
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report Passbolt SSO, API & Add-On 02.-03.2023
Cure53, Dr.-Ing. M. Heiderich, M. Rupp, L. Herrera, BSc. B. Walny

Index
Introduction
Scope
Identified Vulnerabilities

PBL-08-001 WP2: Credentials leakage via clickjacking (High)
PBL-08-002 WP2: Passphrase retained in memory post-logout (Low)
PBL-08-003 WP1: Lack of proper ACL for users endpoint (Low)
PBL-08-006 WP1: 2FA status information disclosure via users endpoint (Info)
PBL-08-007 WP1: SSO design prompt=none facilitates auth bypass (Medium)

Miscellaneous Issues
PBL-08-004 WP1: Lack of 2FA login code rate limiting (Info)
PBL-08-005 WP1: Lack of cross-origin-related HTTP security headers (Info)
PBL-08-008 WP2: Lack of explicit CSP on extension manifest (Info)

Conclusions

Cure53, Berlin · 03/09/23 1/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“The password manager your team was waiting for. Free, open source, self-hosted,
extensible, OpenPGP based.”

From https://www.passbolt.com/

This report documents the scope, coverage, and findings concerning a Cure53
penetration test and source code audit against the Passbolt platform. The testing team
placed primary focus on its SSO features, backend API endpoints, browser add-on, and
frontend aspects.

The audit was requested by Passbolt S.A. in December 2022 and conducted in late
February and early March 2023, specifically in CW09. In order to achieve the expected
coverage for this project, a total of ten days were invested. All assessment actions were
divided into two distinct work packages (WPs) for fluid execution. These read as follows:

• WP1: White-box tests & security assessments against Passbolt SSO features &
backend API

• WP2: White-box tests & security assessments against Passbolt SSO browser
add-on & frontend parts

This audit marks the eighth collaborative engagement between Passbolt S.A. and
Cure53, though the Passbolt SSO constitutes a newly-implemented feature and as such
has not been included in scope for any prior test iterations.

To facilitate optimum coverage, a testing instance, sources, test-user accounts, pertinent
supporting information and documentation, and all other access elements deemed
necessary were provided. The selected methodology was white-box, whilst the
preparation, delivery, and completion of this security review was handled by four skill
matched senior testers from the Cure53 team. Preparation procedures were
accomplished in CW08 February 2023 to ensure no blockers would be encountered
ahead of testing.

Communications between the Passbolt S.A. and Cure53 teams were enabled by a
dedicated, shared Slack channel, for which all relevant staff from both sides were invited
to partake. As a result, cross-team discussions were smooth on the whole. The scope
received sufficient preparation, any test-related queries were kept to a minimum, and the
active assessment phase was trouble-free.

Cure53, Berlin · 03/09/23 2/17

https://cure53.de/
https://www.passbolt.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The tester team relayed numerous status updates concerning the audit progression and
noteworthy findings. Live reporting was offered and implemented via the aforementioned
Slack channel.

In relation to the issues discovered, Cure53 identified a total of eight findings following
strong coverage against the WP1 and WP2 scope items. Over half of the findings
(specifically 5) were categorized as Identified Vulnerabilities, whilst all remaining
exhibited minor exploitation potential and were consequently assigned to the
Miscellaneous Issues section. This outcome was warmly received by Cure53, since the
total yield of findings is relatively moderate compared with other correlatory audit
scopes.

In addition, the testing team positively acknowledged that any Critical vulnerabilities
were effectively negated by the platform’s security resilience. However, one particular
issue pertains to the potential leakage of credentials via a clickjacking scenario, as
stipulated in ticket PBL-08-001. As a result, this defect’s severity impact was upgraded
to High. Nevertheless, the Passbolt team’s swift mitigation of said issue is commendable
and attests to its commitment to high security standards for the components in scope.

