
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report php-saml-sp Libraries 10.-11.2020
Cure53, Dr.-Ing. M. Heiderich, BSc. T.-C. “Filedescriptor” Hong, Dipl.-Ing. M. Vervier,
MSc. L. Gommans

Index
Introduction

Scope

Identified Vulnerabilities

DEC-01-001 WP1: ReturnTo validation bypass via URL parser problem (Medium)

DEC-01-002 WP1: XSS in example code via unencoded SAML attributes (Medium)

DEC-01-007 WP1: CSRF in logout due to missing CSRF protection (Low)

Miscellaneous Issues

DEC-01-003 SP: Deserialization could lead to Remote Code Execution (Low)

DEC-01-004 SP: User can inject XML which is subsequently signed (Low)

DEC-01-005 SP: Potential signature bypass via empty string C14N() failure (Low)

DEC-01-006 SP: Non-canonicalized XML data used after signature check (Low)

Conclusions

Cure53, Berlin · 11/30/20 1/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“There are various options for integrating SAML in your PHP application. However, most
are either (very) complicated, include too many (useless) features, have hard
requirements on Apache and are not easy to package for server operating systems like
CentOS/Fedora and/or Debian. We only need SAML SP support, so there is no need to
include any IdP features, or other (obsolete) authentication protocols. In addition, we
only implement what is actually used "in the field" and that which is secure. So you won't
find SHA1 support or insecure encryption.”

From https://git.tuxed.net/fkooman/php-saml-sp/about/

This report details the scope, findings and mitigatory advice concerning a penetration
test and source code audit against the php-saml-sp Secure SAML Service Provider, a
software written in PHP that is available as Open Source Software (OSS).

The work was requested by the Danish e-Infrastructure Cooperation (DeIC) and
executed by the Cure53 team in late October and early November 2020, namely during
CW44 and CW45. The aforementioned team consisted of four senior testers, who spent
a total of twelve days on the scope to reach an optimal level of reporting coverage.

The work was divided into three distinct yet related work packages (WPs) for efficient
structuring. These were:

• WP1: General tests & audits against php-saml-sp & php-secookie
• WP2: SAML & XML-focused tests & source code audits of php-saml-sp
• WP3: Penetration tests & assessments of the deployed php-saml-sp software

The chosen methodology for this project was white-box. The involved Cure53 members
were granted access to all relevant sources (which are available as OSS) as well as a
testing environment furnished by the maintainers.

Communications during the tests and audits were facilitated via a dedicated Signal
group that was created by the maintainers and within which the testers were invited to
participate. Communications were productive and supportive, allowing for an optimum
environment in which any and all issues could be reported and discussed simultaneously
with the ongoing testing. In fact, such was the team’s efficiency during this period that a
handful of issues were correctly fixed during the testing phase - these are marked in this
report with a note.

Cure53, Berlin · 11/30/20 2/14

https://cure53.de/
https://git.tuxed.net/fkooman/php-saml-sp/about/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The exemplary preparations and effective channels of communication contributed
toward ensuring the Cure53 team made above-par headway, thereby enabling
outstanding coverage levels. This is reflected by the findings detected during this test.
Specifically, the tests and audits unveiled a total of seven anomalies: three of which
were classified to be security vulnerabilities, and four to be general weaknesses of lower
exploitation potential.

The overall impression gained is sufficiently positive, as none of the issues identified
were categorized with a higher severity level than Medium. Having said this, one could
deem the Remote Code Execution in DEI-01-003 a ‘close call’ and a potential concern,
but thankfully this issue proved to be unexploitable in actuality.

The report will now shed some light on the scope and test setup, before listing all
findings by group and then in chronological order. Each finding will be accompanied by a
technical description and a PoC where possible, plus mitigation or fix advice if
necessary. Subsequently, the report will finalize with a conclusory summation in which
the Cure53 team will elaborate on the general impressions gained over the course of this
test and audit, before relaying broader and tailored high-level hardening advice.

Note: This report was updated in late November 2020 after Cure53 was able to
successfully perform a fix verification process in collaboration with the developers.

