
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Security-Review Report TiKV 02.2020
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Krein, MSc. D. Weißer, H. Hippert, BSc. J. Hector

Index
Introduction

Scope

Test Methodology

Phase 1: General security posture checks

Phase 2: Manual code auditing

Phase 1: General security posture checks

Application/Service/Project Specifics

Language Specifics

External Libraries & Frameworks

Configuration Concerns

Access Control

Logging/Monitoring

Unit/Regression and Fuzz-Testing

Documentation

Organization/Team/Infrastructure Specifics

Security Contact

Security Fix Handling

Bug Bounty

Bug Tracking & Review Process

Evaluating the Overall Posture

Phase 2: Manual code auditing & pentesting

TLS Certificates/Handling

Miscellaneous Issues

TIK-01-001 SCA: Security vulnerabilities in outdated library versions (Info)

Conclusions & Verdict

Cure53, Berlin · 03/05/20 1/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“TiKV is an open-source, distributed, and transactional key-value database. Unlike other
traditional NoSQL systems, TiKV not only provides classical key-value APIs, but also
transactional APIs with ACID compliance. Built in Rust and powered by Raft, TiKV was
originally created to complement TiDB, a distributed HTAP database compatible with the
MySQL protocol.”

From https://github.com/tikv/tikv

This report documents the findings of a security assessment of the TiKV complex. The
project was carried out by Cure53 in February 2020 and entailed a broad look at the
maturity levels of security found on the TiKV software and surrounding scope, inclusive
of a penetration test and a code audit.

It should be noted that the project was commissioned and funded by CNCF as a typical
phase of the CNCF project graduation process. This assessment took place in the
frames of long-term and well-established cooperation between Cure53 and CNCF. Five
testers examined the scope in February 2020, namely in calendar weeks CW7 and
CW8; the invested work amounted to a total of eighteen person-days.

After starting the project in a timely fashion, Cure53 effectively inspected the TiKV
complex in terms of security processes, response and infrastructure. To best structure
the work in relation to the objectives, the work was carried out in several phases. During
Phase 1, Cure53 focused on general security posture checks, while Phase 2 was
dedicated to manual code auditing. The latter was aimed at finding implementation-
related issues that can lead to security bugs. The findings from each of the phases are
recounted in respective chapters of this report.

Phase 1 notably yielded a rather high number of issues and impressions. On the
contrary, Phase 2 was much less fruitful as regards discoveries, meaning that fewer
findings stem from the manual code review parts of the audit. This is also because of the
fact that the majority of time was invested into the posture review and a much shorter
chunk of the budget was spent on code audits.

Over the duration of this engagement, the Cure53 team worked closely with the TiKV
team, remaining connected with those in-house on a dedicated, private channel on the
TiKV Slack workspace. The communications were smooth and the TiKV team was
helpful in answering all of the Cure53’s questions comprehensively.

In the following sections, the report will first shed light on the scope and key test
parameters. Next, all findings will be discussed in dedicated chapters for each of the two

Cure53, Berlin · 03/05/20 2/15

https://cure53.de/
https://github.com/tikv/tikv
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

phases, starting with Phase 1. After that, the report will discuss one finding from the
code review phase, which is essentially a general weakness of lower severity. Finally,
the report will close with broader conclusions about this 2020 project. Cure53 elaborates
on the general impressions and issues a verdict on the TiKV project on the basis of the
testing team’s observations and collected evidence. Tailored hardening
recommendations pertinent to the TiKV code, infrastructure and surroundings are also
incorporated into the final section.

Scope
• TiKV 4.0.0-alpha

◦ https://github.com/tikv/tikv/releases
▪ Commit: bd94da3107ad4d515458068b124d8b107ebac1e6

◦ A detailed scope document was shared with Cure53 by TiKV
◦ A test server setup was made available for Cure53 by TiKV
◦ Cure53 was given access to relevant documentation material by the TiKV Team

Test Methodology
The following paragraphs describe the metrics and methodologies used to evaluate the
security posture of the TiKV project and codebase. In addition, it includes results for
individual areas of the project’s security properties that were either selected by Cure53
or singled out by other involved parties as needing a closer inspection.

