
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report TunnelBear VPN & Software 10.2020
Cure53, Dr.-Ing. M. Heiderich, J. Larsson, M. Rupp, BSc. B. Walny, BSc. T.-C. “Filedescriptor”
Hong, MSc. F. Fäßler, MSc. J. Hector, MSc. S. Moritz, MSc. N. Krein

Index

Introduction

Scope

Identified Vulnerabilities

TB-08-001 API: Rate-limiting results in user-lockout (Medium)

TB-08-007 FilterPods: Use of innerHTML leads to XSS in block page (Low)

TB-08-010 FilterPods: Missing network restrictions allow access (High)

TB-08-011 Web: Arbitrary redirect via Core2 route (Low)

TB-08-019 Crypto: Known plain-text attack on sendLogs in AES (Medium)

Miscellaneous Issues

TB-08-002 Web: HTML injection in notification email via team name (Info)

TB-08-003 Android: Secure flag missing on views (Info)

TB-08-004 AWS: No KMS keys for SSE in SQS queues (Info)

TB-08-005 Web: Error messages reveal internal information (Info)

TB-08-006 Android: Unencrypted shared preferences and database (Info)

TB-08-008 macOS : Hardening the Privileged Helper (Info)

TB-08-009 Web: No HTTPS for data export link in emails (Low)

TB-08-012 AWS: Expired ACM certificates (Info)

TB-08-013 AWS: Insecure TLS Configuration Used (Medium)

TB-08-014 AWS: DynamoDB encryption relies on AWS-owned keys (Medium)

TB-08-015 AWS: Mutable ECR repositories (Info)

TB-08-016 AWS: Insecure configuration on metadata instance (Medium)

TB-08-017 AWS: Key-rotation process missing in IAM (Medium)

TB-08-018 AWS: Stale and unused objects/roles in IAM (Info)

Conclusions

Cure53, Berlin · 11/12/20 1/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“TunnelBear respects your privacy. We will never monitor, log, or sell any of your
browsing activity. As the only VPN in the industry to perform annual, independent
security audits, you can trust us to keep your connection secure.”

From https://www.tunnelbear.com/

This report documents the findings of an annual security assessment conducted by
Cure53 against the TunnelBear VPN service compound in October 2020. This recurring
examination concerns penetration testing, reviews of configurations and infrastructure,
as well as dedicated auditing of the TunnelBear VPN scope.

Last thorough investigations that Cure53 performed against similarly selected items took
place in November 2019. To give some context, the tests and audits then yielded a total
of twelve findings characterized by various severity ratings. Importantly, some items
received Critical scores in terms of risks they presented.

The reported project was requested by TunnelBear and promptly enacted by nine testers
from the Cure53 team. They have been selected on the basis of their best-suited skills
and worked on areas best corresponding to their individual expertise. The total budget
stood at forty person-days, which were invested into preparing, executing and finalizing
this project.

As usual, the scope was very broad and the budget for this test was sufficient for
reaching very good coverage levels. In order to optimize structured division and
progress of tasks, the work has been split into several work packages (WPs). In WP1,
Cure53 focused on the TunnelBear client applications, which were subjected to code
auditing and penetration testing. Same methods were deployed in WP2 against browser
extensions used by TunnelBear. This was followed by WP3, with penetration tests and
configuration reviews dedicated to TunnelBear VPN infrastructure. Tests and audits of
TunnelBear FilterPods took center stage in WP4, while WP4 zoomed in - via a code
audit - on the PolarBear backend. Continuing and complementing the above, WP6
moved to frontend and public sites exposed by TunnelBear and WP7 offered a
configuration review and audit of the AWS infrastructure serving TunnelBear.

White-box methods were once again chosen and deployed in the frames of this
cooperation. Cure53 was given access to all relevant materials and sources, with the
aim of optimizing coverage. The project started on time and progressed efficiently.
Communications were done using the usual, shared Slack channel, wherein members of
both the TunnelBear and Cure53 teams were able to collaborate. Note that a second

Cure53, Berlin · 11/12/20 2/28

https://cure53.de/
https://www.tunnelbear.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

shared channel was created on Slack during the audit to discuss a feature-specific
concern raised by Cure53 with TunnelBear and McAfee staff, specifically relating to
WP4: TunnelBear FilterPods. Communication was productive and helpful, the tests and
audits managed to proceed without any hindrance and the coverage levels reached by
the Cure53 team were very good.

As for the outcomes, Cure53 managed to find several fresh and relevant issues, with
nineteen findings in total. Five discoveries were categorized as security vulnerabilities
and fourteen represented general weaknesses of lower exploitation potential, resultingly
placed in the Miscellaneous category of findings. On the one hand, it needs to be noted
that the number of findings exceeds the total from 2019. On the other hand, the overall
severity levels have gone down substantially, which is a positive sign. The testing team
was unable to spot Critical issues during this 2020 exercise. Only one flaw was graded
as a High risk, while the remaining problems were located in the realm of Medium and
lower severity scores. This indicates progress and shows that the TunnelBear complex
is on the right track from a security perspective.

The report will now shed some light on the scope and the test setup. Findings are then
discussed within two groups of vulnerabilities and general weaknesses, with
chronological order used for reporting within the two larger finding-types. Each finding
will be accompanied by a technical description, a PoC where possible, as well as finders’
perspectives on mitigation and fix advice. After that, the report will close with a
conclusion, in which the Cure53 team will elaborate on both general and specific
impressions gained over the course of this October 2020 test and audit. Tailored
hardening advice is also incorporated into the final section.

Cure53, Berlin · 11/12/20 3/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration Tests & Audits against TunnelBear VPN Software & Servers

◦ WP1: TunnelBear client apps (code audit & pentest)
▪ macOS

• Download link:
◦ https://s3.amazonaws.com/tunnelbear/downloads/mac/TunnelBear.zip

• Repositories:
◦ tunnelbear-apple
◦ tunnelbear-apple-openvpn.git
◦ TBMapKit

▪ iOS
• Download link:

◦ https://apps.apple.com/us/app/tunnelbear-secure-vpn-wifi/id564842283
• Repositories:

◦ tunnelbear-apple
◦ tunnelbear-apple-openvpn.git
◦ TBMapKit

▪ Android
• Download link:

◦ https://play.google.com/store/apps/details?id=com.tunnelbear.android
• Repositories:

◦ tbear-android
◦ polarbear-android
◦ Tb-vpn-android

▪ Windows
• Download link:

◦ https://tunnelbear.s3.amazonaws.com/downloads/pc/TunnelBear-
Installer.exe

• Repositories:
◦ Tunnelbear-windows
◦ polarbear-windows

◦ WP2: TunnelBear browser extensions (code audit & pentest)
▪ Download link:

• https://chrome.google.com/webstore/detail/tunnelbear-vpn/
omdakjcmkglenbhjadbccaookpfjihpa