Each issue ticket has been updated with a note to clarify on the status of the respective
fix or mitigation. Fixes have been verified based on diffs and detailed descriptions.

Cure53, Berlin · 11/30/20 3/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• White-Box Tests & Audits against php-saml-sp Secure SAML Service Provider

◦ WP1: General tests & audits against php-saml-sp & php-secookie
▪ https://git.tuxed.net/fkooman/php-saml-sp
▪ https://git.tuxed.net/fkooman/php-secookie

◦ WP2: SAML & XML-focused tests & source code audits of php-saml-sp
▪ See above

◦ WP3: Penetration tests & assessments of the deployed php-saml-sp software
▪ Test system

• https://debianx.tuxed.net/
▪ SP landing page

• https://debianx.tuxed.net/php-saml-sp/
◦ Sources were shared with Cure53

Cure53, Berlin · 11/30/20 4/14

https://cure53.de/
https://debianx.tuxed.net/php-saml-sp/
https://debianx.tuxed.net/
https://git.tuxed.net/fkooman/php-secookie
https://git.tuxed.net/fkooman/php-saml-sp
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues detected
throughout the testing period. Please note that findings are listed in chronological order
rather than by their degree of severity and impact. The aforementioned severity rank is
simply given in brackets following the title heading for each vulnerability. Each
vulnerability is additionally given a unique identifier (e.g. DEC-01-001) for the purpose of
facilitating any future follow-up correspondence.

DEC-01-001 WP1: ReturnTo validation bypass via URL parser problem (Medium)

Note: This issue has been addressed successfully by the development team. The
problem as described no longer exists. The fix was verified by Cure53.

A bypass of the open redirect protection on the login endpoint was discovered during the
test. The URL parameter named “ReturnTo” can be provided to the login HTTP GET
request to set the URL that a user is redirected to after successful login. The value is
validated by the function verifyReturnToOrigin() that is invoking the parse_url() function
of PHP. The parsed URL is utilized to identify both the URL scheme and the host of the
provided return URL value. These are subsequently validated against a given, expected
origin value.

Owing to a multitude of discrepancies between parsers of common web browsers
(Chromium, Edge, Firefox, Safari) and the PHP URL parser implementation, URLs can
be provided that will be parsed differently by a browser from that of the PHP URL. For
example, the URL “https://a\@example.com” will give host “a” in common browsers,
while parse_url() will normalize the URL to include the host “example.com”.

Affected File:
src/Web/Service.php

Affected Code:
 /**
 * @param string $expectedOrigin
 * @param string $returnTo
 *
 * @return string
 */
 private static function verifyReturnToOrigin($expectedOrigin, $returnTo)
 {
 // Origin is scheme://host[:port]
 if (false === \filter_var($returnTo, FILTER_VALIDATE_URL)) {
 throw new HttpException(400, 'invalid "ReturnTo" provided');
 }

Cure53, Berlin · 11/30/20 5/14

file:///home/mario/work/documents/DeiC/https:%2F%2Fa%5C@example.com
https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 if (false === $parsedUrl = \parse_url($returnTo)) {
 throw new HttpException(400, 'invalid "ReturnTo" provided');
 }
 // the filter_var FILTER_VALIDATE_URL make sure scheme and host are
 // there, but just to make absolutely sure...
 if (!\array_key_exists('scheme', $parsedUrl) || !\array_key_exists('host',

$parsedUrl)) {
 throw new HttpException(400, 'invalid "ReturnTo" provided');
 }
 $urlConstruction = $parsedUrl['scheme'].'://'.$parsedUrl['host'];
 if (\array_key_exists('port', $parsedUrl)) {
 $urlConstruction .= ':'.(string) $parsedUrl['port'];
 }
 if ($expectedOrigin !== $urlConstruction) {
 throw new HttpException(400, 'invalid "ReturnTo" provided');
 }
 return $returnTo;
 }

An attacker who can bypass the URL validation may provide malicious URLs via a
crafted GET parameter. This can allow adversaries to manipulate users via URLs that
look harmless but contain an encoded parameter, as shown above. It is recommended
to end the reliance on the original value provided via the GET parameter “ReturnTo”.
Instead, the URL could be normalized before validation allowing for the implementation
of the normalized value only. This way, the potential for mismatching between the
various parser implementations is greatly reduced, since the normalized value would not
contain any special and escaped characters, nor any other ambiguous elements.

