
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Audit-Report RNP & Thunderbird Integration 08.2020
Cure53, Dr.-Ing. M. Heiderich, M. Wege, BSc. J. Hector, MSc. D. Weißer,
MSc. R. Peraglie, Dr. N. Kobeissi

Index

Introduction

Scope

Identified Vulnerabilities

RNP-01-001 WP1: Integer overflow due to expiration time of PGP v3 keys (Low)

RNP-01-004 WP1: Potential Integer underflow in partial_dst_write() (Low)

RNP-01-005 WP1: Literal packet parsing allows for Integer underflow (Low)

RNP-01-006 WP2: Evaluation of password strength insufficient (Low)

RNP-01-007 WP1: encrypt_secret_key() does not wipe keybuf from memory (Low)

RNP-01-012 WP1: Logic issue potentially leaves key material unlocked (Medium)

RNP-01-014 WP1: Key manipulation via uncertified Auto-Import (Medium)

Miscellaneous Issues

RNP-01-002 WP3: Automatic handling of autocrypt-gossip header (Info)

RNP-01-003 WP3: Possible race condition when reading from disk (Info)

RNP-01-008 WP3: Partially unencrypted email insufficiently detected (Low)

RNP-01-009 WP1: mem_dest_own_memory() callers do not check for NULL (Info)

RNP-01-010 WP1: Outdated and vulnerable Botan library version (Info)

RNP-01-011 WP1: Potential overflow in librepgp due to invalid size check (Low)

RNP-01-013 WP2: Forbidden cipher-suites/algorithms recommendations (Info)

Conclusions

Cure53, Berlin · 06/07/21 1/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“RNP is a set of OpenPGP (RFC4880) tools that works on Linux, *BSD and macOS as a
replacement of GnuPG. It is maintained by Ribose after being forked from NetPGP, itself
originally written for NetBSD.”

From https://www.rnpgp.com/software/rnp/

This report documents the results of a large-scale assessment of the RNP C++
OpenPGP implementation and its integration with the Thunderbird email client. Carried
out by Cure53 in 2020, the project entailed a broad-scope and multi-week examination.
It featured both a penetration test and an audit of the source code underpinning the RNP
C++ Open PGP complex. The focus was also solidly placed on how the community-
maintenance of Thunderbird plays into the general security of the integration. It is also
crucial to note that the project was requested by Mozilla and funded through the Mozilla
Open Source Support (MOSS) scheme.

As the project combines approaches, links entities and aspects, it was vital to craft an
appropriate work structure. The work was ultimately split into three work packages
(WPs) as a means to ascertain that various key objectives of stakeholders were being
met. In WP1, the testing team examined the RNP C++ OpenPGP library’s handling of
PGP messages and its broader logic. Next, WP2 zoomed in on the Thunderbird
integration of the RNP C++ library, with a strong focus on the cryptographic realm.
Finally, WP3 examined the state of web security within the Thunderbird integration of the
RNP C++ library.

Since all components in scope are available publicly as Open Source Software, a white-
box methodology was used. It needs to be noted that the scope was chosen very
carefully. For example, both the cryptography audits against the included Botan library,
as well as general Binary Fuzzing work were considered OOS. A key problem that
needed to be tackled from Mozilla’s point of view was whether Thunderbird integrates
the RNP library well in terms of security. In other words, Cure53 was to find out if
problems caused by the integration or the RNP-parts used by Thunderbird could signify
security problems, primarily in the context of PGP messaging and key management.

The project started on time and was specifically executed in mid-August 2020, in CW32
and CW33. It progressed efficiently and leveraged the skills and expertise of six senior
testers. The team members invested a total of forty days into the penetration testing and
auditing work. The communications for this project were done in a dedicated Matrix chat
channel, while the Element platform was used for the Cure53 and the developer teams
to gather data, plan and then execute this assignment. The teams were able to invite all
relevant personnel into this channel and the communications can be evaluated as

Cure53, Berlin · 06/07/21 2/26

https://cure53.de/
https://www.rnpgp.com/software/rnp/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

consistently fluent and productive, with the in-house team specifically being kept up-to-
date about the progress and emerging findings.

The examination yielded a total of fourteen findings, seven of which were considered to
be security vulnerabilities of varying severity levels, while the remainder are general
weaknesses with lower exploitation potential. It needs to be noted that none of the
findings reached Critical or even High severity scores, which is quite commendable.
While the highest severity ascribed to two individual findings stood at Medium, most
issues actually had limited impact.

In the following sections, the report will first shed light on the scope and key test
parameters, as well as briefly details on the WPs. Next, all findings will be discussed in a
chronological order alongside technical descriptions, as well as PoC and mitigation
advice when applicable. Finally, the report will close with broader conclusions about this
summer 2020 project. Cure53 elaborates on the general impressions and reiterates the
verdict based on the testing team’s observations and collected evidence. Tailored
hardening recommendations pertinent to the inspected parts of RNP, Thunderbird and
the integration of RNP into Thunderbird - especially as it relates to PGP messaging and
some peripheral tasks - are also incorporated into the final section.

Cure53, Berlin · 06/07/21 3/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration tests & audits against RNP & its Thunderbird 78.1 integration

◦ WP1: RNP C++ OpenPGP library’s handling of PGP messages & logic bugs
▪ https://github.com/rnpgp/rnp
▪ commit 650b3bce5bad75b64c7d3768d2df74a55740df15

◦ WP2: Thunderbird integration of RNP C++ library, focus on crypto
▪ http://ftp.mozilla.org/pub/thunderbird/candidates/78.1.0-candidates/build1/

◦ WP3: Thunderbird integration of RNP C++ library
▪ See above

Cure53, Berlin · 06/07/21 4/26

https://cure53.de/
http://ftp.mozilla.org/pub/thunderbird/candidates/78.1.0-candidates/build1/
https://github.com/rnpgp/rnp
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. RNP-01-001) for the purpose of facilitating any
future follow-up correspondence.

