
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Audit-Report ExpressVPN Lightway Protocol 03.2021
Cure53, Dr.-Ing. M. Heiderich, Dipl.-Inf. Markus Vervier, Dipl.-Inf. Eric Sesterhenn,
Dipl.-Inf. Luis Merino, Dipl.-Inf. Djamal Touazi

Index
Introduction

Scope

Identified Vulnerabilities

EXP-04-007 Server: User-enumeration due to login timing differences (Info)

EXP-04-010 Server: Amplification DoS due to packet-resending (Medium)

EXP-04-011 Server: DoS via half-open connections (Medium)

EXP-04-012 Server: DoS via spoofed packets bouncing between servers (High)

EXP-04-013 Server: DoS via improper closing of TCP connection (High)

Miscellaneous Issues

EXP-04-001 libdnet: Buffer overflow in arp-ioctl.c via sscanf() (Low)

EXP-04-002 Unity: Integer overflow in unity_memory.c’s unity_calloc() (Low)

EXP-04-003 Unity: Integer overflow in unity_memory.c’s unity_malloc() (Low)

EXP-04-004 WolfSSL: CVE-2021-3336 is a known vulnerability in WolfSSL (High)

EXP-04-005 Libuv: Out-of-bounds read in UTF8 parsing (Low)

EXP-04-006 Libuv: More memory allocated than required (Info)

EXP-04-008 lua-crypt: No enforcement of hash algorithm (Info)

EXP-04-009 Libhelium: Version numbers not checked (Info)

EXP-04-014 Server: Incorrect pointer checked after allocation (Info)

Conclusions

Cure53, Berlin · 06/21/21 1/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“You don’t need to know how a VPN works to use a VPN. But if you’ve ever checked the
settings on your ExpressVPN app, you’ll see a tab that lets you choose a protocol.
Protocols are methods by which your device connects to ExpressVPN’s secure servers.
Find out how protocols differ and how to choose the best protocol for you.”

From https://www.expressvpn.com/what-is-vpn/protocols

This report presents the findings of a security assessment featuring the ExpressVPN
Lightway protocol and its related sources. Carried out by Cure53 in March 2021, the
project entailed a penetration test and a source code audit. Note that the Lightway
protocol is referred to by its internal project codename, Helium, within the source code.

The work was requested by ExpressVPN International Ltd. in early February 2021 and
then promptly scheduled. Based on the required skills and expertise, a team of five
senior testers were assigned to this project’s preparation, execution and finalization.
They executed the examination in the second half of March 2021, namely in CW11 and
CW12. Further commenting on the resources, a total of twenty-two person-days were
invested into reaching the coverage expected for this project.

In order to best address the goals set for this assignment, the work was divided into two
separate work packages (WPs). In WP1, Cure53 performed source-code assisted
penetration tests against primary scope items delineated as xv_helium_cli,
xv_helium_server and xv_libhelium (note that libhelium is known publicly as Lightway
Core). Those were examined in full. For WP2, source-code assisted penetration tests
also took place, albeit focused on secondary targets. The latter scope, with items
audited in parts only relevant for the WP1 items, encompassed libdnet and libuv. The
project was completed with white-box methodology. Cure53 was given access to all
relevant sources as well as various binaries compiled for this security assessment.

Before the assessment, all preparations were finalized in early March 2021, namely in
CW10, so as to ensure that Cure53 can have a smooth start. The scope was excellently
prepared by the ExpressVPN team and all necessary info was present prior to the start
of the project. No road bumps were encountered during the testing and auditing
processes. A dedicated and shared Slack channel was leveraged for communications,
effectively gluing ExpressVPN and Cure53 workspaces together. All discussions were
helpful, although not many questions were needed because of the stellar preparatory
work.

Still, Cure53 offered frequent status updates about the test and the spotted findings.
Live-reporting was requested and performed by Cure53 for one finding, namely the

Cure53, Berlin · 06/21/21 2/21

https://cure53.de/
https://www.expressvpn.com/what-is-vpn/protocols
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Denial-of-Service (DoS) believed to potentially signify an RCE as well (see EXP-04-014).
More generally, the testing team acquired a very good coverage over the WP1-WP2
scope items. Fourteen security-relevant discoveries were made: five were classified as
security vulnerabilities and nine represented general weaknesses with lower exploitation
potential. Note that three findings have given High severity ratings given their potential
impact on the ExpressVPN users. Among these, two constituted DoS problems and the
last one concerned a known WolfSSL vulnerability, namely CVE-2021-3336. While one
of the findings was borderline Critical, the available testing time prevented Cure53 from
developing a working exploit.