To summarize, Cure53 is pleased to confirm that the Passbolt platform already exhibits
sufficient protection against a plethora of varying attack scenarios. Nevertheless, as
corroborated by the volume of tickets raised in this report, a number of hardening
opportunities are present that require follow-up actions from the developer team in order
to raise the security offering even further.

The scope and test setup, as well as the material available for testing, are further
clarified below. Following this, the report enumerates all findings in chronological order,
with the detected vulnerabilities detailed initially then proceeded by all general
weaknesses. Each finding offers technical analysis, a PoC where necessary, and
optimal mitigation or fix advice.

Finally, Cure53 will elaborate on the general impressions gained throughout this test in
the conclusion section, which serves to offer a transparent and comprehensive overview
of the scope’s perceived security posture.

Cure53, Berlin · 03/09/23 3/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• White-box penetration tests against Passbolt SSO, API, & browser add-on

◦ WP1: White-box tests & security assessments against Passbolt SSO features &
backend API
▪ Test instance:

• https://pro.passbolt.dev/
▪ Source code:

• https://bitbucket.org/passbolt_pro/passbolt_pro_api/src/release/plugins/
PassboltEe/Sso/

◦ WP2: White-box tests & security assessments against Passbolt SSO browser add-on
& frontend aspects
▪ Source code:

• https://github.com/passbolt/passbolt_browser_extension/tree/release
▪ Test user-accounts utilized in this assessment:

• E: rupp@cure53.de
• E: maxim@cure53.de
• E: rupp+user@cure53.de
• E: herrera@volt.cure53.de
• E: ben@cure53.de

◦ Test-supporting material was shared with Cure53:
▪ Part I - SSO admin settings & login
▪ Part II - Recover process (browser reconfig process)
▪ Passbolt styleguide

◦ All relevant sources were shared with Cure53

Cure53, Berlin · 03/09/23 4/17

https://cure53.de/
https://github.com/passbolt/passbolt_styleguide/tree/v3.11.0
https://github.com/passbolt/passbolt_styleguide/tree/v3.11.0
https://docs.google.com/document/d/1ktRz9CBb7EFmLOy2cPlaqcOP962d5Lm-JkSisshS0ds/edit#heading=h.snkvmfmtcj2b
https://docs.google.com/document/d/1S58TonJ2uXwkaKl7WwLzTzmwJGiSJdhlqP-xbmxFBd0/edit?usp=sharing
mailto:ben@cure53.de
mailto:herrera@volt.cure53.de
mailto:rupp+user@cure53.de
mailto:maxim@cure53.de
mailto:rupp@cure53.de
https://github.com/passbolt/passbolt_browser_extension/tree/release
https://bitbucket.org/passbolt_pro/passbolt_pro_api/src/release/plugins/PassboltEe/Sso/
https://bitbucket.org/passbolt_pro/passbolt_pro_api/src/release/plugins/PassboltEe/Sso/
https://pro.passbolt.dev/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
All security and implementation issues identified during testing are provided below.
Findings are enumerated in chronological order rather than by their degree of severity
and impact. The severity rank is offered in brackets after the title heading for each
vulnerability, which precedes a unique identifier (e.g. PBL-08-001) to assist with any
follow-up reporting.

PBL-08-001 WP2: Credentials leakage via clickjacking (High)
Fix note: This finding was mitigated during active testing and a temporary mitigation
verification was issued by Cure53.

The observation was made that all the files from the webAccessibleResources folder are
externally exposed to web pages via a wildcard in the web_accessible_resources
manifest property. Files that are listed in this particular property can be navigated to or
framed by any arbitrary page.

Following extensive analysis, testing confirmed that two of these files - namely
quickaccess.html and passbolt-iframe-page.html - facilitate credential leakage and other
malicious actions via a clickjacking attack. Notably, the SSO feature functions similarly to
the scenario whereby users select the Remember until I log out option, which is a
necessary step to successfully instigate this attack vector.

The credentials can be leaked by a malicious page by framing the quickaccess.html
page, then creating username and password input fields. Subsequently, the user will be
tricked into performing four random clicks on the attacker's page.

