
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Review-Report Turbo Tunnel Security & Privacy 03.2021
Cure53, Dr.-Ing. M. Heiderich and various Cure53 Team Members

Index

Introduction

Scope

Identified Vulnerabilities

UCB-02-003 WP2: Potential nonce overflow in Noise protocol (Medium)

Miscellaneous Issues

UCB-02-001 WP1: Memory leak in Handler() routine of Snowflake client library (Low)

UCB-02-002 WP2: Memory leak in acceptStreams() routine of dnstt server (Low)

UCB-02-004 WP2: Deprecated DH25519 Golang API used by Noise (Low)

UCB-02-005 WP2: Client ID security considerations & Noise authenticated data (Low)

UCB-02-006 WP2: DoS due to unconditional nonce increment (Low)

UCB-02-007 WP2: DoS due to missing socket timeouts (Low)

UCB-02-008 WP1-WP2: Lack of rate limiting in Snowflake and dnstt (Info)

UCB-02-009 WP1: Brokers and proxies are not authenticated (Low)

Conclusions

Cure53, Berlin · 04/14/21 1/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“The idea - which I call Turbo Tunnel - is simple, but has many benefits. Decoupling an
abstract session from the specific means of censorship circumvention provides more
design flexibility, and in some cases may increase blocking resistance and performance.
This work motivates the concept by exploring specific problems that a Turbo Tunnel
design can solve, describes the essential components of such a design, and reflects on
the experience of implementation in the obfs4, meek, and Snowflake circumvention
systems, as well as a new DNS over HTTPS tunnel.”

From https://www.bamsoftware.com/papers/turbotunnel/

This report - entitled UCB-02 - details the scope, results, and conclusory summaries of a
penetration test and security assessment against the Turbo Tunnel project, its peripheral
software and dependencies.

The work was requested by UC Berkeley in January 2021 and conducted by Cure53 in
March and April 2021, namely in calendar weeks CW11 to CW13. A total of 15 days
were invested to reach the coverage expected for this project. A team of five senior
testers were assigned to this project’s preparation, testing, audit execution, and
finalization. The testing conducted throughout UCB-02 was divided into two separate
work packages (WPs) for execution efficiency, as follows:

• WP1: White-Box Tests and Source Code review of Snowflake
• WP2: White-Box Tests and Source Code review of dnstt

Cure53 was granted access to all relevant sources in scope, as well as a meticulously
detailed scope document that mapped out the constitution of the software architecture,
purposes, limitations, security promises, and audit expectations. Given that all of these
assets were necessarily required to procure the coverage levels expected by UC
Berkeley, the methodology chosen here was white-box.

All preparations were completed in February and early March 2021 to ensure that the
testing phase could proceed without hindrance. Preparations were handled exceptionally
by the maintainer team. Communications during the test were facilitated via email, which
was selected as the preferred communication medium by the Turbo Tunnel software
maintainers. One can denote that communications proceeded smoothly on the whole.
The scope was well prepared and clear, and no noteworthy roadblocks were
encountered throughout testing. Cross-team queries were abundant owing to the
complexities of the software and setup architecture, though the Turbo Tunnel

Cure53, Berlin · 04/14/21 2/16

https://cure53.de/
https://www.bamsoftware.com/papers/turbotunnel/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

maintainers delivered excellent assistance toward this, cooperating with the Cure53
team in every respect to procure maximum coverage and depth levels for this exercise.

Cure53 gave frequent status updates toward the test and related findings, updating the
maintainers about any and all identified issues. Live reporting was not requested and
also not deemed necessary given the nature of the findings listed in this report. With
regard to the aforementioned findings, the Cure53 team was able to procure exceptional
coverage over the WP1 and WP2 scope items, unearthing a total of nine. One of these
findings was categorized as a security vulnerability; the remaining eight were deemed to
be general weaknesses with lower exploitation potential.

The highest severity level reached was Medium - as detailed in UCB-02-003 -
concerning a potential nonce overflow. The majority of findings were severity-rated Low
and Informational, which is a positive indication for the software compound in scope.
Despite a comprehensive, extensive test and audit phase facilitated by excellent
collaboration between the maintainers and test team, no findings of High or even Critical
severity were detected.

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. Subsequently, the report will list all
findings identified in chronological order. Each finding will be accompanied by a
technical description and Proof-of-Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the Turbo
Tunnel project, its peripheral software and dependencies, giving high-level hardening
advice where applicable.