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the structure and content of the WPs. Next, all findings will be
discussed in grouped vulnerability and miscellaneous categories, then following a
chronological order in each of the arrays. Alongside technical descriptions, PoC and
mitigation advice are supplied when applicable. Finally, the report will close with broader
conclusions about this March 2021 project. Cure53 elaborates on the general
impressions and reiterates the verdict based on the testing team’s observations and
collected evidence. Tailored hardening recommendations for the ExpressVPN complex
are also incorporated into the final section.

Cure53, Berlin · 06/21/21 3/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Code audits & assessments of ExpressVPN Lightway protocol & sources

◦ WP1: Source-code assisted penetration tests of primary scope items
▪ The following items were in primary scope for this exercise and got audited fully:

• xv_helium_cli
• xv_helium_server
• xv_libhelium (Lightway Core)

◦ WP2: Source-code assisted penetration tests against secondary scope items
▪ The following items were in secondary scope; parts to be audited are those

relevant to and utilized by items in WP1:
• libdnet
• libuv

◦ The following items were out-of-scope:
▪ WolfSSL Library and Reference implementation
▪ ExpressVPN Client Applications & ExpressVPN setup files provided
▪ Information leaks in Debug builds
▪ Denial-of-Service in the Lightway client caused by OOM bugs

◦ A detailed scope document was shared by ExpressVPN
◦ Binaries for testing were shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 06/21/21 4/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. EXP-04-001) for the purpose of facilitating any
future follow-up correspondence.

EXP-04-007 Server: User-enumeration due to login timing differences (Info)
Note: This issue was discussed with the ExpressVPN team and it was shown that
existing mechanisms on username generation are sufficiently secure - enumeration is
unlikely given the fact that usernames are created from random bytes with sufficient
entropy. The issue was therefore changed from medium severity to informational
severity.

User-authentication retrieves the password hash of the user from the database and
compares it with the hashed password the user supplied. If a username does not exist in
the database, no hashing is performed. The authentication returns faster in comparison
to the case where the username exists but the supplied password is invalid. This timing
difference could be abused by an attacker to verify whether a username is valid or not.
Modern password hashing algorithms are designed to require some time to compute,
which makes this attack easier in case they are used.

Affected file:
xv_helium_server/lua/he_auth.lua

Affected code:
function auth_user(username, password)
 load_db()
 stmt:bind_values(username)

 retval = false

 for row in stmt:nrows() do
 retval = crypt.check(password, row.encrypted_credentials)
 end

 unload_db()

 -- No user found?
 return retval

Cure53, Berlin · 06/21/21 5/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

end

It is recommended to use a secure key derivation function such as ARGON2 on the
supplied passwords across all cases. This will mitigate the possibility of successful
timing attacks.

EXP-04-010 Server: Amplification DoS due to packet-resending (Medium)
Note: This issue was discussed with the ExpressVPN team and it was found that an
existing firewall rule was deployed in production systems. The rule was reviewed by
Cure53 and deemed to be sufficient to mitigate the problem.

When the Helium server receives a client connection containing the DTLS Client Hello, it
will respond to that client with an answer. In case there is no immediate reply, two more
answers are sent to that initial packet. The packet coming from the client is 144 bytes,
making the answers 228 bytes in total. Since the protocol used is UDP, an attacker is
able to send packets with a spoofed IP address and request a connection for a third-
party. The server will then send more bytes to that third-party than the attacker sent
(~1.5 times the amount). This lets attackers abuse the Helium server for UDP-based
DoS attacks and increase the bandwidth available to them by ~50%.

Affected file:
xv_helium_cli/lib/libhelium/src/he/wolf.c

Affected code:
// Call the write callback if set
if(client->outside_write_cb) {
 client->outside_write_cb(client, client->write_buffer, sz +
sizeof(he_wire_hdr_t),
 client->data);

 // If we're not yet connected, be aggressive and send two more packets. If
aggressive mode
 // is set, always be aggressive and send two more.
 if(client->state != HE_STATE_ONLINE || client->use_aggressive_mode) {
 client->outside_write_cb(client, client->write_buffer, sz +
sizeof(he_wire_hdr_t), client->data);

 client->outside_write_cb(client, client->write_buffer, sz +
sizeof(he_wire_hdr_t), client->data);
 }
}

It is proposed to add rate-limiting for packets accepted per IP address to limit the impact
of the packet amplification. This could be implemented in code or via a firewall. Another

Cure53, Berlin · 06/21/21 6/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

option would be to send only one additional packet when the aggressive mode is
enabled.

EXP-04-011 Server: DoS via half-open connections (Medium)
Note: This issue was discussed with the ExpressVPN team and it was found that an
existing firewall rule was deployed in production systems. The rule was reviewed by
Cure53 and deemed to be sufficient to mitigate the problem.