▪ Repositories:
• web-tb-browser

Cure53, Berlin · 11/12/20 4/28

https://cure53.de/
https://chrome.google.com/webstore/detail/tunnelbear-vpn/omdakjcmkglenbhjadbccaookpfjihpa
https://chrome.google.com/webstore/detail/tunnelbear-vpn/omdakjcmkglenbhjadbccaookpfjihpa
https://tunnelbear.s3.amazonaws.com/downloads/pc/TunnelBear-Installer.exe
https://tunnelbear.s3.amazonaws.com/downloads/pc/TunnelBear-Installer.exe
https://play.google.com/store/apps/details?id=com.tunnelbear.android
https://apps.apple.com/us/app/tunnelbear-secure-vpn-wifi/id564842283
https://s3.amazonaws.com/tunnelbear/downloads/mac/TunnelBear.zip
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

◦ WP3: TunnelBear VPN infrastructure
▪ Repositories:

• Opscode
◦ WP4: TunnelBear FilterPods (pentest & code audit)

▪ Repositories:
• filterpods-2019-audit

◦ WP5: TunnelBear PolarBear backend (code audit)
▪ Repositories:

• polarbackend
• Backend
• Axon

◦ WP6: TunnelBear frontend & public sites (pentest & code audit)
▪ https://www.tunnelbear.com
▪ https://www.tunnelbear.com/teams
▪ Repositories:

• web-tb-com
• web-tb-landing

◦ WP7: TunnelBear AWS infrastructure (configuration review & audit)
▪ Polarbackend:

• https://github.com/TunnelBear/polarbackend
▪ Tundra:

• https://github.com/TunnelBear/tundra
▪ Assorted Terraform modules:

• tf-module-logdna-router
• tf-module-read-secrets
• tf-module-vmf-proxy
• tf-module-app-server
• tf-module-load-balancer

◦ Tests-accounts were created by Cure53:
◦ SSH server access was granted for Cure53
◦ Binaries were shared with Cure53
◦ Sources were shared with Cure53

▪ Note that some source code for selected Work Packages could only be accessed
using a remote connection to a TunnelBear-maintained system

◦ Test-supporting material was shared with Cure53

Cure53, Berlin · 11/12/20 5/28

https://cure53.de/
https://github.com/TunnelBear/tundra
https://github.com/TunnelBear/polarbackend
https://www.tunnelbear.com/teams
https://www.tunnelbear.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. TB-08-001) for the purpose of facilitating any
future follow-up correspondence.

TB-08-001 API: Rate-limiting results in user-lockout (Medium)

It was discovered that the implemented rate-limiting mechanism for the two login API
endpoints can be used to lock users out of the platform. If more than ten requests are
sent to the endpoint within a short amount of time, the server responds with the 429 Too
Many Requests status. At first glance, it appears to be a normal rate-limiting but, as it
turns out, the limit is not bound to the IP of the client but rather to the email address sent
in the request. This allows an attacker to lock out other users from the platform while
sending more than ten requests with one email address to the affected endpoints (see
below).

Once the 15-minute unlock time expires, the attacker can still send new requests to
permanently prevent users from logging into the applications. Due to the fact that the
email address of a user must be known for a successful attack, the issue was rated
Medium.

The following Proof-of-Concept shows how the user with the email seba+tb@cure53.de
can be prevented from logging in to the web application by sending the request more
than 10 times in a short amount of time.

PoC Request #1. Locking users out of the web app:
POST /core/web/api/login HTTP/1.1
Host: api.tunnelbear.com
Content-Type: application/x-www-form-urlencoded
[...]

username=seba%2Btb%40cure53.de&password=167&withUserDetails=true&v=web-1.0

Response (after ~10 requests):
HTTP/1.1 429 Too Many Requests
[...]
Rate limiting

Cure53, Berlin · 11/12/20 6/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The following Proof of Concept shows how the user with the email seba+tb@cure53.de
can be prevented from logging in to a TunnelBear client by sending the request more
than 10 times in a short amount of time:

PoC Request #2. Locking users out of the client app:
POST /v2/token HTTP/1.1
Host: api.tunnelbear.com
Content-Type: application/json
[...]

{"username":"seba+tb@cure53.de","password":"81","device":"","grant_type":"passwo
rd"}

Response (after ~10 requests):
HTTP/1.1 429 Too Many Requests
[...]
{"error_code":10007,"error_message":"Please try again
later.","error_info":"AuthLimiter","error_id":6780943}

Please note that already authenticated users are not affected by this attack. However, it
is recommended to not bind the rate limiting to the email received via the related
requests. Instead, it is advised to bind the rate limiting to the client’s IP address.
Additionally, a captcha can be considered to add as well to make the attack less
efficient.

TB-08-007 FilterPods: Use of innerHTML leads to XSS in block page (Low)

While auditing the HTML templates of the FilterPods, it was discovered that innerHTML
is used in combination with untrusted user-input. This means a malicious user can
execute arbitrary JavaScript. Since filterpods are not supposed to be part of the regular
VPN (see TB-08-010), the impact here is not very clear. The endpoint vulnerable to this
issue seems to give way to retrieving a block page which is displayed back to the user.

The execution domain will then depend on the domain that serves the HTML returned
from the endpoint. In the worst-case scenario, sensitive information such as user-
sessions or API tokens can be leaked. However, during the test it could not be
determined how this endpoint is utilized. The vulnerable code excerpt with the relevant
parts highlighted can be found below.

Affected File:
filterpods-2019-audit-master/mms-sb-blockpage-1.0.5/template/block_i18n.html

Cure53, Berlin · 11/12/20 7/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:
function updateLink() {
 domain = {{ .Domain }};
 url1 = document.getElementById("url1");
 if (url1) {
 url1.innerHTML = trunc(domain, 30);
 }
};

As shown above, the template uses a domain which is provided by the user through the
request URL. The input is then truncated to 30 bytes and passed to innerHTML, allowing
the execution of JavaScript. The following is a Proof-of-Concept (PoC) URL that triggers
an alert box. However, note that arbitrary JavaScript execution can be achieved by
fetching external JavaScript.

PoC URL:
http://172.17.2.7/block/%3Cimg%20src%20onerror=alert(1)%3Ecc/meow

Regardless of the overall impact, it is recommended to avoid the usage of innerHTML
and use DOM manipulation instead. An alternative would be to properly sanitize the
domain string. Note that innerHTML needs to be considered dangerous and should be
avoided at all cost.

TB-08-010 FilterPods: Missing network restrictions allow access (High)

When auditing the FilterPods component, Cure53 discovered that the services specific
to the FilterPods are accessible to regular VPN users. In order to access the services, it
is enough to just connect to the VPN using the Windows client or similar.

After discussing the implications with the TunnelBear team, it was communicated that
these FilterPods should not be accessible to regular VPN users. Although the FilterPods
are running in a different IP range, this does not prevent unauthorized access
sufficiently.