RNP-01-001 WP1: Integer overflow due to expiration time of PGP v3 keys (Low)

While auditing the RNP source code, it was discovered that the function
pgp_key_get_expiration() is potentially vulnerable against an Integer overflow for PGP
key versions below v4. The referred function obtains the validity time in days and
multiplies it by the value of 86400 in order to get the expiration time in seconds. The
multiplication of key->pkt.v3_days * 86400 can overflow and, thus, potentially return an
incorrect value.

Setting a validity time in days to, e.g., 49711, will result in an integer larger than
MAX_INT (4294967295), translating to an overflow. This is demonstrated below:

49711 * 86400 = 4295030400
4295030400 - 4294967295 (MAX_INT) = 63105

key->pkt.v3_days is defined as uint16_t which means it can store an Integer value of up
to 65,535. The native function rnp_key_get_expiration(), which in turn invokes
pgp_key_get_expiration(), gets invoked through the JavaScript layer via several function
calls, for example isKeyExpired() or addKeyAttributes().

Affected Files:
rnp/src/lib/pgp-key.cpp
comm/mail/extensions/openpgp/content/modules/RNP.jsm

Affected Code:

pgp-key.cpp:
uint32_t
pgp_key_get_expiration(const pgp_key_t *key)
{
 return (key->pkt.version >= 4) ? key->expiration : key->pkt.v3_days * 86400;
}

Cure53, Berlin · 06/07/21 5/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

RNP.jsm:
[...]
if (RNPLib.rnp_key_get_expiration(handle, key_expiration.address())) {
 throw new Error("rnp_key_get_expiration failed");
 }
 if (key_expiration.value > 0) {
 keyObj.expiryTime = keyObj.keyCreated + key_expiration.value;
 } else {
 keyObj.expiryTime = 0;
 }
 keyObj.expiry = EnigmailTime.getDateTime(keyObj.expiryTime, true, false);
[...]

As a result of this potential Integer overflow, it will set an incorrect value of
keyObj.expiryTime. Cure53 wants to point out that fixing this vulnerability should ensure
that the multiplication operation cannot overflow when the expiration time is calculated.

RNP-01-004 WP1: Potential Integer underflow in partial_dst_write() (Low)

During the audit of the RNP source code, it was discovered that the function
partial_dst_write() is potentially prone to an Integer overflow due to the declaration of
wrlen as signed integer. When wrlen is becoming negative, the code calling dst_write(),
wrlen will be cast to size_t, a big unsigned integer.

It has to be noted though that the vulnerable code path cannot be reached due to the
condition check, namely if len is greater than param->partlen - param->len.
Nevertheless, this issue is reported for the sake of completeness.

Affected File:
rnp/src/librepgp/stream-write.cpp

Affected Code:
static rnp_result_t
partial_dst_write(pgp_dest_t *dst, const void *buf, size_t len)
{
 pgp_dest_partial_param_t *param = (pgp_dest_partial_param_t *) dst->param;
 int wrlen;

 if (!param) {
 RNP_LOG("wrong param");
 return RNP_ERROR_BAD_PARAMETERS;
 }

 if (len > param->partlen - param->len) {
 /* we have full part - in block and in buf */
 wrlen = param->partlen - param->len;

Cure53, Berlin · 06/07/21 6/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 dst_write(param->writedst, ¶m->parthdr, 1);
 dst_write(param->writedst, param->part, param->len);
 dst_write(param->writedst, buf, wrlen);
[...]

Cure53 recommends to change the data-type of wrlen from “int” to “size_t” in order to
avoid the potential risk of an Integer underflow.

RNP-01-005 WP1: Literal packet parsing allows for Integer underflow (Low)

While auditing the provided sources for potential vulnerabilities, it was discovered that a
malicious user can set the packet length of a literal packet to an arbitrary length. This
results in an Integer underflow upon calculation of the size of the received data. The
calculated size is in turn used to ensure that read operations are not advancing beyond
the provided data. Due to the underflow, this can result in out-of-bound reads.

It was impossible to leverage this in a meaningful way during the assignment, which
explains the Low severity rating. Below is the code excerpt showing the vulnerability with
the relevant parts highlighted.

Affected File:
rnp/src/librepgp/stream-parse.cpp

Affected Code:
static bool get_pkt_len(uint8_t *hdr, size_t *pktlen)
{
[...]
 switch (hdr[0] & PGP_PTAG_OF_LENGTH_TYPE_MASK) {
 case PGP_PTAG_OLD_LEN_1:
 *pktlen = hdr[1];
 return true;
 case PGP_PTAG_OLD_LEN_2:
 *pktlen = read_uint16(&hdr[1]);
 return true;
 case PGP_PTAG_OLD_LEN_4:
 *pktlen = read_uint32(&hdr[1]);
 return true;
 default:
 return false;
 }
}
[...]

rnp_result_t init_literal_src(pgp_source_t *src, pgp_source_t *readsrc)
{
[...]

Cure53, Berlin · 06/07/21 7/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 /* Reading packet length/checking whether it is partial */
 if ((ret = init_packet_params(¶m->pkt))) {
 goto finish;
 }
[...]
 if (!param->pkt.indeterminate && !param->pkt.partial) {
 src->size = param->pkt.len - (1 + 1 + bt + 4);
 src->knownsize = 1;
 }
[...]

As can be seen, an arbitrary 32-bit value can be supplied by a malicious user. In the
init_literal_src() function, this value is used to calculate the size of a source. The
resulting size parameter is 64-bit in cardinality. When actually looking at the
disassembly, however, it shows that 64-bit arithmetic is performed with signed extension
of values.

