Inside the NVIDIA Ampere Architecture

Ronny Krashinsky, Olivier Giroux GPU Architects

GTC 2020

UNPRECEDENTED ACCELERATION AT EVERY SCALE

UNIFIED AI ACCELERATION

BERT Large Inference uses TRT 7.1 for T4/V100, with INT8/FP16 at batch size 256. Pre-production TRT for A100, uses batch size 94 and INT8 with sparsity

ACCELERATING HPC

All results are measured

Except BerkeleyGW, V100 used is single V100 SXM2. A100 used is single A100 SXM4 More apps detail: AMBER based on PME-Cellulose, GROMACS with STMV (h-bond), LAMMPS with Atomic Fluid LJ-2.5, NAMD with v3.0a1 STMV_NVE Chroma with szscl21_24_128, FUN3D with dpw, RTM with Isotropic Radius 4 1024^3, SPECFEM3D with Cartesian four material model BerkeleyGW based on Chi Sum and uses 8xV100 in DGX-1, vs 8xA100 in DGX A100

📀 NVIDIA.

A100 SM

Third-generation Tensor Core Faster and more efficient Comprehensive data types Sparsity acceleration

Asynchronous data movement and synchronization

Increased L1/SMEM capacity

1. New Tensor Core

2. Strong Scaling

3. Elastic GPU

4. Productivity

2. Strong Scaling

3. Elastic GPU

4. Productivity

	INPL	JT OPERANDS	AC	CUMULATOR	TOPS	X-factor vs. FFMA
V/400	FP32		FP32	000000000000000000000000000000000000000	15.7	1x
V100	FP16		FP32	000000000000000000000000000000000000000	125	8x

V100 125 8x vs. TOPS FFMA FF16/FP32 Mixedprecision

	INPL	JT OPERANDS	AC	CUMULATOR	TOPS	X-factor vs. FFMA
V400	FP32	000000000000000000000000000000000000000	FP32	000000	15.7	1x
V100	FP16		FP32	000000000000000000000000000000000000000	125	8x
1100	FP32		FP32	000000000000000000000000000000000000000	19.5	1x
ATUU	FP16		FP32	000000	312	16x

V100→A100 2.5x 2x TOPS TOPS/ FF16/FP32 SM Mixedprecision

	INPL	JT OPERANDS	AC	CUMULATOR	TOPS	X-factor vs. FFMA
V100	FP32		FP32		15.7	1x
V100	FP16	0000000000	FP32		125	8 x
	FP32	000000000000000000000000000000000000000	FP32	000000	19.5	1x
A100	TF32		FP32		156	8x
	FP16	0000000000	FP32		312	16x
	BF16		FP32		312	16x

TF32 accelerates FP32 in/out data \rightarrow 10x vs. V100 FP32 BFloat16 (BF16) at same rate as FP16

	INPL	JT OPERANDS	AC	CUMULATOR	TOPS	X-factor vs. FFMA		
V100	FP32		FP32		15.7	1x		
VIUU	FP16		FP32		125	8x		
	FP32		FP32		19.5	1x		
	TF32		FP32		156	8x		
	FP16		FP32		312	16x		
1100	BF16		FP32		312	16x		TODC
ATUU	FP16	1 /2	FP16		312	16x	2 2v	IOPS
	INT8		INT32		624	32x		track
	INT4	······································	INT32		1248	64x		operand
	BINARY		INT32		4992	256x	₽ 4X	width

Inference data types

	INPU	T OPERANDS	AC	CUMULATOR	TOPS	X-factor vs. FFMA	SPARSE TOPS	SPARSE X-factor vs. FFMA
V100	FP32	0	FP32		15.7	1x	-	-
V 100	FP16	00000	FP32		125	8x	-	-
	FP32	000000	FP32		19.5	1x	-	-
	TF32		FP32	0,0000	156	8x	312	16x
	FP16	00000	FP32		312	16x	624	32x
A 1 0 0	BF16	000000000000	FP32		312	16x	624	32x
ATUU	FP16	00000000000	FP16	00000000000	312	16x	624	32x
	INT8		INT32	(*********	624	32x	1248	64x
	INT4		INT32		1248	64x	2496	128x
	BINARY	0	INT32		4992	256x	-	-

