
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest- & Audit-Report Swarm 03.-04.2021
Cure53, Dr.-Ing. M. Heiderich, M. Wege, Dipl.-Inf. G. Kopf & other team members

Index
Introduction

Scope

Threat Focus

Concerns and Assets

Attack vectors

Identified Vulnerabilities

SWA-01-001 WP4: Signature replay in setCustomHardDepositTimeout (Medium)

SWA-01-002 WP4: Gas waste amplification (Low)

SWA-01-003 WP4: Unsafe integer arithmetic (Low)

SWA-01-004 WP2: Missing maximum file size check inside client API (Low)

SWA-01-005 WP2: Usage of ioutil.ReadAll in client API can result in DoS (Low)

SWA-01-006 WP2: Spamming address books with HIVE protocol (Medium)

SWA-01-008 WP2: Injection of corrupted underlay into P2P handshake (Medium)

SWA-01-009 WP2: Blocklist bypass via bogus ACK in P2P handshake (Medium)

SWA-01-010 WP2: Unbounded recursion in file joiner (Medium)

Miscellaneous Issues

SWA-01-007 WP2: Unauthenticated local plain-text storage of node state (Low)

SWA-01-011 WP2: Cryptographic material in-memory footprint (Medium)

SWA-01-012 WP2: Potential directory traversal in download API (Medium)

Conclusions

Cure53, Berlin · 04/27/21 1/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Swarm is a decentralised data storage and distribution technology, ready to power the
next generation of censorship resistant unstoppable serverless apps. It is the
complement to blockchain based smart contracts originally envisaged by the Ethereum
cryptocurrency and provides the mass storage piece in the Dapp building puzzle. Swarm
is the hard drive of the world computer.”

From https://docs.ethswarm.org/docs/

This report describes the results of a penetration test and source code audit against the
Ethereum Swarm software compound, encompassing various pieces of software and
smart contracts. Carried out by Cure53 in spring 2021, the project identified twelve
security-relevant risks on the scope delineated by the Swarm team.

To give some context, the work was requested by the Swarm Association in February
2021 and then promptly scheduled. Cure53, with a team consisting of six senior testers,
conducted the assignment in March and April, namely in a timeframe between CW13
and CW16 of 2021. A total of thirty-three days were invested to reach the coverage
expected for this project by six members responsible for the project’s preparation,
execution and finalization.

For optimal progress, coverage and tracking of issues, the work was split into four
separate work packages (WPs). These read as follows:

• WP1: Threat-Modeling Exercise to determine the exact scope for WP2-WP4
• WP2: Penetration Tests & Source Code Audits against Ethswarm bee
• WP3: Penetration Tests & Delta Code Audits against bee-clef/clef
• WP4: Smart Contract Audits against Swarm-related Solidity files

White-box methods were applied in the project. Cure53 was given access to all relevant
material, including source code behind various components and detailed documentation.
Most importantly, several meetings and mini-workshops with the Swarm team were held
to facilitate comprehensive understanding of the objectives and technical traits of the
objects subject to this review.

All preparations were done in mid-to-late March 2021, namely in CW11 and CW12, so
Cure53 could have a smooth start and a firm grasp of the scope before the actual threat-
modeling and following source-code auditing and pentesting work started.
Communications during the test were done using a Mattermost channel that all
participating Cure53 team members joined.

Cure53, Berlin · 04/27/21 2/23

https://cure53.de/
https://docs.ethswarm.org/docs/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Together with the Swarm team, they could discuss the test and audit-related issues. The
communications were very smooth and productive; no noteworthy roadblocks were
encountered during the test.

Given the complex scope, a lot of questions were asked and promptly answered by the
Swarm maintainer team. The in-house team generally did a great job helping Cure53 to
navigate through this exercise. Cure53 further furnished frequent status updates about
the test and the related findings. Although live-reporting was not requested, the Swarm
team was regularly kept up to date about the spotted findings and security concerns
when such appeared.

The Cure53 team managed to get good coverage over the WP1-4 scope items, despite
several parts of the complex still being ‘work-in-progress’ and quite in flux. As noted, the
test and audit team managed to spot a total of twelve findings, nine of which were
classified to be security vulnerabilities and three to be general weaknesses with lower
exploitation potential. It needs to be noted that no findings of Critical or even High
severity were spotted, which means that the majority of issues were concluded to
represent flaws ith Medium, Low or Informational scores.

The absence of serious problems is generally a good sign. However, it should not be
seen as a conclusive verdict given that the software compound is still quite young and,
as mentioned, continues to have many moving parts, alongside some unsolved design
and architectural choices. At the same time, because the work took place so early in the
development process, it can be stated that the Swarm team exposes a high level of
security and privacy awareness.

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the structure and contents of the subsequent WPs. After that, a
dedicated chapter will present the results of the threat-modeling sessions preceding this
test and audit. This is envisioned as a means to showcase clearly under what security
privacy assumptions the examinations have taken place.

