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Adopting Metal
Part One
• Fundamental Concepts
• Basic Drawing
• Lighting and Texturing

A look at the sessions
Metal at WWDC This Year

Part Two
• Dynamic Data Management 
• CPU-GPU Synchronization
• Multithreaded Encoding



A look at the sessions
Metal at WWDC This Year

What’s New in Metal
Part One
• Tessellation
• Resource Heaps and Memoryless  

Render Targets
• Improved Tools

Part Two
• Function Specialization and Function 

Resource Read-Writes
• Wide Color and Texture Assets
• Additions to Metal Performance Shaders 



A look at the sessions
Metal at WWDC This Year

Advanced Shader Optimization
• Shader Performance Fundamentals
• Tuning Shader Code



An overview
Optimizing Shaders

There’s a lot you can do to make your code faster
Including things specific to A8 and later GPUs!
And major performance pitfalls to watch for…
Do high-level optimizations before low-level
For experienced shader authors
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Overview

Shader performance fundamentals
Tuning shader code



Shader Performance Fundamentals



Things to check before digging deeper
Shader Performance Fundamentals

Address space selection for buffer arguments
Buffer preloading
Fragment function resource writes
Compute kernel organization



Comparison
Address Spaces

GPUs have multiple paths to memory
Designed for different access patterns
Explicitly developer-controlled in 
shading language

ALU

ConstantDevice



ALU

ConstantDevice

Device memory
Address Spaces

Read-write
No size restrictions
Flexible alignment restrictions



Constant memory
Address Spaces

Read-only
Limited size
Alignment restrictions
Optimized for reuse

Device

ALU

Constant



Picking an address space
Address Spaces

variable size

fixed size

few many
Device

Device

Constant

Start

How much data?

How many times will 
each item be read?



Example: vertex data
Address Spaces

vertex float4 simpleVertex(uint vid [[ vertex_id ]]), 

                           const device float4 *positions [[ buffer(0) ]]) 

{ 

   return positions[vid]; 

} 

Variable Number of items Amount of reuse Address space

positions variable number of vertices one device



Example: vertex data
Address Spaces

vertex float4 simpleVertex(uint vid [[ vertex_id ]]), 

                           const device float4 *positions [[ buffer(0) ]]) 

{ 

   return positions[vid]; 

} 

Variable Number of items Amount of reuse Address space

positions variable number of vertices one device



Example: projection matrix
Address Spaces

vertex float4 transformedVertex(uint vid [[ vertex_id ]]), 

                                const device float4 *positions [[ buffer(0) ]], 

                                constant matrix_float4x4 &transform [[ buffer(1) ]]) 

{ 

   return transform * positions[vid]; 

}

Variable Number of items Amount of reuse Address space

transform one all constant



Example: projection matrix
Address Spaces

vertex float4 transformedVertex(uint vid [[ vertex_id ]]), 

                                const device float4 *positions [[ buffer(0) ]], 

                                constant matrix_float4x4 &transform [[ buffer(1) ]]) 

{ 

   return transform * positions[vid]; 

}

Variable Number of items Amount of reuse Address space

transform one all constant



Variable Number of items Amount of reuse Address space

skinningMatrices fixed number of bones all vertices using bone constant

struct SkinningMatrices { 

  matrix_float4x4 position_transforms[MAXBONES]; 

}; 

vertex float4 skinnedVertex(uint vid [[ vertex_id ]]), 

                            const device Vertex *vertices [[ buffer(0) ]], 

                            constant SkinningMatrices &skinningMatrices [[ buffer(1) ]] 

{ 

   … 

   for (ushort i = 0; i < NBONES; ++i) { 

     skinnedPosition += (skinningMatrices.position_transforms[vertices[vid].boneIndices[i]] * 

… 

}

Example: skinning matrices
Address Spaces



Variable Number of items Amount of reuse Address space

skinningMatrices fixed number of bones all vertices using bone constant

struct SkinningMatrices { 

  matrix_float4x4 position_transforms[MAXBONES]; 

}; 

vertex float4 skinnedVertex(uint vid [[ vertex_id ]]), 

                            const device Vertex *vertices [[ buffer(0) ]], 

                            constant SkinningMatrices &skinningMatrices [[ buffer(1) ]] 