As with previous tests for CNCF, this assignment was also divided into two phases. The
general security posture and maturity of the audited code base, TiKV, has been
examined in Phase 1. The usage of external frameworks is audited, security constraints
for TiKV configurations were examined and the documentation had been deeply studied
in order to get a general idea of security awareness at TiKV. This was followed with
research on how security reports and vulnerabilities are handled and how much the
entire standpoint towards a healthily secure infrastructure is taken as a serious matter.
The latter phase covered actual tests and audits against the TiKV’s codebase, with the
actual code quality and its hardening being judged.

Phase 1: General security posture checks

As mentioned earlier, Phase 1 enumerates general qualities of the audited project. Here,
a meta-level perspective on the general security posture is reached by providing details
about the language specifics, configurational pitfalls and general documentation. An
additional view on how TiKV handles vulnerability reports and how the disclosure
process works is provided as well. A perception rooted in the maturity of TiKV is given,

Cure53, Berlin · 03/05/20 3/15

https://cure53.de/
https://github.com/tikv/tikv/releases
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

solely on a meta-level. Actual impressions linked to the code quality relate to Phase 2 of
the audit process.

Phase 2: Manual code auditing

For this component, Cure53 performed a small-scale code review and attempted to
identify security-relevant areas of the project’s codebase and inspect them for flaws that
are usually present in distributed database systems. This is an addition to the previous
maturity analysis and supplies a more detailed perspective on the project’s
implementation when it comes to security-relevant portion of the code. Still, this Phase
was limited by the budget and cannot be seen as complete without a large-scale code
review with in-depth analysis of the multiple parts forming the project’s scope. As such,
the goal was not to reach an extensive coverage but to gain an impression about the
overall quality of TiKV and determine which parts of the project's scope deserve
thorough audits in the future.

Later chapters in this report will also elaborate on what was being inspected, why and
with what implications for the TiKV software complex.

Phase 1: General security posture checks
This Phase is meant to provide a more detailed overview of the TiKV project’s security
properties that are seen as somewhat separate from both the code and the TiKV
software. The first few subsections of the posture audit focus on more abstract
components of a specific project instead of judging the code quality itself. Later
subsections look at elements that are linked more strongly to the organizational and
team aspect of TiKV. In addition to the items presented below, the Cure53 team also
focused on the following tasks to be able to conduct a cross-comparative analysis of all
observations.

• The documentation was examined to understand all provided functionality and
acquire examples of how a real-world deployment of TiKV looks like.

• The network topology and connected parts of the overall architecture were
examined. This also included consideration of relevant runtime- and
environment-specifications that are necessary to run TiKV.

• The main control flow of the TiKV application was followed and the main
structure of the codebase has been analyzed.

• High-level code audits have been conducted. This was necessary to get a quick
impression of the overall style and to reach an understanding of which areas are
interesting for a more deep-dive approach in Phase 2 of the audit.

Cure53, Berlin · 03/05/20 4/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Normally, past vulnerability reports in TiKV would have been checked out to spot
interesting areas that suffered in the past. However, TiKV never received a
vulnerability report.

• Concluding on the steps above, the project’s maturity was evaluated; specific
questions about the software were compiled from a general catalogue according
to individual applicability.

Application/Service/Project Specifics

In this section, Cure53 will describe the areas that were inspected for having insight on
the application-specific aspects that lead to a good security posture. These include
choice of programming language, selection and oversight of external third-party libraries,
as well as other technical aspects like logging, monitoring, test coverage and access
control.

Language Specifics

Programming languages can provide functions that pose an inherent security risk and
their use is either deprecated or discouraged. For example, strcpy() in C has led to many
security issues in the past and should be avoided altogether. Another example would be
the manual construction of SQL queries versus the usage of prepared statements. The
choice of language and enforcing the usage of proper API functions are therefore crucial
for the overall security of the project.

TiKV is written in Rust, which is a language with built-in memory management that can
be both safe and unsafe depending on how it is used. It has proven to be a good choice
for programmers that do not want to worry about dangling pointers or Use-After-Free
vulnerabilities. The TiKV’s development originally started with Go - another programming
language with a good track record of keeping applications mostly free from memory
safety issues. However, constraints with Go’s garbage collection and unsatisfactory
bindings to the C language, the switch ultimately has been made to Rust.