With Sparsity another 2x, INT8/INT4 reach petaops

	INPL	IT OPERANDS	AC	CUMULATOR	TOPS	X-factor vs. FFMA	SPARSE TOPS	SPARSE X-factor vs. FFMA
V100	FP32		FP32	[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	15.7	1x	-	-
V 100	FP16	00000	FP32	000000	125	8x	-	-
	FP32	000000000000000000000000000000000000000	FP32	000000000000000000000000000000000000000	19.5	1x	-	-
	TF32		FP32	0,0000	156	8x	312	16x
	FP16	00000	FP32	000000000000000000000000000000000000000	312	16x	624	32x
	BF16	000000000000	FP32	000000000000000000000000000000000000000	312	16x	624	32x
A100	FP16	00000	FP16	00000	312	16x	624	32x
	INT8		INT32	(624	32x	1248	64x
	INT4		INT32		1248	64x	2496	128x
	BINARY	0	INT32		4992	256x	<u>V100-</u>	A100
	IEEE FF	°64 amma			19.5	1x	Z.5X f	

	INDI		٨٢		τορς	X-factor	SPARSE	SPARSE X-factor
				COMOLATOR	15 7	1.		v3 . I I <i>M</i> /A
V100	ГРЭД		LL27		15.7	IX	-	-
• 100	FP16		FP32		125	8 x	-	-
	FP32	000000000000000000000000000000000000000	FP32		19.5	1x	-	-
	TF32		FP32		156	8x	312	16x
	FP16	0000000000	FP32		312	16x	624	32x
	BF16		FP32		312	16x	624	32x
A100	FP16		FP16		312	16x	624	32x
	INT8		INT32		624	32x	1248	64x
	INT4		INT32		1248	64x	2496	128x
	BINARY		INT32		4992	256x	-	-
	IEEE FR	264			19.5	1x	-	-

INSIDE A100 TensorFloat-32 (TF32)

Range of FP32 with precision of FP16

FP32 input/output

FP32 storage and math for all activations, gradients, ... everything outside tensor cores

Out-of-the-box tensor core acceleration for DL

Easy step towards maximizing tensor core performance with mixed-precision (FP16, BF16)

Up to 4x speedup on linear solvers for HPC

 \rightarrow S22082: Mixed-Precision Training of Neural Networks, 5/20 2:45pm PDT

 \rightarrow S21681: How CUDA Math Libraries can help you unleash the power of the new NVIDIA A100 GPU (recording available) ¹⁶ $^{\circ}$

INSIDE A100 SPARSE TENSOR CORE

~No loss in inferencing accuracy

Evaluated across dozens of networks: vision, object detection, segmentation, natural language modeling, translation

→ S22085: Accelerating Sparsity in the NVIDIA Ampere Architecture, 5/20 1:30pm PDT

1. New Tensor Core

2. Strong Scaling

3. Elastic GPU

4. Productivity

DL STRONG SCALING

DL networks: Long chains of sequentiallydependent compute-intensive layers

runs in same time

Strong scaling

Fixed network runs ~2.5x faster

HOW TO KEEP TENSOR CORES FED?