{ 

   … 

   for (ushort i = 0; i < NBONES; ++i) { 

     skinnedPosition += (skinningMatrices.position_transforms[vertices[vid].boneIndices[i]] * 

… 

}

Example: skinning matrices
Address Spaces



Example: per-instance data
Address Spaces

vertex float4 instancedVertex(uint vid [[ vertex_id ]], 

                              uint iid [[ instance_id]], 

                              const device float4 *positions [[ buffer(0) ]], 

                              const device matrix_float4x4 *instanceTransforms [[ buffer(1) ]]) 

{ 

   return instanceTransforms[iid] * positions[vid]; 

}

Use case Number of items Amount of reuse Address space

instanceTransforms variable number of 
instances all vertices in instance device



Example: per-instance data
Address Spaces

vertex float4 instancedVertex(uint vid [[ vertex_id ]], 

                              uint iid [[ instance_id]], 

                              const device float4 *positions [[ buffer(0) ]], 

                              const device matrix_float4x4 *instanceTransforms [[ buffer(1) ]]) 

{ 

   return instanceTransforms[iid] * positions[vid]; 

}

Use case Number of items Amount of reuse Address space

instanceTransforms variable number of 
instances all vertices in instance device



Buffer Preloading

Buffer loads can be hoisted to dedicated hardware
• Constant buffers
• Vertex buffers

Depending on
• Access patterns in the shader
• Address space buffer resides in 



Constant Buffer Preloading

Direct loads
• Known address/offset
• No indexing

Indirect loads
• Unknown address/offset
• Buffer must be explicitly sized

ALU

Constant



Constant Buffer Preloading

Direct loads
• Known address/offset
• No indexing

Indirect loads
• Unknown address/offset
• Buffer must be explicitly sized

ALU

Constant



Constant Buffer Preloading

Use constant address space when appropriate 
Statically bound your accesses 
• Pass single struct arguments by reference
• Pass bounded arrays in a struct, rather than via a pointer

typedef struct { 
    uint count; 
    Light data[MAX_LIGHTS]; 
} LightData; 

fragment float4 litFragment( 
   constant LightData &lights [[ buffer(0) ]], 
   LitVertex vertex [[ stage_in ]]);

fragment float4 litFragment( 
   const device Light *l [[ buffer(0) ]], 
   const device uint *count [[ buffer(1) ]], 
   LitVertex vertex [[ stage_in ]]);
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• Pass single struct arguments by reference
• Pass bounded arrays in a struct, rather than via a pointer
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Constant Buffer Preloading

Use constant address space when appropriate 
Statically bound your accesses 
• Pass single struct arguments by reference
• Pass bounded arrays in a struct, rather than via a pointer

typedef struct { 
    uint count; 
    Light data[MAX_LIGHTS]; 
} LightData; 

fragment float4 litFragment( 
   constant LightData &lights [[ buffer(0) ]], 
   LitVertex vertex [[ stage_in ]]);

fragment float4 litFragment( 
   const device Light *l [[ buffer(0) ]], 
   const device uint *count [[ buffer(1) ]], 
   LitVertex vertex [[ stage_in ]]);



A practical example: deferred rendering
Constant Buffer Preloading

More than one way to implement a deferred renderer
Not all ways created equal from a performance point of view



A practical example: deferred rendering
Constant Buffer Preloading

One draw call for all lights
• May read all lights
• Unbounded input size

fragment float4 accumulateAllLights( 

   const device Light *allLights [[ buffer(0) ]], 

   LightInfo tileLightInfo [[ stage_in ]]);



A practical example: deferred rendering
Constant Buffer Preloading

One draw call for all lights
• May read all lights
• Unbounded input size

fragment float4 accumulateAllLights( 

   const device Light *allLights [[ buffer(0) ]], 

   LightInfo tileLightInfo [[ stage_in ]]);



A practical example: deferred rendering
Constant Buffer Preloading

One draw call per light
• Bounded input size — can be in constant address space
• Takes advantage of constant buffer preloading

fragment float4 accumulateAllLights( 

   const device Light *allLights [[ buffer(0) ]], 

   LightInfo tileLightInfo [[ stage_in ]]);