Next, all findings will be discussed in grouped vulnerability and miscellaneous
categories, then following a chronological order in each group. Alongside technical
descriptions, PoC and mitigation advice are supplied when applicable. Finally, the report
will close with broader conclusions about this April 2021 project. Cure53 elaborates on
the general impressions and reiterates the verdict based on the testing team’s
observations and collected evidence. Tailored hardening recommendations for the
Ethereum Swarm complex are also incorporated into the final section.

Cure53, Berlin · 04/27/21 3/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration Tests, Reviews & Audits against Swarm

◦ WP1: Threat-Modeling Exercise to determine exact scope of work for WP2
◦ WP2: Penetration Tests & Source Code Audits against Swarm bee
◦ WP3: Penetration Tests & Delta Code Audits against Swarm bee-clef/clef
◦ WP4: Smart Contract Audits against Swarm-related Swarm Solidity files

• Sources were made available for auditing
◦ https://github.com/ethersphere/bee/tree/v0.5.3
◦ Out of scope

▪ cmd/bee-file
▪ cmd/bee-join
▪ cmd/bee-split
▪ pkg/pss
▪ pkg/collection
▪ pkg/recovery

◦ https://github.com/ethersphere/bee-clef/tree/v0.4.9
◦ https://github.com/ethereum/go-ethereum/tree/master/cmd/clef
◦ https://github.com/ethersphere/swap-swear-and-swindle/tree/v0.4.0
◦ https://github.com/ethersphere/storage-incentives

▪ Commit: 2a19961ff8dccd017e64d7299d4b5416eb176f49
• Servers made available for testing

◦ Nodes
▪ bee-0.gateway.do.ethswarm.org
▪ bee-1.gateway.do.ethswarm.org
▪ bee-2.gateway.do.ethswarm.org
▪ bee-3.gateway.do.ethswarm.org
▪ bee-4.gateway.do.ethswarm.org

◦ Gateway
▪ https://gateway.do.ethswarm.org

Cure53, Berlin · 04/27/21 4/23

https://cure53.de/
http://gateway.do.ethswarm.org/
http://gateway.do.ethswarm.org/
http://gateway.do.ethswarm.org/
http://gateway.do.ethswarm.org/
http://gateway.do.ethswarm.org/
http://gateway.do.ethswarm.org/
https://github.com/ethersphere/storage-incentives/tree/master
https://github.com/ethersphere/swap-swear-and-swindle/tree/v0.4.0
https://github.com/ethereum/go-ethereum/tree/master/cmd/clef
https://github.com/ethersphere/bee-clef/tree/v0.4.9
https://github.com/ethersphere/bee/tree/v0.5.3
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Threat Focus
The following paragraphs enumerate the evidence collected in relation to the threat
modeling exercise. The main points behind that stem from several online discussions
and collation of ideas with the development team, with an emphasis on the protectable
assets and the consequentially known and unknown threats to the current
implementation of the Swarm system.

Concerns and Assets
• Node blackholing
• Invalidating plausible deniability
• Node profiteering

◦ Node thrashing
• Address mining
• Content censoring
• Protocol detection

◦ Information deduction
• Key management
• Leaked key material
• Automated signing
• Message misappropriation

◦ ANSI terminal escaping
◦ Rich formatting abuse

• Topology formation strategy
• Eclipse attacks

◦ Address spamming
• Published underlay addresses

◦ Leaking internal routing
◦ Leaking network configuration

• Logging handling
◦ Leaking personal information
◦ General anonymization
◦ Leaking root hashes
◦ Output escaping

• Liquidity provisioning
• API verification

◦ Debug API abuse
• File joining
• Harming users
• Balance draining

Cure53, Berlin · 04/27/21 5/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Content handling
◦ Junking content
◦ Content spamming
◦ Corrupting content
◦ Damaging content

• Game-theoretical aspects
◦ Incentivization
◦ Token sale
◦ Fairness
◦ Pricing
◦ Privacy
◦ Anonymity

• Content-addressed hashes
◦ Phishing websites
◦ Compromised Dapp
◦ Upload forcing

• Feeds
◦ Encryption coercion
◦ User interaction
◦ Write flooding
◦ Hash exposure
◦ Content extraction

To properly accommodate all the collected details from the initial knowledge gathering
phase, the auditors accounted for the following adversarial avenues.