When a new connection is created, the IP address and UDP port (in case of UDP
connections) are added to a hashmap which is then used to track the connection for that
client. If the client sends no further packets, the connection is removed and freed via a
timer that calls he_conn_nudge(). If a client sends enough packets with spoofed IP
addresses, it is possible to cause this hashmap to grow and cause memory pressure on
the system.

If a low number of packets sent by the attacker has a session ID set, the server will
perform lookups in the hashmap for that session. The latter causes CPU pressure as
well. While it is not going to prevent the server from working, it might increase the time
required to process other packets.

Affected file:
xv_helium_server/src/he_flow_in.c

Affected code:
// If we still haven't found the connection but also have not rejected it then
create a fresh
// connection
if(!conn) {
 // Creating a new connection can fail. Check that it is successful before
continuing
 if((conn = he_create_new_connection(server, addr, ipcombo)) == NULL) {
 return;
 }
}

It is advised to protect against this by rate-limiting the incoming packets. This could be
implemented in the code or via a firewall on the network level. This would reduce the
memory and CPU pressure an attacker could cause on the system. Another option
would be to run he_conn_nudge() more frequently and use a shorter timeout to avoid too
many connections in the hashmap.

Cure53, Berlin · 06/21/21 7/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-04-012 Server: DoS via spoofed packets bouncing between servers (High)
Note: While this issue was technically deemed to be out of scope for the library audit,
the issue was nevertheless be addressed by the ExpressVPN team and the fix was
verified by Cure53 in June 2021.

The Helium server receives a packet with a valid Helium header, however, when they
are missing payload and a session ID of HE_PACKET_SESSION_REJECT (-1), the
server responds with exactly the same packet. In case an attacker spoofs this packet
with a sender IP that is the same as the IP of the server whilst the UDP port matches the
server as well, the server will send answers to these packets to itself. This causes an
infinite loop, requesting all available CPU resources.

For most systems, the kernel will drop such spoofed packets. The DoS is still feasible by
spoofing such packets so they seem to be from another Helium server, causing the
packets to be bouncing between the two servers infinitely.

Affected file:
xv_helium_server/src/he_flow_in.c

PoC:
hexdump -C data

00000000 48 65 01 00 00 00 00 00 ff ff ff ff ff ff ff ff |He..............|
00000010

/usr/sbin/hping3 -V -2 -a 10.0.2.15 -s 19655 -p 19655 -c 1 -E data -d 16
10.0.2.15

Affected code:
he_return_code_t he_internal_flow_outside_packet_received(he_conn_t *conn,
uint8_t *packet,
 size_t length) {
 // Note that he_internal_plugins_egress is in wolf.c:he_wolf_dtls_write
 he_internal_plugins_ingress(conn->plugins, packet, length);

 // Return if packet is definitely too small
 if(length < sizeof(he_wire_hdr_t)) {
 return HE_ERR_PACKET_TOO_SMALL;
 }

 // Check for Helium's header

Cure53, Berlin · 06/21/21 8/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 he_wire_hdr_t *hdr = (he_wire_hdr_t *)packet;

 if(hdr->he[0] != 'H' || hdr->he[1] != 'e') {
 // Not helium data, drop it
 return HE_ERR_NOT_HE_PACKET;
 }

 // Kill the connection if the server has rejected our session (i.e. server
restarted)
 if(!memcmp(&HE_PACKET_SESSION_REJECT, &hdr->session, sizeof(uint64_t))) {
 return HE_ERR_REJECTED_SESSION;
 }

It is advised to not send answers to packets with a session of
HE_PACKET_SESSION_REJECT.

EXP-04-013 Server: DoS via improper closing of TCP connection (High)
Note: This issue was fixed by the ExpressVPN team and the fix was then verified
successfully by Cure53 in June 2021. A diff was inspected to verify the fix as working as
expected.

When the server is run with the “Streaming Mode” setting on true and a client tries to
connect but abruptly ceases the connection, the server processes seem to fail. They
handle the issue incorrectly as subsequent connections will trigger a heap-use-after-free,
hence leading to temporal memory unsafety issues. The screenshot shown below from
ASAN demonstrates the issue.