A practical example: deferred rendering
Constant Buffer Preloading

One draw call per light
• Bounded input size — can be in constant address space
• Takes advantage of constant buffer preloading

fragment float4 accumulateAllLights( 

   const device Light *allLights [[ buffer(0) ]], 

   LightInfo tileLightInfo [[ stage_in ]]);

fragment float4 accumulateOneLight( 

   constant Light &currentLight [[ buffer(0) ]], 

   LightInfo lightInfo [[ stage_in ]]);



A practical example: deferred rendering
Constant Buffer Preloading

One draw call per light
• Bounded input size — can be in constant address space
• Takes advantage of constant buffer preloading

fragment float4 accumulateAllLights( 

   const device Light *allLights [[ buffer(0) ]], 

   LightInfo tileLightInfo [[ stage_in ]]);

fragment float4 accumulateOneLight( 

   constant Light &currentLight [[ buffer(0) ]], 

   LightInfo lightInfo [[ stage_in ]]);



A practical example: deferred rendering
Constant Buffer Preloading

One draw call per light
• Bounded input size — can be in constant address space
• Takes advantage of constant buffer preloading

fragment float4 accumulateAllLights( 

   const device Light *allLights [[ buffer(0) ]], 

   LightInfo tileLightInfo [[ stage_in ]]);

fragment float4 accumulateOneLight( 

   constant Light &currentLight [[ buffer(0) ]], 

   LightInfo lightInfo [[ stage_in ]]);



Vertex Buffer Preloading

Fixed-function vertex fetching is handled by dedicated hardware 
Buffer loads will be handled by dedicated hardware for buffer loads if:
• Indexed by vertex/instance ID
• Including divisor math
• With or without base vertex/instance offset



Vertex Buffer Preloading

Use vertex descriptors where possible
If you’re writing your own indexing code
• Lay out data linearly to simplify buffer indexing
• Lower-granularity data can still be hoisted if access is linear



Fragment Function Resource Writes

Resource writes in fragment shaders 
partially defeat hidden surface removal
• Can’t be occluded by later fragments
• Can be removed by failing depth/stencil 

test with [[ early_fragment_tests ]]

NEW



Fragment Function Resource Writes

Use [[ early_fragment_tests ]] to maximize rejection
• Draw after opaque objects
• Sort front-to-back if updating depth/stencil

Similar to objects with discard/per-pixel depth



Compute Kernel Organization

Per-thread launch overhead
Barriers



Amortizing compute thread launch overhead
Compute Kernel Organization

Process multiple work items per compute thread
Reuse values across work items



kernel void sobel_1_1(/* ... */ 

   ushort2 tid [[ thread_position_in_grid ]]) 

{ 

    ushort2 gid = ushort2(tid.x,tid.y); 

    ushort2 dstCoord = ... 

    ... 

    // read 3x3 region of source 

    float2 c = ... 

    float r0 = src.sample(sam, c, int2(-1,-1)).x; 

    // read r1-r8 

    // apply Sobel filter 

    float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6); 

    float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8); 

    float4 g = float4(sqrt(gx * gx + gy * gy)); 

    dst.write(g, static_cast<uint2>(dstCoord)); 

} 
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    dst.write(g, static_cast<uint2>(dstCoord)); 

} 



kernel void sobel_1_1(/* ... */ 

   ushort2 tid [[ thread_position_in_grid ]]) 

{ 

    ushort2 gid = ushort2(tid.x*2,tid.y); 

    ushort2 dstCoord = ... 

    ... 

    // read 3x3 region of source for pixel 1 

    float2 c = ... 

    float r0 = src.sample(sam, c, int2(-1,-1)).x; 

    // read r1-r8 

    // apply Sobel filter for pixel 1 

    float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6); 

    float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8); 

    float4 g = float4(sqrt(gx * gx + gy * gy)); 

    dst.write(g, static_cast<uint2>(dstCoord)); 

// continue to pixel 2



kernel void sobel_1_1(/* ... */ 

   ushort2 tid [[ thread_position_in_grid ]]) 

{ 
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    ushort2 dstCoord = ... 

    ... 

    // read 3x3 region of source for pixel 1 

    float2 c = ... 
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kernel void sobel_1_1(/* ... */ 

   ushort2 tid [[ thread_position_in_grid ]]) 

{ 

    ushort2 gid = ushort2(tid.x*2,tid.y); 

    ushort2 dstCoord = ... 

    ... 

