
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Pomerium 03.2021
Cure53, Dr.-Ing. M. Heiderich, N. Hippert, BSc. B. Walny, BSc. T.-C. “Filedescriptor” Hong

Index

Introduction

Scope

Test Methodology

WP1: Thorough Source Code Audits against latest version of Pomerium

WP2: Penetration Tests against Pomerium Integration & Setup

Identified Vulnerabilities

POM-01-001 WP1: JWT leak via Open Redirect in programmatic access (High)

POM-01-002 WP1: No verification of pomerium_signature in middleware (High)

Miscellaneous Issues

POM-01-003 WP2: Hardening recommendations for file-handling (Medium)

POM-01-004 WP2: Cross-Origin HTTP security headers missing (Info)

POM-01-005 WP2: Missing SameSite flag for cookie security (Info)

Conclusions

Cure53, Berlin · 03/31/21 1/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Use identity, device-state, and request context to implement zero-trust, achieve
compliance, and secure access to your applications, clusters, and servers without a
VPN.”

From https://www.pomerium.com/

This report documents the results of a security assessment targeting the Pomerium
complex. Carried out by Cure53 in 2021, this project entailed a thorough penetration test
and a dedicated source code audit featuring the Pomerium codebase and a deployed
setup running the latest version of Pomerium in a real-life and live environment.

To give some context, the work was requested by Pomerium, Inc. in January 2021 and
then promptly scheduled. Cure53 has punctually executed the project in March 2021,
namely in CW10 and CW11. As for the resources, a total of twenty person-days were
invested to reach the coverage expected for this project, which was prepared,
conducted, documented and finalized by a team of four testers, all selected on the basis
of their skills and experience matching the Pomerium’s technical traits and objectives.

In terms of optimizing structure, the work was split into two separate work packages
(WPs). In WP1, Cure53 performed a thorough source code audit on the latest version of
the Pomerium’s codebase, whereas WP2 focused on penetration tests against the
Pomerium’s integration and broader setup. Methodology-wise, a white-box approach
was chosen and deployed. In particular, Cure53 was given access to the deployed
environment as well as all relevant sources and documentation. The environment was
rolled-out on GCP and Cure53 was furnished with appropriate access instructions and
setups.

The project moved forward efficiently. All preparations were done in late February and
early March 2021, namely in CW08 and CW09, indicating that Cure53 could have a
smooth start. Communications during the test were done in a dedicated and shared
Slack channel which connected the workspaces of Cure53 and Pomerium. All relevant
personnel from both teams could partake in the discussion which were very productive.
Since the scope was well-prepared and clear, no noteworthy roadblocks were
encountered during the test. Nevertheless, Cure53 relayed frequent status updates
about the test and the emerging findings.

Very good coverage over the WP1-2 scope items was arguably achieved. Five security-
relevant issues were spotted and documented: two representing security vulnerabilities
and three classified as general weaknesses with lower exploitation potential. Live-
reporting was utilized and the Pomerium team managed to fix the tracked issues while

Cure53, Berlin · 03/31/21 2/13

https://cure53.de/
https://www.pomerium.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

the test was still ongoing. Moreover, the Cure53 team was given all necessary info to
also look at the fixes and either verified them or added remarks about possible bypasses
and similar problems.

Commenting on the findings, the overall number of items is rather small, which is a great
sign for Pomerium and its codebase. However, the severity levels are quite elevated.
Although no issues were marked as Critical, two discoveries were seen as High risks.
One of them enveloped a JWT leak and the other pertained to a missing signature
verification within middleware.

In the following sections, the report will first shed light on the scope, material available
for testing, key examination parameters, as well as the structure and content of the WPs.
After that, the document offers a distinct section on testing coverage and methodology,
so as to facilitate tracking of the areas covered during the assessment, even if the tests
yielded no findings in a given realm.

Next, all findings will be discussed in grouped vulnerability and miscellaneous
categories, then following a chronological order in each array. Alongside technical
descriptions, PoC and mitigation advice, as well as fix notes, are supplied when
applicable. Finally, the report will close with broader conclusions about this March 2021
project. Cure53 elaborates on the general impressions and reiterates the verdict based
on the testing team’s observations and collected evidence. Tailored hardening
recommendations for the Pomerium complex are also incorporated into the final section.