Attack vectors
• Contract coding practices

◦ Arithmetic issues
◦ Reentrancy bugs
◦ Weak cryptography

▪ Misused primitives
◦ Unchecked external calls
◦ Frontrunning
◦ Cheque cashing denial
◦ Transactions replay
◦ Hard deposit bypassing

• Corrupt HIVE protocol
◦ Spam node address book

• Confused Kademlia routing
• Reward misappropriation

Cure53, Berlin · 04/27/21 6/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• CPU-bound DoS issues
◦ Cryptographic operations
◦ General computations

• Gas-based DoS issues
◦ Trick others into spending

• URL and path normalization
◦ Directory traversal

• Archive file uploading
• Cause billing events

◦ Drain client funds
• Disrupt file chunking
• Corrupt other protocols

◦ BZZ handshake
◦ Ping-pong
◦ Push/pull-sync

• Hash tree construction
◦ Create structural loops

• Node blacklisting
◦ Unsolicited chunk DoS

Cure53, Berlin · 04/27/21 7/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. SWA-01-001) for the purpose of facilitating any
future follow-up correspondence.

SWA-01-001 WP4: Signature replay in setCustomHardDepositTimeout (Medium)
While analyzing the smart contracts, it was found that the scheme for setting custom
hard deposit timeouts is susceptible to a signature replay attack.

Affected File:
contracts/ERC20SimpleSwap.sol

Affected Code:
 function setCustomHardDepositTimeout(

address beneficiary,
uint hardDepositTimeout,
bytes memory beneficiarySig

) public {
require(msg.sender == issuer, "not issuer");
require(

 beneficiary == recoverEIP712(customDecreaseTimeoutHash(
address(this), beneficiary, hardDepositTimeout), beneficiarySig),

 "invalid beneficiary signature"
);
hardDeposits[beneficiary].timeout = hardDepositTimeout;
emit HardDepositTimeoutChanged(beneficiary, hardDepositTimeout);

 }

It can be observed that the function cannot be invoked without providing a signature
created by the beneficiary. This is a sensible decision, as the beneficiary should have to
agree to reducing the hard deposit timeout. Otherwise, the issuer could arbitrarily reduce
the hard deposit timeout, then immediately reduce the hard deposit for the beneficiary
and, ultimately, break their implicit promise to reserve a hard deposit for the beneficiary.

It should, however, be noted that the beneficiary signature only covers the address of
the cheque book, the beneficiary address and the hard deposit timeout. In case the hard
deposit timeout is changed multiple times, the issuer could record the beneficiary
signatures and later reuse them.

Cure53, Berlin · 04/27/21 8/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As an example: assume that the issuer and beneficiary agree to set a low timeout of one
hour. The beneficiary signs this value and the issuer invokes
setCustomHardDepositTimeout. Later on, both parties agree that this timeout should be
increased to one day. Again, the beneficiary provides their signature and the issuer
invokes setCustomHardDepositTimeout. However, the issuer now has two signatures:
one for a timeout of an hour, one for a timeout of one day. The issuer can now invoke
setCustomHardDepositTimeout as they like, alternating the timeout between one hour
and one day without the consent of the beneficiary.

There are several ways to address this problem. One option would be to include
additional state into the smart contract for holding a per-beneficiary NONCE value. This
NONCE could be required to be included in the beneficiary signature. Each time a
beneficiary signature is verified, it could be incremented.

SWA-01-002 WP4: Gas waste amplification (Low)
While reviewing the overall SWAP incentivization scheme, the following observation was
made: Entering the system and obtaining a cheque-book is an operation that is not for
free. However, it requires at most a one-time investment of X. Assume an attacker wants
to disturb the system; in order to mount an efficient attack, a rational attacker could
argue that if the damage caused by their attack exceeds their original investment X, then
the attack is worthwhile.

Assume that the attacker now interacts with various peers, with each interaction
governed by the SWAP contract. The attacker issues cheques for large amounts to each
of the peers and then starts using their services. This incentivizes the peers to eventually
cash their cheques. However, the attacker meanwhile drains all funds from the cheque-
book contract, so that all cheques will bounce. One can observe that cashing a cheque
is also not an operation that is free. It will cost the respective beneficiary at least the
transaction costs Y. If the attacker can now arrange a situation where in the same block
multiple beneficiaries (say n) attempt to cash a bouncing cheque, the attacker causes an
overall n*Y. However, the attacker initially only invests the amount X for preparing the
attack. This means that an attacker could be able to amplify the damage caused by a
bouncing cheque by distributing it over multiple parties.

Affected File:
contracts/ERC20SimpleSwap.sol

Affected Code:
 function _cashChequeInternal(

address beneficiary,
address recipient,

Cure53, Berlin · 04/27/21 9/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

uint cumulativePayout,
uint callerPayout,
bytes memory issuerSig

) internal {
[...]

/* let the world know that the issuer has over-promised on
outstanding cheques */

if (requestPayout != totalPayout) {
 bounced = true;
 emit ChequeBounced();
}

The above code excerpt shows that a bouncing cheque does not lead to a reversion of
the contract. Furthermore, cheques that do not lead to a payout (or, rather, lead to a
payout of zero) are not necessarily reversed.

In order to address this problem, it is recommended to adjust the SWAP smart contract
so that it will revert when the payout amount of a cash operation is zero.