DEC-01-002 WP1: XSS in example code via unencoded SAML attributes (Medium)

Note: The issue was fixed during the audit and the fix was verified by Cure53.

Testing confirmed that the example code provided for users fails to encode SAML
attributes returned in an SAML assertion. An attacker could potentially craft SAML
assertions which contain XSS payloads with HTML characters.

Affected File:
src/example/index.php

Affected Code:
foreach ($samlAssertion->getAttributes() as $k => $v) {
 echo $k.': '.\implode(',', $v).'
';
}

It is recommended to encode SAML attributes and all user-input in general.

Cure53, Berlin · 11/30/20 6/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

DEC-01-007 WP1: CSRF in logout due to missing CSRF protection (Low)

Note: This issue has been addressed successfully by the development team. The
problem as described no longer exists. The fix was verified by Cure53.

Neither the php-saml-sp project nor the demo application employ anti-Cross-Site
Request Forgery (CSRF) tokens. For SAML, this is unnecessary on the whole because
the requests are not replayable - however, the demo application has alternative actions
which modify states, for instance logout.

The Referer header is reviewed on POST requests, yet the logout URL is accessible
through a GET request. Since the logout is the most effective action an attacker can take
via the means of CSRF, the impact is limited to solely disallowing a user to access the
application while an attacker’s web page is open. Nevertheless, CSRF in general lets
attackers perform actions on the user’s behalf and manipulate server state without
having access to the authentication cookie.

PoC:
The following image tag can be placed in an HTML file. In the eventuality that this file is
opened by a logged-in user, the user will be logged out.

<img src="https://debianx.tuxed.net/php-saml-sp/logout?ReturnTo=https%3A%2F
%2Fdebianx.tuxed.net%2Fvpn-user-portal%2Faccount">

Several mitigations are possible here. A regular application will seek to employ anti-
CSRF tokens or consistently check the Referer header, but a simple solution for the
php-saml-sp library would be to disallow GET and other methods to be used for the
logout request, since the Referer is already being checked for POST requests.

Cure53, Berlin · 11/30/20 7/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious intent in the future. The majority of these results
are vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

DEC-01-003 SP: Deserialization could lead to Remote Code Execution (Low)

The php-saml-sp project was found to use PHP’s built-in serialization to store data in the
user’s session. In this way, no method was found through which the user could control
the session data. However, the function handleResponse in SP.php retrieves a value
from the session in which the user is able to control the relevant part of the key, then
deserializes the value. If the user was able to control the data in any prefixed session
key - for example, if the software would store the user’s name in the session - this could
result in remote code execution.

Affected File:
src/SP.php

Affected Code:
public function handleResponse($samlResponse, $relayState)
{
 if (null === $sessionValue = $this->session->take(self::SESSION_KEY_PREFIX.
$relayState)) {
 throw new SpException('"RelayState" not found in session data');
 }
 $authnRequestState = \unserialize($sessionValue);

The PHP unserialize documentation warns not to use this function toward untrusted user
input. While this is not currently the case, changes in seemingly-unrelated sections of
the code could enable this to occur. PHP considers JSON to be a safe data-interchange
format. Using the json_encode and -decode functions rather than object serialization will
prevent this becoming exploitable. To maintain the existing type check, a type field could
be used in the JSON data.

Cure53, Berlin · 11/30/20 8/14

https://cure53.de/
https://github.com/fkooman/php-saml-sp/blob/e7c60aeff51f50a2f59c7f2389fcd24aea75a11a/src/SP.php#L131
https://www.php.net/unserialize
https://www.php.net/unserialize
https://www.php.net/unserialize
https://github.com/fkooman/php-saml-sp/blob/e7c60aeff51f50a2f59c7f2389fcd24aea75a11a/src/SP.php#L130
https://github.com/fkooman/php-saml-sp/blob/e7c60aeff51f50a2f59c7f2389fcd24aea75a11a/src/SP.php#L127
https://github.com/fkooman/php-saml-sp/blob/e7c60aeff51f50a2f59c7f2389fcd24aea75a11a/src/SP.php#L127
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

DEC-01-004 SP: User can inject XML which is subsequently signed (Low)

Note: This issue has been addressed successfully by the development team. The
problem as described no longer exists. The fix was verified by Cure53.

