Multithreaded Encoding

A look at the sessions
Metal at WWDC This Year

What’s New in Metal
Part One
• Tessellation
• Resource Heaps and Memoryless  

Render Targets
• Improved Tools

Part Two
• Function Specialization and Function

Resource Read-Writes
• Wide Color and Texture Assets
• Additions to Metal Performance Shaders

A look at the sessions
Metal at WWDC This Year

Advanced Shader Optimization
• Shader Performance Fundamentals
• Tuning Shader Code

An overview
Optimizing Shaders

There’s a lot you can do to make your code faster
Including things specific to A8 and later GPUs!
And major performance pitfalls to watch for…
Do high-level optimizations before low-level
For experienced shader authors

Depth Attachment

Color Attachments Present

Sampler

Rasterization

Sampler

Framebuffer
Write

Metal Pipeline

Buffer

Vertex
Fetch

Texture

Buffer

Texture

Buffer

Function Function

Vertex
Processing

Fragment
Processing

Depth Attachment

Color Attachments Present

Sampler

Rasterization

Sampler

Framebuffer
Write

Metal Pipeline

Buffer

Vertex
Fetch

Texture

Buffer

Texture

Buffer

Function Function

Vertex
Processing

Fragment
Processing

Overview

Shader performance fundamentals
Tuning shader code

Shader Performance Fundamentals

Things to check before digging deeper
Shader Performance Fundamentals

Address space selection for buffer arguments
Buffer preloading
Fragment function resource writes
Compute kernel organization

Comparison
Address Spaces

GPUs have multiple paths to memory
Designed for different access patterns
Explicitly developer-controlled in
shading language

ALU

ConstantDevice

ALU

ConstantDevice

Device memory
Address Spaces

Read-write
No size restrictions
Flexible alignment restrictions

Constant memory
Address Spaces

Read-only
Limited size
Alignment restrictions
Optimized for reuse

Device

ALU

Constant

Picking an address space
Address Spaces

variable size

fixed size

few many
Device

Device

Constant

Start

How much data?

How many times will
each item be read?

Example: vertex data
Address Spaces

vertex float4 simpleVertex(uint vid [[vertex_id]]),

 const device float4 *positions [[buffer(0)]])

{

 return positions[vid];

}

Variable Number of items Amount of reuse Address space

positions variable number of vertices one device

Example: vertex data
Address Spaces

vertex float4 simpleVertex(uint vid [[vertex_id]]),

 const device float4 *positions [[buffer(0)]])

{

 return positions[vid];

}

Variable Number of items Amount of reuse Address space

positions variable number of vertices one device

Example: projection matrix
Address Spaces

vertex float4 transformedVertex(uint vid [[vertex_id]]),

 const device float4 *positions [[buffer(0)]],

 constant matrix_float4x4 &transform [[buffer(1)]])

{

 return transform * positions[vid];

}

Variable Number of items Amount of reuse Address space

transform one all constant

Example: projection matrix
Address Spaces

vertex float4 transformedVertex(uint vid [[vertex_id]]),

 const device float4 *positions [[buffer(0)]],

 constant matrix_float4x4 &transform [[buffer(1)]])

{

 return transform * positions[vid];

}

Variable Number of items Amount of reuse Address space

transform one all constant

Variable Number of items Amount of reuse Address space

skinningMatrices fixed number of bones all vertices using bone constant

struct SkinningMatrices {

 matrix_float4x4 position_transforms[MAXBONES];

};

vertex float4 skinnedVertex(uint vid [[vertex_id]]),

 const device Vertex *vertices [[buffer(0)]],

 constant SkinningMatrices &skinningMatrices [[buffer(1)]]

{

 …

 for (ushort i = 0; i < NBONES; ++i) {

 skinnedPosition += (skinningMatrices.position_transforms[vertices[vid].boneIndices[i]] *

…

}

Example: skinning matrices
Address Spaces

Variable Number of items Amount of reuse Address space

skinningMatrices fixed number of bones all vertices using bone constant

struct SkinningMatrices {

 matrix_float4x4 position_transforms[MAXBONES];

};

vertex float4 skinnedVertex(uint vid [[vertex_id]]),

 const device Vertex *vertices [[buffer(0)]],

 constant SkinningMatrices &skinningMatrices [[buffer(1)]]

{

 …

 for (ushort i = 0; i < NBONES; ++i) {

 skinnedPosition += (skinningMatrices.position_transforms[vertices[vid].boneIndices[i]] *

…

}

Example: skinning matrices
Address Spaces

Example: per-instance data
Address Spaces

vertex float4 instancedVertex(uint vid [[vertex_id]],

 uint iid [[instance_id]],

 const device float4 *positions [[buffer(0)]],

 const device matrix_float4x4 *instanceTransforms [[buffer(1)]])