Cure53, Berlin · 04/14/21 3/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Turbo Tunnel security and privacy review & code audit

◦ WP1: White-Box Tests and Source Code review of Snowflake
▪ Cure53 was provided with a very detailed scope description that clearly outlines

the goals of this audit, expected threat and risks as well as interesting areas in
the code to cover

▪ More info can be found here
• https://www.bamsoftware.com/papers/turbotunnel/

◦ WP2: White-Box Tests and Source Code review of dnstt
▪ All relevant information was made available to Cure53 prior to the tests and code

audits starting
▪ More info can be found here

• https://www.bamsoftware.com/software/dnstt/
• https://www.bamsoftware.com/papers/thesis/

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were accessible to Cure53

▪ https://gitweb.torproject.org/pluggable-transports/snowflake.git/
▪ https://github.com/xtaci/kcp-go
▪ https://github.com/xtaci/smux

Cure53, Berlin · 04/14/21 4/16

https://cure53.de/
https://github.com/xtaci/smux
https://github.com/xtaci/kcp-go
https://gitweb.torproject.org/pluggable-transports/snowflake.git/
https://www.bamsoftware.com/papers/thesis/
https://www.bamsoftware.com/software/dnstt/
https://www.bamsoftware.com/papers/turbotunnel/#sec:case-studies
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list all vulnerabilities and implementation issues identified
throughout the testing period. Please note that findings are listed in chronological order
rather than by their degree of severity and impact. The aforementioned severity rank is
simply given in brackets following the title heading for each vulnerability. Furthermore,
each vulnerability is given a unique identifier (e.g., UCB-02-001) for the purpose of
facilitating any future follow-up correspondence.

UCB-02-003 WP2: Potential nonce overflow in Noise protocol (Medium)

The Noise implementation deployed by dnstt uses an implicit nonce counter for
symmetric packet encryption. This counter is a 64-bit unsigned integer and will thus
overflow after 2^64 messages encryption using the same key. This is problematic for
most symmetric ciphers, because encrypting multiple inputs using the same key and
nonce can have fatal consequences on the security of the cipher. The Noise
specification chapter 5.11 describes the behavior as follows:

“The maximum n value (264-1) is reserved for other use. If incrementing n results in 264-
1, then any further EncryptWithAd() or DecryptWithAd() calls will signal an error to the
caller.”

It has to be noted that this is not followed by the Noise implementation2 used by dnstt.

Affected File:
noise-go/state.go

Affected Code:
func (s *CipherState) Encrypt(out, ad, plaintext []byte) []byte {
 if s.invalid {
 panic("noise: CipherSuite has been copied, state is invalid")
 }
 out = s.c.Encrypt(out, s.n, ad, plaintext)
 s.n++
 return out
}

One can recommend performing a new handshake even before transmitting up to 2^64 -
2 messages.

1 https://noiseprotocol.org/noise.html# the-cipherstate-object
2 https://github.com/flynn/noise

Cure53, Berlin · 04/14/21 5/16

https://cure53.de/
https://github.com/flynn/noise
https://noiseprotocol.org/noise.html#the-cipherstate-object
https://noiseprotocol.org/noise.html#the-cipherstate-object
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The reason for this is that whenever the current CipherState key is compromised, all
messages encrypted with this key become decryptable. As a result, reducing the number
of messages encrypted with the same key reduces the volume of potentially-
compromised messages.

Miscellaneous Issues
This section covers any and all noteworthy findings that did not lead to an exploit but
might assist an attacker in successfully achieving malicious objectives in the future. Most
of these results are vulnerable code snippets that did not provide an easy way to be
called. Conclusively, while a vulnerability is present, an exploit might not always be
possible.

UCB-02-001 WP1: Memory leak in Handler() routine of Snowflake client lib (Low)

During a review of the Snowflake client library, the discovery was made that the
Handler() function - responsible for establishing a WebRTC connection to the remote
peer - does not correctly close the connection and established smux session in the
eventuality that a stream cannot be opened. This could result in a memory leak on the
Snowflake client side, as well as a resource leak on the server side of the connection.

Affected file:
snowflake/client/lib/snowflake.go

Affected code:
func Handler(socks net.Conn, tongue Tongue) error {

[...]
// Create a new smux session
log.Printf("---- Handler: starting a new session ---")
pconn, sess, err := newSession(snowflakes)
if err != nil {

return err
}
// On the smux session we overlay a stream.
stream, err := sess.OpenStream()
if err != nil {

return err
}
[...]