Disassembly of arithmetic operations:
[...]
 0x000000000005209b <+1223>: mov rax,QWORD PTR [rbp-0x18]
 0x000000000005209f <+1227>: mov rdx,QWORD PTR [rax+0x20]
 0x00000000000520a3 <+1231>: movzx eax,BYTE PTR [rbp-0x1d]
 0x00000000000520a7 <+1235>: movzx eax,al
 0x00000000000520aa <+1238>: add eax,0x6
 0x00000000000520ad <+1241>: cdqe
 0x00000000000520af <+1243>: sub rdx,rax
[...]

In order to demonstrate the issue, the following Proof-of-Concept (PoC) PGP message
can be sent via mail.

PoC PGP Message:
-----BEGIN PGP MESSAGE-----

rARiCWhlbGxvLnR4dFx1TW9IZWxsbywgd29ybGQhCg==
=SXA7
-----END PGP MESSAGE-----

Upon receiving and opening the mail, the RNP library is called to parse the message.
Using GDB to observe the calculated size makes it possible to inspect the flaw.

GDB breakpoint inspection:
(gdb) p /x src->size
$47 = 0xfffffffffffffff5

Cure53, Berlin · 06/07/21 8/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Although it was not possible to trigger a memory corruption using this issue within the
time given for this assessment, it is nonetheless recommended to ensure that the parsed
size is reasonable and that the subtraction cannot result in a value below zero.

RNP-01-006 WP2: Evaluation of password strength insufficient (Low)

It was observed that the password strength evaluation function included in the
Thunderbird OpenPGP module is highly insufficient.

Affected File:
comm/mail/extensions/openpgp/content/modules/passwordCheck.jsm

Affected Code:
The entire file constitutes the affected code. The password strength algorithm suffers
from the following issues:

• Small “banlist”: A list of roughly 500 banned password items is provided in the
COMPLEXIFY_BANLIST variable, which largely has negligible impact on the
security of the password evaluation process.

• Insufficient logic: A password evaluation logic based on minimum characters
and the “banlist” above is employed. However, this logic meant that the
passwords “password123” and “harrypotter” (among others) were deemed
secure, despite being some of the most used passwords in the world1.

This functionality does not appear to currently be called from anywhere within the
extension, therefore there is no practical security impact. Nevertheless, it is still
recommended to either address the password strength algorithm’s weaknesses or to
remove the code entirely in order to prevent potential future misuse.

RNP-01-007 WP1: encrypt_secret_key() does not wipe keybuf from memory (Low)

While auditing the RNP source code, it was discovered that the function
encrypt_secret_key() used for encrypting data does not properly clear the derived key
stored in keybuf before the function returns. keybuf is reserved on the stack, and in the
case of encryption successful, it does not get wiped from memory using pgp_forget(). It
has to be noted that the buffer gets properly zeroed in memory in the error case, as
depicted in the code snippet below.

Affected File:
rnp/src/librepgp/stream-key.cpp

1 https://en.wikipedia.org/wiki/Wikipedia:10,000_most_common_passwords

Cure53, Berlin · 06/07/21 9/26

https://cure53.de/
https://en.wikipedia.org/wiki/Wikipedia:10,000_most_common_passwords
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:
Rnp_result_t
encrypt_secret_key(pgp_key_pkt_t *key, const char *password, rng_t *rng)
{

uint8_t keybuf[PGP_MAX_KEY_SIZE];
[...]
/* derive key */
if (!pgp_s2k_derive_key(&key->sec_protection.s2k, password, keybuf,
keysize)) {
 RNP_LOG("failed to derive key");
 ret = RNP_ERROR_BAD_PARAMETERS;
 goto error;
}
[...]
if (!pgp_cipher_cfb_start(
 &crypt, key->sec_protection.symm_alg, keybuf, key-
>sec_protection.iv)) {
 RNP_LOG("failed to start cfb encryption");
 ret = RNP_ERROR_DECRYPT_FAILED;
 goto error;
}
pgp_cipher_cfb_encrypt(&crypt, body.data, body.data, body.len);
pgp_cipher_cfb_finish(&crypt);
key->sec_data = body.data;
key->sec_len = body.len;
[...]
return RNP_SUCCESS;

rrror:
pgp_forget(keybuf, sizeof(keybuf));
pgp_forget(body.data, body.len);
free_packet_body(&body);
return ret;

}

Sensitive data, such as keys, passwords, etc., should be wiped from memory using the
pgp_forget() method in order to reduce the potential risk of disclosing sensitive
information to local attackers who are in position to read the process memory.

Cure53, Berlin · 06/07/21 10/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

RNP-01-012 WP1: Logic issue potentially leaves key material unlocked (Medium)

During the audit of the RNP source code, it was discovered that there is a potential logic
flaw related to locking/unlocking and protecting/unprotecting keys. The function - named
rnp_key_unlock() - unlocks a key and has secret key material for use without password
protection. This puts all values into memory so the key becomes usable for
corresponding operations (e.g. changing attributes or exporting keys).

As an example, the flow of operations is as follows:
1. Unlock the key by invoking rnp_key_unlock()
2. Perform some operations on the key, e.g. export it by using rnp_key_export()
3. Lock the key again by invoking rnp_key_lock()

It was identified that the rnp_key_lock() might not be invoked in case the desired
operation, in the example above rnp_key_export(), is running into an error. This situation
potentially allows an attacker to perform operations on already unlocked keys, without
needing to unlock them beforehand.

A similar pattern has been observed for rnp_key_protect/rnp_key_unprotect(), which
gets invoked when keys are imported through importKeyBlockImpl(). A protected key is
encrypted and can be safely held in memory. Invoking rnp_key_unprotect() on a given
key removes the encryption from the key.

