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LCMS Conterminous United States, Southeastern Alaska, Puerto Rico – U.S. Virgin Islands, and 

Hawaiʻi Version 2023.9 Release Notes  

Any changes to the methods from LCMS version 2022.8 outlined below in this document will be reflected 
in this list  
• Computing platforms  

o No changes  
  

• Model calibration data  
o No changes 

 
• Model predictor data  

o Rather than completely rerunning CCDC for the entire time series, for CONUS and SEAK, two 
CCDC runs were feathered together. The first run was the 1984-2022 CCDC run used in 
v2022.8, while the second run was 2013-2023. Between 2014 and 2021, the v2022.8 CCDC 
run was feathered together with the new CCDC run of 2013-2023 using a linearly-weighted 
feathering method. 

o The Cloud Score + algorithm was used for cloud masking of Sentinel-2 data used in the 2023 
composite that is used in LandTrendr. 
 

• Modeling (Supervised Classifications)  
o The change model is now run as a multiclass probability model rather than the previous 

separate binary models for each change class. 
 
• Map Assemblage 

o Rulesets based on probability thresholds and ancillary datasets were introduced for the land 
use and Landcover map assemblages to limit commission/omission of certain classes. 
 

• LCMS products  
o Production of Hawaiʻi LCMS is ongoing, and the data release is upcoming (expected 

concurrently with PRUSVI release). 

 

LCMS Conterminous United States, Southeastern Alaska, Puerto Rico – U.S. Virgin Islands, and 

Hawai’i Version 2022.8 Release Notes  

Any changes to the methods from LCMS version 2021.7 outlined below in this document will be reflected 
in this list   
 
• Computing platforms  

o No changes  
  

• Model calibration data  
o No changes 

 
• Model predictor data  

o The United States Geologic Survey (USGS) Landsat collection 2 data were used in generating 
annual composites. 

o In addition to Landsat 4, 5, 7, and 8, Landsat 9 is now included as well. 



 

Geospatial Technology and Applications Center GTAC-10252-RPT4 |  2 

o LandTrendr and CCDC predictor data were updated with data generated from Landsat 
collection 2 data. 

o Surface Reflectance data was used to run CCDC for the CONUS. 
o CCDC NBR, NDMI and wetness predictors were not included.  
o No Landsat thermal data were included as predictor variables in CONUS, SEAK, PRUSVI or HI.  
o Use the USGS 3D Elevation Program (3DEP) data for our terrain predictors.  

 
• Modeling (Supervised Classifications)  

o No changes  
 

 
• LCMS products  

o Production of Hawaiʻi LCMS is ongoing, and the data release is upcoming. 
o For PRUSVI, low developed probabilities were excluded to limit the commission of 

developed in non-developed classes. Through qualitative assessment of the land use 
assembled maps we used the 70th percentile developed raw probabilities in highest 
probability classification, which excluded low developed probabilities and allowed other 
land use class probabilities to be considered instead in classification. Excluding low 
developed probabilities helped limit developed commission in uncertain land use types such 
as agriculture and rangelands.  
 

LCMS Conterminous United States and Southeastern Alaska Version 2021.7 Release Notes  

Any changes to the methods from LCMS version 2020.5 outlined below in this document will be reflected 
in this list   
 
• Computing platforms  

o No changes  
  

• Model calibration data  
o Additional training locations were collected over areas of lava rock in the Southwestern US 

and coastal wetlands in Southern Texas to help the models avoid classifying these areas as 
developed. 
 

• Model predictor data  
o In order to avoid masking out areas of water that were not present for the majority of the 

analysis period, for dark pixels only (Sum of NIR and SWIR1 bands <= 0.175), the Temporal 
Dark Outlier Mask (TDOM) method now utilizes a shorter 3-year time window (One year 
plus and minus the year of the composite – e.g. for a year 2000 composite, the years 1999-
2001 would be included in the TDOM statistics) to derive statistics to identify outliers. All 
other pixels continue to use the statistics from 1985-2020. This helps avoid masking areas of 
water that were not present for most of the analysis period.   

o Landsat/Sentinel 2 composites were not used directly as predictor variables.  
o Interpolated values from both LandTrendr and CCDC were included as predictor variables to 

allow for more complete maps (These areas can be removed by using the QA band 
described below).  

o Landsat thermal data were included as predictor variables in CONUS, but not SEAK.  
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• Modeling (Supervised Classifications)  
o No changes  

 
• LCMS products  

o Since change is intended to depict vegetation cover change, change is excluded from any 
pixel classified water, snow/ice, or barren for all years. 

o Ancillary information on the origin of the annual LCMS product output values are now 
provided as part of a QA bit layer. This layer includes whether an interpolated value was 
used to produce the LCMS output, the sensor, and the day of year the value came from.  

o A postprocessing rule is now applied to land use maps. Since heavily treed developed areas 

are frequently erroneously classified as forest land use, we now require that if a pixel has 

been classified as developed it cannot subsequently change to forest. To avoid inadvertently 

increasing commission errors in areas that were initially erroneously classified as developed, 

we limit this ruleset to pixels that are a maximum of two pixels away from a pixel classified 

as built-up in the Landsat-based Global Human Settlement Layer built-up area grid (GHSL; 

Corbane et al., 2018) at any of the mapped GHSL years (1975, 1990, 2000, and 2014). 
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Executive Summary 

The Landscape Change Monitoring System (LCMS) is a remote sensing-based system produced by the 

United States Department of Agriculture, Forest Service for mapping and monitoring changes related to 

vegetation canopy cover, as well as land cover and land use. Data produced by LCMS extend from 1985 

to the most recently completed growing year. LCMS is intended to provide a consistent monitoring 

method for applications including, but not limited to, post-disturbance monitoring, broad-scale vegetation 

cover change, land cover and land use conversion trends monitoring, and sensitive habitat monitoring. 

This document details the methods employed to create all map products for LCMS version 2022.8. These 

methods will be revisited annually to ensure they reflect the best available science. Current methods 

involve utilizing Landsat and Sentinel 2 data in the Landsat-based detection of Trends in Disturbance and 

Recovery (LandTrendr) and Landsat data in the Continuous Change Detection and Classification (CCDC) 

temporal segmentation algorithms. Outputs from these algorithms are used as predictor variables in 

random forest models that are calibrated using training data from TimeSync. The broad categories of 

LCMS products are vegetation cover change, land cover, and land use.  