}

It is recommended to close all open connections using defer3 in order to properly
alleviate all allocated resources when the function returns.

3 https://tour.golang.org/flowcontrol/12

Cure53, Berlin · 04/14/21 6/16

https://cure53.de/
https://tour.golang.org/flowcontrol/12
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

UCB-02-002 WP2: Memory leak in acceptStreams() routine of dnstt server (Low)

During a review of the dnstt-server source code, the discovery was made that the
acceptStreams() function - responsible for wrapping a KCP session in a Noise channel
and smux session - does not correctly close the smux session in the eventuality that a
stream cannot be opened. This could result in a memory leak on the server side of dnstt.
Generally speaking, the opened smux session does not close when acceptStreams()
returns, even when a failure is not present.

Affected file:
dnstt/dnstt-server/main.go

Affected code:
func acceptStreams(conn *kcp.UDPSession, privkey, pubkey []byte, upstream
*net.TCPAddr) error {

[...]
sess, err := smux.Server(rw, smuxConfig)
if err != nil {

return err
}

for {
stream, err := sess.AcceptStream()
if err != nil {

if err, ok := err.(net.Error); ok && err.Temporary() {
continue

}
return err

}
[...]

The recommendation can be made to close all open sessions using defer4 in order to
properly alleviate all allocated resources when the function returns.

4 https://tour.golang.org/flowcontrol/12

Cure53, Berlin · 04/14/21 7/16

https://cure53.de/
https://tour.golang.org/flowcontrol/12
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

UCB-02-004 WP2: Deprecated DH25519 Golang API used by Noise (Low)

A review of the active Noise library confirmed that the Noise implementation deploys the
old, deprecated5 curve25519.ScalarMult(dst, scalar, point *[32|byte) function. This
function was deprecated in favor of the new curve25519.X25519(scalar, point []byte)
([]byte, error) call, which adds an input validation to low-order points. This check is
needed as per the design of curve25519, but is intended to help identify errors with more
atypical protocols.

Affected file:
noise-go/cipher_suite.go

Affected code:
func (dh25519) DH(privkey, pubkey []byte) []byte {
 var dst, in, base [32]byte
 copy(in[:], privkey)
 copy(base[:], pubkey)
 curve25519.ScalarMult(&dst, &in, &base)
 return dst[:]
}

While this is not a security issue for Noise and dnstt, one can still recommend not relying
on deprecated API’s solely. Therefore, it is encouraged to switch to the new API call at
the earliest possible convenience.

UCB-02-005 WP2: Client ID security considerations & Noise authn’d data (Low)

During a code and design review of dnstt6, the testing team observed that the dnstt
server tracks dnstt clients by storing a correlation between Client ID and IP addresses.
Every DNS query sent by the dnstt client is tagged with a Client ID, which is a random
64-bit string generated by the client.

One can pertinently note that Client IDs are not permanent identifiers; the IDs only
persist as long as the client software is active, and the server expires stale mappings
after a certain amount of time. The Client ID transmission is neither within the encrypted
Noise channel nor authenticated. An attacker capable of obtaining a valid Client ID - via
sniffing network communication, for example - could confuse the dnstt server and
potentially receive messages intended to be transmitted to the original client
corresponding to the obtained Client ID. It is important to stress that an attacker would
not be able to decrypt the actual encapsulated message, as it is end-to-end encrypted
and protected by Noise.

5 https://github.com/golang/go/issues/32670
6 https://www.bamsoftware.com/software/dnstt/protocol.html

Cure53, Berlin · 04/14/21 8/16

https://cure53.de/
https://www.bamsoftware.com/software/dnstt/protocol.html
https://pkg.go.dev/builtin#error
https://pkg.go.dev/builtin#byte
https://pkg.go.dev/builtin#byte
https://github.com/golang/go/issues/32670
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

While reviewing the usage of the Noise protocol within dnstt, the discovery was made
that the Noise protocol’s authenticated data remains unused. One could use this area to
place plaintext data which should undergo an authentication, such as the referred Client
ID or similar. This would not solve the aforementioned nonce synchronization issue, but
would result in tighter coupling of the Noise channel with the underlying Turbo Tunnel
session identified by a Client ID. The following code snippet displays the method by
which the Noise implementation’s Encrypt() function is invoked without applying any
authenticated data.