===
==26==ERROR: AddressSanitizer: heap-use-after-free on address 0x614000000b68 at
pc 0x00000053b06f bp 0x7ffcfc30eb00 sp 0x7ffcfc30eaf8
WRITE of size 8 at 0x614000000b68 thread T0

#0 0x53b06e in uv__stream_init src/unix/stream.c:90
#1 0x5441d8 in uv_tcp_init_ex src/unix/tcp.c:125
#2 0x544335 in uv_tcp_init src/unix/tcp.c:144
#3 0x434ddb in on_new_streaming_connection

(/xv_helium_server/build/release/helium-server.out+0x434ddb)
#4 0x53c4c7 in uv__server_io src/unix/stream.c:570
#5 0x551d28 in uv__io_poll src/unix/linux-core.c:462
#6 0x513ab9 in uv_run src/unix/core.c:385
#7 0x429f86 in main (/xv_helium_server/build/release/helium-

server.out+0x429f86)
#8 0x7f58a97ee09a in __libc_start_main ../csu/libc-start.c:308
#9 0x41b439 in _start (/xv_helium_server/build/release/helium-

server.out+0x41b439)

Cure53, Berlin · 06/21/21 9/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

0x614000000b68 is located 296 bytes inside of 424-byte region
[0x614000000a40,0x614000000be8)
freed by thread T0 here:

#0 0x7f58a9c1cfb0 in __interceptor_free
../../../../src/libsanitizer/asan/asan_malloc_linux.cc:66

#1 0x426438 in he_internal_free_connection
(/xv_helium_server/build/release/helium-server.out+0x426438)

#2 0x434a6c in on_tcp_close (/xv_helium_server/build/release/helium-
server.out+0x434a6c)

#3 0x513636 in uv__finish_close src/unix/core.c:303
#4 0x5136c8 in uv__run_closing_handles src/unix/core.c:317
#5 0x513add in uv_run src/unix/core.c:395
#6 0x429f86 in main (/xv_helium_server/build/release/helium-

server.out+0x429f86)
#7 0x7f58a97ee09a in __libc_start_main ../csu/libc-start.c:308

previously allocated by thread T0 here:
#0 0x7f58a9c1d518 in __interceptor_calloc

../../../../src/libsanitizer/asan/asan_malloc_linux.cc:95
#1 0x42d8df in internal_create_connection

(/xv_helium_server/build/release/helium-server.out+0x42d8df)
#2 0x42e3c5 in he_create_new_connection_streaming

(/xv_helium_server/build/release/helium-server.out+0x42e3c5)
#3 0x434e02 in on_new_streaming_connection

(/xv_helium_server/build/release/helium-server.out+0x434e02)
#4 0x53c4c7 in uv__server_io src/unix/stream.c:570
#5 0x551d28 in uv__io_poll src/unix/linux-core.c:462
#6 0x513ab9 in uv_run src/unix/core.c:385
#7 0x429f86 in main (/xv_helium_server/build/release/helium-

server.out+0x429f86)
#8 0x7f58a97ee09a in __libc_start_main ../csu/libc-start.c:308

SUMMARY: AddressSanitizer: heap-use-after-free src/unix/stream.c:90 in
uv__stream_init
Shadow bytes around the buggy address:
 0x0c287fff8110: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
 0x0c287fff8120: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
 0x0c287fff8130: fd fd fd fd fd fd fd fd fd fd fd fd fa fa fa fa
 0x0c287fff8140: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd
 0x0c287fff8150: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
=>0x0c287fff8160: fd fd fd fd fd fd fd fd fd fd fd fd fd[fd]fd fd
 0x0c287fff8170: fd fd fd fd fd fd fd fd fd fd fd fd fd fa fa fa
 0x0c287fff8180: fa fa fa fa fa fa fa fa fd fd fd fd fd fd fd fd
 0x0c287fff8190: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
 0x0c287fff81a0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd
 0x0c287fff81b0: fd fd fd fd fd fd fd fd fd fd fd fd fd fd fd fa
Shadow byte legend (one shadow byte represents 8 application bytes):
 Addressable: 00
 Partially addressable: 01 02 03 04 05 06 07

Cure53, Berlin · 06/21/21 10/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 Heap left redzone: fa
 Freed heap region: fd
 Stack left redzone: f1
 Stack mid redzone: f2
 Stack right redzone: f3
 Stack after return: f5
 Stack use after scope: f8
 Global redzone: f9
 Global init order: f6
 Poisoned by user: f7
 Container overflow: fc
 Array cookie: ac
 Intra object redzone: bb
 ASan internal: fe
 Left alloca redzone: ca
 Right alloca redzone: cb
==26==ABORTING

This situation can, for example, occur when the client is unable to create a TUN device
due to incorrect privilege. This leads to tearing down the connection quickly after
initiating it.