Consequently, depending on how one chooses to write Rust code, as either safe or
unsafe, it plays a big role on how defensively written the code has to be. It is also
important to mention that TiKV solely makes use of Rust Nightly versions and thus uses
features that are not yet enabled for the stable branch. Generally, TiKV’s code makes a
solid impression. Source code is sufficiently commented. Test-cases are separated from
the rest of the runtime. Different components are independently packaged. Deep code
nesting is avoided by early error handling. Since TiKV makes use of low-level unsafe
code patterns, it is necessary to implement sufficient bounds and access checks. Here,
TiKV uses assertions that are present in the release version as well and, thus, makes

Cure53, Berlin · 03/05/20 5/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

sure that program flow terminates early. At the time of testing, Cure53 did not manage to
spot an issue with the unsafe parts of TiKV.

External Libraries & Frameworks

While external libraries and frameworks can also contain vulnerabilities, it is nonetheless
beneficial to rely on sophisticated libraries instead of reinventing the wheel with every
project. This is especially true for cryptographic implementations, since those are known
to be prone to errors.

TiKV makes heavy use of external libraries and other server components, therefore
avoiding reimplementation of already existing solutions. The framework uses Rust’s
dependency manager called Cargo1 to keep track of and manage all its dependencies.

The TiKV project is currently not using any kind of tracking (or security tracking) for
external third-party dependencies. Running the Cargo-integrated tool cargo-audit2

revealed multiple issues going back as far back as September 2018. This includes
dependencies which are no longer actively maintained and, therefore, pose a
substantiated concern in terms of security risk since issues will likely go unfixed or
unnoticed and take a very long time to get addressed. Furthermore, multiple packages
have been identified that contain active security issues, which have been patched and
for which updates are available, leading to the conclusion that patch management is a
key area which must be improved for further development of the project. This issue is
described in more detail in TIK-01-001.

Further investigation revealed that the cargo-audit plugin was once integrated into the CI
process but has since been disabled because a specific package could not be updated
and generated constant notifications. After the package had finally been updated, the
team forgot to enable the audit functionality again, leaving the project without checks or
protection as regards security issues.

Configuration Concerns

Complex and adaptable software systems usually have many variable options which can
be configured accordingly to the actually deployed application necessities. While this is a
very flexible approach, it also leaves immense room for mistakes. As such, it often
creates the need for additional and detailed documentation, in particular when it comes
to security.

In terms of security, TiKV provides the means to configure TLS for the connections
between the individual TiKV nodes. Due to the requirement of having valid certificates, it

1 https://blog.rust-lang.org/2016/05/05/cargo-pillars.html
2 https://blog.rust-lang.org/inside-rust/2019/10/03/Keeping-secure-with-cargo-audit-0.9.html

Cure53, Berlin · 03/05/20 6/15

https://cure53.de/
https://blog.rust-lang.org/inside-rust/2019/10/03/Keeping-secure-with-cargo-audit-0.9.html
https://blog.rust-lang.org/2016/05/05/cargo-pillars.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

is hard to provide this feature by default. However, the documentation on the website on
how TLS needs to be configured is fairly simple and straightforward and, as such, should
be considered by everyone that uses TiKV across untrusted networks.

At the time of writing, on-disk encryption of data was not available and had a ‘work in
progress’ status which can be tracked through the GitHub Issue 3680. In one of the
ticket comments, it was mentioned that there may be problems regarding the log entries,
which may contain some data. This should definitely be considered during the
development of the feature. Once this feature is available on all releases, turning it on by
default should be considered to add an additional layer of security to the stored data.

While auditing various code parts, it was discovered that the status server exposes two
debug endpoints reachable through HTTP. These endpoints may leak sensitive
information and it is recommended to extend the security configuration section, so as to
mention this as a side-effect of enabling the status server. Overall, TiKV does not
provide much room for misconfigurations that have a severe impact on the security.

Access Control

Whenever an application needs to perform a privileged action, it is crucial that an access
control model is in place to ensure that appropriate permissions are present. Further, if
the application provides an external interface for interaction purposes, some form of
separation and access control may be required.

TiKV does not implement any sort of security model and has no AAA (Authentication,
Authorization, Accounting) functionality and does not provide any method to limit access
to the existing databases through user-accounts, roles or client certificates.

Instead of having to secure the custom interfaces or monitoring ports, TiKV relies on the
features offered by Kubernetes and the permissions defined in the local Kubernetes
environment. Thus, permissions can be managed by the cluster administration via the
means provided by Kubernetes.

If Kubernetes is not in use, it uses Docker Swarms RBAC, resource and network
separation to achieve access control goals.