Unbeknownst to the user, they will actually click on Filters, then Items I own, a random
credential, and finally the Use on this page option - all of which populates the attacker's
form with the victim's credentials.

Affected file:
/passbolt_browser_extension-release/src/all/manifest.json

Affected code:
 "permissions": [
 "activeTab",
 "clipboardWrite",
 "tabs",
 "storage",
 "unlimitedStorage",
 "*://*/*",

Cure53, Berlin · 03/09/23 5/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 "alarms"
],
 "web_accessible_resources": [
 "webAccessibleResources/*"
]

Steps to reproduce:
1. Log into the Passbolt extension using SSO.
2. Ensure you own at least one credential, then navigate to the following URL:

https://lbherrera.github.io/lab/passbolt-9910038/index.html.
3. Note that an iframe with opacity will be displayed. Here, click on Filters, followed

by Items I own, your credentials, and finally on the Use on this page option.
4. Observe that an alert will be displayed containing the user's credentials.

In a tangible attack scenario, the victim would only need to make four arbitrary clicks on
the attacker's webpage and would be oblivious to the fact they are interacting with the
extension. The PoC provided does not completely hide the iframe for demonstration
purposes and no further effort was required to render the clicks more seamless.

To mitigate this issue, Cure53 recommends removing the affected files from the
webAccessibleResource property. If this is deemed infeasible due to certain feature
requirements, the frame-ancestors CSP directive should be specified in each affected
file to ensure only safe, allow-listed domains are contained.

PBL-08-002 WP2: Passphrase retained in memory post-logout (Low)
The observation was made that the passphrase of a given account is not cleared from
memory immediately following user logout. This means that an attacker with physical
access to the victim's computer can retrieve the victim’s passphrase, even if the account
is logged out. Notably, this attack vector is only possible if the extension popup has not
been closed since the account was last logged in and logged out.

Furthermore, the testing team noted that the passphrase is not cleared from memory
immediately after login in the event the user has not selected the Remember until I log
out option.

Nevertheless, the fact that the memory is cleared once the popup is dismissed
significantly reduces the severity impact of this issue, with the ticket appropriately
downgraded to Low.

Cure53, Berlin · 03/09/23 6/17

https://cure53.de/
https://lbherrera.github.io/lab/passbolt-9910038/index.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Steps to reproduce:
1. Ensure Google Chrome is used and the Passbolt extension is installed.
2. Log in using the passphrase.
3. Click Logout.
4. Right-click on the Passbolt extension popup and click Inspect.
5. Click the Memory tab on the DevTools window that appears.
6. Click Take snapshot.
7. Press CTRL+F and type the start of your Passbolt passphrase after the snapshot

is created.
8. Observe that the password is identifiable in the memory.

To mitigate this issue, Cure53 advises closing the Passbolt extension popup and
reopening it after the user logs out to ensure memory is sufficiently cleared.

PBL-08-003 WP1: Lack of proper ACL for users endpoint (Low)
The discovery was made that the users functionality suffers from a lack of correct
access-control rules on the server-side. This can be observed when a malicious User-
role user attempts to access the affected endpoint by using a third-party resource ID for
the filter[has-access] parameter. The approach succeeds, even though the item should
be restricted and unavailable to users without access for the requested resource. In the
current implementation, the endpoint’s response discloses a list of members with
legitimate resource access to the malicious user. This type of action should clearly be
blocked within the presently utilized access model.

The following example demonstrates the erroneous behavior. Note that the included
requests to the application utilize the rupp+user@cure53.de (User role) user-account
session, which lacks resource access. Said user can successfully view the list of
members or groups that share the resource (ID: 41899b09-aa7a-49a7-995c-
b8f2fe371f25), even if this action is not permitted by the role.