{

 return instanceTransforms[iid] * positions[vid];

}

Use case Number of items Amount of reuse Address space

instanceTransforms variable number of
instances all vertices in instance device

Example: per-instance data
Address Spaces

vertex float4 instancedVertex(uint vid [[vertex_id]],

 uint iid [[instance_id]],

 const device float4 *positions [[buffer(0)]],

 const device matrix_float4x4 *instanceTransforms [[buffer(1)]])

{

 return instanceTransforms[iid] * positions[vid];

}

Use case Number of items Amount of reuse Address space

instanceTransforms variable number of
instances all vertices in instance device

Buffer Preloading

Buffer loads can be hoisted to dedicated hardware
• Constant buffers
• Vertex buffers

Depending on
• Access patterns in the shader
• Address space buffer resides in

Constant Buffer Preloading

Direct loads
• Known address/offset
• No indexing

Indirect loads
• Unknown address/offset
• Buffer must be explicitly sized

ALU

Constant

Constant Buffer Preloading

Direct loads
• Known address/offset
• No indexing

Indirect loads
• Unknown address/offset
• Buffer must be explicitly sized

ALU

Constant

Constant Buffer Preloading

Use constant address space when appropriate
Statically bound your accesses
• Pass single struct arguments by reference
• Pass bounded arrays in a struct, rather than via a pointer

typedef struct {
 uint count;
 Light data[MAX_LIGHTS];
} LightData;

fragment float4 litFragment(
 constant LightData &lights [[buffer(0)]],
 LitVertex vertex [[stage_in]]);

fragment float4 litFragment(
 const device Light *l [[buffer(0)]],
 const device uint *count [[buffer(1)]],
 LitVertex vertex [[stage_in]]);

Constant Buffer Preloading

Use constant address space when appropriate
Statically bound your accesses
• Pass single struct arguments by reference
• Pass bounded arrays in a struct, rather than via a pointer

typedef struct {
 uint count;
 Light data[MAX_LIGHTS];
} LightData;

fragment float4 litFragment(
 constant LightData &lights [[buffer(0)]],
 LitVertex vertex [[stage_in]]);

fragment float4 litFragment(
 const device Light *l [[buffer(0)]],
 const device uint *count [[buffer(1)]],
 LitVertex vertex [[stage_in]]);

Constant Buffer Preloading

Use constant address space when appropriate
Statically bound your accesses
• Pass single struct arguments by reference
• Pass bounded arrays in a struct, rather than via a pointer

typedef struct {
 uint count;
 Light data[MAX_LIGHTS];
} LightData;

fragment float4 litFragment(
 constant LightData &lights [[buffer(0)]],
 LitVertex vertex [[stage_in]]);

fragment float4 litFragment(
 const device Light *l [[buffer(0)]],
 const device uint *count [[buffer(1)]],
 LitVertex vertex [[stage_in]]);

Constant Buffer Preloading

Use constant address space when appropriate
Statically bound your accesses
• Pass single struct arguments by reference
• Pass bounded arrays in a struct, rather than via a pointer

typedef struct {
 uint count;
 Light data[MAX_LIGHTS];
} LightData;

fragment float4 litFragment(
 constant LightData &lights [[buffer(0)]],
 LitVertex vertex [[stage_in]]);

fragment float4 litFragment(
 const device Light *l [[buffer(0)]],
 const device uint *count [[buffer(1)]],
 LitVertex vertex [[stage_in]]);

Constant Buffer Preloading

Use constant address space when appropriate
Statically bound your accesses
• Pass single struct arguments by reference
• Pass bounded arrays in a struct, rather than via a pointer

typedef struct {
 uint count;
 Light data[MAX_LIGHTS];
} LightData;

fragment float4 litFragment(
 constant LightData &lights [[buffer(0)]],
 LitVertex vertex [[stage_in]]);

fragment float4 litFragment(
 const device Light *l [[buffer(0)]],
 const device uint *count [[buffer(1)]],
 LitVertex vertex [[stage_in]]);

Constant Buffer Preloading

Use constant address space when appropriate
Statically bound your accesses
• Pass single struct arguments by reference
• Pass bounded arrays in a struct, rather than via a pointer

typedef struct {
 uint count;
 Light data[MAX_LIGHTS];
} LightData;

fragment float4 litFragment(
 constant LightData &lights [[buffer(0)]],
 LitVertex vertex [[stage_in]]);

fragment float4 litFragment(
 const device Light *l [[buffer(0)]],
 const device uint *count [[buffer(1)]],
 LitVertex vertex [[stage_in]]);

A practical example: deferred rendering
Constant Buffer Preloading

More than one way to implement a deferred renderer
Not all ways created equal from a performance point of view