SWA-01-003 WP4: Unsafe integer arithmetic (Low)
While reviewing the smart contract implementations, it was found that there are a
number of places where unsafe integer arithmetic are used.

Affected File:
src/PriceOracle.sol

Affected Code:
function setPrice(uint256 _price) external {

 require(hasRole(PRICE_UPDATER_ROLE, msg.sender), "caller is not a price
updater");

 // if there was a last price, charge for the time since the last update
with the last price
 if(lastPrice != 0) {
 uint256 blocks = block.number - lastUpdatedBlock;
 postageStamp.increaseTotalOutPayment(lastPrice * blocks);
 }

It can be observed that the multiplication of lastPrice * blocks is not using safe integer
arithmetic and might overflow. Although this does not appear to be particularly likely as
high values for lastPrice and/or blocks would be required, it might be advisable to use
SafeMath1 here in order to reduce the attack surface.

1 https://docs.openzeppelin.com/contracts/2.x/api/math

Cure53, Berlin · 04/27/21 10/23

https://cure53.de/
https://docs.openzeppelin.com/contracts/2.x/api/math
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected File:
contracts/ERC20SimpleSwap.sol

Affected Code:

 function prepareDecreaseHardDeposit(address beneficiary, uint decreaseAmount)
public {

require(msg.sender == issuer, "SimpleSwap: not issuer");
HardDeposit storage hardDeposit = hardDeposits[beneficiary];
/* cannot decrease it by more than the deposit */
require(decreaseAmount <= hardDeposit.amount,

"hard deposit not sufficient");
// if hardDeposit.timeout was never set, apply defaultHardDepositTimeout
uint timeout = hardDeposit.timeout == 0 ? defaultHardDepositTimeout :

hardDeposit.timeout;
hardDeposit.canBeDecreasedAt = block.timestamp + timeout;
hardDeposit.decreaseAmount = decreaseAmount;
emit HardDepositDecreasePrepared(beneficiary, decreaseAmount);

 }

It can be observed that the addition block.timestamp + timeout is not using safe integer
arithmetic and might also overflow. Although this does not appear to be particularly likely
as a high value for timeout would be required, it might be advisable to use SafeMath
here as well, so as to reduce the attack surface.

SWA-01-004 WP2: Missing maximum file size check inside client API (Low)
During a source code review of the bee client API reachable over HTTP, the discovery
was made that no checks are in place to prevent a user from uploading very large files.
This could potentially cause a Denial-of-Service (DoS) situation when exhausting the
allocated storage limit of a bee node, for instance.

One can pertinently note that this issue has also been discussed with the customer
during the course of this security assessment; Swarm confirmed that no maximum file
size check is currently in place.

Affected File:
bee/pkg/api/file.go

Affected Code:
func (s *server) fileUploadHandler(w http.ResponseWriter, r *http.Request) {

[...]
}

Cure53, Berlin · 04/27/21 11/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to perform a maximum file size check within the function
fileUploadHandler() in order to avoid a potential DoS situation. This would prevent a
malicious user from disabling a bee node server, especially since the system may run
out of disk space when (numerous) excessively-sized files are uploaded.

SWA-01-005 WP2: Usage of ioutil.ReadAll in client API can result in DoS (Low)
During a source code review of the bee repository, it was spotted that various client API
handler routines are using ioutil.ReadAll for reading user-input transmitted as part of
HTTP requests within the body. The usage of ioutil.ReadAll is dangerous2 and can result
in a DoS situation as this function continues to read data into a buffer allocated on the
system heap until it has received EOF. A malicious user could leverage this behavior by
sending HTTP requests to a bee node in order to cause an out-of-memory situation.

Affected Files:
• bee/pkg/api/chunk.go
• bee/pkg/api/pin_chunks.go
• bee/pkg/api/pss.go
• bee/pkg/api/soc.go
• bee/pkg/api/tag.go

The following code snippet shows one example where ioutil.ReadAll is used to read
attacker-controlled input. The same pattern can be observed within all listed source code
files.

Affected Code:
func (s *server) chunkUploadHandler(w http.ResponseWriter, r *http.Request) {

[...]
data, err := ioutil.ReadAll(r.Body)
[...]

}

Using iotutil.ReadAll to process untrusted input is discouraged, as it allows malicious
users to cause DoS situations. In order to cap the amount of memory that a bee node is
using during processing of the HTTP requests, an alternative approach is to read into a
buffer using Golang’s bufio package3. This would effectively limit the internal buffer used
to store the parsed request4.

2 https://haisum.github.io/2017/09/11/golang-ioutil-readall/
3 https://golang.org/pkg/bufio
4 https://golang.org/pkg/bufio/#Scanner.Buffer

Cure53, Berlin · 04/27/21 12/23

https://cure53.de/
https://golang.org/pkg/bufio/#Scanner.Buffer
https://golang.org/pkg/bufio
https://haisum.github.io/2017/09/11/golang-ioutil-readall/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SWA-01-006 WP2: Spamming address books with HIVE protocol (Medium)
The HIVE protocol is used by bee nodes during bootstrapping and when joining the
Swarm network, so as to discover peers within the network. During a review of the HIVE
protocol implementation, it was noticed that a bee node has no limitations in terms of
incoming addresses being added to the address book through HIVE.