Affected File:
comm/mail/extensions/openpgp/content/modules/RNP.jsm

Affected Code:
async backupSecretKeys(fprs, backupPassword) {

[...]
if (RNPLib.rnp_key_unlock(expKey, internalPassword)) {

throw new Error("rnp_key_unlock failed");
}
if (RNPLib.rnp_key_export(expKey, output_to_memory, exportFlags)) {

throw new Error("rnp_key_export failed");
}
if (RNPLib.rnp_key_lock(expKey)) {

throw new Error("rnp_key_unlock failed");
}
[...]

async importKeyBlockImpl(
 win,
 passCB,
 keyBlockStr,

Cure53, Berlin · 06/07/21 11/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 pubkey,
 seckey,
 permissive = false,
 limitedFPRs = []
) {

[...]
if (k.secretAvailable) {

 [...]
 let rv = RNPLib.rnp_key_unprotect(impKey, recentPass);
 [...]

if (RNPLib.rnp_key_get_subkey_count(impKey, sub_count.address()))
{

 throw new Error("rnp_key_get_subkey_count failed");
 }

[...]
}
[...]
if (k.secretAvailable) {

if (RNPLib.rnp_key_protect(impKey2, newPass, null, null, null, 0))
{

 throw new Error("rnp_key_protect failed");
 }

[...]

Locking/protecting the keys in case an operation performed on an unlocked/unprotected
key fails is important because it reduces the potential risk of having
unlocked/unprotected keys in memory. Therefore, it is recommended to properly catch
any occurring exceptions and re-lock/protect keys again.

RNP-01-014 WP1: Key manipulation via uncertified Auto-Import (Medium)

It was found that Thunderbird allows importing primary keys and subkeys that are not
bound to a valid cryptographically secure signature. Additionally, Thunderbird
automatically imports detected, attached PGP primary keys with an already trusted
fingerprint, as it has an extended expiry time. This introduces the risk of attackers
obtaining a primary key with an extended or unset expiry time of a trusted person, while
it has not yet been imported into the PGP key ring of the victim.

The attackers can abuse this by adding a malicious subkey, which has been used by
Thunderbird for email encryption, signature verification and key certification. Although
the subkey is flagged as invalid by RNP, it is silently accepted and imported by
Thunderbird as soon as the user opens the attacker’s mail.

Cure53, Berlin · 06/07/21 12/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected File:
comm/mail/extensions/openpgp/content/ui/enigmailMessengerOverlay.js

Affected Code:
commonProcessAttachedKey(keyData, isBinaryAutocrypt) {
 let errorMsgObj = {};
 let preview = EnigmailKey.getKeyListFromKeyBlock(
 keyData,
 [...]
);
 [...]
 for (let newKey of preview) {
 let oldKey = EnigmailKeyRing.getKeyById(newKey.fpr);
 if (!oldKey) {
 [...]
 continue;
 }
 [...]
 let newHasNewValidity =
 oldKey.expiryTime < newKey.expiryTime ||
 (oldKey.keyTrust != "r" && newKey.keyTrust == "r");

 if (!newHasNewValidity)
 continue;
 [...]
 !EnigmailKeyRing.importKeyDataSilent(
 window,
 keyData,
 isBinaryAutocrypt,
 "0x" + newKey.fpr
)
[...]

It is advised that the validity of the PGP keys returned from the RNP library is respected
by Thunderbird and actions ensue accordingly. Additionally, Cure53 recommends for
trusted primary keys not getting automatically imported. Instead, the user should be
informed and asked about importing the new key. It is crucial to alert the user about
every new subkey and user-identity which is about to be newly trusted.

Cure53, Berlin · 06/07/21 13/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

RNP-01-002 WP3: Automatic handling of autocrypt-gossip header (Info)

While auditing the code which integrates the RNP library into Thunderbird, it was
discovered that Thunderbird handles the autocrypt-gossip header within an encrypted
PGP message. This usually allows for automatically updating keys and the current
implementation does so without notifying the user. Due to a missing database table,
however, the code in question does not function properly. After some discussion with the
developers, it turns out that the handling of the autocrypt-gossip header is not supposed
to be enabled at all. Below is a code excerpt that is responsible for handling the header.

Affected File:
comm/mail/extensions/openpgp/content/modules/mimeDecrypt.jsm

Affected Code:
handleResult(exitCode) {
[...]
 try {
 this.extractEncryptedHeaders();
 this.extractAutocryptGossip();
 } catch (ex) {
 console.debug(ex);
 }
[...]

Additionally, when the processAutocryptHeader() function is called, the supplied
fromAddr value is extracted from the autocrypt header itself. This negates the check
whether or not the specified address matches the From header, especially since both
values become identical.

Affected File:
comm/mail/extensions/openpgp/content/modules/mimeDecrypt.jsm

Affected Code:
[...]
for (let i in gossip) {
 let addr = EnigmailMime.getParameter(gossip[i], "addr");
 try {

Cure53, Berlin · 06/07/21 14/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 let r = await EnigmailAutocrypt.processAutocryptHeader(
 addr,
 [gossip[i].replace(/ /g, "")],
 msgDate,
 true,
 true
);
[...]

This issue was ultimately not exploitable due to the missing database table, however it
nevertheless poses a risk. It is therefore recommended to avoid handling this header
altogether. Should support for this header be required for some reason, it could be
considered to require a confirmation from the user before updating any key material.

RNP-01-003 WP3: Possible race condition when reading from disk (Info)

When processing a PGP-signed email, the signature data is extracted and written to the
filesystem before calling the RNP library, which in turn reads the signature data back
from the filesystem. This introduces a race condition due to the timing and predictable
file-path wherein a malicious local user can swap out the dumped file for a malicious
signature file. During this assessment, however, it was not possible to exploit this in any
meaningful way. The following shows a code excerpt that is responsible for writing the
file to disk before calling the RNP library.

