
         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Pentest-Report ExpressVPN iOS App 08.-09.2022
Cure53, Dr.-Ing. M. Heiderich, MSc. S. Moritz, Dipl.-Ing. A. Aranguren

Index
Introduction
Scope
Severity Glossary
Table of Findings
Identified Vulnerabilities

EXP-11-001 WP1: Information disclosure via absent security screen (Low)
EXP-11-003 WP1: Potential phishing via iOS URL scheme hijacking (Medium)
EXP-11-005 WP1: Absent data protection facilitates VPN config access (Medium)
EXP-11-009 WP1: Magic login via launch-app deep link facilitates DoS (Low)

Miscellaneous Issues
EXP-11-002 WP1: Absent jailbreak detection (Info)
EXP-11-004 WP1: WebView weaknesses via SFSafariViewController usage (Info)
EXP-11-006 WP1/3: Memory corruption weaknesses via insecure functions (Info)
EXP-11-007 WP1/2: Clear-text password storage in iOS Keychain (Info)
EXP-11-008 WP1: Potential WebView XSS via insufficient sanitization (Info)

Conclusions

Cure53, Berlin · 11/23/22                                                                          1/25

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Introduction
“A VPN, or virtual private network, adds a layer of security between your iOS device and
the internet,  protecting you from online  snooping,  interference,  and censorship.  With
ExpressVPN,  you  can  stream,  shop  online,  and  browse  the  internet  privately  and
securely.”

From https://www.expressvpn.com/vpn-software/vpn-ios

This report - titled EXP-11 - details the scope, results, and conclusory summaries of a
penetration test and source code audit against the ExpressVPN iOS mobile app, with a
particular  focus  on  ExpressVPN  Keys  (the  password  manager  integrated  within
ExpressVPN's mobile apps), VPN protocol integration, and dependencies. The work was
requested by ExpressVPN in June 2022 and initiated by Cure53 in late August and early
September 2022, namely in CW35 and CW36. A total of sixteen days were invested to
reach the coverage expected for this project.  The testing conducted for EXP-11 was
divided into three separate work packages (WPs) for ease of execution, as follows:

• WP1: Source-code-assisted penetration tests against ExpressVPN iOS mobile 
app

• WP2: Source-code-assisted penetration tests against Keys, ExpressVPN's 
password manager

• WP3: Source-code audits and reviews against VPN protocol integration and 
dependencies

Cure53 was provided with sources, pertinent  documentation,  test-user accounts,  and
any alternative means of access required to complete the review. For these purposes,
the methodology chosen was white-box and a team of three senior testers was assigned
to  the  project’s  preparation,  execution,  and finalization.  All  preparatory  actions  were
completed  in  August  2022,  namely  in  CW34,  to  ensure  that  testing  could  proceed
without hindrance or delay.

Communications  were facilitated  via  a  dedicated,  shared Slack  channel  deployed  to
combine  the  workspaces  of  ExpressVPN  and  Cure53,  thereby  creating  an  optimal
collaborative working environment.  All  participatory personnel  from both parties were
invited  to  partake  throughout  the  test  preparations  and  discussions.  In  light  of  this,
communications proceeded smoothly on the whole. 

The  scope  was  well-prepared  and  transparent,  no  noteworthy  roadblocks  were
encountered throughout testing, and cross-team queries remained minimal as a result.
The ExpressVPN team delivered excellent  test  preparation  and assisted the Cure53
team in every respect to procure maximum coverage and depth levels for this exercise.

Cure53, Berlin · 11/23/22                                                                          2/25

https://cure53.de/
https://www.expressvpn.com/vpn-software/vpn-ios
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Cure53 gave frequent status updates concerning the test and any related findings, whilst
simultaneously offering prompt queries and receiving efficient,  effective answers from
the  maintainers.  Live  reporting  was  offered  and  subsequently  achieved  via  the
aforementioned Slack channel.

Regarding the findings specifically, the Cure53 team achieved comprehensive coverage
over  the  WP1  through  WP3  scope  items,  identifying  a  total  of  nine.  Four  of  these
findings  were  categorized  as  security  vulnerabilities,  whilst  the  remaining  five  were
deemed general weaknesses with lower exploitation potential. Generally speaking, the
overall yield of findings is relatively moderate in comparison with similarly scoped audits,
which in turn reflects positively on the ExpressVPN iOS application’s perceived security
strength.