Affected file:
xv_helium_server/src/uv_callbacks.c

Affected code:

UV_tcp_init call inside the on new_streaming_connection callback is the call that triggers
the heap’s use after free condition in the server code.

void on_new_streaming_connection(uv_stream_t *server, int status) {
 he_server_t *he_server = (he_server_t *)server->data;

 if(status < 0) {
zlogf_time(ZLOG_INFO_LOG_MSG, "New connection error %s\n",

uv_strerror(status));
zlog_flush_buffer();
return;

 }

 uv_tcp_t *client = (uv_tcp_t *)calloc(1, sizeof(uv_tcp_t));
 HE_CHECK_WITH_MSG(client != NULL, "Unable to allocate new tcp_client\n");
 uv_tcp_init(he_server->loop, client);
 he_server_connection_t *conn;
 if(uv_accept(server, (uv_stream_t *)client) == 0 &&
 (conn = he_create_new_connection_streaming(he_server)) != NULL) {

client->data = conn;
conn->tcp_client = (uv_stream_t *)client;

Cure53, Berlin · 06/21/21 11/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

uv_read_start((uv_stream_t *)client, alloc_buffer_tcp, on_tcp_read);
 } else {

zlogf_time(ZLOG_INFO_LOG_MSG, "Unable to accept %s\n",
uv_strerror(status));

uv_close((uv_handle_t *)client, NULL);
free(client);

 }
}

Steps to reproduce:
1. On the server configuration file, issue the following setting:

"streaming = true"

2. On the client-side, set the connection protocol to TCP:
"protocol": "tcp"

3. Run the client in an unprivileged user that cannot create a TUN device. This will
lead the client to abruptly close the connection:

{"time":"[...]","log_level":"INFO","message":"Authenticating...","context
":{"state":"HE_STATE_AUTHENTICATING"}}
{"time":"[...]","log_level":"INFO","message":"Attempting to create tun
device '<automatic>'"}
{"time":"[...]","log_level":"ERROR","message":"failed to TUNSETIFF:
Operation not permitted"}
{"time":"[...]","log_level":"ERROR","message":"Unable to create tun
device"}
{"time":"[...]","log_level":"INFO","message":"Lightway DISCONNECTED
(disconnect_and_stop).","context":
{"state":"HE_STATE_DISCONNECTED","reason":"HE_ERR_CALLBACK_FAILED"}}
{"time":"[...]","log_level":"INFO","message":"Lightway STOPPED"}
{"time":"[...]","log_level":"INFO","message":"Lightway
DISCONNECTING...","context":{"state":"HE_STATE_DISCONNECTING"}}
{"time":"[...]","log_level":"INFO","message":"Lightway FINISHED"}

After that rerun, the client will a few times cause the memory corruption. Triggering it will
lead to a server crash.

It is recommended to rework the handling of TCP stream connection. The tests show
that libuv seems not to properly isolate connection context which leads to the reuse of
object pointers of a previous connection context. It is also recommended to add ASAN to
the current test-suite as well as valgrind. This will help catch memory violations more
effectively.

Cure53, Berlin · 06/21/21 12/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

EXP-04-001 libdnet: Buffer overflow in arp-ioctl.c via sscanf() (Low)
Note: This issue was fixed by the ExpressVPN team and the fix was then verified
successfully by Cure53 in June 2021. A diff was inspected to verify the fix as working as
expected.

A malformed sscanf() in arp_loop() results in several out-of-bounds writes when the proc
filesystem returns malicious data. These might be abused to corrupt the memory of the
process. Since the malicious data needs to be provided by the Kernel-controlled procfs,
an attack via this vector is not likely.

Affected file:
xv_helium_cli/lib/libdnet/src/arp-ioctl.c

Affected code:
char buf[BUFSIZ], ipbuf[100], macbuf[100], maskbuf[100], devbuf[100];
int i, type, flags, ret;

if ((fp = fopen(PROC_ARP_FILE, "r")) == NULL)
 return (-1);

ret = 0;
while (fgets(buf, sizeof(buf), fp) != NULL) {
 i = sscanf(buf, "%s 0x%x 0x%x %100s %100s %100s\n",
 ipbuf, &type, &flags, macbuf, maskbuf, devbuf);

A fix for this issue can be found at the following URL:
https://github.com/ofalk/libdnet/commit/661c72866a6522009612accc5403d7527bf9052c

The changes proposed below will mitigate the issue:

diff --git a/src/arp-ioctl.c b/src/arp-ioctl.c
index bc3e66c..ca47ce9 100644
--- a/src/arp-ioctl.c
+++ b/src/arp-ioctl.c
@@ -210,7 +210,7 @@ arp_loop(arp_t *a, arp_handler callback, void *arg)