Request:
GET /users.json?api-version=v2&filter%5Bhas-access%5D=41899b09-aa7a-49a7-995c-
b8f2fe371f25 HTTP/1.1
Host: pro.passbolt.dev
Cookie: passbolt_session=ts935mnlfl7j9po8p6nq4c4hs8

Response body:
[...]
"body": [
 {
 "id": "4a13c02a-d06e-4814-9a7d-a03c21ff6c77",
 "role_id": "0d51c3a8-5e67-5e3d-882f-e1868966d817",

Cure53, Berlin · 03/09/23 7/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 "username": "herrera@volt.cure53.de",
 "active": true,
 "deleted": false,
 "created": "2023-02-27T11:04:25+00:00",
 "modified": "2023-02-27T19:58:47+00:00",
 "groups_users": [],
[...]

Given the limited exploitability of this issue for instigating a tangible attack, the severity
rating was appropriately downgraded to Low.

Generally speaking, correct access control should never solely rely on the assumption
that a user is unaware of the methods by which they can reach various endpoints.

To mitigate this issue, Cure53 advises implementing adequate authorization checks for
the affected application endpoint. The developer team’s amended approach should
determine whether a user with the requested session is permitted to obtain an endpoint’s
contents via the specified requests. If this is not the case, the backend should return the
associated error code.

PBL-08-006 WP1: 2FA status information disclosure via users endpoint (Info)
The observation was made that a user’s Two-Factor Authentication (2FA) status is
disclosable by a malicious user via the /users/ API endpoint. Nevertheless, Cure53
would like to underline that this status is only displayed to administrators in the
application’s web interface. Despite the fact that this behavior does not directly facilitate
significant risk, user information may be unnecessarily revealed and as such should be
addressed. The following example relating to one of the affected endpoints
demonstrates the present behavior.

Request:
GET /users/407cb1be-3ab5-4840-99f2-391131f2bd74.json HTTP/1.1
Host: pro.passbolt.dev
Cookie: passbolt_session=jg8auftkkhlh7ev281tv480b2m;
csrfToken=ea43450116de96ca7909bad68d038f35edbee5ae22c6338fe65b95c41bc508b8f7e5dc
dd346323d901f89f7a42ba5749ae9989788eed163c1bfea9ccd6aa3714

Response body:
[...]
"is_mfa_enabled": false,
[...]

Cure53, Berlin · 03/09/23 8/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As one can deduce from the response, the endpoint may return previously-saved
information concerning the user’s two-factor authentication status. However, since this
finding does not leak any pertinent, critical information, the severity marker was
appropriately downgraded to Info.

In spite of the minor risk potential in this regard, Cure53 hopes that this issue is viewed
in context, considering that it will generally assist attackers in their efforts to enumerate
alternative methods to conduct further attacks against the target.

To mitigate this issue, Cure53 advises altering the application’s logic flow to ensure that
the affected endpoint also censors the user’s 2FA status for the User role.

PBL-08-007 WP1: SSO design prompt=none facilitates auth bypass (Medium)
Whilst auditing the Microsoft Single-Sign On (SSO) implementation, the observation was
made that the application’s enforcement of the SSO prompt=login upon login
necessitates users to always authenticate with their Microsoft password. Here, the
SSO’s intention to negate the need to memorize two passwords - i.e. the passphrase for
the Passbolt application and an SSO password - and leverage a single password only
was deemed susceptible to risk in the event of a local attack.

Whilst remote attackers with XSS capabilities would still be prompted for the password,
local attackers could circumvent the authentication altogether by intercepting the SSO
login request and replacing the prompt parameter from login to none. The fact that the
Passbolt application’s logout function does not invalidate the SSO sessions at the IdP -
which enables a local attacker to access all saved passwords without further knowledge
- is pertinent for this compromise scenario.

Even security-conscious users that frequently log out of their password managers may
remain unaware that the inherent nature of SSO will render them susceptible to risk,
particularly in relation to non-invalidated sessions.