All LCMS products are freely available for download at the LCMS website. 

Users can interactively visualize and summarize the data at the LCMS Viewer.  

Background 

Our landscape is continually changing. Monitoring change in vegetation cover and conversion of land 

cover and land use is important for making data-driven land management decisions. The Forest Service 

has developed the Landscape Change Monitoring System (LCMS) to consistently monitor changes in 

vegetation cover, land cover, and land use across the United States from 1985 to present.  

The LCMS Science Team initially developed all LCMS methods (Cohen et al., 2018; Healey et al., 2018). 

This team evaluated the best available science about landscape change detection methods and provided 

guidance for the adapted operational LCMS methods employed by the LCMS Production Team described 

in this document.  

The Science Team and Production Team jointly re-evaluate the methods annually to ensure the mapping 

process is still based on the best available science. This document describes the methods used to create 

LCMS version 2022.8 products. The version naming convention is YYYY.v where “YYYY” denotes the 

most recent year mapped, and the “v” denotes the version of the methods used. We recreate all map 

products annually from 1985 to the most recent full growing season. Annual production ensures LCMS 

methods can be updated when appropriate and all maps will be produced in a consistent manner. 

LCMS mapping areas include all the United States and its territories. The current operational set of 

outputs cover the conterminous United States (CONUS), southeastern Alaska (SEAK), Puerto Rico U.S. 

Virgin Islands (PRUSVI). Hawaiʻi (HI) production efforts are ongoing, and the HI LCMS data release is 

expected to be concurrent with PRUSVI for the 2023-9 release. This document outlines methods used 

over the study areas. 

The core LCMS products are annual vegetation cover change, land cover, and land use raster maps. 

Vegetation cover change is broken into slow loss, fast loss, and gain. Change products are intended to 

address needs centered around monitoring variations in vegetation cover or water extent that may or may 

not result in a transition of land cover and/or land use. Land cover products can be used to meet more 

general land cover monitoring needs over time. Land use products can be used to monitor land use 

conversion patterns.   

https://data.fs.usda.gov/geodata/rastergateway/LCMS/
https://apps.fs.usda.gov/lcms-viewer
https://www.fs.usda.gov/research/rmrs/centers/lcms
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Methods 

Computing platforms 
LCMS utilizes Google Earth Engine (GEE; Gorelick 2017) through an enterprise agreement between the 

Forest Service and Google, for all remote sensing raster data acquisition and processing. GEE is a parallel 

computing environment that provides access to many publicly available earth observation datasets, along 

with common data processing methods, and computing infrastructure to process these data. While GEE’s 

data processing methods are quite extensive, currently it cannot meet the breadth of methods available in 

common scientific computing platforms such as R and the Python package Scikit-Learn (Pedregosa et al., 

2011). Due to these limitations, we use Scikit-Learn for sample design, model predictor variable 

selection, and model validation. 

Model calibration data 
All supervised statistical models need a set of calibration data (dependent variable or training data) and 

predictor variables (independent variables) to train the model. The model is then applied to the predictor 

data where there are no calibration data. This section will outline how LCMS calibration data locations 

are selected and attributed. 

Model calibration data sample design 
The goal of a sample design is to efficiently sample the expected variability of the dependent variable. 

Since LCMS maps vegetation cover change, land cover, and land use, the sample design needs to account 

for expected variability in each of these categories across the U.S.  

Pilot projects we completed throughout the United States revealed that many of the classes, such as 

vegetation cover loss and impervious land cover, are relatively rare across the landscape. The simple 

random sample we initially used proved insufficient to capture an adequate proportion of these rare 

classes. To improve our sampling approach, we moved to a stratified random sample design following the 

guidance from Olofsson et al., (2014). Specifically, “The recommended allocation of sample size to the 

strata defined by the map classes is to increase the sample size for the rarer classes making the sample 

size per stratum more equitable than what would result from proportional allocation, but not pushing to 

the point of equal allocation.”   

Based on this guidance, we stratify the landscape using the 2016 National Land Cover Database (NLCD) 

land cover / land use map for CONUS (Yang et al., 2018), paired with LandTrendr (Kennedy et al., 2010; 

Kennedy et al., 2018) for SEAK and HI (figures 1,2, and 4). For PRUSVI, the sample design uses land 

cover data from Helmer et al. (2002) for stratification (figure 3).  

  

https://scikit-learn.org/stable/
https://developers.google.com/earth-engine/datasets/catalog/USGS_NLCD_RELEASES_2019_REL_NLCD?hl=en
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Figure 1. – Map depicting strata used for the Landscape Change Monitoring System (LCMS) conterminous United States 

(CONUS) calibration/validation sample design. Final strata are listed below the map, with the percentage of total pixels 

represented by that stratum in parentheses and National Land Cover Database (NLCD) land cover classes included in that 

stratum listed below (Yang et al., 2018). 

 

Figure 2. – Map depicting strata used for the Landscape Change Monitoring System Southeast Alaska (SEAK) 

calibration/validation sample design. Final strata are listed below the map, with the percentage of total pixels represented by 

that stratum in parentheses and National Land Cover Dataset (NLCD) land cover classes included in that stratum listed below 

(Yang et al., 2018). 
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Figure 3. – Map depicting strata used for the Landscape Change Monitoring System Puerto Rico U.S. Virgin Islands (PRUSVI) 

calibration/validation sample design. Final strata are listed below the map, with the percentage of total pixels represented by 

that stratum included. PRUSVI uses land cover data from Helmer et al. (2002) for stratification. 

 

 

 

 

Figure 4. – Map depicting strata used for the Landscape Change Monitoring System Hawaiʻi (HI) calibration/validation sample 

design. Final strata are listed next to the map, with the percentage of total pixels represented by that stratum included. HI uses 

2011 NLCD land cover from the 2016 NLCD land cover dataset (Yang et al., 2018) for stratification. 

 

 

 

 

1. Loss:                              19.0%  

2. Developed                        0.6% 

3. Water                             13.2%  

4. Barren              20.5% 

5. Agriculture                        0.9% 

6. Wetland                            2.5% 

7. Rangeland, Grassland, 

Shrub/Herb                     12.5% 

8. Forest                             18.8% 

9. Scrub Shrub                    12.0% 
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We chose the strata shown for CONUS (Table 1), SEAK (Table 2), PRUSVI (Table 3), and HI (Table 4) 

to adequately sample rare classes that are of specific interest to LCMS applications and/or had high model 

error in LCMS pilot studies. This includes tree loss, deciduous tree loss in the western US, wetlands, and 

developed areas. Areas such as water and snow/ice typically have low model error, and therefore we 

allocated fewer samples to those classes.  