Cure53, Berlin · 06/21/21 13/21

https://cure53.de/
https://github.com/ofalk/libdnet/commit/661c72866a6522009612accc5403d7527bf9052c
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 {
 FILE *fp;
 struct arp_entry entry;
- char buf[BUFSIZ], ipbuf[100], macbuf[100], maskbuf[100], devbuf[100];
+ char buf[BUFSIZ], ipbuf[101], macbuf[101], maskbuf[101], devbuf[101];
 int i, type, flags, ret;

 if ((fp = fopen(PROC_ARP_FILE, "r")) == NULL)
diff --git a/src/route-linux.c b/src/route-linux.c
index bbd95da..45b5c2e 100644
--- a/src/route-linux.c
+++ b/src/route-linux.c
@@ -306,7 +306,7 @@ route_loop(route_t *r, route_handler callback, void *arg)
 int ret = 0;

 if ((fp = fopen(PROC_ROUTE_FILE, "r")) != NULL) {
- char ifbuf[16];
+ char ifbuf[17];
 int i, iflags, refcnt, use, metric, mss, win, irtt;
 uint32_t mask;

EXP-04-002 Unity: Integer overflow in unity_memory.c’s unity_calloc() (Low)
Note: This issue was deemed to be out of scope for the library audit since Unity is a
testing framework which is not called in binaries shipped in production - no action will be
taken here.

The function unity_calloc() contains an integer overflow that might lead to less memory
being allocated than what is requested by the caller. This can result in memory
corruption errors, in turn letting attackers execute arbitrary code. The current code only
calls this function with static parameters, thus making an attack infeasible. At the same
time, this situation might change in the future.

Affected file:
xv_helium_cli/lib/Unity/extras/memory/src/unity_memory.c

Affected code:
void* unity_calloc(size_t num, size_t size)
{
 void* mem = unity_malloc(num * size);
 if (mem == NULL) return NULL;
 memset(mem, 0, num * size);
 return mem;
}

It is recommended to test if the calculation overflows, for example by using
__builtin_mul_overflow().

Cure53, Berlin · 06/21/21 14/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-04-003 Unity: Integer overflow in unity_memory.c’s unity_malloc() (Low)
Note: This issue was deemed to be out of scope for the library audit since Unity is a
testing framework which is not called in binaries shipped in production - no action will be
taken here.

The function unity_malloc() contains an integer overflow that might lead to less memory
being allocated than what has been requested by the caller. This can result in memory
corruption errors, which might, in turn, make it possible for the attackers to execute
arbitrary code. The current code only calls this function with static parameters, therefore
making exploitation of the issue infeasible. Still, this might change in the future.

Affected file:
xv_helium_cli/lib/Unity/extras/memory/src/unity_memory.c

Affected code:
void* unity_malloc(size_t size)
{
 char* mem;
 Guard* guard;
 size_t total_size;

 total_size = sizeof(Guard) + unity_size_round_up(size + sizeof(end));

It is recommended to test if the calculation overflows, for example with
__builtin_add_overflow().

EXP-04-004 WolfSSL: CVE-2021-3336 is a known vulnerability in WolfSSL (High)
Note: While this issue was technically deemed to be out of scope for the library audit,
the issue has nevertheless been addressed by the ExpressVPN team.

libHelium relies on WolfSSL for handling secure transport of data via TLS / DTLS. The
current version is affected by a security vulnerability indexed with CVE-2021-33361. It is
related to TLS1.3 certificate validation which is the preferred and default protocol used
by libHelium. This makes the server directly affected by this CVE.

Affected files:
• xv_helium_cli/lib/libhelium/windows_64.yml
• xv_helium_cli/lib/libhelium/windows_32.yml

1 https://nvd.nist.gov/vuln/detail/CVE-2021-3336

Cure53, Berlin · 06/21/21 15/21

https://cure53.de/
https://nvd.nist.gov/vuln/detail/CVE-2021-3336
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• xv_helium_cli/lib/libhelium/unix.yml
• xv_helium_server/xv_libhelium/windows_64.yml
• xv_helium_server/xv_libhelium/windows_32.yml
• xv_helium_server/xv_libhelium/unix.yml

It is recommended to upgrade to the latest version of WolfSSL that has no known
vulnerabilities, namely https://github.com/wolfSSL/wolfssl/releases

EXP-04-005 Libuv: Out-of-bounds read in UTF8 parsing (Low)
Note: This issue was deemed to be out of scope for the library audit, the affected
method is not being called by anything in scope. No action will be taken here.

An out-of-bound read can occur when uv__idna_toascii() is used to convert strings to
ASCII. The pointer p is read and increased without checking whether it is beyond pe,
with the latter holding a pointer to the end of the buffer. This can lead to information
disclosures or crashes. This function can be triggered via uv_getaddrinfo().