Affected File:
comm/mail/extensions/openpgp/content/modules/mimeVerify.jsm

Affected Code:
onStopRequest() {
 [...]
 if (this.protocol === PGPMIME_PROTO) {
 [...]
 this.sigFile = EnigmailFiles.getTempDirObj();
 this.sigFile.append("data.sig");
 this.sigFile.createUnique(this.sigFile.NORMAL_FILE_TYPE, 0x180);
 EnigmailFiles.writeFileContents(this.sigFile, this.sigData, 0x180);

 if (!EnigmailDecryption.isReady(win)) {
 return;
 }

 let sigFileName = EnigmailFiles.getEscapedFilename(
 EnigmailFiles.getFilePath(this.sigFile)
);
 let keyserver = EnigmailPrefs.getPref("autoKeyRetrieve");
 let options = {

Cure53, Berlin · 06/07/21 15/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 keyserver,
 keyserverProxy: EnigmailHttpProxy.getHttpProxy(keyserver),
 fromAddr: EnigmailDecryption.getFromAddr(win),
 mimeSignatureFile: sigFileName,
 };
 const cApi = EnigmailCryptoAPI();
[...]
 this.returnStatus = cApi.sync(cApi.verifyMime(this.signedData, options));
[...]

It is recommended to avoid using the filesystem in order to pass the signature
information to the library. Instead, the information should be passed via memory, as
done with the signed data itself.

RNP-01-008 WP3: Partially unencrypted email insufficiently detected (Low)

It was found that a partially unencrypted email has been insufficiently detected as such
by Thunderbird. This introduces the risk of users erroneously assuming the entire email
was encrypted and therefore ascribing it with an incorrect security status.

Proof-of-Concept *.eml file:
To: user2@domain.com
From: user <user@domain.com>
[...]
Content-Type: multipart/mixed;
 boundary="------------32989E6E4C7AEB7775BAD494"
[...]
--------------32989E6E4C7AEB7775BAD494
Content-Type: text/html; charset=utf-8

aaa

--------------32989E6E4C7AEB7775BAD494
Content-Type: text/html; charset=utf-8

-----BEGIN PGP MESSAGE-----

hQGMAybeLH[...]PfY=
=7kwb
-----END PGP MESSAGE-----
[...]
--------------32989E6E4C7AEB7775BAD494
Content-Type: text/html; charset=utf-8

zzz

--------------32989E6E4C7AEB7775BAD494--

Cure53, Berlin · 06/07/21 16/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: A partially encrypted email displayed as fully encrypted.

It is recommended that the logic for detecting encrypted content receives improvements
by design. If parts of the message were decrypted, the whole message should be
checked for unencrypted parts. If any parts of the parts were not decrypted, the
application should alert the user about partially unprotected information.

RNP-01-009 WP1: mem_dest_own_memory() callers do not check for NULL (Info)

During an audit of the RNP source code, it was discovered that the function
mem_dest_own_memory() allocates memory using malloc() and potentially returns
NULL to the caller in case malloc() fails. The caller of this function, key_to_bytes(), does
not properly check for NULL being returned and might return NULL to
rnp_get_public_key_data() and rnp_get_secret_key_data(), potentially leading to a
Denial-of-Service (DoS) situation when dereferencing a NULL pointer.

It is important to emphasize that neither of the two functions - i.e.
rnp_get_public_key_data() and rnp_get_secret_key_data() - are used by the JavaScript
layer of Thunderbird at the time of this security audit. As a consequence, this issue is
only reported in order to point out the importance of reviewing the RNP source code
diligently.

Affected File:
rnp/src/librepgp/stream-common.cpp

Affected Code:
void *
mem_dest_own_memory(pgp_dest_t *dst)
{

[...]

Cure53, Berlin · 06/07/21 17/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 /* in this case we should copy the memory */
 void *res = malloc(dst->writeb);
 if (res) {
 memcpy(res, param->memory, dst->writeb);
 }
 return res;
}

static rnp_result_t
key_to_bytes(pgp_key_t *key, uint8_t **buf, size_t *buf_len)
{
 [...]
 *buf = (uint8_t *) mem_dest_own_memory(&memdst);
 [...]
}

rnp_result_t
rnp_get_public_key_data(rnp_key_handle_t handle, uint8_t **buf, size_t *buf_len)
try {
 [...]
 return key_to_bytes(key, buf, buf_len);
}

rnp_result_t
rnp_get_secret_key_data(rnp_key_handle_t handle, uint8_t **buf, size_t *buf_len)
try {
 [...]
 return key_to_bytes(key, buf, buf_len);
}

Since malloc() can potentially return NULL, any callers of a function that return memory
allocated through malloc() should carefully check for NULL and return an error in that
case.

RNP-01-010 WP1: Outdated and vulnerable Botan library version (Info)

According to the official RNP installation documentation2 (dated to the time of the
assessment - 2020.08.14), it is recommended to use Botan 2.12.1. Cross-checking Botan
2.112.1 with the official advisory page3 of Botan shows that one security issue affects this
problem. As quoted from Botan:

2020-03-24: Side channel during CBC padding

2 https://github.com/rnpgp/rnp/blob/master/docs/installation.adoc
3 https://botan.randombit.net/handbook/security.html

Cure53, Berlin · 06/07/21 18/26

https://cure53.de/
https://botan.randombit.net/handbook/security.html
https://github.com/rnpgp/rnp/blob/master/docs/installation.adoc
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The CBC padding operations were not constant time and as a result would leak the
length of the plaintext values which were being padded to an attacker running a side
channel attack via shared resources such as cache or branch predictor. No information
about the contents was leaked, but the length alone might be used to make inferences
about the contents. This issue affects TLS CBC ciphersuites as well as CBC encryption
using PKCS7 or other similar padding mechanisms. In all cases, the unpadding
operations were already constant time and are not affected. Reported by Maximilian
Blochberger of Universität Hamburg.