Affected File:
bee/pkg/hive/hive.go

Affected Code:
func (s *Service) peersHandler([...]) error {

[...]
var peersReq pb.Peers
if err := r.ReadMsgWithContext(ctx, &peersReq); err != nil {

_ = stream.Reset()
return fmt.Errorf("read requestPeers message: %w", err)

}
[...]
var peers []swarm.Address
for _, newPeer := range peersReq.Peers {

bzzAddress, err := bzz.ParseAddress(newPeer.Underlay,
newPeer.Overlay, newPeer.Signature, s.networkID)

if err != nil {
[...]
continue

}

err = s.addressBook.Put(bzzAddress.Overlay, *bzzAddress)
}
[...]

}

Addressing such spamming attacks is generally a challenging task. One obvious
approach is to rely on rate-limiting and reactive measures (such as purging invalid
addresses later on). Another generic approach is to rely on negative economic
incentivization. One could think about making the execution of attacks expensive enough
as a way to prevent them.

There are several possible approaches for making an operation expensive: one
approach here could be to couple it with a blockchain transaction. For instance, if
obtaining a valid bzzAddress is sufficiently expensive, such attacks would likely be less
frequent. However, it should be noted that there is a tradeoff between increasing the
costs for a legitimate user and increasing the costs for an attacker. Therefore, providing
a concrete recommendation on how to “correctly” address this issue is not possible.

Cure53, Berlin · 04/27/21 13/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SWA-01-008 WP2: Injection of corrupted underlay into P2P handshake (Medium)
While auditing libp2p and the handshake protocol, it was observed that the underlay
address is retrieved from the unsigned part of the SynAck structure (second packet
within the handshake), thereby being unprotected. An attacker could leverage this and
modify that part of the message without the client noticing during the initial handshake,
which would result in corrupting the underlay network information provided to the client.

Affected File:
bee/pkg/p2p/libp2p/internal/handshake/handshake.go

Affected Code:
func (s *Service) Handshake(ctx context.Context, stream p2p.Stream,
peerMultiaddr ma.Multiaddr, peerID libp2ppeer.ID) (i *Info, err error) {

[...]
observedUnderlay, err := ma.NewMultiaddrBytes(resp.Syn.ObservedUnderlay)
if err != nil {

return nil, ErrInvalidSyn
}
[...]

}

It is recommended not to retrieve the observed underlay information from the
unprotected part of the SynAck response message. A better approach would be to take
the observed underlay information from the already present fullRemoteMABytes
variable.

SWA-01-009 WP2: Blocklist bypass via bogus ACK in P2P handshake (Medium)
While auditing libp2p and the handshake protocol, it was noticed that the last message
within the handshake obtains the remoteBzzAddress from the initiator’s final ACK packet
(packet number 3 of the handshake protocol). Later on, the retrieved bzzAddress is used
to check whether the received address is within the node’s blocklist. A malicious user
could leverage this behavior and replay an ACK, for example extracted from the SynAck
packet (packet number 2 of the handshake protocol). This would have been transmitted
by the “server” side, allowing to bypass the check that verifies if the initiator is part of the
node’s blocklist.

Affected File:
bee/pkg/p2p/libp2p/libp2p.go

Affected Code:
func New([...]) (*Service, error) {

[...]

Cure53, Berlin · 04/27/21 14/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

// handshake
s.host.SetStreamHandlerMatch(id, matcher, func(stream network.Stream) {

i, err := s.handshakeService.Handle([...])
if err != nil {

s.logger.Debugf("handshake: handle %s: %v", peerID, err)
[...]
return

}

blocked, err := s.blocklist.Exists(i.BzzAddress.Overlay)
if err != nil {

s.logger.Debugf("blocklisting: exists %s: %v", peerID, err)
[...]
return

}

if blocked {
s.logger.Errorf("blocked connection from blocklisted peer

%s", peerID)
_ = handshakeStream.Reset()
_ = s.host.Network().ClosePeer(peerID)
return

}
[...]

}
[...]

}

Affected File:
bee/pkg/p2p/libp2p/internal/handshake/handshake.go

Affected Code:
func (s *Service) Handle([...]) (i *Info, err error) {

[...]
var ack pb.Ack
if err := r.ReadMsgWithContext(ctx, &ack); err != nil {

return nil, fmt.Errorf("read ack message: %w", err)
}

remoteBzzAddress, err := s.parseCheckAck(&ack)
if err != nil {

return nil, err
}

[...]

return &Info{
BzzAddress: remoteBzzAddress,

Cure53, Berlin · 04/27/21 15/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Light: ack.Light,
}, nil

}

In order to address the described issue, it is recommended to verify whether the peer
information within the ACK message in the protocol handshake corresponds to the
remote peer.