To reproduce this vulnerability, simply follow the steps offered below:

Steps to reproduce:
1. Sign into the Passbolt application once with SSO, regardless of any Keep my

session setting on the Microsoft side.
2. Sign out.
3. Intercept the outgoing requests from the browser extension via Burp Suite, for

instance.

Cure53, Berlin · 03/09/23 9/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

4. Click Sign in via SSO, then alter the intercepted [..]/oauth2/v2.0/authorize/?[..]
request to login.microsoftonline.com and the parameter prompt from login to
none.

5. Forward all other requests and desist interceptions.
6. Observe that the account is logged in.

Given the local attacker requirement, Cure53 considers this a Medium severity
vulnerability. However, in a password manager context, this behavior is deemed to incur
significantly greater consequences and essentially bypasses its fundamental design
guarantee.

To mitigate this issue, Cure53 recommends adopting one of three approaches. Firstly,
one could explicitly state that SSO usage facilitates additional risk regarding local
attackers, i.e. a warning stipulating that a ‘logout’ does not technically represent a logout
in actuality. Secondly, one could disallow usage of prompt=none at the IdP side. Finally,
the developer team could adopt SSO logout features to invalidate tokens following a
Passbolt application logout. The latter solution, however, will likely negatively impact UX,
since other services leveraging the SSO may also be affected by this implementation.

Cure53, Berlin · 03/09/23 10/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section of the report pertains to all noteworthy findings that did not incur exploitation
potential but may prove useful for an attacker in their efforts to successfully compromise
the framework in the future. In general, the majority of these tickets represent vulnerable
code snippets that were considered challenging to call. In summary, whilst a security
weakness persists for all findings noted here, an exploit is likely implausible.

PBL-08-004 WP1: Lack of 2FA login code rate limiting (Info)
Testing confirmed that the application has not established any rate-limiting protection
from incoming attempts whilst 2FA functionality is enabled, which can be leveraged to
instigate brute-force attacks against the mechanism of the required code.

Notably, more than 200 failed attempts were attempted during testing. However, a
correct 2FA code was subsequently accepted. Therefore, an attacker that is able to
obtain the victim’s credentials can continue to input random codes until a successful hit
is achieved.

To mitigate this issue, Cure53 advises implementing a rate-limiting strategy for 2FA code
requests by restricting access to an account after a certain volume of failed attempts.

PBL-08-005 WP1: Lack of cross-origin-related HTTP security headers (Info)
Testing validated that the Passbolt platform lacks several of the latest Cross-Origin-
infoleak-related HTTP security headers in its responses1. This behavior does not directly
incur a security weakness per se, though may assist attackers in their attempts to exploit
other potentially compromisable areas, particularly concerning Spectre attacks2 and
similar. The developer team should incorporate the following headers to ensure
comprehensive protection against all associated vulnerabilities.

• Cross-Origin Resource Policy (CORP) and Fetch Metadata Request headers
allow developers to control which sites can embed their resources - such as
images or scripts - and further prevent data delivery to an attacker-controlled
browser-renderer process, as observed for resourcepolicy.fyi and web.dev/fetch-
metadata.

• Cross-Origin Opener Policy (COOP) permits the ability to ensure that the
application window will not receive unexpected interaction from other websites,
thereby facilitating browser isolation for its own processes. This is considered a

1 https://security.googleblog.com/2020/07/towards-native-security-defenses-for.html
2 https://meltdownattack.com/

Cure53, Berlin · 03/09/23 11/17

https://cure53.de/
https://meltdownattack.com/
https://security.googleblog.com/2020/07/towards-native-security-defenses-for.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

crucial process-level measure, particularly for browsers that do not enable full
Site Isolation; please refer to web.dev/coop-coep for supplementary guidance.

• Cross-Origin Embedder Policy (COEP) ensures that any authenticated
resources requested by the application have explicitly opted-in to passing into
load state. In the modern era, applications must enable both COEP and COOP to
sufficiently guarantee process-level isolation for highly sensitive applications in
Chrome or Firefox, as stipulated via web.dev/coop-coep.