Fixed in 2.14.0, all prior versions affected.

The recommended version of Botan should be checked and it must be ensured that a
recent version is used to prevent potential exploitation of existing vulnerabilities.

RNP-01-011 WP1: Potential overflow in librepgp due to invalid size check (Low)

While investigating the handling of streams in the RNP library, it was discovered that a
function used to initialize output streams checks the length of the file-path incorrectly.
This could enable attackers with control over the path parameter to write a NULLl
character past an allocated buffer. Shown below is the affected source code in the RNP
library.

Affected File:
rnp/src/librepgp/stream-common.cpp

Affected Code:
init_file_dest(pgp_dest_t *dst, const char *path, bool overwrite)
{
 [...]
 pgp_dest_file_param_t *param;

 if (strlen(path) > sizeof(param->path)) {
 RNP_LOG("path too long");
 return RNP_ERROR_BAD_PARAMETERS;
 }
 [...]
 param = (pgp_dest_file_param_t *) dst->param;
 param->fd = fd;
 strcpy(param->path, path);
[...]

In order to reject overly long paths, it is checked if the length of the parameter exceeds
the size of the buffer the string is copied to. However, the check does not account for the
additional NULL character that is appended by strcpy(). If the path's length matched the

Cure53, Berlin · 06/07/21 19/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

size of param->path, NULL character would be written past the buffer. It was not further
investigated if the issue is relevant in a remote context. It is recommended to reject
paths with a size equal to the size of param->path in order to ensure that the additional
NULL character written by strcpy() fits in any case.

RNP-01-013 WP2: Forbidden cipher-suites/algorithms recommendations (Info)

Code was observed in the RNP/Thunderbird integration layer within the OpenPGP
module. This seems to indicate a placeholder for the future blocklisting of algorithms
within the usage of OpenPGP in Thunderbird. Recommendations are provided here with
regards to how to best follow up with future blocklisting procedure.

Affected File:
comm/mail/extensions/openpgp/content/modules/RNP.jsm

Affected Code:
policyForbidsAlg(alg) {
 // TODO: implement policy
 // Currently, all algorithms are allowed
 return false;
},

Since PGP benefits from a truly federated ecosystem, any forbidding of algorithms could
cause breakage with other PGP users that do not rely on Thunderbird. Such breakage
can only occur on decryption however, and not in the process of key generation, import
or encryption. It is considered possible for Thunderbird to impose limits which rule out
insecure algorithms without a serious impact on usability or availability.

RFC48804 specifies the following algorithms for support and usage in OpenPGP:

9.1. Public-Key Algorithms

 ID Algorithm
 -- ---------
 1 - RSA (Encrypt or Sign) [HAC]
 2 - RSA Encrypt-Only [HAC]
 3 - RSA Sign-Only [HAC]
 16 - Elgamal (Encrypt-Only) [ELGAMAL] [HAC]
 17 - DSA (Digital Signature Algorithm) [FIPS186] [HAC]
 18 - Reserved for Elliptic Curve
 19 - Reserved for ECDSA
 20 - Reserved (formerly Elgamal Encrypt or Sign)
 21 - Reserved for Diffie-Hellman (X9.42,

4 https://tools.ietf.org/html/rfc4880

Cure53, Berlin · 06/07/21 20/26

https://cure53.de/
https://tools.ietf.org/html/rfc4880#section-13.2
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 as defined for IETF-S/MIME)

9.2. Symmetric-Key Algorithms

 ID Algorithm
 -- ---------
 0 - Plaintext or unencrypted data
 1 - IDEA [IDEA]
 2 - TripleDES (DES-EDE, [SCHNEIER] [HAC] -
 168 bit key derived from 192)
 3 - CAST5 (128 bit key, as per [RFC2144])
 4 - Blowfish (128 bit key, 16 rounds) [BLOWFISH]
 5 - Reserved
 6 - Reserved
 7 - AES with 128-bit key [AES]
 8 - AES with 192-bit key
 9 - AES with 256-bit key
 10 - Twofish with 256-bit key [TWOFISH]

9.4. Hash Algorithms

 ID Algorithm Text Name
 -- --------- ---------
 1 - MD5 [HAC] "MD5"
 2 - SHA-1 [FIPS180] "SHA1"
 3 - RIPE-MD/160 [HAC] "RIPEMD160"
 4 - Reserved
 5 - Reserved
 6 - Reserved
 7 - Reserved
 8 - SHA256 [FIPS180] "SHA256"
 9 - SHA384 [FIPS180] "SHA384"
 10 - SHA512 [FIPS180] "SHA512"
 11 - SHA224 [FIPS180] "SHA224"

Similarly, GnuPG, the most popular implementation of OpenPGP, supports the following
algorithms (as of version 2.2.19):

Pubkey: RSA, ELG, DSA, ECDH, ECDSA, EDDSA
Cipher: IDEA, 3DES, CAST5, BLOWFISH, AES, AES192, AES256, TWOFISH,
 CAMELLIA128, CAMELLIA192, CAMELLIA256
Hash: SHA1, RIPEMD160, SHA256, SHA384, SHA512, SHA224

Based on the above information, the following recommendations can be made in terms
of restricting support for algorithms:

Cure53, Berlin · 06/07/21 21/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Public Key Algorithms:
• RSA: RSA keys which are smaller than 2048-bit should be disallowed, as per the

recommendations made in NIST Special Publication 800-57 Part 3 Revision 15.
RSA public key cryptography usage should be supported otherwise.

• ElGamal: The default GnuPG setting of 2048-bit keys for ElGamal should be
enforced, and smaller keys should be rejected.

• DSA: DSA usage should be discouraged and perhaps eliminated entirely in favor
of EdDSA, which is supported in the most recent versions of most PGP
implementations. If DSA is to be used, a key length of 2048-bit is recommended.