Affected files:
dnstt/noise/noise.go

Affected code:
func (s *socket) Write(p []byte) (int, error) {

total := 0
for len(p) > 0 {

[...|
err := writeMessage(s.ReadWriteCloser, s.sendCipher.Encrypt(nil,

nil, p[:n]))
[...]

}
return total, nil

}

Affected file:
https://github.com/flynn/noise/blob/master/state.go

Affected code:
// Encrypt encrypts the plaintext and then appends the ciphertext and an
// authentication tag across the ciphertext and optional authenticated data //
to out. This method automatically increments the nonce after every call, // so
messages must be decrypted in the same order.
func (s *CipherState) Encrypt(out, ad, plaintext []byte) []byte {

if s.invalid {
panic("noise: CipherSuite has been copied, state is invalid")

}
out = s.c.Encrypt(out, s.n, ad, plaintext)
s.n++
return out

}

It is recommended to place the Client ID into the authenticated data in order to achieve
tighter coupling of the Noise channel with the underlying Turbo Tunnel session identified
by a Client ID.

Cure53, Berlin · 04/14/21 9/16

https://cure53.de/
https://github.com/flynn/noise/blob/master/state.go
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

UCB-02-006 WP2: DoS due to unconditional nonce increment (Low)

Testing identified that an active attacker with the capability to send messages to the
dnstt server and the knowledge of another client’s Client ID is able to interrupt the
legitimate client’s communication. This is possible because an attacker can tag
messages with other client’s Client ID values, resulting in a decryption error on the
server side within the Noise layer.

Typically, the server should remove the Noise CipherState and require a client to re-
establish a new Noise session upon decryption errors. The Noise implementation used
by dnstt, however, does not follow the Noise specification; nor does it do so
independently of any decryption error incremented on every received message.
Consequently, any valid message from the legitimate client would also lead to a
decryption error, because the nonce counters would be out of sync from this moment
onwards. The legitimate client would need to rerun a Noise handshake to agree on a
new session key and resync the nonce counters.

The relevant section of the Noise specifications is in chapter 5.17:

“DecryptWithAd(ad, ciphertext): If k is non-empty returns DECRYPT(k, n++, ad,
ciphertext). Otherwise returns ciphertext. If an authentication failure occurs in
DECRYPT() then n is not incremented and an error is signaled to the caller.”

Affected file:
https://github.com/flynn/noise - state.go

Affected code:
func (s *CipherState) Decrypt(out, ad, ciphertext []byte) ([]byte, error) {
 if s.invalid {
 panic("noise: CipherSuite has been copied, state is invalid")
 }
 out, err := s.c.Decrypt(out, s.n, ad, ciphertext)
 s.n++
 return out, err
}

It is recommended to follow the Noise specification and ensure that the nonce is only
incremented on successful decryption. Alternatively, the Noise CipherState object should
be removed and a new handshake established.

7 https://noiseprotocol.org/noise.html# the-cipherstate-object

Cure53, Berlin · 04/14/21 10/16

https://cure53.de/
https://github.com/flynn/noise
https://noiseprotocol.org/noise.html#the-cipherstate-object
https://noiseprotocol.org/noise.html#the-cipherstate-object
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

UCB-02-007 WP2: DoS due to missing socket timeouts (Low)

The discovery was made that some network sockets have established deadlines for IO
operations. In a hostile environment whereby connections are subject to being dropped,
one should deem it crucial to be able to reconnect quickly. tls.Dial, as used in dnstt-
client/tls.go, does not set deadlines, so any connect or read operations can block for a
potentially infinite duration in the worst case scenario.

Affected file:
dnstt-client/tls.go

Affected code:
[...]
tlsConfig := &tls.Config{}
conn, err := tls.Dial("tcp", addr, tlsConfig)
if err != nil {

return nil, err
}
[...]

It is recommended to deploy tls.Client in conjunction with net.DialTimeout instead of
tls.Dial when establishing a new TLS connection, and to set a deadline before each read
operation using conn.SetReadDeadline.

UCB-02-008 WP1-WP2: Lack of rate limiting in Snowflake and dnstt (Info)

While reviewing the dnstt and Snowflake source code, the testing team observed that
neither dnstt nor Snowflake implement rate limiting on the server side. Rate limiting
would effectively reduce the risk of malicious users instigating a situation whereby the
dnstt server or Snowflake server is forced to exhaust resources such as memory, for
example.