Cure53, Berlin · 03/31/21 3/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration-Tests and Source Code Audits against Pomerium

◦ Access to rolled out application
▪ https://verify.audit.pomerium.io/

◦ GCP Access
▪ https://console.cloud.google.com/invitation?project=pomerium-audit-2021q1

◦ Public Source Code Repository
▪ https://github.com/pomerium/pomerium

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 03/31/21 4/13

https://cure53.de/
https://github.com/pomerium/pomerium
https://console.cloud.google.com/invitation?project=pomerium-audit-2021q1
https://verify.audit.pomerium.io/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Test Methodology
This section documents the testing methodology applied during this engagement and
sheds light on various areas of the Pomerium application complex. Tests were
performed both in the form of the server-side API, as well as frontend and infrastructure
components. The section further clarifies which areas were examined by Cure53 but did
not yield any findings.

WP1: Thorough Source Code Audits against latest version of Pomerium

The enumeration below describes the tests and coverage areas checked through source
code audits and focused on the network-based components of Pomerium. The listed
areas were investigated through the approaches described per item. Note that the
specific commit hash for the version of the Pomerium software examined by Cure53
was: 50dc15de283fc0e864e7e96acce3d4acc346e77c

• Starting with the Pomerium config, the parsing logic was reviewed for potential
injections or general unexpected behaviors. The policy from and to routes are
being passed through the whole software complex, so this needed investigation.
These and other parsing and path handling routines which, for instance, match
the host of requests to the proxy, have been reviewed for parsing differentials. If
found, those would lead to a potential proxy bypass.

• While making requests which go through the proxy, other inputs were reviewed.
For example, Cure53 looked at inputs sent through HTTP headers, e.g.
authorization or cookie headers.

• Lua scripts responsible for handling requests, as well as responses from an
upstream server through the proxy have been reviewed. In scope were mostly
weaknesses that could leak authorization tokens to upstream services, or
problems due to responses of upstream servers being handled in an improper
manner.

• Exposed Pomerium APIs and sites of the proxy, authentication and authorization
services have been reviewed for typical web security vulnerabilities like XSS and
CSRF.

• The general HTTP security header configuration of the exposed services has
been reviewed.

• The employed JWT has been checked for common mistakes, such as improper
signature verification due to the “None” algorithm, key confusion or signature
exclusion. Further, handling of JWT parameters, like the expiry time, has been
checked.

• The JWKS implementation was audited for cryptographic issues and proper
implementation of the primitives in use.

Cure53, Berlin · 03/31/21 5/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• The integration of the IdPs has been reviewed. The configurations for identity
providers are compliant with the OAuth/OIDC specifications. Sensitive key
information is well-secured.

• Past vulnerability reports for Pomerium have been checked out to spot
interesting areas that suffered in the past and these have been verified again.

WP2: Penetration Tests against Pomerium Integration & Setup

The enumeration below describes the tests and coverage areas checked within
Pomerium’s deployment, both locally and on the provided GKE installation.

• The startup and initialization phase of the Pomerium all-in-one setup has been
reviewed and checked for potential misuse by local attackers. The filesystem
access routes have been traced and evaluated against potential attack
scenarios.

• The configuration stack provided by the Pomerium team, to be used with the
GKE installation, has been reviewed.

• Redis configuration and backend used as Databroker were examined for
potential NoSQL injection attacks from the application’s side, as well as potential
SSRF targets from the internal network’s side.

• The network topology and connected parts of the overall architecture were
examined. This also included consideration of relevant runtime- and
environment-specifications that are necessary to run Pomerium

• In terms of security, Pomerium provides the means to configure TLS for the
connections between the individual nodes. Due to the requirement of having valid
certificates, it is hard to offer this feature by default. However, the documentation
on how TLS needs to be configured presented on the website is fairly simple and
straightforward. As such, it should be considered by everyone using Pomerium
across untrusted networks.

• The authentication flows were checked in detail. The programmatic access
feature was found to accept any URL, which led to an Open Redirect and JWT
leak (see POM-01-001).

Cure53, Berlin · 03/31/21 6/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. POM-01-001) for the purpose of facilitating any
future follow-up correspondence.