Symmetric Ciphers:
• CAST5, IDEA, Blowfish and 3DES: While not generally considered to be

practically “broken”, usage of CAST5, IDEA, Blowfish and 3DES should be
forbidden due to recent advancement in the practical exploitation of ciphers with
a block size of 64-bit6. These four block ciphers suffer from a 64-bit block size
and therefore are best avoided in favor of AES.

Hashing Algorithms:
• SHA1: Usage of SHA1 should be forbidden entirely due to recent major

advancements, which allow the practical obtention of chosen-prefix collisions on
SHA-1, specifically with an impact on the PGP ecosystem.7

The current optimal cipher configuration for OpenPGP in general appears to be Ed25519
for signing, RSA-2048 for public key cryptography, AES for symmetric encryption and
SHA2 for hashing.

5 https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
6 https://sweet32.info/
7 https://eprint.iacr.org/2020/014.pdf

Cure53, Berlin · 06/07/21 22/26

https://cure53.de/
https://eprint.iacr.org/2020/014.pdf
https://sweet32.info/
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57Pt3r1.pdf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
It should be reiterated that this Cure53 summer 2020 examination represented a highly
complex audit connected with an unusually intricate integration of an important
application. After spending forty days deploying penetration tests and audit methods on
the RNP C++ OpenPGP implementation and its integration with the Thunderbird email
client, six members of the test team identified both strengths and weaknesses within the
given scope. On the one hand, finding only fourteen flaws in the complex can be seen as
a positive indicator. On the other hand, the testing team needed a very long time to
become familiar with the targets due to their complexity, in particular in terms of how
Thunderbird uses the RNP library. From this perspective, the findings must be seen in
the broader context.

To clarify, the auditors had to come up with their own tooling to trace calls and create
execution graphs, so as to make sense of the integration logic. While the testers
generally encountered well-written and logically structured code, especially the originally
Enigmail-based OpenPGP code within Thunderbird necessitates dead code elimination
and some general clean-up activities. As a side-effect of legacy and remnants,
vulnerabilities have been unintentionally and coincidentally mitigated on multiple
occurrences. The bottom line is, however, that even minimal modifications to seemingly
security-irrelevant aspects could make this fragile code insecure quite quickly.

Moving on to specific findings, it should be underlined that some of the integration code
seems to have been merged pretty much straightforwardly from the original Enigmail
codebase, consequently leading to issues such as RNP-01-002. The RNP integration
passes user-data directly to the C/C++ library where most of the parsing and processing
takes place. But, the C/C++ aspect and the JavaScript code still contains TODO items,
some of which are security-relevant.

The C/C++ part seems well written but not completely free from inconsistencies, for
example when it comes to the use of malloc()/calloc(). There are also some calls to
inherently dangerous functions like strcpy(). In most cases the buffers are checked
manually, yet RNP-01-011 demonstrates how the outcome may be flawed. Therefore, it
is generally advisable to simplify the code by removing its dead parts, minimizing
redundancies and increasing code reuse. It has to be noted that PGP and mail
encryption is a complex process, as proven by many implementation- and protocol-flaws
from the past. Accounting for this fact, Thunderbird makes a good overall impression in
identifying, understanding and handling risks associated with the PGP mail encryption.

Despite this, it is quite likely that the limited time-frame of this audit may have been
insufficient to protect Thunderbirds users against state-funded advanced persistent

Cure53, Berlin · 06/07/21 23/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

threat, especially those with enough resources to identify high-severity bugs either in the
Key distribution/WKS auto-look up, the RNP library or the integration of RNP into
Thunderbird. Again, this corresponds to the overwhelming complexity and attack-surface
associated with PGP and e-mail related cryptography more broadly.

Generally there are a few instances where things were spotted that could have a pretty
severe impact, such as the already mentioned RNP-01-002 and RNP-01-014 serving as
another example. Both showcase issues which are prevented by code that does not give
the impression of having the purpose to prevent said issues. For instance, the reason
why RNP-01-002 could not be exploited, was the missing database table. If the table
had existed, the vulnerability would have had a pretty severe impact.

On the Thunderbird integration side, Cure53 checked for various issues revolving
around signature verification. It was tested if providing a message where only a part is
signed was possible, with the goal of tricking the UI to indicate that the entire message is
signed. Given that Enigmail has undergone a previous audit, the integration into
Thunderbird had a good foundation to begin with and, ultimately, no severe issues were
uncovered. Stemming from the fact that the integration is implemented using JavaScript,
memory corruption issues are not really as prevalent as is typically the case with C/C++
implementations. Because of this, extra focus was given to logical issues, which are
described in more detail in RNP-01-002 or RNP-01-012.

On the RNP library side, the code is fairly complex and hard to track given the design of
nested objects, with various items pointing to various read functions for reading the
actual input. The parsing of PGP packets and general handling of input data was
inspected in finer detail. It can be stated that parsing and handling is fairly correct
overall, with some minor exceptions such as RNP-01-005. The code was additionally
checked for typical use-after-free issues, yet none were discovered in the time allocated
for this assessment. Although the issues mentioned in this report do not exceed Medium
severity, some improvements can still be made.

The usage of the cryptographic implementation in the underlying RNP cryptographic
library was audited, along with the integration of PGP functionality into Thunderbird via
the JavaScript bridge that binds RNP and other functionality to the Thunderbird
OpenPGP extension. While no issues were found with the cryptographic
implementations present in the C/C++ RNP library, the large size of the library and the
fact that it handles PGP data structures, often of arbitrary length, makes it impossible to
completely rule out the presence of memory safety or overflow issues. The Thunderbird
OpenPGP module had some incomplete elements, such as the Autocrypt
implementation and the password strength checker. The former resulted in RNP-01-002

Cure53, Berlin · 06/07/21 24/26

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

and the latter can be seen in RNP-01-006. The Thunderbird integration layer withstood
the Cure53 attempts at a compromise.