Affected file:
dnstt/dnstt-server/main.go

Affected code:
func recvLoop([...]) error {

for {
// Got a UDP packet. Try to parse it as a DNS message.
query, err := dns.MessageFromWireFormat(buf[:n])
[...]
if n == len(clientID) {

[...]
r := bytes.NewReader(payload)
for {

Cure53, Berlin · 04/14/21 11/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

[...]
// Feed the incoming packet to KCP.
ttConn.QueueIncoming(p, clientID)

}
}

}
}

Affected file:
snowflake/server/server.go

Affected code:
func turbotunnelMode(conn net.Conn, addr string, pconn
*turbotunnel.QueuePacketConn) error {

[...]
clientIDAddrMap.Set(clientID, addr)

// The remainder of the WebSocket stream consists of encapsulated
// packets. We read them one by one and feed them into the
// QueuePacketConn on which kcp.ServeConn was set up, which eventually
// leads to KCP-level sessions in the acceptSessions function.
go func() {

for {
p, err := encapsulation.ReadData(conn)
if err != nil {

errCh <- err
break

}
pconn.QueueIncoming(p, clientID)

}
}()
[...]

}

Careful consideration is required when assessing rate-limiting implementation strategy,
as this feature can also be abused by malicious users to effectively deny access to dnstt
or Snowflake. Cure53 would highlight this potential area for improvement as one that
should be investigated internally. One can also recommend assessing the risks of
causing a Denial-of-Service situation in which the dnstt or Snowflake servers depreciate
their resources.

Cure53, Berlin · 04/14/21 12/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

UCB-02-009 WP1: Brokers and proxies are not authenticated (Low)

Broker nodes within Snowflake handle the rendezvous by matching Snowflake clients
with proxies, and are responsible for passing along WebRTC session descriptions during
signaling, allowing clients and proxies to establish a peer connection. During an audit of
Snowflake, the observation was made that neither brokers nor proxies are authenticated,
therefore potentially allowing an attacker to register rogue broker and proxy nodes.

One can pertinently note that the lack of authentication regarding brokers and proxies
has already been discussed with the client during the course of this security review, and
the confirmation was made that the Tor project already has ongoing discussions around
adding authentication8 9 10 11 12. Cure53 recommends inserting authentication of broker
messages in order to eliminate the risk of rogue broker nodes and potential Denial-of-
Service caused by malicious brokers.

8 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/22945
9 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/25593
10 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/31124
11 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/25681
12 https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/31804

Cure53, Berlin · 04/14/21 13/16

https://cure53.de/
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/31804
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/25681
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/31124
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/25593
https://gitlab.torproject.org/tpo/anti-censorship/pluggable-transports/snowflake/-/issues/22945
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW11 to CW13 testing against the Turbo Tunnel project, its
peripheral software, and dependencies by the Cure53 team - will now be discussed at
length. To summarize, the confirmation can be made that the applications under scrutiny
have left a good impression.

The software projects in scope - dnstt and Snowflake - were comprehensively audited to
assess their constitution and code. Generally speaking, testing confirmed the notion that
both solutions are architecturally sound and precise in this regard.

The testing team was able to understand how the individual pieces integrate and
comprise the applications in a straightforward manner. All important functions and steps
had comments, which assisted toward understanding code activity and helped to smooth
the auditing process. Most error situations that could potentially arise are caught and
handled properly.

For the review of dnstt, enhanced focus was asserted towards its protocol stack, which
combines KCP, Noise and smux. These protocols are correctly deployed for the most
part in any given situation, although some deviations from the Noise protocol and
potential error scenarios were detected.

Rigorous attention was also paid to the Noise implementation and usage. On the whole,
the selection of Noise as a platform is a great choice from a security perspective. The
level of security possible via Noise greatly exceeds that which the kcp-go
implementation provides, which was also briefly reviewed. It is important to note that the
kcp-go encryption feature is not recommended for dnstt. KCP, Noise and SMUX seem to
be completely independent of each other. While this is acceptable, depending on the
thread model and level of security, this also provides a broader potential attack surface.
For example, an attacker that is able to successfully guess or obtain a valid Client ID of
another client could inject random packets into that message queue, causing at least
some disruption toward another client’s tunnel.

While the Noise implementation is generally secure, it does not seem to follow the
specification in multiple areas - particularly with regard to nonce management and error
handling in the encrypt and decrypt paths. The recommendation can be made to either
fix these issues in the current implementation, or use a Noise implementation that
precisely follows the specification to avoid any security issues that might arise from this
instance.