POM-01-001 WP1: JWT leak via Open Redirect in programmatic access (High)

Using programmatic access on verify.audit.pomerium.io, one can get a signed login URL
with pomerium_redirect_uri set to an arbitrary URL. Then, if the user has already logged
into Pomerium, they will be redirected to the specified pomerium_redirect_uri with a JWT
attached. This allows an outside attacker to get a signed login URL that, upon visiting,
will redirect a victim to the attacker’s site. This creates an issue of Open Redirect and an
even more serious problem in the form of JWT leakage.

Sample leaked JWT (decoded):
{
 "aud": [
 "authenticate.audit.pomerium.io",
 "evil.com",
 "verify.audit.pomerium.io"
],
 "exp": 1615442162,
 "iat": 1615392513,
 "iss": "authenticate.audit.pomerium.io",
 "jti": "ID.OqUbtelP7ce6do2Q2DJJj_9htFFpSl8XQEFa-ku95Ks",
 "nbf": 1615392513,
 "programmatic": true,
 "sub": "00u2f6thmxCSSqF104x7",
 "ver": "15750195866874303488"
}

With the leaked JWT, the attacker will be able to unveil the victim’s identity (e.g., an
email address) by supplying the JWT to authenticate.audit.pomerium.io or
verify.audit.pomerium.io. In addition, if an application integrating Pomerium only verifies
the iss claim but not the aud claim, the attacker will be able to access it as the victim.

Steps to reproduce:
1. Navigate to https://verify.audit.pomerium.io/.pomerium/api/v1/login?

pomerium_redirect_uri=http://evil.com in order to get a signed login URL
2. Navigate to the login URL

Cure53, Berlin · 03/31/21 7/13

https://cure53.de/
https://verify.audit.pomerium.io/.pomerium/api/v1/login?pomerium_redirect_uri=http://evil.com
https://verify.audit.pomerium.io/.pomerium/api/v1/login?pomerium_redirect_uri=http://evil.com
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

3. Sign in via Okta if this has not already been done
4. Observe being redirected to evil.com with a pomerium_jwt in the URL
5. Replace the _pomerium cookie in https://verify.audit.pomerium.io with the one

from Step 4
6. Refresh https://verify.audit.pomerium.io and confirm the JWT is valid as

information is returned

Currently, the programmatic access feature does not restrict what the
pomerium_redirect_uri can be. It is recommended to implement an allow-list mechanism
to prevent its usage in scenarios linked to Open Redirect and leaking JWTs.

Fix Notes: This issue was addressed by Pomerium and the deployed fix was verified by
Cure53.

POM-01-002 WP1: No verification of pomerium_signature in middleware (High)

It was found that some API endpoints under /.pomerium/ do not verify parameters with
pomerium_signature. This could allow modifying parameters intended to be trusted by
Pomerium. During communication with the Pomerium team, it was determined that it
was caused by a regression that accidentally removed a line of code that enforced the
signature check in middleware.

Affected file:
https://github.com/pomerium/pomerium/blob/
d653b0156f4a01ea81901bfbdb3bd7c101a16e4f/authenticate/handlers.go#L69

Affected code:
v.Use(middleware.ValidateSignature(a.sharedKey))

The above code was not found in the master branch. The issue mainly affects routes
responsible for sign in/out, but does not introduce an authentication bypass. For
example, the issue mentioned in POM-01-001 would still work even if that issue was
fixed with the help of this problem.

It is recommended to reintroduce the removed line of code and add a relevant test-case
to prevent accidentally deleting critical lines of code.

Fix Notes: This issue was addressed by Pomerium and the deployed fix was verified by
Cure53.

Cure53, Berlin · 03/31/21 8/13

https://cure53.de/
https://github.com/pomerium/pomerium/blob/d653b0156f4a01ea81901bfbdb3bd7c101a16e4f/authenticate/handlers.go#L69
https://github.com/pomerium/pomerium/blob/d653b0156f4a01ea81901bfbdb3bd7c101a16e4f/authenticate/handlers.go#L69
https://verify.audit.pomerium.io/.pomerium/api/v1/login?pomerium_redirect_uri=http://evil.com
https://verify.audit.pomerium.io/.pomerium/api/v1/login?pomerium_redirect_uri=http://evil.com
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

POM-01-003 WP2: Hardening recommendations for file-handling (Medium)

While auditing the initialization process of an all-in-one installation, it was observed how
the envoy binary is being placed inside a temporary directory with a fixed filename on
the filesystem. Here no checks are being made to ensure this directory is owned by the
same user the Pomerium application is running with. A series of other checks is
performed but they can all be bypassed due to TOCTOU races. Ultimately, the binary is
executed.