Logging/Monitoring

Having a good logging/monitoring system in place allows developers and users to
identify potential issues more easily or get an idea of what is going wrong. It can also
provide security-relevant information, for example when a verification of a signature fails.
Consequently, having such a system in place has a positive influence on the project.

Cure53, Berlin · 03/05/20 7/15

https://cure53.de/
https://github.com/tikv/tikv/issues/3680
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

TiKV builds its logging mechanism on top of Rust’s slog crate. Slog’s extensibility allows
for easy implementation of a standard logging interface that can be triggered with Rust’s
default macros. Its functionality is centralized within a separate package called tikv_util
and implements both formatting and file logging that is written to depend on the log level.
A simple command-line switch allows you to specify where logs end up.

Monitoring itself is handled through Prometheus and Grafana, where Prometheus stores
monitoring and performance data and while Grafana displays them. There are two
interfaces one can use. First, there is an HTTP interface to return monitoring data about
PD components such as information about load balancing or internal data such as
cluster details and capacity levels. Generally, this acts as an interface for keep-alive type
data. The metrics interface, on the other hand, exposes performance data ranging from
garbage collection to number of failed commands. This data can be directly fed to
Prometheus that by itself contains a useful feature set such as an AlertManager that
additionally can forward notifications via Mail or SMS. Altogether, TiKV utilizes a modern
software stack for logging and monitoring that leaves no real room for complaints.

Unit/Regression and Fuzz-Testing

While tests are essential for any project, their importance grows with the scale of the
endeavor. Especially for large-scale compounds, testing ensures that functionality is not
broken by code changes. Further, it generally facilitates the premise where features
function the way they are supposed to. Regression tests also help guarantee that
previously disclosed vulnerabilities do not get reintroduced into the codebase. Testing is
therefore essential for the overall security of the project.

TiKV uses Cargo as a universal project tool as is the standard in Rust projects. Tests are
split into test modules in the respective code files and a larger section for integration
tests which reside in a separate directory. This follows the best practices for unit testing
under rust, as can be found here3. Test runs are integrated into the projects Makefile and
run in an automated fashion in TiKVs CI environment.

TiKV integrates multiple different fuzzing libraries to test their project extensively, namely
LLVMs libfuzzer, AFL and Googles Honggfuzz. However, the tests do not run in an
automated pipeline and are currently run sporadically in a manual fashion. To strengthen
the projects security posture, it is recommended to reintegrate the tests into an
automated CI task, running them at least in a monthly rhythm. The TiKV team plans to
add the fuzz testing back to their regular, planned testing schedule.

3 https://doc.rust-lang.org/book/ch11-01-writing-tests.html

Cure53, Berlin · 03/05/20 8/15

https://cure53.de/
https://doc.rust-lang.org/book/ch11-01-writing-tests.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Documentation

Good documentation contributes greatly to the overall state of the project. It can ease
the workflow and ensure final quality of the code. For example, having a coding
guideline which is strictly enforced during the patch review process ensures that the
code is readable and can be easily understood by a spectrum of developers. Following
good conventions can also reduce the risk of introducing bugs and vulnerabilities to the
code.

Overall, the TiKV project leaves a good impression regarding the documentation aspect.
Note that during the period of this review, the online documentation contained a small
notification that there is currently a refactoring taking place. Thus, the state of the
documentation, compared to the outline given here, may have changed. However, TiKV
does a good job of providing documentation that helps users and developers get started.
A general docs section provides information about features and the architecture of the
project. Further, different aspects for general users are well-documented, for example
the deployment, configuration, monitoring and scaling processes are all described in
their dedicated sections. A very positive impression leaves the ‘Deep Dive’ section,
which provides a more in-depth explanation of various components which tremendously
eases the process of new developers or contributors that are just getting started with the
project.

In addition, the website provides a dedicated section which goes into little detail of how
to become a contributor and provides references to various documentations contained in
the repository. There, information about formatting code comments and the deployed
style guide is provided which provides a good foundation for consistent and readable
code throughout the project. The repository also contains a more detailed description
about contributing with a rough flow of the contribution process outlined.

Although the overall impression is very good, there is a minor recommendation for
improvement in regards to the documentation that is worth considering. Currently, the
“Secure Config” section contains information on how to report security issues. This may
be rather hard to find and should be more easily reachable from the main website. For
example, the “Community” drop down could include a reference to the vulnerability
disclosure documentation, to ensure security researchers can responsibly disclose
potential security issues.