    // read 3x3 region of source for pixel 1 

    float2 c = ... 

    float r0 = src.sample(sam, c, int2(-1,-1)).x; 

    // read r1-r8 

    // apply Sobel filter for pixel 1 

    float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6); 

    float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8); 

    float4 g = float4(sqrt(gx * gx + gy * gy)); 

    dst.write(g, static_cast<uint2>(dstCoord)); 

// continue to pixel 2



// continue to pixel 2... 

dstCoord.x++; 

if (dstCoord.x >= params.dstBounds.z) 

   return; 

// reuse 2x3 region from pixel 1,  

read additional 1x3 region for pixel 2 

r0 = r1; r1 = r2; r2 = src.sample(sam, c, int2(2,-1)).x; 

r3 = r4; r4 = r5; r5 = src.sample(sam, c, int2(2,0)).x; 

r6 = r7; r7 = r8; r8 = src.sample(sam, c, int2(2,1)).x; 

// apply Sobel filter for pixel 2 

float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6); 

float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8); 

float4 g = float4(sqrt(gx * gx + gy * gy)); 

dst.write(g, static_cast<uint2>(dstCoord)); 



// continue to pixel 2... 

dstCoord.x++; 

if (dstCoord.x >= params.dstBounds.z) 

   return; 

// reuse 2x3 region from pixel 1,  

read additional 1x3 region for pixel 2 

r0 = r1; r1 = r2; r2 = src.sample(sam, c, int2(2,-1)).x; 

r3 = r4; r4 = r5; r5 = src.sample(sam, c, int2(2,0)).x; 

r6 = r7; r7 = r8; r8 = src.sample(sam, c, int2(2,1)).x; 

// apply Sobel filter for pixel 2 

float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6); 

float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8); 

float4 g = float4(sqrt(gx * gx + gy * gy)); 

dst.write(g, static_cast<uint2>(dstCoord)); 



// continue to pixel 2... 

dstCoord.x++; 

if (dstCoord.x >= params.dstBounds.z) 

   return; 

// reuse 2x3 region from pixel 1,  

read additional 1x3 region for pixel 2 

r0 = r1; r1 = r2; r2 = src.sample(sam, c, int2(2,-1)).x; 

r3 = r4; r4 = r5; r5 = src.sample(sam, c, int2(2,0)).x; 

r6 = r7; r7 = r8; r8 = src.sample(sam, c, int2(2,1)).x; 

// apply Sobel filter for pixel 2 

float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6); 

float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8); 

float4 g = float4(sqrt(gx * gx + gy * gy)); 

dst.write(g, static_cast<uint2>(dstCoord)); 



// continue to pixel 2... 

dstCoord.x++; 

if (dstCoord.x >= params.dstBounds.z) 

   return; 

// reuse 2x3 region from pixel 1,  

read additional 1x3 region for pixel 2 

r0 = r1; r1 = r2; r2 = src.sample(sam, c, int2(2,-1)).x; 

r3 = r4; r4 = r5; r5 = src.sample(sam, c, int2(2,0)).x; 

r6 = r7; r7 = r8; r8 = src.sample(sam, c, int2(2,1)).x; 

// apply Sobel filter for pixel 2 

float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6); 

float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8); 

float4 g = float4(sqrt(gx * gx + gy * gy)); 

dst.write(g, static_cast<uint2>(dstCoord)); 



// continue to pixel 2... 

dstCoord.x++; 

if (dstCoord.x >= params.dstBounds.z) 

   return; 

// reuse 2x3 region from pixel 1,  

read additional 1x3 region for pixel 2 

r0 = r1; r1 = r2; r2 = src.sample(sam, c, int2(2,-1)).x; 

r3 = r4; r4 = r5; r5 = src.sample(sam, c, int2(2,0)).x; 

r6 = r7; r7 = r8; r8 = src.sample(sam, c, int2(2,1)).x; 

// apply Sobel filter for pixel 2 

float gx = (r2-r0) + 2.0f*(r5-r3) + (r8-r6); 

float gy = (r0-r6) + 2.0f*(r1-r7) + (r2-r8); 

float4 g = float4(sqrt(gx * gx + gy * gy)); 

dst.write(g, static_cast<uint2>(dstCoord)); 