A user can inject XML into a template, which is then signed by the application and
returned to the user. No purpose was found for this signed data, as the IDP does not
verify it before parsing and, if they did, it would only facilitate attack toward the IDP by
enabling the supply of altered XML data.

The templating engine in src/web/Tpl.php commences output buffering, include s
(executes) the template which may use global variables, then retrieves and cleans the
output buffer. The template AuthnRequest.php echoes user-supplied data without
escaping it. The function prepareRequestUrl signs the resulting value and it is returned
to the user in the form of an HTTP redirect.

Affected File:
AuthnRequest.php

Affected Code:
 <samlp:RequestedAuthnContext Comparison="exact">
<?php foreach ($AuthnContextClassRef as $v): ?>

<saml:AuthnContextClassRef><?=$v; ?></saml:AuthnContextClassRef>
<?php endforeach; ?>
 </samlp:RequestedAuthnContext>
<?php endif; ?>
<?php if (0 !== \count($ScopingIdpList)): ?>
 <samlp:Scoping>

<samlp:IDPList>
<?php foreach ($ScopingIdpList as $ScopingIdp): ?>
 <samlp:IDPEntry ProviderID="<?=$ScopingIdp; ?>"/>
<?php endforeach; ?>

</samlp:IDPList>

PoC:
https://debianx.tuxed.net/php-saml-sp/login?ScopingIdpList=">&ReturnTo=https://
debianx.tuxed.net/

It is recommended to escape values for the target syntax - in this case XML - each and
every time, or alternatively to keep code and data separate by inserting nodes rather
than concatenating strings. Furthermore, running XML templates through the PHP
interpreter might lead to alternative bugs - such as the instance by which short open tags

Cure53, Berlin · 11/30/20 9/14

https://cure53.de/
https://debianx.tuxed.net/php-saml-sp/login?ScopingIdpList=%22%3E&ReturnTo=https://debianx.tuxed.net/
https://debianx.tuxed.net/php-saml-sp/login?ScopingIdpList=%22%3E&ReturnTo=https://debianx.tuxed.net/
https://github.com/fkooman/php-saml-sp/blob/e7c60aeff51f50a2f59c7f2389fcd24aea75a11a/src/SP.php#L339-L342
https://github.com/fkooman/php-saml-sp/blob/e7c60aeff51f50a2f59c7f2389fcd24aea75a11a/src/tpl/AuthnRequest.php#L13-L15
https://github.com/fkooman/php-saml-sp/blob/e7c60aeff51f50a2f59c7f2389fcd24aea75a11a/src/Web/Tpl.php#L118
https://github.com/fkooman/php-saml-sp/blob/e7c60aeff51f50a2f59c7f2389fcd24aea75a11a/src/Web/Tpl.php#L118
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

are enabled, and an XML processing instruction or XML declaration is included in the
template.

DEC-01-005 SP: Potential signature bypass via empty string C14N() failure (Low)

Note: This issue has been addressed successfully by the development team. The
problem as described no longer exists. The fix was verified by Cure53.

Before signature checking, the XML data is canonicalized using the DOMNode::C14N
method. According to the documentation of C14N1, the function can return the Boolean
value false in case of an error.