Math bandwidth (MACs/clock/SM)

A100 STRONG SCALING INNOVATIONS

A100 TENSOR CORE 2x throughput vs. V100, >2x efficiency

V100 TC Instruction (1024 MACs, 8 cycles)

16x16x16 matrix multiply	FFMA	V100 TC	A100 TC	A100 vs. V100 (improvement)	A100 vs. FFMA (improvement)
Thread sharing	1	8	32	4x	32x
Hardware instructions	128	16	2	8x	64x
Register reads+writes (warp)	512	80	28	2.9x	18x
Cycles	256	32	16	2x	16x

Tensor Cores assume FP16 inputs with FP32 accumulator, V100 Tensor Core instruction uses 4 hardware instructions

22

A100 SM DATA MOVEMENT EFFICIENCY 3x SMEM/L1 bandwidth, 2x in-flight capacity

A100 L2 BANDWIDTH

Split L2 with hierarchical crossbar -2.3x increase in bandwidth over V100, lower latency

A100 DRAM BANDWIDTH

→ S21819: Optimizing Applications for NVIDIA Ampere GPU Architecture, 5/21 10:15am PDT

A100 COMPUTE DATA COMPRESSION

Math

RF

SMEM/L1

L2

DRAM

NVLINK

Up to 4x DRAM+L2 bandwidth and 2x L2 capacity for fine-grained unstructured sparsity

S21819: Optimizing Applications for NVIDIA Ampere GPU Architecture, 5/21 10:15am PDT

A100 NVLINK BANDWIDTH

Third Generation NVLink

Math

RF

SMEM/L1

L2

DRAM

NVLINK

50 Gbit/sec per signal pair 12 links, 25 GB/s in/out, 600 GB/s total 2x vs. V100

A100 ACCELERATES CUDA GRAPHS

20x

15x

Speedup with CUDA Graphs

Grid launches:

- CPU-to-GPU
- GPU grid-to-grid

Speedup with CUDA Graphs (vs. without CUDA Graphs) (vs. wihtout CUDA Graphs) **2**x 10x 2.0x 7.2x 6.6x **1**x **5**x **0**x **0**x V100 A100 V100 Straight-line Fork-Join Straight-line Fork-Join

18.2)

32-node graphs of empty grids, DGX1-V, DGX-A100

One-shot CPU-to-GPU graph submission and graph reuse

CPU-to-GPU Launch

16.2

Microarchitecture improvements for grid-to-grid latencies

GPU Grid-to-Grid

3.7x

A100

4x

3x

With strong scaling CPU and grid launch overheads become increasingly important (Amdahl's law)

 \rightarrow S21760: CUDA New Features And Beyond, 5/19 10:15am PDT

A100 STRONG SCALING INNOVATIONS Delivering unprecedented levels of performance

A100 improvements over V100

1. New Tensor Core

2. Strong Scaling

3. Elastic GPU

4. Productivity

NVLINK: ONE BIG GPU

- InfiniBand/Ethernet: travels a long distance, consistency is the responsibility of software
- PCI Express: hardware consistency for I/O, not for programming language memory models
- NVLINK: hardware consistency for programming language memory models, like system bus

HGX A100: 3RD GEN NVLINK

HGX A100 4-GPU: fully-connected system with 100GB/s all-to-all BW

HGX A100: 3RD GEN NVLINK & SWITCH

- HGX A100 4-GPU: fully-connected system with 100GB/s all-to-all BW
- New NVSwitch: 6B transistors in TSMC 7FF, 36 ports, 25GB/s each, per direction
- HGX A100 8-GPU: 6x NVSwitch in a fat tree topology, 2.4TB/s full-duplex bandwidth

DGX A100: PCIE4 CONTROL & I/O

CLOUD SMALL INSTANCE USAGE

- Small workloads can under-utilize GPU cloud instances, provisioned at whole GPU level
- CSPs can't use MPS for GPU space-sharing, because it doesn't provide enough isolation

NEW: MULTI-INSTANCE GPU (MIG)

- Up to 7 instances total, dynamically reconfigurable
- Compute instances: compute/fault isolation, but share/compete for memory
- **GPU instances:** separate and isolated paths through the entire memory system

ELASTIC GPU COMPUTING

- Each A100 is 1 to 7 GPUs
- Each DGX A100 is 1 to 56 GPUs
- Each GPU can serve a different user, with full memory isolation and QoS

 \rightarrow S21975: Inside NVIDIA's Multi-Instance GPU Feature (recording available)