Since the attacker model does not include a local attacker, the severity is kept rather
low. A sample exploit strategy has been shared with the developers to further increase
the awareness of such issues. It is recommended to use random temporary directory
names. Paired with the correct access permissions, random temporary directory names
would prevent other local users from creating the directory and filling it with malicious
contents.

POM-01-004 WP2: Cross-Origin HTTP security headers missing (Info)

It was found that the platform is missing certain newer1 HTTP security headers in HTTP
responses. This does not directly lead to a security issue, yet it might aid attackers in
their efforts to exploit other problems. The following list enumerates the headers that
need to be reviewed to prevent flaws linked to headers.

• Cross-Origin Resource Policy (CORP) and Fetch Metadata Request headers
allow developers to control which sites can embed their resources, such as
images or scripts. They prevent data from being delivered to an attacker-
controlled browser-renderer process, as seen in resourcepolicy.fyi and
web.dev/fetch-metadata.

• Cross-Origin Opener Policy (COOP) lets developers ensure that their
application window will not receive unexpected interactions from other websites,
allowing the browser to isolate it in its own process. This adds an important
process-level protection, particularly in browsers which do not enable full Site
Isolation; see web.dev/coop-coep.

1 https://security.googleblog.com/2020/07/towards-native-security-defenses-for.html

Cure53, Berlin · 03/31/21 9/13

https://cure53.de/
https://security.googleblog.com/2020/07/towards-native-security-defenses-for.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Cross-Origin Embedder Policy (COEP) ensures that any authenticated
resources requested by the application have explicitly opted-in to being loaded.
Today, to guarantee process-level isolation for highly sensitive applications in
Chrome or Firefox, applications must enable both COEP and COOP; see
web.dev/coop-coep.

• While the application does use the X-Frame-Options header, it should be noted
that the CSP framework offers a similar protection to X-Frame-Options in ways
that overcome some of the shortcomings of the aforementioned header. To
optimally protect users of older browsers and modern browsers at the same time,
it is recommended to consider deploying the Content-Security-Policy: frame-
ancestors 'none'; header as well.

Overall, missing security headers is a bad practice that should be avoided. It is
recommended to add the following headers to every server response, including error
responses like 4xx items. More broadly, it is recommended to reiterate the importance of
having all HTTP headers set at a specific, shared and central place rather than setting
them randomly. This should either be handled by a load balancing server or a similar
infrastructure. If the latter is not possible, mitigation can be achieved by using the web
server configuration and a matching module.

In the specific case of Pomerium, it is recommended to advise the users about the
existence of those headers and document how they can be used to mitigate side-
channels the Pomerium setup might inadvertently expose in case those headers are not
set correctly. Resources explaining those headers are available online, explaining both
the proper header setup2 as well as the possible consequences of not setting them after
all3.

2 https://scotthelme.co.uk/coop-and-coep/
3 https://web.dev/coop-coep/

Cure53, Berlin · 03/31/21 10/13

https://cure53.de/
https://web.dev/coop-coep/
https://scotthelme.co.uk/coop-and-coep/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

POM-01-005 WP2: Missing SameSite flag for cookie security (Info)

During the analysis of the security flags set for cookies, it was noticed that the SameSite
flag is only used for the CSRF cookie, but it is not used for the cookie containing the
JWT token. This behavior could not be turned into an exploitable scenario, however,
given the limited demo installation, larger installations might benefit from the additional
security provided by properly using the SameSite attribute.

Affected cookie:
• _Pomerium

◦ Missing SameSite flag

It is recommended to offer an option to add the SameSite flag with strict settings to all
cookies that contain critical data, for instance JWT tokens or other similarly sensitive
data. It must be noted however that setting this cookie flag without checking expected
functionality afterwards might lead to faulty application behavior, i.e in situations where a
redirect is happening as part of the authentication procedure4.