Affected file:
xv_helium_cli/lib/libuv/src/idna.c

Affected code:
static unsigned uv__utf8_decode1_slow(const char** p,
 const char* pe,
 unsigned a) {
 unsigned b;
 unsigned c;
 unsigned d;
 unsigned min;

 if (a > 0xF7)
 return -1;

 switch (*p - pe) {
 default:
 if (a > 0xEF) {
 min = 0x10000;
 a = a & 7;
 b = (unsigned char) *(*p)++;
 c = (unsigned char) *(*p)++;
 d = (unsigned char) *(*p)++;
 break;
 }
 /* Fall through. */

Cure53, Berlin · 06/21/21 16/21

https://cure53.de/
https://github.com/wolfSSL/wolfssl/releases
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to test if the read is beyond pe, for example by changing the code to
the following:

static unsigned uv__utf8_decode1_slow(const char** p,
 const char* pe,
 unsigned a) {
 unsigned b;
 unsigned c;
 unsigned d;
 unsigned min;

 if (a > 0xF7)
 return -1;

 switch (*p - pe) {
 default:
 if (a > 0xEF) {
 if (p + 3 > pe)
 return -1;
 min = 0x10000;
 a = a & 7;
 b = (unsigned char) *(*p)++;
 c = (unsigned char) *(*p)++;
 d = (unsigned char) *(*p)++;
 break;
 }
 /* Fall through. */

The same applies to other cases in the switch statement.

EXP-04-006 Libuv: More memory allocated than required (Info)
Note: This issue was fixed by the ExpressVPN team and the fix was then verified
successfully by Cure53 in June 2021. A diff was inspected to verify the fix as working as
expected.

The function alloc_buffer() is used as a callback for libuv to provide memory. Since it
ignores the size parameter, this might cause breakage in case libuv changes and relies
on a certain amount of memory being allocated. Currently the function allocates 128kB
while libuv only requests 64kB. This wastes memory and might cause memory pressure
on low-memory systems.

Affected file:
xv_helium_server/srcxv_helium_server/src/uv_callbacks.c

Affected code:

Cure53, Berlin · 06/21/21 17/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

void alloc_buffer(uv_handle_t *handle, size_t suggested_size, uv_buf_t *buf) {
 // Allocate the buffer
 buf->base = jecalloc(1, HE_SERVER_BUFFER_SIZE);
 HE_CHECK_WITH_MSG(buf->base != NULL, "Unable to allocate buffer for incoming
data\n");
 // Set the size
 buf->len = HE_SERVER_BUFFER_SIZE;
}

It is recommended to implement this function similar to alloc_buffer_tcp(), which honors
the size parameter or simply uses alloc_buffer_tcp() instead of calling alloc_buffer().

EXP-04-008 lua-crypt: No enforcement of hash algorithm (Info)
Note: The ExpressVPN team states that hashes provided upstream are guaranteed to
use sha512-crypt. No additional action will be taken here.

The function auth_user(username, password) is used to authenticate users with no
check being done on the specified hashing algorithm. This fosters usage of old and
insecure hashing algorithms like MD5, DES, or others that are not considered secure
anymore.

Affected file:
xv_helium_server/srcxv_helium_server/lua/he_auth.lua

Affected code:
function auth_user(username, password)
 load_db()
 stmt:bind_values(username)

 retval = false

 for row in stmt:nrows() do
 retval = crypt.check(password, row.encrypted_credentials)
 end

 unload_db()

It is recommended to check the prefix2 of the hash before the comparison to prevent the
usage of weak algorithms. It is also advised to migrate from Crypt to a more secure key
derivation function (KDF) such as Argon2 or PBKDF2 if the computed time should be
seen as acceptable.

2 https://github.com/jprjr/lua-crypt/blob/feb4acc58355d9a8862c182768ae5962df67b9f5/crypt.lua#L20

Cure53, Berlin · 06/21/21 18/21

https://cure53.de/
https://github.com/jprjr/lua-crypt/blob/feb4acc58355d9a8862c182768ae5962df67b9f5/crypt.lua#L20
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

EXP-04-009 Libhelium: Version numbers not checked (Info)
Note: This issue was fixed by the ExpressVPN team and the fix was then verified
successfully by Cure53 in June 2021. A diff was inspected to verify the fix as working as
expected.

The Helium protocol sends various information with the packets, such as the “He”
header and version information. The client code currently sets the version information to
1.0 but this is not checked on the receiving end. In case this number gets increased and
the protocol changes, this might lead to issues.

Affected file:
xv_helium_server/xv_libhelium/src/he/flow.c

It is recommended to check the version numbers supplied and reject packets with a
version that is not 1.0.

EXP-04-014 Server: Incorrect pointer checked after allocation (Info)
Note: This issue was fixed by the ExpressVPN team and the fix was then verified
successfully by Cure53 in June 2021. A diff was inspected to verify the fix as working as
expected.