Considerations
Compute Kernel Organization

Use barriers with the smallest possible scope
• SIMD-width threadgroups make threadgroup_barrier unnecessary 
• For thread groups <= SIMD group size, use simdgroup_barrier

Usually faster than trying to squeeze out additional reuse

NEW
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Shader Performance Fundamentals
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Conclusion
Shader Performance Fundamentals

Pick appropriate address spaces for arguments
Structure your data/rendering to leverage buffer preloading
Use early fragment tests to reduce shading of objects with resource writes
Do enough work in each compute thread to amortize launch overhead
Use the smallest-scoped barrier you can



Tuning Shader Code



GPU Architecture

Focus on the bottleneck to improve performance
Improving non-bottlenecks can still save power



Typical Shader Bottlenecks

ALU bandwidth
Memory bandwidth
Memory issue rate
Latency/occupancy/register usage



Optimization Opportunities

Data types
Arithmetic
Control flow
Memory access



Overview
Data Types

A8 and later GPUs use 16-bit register units
Use the smallest possible data type
• Fewer registers used → better occupancy

• Faster arithmetic → better ALU usage

Use half and short for arithmetic when possible
• Energy:  half < float < short < int



Using half and short arithmetic
Data Types

For texture reads, interpolates, and math, use half when possible
• Not the texture format, the value returned from sample()
• Conversions are typically free, even between float and half

Half-precision numerics and limitations are different from float
• Minimum normal value:  6.1 x 10-5

• Maximum normal value:  65504
- Classic bug: writing “65535” as a half will actually give you infinity



Using half and short arithmetic
Data Types

Use ushort for local thread IDs, and for global thread IDs when possible



Using half and short arithmetic
Data Types

Use ushort for local thread IDs, and for global thread IDs when possible

kernel void  
LocalAdd( … 

           uint   threadGroupID [[ thread_position_in_threadgroup]],  
           uint   threadGroupGridID [[ threadgroup_position_in_grid ]])



Using half and short arithmetic
Data Types

Use ushort for local thread IDs, and for global thread IDs when possible

kernel void  
LocalAdd( … 

           ushort threadGroupID [[ thread_position_in_threadgroup]],  
           ushort threadGroupGridID [[ threadgroup_position_in_grid ]])

kernel void  
LocalAdd( … 

           uint   threadGroupID [[ thread_position_in_threadgroup]],  
           uint   threadGroupGridID [[ threadgroup_position_in_grid ]])



Using half and short arithmetic
Data Types

Avoid float literals when doing half-precision operations



Using half and short arithmetic
Data Types

Avoid float literals when doing half-precision operations

half foo(half a, half b)   

{ 

return clamp(a, b, -2.0 , 5.0 ); 

}



Using half and short arithmetic
Data Types

Avoid float literals when doing half-precision operations

half foo(half a, half b)   

{ 

return clamp(a, b, -2.0h, 5.0h); 

}

half foo(half a, half b)   

{ 

return clamp(a, b, -2.0 , 5.0 ); 

}



Using half and short arithmetic
Data Types

Avoid char for arithmetic if not necessary
• Not natively supported for arithmetic
• May result in extra instructions



Built-ins
Arithmetic

Use built-ins where possible
• Free modifiers: negate, abs(), saturate() 

- Native hardware support



Built-ins
Arithmetic

Use built-ins where possible
• Free modifiers: negate, abs(), saturate() 

- Native hardware support

kernel void 

myKernel(…) 

{ 

// fabs on p.a negation on p.b and clamp of (fabs(p.a) * -p.b * input[threadID]) are free 

  float4 f = saturate((fabs(p.a) * -p.b * input[threadID])); 

  … 

}



Arithmetic

A8 and later GPUs are scalar
• Vectors are fine to use, but compiler splits them

- Don’t waste time vectorizing code when not naturally vector



Arithmetic

ILP (Instruction Level Parallelism) not very important
• Register usage typically matters more

- Don’t restructure for ILP,  e.g. using multiple accumulators when not necessary



Arithmetic

ILP (Instruction Level Parallelism) not very important
• Register usage typically matters more

- Don’t restructure for ILP,  e.g. using multiple accumulators when not necessary

// unnecessary, possibly slower 

float accum1 = 0, accum2 = 0; 

for (int x = 0; x < n; x += 2) { 

   accum1 += a[x] * b[x]; 

   accum2 += a[x+1] * b[x+1]; 