Affected File:
src/Crypto.php line 69, line 232, and line 236

Affected Code:

$signedInfoElement =
$xmlDocument->requireOneDomElement('self::node()/ds:Signature/ds:SignedInfo');
$canonicalSignedInfo = $signedInfoElement->C14N(true, false);
$signatureElement =
$xmlDocument->requireOneDomElement('self::node()/ds:Signature');
$rootElement = $xmlDocument->requireOneDomElement('self::node()');
$rootElement->removeChild($signatureElement);
$rootElementDigest = Base64::encode(

 \hash(
 self::SIGN_HASH_ALGO,
 self::canonicalizeElement($rootElement),
 true
)
);

 // compare the digest from the XML with the actual digest
 if (!\hash_equals($rootElementDigest, $digestValue)) {
 throw new CryptoException('unexpected digest');
 }

self::verify($canonicalSignedInfo, Base64::decode($signatureValue),
$publicKeys);
}

The value false will be converted into the empty string when used in a string context.
This means that an attacker, knowing a valid signature for a signature info block
containing the SHA256 hash of the empty string, could supply any XML fragment that

1 https://www.php.net/manual/de/domnode.c14n.php

Cure53, Berlin · 11/30/20 10/14

https://cure53.de/
https://www.php.net/manual/de/domnode.c14n.php
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

will make C14N return false to the signature check and pass it successfully.

The finding’s impact categorization is minimized here due to two reasons: the
requirement to be privy to a valid signature for the empty string, and the requirement to
supply an XML fragment that fails canonicalization via C14N.
It is still recommended to handle any failures of function C14N, to ensure that only
canonicalized XML content is processed after the initial signature verification step, and
that error-return values are handled explicitly in case of failed canonicalization.

DEC-01-006 SP: Non-canonicalized XML data used after signature check (Low)

Note: This issue has been addressed successfully by the development team. The
problem as described no longer exists. The fix was verified by Cure53.

An attacker can create an XML document that, when canonicalized, matches the signed
hash and passes the signature checks. If the document contains data that is processed
during canonicalization, this data could enable attacks in subsequent processing steps.
The document could potentially be processed later by another parser that reads the
metadata file written in MetadataSource.php line 228 to a disk via file.

Affected File:
MetadataSource.php line 228 general parsing code strategy

Affected Code:
 // verify the metadata schema and signature
 $metadataDocument = XmlDocument::fromMetadata($responseBody, true);
 Crypto::verifyXml($metadataDocument, $publicKeyList);

 // write metadata to disk using temporary file trick for "atomic" file
 // update so the metadata file can't get corrupted
 if (false === $tmpFile = \tempnam(\sys_get_temp_dir(), 'php-saml-sp')) {
 throw new RuntimeException('unable to generate a temporary file');
 }
 if (false === @\file_put_contents($tmpFile, $responseBody)) {
 throw new RuntimeException(\sprintf('unable to write "%s"', $tmpFile));
 }
 if (false === @\rename($tmpFile, $metadataFile)) {
 throw new RuntimeException(\sprintf('unable to move "%s" to "%s"',

$tmpFile, $metadataFile));
 }

 if (null !== $lastModified = $httpClientResponse->getHeader('Last-Modified'))
{

 // use Last-Modified header to set the metadata file's modified
 // time, if available from server to be used on future requests as

Cure53, Berlin · 11/30/20 11/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 // the "If-Modified-Since" header value
 $lastModifiedDateTime = new DateTime($lastModified);
 if (false === $lastModifiedTimestamp =

$lastModifiedDateTime->getTimestamp()) {
 $lastModifiedTimestamp = 0; // 1970-01-01
 }
 \touch($metadataFile, $lastModifiedTimestamp);
 }
 $this->writeRefreshAt($metadataFile, $metadataDocument);
 $this->logger->notice(\sprintf('[%s] metadata updated', $metadataUrl))

During canonicalization, an XML fragment is transformed via defined methods to a
normalized form that should be comparable. This means that whitespace and other data
can be removed from the document. Even though the canonicalization is specified and
defined by XML standards, subtle differences in various parser implementations might
occur that could lead to differing results.

By applying the signature checks to the canonicalized form of the XML data using the
original data in subsequent processing steps, attackers may be able to insert additional
data into the signed XML document, thereby leveraging the potential for attack. Such an
attack could not be implemented in practice within the timeframe given; nevertheless,
such instances have been confirmed in previous reports2. It is recommended to use the
canonicalized XML data only for further processing after the cryptographic signature has
been verified.