A practical example: deferred rendering
Constant Buffer Preloading

One draw call for all lights
• May read all lights
• Unbounded input size

fragment float4 accumulateAllLights(

 const device Light *allLights [[buffer(0)]],

 LightInfo tileLightInfo [[stage_in]]);

A practical example: deferred rendering
Constant Buffer Preloading

One draw call for all lights
• May read all lights
• Unbounded input size

fragment float4 accumulateAllLights(

 const device Light *allLights [[buffer(0)]],

 LightInfo tileLightInfo [[stage_in]]);

A practical example: deferred rendering
Constant Buffer Preloading

One draw call per light
• Bounded input size — can be in constant address space
• Takes advantage of constant buffer preloading

fragment float4 accumulateAllLights(

 const device Light *allLights [[buffer(0)]],

 LightInfo tileLightInfo [[stage_in]]);

A practical example: deferred rendering
Constant Buffer Preloading

One draw call per light
• Bounded input size — can be in constant address space
• Takes advantage of constant buffer preloading

fragment float4 accumulateAllLights(

 const device Light *allLights [[buffer(0)]],

 LightInfo tileLightInfo [[stage_in]]);

fragment float4 accumulateOneLight(

 constant Light ¤tLight [[buffer(0)]],

 LightInfo lightInfo [[stage_in]]);

A practical example: deferred rendering
Constant Buffer Preloading

One draw call per light
• Bounded input size — can be in constant address space
• Takes advantage of constant buffer preloading

fragment float4 accumulateAllLights(

 const device Light *allLights [[buffer(0)]],

 LightInfo tileLightInfo [[stage_in]]);

fragment float4 accumulateOneLight(

 constant Light ¤tLight [[buffer(0)]],

 LightInfo lightInfo [[stage_in]]);

A practical example: deferred rendering
Constant Buffer Preloading

One draw call per light
• Bounded input size — can be in constant address space
• Takes advantage of constant buffer preloading

fragment float4 accumulateAllLights(

 const device Light *allLights [[buffer(0)]],

 LightInfo tileLightInfo [[stage_in]]);

fragment float4 accumulateOneLight(

 constant Light ¤tLight [[buffer(0)]],

 LightInfo lightInfo [[stage_in]]);

Vertex Buffer Preloading

Fixed-function vertex fetching is handled by dedicated hardware
Buffer loads will be handled by dedicated hardware for buffer loads if:
• Indexed by vertex/instance ID
• Including divisor math
• With or without base vertex/instance offset

Vertex Buffer Preloading

Use vertex descriptors where possible
If you’re writing your own indexing code
• Lay out data linearly to simplify buffer indexing
• Lower-granularity data can still be hoisted if access is linear

Fragment Function Resource Writes

Resource writes in fragment shaders
partially defeat hidden surface removal
• Can’t be occluded by later fragments
• Can be removed by failing depth/stencil

test with [[early_fragment_tests]]

NEW

Fragment Function Resource Writes

Use [[early_fragment_tests]] to maximize rejection
• Draw after opaque objects
• Sort front-to-back if updating depth/stencil

Similar to objects with discard/per-pixel depth

Compute Kernel Organization

Per-thread launch overhead
Barriers

Amortizing compute thread launch overhead
Compute Kernel Organization

Process multiple work items per compute thread
Reuse values across work items

kernel void sobel_1_1(/* ... */

 ushort2 tid [[thread_position_in_grid]])

{

 ushort2 gid = ushort2(tid.x,tid.y);

 ushort2 dstCoord = ...

 ...

 // read 3x3 region of source

 float2 c = ...

 float r0 = src.sample(sam, c, int2(-1,-1)).x;

 // read r1-r8

 // apply Sobel filter

 float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

 float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

 float4 g = float4(sqrt(gx * gx + gy * gy));

 dst.write(g, static_cast<uint2>(dstCoord));

}

kernel void sobel_1_1(/* ... */

 ushort2 tid [[thread_position_in_grid]])

{

 ushort2 gid = ushort2(tid.x,tid.y);

 ushort2 dstCoord = ...

 ...

 // read 3x3 region of source

 float2 c = ...

 float r0 = src.sample(sam, c, int2(-1,-1)).x;

 // read r1-r8

 // apply Sobel filter

 float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

 float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

 float4 g = float4(sqrt(gx * gx + gy * gy));

 dst.write(g, static_cast<uint2>(dstCoord));

}

kernel void sobel_1_1(/* ... */

 ushort2 tid [[thread_position_in_grid]])

{

 ushort2 gid = ushort2(tid.x,tid.y);

 ushort2 dstCoord = ...

 ...