 \rightarrow S21884: Under the Hood of the new DGX A100 System Architecture (recording available soon)

→S21702: Introducing NVIDIA DGX A100: The Universal AI System for Enterprise, 5/20 9:00am PDT

1. New Tensor Core

2. Strong Scaling

3. Elastic GPU

4. Productivity

COMPUTE CAPABILITY

Programming Model Development at NVIDIA

GPU PROGRAMMING IN 2020 AND BEYOND Math Libraries | Standard Languages | Directives | CUDA

global

GPU Accelerated Math Libraries

PROGRAMMING MODEL WANTED Software pipelining to hide latency is hard.

```
_device___ void exhibit_A1()
memcpy(/* ... */); //< blocks here</pre>
/* more work */
compute(); //< needed here</pre>
/* more work */
                Data
```

```
_device___ void exhibit_B1()
```

```
compute_head();
__syncthreads(); //< blocks here
/* more work */
```

```
compute_tail(); //< needed here
/* more work */</pre>
```

Compute

PROGRAMMING MODEL WANTED Software pipelining to hide latency is hard.


```
_device__ void exhibit_B2()
{
   compute_head();
   __syncthreads(); //< blocks here
   /* compute_head();
   __syncthreads(); */
   compute_tail(); //< needed here
   /* compute_tail(); */</pre>
```

Compute

CO-DESIGNED: A100 & C++20 barrier Key to asynchronous programming in compute_80

#include <cuda/barrier> // ISO C++20 conforming extension
using barrier = cuda::barrier<cuda::thread_scope_block>;

```
class barrier { // synopsis
  //...
  void arrive_and_wait();
  arrival_token arrive(ptrdiff_t = 1); Nonblocking
  void wait(arrival_token &&) const;
  //...
};
```

ASYNCHRONOUS COPY + BARRIER

Capability	PTX ISA	CUDA C++ API	
Asynchronous barrier	<pre>mbarrier.{<basis functions="">}</basis></pre>	cuda::barrier<>	
Asynchronous copy cp.async.ca + cp.async.mbarrier.arrive		<pre>cuda::memcpy_async()</pre>	
+Cache-bypass	cp.async.cg		
+Zero-fill ragged edge	cp.async.* … wr-size, rd-size;	CUDA 11 preview library in	
+User-level tracking	cp.async.mbarrier.arrive.noinc	experimental:: namespace	
+Single-threaded mode	<pre>cp.async.{commit_group, wait_group}</pre>		

ASYNCHRONOUS PROGRAMMING MODEL

#include <cuda/barrier> // ISO C++20 conforming extension
using barrier = cuda::barrier<cuda::thread_scope_block>;

MULTI-BUFFERING PIPELINES IN C++

```
#include <cuda/barrier> // ISO C++20 conforming extension
using barrier = cuda::barrier<cuda::thread scope block>;
global void exhibit C(/* ... */) {
  __shared__ barrier b[2];
                                                                                  Data
  // ^^initialization omitted
  barrier::arrival token t[2];
   da::memcpy_async(/* ... */, b[v]);
 t[0] = b[0].arrive();
 for(int step = 0, next = 1; step < steps; ++step, ++next)</pre>
   if(next < steps) {</pre>
     b[next & 1].wait(t[next & 1]);
     cude::mem.py_async(/* ... */, b[next & 1]);
     t[nekt & 1] = b[next & 1].arrive();
                                                                               Compute
   b[step & 1].uait(t[step & 1]);
   compute();
   t[step & 1] = b[step & 1].arrive();
```

MULTI-BUFFERING PIPELINES IN C++

→S21760: CUDA New Features And Beyond, 5/19 10:15am PDT

OUR PRODUCTIVITY GAINS FROM A100

UNPRECEDENTED ACCELERATION AT EVERY SCALE

Whitepaper: NVIDIA A100 Tensor Core GPU Architecture www.nvidia.com/nvidia-ampere-architecture-whitepaper