The function he_internal_schedule_client_activity() allocates several buffers and checks
if the allocations succeeded. The pointer req is checked after allocating memory for
ca_line, instead of checking ca_line. Error allocations for ca_line will not be detected,
which might lead to crashes in low memory situations.

Affected file:
xv_helium_server/src/client_activities.c

Affected code:
char *ca_line = jecalloc(1, 1024);
HE_CHECK_WITH_MSG(req, "Unable to allocate new output buffer");

It is recommended to check ca_line instead of req by calling
HE_CHECK_WITH_MSG(ca_line, "<Put relevant message here>");.

Cure53, Berlin · 06/21/21 19/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The outcomes of this Cure53 assessment, which tackled the ExpressVPN Lightway
protocol and its connected sources, are generally positive. After spending twenty-two
person-days on the examinations delineated for WP1 and WP2 in March 2021, the
Cure53 testing team revealed fourteen shortcomings that should be tackled to improve
the complex. To comment on the progress of the project in detail, it needs to be
underlined that the tests and audits of the ExpressVPN Lightway protocol and sources
moved forward at an excellent pace, with no major roadblocks in the way of the team.
Some specific remarks on the complex and flaws ensue.

The internal state machine for example is distributed over multiple files and partly used
by client and server, which makes it hard to examine. This applies particularly to
checking the state machine of the protocol and auditing various state changes. The use
of a whole plugin framework for just one plugin seems to be a bit too much in terms of
unnecessary complexity, meaning that the code could be simplified by integrating the
plugin into the core code. In the same vein, the addition of Lua for just a database
lookup seems excessive as well. A lot of overhead and third-party code could be
removed if that database lookup and password check were instead implemented in C. It
was noticed that the client and server use different libuv versions which might cause
incompatibilities or differentials, ultimately leading to bugs.

It should be ensured that all third-party components are updated to their latest versions
in both the client and on the server, with the important aim of avoiding compatibility
issues and known bugs in the utilized libraries. The codebase observed on Lightway
Core follows consistent coding patterns and exhibits - in the testers’ view - a high quality.
Although the use of callbacks in various areas makes the code hard to follow in some
areas, this cannot be avoided due to the use of libuv. It needs to be underscored that
one bug pattern exists and envelops DoS issues. In the given scenario of a VPN
protocol. This is clearly suboptimal and ill-advised.

At the same time, at least in this audit iteration, no Critical severity bugs could be
spotted. It cannot be disregarded, however, that one issue came very close, as
mentioned in EXP-04-013. To conclude, the scope of the ExpressVPN Lightway protocol
assessed by Cure53 in this project makes a relatively robust impression. This holds
despite the number of findings listed in this report. It is crucial to observe that the fixes
are rather trivial to implement.

Given that not many vulnerabilities were found, it is expected that the implementation
should be good for production use once the issues are addressed. It is recommended to
frequently look at the code in case significant updates are committed. Ongoing security

Cure53, Berlin · 06/21/21 20/21

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

engagements will make it more feasible to maintain the desirable state of privacy and
security posture.

Cure53 would like to thank Walter, Dan G., Pete M., David W.F. and Aaron E. from the
ExpressVPN team for their excellent project coordination, support and assistance, both
before and during this assignment.

Cure53, Berlin · 06/21/21 21/21

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report ExpressVPN Lightway Protocol 03.2021
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	EXP-04-007 Server: User-enumeration due to login timing differences (Info)
	EXP-04-010 Server: Amplification DoS due to packet-resending (Medium)
	EXP-04-011 Server: DoS via half-open connections (Medium)
	EXP-04-012 Server: DoS via spoofed packets bouncing between servers (High)
	EXP-04-013 Server: DoS via improper closing of TCP connection (High)

	Miscellaneous Issues
	EXP-04-001 libdnet: Buffer overflow in arp-ioctl.c via sscanf() (Low)
	EXP-04-002 Unity: Integer overflow in unity_memory.c’s unity_calloc() (Low)
	EXP-04-003 Unity: Integer overflow in unity_memory.c’s unity_malloc() (Low)
	EXP-04-004 WolfSSL: CVE-2021-3336 is a known vulnerability in WolfSSL (High)
	EXP-04-005 Libuv: Out-of-bounds read in UTF8 parsing (Low)
	EXP-04-006 Libuv: More memory allocated than required (Info)
	EXP-04-008 lua-crypt: No enforcement of hash algorithm (Info)
	EXP-04-009 Libhelium: Version numbers not checked (Info)
	EXP-04-014 Server: Incorrect pointer checked after allocation (Info)

	Conclusions