SWA-01-010 WP2: Unbounded recursion in file joiner (Medium)
While reviewing the file joiner implementation, it was found that the code allows for an
unbounded recursive call.

Affected File:
pkg/file/joiner/joiner.go

Affected Code:
func (j *joiner) readAtOffset(b, data []byte, cur, subTrieSize, off,
bufferOffset, bytesToRead int64, bytesRead *int64, eg *errgroup.Group) {
[...]

if subTrieSize <= int64(len(data)) {
 [...]
 return
 }

for cursor := 0; cursor < len(data); cursor += j.refLength {
 if bytesToRead == 0 {
 break
 }

[...]

 func(address swarm.Address, b []byte, cur, subTrieSize, off,
bufferOffset, bytesToRead int64) {

 eg.Go(func() error {
 ch, err := j.getter.Get(j.ctx,

storage.ModeGetRequest, address)
 if err != nil {
 return err
 }

 chunkData := ch.Data()[8:]
 subtrieSpan := int64(chunkToSpan(ch.Data()))
 j.readAtOffset(b, chunkData, cur, subtrieSpan, off,

bufferOffset, currentReadSize, bytesRead, eg)
 return nil
 })
 }(address, b, cur, subtrieSpan, off, bufferOffset, currentReadSize)

Cure53, Berlin · 04/27/21 16/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 bufferOffset += currentReadSize
 bytesToRead -= currentReadSize

It can be observed that the function readAtOffset is invoked recursively. The recursion
can be terminated if the conditions subTrieSize <= int64(len(data)) or bytesToRead == 0
hold true. However, the respective variables will not necessarily be decreased by the
recursive call: bytesToRead is only decremented after the call and subTrueSize is
controlled by the data from within the chunk. Therefore, an attacker might craft a
malicious chunk that (directly or indirectly) refers to itself. This would cause at least a
DoS issue, as the recursion would not terminate. As retrieving chunks from the network
can incur costs; this might also lead to spending an unforeseen amount of funds.

In order to address this problem, it is recommended to ensure that the traversed data
structure is indeed a tree. For preventing cycles, the implementation could keep a list of
the already traversed nodes. If a node to be traversed occurs on this list, the
implementation should signal an error condition.

Cure53, Berlin · 04/27/21 17/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

SWA-01-007 WP2: Unauthenticated local plain-text storage of node state (Low)
During a source code review of the bee package it was found that the state store of a
bee node, which uses the leveldb Go package5, is neither encrypted nor authenticated.
When an attacker obtains access to the local filesystem of a bee node, s/he is able to
read and potentially also change the content of the state storage without further notice
from the perspective of the application. Depending on which kind of data the application
persists to the state store (like e.g. blocklist information, etc.), this could have a severe
security impact on the user.

Affected Files:
bee/pkg/statestore/leveldb/leveldb.go

It is recommended to encrypt and authenticate the contents of databases to protect the
data from being tampered with by a malicious third-party. Symmetric encryption with a
secret key, hosted within a secure storage of the operating system like keychain for
macOS, provides confidentiality to the state store, whereas authentication using
message authentication codes (with a secret key from a secure store) provides integrity.
The GoLevelDB Encrypted Storage6 project adds data-at-rest encryption for leveldb.

SWA-01-011 WP2: Cryptographic material in-memory footprint (Medium)
It was found that sensitive cryptographic material, such as private keys, can be obtained
by a local attacker from the bee process memory. An attacker could potentially use
extracted sensitive data from the process memory to perform further attacks.

PoC:
The following demonstrates the steps needed to obtain private key material from a bee
node by using the dumpmem7 utility:

1. Connect to the bee node and open a bash shell
2. Run dumpmem for dumping the process memory of the “bee” process:

bee@bee-0:~$ /tmp/busybox-x86_64 ps

5 https://github.com/syndtr/goleveldb
6 https://github.com/tenta-browser/goleveldb-encrypted
7 https://github.com/muhzii/procmem-dump

Cure53, Berlin · 04/27/21 18/23

https://cure53.de/
https://github.com/muhzii/procmem-dump
https://github.com/tenta-browser/goleveldb-encrypted
https://github.com/syndtr/goleveldb
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

PID USER TIME COMMAND
 1 bee 27:02 bee start --config=.bee.yaml

bee@bee-0:~$ /tmp/dumpmem 1

3. The dumpmem tool will store the output within a file named procmem.dmp
4. Search for private key material within the obtained memory dump:

$ strings procmem.dmp | vim -
[...]
-----BEGIN RSA PRIVATE KEY-----
MIICXgIBAAKBgQDuLnQAI3mDgey3VBzWnB2L39JUU4txjeVE6myuDqkM/uGlfjb9
SjY1bIw4iA5sBBZzHi3z0h1YV8QPuxEbi4nW91IJm2gsvvZhIrCHS3l6afab4pZB
l2+XsDulrKBxKKtD1rGxlG4LjncdabFn9gvLZad2bSysqz/qTAUStTvqJQIDAQAB
AoGAGRzwwir7XvBOAy5tM/uV6e+Zf6anZzus1s1Y1ClbjbE6HXbnWWF/wbZGOpet
3Zm4vD6MXc7jpTLryzTQIvVdfQbRc6+MUVeLKwZatTXtdZrhu+Jk7hx0nTPy8Jcb
uJqFk541aEw+mMogY/xEcfbWd6IOkp+4xqjlFLBEDytgbIECQQDvH/E6nk+hgN4H
qzzVtxxr397vWrjrIgPbJpQvBsafG7b0dA4AFjwVbFLmQcj2PprIMmPcQrooz8vp
jy4SHEg1AkEA/v13/5M47K9vCxmb8QeD/asydfsgS5TeuNi8DoUBEmiSJwma7FXY
fFUtxuvL7XvjwjN5B30pNEbc6Iuyt7y4MQJBAIt21su4b3sjXNueLKH85Q+phy2U
fQtuUE9txblTu14q3N7gHRZB4ZMhFYyDy8CKrN2cPg/Fvyt0Xlp/DoCzjA0CQQDU
y2ptGsuSmgUtWj3NM9xuwYPm+Z/F84K6+ARYiZ6PYj013sovGKUFfYAqVXVlxtIX
qyUBnu3X9ps8ZfjLZO7BAkEAlT4R5Yl6cGhaJQYZHOde3JEMhNRcVFMO8dJDaFeo
f9Oeos0UUothgiDktdQHxdNEwLjQf7lJJBzV+5OtwswCWA==
-----END RSA PRIVATE KEY-----
[...]

It is recommended to protect sensitive cryptographic material in the memory by
leveraging frameworks such as memguard89. This will help eliminate the risk associated
with an attacker getting a hold of sensitive data structures.

8 https://github.com/awnumar/memguard
9 https://pkg.go.dev/github.com/awnumar/memguard

Cure53, Berlin · 04/27/21 19/23

https://cure53.de/
https://pkg.go.dev/github.com/awnumar/memguard
https://github.com/awnumar/memguard
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

SWA-01-012 WP2: Potential directory traversal in download API (Medium)
While reviewing the API implementation, it was found that the file download API possibly
contains a directory traversal issue.

Affected File:
pkg/api/file.go

Affected Code:
additionalHeaders := http.Header{
 "Content-Disposition": {fmt.Sprintf("inline; filename=\"%s\"",

metaData.Filename)},
 "Content-Type": {metaData.MimeType},
}

s.downloadHandler(w, r, e.Reference(), additionalHeaders, true)

It can be observed that the filename provided in the file’s metadata is directly returned in
the filename part of the Content-Disposition header. An attacker might, however, provide
file-names such as ../../../../etc/passwd or similar, which could subsequently be
accidentally used by client-code. In order to address this issue, it is recommended to
already filter file names in the API (e.g., by applying a function like basename).

Cure53, Berlin · 04/27/21 20/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
As noted in the Introduction, the Ethereum Swarm software compound, encompassing
various pieces of software and smart contracts, has been generally evaluated as well-
written and clearly documented. After spending thirty-three days on the scope in spring
2021, six senior testers from the Cure53 team conclude that the quality of the code is
good and, in particular, the Solidity parts seem to be quite strong in comparison to that of
similar applications seen in the wild.

At the same time, Cure53 must emphasize that the overall codebase seems to be in flux.
Certain parts are currently undergoing heavy revisions and need further auditing.
Therefore, the fact that twelve discoveries were made should be read in this context as
concurrently an early sign that more work is needed, and a good indicator in regard to
not exposing serious - Critical or High-ranking - flaws.

One of the key observations is that the concepts described in the Swarm book do not
always reflect the reality found in the codebase. This should be rectified and adapted.
Other already implemented concepts are ever-changing and will continue to have this
characteristic in the near future as their limitations have already become apparent. The
developers are clearly capable of adversarial thinking, though there are areas in the
codebase where the approach seems clouded.

The design and implementation overall left a positive impression. The product is rather
complex, as it is based on recent research ideas. Generally, it appears that the
developers are familiar with common security problems. However, given the research-
adjacent character of the solution, fluctuations in the design and implementations appear
to be frequent, which can in some cases lead to security issues.

The identified issues are often related to the application logic, in particular to handling
edge-cases and unexpected behavior of possibly (malicious) participants. “Generic”
security issues - like command injection problems, SQL injection and similar - were
clearly less prevalent. This highlights the developers’ good baseline security awareness.