Generally speaking, the continued absence of cross-origin security headers is
suboptimal and should be addressed, particularly considering the public availability of
exploit code and proliferation of attack scenarios such as Spectre.

To mitigate this issue, Cure53 advises integrating the aforementioned headers into every
relevant server response. Resources for these headers are available online, which
extrapolate optimum header setup implementation3 plus the many differing
consequences of omitting them entirely4.

PBL-08-008 WP2: Lack of explicit CSP on extension manifest (Info)
The observation was made that the Passbolt extension currently does not explicitly set
the content_security_policy manifest key on its manifest.json file and as such relies on
the default policy applied. This security feature serves to provide auxiliary defense-in-
depth, since integration permits policy definition for specific HTML tags, such as script
elements, which include the origin a resource can be loaded from and similar.
Essentially, this feature’s raison d’etre is to ensure that abusive HTML injection is either
completely deterred or rendered highly difficult to achieve.

To mitigate this issue, Cure53 advises integrating additional directives to the CSP
ruleset, such as base-uri, form-action, and frame-ancestors. Despite the fact that the
default configuration is adequately strict and generally considered secure, these
directives will certainly help to improve the extension’s security posture and should
therefore be implemented.

3 https://scotthelme.co.uk/coop-and-coep/
4 https://web.dev/coop-coep/

Cure53, Berlin · 03/09/23 12/17

https://cure53.de/
https://web.dev/coop-coep/
https://scotthelme.co.uk/coop-and-coep/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW9 testing against the Passbolt, browser extension, surroundings,
and new connected SSO feature by the Cure53 team - will now be discussed at length.
In summation, all components tested favorably following the completion of this audit,
though plenty of opportunities for security hardening were observed.

Notably, this assessment was preceded by a number of previous engagements against
the Passbolt scope by Cure53. Similarly to PBL-02 and PBL-03, the testing team noted a
manageable and fairly minimal yield of findings. Considering that rigorous evaluations
and an ample time frame were required before unearthing any issues during this
assessment attests to the positive impression gained. All risk scenarios are evidently
meticulously monitored and controlled by the in-house team, thereby facilitating robust
security stability for the Passbolt framework.

One can confirm that the focus applications have proven robust against the multitude of
attack scenarios instigated from a server- and client-side perspective. The ten-day
allocation for this examination yielded a total of eight findings, which is a praiseworthy
result for the Passbolt team. The volume and severity markers attached to the findings is
moderate for a scope of this magnitude. The absence of any major issues - with no
Critical-assigned vulnerability in particular - underlines the Passbolt complex’s security
strength. Even so, the identified flaws represent a golden opportunity to integrate
additional safeguard measures. The following paragraphs extrapolate the resulting
coverage and findings.

Firstly, Cure53 would like to comment on the project's objectives and tasks initiated in
order to achieve them. The testing team’s primary focus constituted a review of the
backend and frontend; the source codes of the components were also subjected to
particular scrutiny. The basic premise of this Cure53 investigation was to determine
whether the existing functionality of the endpoints and their environment can be deemed
suitably safeguarded to prevent attacks by malicious users seeking to damage the
Passbolt complex. The testing team also strived to identify typical modern-application
problems and issues associated with various types of injection attacks, which could
compromise the application’s server or client areas.

Additionally, Cure53 sought to determine the presence of any potential access matrix
implementation flaws and leakage of sensitive information via the deployment of
application endpoints, with a host of advanced techniques implemented in this respect.
Similar approaches were initiated to verify any logic weaknesses that may blight the
complex.