The final sample size was 10,010 across CONUS, 929 across SEAK, 1100 across PRUSVI, and 1000 

across HI. We started the final sample count with an allocation halfway between equal and proportional. 

We set a maximum value of 1000 for CONUS, and 200 for SEAK, PRUSVI, and HI for each stratum. We 

then proportionally recursively allocated the remainder. Lastly, we set a fixed sample number of 30 for 

snow/ice and 200 (30 for SEAK) for water (because these are “easier”, less variable classes). For 

PRUSVI, we set a fixed sample number of 30 for water and barren. For HI, we set a fixed sample number 

of 30 for water. We allocated the remaining samples equally across the three disturbance (loss) strata. 

Tables 1, 2, 3, and 4 the final sample counts by strata for CONUS, SEAK, PRUSVI, and HI respectively. 

 

Table 1. – Final sample counts by strata for the CONUS calibration sample. 

 

Stratum Count Percent Proportional Equal 
Equal/ 

Proportional 

Min/

Max 

Set 

Values 

Applied 

01: Developed 472588767 5.5% 548 625 587 977 999 

02: Water 148583076 1.7% 173 625 399 521 200 

03: Snow/Ice 571498 0.01% 1 625 313 313 30 

03: Barren 90344250 1.1%  105          625 365 439 578 

04: Agriculture 1458578963 16.9%    1690 625 1158 1055 1007 

05: Herb. Wetlands 124067106 1.4% 144 625 385 486 659 

06: Shrub/herb 3755611086 43.5% 4350 625 2488 1063 1010 

05: Evergreen-loss 377541936 4.8% 438 625   532      841 1280 

06: Evergreen-stable 1035526514 12.0% 1200 625 913 1050 988 

07: Deciduous-west-loss 17165119 0.2% 20 625 323 336 709 

08: Deciduous-west-stable 69803183 0.8% 81 625 353 412 533 

09: Deciduous-east-loss 146249349 1.7% 170 625 398 518 984 

13: Deciduous-east-stable 931577696 10.8% 1079 625 852 1050 990 

14: Volcanic Rocks 1396100 0.02% 2 625 314 315 34 

15: S. Texas Coastal Wetlands 1205013 0.01% 2 625 314 315 33 

16: S. Texas Oil & Gas 3555467 0.04% 5 625 315 317 33 

TOTAL:  8634365129 100% 10008 10000 10009 10008 10067 

 

Table 2. – Final sample counts by strata for the SEAK calibration sample. 

Stratum Count Percent Proportional Equal 
Equal/ 

Proportional 

Min/M

ax 

Set Values 

Applied 

01: Developed 670861 0.4% 4 103 54 54 30 

02: Water 5165532 2.8% 26 103 65 65 30 

03: Snow/Ice 41313696 22.4% 207 103 155 155 30 

04: Barren 20211947 10.9% 102 103 103 103 80 

05: Herb. & Woody Wetlands 5642129 3.1% 29 103 66 66 79 

06: Dwarf Shrub/Herb 8818866 4.8% 45 103 74 74 87 

07: Tall Shrub – Stable 37192517 20.1% 187 103 145 145 167 
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08: Tree – Stable 61864335 33.5% 310 103 207 207 207 

09: Tree/Tall Shrub – Loss 3769700 2.0% 19 103 61 61 219 

TOTAL:  184649583 100% 929 927 930 930 929 

 

 

Table 3. – Final sample counts by strata for the PRUSVI calibration sample. 

Stratum Count Percent Proportional Equal 
Equal/ 

Proportional 

Min/

Max 

Set 

Values 

Applied 

01: Developed 1450331 14.1% 156 100 128 157 157 

02: Water 113212   1.2% 13 100 57 59 30 

03: Barren 110101   1.1%           12 100 56 58 30 

04: Agriculture 344785 3.4% 37 100 69 76 76 

05: Non-Forested Wetland 71185 0.7% 8 100          54 55 76 

06: Forested Wetland 92958 0.9% 10 100 55 57 57 

07: Rangeland 3519261 34.3% 378 100 239 200 200 

08: Evergreen 3325898 32.4% 357 100 229 200 200 

09: Deciduous 865643 8.4% 93 100 97 114 114 

10: Cloud Forest 258676 2.5% 28 100 64 69 100 

11: Coastal Mixed Forest 102288 1.0% 11 100 56 58 60 

TOTAL:  1103 100% 1103 1100 1104 1103 1100 

 

 

Table 4. – Final sample counts by strata for the Hawaiʻi calibration sample. 

 

Stratum Count Percent Proportional Equal 
Equal/ 

Proportional 

Min/

Max 

Set 

Values 

Applied 

01: Developed 77810 0.6% 6 112 152 152 80 

02: Water 1756563 13.2% 132 112 59 59 30 

03: Barren 2742909   20.5%           206 112 122 122 50 

04: Agriculture 121505 0.9% 10 112 159 159 70 

05: Wetland 332267 2.5% 25 112          61 61 70 

06: Rangeland 1671666 12.5% 126 112 69 69 150 

07: Forest 2508101 18.8% 188 112 119 119 230 

08: Scrub shrub  1602192 12.0% 120 112 150 150 120 

09: Loss 2539975 19.0% 191 112 116 116 200 

TOTAL:  13352988 100% 1004 1008 1007 1007 1000 

 

 

Calibration Data Collection 
We collected model calibration data using the TimeSync attribution tool (Cohen et al., 2010). TimeSync 

is a web-based application that allows users to look at a time series of Landsat images, along with 

available high-resolution images in Google Earth Pro and other ancillary data in the Ancillary Data 

Viewer web application, which is made at the Geospatial Technology and Applications Center (GTAC), 

to attribute yearly land cover, land use, and change process at each training point location (figure 5).  
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Figure 5. – Example of the TimeSync tool (top) and the Ancillary Data Viewer (bottom). These tools, along with Google Earth 

Pro, are used in unison to attribute change process, land cover, and land use for each year for each model calibration plot. 
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LCMS TimeSync interpretation utilizes the Land Change Monitoring, Assessment, and Projection 

(LCMAP)/LCMS Joint Response Design. This response design provides a consistent method for 

attributing a common set of classes for change process, land cover, and land use (see supplementary 

materials in Pengra et al., 2020). The classes and their definitions are as follows:  

• Change process 

1. FIRE: Land altered by fire, regardless of the cause of the ignition (natural or 

anthropogenic), severity, or land use. 