The JavaScript code has some signs of being inconsistent. The function
encryptAndOrSign() in RNP.jsm, for example, invokes functions and usually checks for
proper return values. Within the same function though, inside the else-path of an if-
statement, the code invokes a similar kind of operation, i.e. rnp_op_sign_set_hash(),
without the return value being checked. Even though this has no security impact per se
and calculating a hash should not fail, this is an indicator that the developers do not
follow a consistent approach.

Binary fuzzing was out-of-scope, nevertheless it is considered crucial to add further
testing harnesses to RNP, since only rnp_dump_packets_to_output() and
rnp_load_keys() are fuzzing targets at the time of the audit. Botan, which is the library
used by RNP to perform crypto operations, should be monitored more regularly for any
security advisories that come up. At the time of the security audit, RNP still
recommended to use an outdated and potentially vulnerable Botan version as part of
their official installation guideline.

While performing the audit against Thunderbird, researchers of the Ruhr University
Bochum published a paper8 which introduces three key attacks against email encryption
that are related to Thunderbird more broadly. Although not always related to RNP,
several risks are emitted by those key attacks that will be briefly inspected here. The first
attack vector, Key Replacement (A1), allows attackers to silently import S/MIME keys to
the victim’s keystore. Although this is not related to RNP, a similar PGP-related issue
was found in this audit and described in RNP-01-014. Both issues silently import key
data without user-interaction while RNP-01-014 additionally does not properly verify the
validity of the keys imported by RNP. It is, therefore, advisable to prompt for user-
interaction when modifying trusted keys of the user or changing the import behavior.

The second attack concerns the Decryption/Sign Oracle (A2) and requires an attacker-
controlled IMAP server in which Thunderbird stores unencrypted draft messages. It is
not advisable, as argued by the authors of this paper, to solely mitigate this attack by
limiting decryption to the receiving context. Applying this technique would grant attackers
an equivalent decryption oracle by moving the encrypted email into the receiving context
- that is the inbox folder - of the IMAP server. If the victim clicks on Reply-To to that
message - similar to what has been described in TB-01-005, the contents are decrypted
and added to a new composed message and eventually stored unencrypted into the
Drafts folder before the victim removes the contents prior to sending.

8“Mailto: Me Your Secrets.On Bugs and Features in Email End-to-End Encryption”, J. Mueller et al., 2020,
 https://www.nds.ruhr-uni-bochum.de/media/nds/veroeffentlichungen/2020/08/15/mailto-paper.pdf

Cure53, Berlin · 06/07/21 25/26

https://cure53.de/
https://www.nds.ruhr-uni-bochum.de/media/nds/veroeffentlichungen/2020/08/15/mailto-paper.pdf
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, it is therefore generally recommended that draft messages (and
all similar folders) should be stored encrypted but especially unsigned with the sender’s
PGP key. This will only turn the attacker's decryption oracle into an encryption oracle
when the attacker has control over the IMAP server. The message parts extracted from
the mailto: pseudo protocol should only be inserted into the editor as a plain-text
message that will not be decrypted. If technical limitations deny encrypting an individual
draft email, the user should be prompted for interaction. While implementing the
mitigations, it should be explicitly checked that TB-01-005 cannot be revived by
attackers.

Finally, the Key Extraction attack (A3) allows attaching arbitrary files accessible from
Thunderbird to a newly composed email. If the user is not focused and sends the email,
sensitive PGP keys and other files could be exposed. To raise the alertness of the user,
it is advisable to prompt for interaction if the suggested files should be attached.
Alternatively, this feature could be removed as a whole.

To sum up, the Cure53 auditors believe that they achieved good coverage during this
summer 2020 project, though judging by the complexity and the limited budget granted
to the assessment, there is still plenty of need for additional auditing at some future point
in time. While the testers believe that an exhaustive analysis of the entire
OpenPGP/RNP complex is impossible to achieve within such a relatively short time
frame, the clear absence of the High and Critical issues stands.

Cure53 would like to thank Jochai Ben-Avie & Tom Ritter of Mozilla for their excellent
project coordination, support and assistance, both before and during this assignment.
Cure53 would further like to express gratitude to Kai Engert, Ronald Tse and Nickolay
Olshevsky as well as the rest of the maintainer team who aided the assignment with
valuable advice and input.

Cure53, Berlin · 06/07/21 26/26

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report RNP & Thunderbird Integration 08.2020
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	RNP-01-001 WP1: Integer overflow due to expiration time of PGP v3 keys (Low)
	RNP-01-004 WP1: Potential Integer underflow in partial_dst_write() (Low)
	RNP-01-005 WP1: Literal packet parsing allows for Integer underflow (Low)
	RNP-01-006 WP2: Evaluation of password strength insufficient (Low)
	RNP-01-007 WP1: encrypt_secret_key() does not wipe keybuf from memory (Low)
	RNP-01-012 WP1: Logic issue potentially leaves key material unlocked (Medium)
	RNP-01-014 WP1: Key manipulation via uncertified Auto-Import (Medium)

	Miscellaneous Issues
	RNP-01-002 WP3: Automatic handling of autocrypt-gossip header (Info)
	RNP-01-003 WP3: Possible race condition when reading from disk (Info)
	RNP-01-008 WP3: Partially unencrypted email insufficiently detected (Low)
	RNP-01-009 WP1: mem_dest_own_memory() callers do not check for NULL (Info)
	RNP-01-010 WP1: Outdated and vulnerable Botan library version (Info)
	RNP-01-011 WP1: Potential overflow in librepgp due to invalid size check (Low)
	RNP-01-013 WP2: Forbidden cipher-suites/algorithms recommendations (Info)

	Conclusions