4 https://www.ubisecure.com/technical-announcements/samesite-cookies-changes/

Cure53, Berlin · 03/31/21 11/13

https://cure53.de/
https://www.ubisecure.com/technical-announcements/samesite-cookies-changes/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
During this March 2021 project, Cure53 examined the Pomerium codebase and a
deployed setup running the latest version of Pomerium in a real-life and live
environment. As a result, mostly positive conclusions have been reached when it comes
to security of the Pomerium application stack. After spending twenty days on the scope
in March 2021, the Cure53 team members can conclude that the various examined
components and aspects of the applications mostly withstood their scrutiny in regard to
security premise. At the same time, two rather severe vulnerabilities were discovered on
the scope and should not be disregarded.

As for the general setup and procedures of the test, communication was done using a
shared Slack channel and greatly aided the coverage levels and discovery potential of
this examination. Questions regarding certain findings and functionality were promptly
answered and the engineering team made sure to pass along information to make
Cure53’s life easier when stumbling onto difficult to understand application flows or
certain technical problems. In doing so, the in-house team positively contributed to the
overall success of this assignment.

From a meta-level perspective, the overall attack surface related to the usage of the
Pomerium software complex is quite small. However, when one looks into details, a
potential local privilege escalation was found (see POM-01-003). Fixing this issue further
hardens the attack surface against attackers having an advantageous local position.

The security recommendations for the setup and configuration for other third-party
software was found to be solid and secure, removing potential threats, such as Redis as
an SSRF target. The handling of requests and responses to the proxy was found to be
secure and no wiggle room for attacks on the HTTP layer has been found. The Identity
Provider Integration appears sound as well. The configurations for identity providers
comply with OAuth/OIDC specifications, while sensitive key information is well-secured.
The state parameter is correctly verified in the corresponding callback.

Regarding the authentication flow, the programmatic access feature was found to accept
any URL, which leads to Open Redirect and JWT leakage described in POM-01-001. It
was determined to be a serious (High) issue, given the fact that the JWT unveiled the
victim’s identity and potentially allowed bypassing access control. During the verification
of the fix deployed by the Pomerium team, an additional security problem was spotted in
the fix implementation. The fault was in trying to maintain backward compatibility with
previous local deployments. However, the issue was spotted and rectified quickly with a
second patch.

Cure53, Berlin · 03/31/21 12/13

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Moreover, it was found that the middleware did not verify the HMAC signature for certain
endpoints (POM-01-002) due to regressions in previous versions, offering more potential
for exploiting POM-01-001. Simultaneously, the verification of the JWT and parsing of
the URL were found solid thanks to the use of good standard libraries, characterized by
a proven track record of security consciousness. General client-side security was
examined and no issues like XSS, CSRF or insecure HTTP headers were spotted.
However, there is some room for improvement, as stated in POM-01-004.

All in all, only two exploitable issues were spotted and none of them would have Critical
implications. While the Pomerium project should look into improving their automated
regression testing, which could have prevented POM-01-002 from being released, the
security dedication of the in-house team is praiseworthy, as also evidenced from swift
and mostly correct fixes of the problems spotted by Cure53 during this March 2021
inspection. As a consequence, Cure53 sees the application as being on the right track to
delivering a proper foundation from a security perspective.

Cure53 would like to thank Bobby DeSimone, Travis Groth, Denis Mishin, Caleb Doxsey
and Nathan Hayfield from the Pomerium team for their excellent project coordination,
support and assistance, both before and during this assignment.

Cure53, Berlin · 03/31/21 13/13

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Pomerium 03.2021
	Index
	Introduction
	Scope
	Test Methodology
	WP1: Thorough Source Code Audits against latest version of Pomerium
	WP2: Penetration Tests against Pomerium Integration & Setup

	Identified Vulnerabilities
	POM-01-001 WP1: JWT leak via Open Redirect in programmatic access (High)
	POM-01-002 WP1: No verification of pomerium_signature in middleware (High)

	Miscellaneous Issues
	POM-01-003 WP2: Hardening recommendations for file-handling (Medium)
	POM-01-004 WP2: Cross-Origin HTTP security headers missing (Info)
	POM-01-005 WP2: Missing SameSite flag for cookie security (Info)

	Conclusions