Cure53, Berlin · 03/05/20 9/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Organization/Team/Infrastructure Specifics

This section will describe the areas Cure53 looked at to find out about the security
qualities of the TiKV project that cannot be linked to the code and software but rather
encompass handling of incidents. As such, it tackles the level of preparedness for critical
bug reports within the TiKV development team. In addition, Cure53 also investigated the
degree of community involvement, i.e. through the use of bug bounty programs. While a
good level of code quality is paramount for a good security posture, the processes and
implementations around it can also make a difference in the final assessment of the
security posture.

Security Contact

To ensure a secure and responsible disclosure of security vulnerabilities, it is important
to have a dedicated point of contact. This person/team should be known, meaning that
all necessary information such as an email address and preferably also encryption keys
of that contact should be communicated appropriately.

The MAINTAINERS.md4 file lists email addresses of project maintainers that can be
contacted to report vulnerabilities. However, the document omits important details, such
as the respective PGP keys and an outline of the disclosure process. The guideline on
where to report security issues is quite hidden as it is part of the document that also
explains how to set up certificates in TiKV5. This is clearly not the appropriate place to
present this kind of information. Instead, it is advised to put all details related to reporting
and disclosing security issues in a dedicated SECURITY.md in the project's repository.

Security Fix Handling

When fixing vulnerabilities in a public repository, it should not be obvious that a particular
commit addresses a security issue. Moreover, the commit message should not give a
detailed explanation of the issue. This would allow an attacker to construct an exploit
based on the patch and the provided commit message prior to the public disclosure of
the vulnerability. This means that there is a window of opportunity for attackers between
public disclosure and wide-spread patching or updating of vulnerable systems.
Additionally, as part of the public disclosure process, a system should be in place to
notify users about fixed vulnerabilities.

At this point in time, it cannot be evaluated how security fixes are handled and how they
are disclosed. This is because there are no public vulnerability reports, no CVEs and
none of the commits mentions that a security issue was fixed.

4 https://github.com/tikv/tikv/blob/master/MAINTAINERS.md
5 https://tikv.org/docs/3.0/tasks/configure/security/#reporting-vulnerabilities

Cure53, Berlin · 03/05/20 10/15

https://cure53.de/
https://tikv.org/docs/3.0/tasks/configure/security/#reporting-vulnerabilities
https://github.com/tikv/tikv/blob/master/MAINTAINERS.md
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Bug Bounty

Having a bug bounty program acts as a great incentive in rewarding researchers and
getting them interested in projects. Especially for large and complex projects that require
a lot of time to get familiar with the codebase, bug bounties work on the basis of the
potential reward for efforts.

The TiKV project does not have a bug bounty program at present, however this should
not be strictly viewed in a negative way. This is because bug bounty programs require
additional resources and management, which are not always a given for all projects.
However, if resources become available, establishing a bug bounty program for TiKV
should be considered. It is believed that such a program could provide a lot of value to
the project.

Bug Tracking & Review Process

A system for tracking bug reports or issues is essential for prioritizing and delegating
work. Additionally, having a review process ensures that no unintentional code, possibly
malicious code, is introduced into the codebase. This makes good tracking and review
into two core characteristics of a healthy codebase.

In TiKV, bugs which are not security related are handled via Github's issue tracker.
There is a small guideline6 on what to include in bug reports and an issue template
exists as well7. However, there is room to improve in regards to visibility of those links as
they are not easy to find. The guideline is not linked anywhere on the TiKV website and
the template was only found in the security documentation.

Users can submit their own contributions to the TiKV project via pull requests on Github.
The workflow for adding contributions is explained in detail in the project's
CONTRIBUTING.md which is considered suitable for open source projects. Submissions
are reviewed by two TiKV maintainers in order to prevent the submission of malicious or
dysfunctional code.

6 https://github.com/tikv/tikv/blob/master/.github/ISSUE_TEMPLATE/bug-report.md
7 https://github.com/tikv/tikv/issues/new?template=bug-report.md

Cure53, Berlin · 03/05/20 11/15

https://cure53.de/
https://github.com/tikv/tikv/issues/new?template=bug-report.md
https://github.com/tikv/tikv/blob/master/.github/ISSUE_TEMPLATE/bug-report.md
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Evaluating the Overall Posture

Since TiKV is still a relatively young project, it is hard to judge its security posture in all
aspects. A few parts of the posture audit were found inapplicable. For example, how
TiKV handles vulnerability reports and disclosure processes will remain to be seen in the
future. Also, things like implementation of access-control are outsourced to software like
Kubernetes or Docker where the permissions have to be defined through RBAC and
additional network segmentation.