Moreover, the fact that all findings were assigned a severity rating of  Medium or lower
indicates a complete lack of significant attack surfaces and damaging threat potential.
Nevertheless,  the  testing  team is  keen  to  underline  that  three  of  the  four  identified
vulnerabilities  represent  a  recurring  issue  pertaining  to  information  disclosure,  which
should be earmarked as a focus area for improvement moving forward.

All in all, the development team deserves every plaudit for their due diligent efforts in
minimizing any potential  threats for  the iOS application,  with only  minor adjustments
required  to  further  elevate  the  platform  to  an  exemplary  standard  from  a  security
perspective.

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. Subsequently, the report will list all
findings identified in chronological order, starting with the detected vulnerabilities and
followed by the general weaknesses discovered. Each finding will be accompanied by a
technical description and Proof of Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summary,  the report  will  finalize  with a conclusion in  which the Cure53 team will
elaborate  on  the  impressions  gained  toward  the  general  security  posture  of  the
ExpressVPN iOS mobile app components in focus, giving high-level hardening advice
where applicable.

Cure53, Berlin · 11/23/22                                                                          3/25

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Scope
• Code audits and security assessments against ExpressVPN mobile application for

iOS
◦ WP1: Source-code-assisted penetration tests against ExpressVPN iOS mobile app

▪ Primary audit focus:
• ExpressVPN iOS Mobile App

◦ xv_iphone
◦ xv_libballoon

• Tested App version: 11.58.0.116835
▪ In-scope items:

• The compiled binary and ExpressVPN iOS App sources with attacks in mind 
that lead to DoS, information leakage, MitM, RCE, and similar.

• All iOS-related sources.
▪ Out-of-scope items:

• Features related to development or testing.
• Dependencies not listed in scope document.
• ExpressVPN APIs (though MitM attacks were in scope).
• Code irrelevant to the iOS application targeting other platforms such as 

Android, Windows, Aircove, Linux, and macOS.
• VPN servers.
• Any exploit vector with the prerequisite that the device is jailbroken.

◦ WP2: Source-code-assisted penetration tests against integrated password manager
▪ Primary audit focus:

• Password manager integrated in the ExpressVPN iOS App:
◦ password_manager/iOS

▪ In-scope items:
• All password manager components integrated by the ExpressVPN iOS app.
• Note that several components had already been evaluated in an earlier 

assessment (see EXP-10 - Android Assessment); only iOS-specific bindings 
were in scope for this assessment.

• Autofill integration.
▪ Out-of-scope items:

• Password manager core.
• See WP1 info for additional OOS items.

◦ WP3: Source-code audits and reviews against VPN protocol integration and 
dependencies
▪ Secondary audit focus:

• Core Lightway library (libhelium).
• Dependency packaged with libballoon ( libxenon).
• Shared library used to communicate with API servers (xvclient).

Cure53, Berlin · 11/23/22                                                                          4/25

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

▪ In-scope items:
• The integration of available VPN protocols into the ExpressVPN iOS app.
• Several mission-critical dependencies and third-party software, including 

cursory audits covering libhelium, xvclient, and libxenon usage.
▪ Out-of-scope items:

• VPN protocol implementations.
• See WP1 info for additional OOS items.

◦ Test-user accounts were created and activated for the auditing team
◦ All binaries in scope were shared with Cure53
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were made available for Cure53

Cure53, Berlin · 11/23/22                                                                          5/25

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Severity Glossary
The  following  section  details  the  varying  severity  levels  assigned  to  the  issues
discovered in this report.

Critical: The highest possible severity level. Categorizes issues that allow attackers to 
achieve extensive access to sensitive areas, such as critical systems, applications, data 
or other pertinent components in scope.

High:  Categorizes  issues  that  allow attackers  to achieve  limited access to  sensitive
areas in scope. This also includes issues with limited exploitability that can facilitate a
significant impact upon the target in scope.