Cure53, Berlin · 04/14/21 14/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

One can also recommend that any errors in the encryption and decryption path should
properly trigger a full reconnect of the client at the Noise level, ideally with a newly-
generated Client ID. For the decrypt path, this can be loosened and the Noise channel
can be kept active, but the nonce counter must never be incremented in case of an
error.

Furthermore, a maximum limit on the volume of messages secured with the same Noise
CipherState below 2^64 - 2 messages should be established. This would reduce the
number of decryptable messages whenever a session key is compromised. In addition,
the testing team observed that no rekeying method has been established either. This
would impose a security risk depending on the lifetime of the session since symmetric
keys should be substituted following excessive usage, depending on the application.

Testing also identified that the nonce is always incremented even when the decryption of
the Noise library fails, as detailed in UCB-02-006. This confuses an internal object
related to Noise since the nonces are assumed to be monotonically increasing.

Additionally, the Noise protocol’s authenticated data remains unused. One can advise
implementing this area to insert plaintext data required to authenticate, such as the
Client ID, for example (see UCB-02-005 for further details).

If the maintainers are considering installing client authentication, it is strongly
recommended to have a look at the notes on channel binding within the Noise
specification. The dnstt implementation does not perform any form of channel binding at
the time of the audit.

One noteworthy observation relates to the fact that the dnstt client application does not
validate the provided public key (from file or input string) of the dnstt server with regard
to authenticity, which would allow for Man-in-Middle attacks in the eventuality that an
attacker is able to control the client’s public key input file or command line arguments.
The user launching the dnstt client application is forced to trust the provided dnstt server
public key blindly, as there are no technical measures in place that would verify the
public key.

For the review of the Snowflake constitution, considerable attention was given to the
Turbo Tunnel implementation, the cryptographic primitives, and the misuse of the server
APIs. As agreed with the client at the time, further additions to Snowflake on Turbo
Tunnel’s behalf were deemed the major focus concerning its audit. In comparison with
dnstt, Snowflake does not use Noise, and encryption is performed one layer below using
WebSocket and WebRTC. The connection reestablishment mechanism was highly
scrutinized during the testing in addition; no issues were identified.

Cure53, Berlin · 04/14/21 15/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The observation was made that neither the brokers nor the proxies are authenticated,
which would allow an attacker to impersonate said brokers or proxies (as detailed in
UCB-02-009), which act as a proxy from the client’s perspective. This allows an attacker
to place and register rogue brokers and proxies.

The Snowflake and dnstt implementations are inherently vulnerable to Denial-of-Service
attacks, as there is no mechanism in place to limit the volume of connection attempts as
described via ticket UCB-02-008.

In summation, dnstt and Snowflake made a mature impression. Evidence clearly
suggests that the developers are aware of secure-coding best practices and understand
the method by which to write clean and robust code in Golang. This is corroborated by
the unusually low number of identified vulnerabilities and miscellaneous issues. The
majority of identified issues related to the Noise implementation that is deployed by dnstt
and generic design decisions implemented; for example, the lack of authentication of
brokers and proxies as detailed in UCB-02-009, or missing rate limiting as detailed in
UCB-02-008, for instance. Conclusively, extensive auditing confirmed that the Turbo
Tunnel concept and its implementation in dnstt and Snowflake are robust with regards to
security albeit with some room for improvement, as demonstrated within this report.

Cure53 would like to thank Xiao Qiang from the UCB team and David Fifield for their
excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · 04/14/21 16/16

https://cure53.de/
mailto:mario@cure53.de

	Review-Report Turbo Tunnel Security & Privacy 03.2021
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	UCB-02-003 WP2: Potential nonce overflow in Noise protocol (Medium)

	Miscellaneous Issues
	UCB-02-001 WP1: Memory leak in Handler() routine of Snowflake client lib (Low)
	UCB-02-002 WP2: Memory leak in acceptStreams() routine of dnstt server (Low)
	UCB-02-004 WP2: Deprecated DH25519 Golang API used by Noise (Low)
	UCB-02-005 WP2: Client ID security considerations & Noise authn’d data (Low)
	UCB-02-006 WP2: DoS due to unconditional nonce increment (Low)
	UCB-02-007 WP2: DoS due to missing socket timeouts (Low)
	UCB-02-008 WP1-WP2: Lack of rate limiting in Snowflake and dnstt (Info)
	UCB-02-009 WP1: Brokers and proxies are not authenticated (Low)

	Conclusions