 // read 3x3 region of source

 float2 c = ...

 float r0 = src.sample(sam, c, int2(-1,-1)).x;

 // read r1-r8

 // apply Sobel filter

 float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

 float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

 float4 g = float4(sqrt(gx * gx + gy * gy));

 dst.write(g, static_cast<uint2>(dstCoord));

}

kernel void sobel_1_1(/* ... */

 ushort2 tid [[thread_position_in_grid]])

{

 ushort2 gid = ushort2(tid.x,tid.y);

 ushort2 dstCoord = ...

 ...

 // read 3x3 region of source

 float2 c = ...

 float r0 = src.sample(sam, c, int2(-1,-1)).x;

 // read r1-r8

 // apply Sobel filter

 float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

 float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

 float4 g = float4(sqrt(gx * gx + gy * gy));

 dst.write(g, static_cast<uint2>(dstCoord));

}

kernel void sobel_1_1(/* ... */

 ushort2 tid [[thread_position_in_grid]])

{

 ushort2 gid = ushort2(tid.x*2,tid.y);

 ushort2 dstCoord = ...

 ...

 // read 3x3 region of source for pixel 1

 float2 c = ...

 float r0 = src.sample(sam, c, int2(-1,-1)).x;

 // read r1-r8

 // apply Sobel filter for pixel 1

 float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

 float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

 float4 g = float4(sqrt(gx * gx + gy * gy));

 dst.write(g, static_cast<uint2>(dstCoord));

// continue to pixel 2

kernel void sobel_1_1(/* ... */

 ushort2 tid [[thread_position_in_grid]])

{

 ushort2 gid = ushort2(tid.x*2,tid.y);

 ushort2 dstCoord = ...

 ...

 // read 3x3 region of source for pixel 1

 float2 c = ...

 float r0 = src.sample(sam, c, int2(-1,-1)).x;

 // read r1-r8

 // apply Sobel filter for pixel 1

 float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

 float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

 float4 g = float4(sqrt(gx * gx + gy * gy));

 dst.write(g, static_cast<uint2>(dstCoord));

// continue to pixel 2

kernel void sobel_1_1(/* ... */

 ushort2 tid [[thread_position_in_grid]])

{

 ushort2 gid = ushort2(tid.x*2,tid.y);

 ushort2 dstCoord = ...

 ...

 // read 3x3 region of source for pixel 1

 float2 c = ...

 float r0 = src.sample(sam, c, int2(-1,-1)).x;

 // read r1-r8

 // apply Sobel filter for pixel 1

 float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

 float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

 float4 g = float4(sqrt(gx * gx + gy * gy));

 dst.write(g, static_cast<uint2>(dstCoord));

// continue to pixel 2

// continue to pixel 2...

dstCoord.x++;

if (dstCoord.x >= params.dstBounds.z)

 return;

// reuse 2x3 region from pixel 1,

read additional 1x3 region for pixel 2

r0 = r1; r1 = r2; r2 = src.sample(sam, c, int2(2,-1)).x;

r3 = r4; r4 = r5; r5 = src.sample(sam, c, int2(2,0)).x;

r6 = r7; r7 = r8; r8 = src.sample(sam, c, int2(2,1)).x;

// apply Sobel filter for pixel 2

float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

float4 g = float4(sqrt(gx * gx + gy * gy));

dst.write(g, static_cast<uint2>(dstCoord));

// continue to pixel 2...

dstCoord.x++;

if (dstCoord.x >= params.dstBounds.z)

 return;

// reuse 2x3 region from pixel 1,

read additional 1x3 region for pixel 2

r0 = r1; r1 = r2; r2 = src.sample(sam, c, int2(2,-1)).x;

r3 = r4; r4 = r5; r5 = src.sample(sam, c, int2(2,0)).x;

r6 = r7; r7 = r8; r8 = src.sample(sam, c, int2(2,1)).x;

// apply Sobel filter for pixel 2

float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

float4 g = float4(sqrt(gx * gx + gy * gy));

dst.write(g, static_cast<uint2>(dstCoord));

// continue to pixel 2...

dstCoord.x++;

if (dstCoord.x >= params.dstBounds.z)

 return;

// reuse 2x3 region from pixel 1,

read additional 1x3 region for pixel 2

r0 = r1; r1 = r2; r2 = src.sample(sam, c, int2(2,-1)).x;

r3 = r4; r4 = r5; r5 = src.sample(sam, c, int2(2,0)).x;

r6 = r7; r7 = r8; r8 = src.sample(sam, c, int2(2,1)).x;

// apply Sobel filter for pixel 2

float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

float4 g = float4(sqrt(gx * gx + gy * gy));

dst.write(g, static_cast<uint2>(dstCoord));

// continue to pixel 2...

dstCoord.x++;

if (dstCoord.x >= params.dstBounds.z)

 return;