Still, the code audits gave Cure53 the impression that TiKV is on a good path and that
potential concerns about the project’s maturity might be misplaced. The decision to use
Rust as a base language helps a lot. Usage of unsafe code parts is rather limited, as
such, the number of potential memory-safety issues is drastically reduced. Although the
documentation is well-written and helps a lot with getting up to speed with several
components of TiKV, concerns about correct and secure deployments arose. Cure53
hopes that the upcoming rewrite of the documentation will help in this regard and provide
more insight into areas that can create pitfalls inside the configuration.

Phase 2: Manual code auditing & pentesting
This section comments on the code auditing coverage within areas of special interest
and documents the steps undertaken during the second phase of the audit against the
TiKV software complex.

• TiKV database encryption feature was evaluated and was found to use the
standard RocksDB encryption feature. However, at the moment only a bitwise
XOR is implemented as the feature is not yet production-ready and is to be
replaced with an AES implementation in the future.

• The codebase features a large number of TODO blocks, which according to the
development team have not been properly tracked or addressed so far. Those
issues will now be evaluated and added to the Github issue tracker of the project.

• Handling of environment variables has been analyzed and produced no findings.
• TiKV’s SecurityManager code has been analyzed and is responsible for the

setup of the TLS configuration as well as the database encryption. No issues
have been spotted.

• The code was analyzed for security critical debug code in production parts
without any results.

• SST and metadata handling, as well as checksum verification, were analyzed.
No immediate issues have been spotted. However, the code trail spans multiple
projects and multiple programming languages and is rather complex, so it could
not be audited in depth.

Cure53, Berlin · 03/05/20 12/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• The connection between the sample TiKV Go client and the server has been
fuzzed on gRPC level to see how stable the protocol is handled, but no
unintended behaviors or crashes were spotted.

• Use-cases of the unsafe statements in combination with buffer copy operations
and length checks were audited. No issues were found in the given time. Two
instances in the code seemed a bit risky at first but, upon closer inspection, they
turned out to be safe and did not pose a risk.

• The status server component was checked in regard to the exposed HTTP
endpoints. One of two debug endpoints (/debug/pprof/heap) could potentially
lead to leaking sensitive heap information. However, this information is collected
by Prometheus and used for their profiling.

TLS Certificates/Handling

The TiKV project supports the use of TLS to establish secure sessions for
communication. The overall implementation used for handling TLS and certificates
throughout the project signifies standard components made available by the OpenSSL
bindings into the Rust language. The OpenSSL package is used by TiKV to offer TLS
functions throughout the implementation. A configuration option was found to disable
proper hostname validation, which has been added to the configuration section of this
document. However, no insecure standard values are in use.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

TIK-01-001 SCA: Security vulnerabilities in outdated library versions (Info)

Analyzing the libraries in use revealed that multiple ones do not leverage the most
recent versions available. Some libraries are no longer actively maintained and pose a
threat to the future security posture of the project and should either be exchanged for
different libraries or have to be maintained by the TiKV project group. In addition,
multiple libraries contain known security vulnerabilities for which patches and updates
are available.

Steps to Reproduce:
1. Install the cargo-audit package
2. cargo install cargo-audit --features=fix
3. Change to the code directory of TiKV and run

Cure53, Berlin · 03/05/20 13/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

4. cargo-audit audit
5. Results will be shown on the command line
6. Alternatively run make pre-audit && make audit

It is recommended to upgrade the necessary libraries and formulate a long-term plan on
how to handle outdated and no longer maintained external dependencies. As the project
Makefile contains the audit option, it should be resolved why it was not used or how it
needs to be integrated into the CI build process.

Conclusions & Verdict
This assessment of the TiKV scope, curated by CNCF and executed by Cure53 in early
2020, concludes with generally positive results. The security posture of the TiKV has
been positively evaluated by the involved five members of the Cure53 team. Similarly,
high-quality premise was noted for the code base and documentation, therefore the state
of the TiKV software stack can be summarized as mature.