2. HARVEST: Forest land where trees, shrubs or other vegetation have been severed or 

removed by anthropogenic means. Examples include clearcutting, salvage logging after 

fire or insect outbreaks, thinning and other forest management prescriptions (e.g., 

shelterwood/seedtree harvest). 

3. MECHANICAL: Non-forest land where trees, shrubs or other vegetation has been 

mechanically severed or removed by chaining, scraping, brush sawing, bulldozing, or any 

other methods of non-forest vegetation removal. 

4. STRUCTURAL DECLINE: Land where trees or other woody vegetation is physically 

altered by unfavorable growing conditions brought on by non-anthropogenic or non-

mechanical factors. This type of loss should generally create a trend in the spectral 

signal(s) (e.g., NDVI decreasing, Wetness decreasing; SWIR increasing; etc.), however 

the trend can be subtle. Structural decline occurs in woody vegetation environments, most 

likely from insects, disease, drought, acid rain, etc. Structural decline can include 

defoliation events that do not result in mortality such as in Gypsy moth and spruce 

budworm infestations which may recover within one or two years. 

5. SPECTRAL DECLINE: A plot where the spectral signal shows a trend in one or more of 

the spectral bands or indices (e.g., NDVI decreasing, Wetness decreasing; SWIR 

increasing; etc.). Examples include cases where: a) non-forest/non-woody vegetation 

shows a trend suggestive of decline (e.g. NDVI decreasing, Wetness decreasing; SWIR 

increasing; etc.); or b) woody vegetation shows a decline trend that is not related to the 

loss of woody vegetation, such as when mature tree canopies close resulting in increased 

shadowing, when species composition changes from conifer to hardwood, or when a dry 

period (as opposed to stronger, more acute drought) causes an apparent decline in vigor, 

but no loss of woody material or leaf area. 

6. WIND/ICE: Land (regardless of use) where vegetation is altered by wind from 

hurricanes, tornados, storms, and other severe weather events including freezing rain 

from ice storms. 

7. HYDROLOGY: Land where flooding has significantly altered woody cover or other land 

cover elements regardless of land use (e.g., new mixtures of gravel and vegetation in and 

around streambeds after a flood). 

8. DEBRIS: Land (regardless of use) altered by natural material movement associated with 

landslides, avalanches, volcanos, debris flows, etc. 

9. OTHER: Land (regardless of use) where the spectral trend or other supporting evidence 

suggests a disturbance or change event has occurred, but the definitive cause cannot be 

determined, or the type of change fails to meet any of the change process categories 

defined above. 

10. GROWTH/RECOVERY: Land exhibiting an increase in vegetation cover due to growth 

and succession over one or more years. Applicable to any areas that may express spectral 

change associated with vegetation regrowth. In developed areas, growth can result from 
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maturing vegetation and/or newly installed lawns and landscaping. In forests, growth 

includes vegetation growth from bare ground, as well as the over topping of intermediate 

and co-dominate trees and/or lower-lying grasses and shrubs. Growth/recovery segments 

recorded following forest harvest will likely transition through different land cover 

classes as the forest regenerates. For these changes to be considered growth/recovery, 

spectral values should closely adhere to an increasing trend line (e.g., a positive slope that 

would, if extended to ~20 years, be on the order of .10 units of NDVI) that persists for 

several years. 

• Land cover 

1. TREES: Live or standing dead trees. 

2. TALL SHRUBS (SEAK only): Shrubs > 1 m in height. 

3. SHRUBS: Shrubs. 

4. GRASS/FORB/HERBACEOUS: Perennial grasses, forbs, or other forms of herbaceous 

vegetation. 

5. BARREN OR IMPERVIOUS: a) Bare soil exposed by disturbance (e.g., soil uncovered 

by mechanical clearing or forest harvest), as well as perennially barren areas such as 

deserts, playas, rock outcroppings (including minerals and other geologic materials 

exposed by surface mining activities), sand dunes, salt flats, and beaches. Roads made of 

dirt and gravel are also considered barren; or b) man-made materials that water cannot 

penetrate, such as paved roads, rooftops, and parking lots. 

6. SNOW/ICE: Snow and/or ice. 

7. WATER: Water. 

• Land use 

1. AGRICULTURE: Land used to produce food, fiber and fuels which is in either a 

vegetated or non-vegetated state. This includes but is not limited to cultivated and 

uncultivated croplands, hay lands, orchards, vineyards, confined livestock operations, and 

areas planted for production of fruits, nuts or berries. Roads used primarily for 

agricultural use (i.e., not used for public transport from town to town) are considered 

agriculture land use. 

2. DEVELOPED:  Land covered by man-made structures (e.g., high density residential, 

commercial, industrial, mining or transportation), or a mixture of both vegetation 

(including trees) and structures (e.g., low density residential, lawns, recreational facilities, 

cemeteries, transportation and utility corridors, etc.), including any land functionally 

altered by human activity. 

3. FOREST: Land that is planted or naturally vegetated and that contains (or is likely to 

contain) 10% or greater tree cover at some time during a near-term successional 

sequence. This may include deciduous, evergreen and/or mixed categories of natural 

forest, forest plantations, and woody wetlands. 

4. NON-FOREST WETLAND: Lands adjacent to or within a visible water table (either 

permanently or seasonally saturated) dominated by shrubs or persistent emergents. These 

wetlands may be situated shoreward of lakes, river channels, or estuaries; on river 

floodplains; in isolated catchments; or on slopes. They may also occur as prairie potholes, 

drainage ditches and stock ponds in agricultural landscapes and may also appear as 

islands in the middle of lakes or rivers. Other examples also include marshes, bogs, 

swamps, quagmires, muskegs, sloughs, fens, and bayous. 