FilterPods accessible through relevant IPs:
• frontend-api: 172.17.2.3 ports: 8087, 9110
• filterpod-client-api: 172.17.2.5 ports: 8441
• dns-proxy: 172.17.2.4 ports: 53 (udp) 9110
• mms-sb-blockpage: 172.17.2.7 ports: 80, 443, 9110
• mms-sb-redirector: 172.17.2.6 ports: 80, 443, 9110

First, it is recommended to introduce a network firewall as a means to prevent direct
access. If access is factually needed, a gateway service should be utilized in order to

Cure53, Berlin · 11/12/20 8/28

https://cure53.de/
http://172.17.2.7/block/%3Cimg%20src%20onerror=alert(1)%3Ecc/meow
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

access the Filter Pod components. Second, it should be considered to implement an
authentication mechanism requiring basic authentication credentials for accessing the
API endpoints.

TB-08-011 Web: Arbitrary redirect via Core2 route (Low)

Testing items within the tbearDashboard2 codebase led to the discovery of a slight input
sanitization error in the handler for redirecting clients to surveymonkey. More
specifically, the following affected code shows that the user-supplied URL parameter is
not properly checked upon redirection.

Affected File:
backend-develop/tbearDashboard2/app/controllers/Application.scala

Affected Code:
val allowedRedirectUrl: String =
 Await.result(gs.get[String](gs.NpsSurveyUrl, "https://www.surveymonkey.com"),
10 seconds)

// Purpose to redirect users acting on NPS in app messages through TB domain to
survey
def redirectAction(url: String) =
 RateLimitedAction.async { implicit request =>
 if (url.startsWith(allowedRedirectUrl)) Future.successful(Redirect(url))
 else Future.successful(Forbidden)
 }

Consequently, the passed url parameter only has to start with
https://www.surveymonkey.com, which is not enough to prevent arbitrary redirections to
potentially malicious URLs. As the following link demonstrates, any visitor can be
redirected onto a website with potentially malicious content.

Example URL:
https://www.tunnelbear.com/core2/redirect?url=https://
www.surveymonkey.com.cure53.de

Arbitrary redirects are not seen as serious threats. However, they should still be
prevented due to giving the attackers a capacity to hide malicious content (for example
Phishing domains) behind the innocent-looking TunnelBear domain. In any case, this
should be treated as an input validation issue and fixed accordingly. One approach
would be to make sure that a trailing slash is included in the surveymonkey URL.
Defining the URL as “https://www.surveymonkey.com/” should fix the issue.

Cure53, Berlin · 11/12/20 9/28

https://cure53.de/
https://www.tunnelbear.com/core2/redirect?url=https://www.surveymonkey.com.cure53.de
https://www.tunnelbear.com/core2/redirect?url=https://www.surveymonkey.com.cure53.de
https://www.surveymonkey.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-08-019 Crypto: Known plain-text attack on sendLogs in AES (Medium)

The iOS application’s feature for sending diagnostics uses crypto in an ineffective way.
TunnelBear leverages the HybridCrypto class which encrypts the diagnostics data with a
combination of AES and RSA. The idea is to encrypt the data with the AES block-cipher
and then encrypt the AES key with public-key crypto using RSA. Then the AES-
encrypted blob is sent to the server together with the RSA encrypted key. This scheme
requires the AES keys to be securely generated for each transmission, however
TunnelBear has a hardcoded key, which leads to an ineffective crypto layer.

Affected File:
./ios/TunnelBear/Code/Controllers/Onboarding/LandingPageViewController.swift

Affected Code:
private func sendLogs() {
 do {
 let aes = try AES(password: CryptoKeys.AESPasswordKeys.sendLogs.rawValue)
 let crypto = try HybridCrypto(derCertificateNamed: "send-logs", aes: aes)
 let zip = try LogArchiver.zipArchive()
 let zipData = try Data(contentsOf: zip)
 let ciphertext = try crypto.encrypt(zipData)
 let ciphertextKeyFile = URL(fileURLWithPath:
"\(NSTemporaryDirectory())/ciphertext.key")
 let ciphertextDataFile = URL(fileURLWithPath:
"\(NSTemporaryDirectory())/ciphertext.data")
 try ciphertext.key.write(to: ciphertextKeyFile)
 try ciphertext.data.write(to: ciphertextDataFile)
 // [...]
 }

As can be seen in the sendLogs() function, AES crypto is initialized with a hardcoded
password in CryptoKeys.AESPasswordKeys.sendLogs.

Affected File:
./shared/core/Code/Strings/CryptoKeys.swift

Affected Code:
public enum AESPasswordKeys: String {
 case sendLogs = "TunnelBear.sendLogs"
}

Cure53, Berlin · 11/12/20 10/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Once HybridCrypto is initialized with the hardcoded password "TunnelBear.sendLogs",
the encrypt() function is called and encrypts the log data with AES. Right after that, a
new plain-text, specifically containing the AES key and the IV, is prepared for encryption
with RSA.

Affected File:
./shared/core/Code/Utils/HybridCrypto.swift

Affected Code:
 public func encrypt(_ plaintext: Data) throws -> Ciphertext {
 let ciphertextData = try aes.encrypt(plaintext)
 let plaintextKey = Data("\(aes.hexKey)\n\(aes.hexIV)".utf8) as CFData
 var error: Unmanaged<CFError>?
 guard let ciphertextKey = SecKeyCreateEncryptedData(publicKey, algorithm,
plaintextKey, &error) as Data? else {
 throw error!.takeRetainedValue()
 }

 return Ciphertext(key: ciphertextKey, data: ciphertextData)
 }

The IV is a secure random 16-byte value required for proper decryption. At first sight, the
crypto seems safe here because the random IV is never directly exposed and only
transmitted within the safely encrypted RSA blob. However, the sequence means an
attacker can perform a ‘known plain-text’ attack to recover the IV.

Steps to Reproduce:
1. Encrypt "AAAAAAAAAAAAAAA" using HybridCrypto with the default AES key

"TunnelBear.sendLogs"
2. Take notes of the randomly generated IV and the resulting cipher-text

Example IV: 55748a521ed5590e7d3e7275ea6a9d94
Cipher-text: e6446ce701225b0e594b61c2ae8acb62

3. Prepare to decrypt the cipher-text with a null-IV
00000000000000000000000000000000. During decryption the IV is applied with
XOR to recover the plain-text, so the result with the null-IV will be the raw output
of AES without the IV.
Decryption result: 1435cb135f94184f3c7f3334ab2bdc95

4. Because the expected plain-text is known, "AAAAAAAAAAAAAAA" (with padding
in hex 41414141414141414141414141414100), it can be XORed with the
1435cb135f94184f3c7f3334ab2bdc95 to recover the IV.

The example above uses a clearly known plain-text of AAAAs to focus on the main
attack. An actual attack requires one additional - albeit easy to accomplish - step.

Cure53, Berlin · 11/12/20 11/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TunnelBear is encrypting a ZIP archive, thus the plain-text of the first AES block is either
known or can easily be guessed. This results in the recovery of the IV and ultimately the
full decryption. It is important that the key is randomly generated and no static key is
used. The key is already part of the RSA encrypted part, indicating that the server can
use private keys to recover the AES key.