2 https://cheatsheetseries.owasp.org/cheatsheets/XML_Security_Cheat_Sheet.html

Cure53, Berlin · 11/30/20 12/14

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/XML_Security_Cheat_Sheet.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW44 and CW55 testing against the php-saml-sp Secure SAML
Service Provider by the Cure53 team - will now be discussed at length. To summarize, it
can be considered that the target software functions have left a positive impression with
no severity ratings higher than Medium recorded.

For ease of reading, the conclusory assessments will now be split into two distinct
sections, first in relation to impressions regarding application security posture, then
moving to code audit and code quality.

In the first area, standard web application security was performed during the testing
phase. The confirmation was made that optimal HTTP security headers are set and no
CSRF/XSS issues exist. A reflected XSS was found in the example code via SAML
attributes (as reported in DEC-01-002).

An extensive focus was placed toward XML handling and signature wrapping attacks in
particular. All known signature wrapping attacks found in other SAML libraries were
tested against php-saml-sp. Due to the fact that the software supports signing the whole
assertion solely, the potential for signature wrapping attacks is minimal. In addition,
general SAML validation was scrutinized. Actions toward ensuring an effective reading
here included ensuring values such as Issuer, AudienceRestriction, InResponseTo,
NotOnOrAfter and so on, are correctly deployed and assessed.

As noted, the second area here concerns the php-saml-sp code. Specifically, a source
code audit was performed simultaneously with standard web application security checks.
Some dependencies of interest, specifically paragonie/random_compat and
paragonie/constant_time_encoding, were also checked for common issues. Certain
complex PHP functions that accept external input, such as gzdeflate, were tested to a
limited extent to determine whether weaknesses have the potential to materialize in the
future.

The majority of code snippets demonstrate a strong level of security awareness, and the
absence of severe issues attests to the overall quality of the project. One instance worth
highlighting was the handling of template files: the templates are evaluated using a
construction based on output buffering, and variables are employed across files. This
obscures the fact that variables are being injected through evaluated code, and likely
explains the existence of the issue detailed by DEC-01-004.

Cure53, Berlin · 11/30/20 13/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Also pertinent to mention here: the verification of XML signatures is performed on the
canonicalized form of the XML data, whilst the actual processing and handling of the
XML data is actioned on the original XML data. This can lead to partial signature
bypasses such as those described in findings DEC-01-005 and DEC-01-006.

Another particular section resulting in a positive reading was prevalent in the used
random_compat library. One often finds that random libraries regress to insecure
random-number generation if the absence of a cryptographically-secure generator
occurs. In this instance, such a failure would result in an exception rather than silently
continuing.

In summation, the impressions gained from this autumn 2020 project on the whole were
relatively positive. No issues beyond a Medium severity rating were detected; one sole
vulnerability was close to being categorized as Critical but ultimately resulted in being
classified as an unexploitable miscellaneous issue instead. Furthermore, in Cure53’s
view, the in-house team appears to have a firm grasp on current, optimum development
practices. Once all vulnerabilities have been mitigated, the application should enjoy the
fruits of a strong security infrastructure, as alluded to by the positive results detailed
within this report.

Cure53 would like to thank François Kooman, Tangui Coulouarn, Rogier Spoor and
Mads Freek Petersen from the Danish e-Infrastructure Cooperation team for their
excellent project coordination, support and assistance, both before and during this
assignment.

Cure53, Berlin · 11/30/20 14/14

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report php-saml-sp Libraries 10.-11.2020
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	DEC-01-001 WP1: ReturnTo validation bypass via URL parser problem (Medium)
	DEC-01-002 WP1: XSS in example code via unencoded SAML attributes (Medium)
	DEC-01-007 WP1: CSRF in logout due to missing CSRF protection (Low)

	Miscellaneous Issues
	DEC-01-003 SP: Deserialization could lead to Remote Code Execution (Low)
	DEC-01-004 SP: User can inject XML which is subsequently signed (Low)
	DEC-01-005 SP: Potential signature bypass via empty string C14N() failure (Low)
	DEC-01-006 SP: Non-canonicalized XML data used after signature check (Low)

	Conclusions