Cure53, Berlin · 03/09/23 13/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Concerning the findings specifically, Cure53 will first comment on the most significant
findings. The implemented authentication and authorization mechanisms were assessed
for common bugs, vulnerabilities, and misconfigurations. Testing was initiated to
determine whether the login process was sufficiently protected against a variety of attack
scenarios, including authentication bypass and user-session leakage. Positively, no
severe findings were noted in this instance, since the session implementation withheld
the testing team’s numerous manipulation and cracking attempts. However, a design
flaw was noted in reference to a potential local attack, which leverages standard SSO
features to bypass Passbolt application authentication, as a result of pre-established
SSO sessions. This SSO-related vulnerability is considered challenging to resolve; the
developer team could simply accept the associated risk or evaluate the optimal method
by which to force the logout function to invalidate not only sessions on the Passbolt side
but also at the IdP, which would therefore block subsequent login attempts without the
passphrase.

The testing team deemed varying types of client-side injection instances pertinent for
examination. To help facilitate this, Cure53 investigated the JavaScript code and
application functionality for any DOM-based XSS and similar input-manipulation or
client-side issues. The HTML handling was also scrutinized in relation to client-side
attacks, though these efforts were not particularly fruitful. All outputs were correctly
encoded or sanitized before displayed, therefore rendering this attack vector ineffective.
In general, the application’s evident stability in this regard was positively acknowledged -
a rare occurrence for security reviews of this nature. The Passbolt team deserves every
plaudit for its dedication to providing airtight security for its products.

Since the API constitutes a key application component, a host of testing techniques were
applied against it in an attempt to uncover any typical, commonly-experienced attack
vectors. The API endpoints and connected functionality - as well as the body handling at
the API endpoints - were subjected to stringent assessment. Since the API endpoints
handle JSON bodies, the platform’s susceptibility to risk may expand in the event input is
insufficiently handled via type confusions, deserialization issues, or flaws related to mass
assignment. Given the intrinsic nature of JSON, type confusions may become
problematic when a boolean is supplied rather than a string, for instance. Furthermore,
the code was assessed for any potentially dangerous calls, such as execution calls,
which may otherwise incur RCE or similar injections. Again, these efforts yielded a lack
of noteworthy findings.

The testing team faced a number of error messages during the active review phase,
which indicates that untrusted user input is carefully validated and sanitized. This helps
to reduce any potential attack surface on the whole, with only controlled, predictable,
and expected set of user-input instances permitted. Subsequently, the vast majority of

Cure53, Berlin · 03/09/23 14/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

attack and injection scenarios remain implausible. As a result, the testing team was
unable to locate any untrusted user-input misuse at API endpoints. To conclude here,
the backend was perceived to offer an adequate security foundation, particularly in light
of the fact that significant risk scenarios have evidently been considered and nullified by
the Passbolt team.

Cure53 would also like to underline the inability to uncover any serious issues
associated with the access-control matrix, despite intensive and dedicated searches for
compromisable pathways. As a general rule, multi-user platforms must always ensure
that accounts are only able to read or modify the data to which they have been
specifically granted access. The Cure53 team noted that endpoints clearly determine
user input and verify whether certain access is available for the user prior to the final
acceptance of such input. Henceforth, these approaches could not identify any
significantly risk-laden findings. In spite of this, two flaws were uncovered here: one
revealing a user's 2FA status, and the other (albeit minor) pertaining to the users
endpoint. Further guidance on these is offered in tickets PBL-08-003 and PBL-08-006.

Concerning the Passbolt browser extension work package, the frontend components
were subjected to a code review and deep-dive analysis to determine any potential for
client-side vulnerabilities, including those related to postMessage issues, prototype
pollution, and DOM XSS sinks. The front end (Styleguide) primarily utilizes the ReactJS
library, which leverages a battle-tested escaping mechanism that prevents XSS issues
by default. No usage of dangerouslySetInnerHTML was observed, which was deemed
an astute omission considering its tendency to incur security vulnerabilities.

Elsewhere, the extension’s manifest file was extensively evaluated. Here, several files
were found to be exposed to the internet via the web_accessible_resources property.
Supplementary assessments were conducted following this discovery, which led to the
detection of a High-rated severity issue that facilitated credentials leakage via a
clickjacking attack, as documented in ticket PBL-08-001. In addition, the manifest lacks a
strict CSP; naturally, Cure53 strongly advises adhering to the advice offered to minimize
any potential exploitation of XSS issues (see PBL-08-008).