Note: The issue was discussed with the client and the outcome was no extra encryption
is needed here, the data is sent by the user manually when diagnosing a particular issue
or bug.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

TB-08-002 Web: HTML injection in notification email via team name (Info)

It was found that the emails sent by the platform are not properly shielded against HTML
injections. This means that changing data on the website form, i.e. altering the team's
name into strings that contain HTML characters, has an effect on user capacities.
Specifically, the user cannot cause XSS on the website itself, but is able to influence the
optics of the messages sent by the platform. This can be noticed when a user receives
an email about changes in account-privileges and Team Update announcements. An
example of the current behavior can be consulted below.

Fig.: HTML injected into own emails

Cure53, Berlin · 11/12/20 12/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The screenshot above shows an HTML injection from the team’s name. In the resulting
email, the name parameter is not being sanitized, leading to an HTML injection. The
following query was used to change the team name.

Request:
POST /core/web/team/name HTTP/1.1
Host: api.tunnelbear.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:81.0)
Gecko/20100101 Firefox/81.0
Accept: application/json, text/plain, */*
Accept-Language: en-GB,en;q=0.5
Accept-Encoding: gzip, deflate
Content-Type: application/x-www-form-urlencoded
TB-CSRF-Token: 596dae579be30c7db7c65b5d811890516d9f777e
X-XSRF-TOKEN: 596dae579be30c7db7c65b5d811890516d9f777e
Content-Length: 70
Origin: https://www.tunnelbear.com
Cookie: PLAY_SESSION=2655b3a7c85de4be65c4c9a125eaeac17b83e5b2-
___AT=596dae579be30c7db7c65b5d811890516d9f777e&tbcsrf=596dae579be30c7db7c65b5d81
1890516d9f777e&___TS=1603632240817&sessionid=%40CK-79ac65d4-c0b4-44cb-bd5c-
af93bd89e590;

name=1111%22%3E%7B%7B1%2B1%7D%7D%3Cs%3Eaaaa3&password=[...]

Just as with the web application more broadly, it is here recommended to make sure that
all user-controlled data employed in email templates gets escaped and encoded. The
right choice would be to use HTML encoding as a means to completely mitigate the
attack.

TB-08-003 Android: Secure flag missing on views (Info)

During the assessment of the Android app, it was discovered that the FLAG_SECURE
security flag is not used to protect views that display sensitive content. By setting the flag
for Android views, the app’s windows can no longer be manually “screenshotted”.
Additionally, the items will be excluded from automatic screenshots or screen-
recordings, which ultimately prevents screen data from being leaked to other apps.
Especially for the implemented views showing sensitive data, such as the Login view, it
is advised to add the specified flag.

To reiterate, it is recommended to add the FLAG_SECURE within the WindowManager
responsible for handling views like the WebView. The flag can be set via
WindowManager.LayoutParams, i.e. as FLAG_SECURE within the function of

Cure53, Berlin · 11/12/20 13/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

setFlags(). As for additional information on how to prevent this type of attacks, please
refer to the OWASP Mobile Security Testing Guide1.

TB-08-004 AWS: No KMS keys for SSE in SQS queues (Info)

The analysis of the configuration attached to Simple-Queue-Service (SQS) used by
TunnelBear revealed that encryption is not enforced for any of the SQS queues used in
the assessed AWS context. If an attacker manages to get access to an AWS object or
role that has access to the SQS feature, the content of the queues would be readable
and all data stored within the queue will be compromised.

Excerpt of SQS queues without encryption:

arn:aws:sqs:us-east-1:113810520231:openvpnmonitor_queue_*
arn:aws:sqs:us-east-1:113810520231:blocked_url_queue_*
arn:aws:sqs:us-east-1:113810520231:blocked_url_queue_test
arn:aws:sqs:us-east-1:113810520231:dedup-test.fifo
arn:aws:sqs:us-east-1:113810520231:dns_update_queue*
arn:aws:sqs:us-east-1:113810520231:kms_cloudtrail_log_notifier*
arn:aws:sqs:us-east-1:113810520231:lambda-job*

Even if those queues don’t contain any PII2 data, in order to increase the overall security
posture, it is recommended to enforce encryption for all queues used by TunnelBear.
Furthermore, once encryption is enabled, it is important to use a KMS configuration that
relies on customer-managed keys instead of AWS-managed keys. The latter would
confirm encryption usage at rest.

TB-08-005 Web: Error messages reveal internal information (Info)

It was found that some API endpoints may reveal minor internal information via errors.
This happens when unexpected input is provided for certain endpoints and entails
appearance of surprising characters or types inside parameters. The actions cause
errors in the server-side functionality that handles the submitted input. This does not
directly lead to a security issue, yet it might aid a malicious user in acquiring more
internal information.

The following example relates to the affected endpoint and demonstrates the present
behavior.

1 https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-g...atic-analysis-8

Cure53, Berlin · 11/12/20 14/28

https://cure53.de/
https://mobile-security.gitbook.io/mobile-security-testing-guide/android-testing-guide/0x05d-testing-data-storage#static-analysis-8
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Request:
POST /core/v2/referral HTTP/1.1
Host: api.tunnelbear.com
User-Agent: Mozilla/5.0 (Macintosh; Intel Mac OS X 10.15; rv:81.0)
Gecko/20100101 Firefox/81.0
Accept: application/json, text/plain, */*
Accept-Language: en-GB,en;q=0.5
Accept-Encoding: gzip, deflate
TB-CSRF-Token: ef86f6b052a0071e0edf1f4d486e18862d5722d6
Cookie: PLAY_SESSION=6d5abe45454b8d65d[...]

{aaaa<>aaaaaaa:}

Response Body:
Execution exception
JsonSyntaxException occurred : com.google.gson.stream.MalformedJsonException:
Expected value at line 1 column 16 path $.aaaa<>aaaaaaa
This exception has been logged with id 7hddi621e

As no critical-level information could be leaked through this finding, the risk has been
evaluated as Info. While this may be brushed away as just a harmless information
disclosure, it should be viewed in the context of generally helping adversaries in their
efforts of obtaining different ways to conduct further attacks against the application or the
hosts.

It is recommended to store stack traces on the server and only provide a correlation ID
on HTTP responses when unexpected errors occur. This will facilitate debugging and
investigation of the application issues without revealing information or introducing
security vulnerabilities. Error messages must only be composed of static error
descriptions that do not include information pertinent to the implementation of the service
or the deployed software and/or version.

TB-08-006 Android: Unencrypted shared preferences and database (Info)

During the assessment of the Android app, it was discovered that the application does
not always make consistent use of the encrypted shared preference feature provided by
the Android SDK. This may lead to an information disclosure in case a local attacker is
able to get root access to the phone. Sensitive information stored within the
shared_prefs data folder in plain-text, such as the VPN token (see below), could be
revealed.

In addition, implemented third-party libraries also have access to the protected app data
folder and are, therefore, able to read such kind of data, too. Moreover, if the application

Cure53, Berlin · 11/12/20 15/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

is vulnerable to a local arbitrary file-read attack, e.g., via an insecurely implemented
content provider, it could also be used to read such files.