// reuse 2x3 region from pixel 1,

read additional 1x3 region for pixel 2

r0 = r1; r1 = r2; r2 = src.sample(sam, c, int2(2,-1)).x;

r3 = r4; r4 = r5; r5 = src.sample(sam, c, int2(2,0)).x;

r6 = r7; r7 = r8; r8 = src.sample(sam, c, int2(2,1)).x;

// apply Sobel filter for pixel 2

float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

float4 g = float4(sqrt(gx * gx + gy * gy));

dst.write(g, static_cast<uint2>(dstCoord));

// continue to pixel 2...

dstCoord.x++;

if (dstCoord.x >= params.dstBounds.z)

 return;

// reuse 2x3 region from pixel 1,

read additional 1x3 region for pixel 2

r0 = r1; r1 = r2; r2 = src.sample(sam, c, int2(2,-1)).x;

r3 = r4; r4 = r5; r5 = src.sample(sam, c, int2(2,0)).x;

r6 = r7; r7 = r8; r8 = src.sample(sam, c, int2(2,1)).x;

// apply Sobel filter for pixel 2

float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6);

float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8);

float4 g = float4(sqrt(gx * gx + gy * gy));

dst.write(g, static_cast<uint2>(dstCoord));

Considerations
Compute Kernel Organization

Use barriers with the smallest possible scope
• SIMD-width threadgroups make threadgroup_barrier unnecessary
• For thread groups <= SIMD group size, use simdgroup_barrier

Usually faster than trying to squeeze out additional reuse

NEW

Conclusion
Shader Performance Fundamentals

Conclusion
Shader Performance Fundamentals

Pick appropriate address spaces for arguments

Conclusion
Shader Performance Fundamentals

Pick appropriate address spaces for arguments
Structure your data/rendering to leverage buffer preloading

Conclusion
Shader Performance Fundamentals

Pick appropriate address spaces for arguments
Structure your data/rendering to leverage buffer preloading
Use early fragment tests to reduce shading of objects with resource writes

Conclusion
Shader Performance Fundamentals

Pick appropriate address spaces for arguments
Structure your data/rendering to leverage buffer preloading
Use early fragment tests to reduce shading of objects with resource writes
Do enough work in each compute thread to amortize launch overhead

Conclusion
Shader Performance Fundamentals

Pick appropriate address spaces for arguments
Structure your data/rendering to leverage buffer preloading
Use early fragment tests to reduce shading of objects with resource writes
Do enough work in each compute thread to amortize launch overhead
Use the smallest-scoped barrier you can

Tuning Shader Code

GPU Architecture

Focus on the bottleneck to improve performance
Improving non-bottlenecks can still save power

Typical Shader Bottlenecks

ALU bandwidth
Memory bandwidth
Memory issue rate
Latency/occupancy/register usage

Optimization Opportunities

Data types
Arithmetic
Control flow
Memory access

Overview
Data Types

A8 and later GPUs use 16-bit register units
Use the smallest possible data type
• Fewer registers used → better occupancy

• Faster arithmetic → better ALU usage

Use half and short for arithmetic when possible
• Energy: half < float < short < int

Using half and short arithmetic
Data Types

For texture reads, interpolates, and math, use half when possible
• Not the texture format, the value returned from sample()
• Conversions are typically free, even between float and half

Half-precision numerics and limitations are different from float
• Minimum normal value: 6.1 x 10-5

• Maximum normal value: 65504
- Classic bug: writing “65535” as a half will actually give you infinity

Using half and short arithmetic
Data Types

Use ushort for local thread IDs, and for global thread IDs when possible

Using half and short arithmetic
Data Types

Use ushort for local thread IDs, and for global thread IDs when possible

kernel void  
LocalAdd(…

 uint threadGroupID [[thread_position_in_threadgroup]],  
 uint threadGroupGridID [[threadgroup_position_in_grid]])

Using half and short arithmetic
Data Types

Use ushort for local thread IDs, and for global thread IDs when possible

kernel void  
LocalAdd(…

 ushort threadGroupID [[thread_position_in_threadgroup]],  
 ushort threadGroupGridID [[threadgroup_position_in_grid]])

kernel void  
LocalAdd(…

 uint threadGroupID [[thread_position_in_threadgroup]],  
 uint threadGroupGridID [[threadgroup_position_in_grid]])

Using half and short arithmetic
Data Types

Avoid float literals when doing half-precision operations

Using half and short arithmetic
Data Types

Avoid float literals when doing half-precision operations

half foo(half a, half b)

{

return clamp(a, b, -2.0 , 5.0);

}

Using half and short arithmetic
Data Types

Avoid float literals when doing half-precision operations

half foo(half a, half b)