To give some context, this investigation belongs to a series of high-level assessments
conducted by Cure53 for projects selected by CNCF-selected. However, it stands in
contrast to classic code audits and pentests due to its meta-level perspective and
forward-looking foci. With such a framing of the project’s premise, Cure53 comments
mostly on the general security qualities (Phase 1) with minimal emphasis on individual
findings (Phase 2). This was also reflected in the allocation of budget.

Starting with enumerating some of the positive aspects and findings, Cure53 would like
to underline that the TiKV project makes a sound and strong appearance at the meta-
level as regards code quality, coding patterns, style coherence and general structure.
This is also reinforced by the fact that static code analysis in the later parts of the audit
phase did not reveal significant problems. In Cure53’s expert opinion, automated testing
or vulnerability scanning will likely not yield more findings. However, deep-dives into
specific code areas are definitely necessary.

Next up, fuzzing the gRPC API revealed a solid foundation. The software stack seemed
stable and Cure53 did not run into any sort of unexpected behaviors or sudden crashes.
The chosen language, Rust, does its job of providing a sound codebase which suffers
from no obvious memory safety issues. The number of unsafe code blocks is kept at a
minimum level. Those marked as unsafe are implemented in a defensive manner and
include thorough error checks. Finally, logging and monitoring is well-handled by
supplying the necessary endpoints for Prometheus. Pluggable Grafana instances can
additionally be fed with data to visualize any abnormalities.

Cure53, Berlin · 03/05/20 14/15

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

While the above conclusions point to stellar results, Cure53 also noticed some aspects
that could be improved or reflect minor inconsistencies that should be addressed. This
by no means overturns the above verdict but rather aims to present slight alterations that
could be made to strengthen the perceived high-level of maturity even further. First,
worth-highlighting is the fact that the TiKV’s codebase contains a fairly large number of
TODOs in the sources. This is generally a sign of incomplete functionalities and might
mean that it is perhaps too early to judge the maturity of TiKV holistically and
conclusively.

The Phase 1 of the project early on highlighted that “Unit/Regression and Fuzz-Testing”
is somewhat incomplete. Specifically, the implemented fuzzing tests are not properly run
or evaluated at the moment. This definitely requires attention. Additionally, the integrated
dependency scanner was disabled for convenience reasons as one dependency could
not be updated in the past. Sadly, this was later forgotten and never brought to the
optimal state. Essentially, this also led to the finding documented as TIK-01-001.

It is nevertheless vital to highlight that the team behind TiKV was very quick to
acknowledge the issues mentioned above (especially the disabled dependency scanner)
and was very thankful to have them pointed them out, promising to have them
addressed in the near future. Finally, while it is clear that resources are limited for the
management and rewarding of the issues being found by external community members,
the project would likely benefit from a bug bounty program. In other words, dedicating
financial means to such a mechanism can be advised.

In conclusion, TiKV should be seen as properly mature and delivering on its security
promises. This verdict mostly stems from the positive notes above and the overall good
code quality and documentation. In light of the findings from this February 2020
assessment, Cure53 can recommend TiKV for public deployment, especially when
integrated into a containerized solution via Kubernetes and Prometheus for additional
monitoring.

Cure53 would like to thank Calvin Weng, Yongquan Ren, Jay Lee, Neil Shen, Nick
Cameron, Wink Yao and Qiang Zhou from the TiKV team as well as Chris Aniszczyk of
The Linux Foundation, for their excellent project coordination, support and assistance,
both before and during this assignment. Special gratitude also needs to be extended to
The Linux Foundation for sponsoring this project.

Cure53, Berlin · 03/05/20 15/15

https://cure53.de/
mailto:mario@cure53.de

	Security-Review Report TiKV 02.2020
	Index
	Introduction
	Scope
	Test Methodology
	Phase 1: General security posture checks
	Phase 2: Manual code auditing

	Phase 1: General security posture checks
	Application/Service/Project Specifics
	Language Specifics
	External Libraries & Frameworks
	Configuration Concerns
	Access Control
	Logging/Monitoring
	Unit/Regression and Fuzz-Testing
	Documentation

	Organization/Team/Infrastructure Specifics
	Security Contact
	Security Fix Handling
	Bug Bounty
	Bug Tracking & Review Process

	Evaluating the Overall Posture

	Phase 2: Manual code auditing & pentesting
	TLS Certificates/Handling

	Miscellaneous Issues
	TIK-01-001 SCA: Security vulnerabilities in outdated library versions (Info)

	Conclusions & Verdict