Affected File:
vpn-android/src/main/java/com/tunnelbear/vpn/models/VpnConfig.java

Affected Code:
@SuppressLint("ApplySharedPref")
private VpnConfig(Context context,
 ArrayList<VpnServerItem> vpnServers,
 String vpnToken,
 Bundle bundle) {
 mVpnToken = vpnToken;
 [...]
 Gson gson = new Gson();
 String serializedConfig = gson.toJson(this);

 context.getSharedPreferences(CONFIG_RAW, MODE_PRIVATE)
 .edit()
 .putString(CONFIG_RAW, serializedConfig)
 .commit();
}

Example shared preferences file (vpnconfig.xml):
<string name="vpnconfig">
[...]
,”mVpnToken;”TBR-547b2e2e-6fcd-4d86-be5c-b3f237fca423”}</string>

Besides the flaws described above, it was discovered that sensitive data, such as the
VPN token, is also stored in plain-text within the tunnelbear_database used by the app.

Affected File:
tbear-android-develop/app/src/main/java/com/tunnelbear/android/persistence/
KeyValuePairHelper.kt

Affected Code:
suspend fun set(key: Keys, value: Any?) {
 if (value == null) {
 removeKeyValuePair(key)
 } else {
 db.keyValuePairDao().insert(KeyValuePair(key, gson.toJson(value)))
 }
}

Cure53, Berlin · 11/12/20 16/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Example entry for tunnelbear_database:
USER_INFO:
{"account_status":"NORMAL","data_limit_bytes":1572864000,"id":0,"is_data_unlimit
ed":false,"vpn_token":"TBR-547b2e2e-6fcd-4d86-be5c-b3f237fca423"}

It is advised to use the provided wrapper class called EncryptedSharedPreferences to
encrypt sensitive data stored within the shared_prefs folder, so as to make the
application more robust against the illustrated attacks. The wrapper class uses the
Android Keystore for handling the master key and is used to encrypt/decrypt all other
keysets. For more information, please refer to the official Android guide on storing data
more securely2. It is also advisable to encrypt the contents in the database using a key
from the Android Keystore.

TB-08-008 macOS: Hardening the Privileged Helper (Info)

The TunnelBear macOS daemon suffered from several privilege escalation issues in the
past. Those problems were related to the difficulty of validating that the XPC connection
comes from the actual TunnelBear client, as well as from an attacker having the
capability to fool the daemon into executing a malicious binary. In the current version no
privilege escalation issue could be identified, however TunnelBear could harden the
daemon even further.

Currently, the defenses are located on two levels. Firstly, the XPC connection is
validated through the auditToken and then the runSignedExecutable ensures that the
binary to execute is properly signed. The auditToken is not available in all macOS
versions, thus a fallback to the vulnerable process ID method happens on older
versions.

Secondly, runSignedExecutable is not the only exposed method. The daemon also has
other functions such as killProcess or fetchLogs, which offer no additional checks. These
methods do not directly lead to a privilege escalation but could provide a powerful
primitive to chain with other bugs. Due to the first layer of defense, a malicious program
cannot execute those remote procedure calls. If TunnelBear is executed on an old
macOS version, or if an attacker finds a code injection into the TunnelBear client, the
calls could still be reachable.

While the implementation is generally strong, offering an additional layer of hardening
could assist TunnelBear in expanding the scope of restrictions as far as the capabilities
of the DaemonService methods are concerned. For example, hardcoding the allowed file
paths for the fetchLogs function or hardcoding allowed processes being killed by
killProcess, could serve as some additional options.

2 https://developer.android.com/topic/security/data

Cure53, Berlin · 11/12/20 17/28

https://cure53.de/
https://developer.android.com/topic/security/data
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-08-009 Web: No HTTPS for data export link in emails (Low)

It was found that the links embedded in the data export emails rely on an unencrypted
HTTP channel. An attacker who has the ability to eavesdrop (i.e. a Man-in-the-Middle
adversary) on the connection of a user can take advantage of techniques like sslstrip to
proxy clear-text traffic to the user-victim.

Sample Email:
[...]
Click the button below to download your data in a zip file.
<a
href="http://email.bearpostoffice.com/c/eJxdjstugzAQRb_G7IL8wA5ZsDAB8mpR2ySq1J1t
7IQoAYpNm_D1ddJNVc0srmZGZ06VzKhAKArqBEMMEUQzyCJCUeiLFtM5T1meZVMeUQIiKLXou9a61pha
6VC1l-
CYKKMYi6QxMJaESjZFzEiplDQMK4VnwTk5OtdZQDjAhW9xbZvJYHVfDZfOhpaE4iLGthHf9o70F6Y-
60pb1deda3uAKU6dts6HCKqh15SElZ7s9mWZP6U5f5tUwok7LRzrDpCCv2-
5Utrajb6tKkAyvlnx9fx5v1t_LBcvdLMol68As_za1b32ZhlikLIYxQT58bY-
NML5P36xxQMZHwanT6LS2yMeRNN8xdlY3lB78iBKsqBP_lv_Ov8x_gHWAXIF">Download my data</
a>

It is recommended to embed the links with a consistent use of HTTPS to eliminate the
possibility of eavesdropping for a MitM actor.

TB-08-012 AWS: Expired ACM certificates (Info)

Cure53 noticed that that several certificates, specifically attached to the ACM
configuration and used by TunnelBear as active in the AWS context, have expired. This
in itself should not be regarded as a severe security issue but instead points to a bad
security practice and potentially a lack of sufficient renewal process in regard to
certificate renewal.

Excerpt for the resources with expired certificates:

• aws:acm:us-east-1:113810520231:certificate/cb8f0491-b28b-4e94-9e88-
d01fdd1bd35f
◦ www.bearsmyip.com (expired for 9 days)

• aws:iam::113810520231:server-certificate/cloudfront/bearsmyip/bearsmyip
◦ bearsmyip/wwwbearsmyip (expired for 1114 days)
◦ bearsmyip/wwwbearsmyip2(expired for 1106 days)
◦ bearsmyip/wwwbearsmyip3(expired for 1104 days)

• aws:iam::113810520231:server-certificate/cloudfront/blockbear/
sep_15_blockbear
◦ Sep_15_blockbear (expired for 772 days)

Cure53, Berlin · 11/12/20 18/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• aws:acm:ca-central-1:113810520231:certificate/84463049-4dd2-4ba4-a463-
b602bc3400ce
◦ Test-aws.polargrizzly.com (expired for 103 days)

• aws:acm:ca-central-1:113810520231:certificate/260ebaaf-ef49-4d35-a5d7-
88992e8e14fc
◦ *.polargrizzly.com (expired for 162 days)

It is recommended to ensure that the configurations attached to SSL certificates used by
TunnelBear are up-to-date. It needs to be guaranteed that a process or policy is in place
to notify system operations that a certificate is close to its expiry date. Automation of the
renewal process could be considered in order to maintain only valid SSL certificates in
the production environment.

TB-08-013 AWS: Insecure TLS Configuration Used (Medium)

While analyzing the configuration attached to the CloudFront and certificate concepts
adopted by TunnelBear, it was found that the current configuration relies on insecure
defaults. These are, in particular, vulnerable to numerous attacks, especially as
TunnelBear has several distributions relying on the deemed insecure TLSv 1.0.