} 

return accum1 + accum2;



Arithmetic

ILP (Instruction Level Parallelism) not very important
• Register usage typically matters more

- Don’t restructure for ILP,  e.g. using multiple accumulators when not necessary

// unnecessary, possibly slower 

float accum1 = 0, accum2 = 0; 

for (int x = 0; x < n; x += 2) { 

   accum1 += a[x] * b[x]; 

   accum2 += a[x+1] * b[x+1]; 

} 

return accum1 + accum2;

// better 

float accum = 0; 

for (int x = 0; x < n; x += 2) { 

   accum += a[x] * b[x]; 

   accum += a[x+1] * b[x+1]; 

} 

return accum;



Arithmetic

A8 and later GPUs have very fast ‘select’ instructions (ternary operators)
• Don’t do ‘clever’ things like multiplying by 1 or 0 instead
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A8 and later GPUs have very fast ‘select’ instructions (ternary operators)
• Don’t do ‘clever’ things like multiplying by 1 or 0 instead

// slow: no need to fake ternary op 

if (foo) 

m = 0.0h; 

else 

m = 1.0h; 

half p = v * m;



Arithmetic

A8 and later GPUs have very fast ‘select’ instructions (ternary operators)
• Don’t do ‘clever’ things like multiplying by 1 or 0 instead

 // fast: ternary op 

half p = foo ? v : 0.0h;

// slow: no need to fake ternary op 

if (foo) 

m = 0.0h; 

else 

m = 1.0h; 

half p = v * m;



Integer divisions
Arithmetic

Avoid division or modulus by denominators that aren’t literal/function constants

constant int width [[ function_constant(0) ]]; 
struct constInputs { 
    int width; 
}; 
vertex float4 vertexMain(…) 
{ 
    // extremely slow: constInputs.width not known at compile time 
    int onPos0 = vertexIn[vertex_id] / constInputs.width; 

 // fast: 256 is a compile-time constant 
    int onPos1 = vertexIn[vertex_id] / 256; 
    // fast: width provided at compile time 
    int onPos2 = vertexIn[vertex_id] / width; 
}   



Integer divisions
Arithmetic

Avoid division or modulus by denominators that aren’t literal/function constants

constant int width [[ function_constant(0) ]]; 
struct constInputs { 
    int width; 
}; 
vertex float4 vertexMain(…) 
{ 
    // extremely slow: constInputs.width not known at compile time 
    int onPos0 = vertexIn[vertex_id] / constInputs.width; 

 // fast: 256 is a compile-time constant 
    int onPos1 = vertexIn[vertex_id] / 256; 
    // fast: width provided at compile time 
    int onPos2 = vertexIn[vertex_id] / width; 
}   



Fast-math
Arithmetic

In Metal, fast-math is on by default
Often >50% perf gain on arithmetic, possibly much more
Uses faster arithmetic built-ins with well-defined precision guarantees
Maintains intermediate precision
Ignores strict NaN/infinity/signed zero semantics
• but will not introduce new NaNs

Might perform arithmetic reassociation
• but will not perform arithmetic distribution



Fast-math
Arithmetic

If you absolutely cannot use fast-math:
• Use FMA built-in (fused multiply-add) to regain some performance

- Having fast-math off prohibits this optimization (and many others)



Fast-math
Arithmetic

If you absolutely cannot use fast-math:
• Use FMA built-in (fused multiply-add) to regain some performance

- Having fast-math off prohibits this optimization (and many others)

kernel void 

myKernel(…) 

{ 

// d = a * b + c; 

  float d = fma(a, b, c); 

  … 

}



Control Flow

Control flow uniform across SIMD width is generally fast
• Dynamically uniform (uniform at runtime) is also fast

Divergence within a SIMD means running both paths



Control Flow

Switch fall-throughs: can create unstructured control flow
• Can result in significant code duplication — avoid if possible

switch (numItems) { 
[...] 
case 2: 
 processItem(1); 
 /* fall-through */ 
case 1: 
 processItem(0); 
 break; 
}



Stack access
Memory Access

Avoid dynamically indexed non-constant stack arrays
• Cost can be catastrophic: 30% due to one 32-byte array in a real-world app