The testing team also investigated any issues that could incur passphrase leakage, both
locally on the user's browser or by the backend. Here, one minor issue was documented
whereby a user's passphrase is readable by an attacker with physical access to the
user's computer under specific circumstances. Notably, this attack scenario persists
even after the user has logged out from the extension (see PBL-08-002).

Cure53, Berlin · 03/09/23 15/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Lastly, the testing team allocated substantial resources toward analyzing pertinent
extension code from the new SSO feature. Fortunately, no specific or related issues
were consequently encountered, which again corroborates the platform’s robustness
and general security offering.

The extension offers minimal attack surface, primarily due to the established port-based
communication mechanism, which serves to restrict a host of attack vectors. The testers
also attempted to construct a malicious SSO and leverage its Login URL as a vector
upon which to execute JavaScript, as well as determine whether one could load
malicious web pages in the extension's popup. However, the extension's robust URL
validation imposes stringent restrictions on the permissible URLs, attesting to the lack of
notable vulnerabilities in this regard.

In summation, the assessed complex offers reasonable stability and was positively
received by the Cure53 team. Despite the fact that this report stipulates a number of
weaknesses and best practice recommendations, most incur limited severity potential or
were simply deemed miscellaneous in nature. Cure53 is keen to stress that none of the
detected issues allow an attacker to retrieve direct access on the server-side, which in
turn means that any sensitive data considered vital to either the platform or its users is
unequivocally protected. Furthermore, all identified issues are considered
straightforward to resolve and do not constitute fundamental design weaknesses that
require complex alterations to administer.

The code base withstood intense testing scrutiny for the most part and was observably
effective in minimizing the attack surface. Both the minimal volume and severity impact
of the detected issues provide irrefutable evidence that the in-house team has integrated
a number of precautions to secure the complex. One can certainly argue that the
development team is not only aware of routine security errors but has already
implemented sound security initiatives to prevent them.

All in all, the complete negation of any issues connected with injection attacks - which
ensure that the platform’s server-side remains insusceptible to compromise - serves as
one of the primary indicators of security strength. In addition, despite extensive
investigations and widespread coverage from the Cure53 testers, the lack of noteworthy
API-related findings contributes to the satisfactory outcome achieved following the
finalization of this audit. The triumvirate defensive measure of escaping, encoding, and
filtering has been implemented to an exemplary standard. Nevertheless, a handful of
improvements on the logic and browser extension-side should be actioned at the earliest
possible convenience to enhance the complex’s security posture.

Cure53, Berlin · 03/09/23 16/17

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To summarize, Cure53 believes that a first-rate security standard can be achieved by
addressing and mitigating all findings documented in this report, though the Passbolt
team has evidently already constructed an admirable foundation upon which to cultivate
future project investments.

Cure53 would like to thank Remy Bertot, Cedric Alfonsi, and Maxence Zanardo from the
Passbolt S.A. team for their excellent project coordination, support, and assistance, both
before and during this assignment.

Cure53, Berlin · 03/09/23 17/17

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report Passbolt SSO, API & Add-On 02.-03.2023
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	PBL-08-001 WP2: Credentials leakage via clickjacking (High)
	PBL-08-002 WP2: Passphrase retained in memory post-logout (Low)
	PBL-08-003 WP1: Lack of proper ACL for users endpoint (Low)
	PBL-08-006 WP1: 2FA status information disclosure via users endpoint (Info)
	PBL-08-007 WP1: SSO design prompt=none facilitates auth bypass (Medium)

	Miscellaneous Issues
	PBL-08-004 WP1: Lack of 2FA login code rate limiting (Info)
	PBL-08-005 WP1: Lack of cross-origin-related HTTP security headers (Info)
	PBL-08-008 WP2: Lack of explicit CSP on extension manifest (Info)

	Conclusions