5. OTHER: Lands which are perennially covered with snow and ice, water, salt flats and 

other undeclared classes. Glaciers and ice sheets or places where snow and ice obscure 

any other land cover call are included (assumed is the presence of permanent snow and 

ice). Water includes rivers, streams, canals, ponds, lakes, reservoirs, bays, or oceans. This 
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assumes permanent water (which can be in some state of flux due to ephemeral changes 

brought on by climate or anthropogenic). 

6. RANGELAND/PASTURE: This class includes any area that is either a) rangeland, where 

vegetation is a mix of native grasses, shrubs, forbs and grass-like plants largely arising 

from natural factors and processes such as rainfall, temperature, elevation and fire, 

although limited management may include prescribed burning as well as grazing by 

domestic and wild herbivores; or b) pasture, where vegetation may range from mixed, 

largely natural grasses, forbs and herbs to more managed vegetation dominated by grass 

species that have been seeded and managed to maintain near monoculture. 

 

Calibration Data Finalization 
Since the classes listed above can be too detailed to model with remote sensing data, we bin (cross-walk) 

them into larger classes appropriate for the LCMS modeling methods. Change processes are cross-walked 

into three final classes: 

• Slow Loss 

o Structural decline 

o Spectral decline 

• Fast Loss 

o Fire  

o Harvest 

o Mechanical 

o Wind/ice 

o Hydrology 

o Debris 

o Other 

• Gain 

o Growth/recovery 

Land cover requires a different cross-walking approach. All TimeSync plots have a primary land cover 

class that makes up the majority of the plot. Any additional land cover class that comprises 10% or more 

of the plot is assigned as a secondary land cover class. Since a plot may have any number of secondary 

land cover classes, primary/secondary combinations of interest are modeled separately. We include any 

primary/secondary combination that is common along typical succession, focusing on pairings with a 

secondary class that is higher along the successional order. The expected land cover successional order is: 

barren to grass/forb/herb, grass/forb/herb to shrub, and shrub to tree. With this in in mind, the 

primary/secondary land cover combinations we model in LCMS are shown in Table 5. 
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Table 5. – List of primary and secondary land cover classes modeled in LCMS. Successional classes are grouped and highlighted 

with italic font. The snow/ice and water classes are not modeled with any secondary land cover classes since they are not likely 

to be part of vegetation succession. 

Primary Secondary 

Trees NA 

Tall Shrubs  Trees 

Shrubs Trees 

Grass/forb/herb Trees 

Barren Trees 

Tall Shrubs NA 

Shrubs NA 

Grass/forb/herb Shrubs 

Barren Shrubs 

Grass/forb/herb NA 

Barren Grass/forb/herb 

Barren or 

Impervious 

NA 

We take the land use classes directly from the TimeSync plots: 

o Agriculture 

o Developed 

o Forest 

o Non-forest wetland 

o Other 

o Rangeland or pasture 

Model predictor data 
We use spectral information from Landsat and Sentinel-2 imagery and topographic information from the 

USGS 3D Elevation Program (3DEP) for modeling. Descriptions of each of these datasets are provided 

below. 

Remote sensing spectral data 

Data preparation 

LCMS uses United States Geological Survey (USGS) Collection 2 Tier 1 Landsat 4, 5, 7, 8 and 9 and 

Sentinel-2a and -2b level 1C top of atmosphere reflectance data. We do not use surface reflectance data 

because the Sentinel-2 surface reflectance data available within GEE are terrain-corrected. This makes it 

difficult to utilize in unison with Landsat surface reflectance data that are not terrain-corrected.  

The exception was CCDC data for the CONUS that used surface reflectance data. While v2022.8 CONUS 

utilized surface reflectance data for CCDC, it was later discovered that the surface reflectance correction 

algorithm does not work well over snow, ice, and water (U.S. Geological Survey, 2023). Reflectance 

values frequently are less than 0 or greater than 1. For this reason, CCDC in other study areas will use top 

of atmosphere reflectance data.  

For cloud masking Landsat data, we apply the CFmask cloud masking algorithm (Foga et al., 2017), 

which is an implementation of Fmask 2.0 (Zhu and Woodcock 2012), as well as the cloudScore algorithm 

(Chastain et al., 2019). For Sentinel-2 data, 2016-2022, we utilized the cloudScore and Temporal Dark 

https://developers.google.com/earth-engine/datasets/catalog/landsat
https://developers.google.com/earth-engine/datasets/catalog/sentinel-2
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Outlier Mask (TDOM) method (Chastain et al., 2019).  Starting in 2023, we use the Clouds Score + 

algorithm (Pasquarella et al., 2023) for masking clouds and cloud shadows. All remote sensing data 

preparation procedures can be accessed in the GTAC GEE data processing and visualization library 

(GTAC GEE Visualization Python Modules on PyPI, GTAC GEE Visualization Python Modules on 

GitHub).  

Annual compositing 

LCMS utilizes cloud/cloud shadow-masked data as well as annual composites of these data to meet the 

needs of the temporal segmentation methods. Annual composite values are the geometric medoid of all 

values not masked as cloud or cloud shadow from a specified date range for each year. Due to differences 

in data availability and seasonality, we vary the date range across different modeling regions and time 

(Table 6).  

Table 6. – Dates used for annual compositing of Landsat and Sentinel-2 data. 

Study 

Area 

Pre Sentinel-2 

Start Date 

Pre Sentinel-2 

End Date 

Post Sentinel-2 

Start Date 

Post Sentinel-2 

End Date 

CONUS June 1 September 30 July 1 September 1 

SEAK June 15 September 15 June 15 September 15 

PRUSVI June 1 May 31 June 1 May 31 

HI January 1 December 31 January 1  December 31 

The geometric medoid is the value that minimizes the sum of the square difference between the median 

value of each band’s values. This ensures that the center-most value in a multi-dimensional feature space 

is chosen. The value from all bands is from the same observation date. The bands that we include in the 

feature space are green, red, near-infrared (NIR), first shortwave-infrared (SWIR1), and second shortwave 

infrared (SWIR2). Any pixel that does not have a cloud or cloud shadow-free value for a given year is left 

as null and excluded from any map for that year. The 2020 composite images for CONUS and SEAK are 

shown in figure 6 as an example.  

  

https://pypi.org/project/geeViz/
https://github.com/gee-community/geeViz
https://github.com/gee-community/geeViz
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Figure 6. – Example of the 2020 composites used in the Landscape Change Monitoring System (LCMS). The red, green, and blue 

channels used in these composites are the second shortwave infrared (SWIR2), near-infrared (NIR), and red bands, respectively. 