Loops with stack arrays will typically be unrolled to eliminate the dynamic access
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Avoid dynamically indexed non-constant stack arrays
• Cost can be catastrophic: 30% due to one 32-byte array in a real-world app

Loops with stack arrays will typically be unrolled to eliminate the dynamic access

// bad: dynamically indexed stack array 

int foo(int a, int b, int c) { 

   int tmp[2] = { a, b }; 

   return tmp[c];



Stack access
Memory Access

Avoid dynamically indexed non-constant stack arrays
• Cost can be catastrophic: 30% due to one 32-byte array in a real-world app

Loops with stack arrays will typically be unrolled to eliminate the dynamic access

// bad: dynamically indexed stack array 

int foo(int a, int b, int c) { 

   int tmp[2] = { a, b }; 

   return tmp[c];

// okay: constant array 

int foo(int a, int b, int c) { 

   int tmp2[2] = { 1, 2 }; 

   return tmp2[c];



Stack access
Memory Access

Avoid dynamically indexed non-constant stack arrays
• Cost can be catastrophic: 30% due to one 32-byte array in a real-world app

Loops with stack arrays will typically be unrolled to eliminate the dynamic access

// bad: dynamically indexed stack array 

int foo(int a, int b, int c) { 

   int tmp[2] = { a, b }; 

   return tmp[c];

// okay: constant array 

int foo(int a, int b, int c) { 

   int tmp2[2] = { 1, 2 }; 

   return tmp2[c];

// okay: loop will be unrolled 

int foo(int a, int b, int c) { 

   int tmp3[3] = { a, b, c }; 

   int sum = 0; 

   for (int i = 0; i < 3; ++i) 

      sum += tmp3[i]; 

   return sum;



One big vector load/store is faster than multiple scalar ones
• The compiler will try to vectorize neighboring loads/stores

Loads and stores
Memory Access



One big vector load/store is faster than multiple scalar ones
• The compiler will try to vectorize neighboring loads/stores

Loads and stores
Memory Access

struct foo { 

  float a; 

  float b[7]; 

  float c; 

}; 

// bad: a and c aren’t adjacent.  

will result in two scalar loads  

float sum_mul(foo *x, int n) { 

  float sum = 0; 

  for (uint i = 0; i < n; ++i) 

sum += x[i].a * x[i].c;



One big vector load/store is faster than multiple scalar ones
• The compiler will try to vectorize neighboring loads/stores

Loads and stores
Memory Access

struct foo { 

  float a; 

  float b[7]; 

  float c; 

}; 

// bad: a and c aren’t adjacent.  

will result in two scalar loads  

float sum_mul(foo *x, int n) { 

  float sum = 0; 

  for (uint i = 0; i < n; ++i) 

sum += x[i].a * x[i].c;

struct foo { 

  float2 a; 

  float b[7]; 

}; 

// good: a is now a vector, so there 

will be one load. 

float sum_mul(foo *x, int n) { 

  float sum = 0; 

  for (uint i = 0; i < n; ++i) 

sum += x[i].a.x * x[i].a.y;  



One big vector load/store is faster than multiple scalar ones
• The compiler will try to vectorize neighboring loads/stores

Loads and stores
Memory Access

struct foo { 

  float a; 

  float b[7]; 

  float c; 

}; 

// bad: a and c aren’t adjacent.  

will result in two scalar loads  

float sum_mul(foo *x, int n) { 

  float sum = 0; 

  for (uint i = 0; i < n; ++i) 

sum += x[i].a * x[i].c;

struct foo { 

  float2 a; 

  float b[7]; 

}; 

// good: a is now a vector, so there 

will be one load. 

float sum_mul(foo *x, int n) { 

  float sum = 0; 

  for (uint i = 0; i < n; ++i) 

sum += x[i].a.x * x[i].a.y;  

struct foo { 

  float a; 

  float c; 

  float b[7]; 

}; 

// also good: compiler will likely be 

able to vectorize. 

float sum_mul(foo *x, int n) { 

float sum = 0; 

  for (uint i = 0; i < n; ++i) 

sum += x[i].a * x[i].c;



Loads and stores
Memory Access

Use int or smaller types for device memory addressing (not uint)



Loads and stores
Memory Access

Use int or smaller types for device memory addressing (not uint)

kernel void Accumulate( const device int *a [[ buffer(0) ]], …) { 

int sum = 0; 

for (uint i = 0; i < nElems; i++) 

sum += a[i];