Excerpt from the CloudFront configuration:

Distributions using TLSv 1.0:
arn:aws:cloudfront::113810520231:distribution/E28VTN2Q8UHW4A
arn:aws:cloudfront::113810520231:distribution/E3QY63UHI7SHAH
arn:aws:cloudfront::113810520231:distribution/EKA4U3XSAMAHC
arn:aws:cloudfront::113810520231:distribution/E6W2H9L3N2O2H
arn:aws:cloudfront::113810520231:distribution/E14LNUC77M87XI

Distributions configured to use HTTP-only:
arn:aws:cloudfront::113810520231:distribution/E28VTN2Q8UHW4A
arn:aws:cloudfront::113810520231:distribution/E3QY63UHI7SHAH
arn:aws:cloudfront::113810520231:distribution/EKA4U3XSAMAHC
arn:aws:cloudfront::113810520231:distribution/E6W2H9L3N2O2H
arn:aws:cloudfront::113810520231:distribution/E14LNUC77M87XI

Distributions missing configuration for HTTPS:
arn:aws:cloudfront::113810520231:distribution/E3QY63UHI7SHAH
arn:aws:cloudfront::113810520231:distribution/E2R3JO3YVE0Q6J
arn:aws:cloudfront::113810520231:distribution/E3T45YE1X0GLV1

It is recommended to review the configuration attached to the specified distributions and
ensure that the current configuration is not relying on insecure defaults.

Cure53, Berlin · 11/12/20 19/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-08-014 AWS: DynamoDB encryption relies on AWS-owned keys (Medium)

While analyzing the configuration used for the DynamoDB, it was found that the current
encryption schema used by TunnelBear for their DynamoDB tables relies on KMS. This
is a sound security practice, except for the fact that the current configuration relies on
KMS with AWS-owned keys. In order to ensure a robust encryption scheme TunnelBear
should consider changing the configuration to CMKs instead. This will foster having full
control over the encryption process for the data.

In order to ensure integrity for the server-side encryption, it is recommended to migrate
from AWS-managed keys to customer master keys3. This will enhance the data security
aspect of the stored information in the affected tables. Switching from AWS-owned CMK
to customer-managed CMK can be done through AWS Key Management Service.

Note: A list of keys was provided in the original version of the report and later removed
upon request by the client.

TB-08-015 AWS: Mutable ECR repositories (Info)

While analyzing the configuration attached to the ECR used by TunnelBear, Cure53
found that mutability is permitted on numerous ECR repositories. When the “MUTABLE”
flag is set, the repositories tag can be overwritten or modified. In turn, this h could
introduce Time-Of-Check and Time-Of-Use issues that could be leveraged by an
attacker to gain an initial foothold or establish a pivoting point for post-exploitation
activities.

In order to increase the overall defense-in-depth concepts attached to ECR, it is
recommended to further investigate the current configuration. Mitigating potential attack
vectors that can be leveraged with mutable repositories is highly encouraged.

Note: A list of repositories was provided in the original version of the report and later
removed upon request by the client.

TB-08-016 AWS: Insecure configuration on metadata instance (Medium)

An analysis of the configuration attached to EC2 instances used by TunnelBear
demonstrated that the current configuration has the instance metadata endpoint
enabled. If an attacker was able to reach the metadata endpoint through a Server-Side-
Request-Forgery or a similar attack, the metadata layer would provide them with
privileged information that can be queried from this endpoint.

3 https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/client-server-side.html

Cure53, Berlin · 11/12/20 20/28

https://cure53.de/
https://docs.aws.amazon.com/dynamodb-encryption-client/latest/devguide/client-server-side.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Since this attack vector is commonly used, AWS has developed additional protection
against approaches targeting the metadata service. The IMDSv24 server protects the
instances from SSRF attacks by implementing a token that can only be obtained by
making a specific request using the HTTP PUT requests.

Affected Instances:

arn:aws:ec2:us-east-1:113810520231:instance/i-68e968db
arn:aws:ec2:ca-central-1:113810520231:instance/i-0ae8b71ec2ec69c80
arn:aws:ec2:ca-central-1:113810520231:instance/i-0ea89d9692d5300d6
arn:aws:ec2:ca-central-1:113810520231:instance/i-02617375f6296cf48
arn:aws:ec2:ca-central-1:113810520231:instance/i-00a09b9e80b6a8a80
arn:aws:ec2:ca-central-1:113810520231:instance/i-0c6fd980b2ff35b5f
arn:aws:ec2:ca-central-1:113810520231:instance/i-0d0e5849c00c89827
arn:aws:ec2:ca-central-1:113810520231:instance/i-05cbabab75943b697

In order to improve the overall security posture and adhere to defense-in-depth concepts
recommended for the AWS infrastructure, TunnelBear should enable and configure the
new and improved metadata service instance.

TB-08-017 AWS: Key-rotation process missing in IAM (Medium)

The IAM configuration used by TunnelBear has neither active policy nor process in place
for facilitating automated access key rotation. It was observed that several accounts with
attached keys have not been used for an extended period of time and should, therefore,
be marked for deletion. Furthermore, Cure53 observed several access keys that were
more than 300 days-old. This behavior - in itself - should not be regarded as a security
issue but rather as a lack of sanitation on the overall configuration.

In order to minimize the risk of unwanted access due to leaked access keys, a key
rotation policy should be implemented. AWS recommends to rotate access keys after
180 days in order to decrease the likelihood of accidental exposure, as well as to protect
one’s AWS resources against unauthorized access.

Note: A list of accounts was provided in the original version of the report and later
removed upon request by the client.

4 https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html

Cure53, Berlin · 11/12/20 21/28

https://cure53.de/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/configuring-instance-metadata-service.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TB-08-018 AWS: Stale and unused objects/roles in IAM (Info)

While analyzing the IAM configuration used by TunnelBear, it was found that numerous
objects and roles have either never been used or have not been used for a long time.
Legacy roles and objects should be deleted from the AWS organization in order to
prevent potential misconfigurations that could result in unauthorized access or overly
permissive reachability of production resources.

It is recommended to regularly perform IAM housekeeping in order to ensure that stale
accounts and roles are removed in a timely manner from the AWS organization. This
process should be adopted and performed with a designated schedule, so as to protect
the production environment from accidental exposure, as well as to safeguard all AWS
resources in the context of possible misconfigurations leading to unauthorized access.

Note: A list of objects/roles was provided in the original version of the report and later
removed upon request by the client.

Cure53, Berlin · 11/12/20 22/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
After forty days on the scope in October 2020, nine members of the testing team can
confirm that the examined TunnelBear compound makes a fairly good impression with
regard to security. The project targeted a vast scope, including the TunnelBear clients,
applications, browser extensions, frontend part of the public sites, project infrastructure
and connected or underlying internal services. Across these broad scope areas, only five
exploitable vulnerabilities were detected by Cure53 members. Crucially, none of the
issues posed Critical danger for TunnelBear, strongly pointing to the fact that the
TunnelBear team aptly avoids and actively prevents the majority of key risk vectors.
Since only one High-severity bug could be confirmed, Cure53 must underline the clearly
stable state of the tested scope items.