The top image shows both southeast Alaska (SEAK) and the conterminous United States (CONUS). The middle image shows a 

portion of coastal AK, while the bottom image shows a zoomed in view over Telluride, CO.  
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Temporal segmentation 

The goal of temporal segmentation is to identify periods of time that likely have similar land cover and/or 

change processes. Since different segmentation methods have advantages and disadvantages, LCMS 

utilizes the ensemble approach outlined in Cohen et al., (2018) and Healey et al., (2018). Currently, the 

operational version of LCMS utilizes LandTrendr (Kennedy et al., 2010; Kennedy et al., 2018) and 

CCDC (Zhu and Woodcock 2014) to segment the prepared time series. LandTrendr requires a maximum 

of one observation per year (i.e., an annual composite, made from Landsat and Sentinel-2 data), while 

CCDC utilizes every available cloud and cloud shadow-free observation from the Landsat time series 

only.  

LandTrendr Methods 

LandTrendr iteratively breaks the time series of annual composites and returns a set of segments. Each 

segment has a start and end year and a start and end fitted value at the start and end vertices respectively 

(figure 7).  

 

 

Figure 7. – Illustration from https://emapr.github.io/LT-GEE/ depicting how LandTrendr breaks a time series and the 

information that can be taken from the output. 

From this information, we assign each band/index for each year the following values: 

• Fitted value  

• Difference of that year’s fitted value from the fitted value of the start vertex 

• Difference from the start to end fitted value of the segment that year falls in 

• The duration of the segment that year falls in 

• The slope of the segment that year falls in 

https://emapr.github.io/LT-GEE/
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LCMS uses the GEE version of LandTrendr outlined in Kennedy et al., (2018). The parameters that are 

used are the same as those in Kennedy et al., (2018) (Table 7). 

Table 7. – LandTrendr parameters used 

Further documentation of the LandTrendr method used can be found in the GEE reference 

documentation. 

CCDC Methods 

CCDC segments the time series by identifying outliers from a harmonic regression model. The idea is that 

different land cover and/or land use types have distinct seasonality signatures. A departure from the 

seasonality signature indicates a change (figure 8).  

  

Parameter Name Value Description 

maxSegments 9 Maximum number of segments 

to be fitted on the time series. 

spikeThreshold 0.9 Threshold for damping the 

spikes (1.0 means no damping). 

vertexCountOvershoot 3 The initial model can overshoot 

the maxSegments + 1 vertices 

by this amount. Later, it will be 

pruned down to maxSegments + 

1. 

preventOneYearRecovery False Prevent segments that represent 

one-year recoveries. 

recoveryThreshold 0.25 If a segment has a recovery rate 

faster than 1/recoveryThreshold 

(in years), then the segment is 

disallowed. 

pvalThreshold 0.05 If the p-value of the fitted model 

exceeds this threshold, then the 

current model is discarded and 

another one is fitted using the 

Levenberg-Marquardt optimizer. 

bestModelProportion 0.75 Takes the model with most 

vertices that has a p-value that is 

at most this proportion away 

from the model with lowest p-

value. 

https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-landtrendr
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Figure 8. – An example of how Continuous Change Detection and Classification (CCDC) segments a time series of data. The 

clear observations for band 5 (first shortwave infrared band for Landscape Change Monitoring System [LCMS]) are shown as 

dots, while the modeled value is shown as a blue line. Notice the dots depart from the typical values around 2008. CCDC then 

starts a new model following this departure when a new consistent seasonal pattern is re-established. (Source: Zhu and 

Woodcock 2014 figure 21) 

Input data include all Landsat cloud and cloud shadow-free values. LCMS uses all cosine and sine 

coefficients from the first three harmonics (2π, 4π, and 6π; see Zhu and Woodcock 2014) from the CCDC 

outputs. We do not use the slope and intercept generated by CCDC. Instead, we use the predicted value 

based on the harmonic model on September 1 in place of the intercept (Figure 10), and the difference 

between that year and the previous year’s fitted values as the slope. This allows CCDC to work properly 

within the LCMS annual ensemble framework.  

To use CCDC in annual LCMS modeling, the CCDC algorithm must be run annually to be consistent 

with the LCMS period 1984 to the present year. To overcome computational challenges posed by running 

CCDC for the Landsat record from 1984 to the present modeling year for CONUS and SEAK, the CCDC 

algorithm was run for the period 2013-2023 and feathered into the data with the previous CCDC 

collection for 1984-2022 (the v2022.8 CCDC collection). The feathered CCDC collection combines the 

previous CCDC collection data from 1984-2012, and a linearly-weighted average of the previous and 

updated CCDC collections from 2013-2021 (figure 9). For each year between 2013 and 2021, the weight 

given to the updated collection increases linearly from 0 to 1 (and with 2022 coming entirely from the 

updated collection).  

 

Figure 9. – An example time series showing the feathering of two CCDC image collections. The blue line is NDVI from v2022.8 

CCDC collection, and the orange line is NDVI from v2023.9 CCDC collection. The green line is the weighted average of the two 

CCDC collections used in our models. 
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The GEE version of CCDC is used for LCMS. The parameters used are shown in table 8. 

Table 8. Continuous Change Detection and Classification (CCDC) parameters used. 

Parameter Name Value Description 

breakpointBands [“green”, “red”, “nir”, 

“swir1”, “swir2”] 
The name or index of the bands to use for change 

detection. If unspecified, all bands are used. 

tmaskBands null The name or index of the bands to use for iterative 

TMask cloud detection. These are typically the 

green band and the SWIR2 band. If unspecified, 

TMask is not used. If specified, 'tmaskBands' must 

be included in 'breakpointBands'. 

minObservations 6 The number of observations required to flag a 

change. 
chiSquareProbability 0.99 The chi-square probability threshold for change 

detection in the range of [0, 1] 

minNumOfYearsScaler 1.33 Factors of minimum number of years to apply new 

fitting. 

dateFormat 1 The time representation to use during fitting: 0 = 

jDays, 1 = fractional years, 2 = unix time in 

milliseconds. The start, end and break times for 

each temporal segment will be encoded this way. 

lambda 0.002 Lambda for LASSO regression fitting. If set to 0, 

regular OLS is used instead of LASSO. 

maxIterations 10000 Maximum number of runs for LASSO regression 

convergence. If set to 0, regular OLS is used 

instead of LASSO. 