Medium:  Categorizes  issues that  do not  incur  major impact  on the areas in  scope.
Additionally, issues requiring a more limited exploitation are graded as Medium.

Low: Categorizes issues that have a highly limited impact on the areas in scope. Mostly
does  not  depend  on  the  level  of  exploitation  but  rather  on  the  minor  severity  of
obtainable information or lower grade of damage targeting the areas in scope.

Info:  Categorizes  issues considered merely  informational  in  nature.  They are mostly
considered as hardening recommendations or improvements that can generally enhance
the security posture of the areas in scope.

Cure53, Berlin · 11/23/22                                                                          6/25

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Table of Findings

Identified Vulnerabilities

ID Title Severity

EXP-11-001 WP1: Information disclosure via absent security screen Low

EXP-11-003 WP1: Potential phishing via iOS URL scheme hijacking Medium

EXP-11-005 WP1: Absent data protection facilitates VPN config access Medium

EXP-11-009 WP1: Magic login via launch-app deep link facilitates DoS Low

Miscellaneous Issues

ID Title Severity

EXP-11-002 WP1: Absent jailbreak detection Info

EXP-11-004 WP1: WebView weaknesses via SFSafariViewController usage Info

EXP-11-006 WP1/3: Memory corruption weaknesses via insecure functions Info

EXP-11-007 WP1/2: Clear-text password storage in iOS Keychain Info

EXP-11-008 WP1: Potential WebView XSS via insufficient sanitization Info

Cure53, Berlin · 11/23/22                                                                          7/25

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Identified Vulnerabilities
The  following  section  lists  all  vulnerabilities  and  implementation  issues  identified
throughout the testing period. Please note that findings are listed in chronological order
rather than by their degree of severity and impact. The aforementioned severity rank is
given in brackets following the title heading for each vulnerability.  Furthermore, each
vulnerability is given a unique identifier (e.g., EXP-11-001) to facilitate any future follow-
up correspondence.

EXP-11-001 WP1: Information disclosure via absent security screen (Low)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Testing confirmed that the iOS app fails to render a security screen when backgrounded.
This  allows  attackers  with  physical  access  to  an  unlocked  device  to  peruse  data
displayed by the app before it disappears into the background. A malicious app or an
attacker with physical access to the device could leverage this weakness to gain access
to user information, such as sensitive or compromising data related to PII.

To  replicate  this  issue  on iOS,  simply  navigate  to  a  screen  displaying  sensitive
information,  then  send the application  to  the background.  Subsequently,  display  the
open app and observe that the input text can be read by the user. Notably, this text will
remain legible following a device reboot.

Fig.: Side-channel information leak via absent security screen on iOS app.

Cure53, Berlin · 11/23/22                                                                          8/25

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

The root  cause  of  this  issue  can be  observed  in  the  AppDelegate,  which  does not
currently capture the relevant events to display a security screen when the application is
backgrounded under the current implementation.

Specifically,  the handler for  applicationWillResignActive is absent in the  AppDelegate.
Furthermore, the handler for the  applicationDidEnterBackground  event exists but does
not currently contain any code handling a security screen:

Affected file:
xv_iphone/SuperXV/AppDelegate.m

Affected code:
- (void)applicationDidEnterBackground:(UIApplication*)application {
    [self scheduleAppRefresh];
    [self scheduleProcessing];
}

- (void)scheduleAppRefresh {
    if (@available(iOS 13, *)) {
        DDLogDebug(@"AppDelegate: scheduleAppRefresh");

        BGAppRefreshTaskRequest* request = [[BGAppRefreshTaskRequest alloc] 
initWithIdentifier:@"com.expressvpn.ios.backgroundAppRefresh"];
        request.earliestBeginDate = [NSDate dateWithTimeIntervalSinceNow:15 * 
60];

        NSError* error;
        BOOL result = [BGTaskScheduler.sharedScheduler submitTaskRequest:request
error:&error];
        if (!result) {
            DDLogDebug(@"Fail to schedule background app refresh: error=%@", 
error);
        }
    }

To mitigate this issue, Cure53 recommends rendering a security screen overlay when
the app is backgrounded. For iOS apps, the process of backgrounding an application
can be detected in  Swift1 and Objective-C2. Subsequently, a different screen that does
not include any sensitive user data can be displayed. A revised approach could also
constitute sensitive information leakage prevention via iOS screenshots. 