As positive results should be embraced for further growth, it is also important to account
for the remaining weaknesses. In this context, the array of nineteen findings shows that
the project still has room for more targeting hardening in certain areas. This also relates
to the lower-priority issues that were unveiled, mostly in connection to flaws that had no
significant level of exploitability on their own, but could ultimately be leveraged in
sophisticated attacks. Such items should not be disregarded, especially within the
advised forward-thinking security models.

Through a temporal lens enabled by long-term cooperation between Cure53 and
TunnelBear, the testing team can ascertain the undeniable growth of the complex.
Specifically, this project marks the eighth instance of the TunnelBear being subjected to
external scrutiny from the Cure53 team. It is quite clear that the higher number of
findings can be directly linked with the sheer size and complexity of the TunnelBear
compound. Given its breadth, the absence of highly-rated issues is a great achievement.
As such, this project's results also underscore the benefits of continuous engagement
with external security examinations as the working mechanism towards reducing flaws.

Next, the report will take on a more granular approach to subsequent WPs and their
contents, as well as spotted patterns and problems. This is envisioned as more focused
and specific advice for teams that engage with a given area on a daily basis. Starting
with WP1, which gathered impressions pertinent to the TunnelBear client apps, the
Android branch was evaluated as making a really good impression. No serious issues
could be observed, even though the app was investigated in terms of fitting into the
Android’s ecosystem and handling communication with the Android’s platform API.

The related attack surface is composed of two exported activities, one exported service
(protected with permissions) and four exported broadcast receivers (one of them is
protected with permissions). It was investigated if and how the application is receiving

Cure53, Berlin · 11/12/20 23/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

data through registered custom schemes, data URLs, extra strings or parcelable objects.
Serious issues are seemingly averted in this area, meaning that typical local attack
scenarios, e.g. by malicious applications, do not pose risks for TunnelBear here.

In addition, the storage encryption was examined, which was implemented with the help
of the Android Keystore feature. However, it was found that this approach is not
consistently followed and data is stored in plain-text in some shared preferences files
and a database (see TB-08-006). It would be helpful to harden the app in some attack
scenarios where data can be obtained more easily, for instance by adding an extra layer
of security to protect user-privacy. Moreover, Cure53 examined whether the application
processes files outside the protected data folder or reads data from files with universal
access, but no such locations were spotted outside of the designated folders.

Staying with WP1 targets, it was found that the app sends and receives data via
Android’s broadcast functionality for communication with the TunnelBear widget. First, it
was checked whether these data can be intercepted by a sniffer app. Due to the fact that
the broadcasts are sent in explicit form and remain in the context of the app, no sensitive
data sent by the sendBroadcast() function could be received. Second, it was checked if
data can be sent to the broadcast receivers, which could influence the limit or other
states of the app.

Compared to the last Android audits, more checks have been added to the TunnelBear
app. These checks both eliminate a lot of crashes and help mitigate the risk of putting
the app into undefined or unwanted states. It is recommended to invest further into user-
privacy through leveraging the FLAG_SECURE (see TB-08-003). It can be said that the
Android app makes a very good impression and has solidly implemented security
mechanisms. Adding encryption to all shared preference files and databases would
increase the difficulty and, possibly, deter some attackers.

The examined Windows client also makes a solid impression regarding implemented
defense mechanisms. One of the main investigations of the file and folder permissions
set during installation confirmed that only administrative users are able to change files
inside the installation directory from the TunnelBear client. This holds up even if the
location from the installation is outside the Program Files folder, which reduces heavily
privilege escalation attacks. Additionally, Cure53 checked whether other files outside the
installation directory are used by the TunnelBear.Maintenance.exe service, which runs
with SYSTEM user. It has been verified that only files from the installation directory and
from the Windows folder are used, preventing access from normal users.

Cure53 looked into whether the app could be disclosing sensitive data to third-parties,
e.g. via DNS queries within an established VPN connection or in writing data to publicly

Cure53, Berlin · 11/12/20 24/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

readable log files. However, no such behavior could be detected. The connected API
endpoints were examined and held well to scrutiny. The implemented rate-limiting
mechanism uses the email address as an indicator that the endpoint receives from the
affected request. This allows an attacker to lock out other users from the platform by
preventing them from logging into the web app and into the clients (two different
endpoints are affected, see TB-08-001). To succeed, an attacker would need a user's
email address, so the severity level of this problem has been reduced.

Moving on to macOS, the most critical types of issues here would pertain to privilege
escalations. The macOS client uses a helper daemon for implementing privileged
actions to change firewall rules, read logs or launch the openvpn binary. In previous
tests issues in the TunnelBear daemon allowed for privilege escalation, including
bypasses to proposed fixes, yet this is no longer the case. Even though the auditToken
is properly verified, the exposed XPC functions were analyzed for race-conditions and to
see if the XPC would be resilient if the auditToken layer failed.

Cure53 only has some minor recommendations here, as documented in TB-08-008.
OpenVPN is started by the daemon as root and exposes a management interface via a
unix socket. Non-root users can use this socket to talk to OpenVPN and this counts as
an additional attack surface. The protocol itself fends off easy attacks, but the necessity
of maintaining this interface could be questioned. The iOS client also suffered from
problems in the past and these were re-evaluated for regressions. The usage of crypto
algorithms was reviewed and it was found that the app encrypts diagnostics upon a user
request and sends them over to TunnelBear. These logs are encrypted using a
combination of RSA public key cryptography and AES symmetric cipher, however this is
done in an insecure way susceptible to known plain-text attacks highlighted in TB-08-
019.

Regarding browser extensions examined in WP2, the manifest.json configuration was
audited. Checked items included making sure content scripts were not exposed to non-
TunnelBear domains, unnecessary web accessible resources were not accessible to
normal web pages, CSP was not overly lax and unnecessary permissions were not
requested for users. No flaws were identified here. Furthermore, the content scripts were
examined to similarly good results. The URLs which could influence the state of the
proxy were not found and, in connection to proxy settings, Cure53 confirmed that the
PAC script is leakage-proof (e.g. in terms of IP leaks and DNS leaks).

Further among WP2 tasks was checking how the script reacts to other web extensions
taking control over the proxy settings of browsers, as well as its function of disabling
WebRTC tracking. Once again, those areas were free from findings. Rounding up the
scope, a more general extension security check was performed to cover XSS, API

Cure53, Berlin · 11/12/20 25/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

usage and token management. All in all, the TunnelBear browser extensions are stable
and benefit from a good security premise.

The VPN infrastructure has been covered in WP3 with a buckshot approach that
included host discovery, content discovery, nmap scanning, and so forth. Nothing of note
emerged from any of the exposed domains. Reverse-proxy attacks with a main focus on
request smuggling also did not yield any negative results. It is safe to say that the public
configuration appears alright and quite well-tested at this point. Leakage and negligent
misconfigurations have been eradicated.