Further documentation of the CCDC methods used can be found in the GEE reference documentation. 

Summary 

Visualizing how the medoid composites and fitted LandTrendr and CCDC values relate can be quite 

difficult. Figure 10 attempts to illustrate how these values relate for two example pixels. The pixel 

depicted in the left column shows a fire event, while the right column shows insect-related tree mortality.  

The first row shows the time series of the medoid composite values. Notice how each band relates to the 

other during the change events. The middle row shows the normalized burn ratio (NBR) (a vegetation 

index related to moisture levels) fitted CCDC output, along with the annualized CCDC value from 

September 1 for each year. Notice how CCDC finds a break for the fire example but shows a single long-

term declining trend of NBR for the insect-related mortality. The bottom row shows the annual values of 

NBR from the medoid composites, LandTrendr, and CCDC. This illustrates how all three directly relate 

to each other. Each is different, but not necessarily right or wrong. Both LandTrendr and CCDC reduce 

inter-annual noise but identify breaks at different points in time. These are all used in the random forest 

model outlined below to produce final LCMS products. 

https://developers.google.com/earth-engine/apidocs/ee-algorithms-temporalsegmentation-ccdc
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Figure 10. – An example of predicted values from a pixel. The left column depicts a pixel with a fire event, while the right column 

depicts a pixel with insect-related tree mortality. The top row shows the raw spectral bands from the annual medoid composites. 

The second row shows the Continuous Change Detection and Classification (CCDC) output for the normalized burn ratio (NBR) 

vegetation index, as well as the annualized values used in the Landscape Change Monitoring System (LCMS). The bottom row 

shows the raw NBR, LandTrendr-fitted NBR, and CCDC-fitted NBR values on a single graph. This illustrates how these data 

complement each other as well as how they differ. 

Terrain data 
LCMS also uses terrain metrics to provide elevation, slope, aspect, and slope-position information to the 

model. The specific variables used are: 

• Elevation 

• Sine (Aspect) 

• Cosine (Aspect) 

• Slope 

• Slope-position (circular kernel with 11-pixel window, 21-pixel window, and 41-pixel window) 

(Weiss 2001) 

 

For all study areas the 10 m USGS 3D Elevation Program (3DEP) data was used (U.S. Geological 

Survey, 2019). All resampling was performed using cubic convolution.  

Summary 
All variables covered in this section are utilized in the methods outlined below. Table 9 shows a full list 

of all predictor variables considered for modeling.  
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Table 9. – List of Landscape Change Monitoring System (LCMS) model predictor variables. Annual values are different for each 

year of the analysis period, while the single value terrain variables remain constant.  

 

Modeling (Supervised Classifications) 
All supervised classifications for LCMS utilize the random forest modeling method (Breiman 2001). 

Random forest randomly selects a subset of the predictor variables and training sites in many different 

classification and regression trees. Each of the many trees predicts a class, which are then aggregated and 

used to determine the final modeled class.  

LCMS utilizes the GEE instance of random forests called “smileRandomForest” for all raster-based 

classification. Local processing utilized for variable selection and map validation uses the 

sklearn.ensemble.RandomForestClassifier method. 

LCMS uses a separate random forest model for each of the following products: 

• Change (1 multi-class model) 

• Land cover (1 multi-class model) 

• Land use (1 multi-class model) 

Each of these products has an annual model output that is the proportion of trees within the random forest 

model that chose each class. Each product for each year has a single model with the proportion of trees 

for the multiple classes. For example, if the Change random forest model had a total of 100 classification 

trees in it, and 35 of those trees chose “fast loss”, 10 of those trees chose “slow loss”, and 55 chose 

“stable” in 2005, that pixel would have a value of 0.35 for fast loss, 0.10 for slow loss, and 0.55 for stable 

in 2005. This model confidence, which can also be thought of as a probability, can have values between 0 

and 1 and is available for each model for each year from 1985 to the most recent complete growing 

season. Figure 11 illustrates this concept in more detail. 

Predictor variable selection 
To reduce predictor variable co-variation and inclusion of variables that do not improve the model, we 

filter predictor variables in a two-step process. The first step involves filtering out any predictor pairs that 

have a Pearson’s correlation coefficient (r2) with absolute value greater than 0.95 
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(pandas.DataFrame.corr). Variables with a mean absolute r2 greater than 0.95 across all pairs are dropped. 

The next step is a recursive feature elimination using a 5-fold grouped cross validation 

(sklearn.feature_selection.RFECV). We retain the variable combination with the highest accuracy for 

each model. 

Hyperparameter tuning and change thresholds 
We used a 10-fold grid search grouped cross-validation (sklearn.model_selection.GridSearchCV) to find 

the best combination of random forest hyperparameters (number of trees, minimum number of samples 

per leaf, the maximum number of features, etc.). For the change model, we determined the optimum 

model confidence thresholds for each class by assessing the precision and recall at every possible 

threshold (from 0-100) and selecting the threshold that maximizes both.  

Map assemblage 
As explained above, each class within the change, land cover, and land use products has a model 

confidence score, which represents the proportion of trees within the random forest model that classified a 

given pixel as that class for that model. Some examples of model confidence time series from individual 

pixels are shown in figure 11. For each year, the line with the highest confidence is the class that is 

chosen for the given LCMS product (change, land cover, and land use). For the change model, the line 

with the highest confidence must also have a value above that class’s threshold. This is done because the 

“Stable” class is not modeled explicitly. 

To improve qualitative map outputs by reducing commission and omission, we instituted a series of 

probability thresholds and rulesets using ancillary datasets. The ancillary datasets used include the Global 

Human Settlement (GHSL) built-up surface (Pesaresi and Politis 2023) for all study areas, and the USDA 

NASS Cropland Data Layer (CDL) (USDA 2023) for CONUS. These map assemblage rules were 

instituted mainly for the land use product, with one land cover rule implemented in SEAK (to limit tree 

and snow landcover classes in the large intertidal zones at sea level), and one change rule in all study 

areas (to prevent change in non-vegetated land cover classes). The series of rules and associated ancillary 

datasets are summarized in table 10. A pixel is finally classified according to the highest probability class 

that meets the minimum threshold as set forth according to the implemented rules. 