{

return clamp(a, b, -2.0h, 5.0h);

}

half foo(half a, half b)

{

return clamp(a, b, -2.0 , 5.0);

}

Using half and short arithmetic
Data Types

Avoid char for arithmetic if not necessary
• Not natively supported for arithmetic
• May result in extra instructions

Built-ins
Arithmetic

Use built-ins where possible
• Free modifiers: negate, abs(), saturate()

- Native hardware support

Built-ins
Arithmetic

Use built-ins where possible
• Free modifiers: negate, abs(), saturate()

- Native hardware support

kernel void

myKernel(…)

{

// fabs on p.a negation on p.b and clamp of (fabs(p.a) * -p.b * input[threadID]) are free

 float4 f = saturate((fabs(p.a) * -p.b * input[threadID]));

 …

}

Arithmetic

A8 and later GPUs are scalar
• Vectors are fine to use, but compiler splits them

- Don’t waste time vectorizing code when not naturally vector

Arithmetic

ILP (Instruction Level Parallelism) not very important
• Register usage typically matters more

- Don’t restructure for ILP, e.g. using multiple accumulators when not necessary

Arithmetic

ILP (Instruction Level Parallelism) not very important
• Register usage typically matters more

- Don’t restructure for ILP, e.g. using multiple accumulators when not necessary

// unnecessary, possibly slower

float accum1 = 0, accum2 = 0;

for (int x = 0; x < n; x += 2) {

 accum1 += a[x] * b[x];

 accum2 += a[x+1] * b[x+1];

}

return accum1 + accum2;

Arithmetic

ILP (Instruction Level Parallelism) not very important
• Register usage typically matters more

- Don’t restructure for ILP, e.g. using multiple accumulators when not necessary

// unnecessary, possibly slower

float accum1 = 0, accum2 = 0;

for (int x = 0; x < n; x += 2) {

 accum1 += a[x] * b[x];

 accum2 += a[x+1] * b[x+1];

}

return accum1 + accum2;

// better

float accum = 0;

for (int x = 0; x < n; x += 2) {

 accum += a[x] * b[x];

 accum += a[x+1] * b[x+1];

}

return accum;

Arithmetic

A8 and later GPUs have very fast ‘select’ instructions (ternary operators)
• Don’t do ‘clever’ things like multiplying by 1 or 0 instead

Arithmetic

A8 and later GPUs have very fast ‘select’ instructions (ternary operators)
• Don’t do ‘clever’ things like multiplying by 1 or 0 instead

// slow: no need to fake ternary op

if (foo)

m = 0.0h;

else

m = 1.0h;

half p = v * m;

Arithmetic

A8 and later GPUs have very fast ‘select’ instructions (ternary operators)
• Don’t do ‘clever’ things like multiplying by 1 or 0 instead

 // fast: ternary op

half p = foo ? v : 0.0h;

// slow: no need to fake ternary op

if (foo)

m = 0.0h;

else

m = 1.0h;

half p = v * m;

Integer divisions
Arithmetic

Avoid division or modulus by denominators that aren’t literal/function constants

constant int width [[function_constant(0)]];
struct constInputs {
 int width;
};
vertex float4 vertexMain(…)
{
 // extremely slow: constInputs.width not known at compile time
 int onPos0 = vertexIn[vertex_id] / constInputs.width;

 // fast: 256 is a compile-time constant
 int onPos1 = vertexIn[vertex_id] / 256;
 // fast: width provided at compile time
 int onPos2 = vertexIn[vertex_id] / width;
}

Integer divisions
Arithmetic

Avoid division or modulus by denominators that aren’t literal/function constants

constant int width [[function_constant(0)]];
struct constInputs {
 int width;
};
vertex float4 vertexMain(…)
{
 // extremely slow: constInputs.width not known at compile time
 int onPos0 = vertexIn[vertex_id] / constInputs.width;

 // fast: 256 is a compile-time constant
 int onPos1 = vertexIn[vertex_id] / 256;
 // fast: width provided at compile time
 int onPos2 = vertexIn[vertex_id] / width;
}

Fast-math
Arithmetic

In Metal, fast-math is on by default
Often >50% perf gain on arithmetic, possibly much more
Uses faster arithmetic built-ins with well-defined precision guarantees
Maintains intermediate precision
Ignores strict NaN/infinity/signed zero semantics
• but will not introduce new NaNs

Might perform arithmetic reassociation
• but will not perform arithmetic distribution

Fast-math
Arithmetic

If you absolutely cannot use fast-math:
• Use FMA built-in (fused multiply-add) to regain some performance

- Having fast-math off prohibits this optimization (and many others)

Fast-math
Arithmetic

If you absolutely cannot use fast-math:
• Use FMA built-in (fused multiply-add) to regain some performance