Performing a full, in-depth review of the solution does not seem to be realistic at the
current state of development. First, there are areas that are still changing. Second, the
solution is large and consists of different individual components that would by
themselves already fill the scope for an entire assessment (e.g., libp2p). Therefore, the
assessment focused on identifying particular areas of interest, such as the unique and
custom aspects of the solution, including (but not limited to): game theoretic incentives,
smart contracts and binary tree data structures for storing information.

Cure53, Berlin · 04/27/21 21/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As already emphasized, the analyzed projects and its source code packages left a
positive impression and it is evident that the developers are aware of secure
programming, best practices and common flaws that are often made by developers
when writing Golang applications. The overall codebase and material were a bit
overwhelming at the beginning, due to the sheer size and vast complexity. It required a
longer run-up time to actually start getting deeper insights into some of the interesting
areas.

In terms of review focus, several areas were given the most attention. The libp2p
handshake protocol required prior establishment of a connection between two nodes
within Swarm. Some weaknesses within the handshake protocol were spotted, allowing
to inject bogus underlay information into the handshake (SWA-01-008) or to potentially
bypass a node’s blocklist (SWA-01-009). The HIVE protocol, used to exchange and
broadcast initial information to other bee nodes in order to bootstrap connectivity, was
also checked. As there is no rate-limiting in place, a malicious node could flood another
bee node’s address book (SWA-01-006).

Other review areas included the HTTP client API, used to upload and download files, as
well as some local attack vectors related to leveldb storage and the identification of
cryptographic material by a local attacker. The HTTP client API lacks a maximum file
size check when uploading files into Swarm (SWA-01-004) and uses some insecure
Golang routines, potentially allowing malicious users to cause a Denial-of-Service (SWA-
01-005). It has to be noted that, according to the client, the HTTP client API is under
heavy development (at the time of writing), and is subject to change in the near future.

It was found that local attackers are capable of identifying sensitive information from the
bee process, as data in memory is not sufficiently protected from such kinds of attacks
(SWA-01-011). The state store leveldb database is not being protected from local
attackers in terms of integrity and confidentiality, therefore making it possible for a local
attacker to tamper with data persisted within the leveldb file (SWA-01-007).

In terms of review coverage, some areas have only been reviewed in a cursory manner
and require additional time and resources. Among them, Kademlia is used to route
messages between bee nodes using overlay addressing. As already discussed with the
client towards the end of this review, it seems that the Kademlia implementation within
Swarm lacks some certain best practices, for example, it does not favor long-lived bee
nodes or short-lived nodes. A thorough review of the Kademlia implementation was not
possible as this area has been uncovered almost at the end of this review. As this
protocol plays a substantial role in Swarm, it is encouraged to deeply review its
implementation. It cannot be excluded that it hosts vulnerabilities that can be abused by
attackers to cause severe harm.

Cure53, Berlin · 04/27/21 22/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In summary, it can be said that a thorough review of all components of Swarm is simply
unrealistic within short time-frames of external engagements. Therefore, continuous
engagement in security is strongly advised to the Ethereum Swarm team moving
forward. Nevertheless, Cure53 can report reaching acceptable coverage on some
selected areas during this spring 2021 project, especially in connection to the libp2p
handshake protocol and the HTTP client API. In this context, not spotting any
Critical/High flaws is a good sign for the complex, even though the identified twelve
weaknesses should be tackled as soon as possible.

Cure53 would like to thank Rinke Hendriksen, Elad Nachmias, Črt Ahlin, Attila Gazsó,
Ivan Vandot and Ralph Pichler from the Ethereum Swarm team for their excellent project
coordination, support and assistance, both before and during this assignment.

Cure53, Berlin · 04/27/21 23/23

https://cure53.de/
mailto:mario@cure53.de

	Pentest- & Audit-Report Swarm 03.-04.2021
	Index
	Introduction
	Scope
	Threat Focus
	Concerns and Assets
	Attack vectors

	Identified Vulnerabilities
	SWA-01-001 WP4: Signature replay in setCustomHardDepositTimeout (Medium)
	SWA-01-002 WP4: Gas waste amplification (Low)
	SWA-01-003 WP4: Unsafe integer arithmetic (Low)
	SWA-01-004 WP2: Missing maximum file size check inside client API (Low)
	SWA-01-005 WP2: Usage of ioutil.ReadAll in client API can result in DoS (Low)
	SWA-01-006 WP2: Spamming address books with HIVE protocol (Medium)
	SWA-01-008 WP2: Injection of corrupted underlay into P2P handshake (Medium)
	SWA-01-009 WP2: Blocklist bypass via bogus ACK in P2P handshake (Medium)
	SWA-01-010 WP2: Unbounded recursion in file joiner (Medium)

	Miscellaneous Issues
	SWA-01-007 WP2: Unauthenticated local plain-text storage of node state (Low)
	SWA-01-011 WP2: Cryptographic material in-memory footprint (Medium)
	SWA-01-012 WP2: Potential directory traversal in download API (Medium)

	Conclusions