Loads and stores
Memory Access

Use int or smaller types for device memory addressing (not uint)

kernel void Accumulate( const device int *a [[ buffer(0) ]], …) { 

int sum = 0; 

for (uint i = 0; i < nElems; i++) 

sum += a[i];

kernel void Accumulate( const device int *a [[ buffer(0) ]], …) { 

int sum = 0; 

for (int i = 0; i < nElems; i++) 

sum += a[i];



Latency/Occupancy

GPUs hide latency with large-scale multithreading
When waiting for something to finish (e.g. a texture read) they run another thread



Latency/Occupancy

The more latency, the more threads you need to hide it
The more registers you use, the fewer threads you have
• The number of threads you can have is called the ‘occupancy’
• Threadgroup memory usage can also bound the occupancy

‘Latency-limited’:  too few threads to hide latency of a shader
Measure occupancy in Metal compute shaders using MTLComputePipelineState 
maxTotalThreadsPerThreadgroup()



Latency-hiding: False dependency example
Memory Access



Latency-hiding: False dependency example
Memory Access

// REAL dependency: 2 waits 

half a = tex0.sample(s0, c0); 
half res = 0.0h; 

🔴// wait on ‘a’ 
if (a >= 0.0h) { 
  half b = tex1.sample(s1, c1); 
  🔴// wait on ‘b’ 
  res = a * b; 
}



Latency-hiding: False dependency example
Memory Access

// REAL dependency: 2 waits 

half a = tex0.sample(s0, c0); 
half res = 0.0h; 

🔴// wait on ‘a’ 
if (a >= 0.0h) { 
  half b = tex1.sample(s1, c1); 
  🔴// wait on ‘b’ 
  res = a * b; 
}

// FALSE dependency: 2 waits 

half a = tex0.sample(s0, c0); 
half res = 0.0h; 
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Latency-hiding: False dependency example
Memory Access

// REAL dependency: 2 waits 

half a = tex0.sample(s0, c0); 
half res = 0.0h; 

🔴// wait on ‘a’ 
if (a >= 0.0h) { 
  half b = tex1.sample(s1, c1); 
  🔴// wait on ‘b’ 
  res = a * b; 
}

// FALSE dependency: 2 waits 

half a = tex0.sample(s0, c0); 
half res = 0.0h; 

🔴// wait on ‘a’ 
if (foo) { 
  half b = tex1.sample(s1, c1); 
  🔴// wait on ‘b’ 
  res = a * b; 
}

// NO dependency: 1 wait 

half a = tex0.sample(s0, c0); 
half b = tex1.sample(s1, c1); 
half res = 0.0h; 
🔴// wait on ‘a’ and ‘b’ 
if (foo) { 

  res = a * b; 
}



Summary
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• Performance impact of getting this wrong can be very high
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• “Clever” code often prevents the compiler from doing its job

Keep an eye out for pitfalls, not just micro-optimizations
• Can dwarf all other potential optimizations



Summary

Pick correct address spaces and data structures/layouts
• Performance impact of getting this wrong can be very high

Work with the compiler — write what you mean
• “Clever” code often prevents the compiler from doing its job

Keep an eye out for pitfalls, not just micro-optimizations
• Can dwarf all other potential optimizations

Feel free to experiment!
• Some tradeoffs, like latency vs. throughput, have no universal rule



More Information

https://developer.apple.com/wwdc16/606



Related Sessions

Adopting Metal, Part 1 Nob Hill Tuesday 1:40PM

Adopting Metal, Part 2 Nob Hill Tuesday 3:00PM

What’s New in Metal, Part 1 Pacific Heights Wednesday 11:00AM

What’s New in Metal, Part 2 Pacific Heights Wednesday 1:40PM



Xcode Open Hours Developer Tools 
Lab B Wednesday 3:00PM

Metal Lab Graphics, Games, 
and Media Lab A Thursday 12:00PM

Xcode Open Hours Developer Tools 
Lab B Friday 9:00AM

Xcode Open Hours Developer Tools 
Lab B Friday 12:00PM

LLVM Compiler, Objective-C, and C++ Lab Developer Tools 
Lab C Friday 4:30PM

Labs