Table 10. Map assemblage rules and associated ancillary datasets. 

  CONUS SEAK PRUSVI HI 

General Developed LU Probability 

Threshold 

x x x x 

Coastal Developed LU Probability 

Threshold 

x x x x 

General Non Forest Wetland LU 

Probability Threshold 

x x x x 

General Agriculture LU Probability 

Threshold 

  
 

x x 

1985-2008 CDL Agriculture LU 

Probability Threshold 

x       

2008-present CDL Agriculture LU 

Probability Threshold 

x       

CDL Fallow Fields Agriculture LU 

Probability Threshold 

x       

https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.corr.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFECV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
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CDL Agriculture LU Commission 

Probability Threshold 

x       

Coastal Tree LC Probability 

Threshold 

  x     

Probability Threshold to Prevent 

Forest Commission in GHSL Builtup 

x x x x 

Probability Threshold to Prevent 

Developed Omission in GHSL Builtup 

x x x x 

Probability Thresholds to Prevent 

Conversion of Forest to Agriculture or 

Developed after Timber Harvest 

x 
 

x x 

 

In figure 11, the pixel time series shown in the left column has been affected by a fire, while the pixel 

shown in the right column depicts long-term tree mortality from insects. The first, second, and third rows 

show the change, land cover, and land use time series, respectively. 

Beginning with the fire example, the change time series (first row, left column) shows that the fast loss 

model confidence peaks in the year of the fire (2012), to a value that exceeds the fast loss threshold of 

0.29. In the years following the fire (2013-2020), the gain model confidence rises to levels above the gain 

threshold of 0.29, as one might expect with growth and recovery following a fire. Complementing the 

change time series, the land cover time series (second row, left column) shows that the tree class had a 

very high model confidence for each year until the fire in 2012. Following the fire, the tree model 

confidence goes down, but it remains the most confident class. This often occurs when the trees are 

damaged or not all burned, but the understory burns. In the following years, we see the probability of 

grass/forb/herb & trees mix increase, most likely indicating that there are live trees in this pixel with 

grasses becoming more and more prevalent. Since a fire generally does not indicate a land use transition, 

the land use forest model’s confidence dips (third row, left column), but remains the highest.  

The time series of long-term tree mortality caused by beetles (right column), is quite different. In this 

case, the slow loss model confidence is elevated for about two decades (first row, right column). While 

the gain model confidence is elevated slightly during the second decade of this trend, the slow loss model 

remains the highest. Although there was indeed slow loss at this pixel, there was no transition of land 

cover or land use classes (second and third rows, right column). It is important to note that many instances 

of loss and gain do not result in a change of land cover or land use. 
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Figure 11. – Time series of Landscape Change Monitoring System raw modeled probabilities for each year for a fire (left 

column) and tree mortality due to beetles (right column). The first, second, and third rows of this figure show the change, land 

cover, and land use time series, respectively. The map product assumes the class with the highest confidence for each year. 

Notice that it is possible to have a change event without a change in land cover or land use. 

Accuracy assessment 
To assess model accuracy, we use the hyperparameters and thresholds chosen in the model tuning step in 

a stratified 10-fold cross validation following Stehman (2014) for each change, land cover, and land use 

model. We use the stratified random sample of 30 m by 30 m plot locations as the sample, and group 

training points by plot ID so that all training points from the same plot (but that occurred in different 

years) are always included in the same fold. The rules implemented in the map assemblage are mirrored 

in the accuracy assessment. 

LCMS products 
We package the final LCMS deliverables in two ways: annual and summarized layers. For each product 

(change, land cover, and land use) we assemble annual maps, as discussed above. We only provide 

summary products for change since only change products can easily be summarized. Beyond providing 

the mode for land cover and land use products, summarizing them is rather difficult.  

To summarize the change layers, we use two methods: most recent and most probable. The most recent 

method chooses the year of the respective change class that occurred most recently, while the most 

probable method chooses the year of the respective change class with the highest model confidence. The 
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former can be useful for applications that need to know the most recent year a given change class was 

present, while the latter is useful for applications that need to know when a given change event peaked.  

For example, the time series of change model confidences, or probabilities, for a given pixel is shown in 

figure 12. 

 

Figure 12. – Landscape Change Monitoring System change model confidence values for a single pixel. 

The most recent change years for this example are: 

• Slow loss: 2012 

• Fast loss: 2013 

• Gain: 2020 

The most probable change years are: 

• Slow loss: 2011 

• Fast loss: 2013 

• Gain: 2015 

Generally, the two summary methods differ most for long-term change processes, such as gain and slow 

loss.  

Ancillary information on the origin of the annual LCMS product output values is now provided as part of 

a QA bit layer. This layer includes whether an interpolated value was used to produce the LCMS output, 

the sensor, and the day of year the value came from. The QA bits are as follows: 

• 1: Interpolated (0), not interpolated (1) 

• 2-6: Which sensor the pixel came from 

o 4 = Landsat 4 

o 5 = Landsat 5 

o 7 = Landsat 7 

o 8 = Landsat 8 

o 9 = Landsat 9 

o 21 = Sentinel 2a 

o 22 = Sentinel 2b 

• 7-15: Which Julian day the pixel came from (1-365) 
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Bitwise operations can be leveraged to unpack the QA decimal numbers to valid pixel values for the non-

interpolated data, sensor, and Julian day (see metadata for more detailed method). Table 11 shows how 

the bits are used in the QA Bits output image. 

Table 11. – Table of how bits are used in the QA Bits output image.  

 

Useful Resources 

• LCMS Homepage  

• LCMS Data Explorer 

• LCMS Data Download Archive 

• ESRI Image Services 

• LCMS GEE Collection 

• Pilot Product Description 

• LCMS Contact Information 

  

https://apps.fs.usda.gov/lcms-viewer/home.html
https://apps.fs.usda.gov/lcms-viewer/
https://data.fs.usda.gov/geodata/rastergateway/LCMS/index.php
https://apps.fs.usda.gov/fsgisx01/rest/services/RDW_LandscapeAndWildlife
https://developers.google.com/earth-engine/datasets/catalog/USFS_GTAC_LCMS_v2023-9
https://data.fs.usda.gov/geodata/LCMS/LCMS_R4_v2019-04_Descriptions.html
mailto:sm.fs.lcms@usda.gov
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