- Having fast-math off prohibits this optimization (and many others)

kernel void

myKernel(…)

{

// d = a * b + c;

 float d = fma(a, b, c);

 …

}

Control Flow

Control flow uniform across SIMD width is generally fast
• Dynamically uniform (uniform at runtime) is also fast

Divergence within a SIMD means running both paths

Control Flow

Switch fall-throughs: can create unstructured control flow
• Can result in significant code duplication — avoid if possible

switch (numItems) {
[...]
case 2:
 processItem(1);
 /* fall-through */
case 1:
 processItem(0);
 break;
}

Stack access
Memory Access

Avoid dynamically indexed non-constant stack arrays
• Cost can be catastrophic: 30% due to one 32-byte array in a real-world app

Loops with stack arrays will typically be unrolled to eliminate the dynamic access

Stack access
Memory Access

Avoid dynamically indexed non-constant stack arrays
• Cost can be catastrophic: 30% due to one 32-byte array in a real-world app

Loops with stack arrays will typically be unrolled to eliminate the dynamic access

// bad: dynamically indexed stack array

int foo(int a, int b, int c) {

 int tmp[2] = { a, b };

 return tmp[c];

Stack access
Memory Access

Avoid dynamically indexed non-constant stack arrays
• Cost can be catastrophic: 30% due to one 32-byte array in a real-world app

Loops with stack arrays will typically be unrolled to eliminate the dynamic access

// bad: dynamically indexed stack array

int foo(int a, int b, int c) {

 int tmp[2] = { a, b };

 return tmp[c];

// okay: constant array

int foo(int a, int b, int c) {

 int tmp2[2] = { 1, 2 };

 return tmp2[c];

Stack access
Memory Access

Avoid dynamically indexed non-constant stack arrays
• Cost can be catastrophic: 30% due to one 32-byte array in a real-world app

Loops with stack arrays will typically be unrolled to eliminate the dynamic access

// bad: dynamically indexed stack array

int foo(int a, int b, int c) {

 int tmp[2] = { a, b };

 return tmp[c];

// okay: constant array

int foo(int a, int b, int c) {

 int tmp2[2] = { 1, 2 };

 return tmp2[c];

// okay: loop will be unrolled

int foo(int a, int b, int c) {

 int tmp3[3] = { a, b, c };

 int sum = 0;

 for (int i = 0; i < 3; ++i)

 sum += tmp3[i];

 return sum;

One big vector load/store is faster than multiple scalar ones
• The compiler will try to vectorize neighboring loads/stores

Loads and stores
Memory Access

One big vector load/store is faster than multiple scalar ones
• The compiler will try to vectorize neighboring loads/stores

Loads and stores
Memory Access

struct foo {

 float a;

 float b[7];

 float c;

};

// bad: a and c aren’t adjacent.

will result in two scalar loads

float sum_mul(foo *x, int n) {

 float sum = 0;

 for (uint i = 0; i < n; ++i)

sum += x[i].a * x[i].c;

One big vector load/store is faster than multiple scalar ones
• The compiler will try to vectorize neighboring loads/stores

Loads and stores
Memory Access

struct foo {

 float a;

 float b[7];

 float c;

};

// bad: a and c aren’t adjacent.

will result in two scalar loads

float sum_mul(foo *x, int n) {

 float sum = 0;

 for (uint i = 0; i < n; ++i)

sum += x[i].a * x[i].c;

struct foo {

 float2 a;

 float b[7];

};

// good: a is now a vector, so there

will be one load.

float sum_mul(foo *x, int n) {

 float sum = 0;

 for (uint i = 0; i < n; ++i)

sum += x[i].a.x * x[i].a.y;

One big vector load/store is faster than multiple scalar ones
• The compiler will try to vectorize neighboring loads/stores

Loads and stores
Memory Access

struct foo {

 float a;

 float b[7];

 float c;

};

// bad: a and c aren’t adjacent.

will result in two scalar loads

float sum_mul(foo *x, int n) {

 float sum = 0;

 for (uint i = 0; i < n; ++i)

sum += x[i].a * x[i].c;

struct foo {

 float2 a;

 float b[7];

};

// good: a is now a vector, so there

will be one load.

float sum_mul(foo *x, int n) {

 float sum = 0;

 for (uint i = 0; i < n; ++i)

sum += x[i].a.x * x[i].a.y;

struct foo {

 float a;

 float c;

 float b[7];

};

// also good: compiler will likely be

able to vectorize.

float sum_mul(foo *x, int n) {

float sum = 0;

 for (uint i = 0; i < n; ++i)

sum += x[i].a * x[i].c;

Loads and stores
Memory Access

Use int or smaller types for device memory addressing (not uint)