The TunnelBear FilterPods examined in WP4 is an application built internally to block
malicious domains. Since it's not available to TunnelBear users as of now, Cure53 had
limited information around its functioning or documentation. All in all, the provided
functionality is not expansive and fairly straightforward, while having the services
implemented in Go provides good security out of the box. However, TB-08-010 shows
that these services should not be reachable by regular VPN users, so there is a notable
lack of network separation. Thus, any user within the VPN that knows the IP can access
these services. Because the services provided by FilterPods require no authorization,
anyone can benefit from complete access. Additionally, TB-08-007 shows an XSS
vulnerability due to innerHTML being used insecurely. The overall impact here is
unclear: the role FilterPods in the larger scheme is unknown, even if no further issues
regarding untrusted user-input were spotted.

Regarding the FilterPods backend implementation, the code has a consistently high
quality. Untrusted user-input was handled correctly and manual SQL query constructions
were not only avoided when possible, but also properly handled when necessary.
Interactions with the filesystem were handled correctly, thus mitigating any risks
regarding file disclosure or arbitrary file-write. Given the context, it was checked if any
functionality can be abused to carry out SSRF attacks, but all requests are constructed
in a secure manner. Further, no header injections into crafted requests stemmed from
this Cure53 examination. Authentication mechanism was also judged as safe and sound.

Looking at the TunnelBear backend in WP5, Cure53 checked if permissions of the S3
bucket responsible for storing users’ GDPR data export were configured properly. It was
also checked if the settings of Mailgun and relevant mail delivery functions are secure.
As non-HTTPS links are used in the mail body, this could allow malicious MitM actors to
steal the link and access user-exported data (TB-08-009). This work package also
covered multiple backend applications with a focus laid on auditing the controller code
connected to all reachable routes. There are multiple authentication mechanisms, so
attention was given to deep dives and audits of JTW, OTP, cookies and token checks.
Especially the /console routes were studied in great depth to make sure all endpoints are

Cure53, Berlin · 11/12/20 26/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

protected. The console endpoints were also audited to exclude previously reported blind
XSS flaws. The generated templates look quite well, with the exception of TB-08-011
which has a very low severity and suggests a slight coding mistake. There are
indications of regular testing done by Cure53 resulting in quite some hardening and new
vulnerabilities being tough to find. This is of course a positive result and underlines a
comprehensive mixture of external and internal work leading to reduced attack surface.

As for WP6, meaning impressions regarding the TunnelBear fronted and public sites, the
focus was placed on possible ACL implementation flaws. Simultaneously, possible
leaking of potentially sensitive information and parsing issues were also addressed
extensively. Cure53 also investigated the functionality for the presence of XSS attacks
and similar input-manipulation issues. One of the key aspects is that the testers did not
reveal any issues linked to the ACL at the allocated time despite intensive and dedicated
searches for compromise pathways. The Cure53 team noted that endpoints clearly
determine what can be done by the user and verifies whether certain actions are
available for the user prior to the final acceptance of input. Strengths also entail the lack
of issues connected with various types of injection attacks, which could compromise the
server-side parts of the platform. Besides, despite extensive searches and very good
coverage from the Cure53 testers, no noteworthy findings to report in this area.

Finally, the TunnelBear AWS infrastructure review and audit contained in WP7 have also
indicated some security-relevant progress. The configuration review phase of this audit
resulted in the discovery of eight miscellaneous security flaws, yet the overall risk
attached to these flaws should be considered as rather limited. The AWS configuration
adopted by TunnelBear shows signs of rapid expansion, as especially evident from
tickets attached to the current IAM configuration. Access controls and authorization
schemas leveraged by the current configuration could benefit from some additional work
in order to ensure that old and unused objects are removed. Furthermore, TunnelBear
could capitalize on implementing automated procedures that notify system operations of
potential unused and legacy configurations attached to the current IAM concepts. In
order to further strengthen the overall security posture and privacy aspects of running a
VPN service, it is recommended to ensure encryption at rest wherever possible. The
current KMS implementation could be improved to solely rely on customer-managed
keys, which would ensure that TunnelBear would be the single point of truth holding all
the encryption constructs. Finally, Terraform modules and their attached repositories
which were audited as a part of this engagement left a sound impression.

To conclude, it is quite clear that the High-scoring flaw should be fixed urgently. In
addition, Cure53 would like to underline that fixing and resolving all tickets connected
with general weaknesses should also be seen as crucial moving forward at this stage of
the already praiseworthy state of security. Evading minor risks systematically translates

Cure53, Berlin · 11/12/20 27/28

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

to accomplishing better and better security milestones. It should be noted that even
issues that seem minor at first sight tend to accumulate, potentially leading to new attack
chains being formed. In conclusion, the results of this autumn 2020 assessment of the
infrastructure and perimeter of the TunnelBear project, with a strong focus on the client
applications and browser extensions, are indicative of a reasonably stable security
posture. The targets have mostly proven robust against the various attacks that Cure53
attempted to execute against them.

All in all, not many exploitable issues were spotted, and the absence of Critical findings
points to a good result achieved by the TunnelBear complex in this October 2020
assignment overall. This is an excellent foundation on which future investments into the
project can be built. Cure53 sees the TunnelBear applications as being on the right track
towards the main goal of delivering a secure foundation within their operations and
customer services.

Cure53 would like to thank Rodrigue Hajjar, Bràné Petrovic, Arun Tomar, Jared Krause
and everyone else from the TunnelBear team for their amazing project coordination,
support and assistance, both before and during this assignment.

Cure53, Berlin · 11/12/20 28/28

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report TunnelBear VPN & Software 10.2020
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	TB-08-001 API: Rate-limiting results in user-lockout (Medium)
	TB-08-007 FilterPods: Use of innerHTML leads to XSS in block page (Low)
	TB-08-010 FilterPods: Missing network restrictions allow access (High)
	TB-08-011 Web: Arbitrary redirect via Core2 route (Low)
	TB-08-019 Crypto: Known plain-text attack on sendLogs in AES (Medium)

	Miscellaneous Issues
	TB-08-002 Web: HTML injection in notification email via team name (Info)
	TB-08-003 Android: Secure flag missing on views (Info)
	TB-08-004 AWS: No KMS keys for SSE in SQS queues (Info)
	TB-08-005 Web: Error messages reveal internal information (Info)
	TB-08-006 Android: Unencrypted shared preferences and database (Info)
	TB-08-008 macOS: Hardening the Privileged Helper (Info)
	TB-08-009 Web: No HTTPS for data export link in emails (Low)
	TB-08-012 AWS: Expired ACM certificates (Info)
	TB-08-013 AWS: Insecure TLS Configuration Used (Medium)
	TB-08-014 AWS: DynamoDB encryption relies on AWS-owned keys (Medium)
	TB-08-015 AWS: Mutable ECR repositories (Info)
	TB-08-016 AWS: Insecure configuration on metadata instance (Medium)
	TB-08-017 AWS: Key-rotation process missing in IAM (Medium)
	TB-08-018 AWS: Stale and unused objects/roles in IAM (Info)

	Conclusions