Loads and stores
Memory Access

Use int or smaller types for device memory addressing (not uint)

kernel void Accumulate(const device int *a [[buffer(0)]], …) {

int sum = 0;

for (uint i = 0; i < nElems; i++)

sum += a[i];

Loads and stores
Memory Access

Use int or smaller types for device memory addressing (not uint)

kernel void Accumulate(const device int *a [[buffer(0)]], …) {

int sum = 0;

for (uint i = 0; i < nElems; i++)

sum += a[i];

kernel void Accumulate(const device int *a [[buffer(0)]], …) {

int sum = 0;

for (int i = 0; i < nElems; i++)

sum += a[i];

Latency/Occupancy

GPUs hide latency with large-scale multithreading
When waiting for something to finish (e.g. a texture read) they run another thread

Latency/Occupancy

The more latency, the more threads you need to hide it
The more registers you use, the fewer threads you have
• The number of threads you can have is called the ‘occupancy’
• Threadgroup memory usage can also bound the occupancy

‘Latency-limited’: too few threads to hide latency of a shader
Measure occupancy in Metal compute shaders using MTLComputePipelineState
maxTotalThreadsPerThreadgroup()

Latency-hiding: False dependency example
Memory Access

Latency-hiding: False dependency example
Memory Access

// REAL dependency: 2 waits

half a = tex0.sample(s0, c0);
half res = 0.0h;

🔴// wait on ‘a’
if (a >= 0.0h) {
 half b = tex1.sample(s1, c1);
 🔴// wait on ‘b’
 res = a * b;
}

Latency-hiding: False dependency example
Memory Access

// REAL dependency: 2 waits

half a = tex0.sample(s0, c0);
half res = 0.0h;

🔴// wait on ‘a’
if (a >= 0.0h) {
 half b = tex1.sample(s1, c1);
 🔴// wait on ‘b’
 res = a * b;
}

// FALSE dependency: 2 waits

half a = tex0.sample(s0, c0);
half res = 0.0h;

🔴// wait on ‘a’
if (foo) {
 half b = tex1.sample(s1, c1);
 🔴// wait on ‘b’
 res = a * b;
}

Latency-hiding: False dependency example
Memory Access

// REAL dependency: 2 waits

half a = tex0.sample(s0, c0);
half res = 0.0h;

🔴// wait on ‘a’
if (a >= 0.0h) {
 half b = tex1.sample(s1, c1);
 🔴// wait on ‘b’
 res = a * b;
}

// FALSE dependency: 2 waits

half a = tex0.sample(s0, c0);
half res = 0.0h;

🔴// wait on ‘a’
if (foo) {
 half b = tex1.sample(s1, c1);
 🔴// wait on ‘b’
 res = a * b;
}

// NO dependency: 1 wait

half a = tex0.sample(s0, c0);
half b = tex1.sample(s1, c1);
half res = 0.0h;
🔴// wait on ‘a’ and ‘b’
if (foo) {

 res = a * b;
}

Summary

Summary

Pick correct address spaces and data structures/layouts
• Performance impact of getting this wrong can be very high

Summary

Pick correct address spaces and data structures/layouts
• Performance impact of getting this wrong can be very high

Work with the compiler — write what you mean
• “Clever” code often prevents the compiler from doing its job

Summary

Pick correct address spaces and data structures/layouts
• Performance impact of getting this wrong can be very high

Work with the compiler — write what you mean
• “Clever” code often prevents the compiler from doing its job

Keep an eye out for pitfalls, not just micro-optimizations
• Can dwarf all other potential optimizations

Summary

Pick correct address spaces and data structures/layouts
• Performance impact of getting this wrong can be very high

Work with the compiler — write what you mean
• “Clever” code often prevents the compiler from doing its job

Keep an eye out for pitfalls, not just micro-optimizations
• Can dwarf all other potential optimizations

Feel free to experiment!
• Some tradeoffs, like latency vs. throughput, have no universal rule

More Information

https://developer.apple.com/wwdc16/606

Related Sessions

Adopting Metal, Part 1 Nob Hill Tuesday 1:40PM

Adopting Metal, Part 2 Nob Hill Tuesday 3:00PM

What’s New in Metal, Part 1 Pacific Heights Wednesday 11:00AM

What’s New in Metal, Part 2 Pacific Heights Wednesday 1:40PM

Xcode Open Hours Developer Tools
Lab B Wednesday 3:00PM

Metal Lab Graphics, Games,
and Media Lab A Thursday 12:00PM

Xcode Open Hours Developer Tools
Lab B Friday 9:00AM

Xcode Open Hours Developer Tools
Lab B Friday 12:00PM

LLVM Compiler, Objective-C, and C++ Lab Developer Tools
Lab C Friday 4:30PM

Labs