1 https://www.hackingwithswift.com/example-code/system/how-to-detect-when-your-app-mo...ackground
2 https://developer.apple.com/...-applicationwillresignactive?language=objc

Cure53, Berlin · 11/23/22                                                                          9/25

https://cure53.de/
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622950-applicationwillresignactive?language=objc
https://www.hackingwithswift.com/example-code/system/how-to-detect-when-your-app-moves-to-the-background
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

This  is  typically  accomplished  in  the  AppDelegate file  using  the
applicationWillResignActive or applicationDidEnterBackground method.
This vulnerability is rated a 3.9

View the breakdown of each component of the scoring below:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:U/C:L/I:L/A:N

CWE: https://cwe.mitre.org/data/definitions/200.html 

EXP-11-003 WP1: Potential phishing via iOS URL scheme hijacking (Medium)
Note from ExpressVPN:  These links  are  used solely  for  the purpose of  signing  in
through a randomized activation token (i.e. an alternative method for users to sign in
using a one-time email link, instead of their usual activation code). The risk is that a
malicious application might be able to obtain the  randomized, short lived non-sensitive
token used for  application  activation.   ExpressVPN and Cure53  agree that  it  is  not
possible to fix this issue without introducing the possibility for these universal links to be
blocked  in  some  countries,  based  on  the  domain  used.  Blocking  these  links  would
prevent users from being able to sign into our application using this secondary method.

Testing confirmed that the iOS app currently implements a custom URL handler, which
is considered insecure since it is susceptible to URL hijacking. This approach has been
leveraged by  numerous malicious  iOS applications  in  well-documented cases3.  As a
result,  a  malicious  app  could  leverage  this  weakness  to  register  the  same  custom
schemes as the official application and thereby receive sensitive information intended for
the legitimate application only. To provide an example, this attack could be utilized to
display  a fake login  screen to victim users from a malicious  app on the device  that
registered the same URL scheme, hence harvesting user credentials. Please note that
this  vulnerability  remains  exploitable4 even though  Apple  has  implemented the  first-
come-first-served principle since iOS 11.

A URL example susceptible to hijacking by a malicious application is offered below.

Hijackable URL schemes:
expressvpn://

This issue’s root cause can be identified in the application’s Info.plist file:

Affected file:
xv_iphone//SuperXV/Info.plist

3 https://www.fireeye.com/blog/threat-research/2015/02/ios_masque_attackre.html
4 https://malware.news/t/ios-url-scheme-susceptible-to-hijacking/31266

Cure53, Berlin · 11/23/22                                                                          10/25

https://cure53.de/
https://malware.news/t/ios-url-scheme-susceptible-to-hijacking/31266
https://www.fireeye.com/blog/threat-research/2015/02/ios_masque_attackre.html
https://cwe.mitre.org/data/definitions/200.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:U/C:L/I:L/A:N
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Affected code:
<key>CFBundleURLTypes</key>
   <array>
      <dict>
         <key>CFBundleTypeRole</key>
         <string>Editor</string>
         <key>CFBundleURLName</key>
         <string>com.expressvpn.iosvpn</string>
         <key>CFBundleURLSchemes</key>
         <array>
            <string>expressvpn</string>
         </array>
      </dict>
   </array>

To mitigate this issue, Cure53 advises substituting the current deep link implementation
from  custom  URL  schemes  to  iOS  Universal  Links5,  simply  because  custom  URL
schemes remain hijackable and therefore cannot be considered sufficiently secure6.

This vulnerability is rated a 5.6

View the breakdown of each component of the scoring below:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:U/C:H/I:L/A:N

CWE: https://cwe.mitre.org/data/definitions/200.html 

EXP-11-005 WP1: Absent data protection facilitates VPN config access (Medium)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Testing confirmed that the iOS app does not currently implement iOS’ integrated Data
Protection features.  This  means  that  most  files  are  encrypted  with  the  default
NSFileProtectionCompleteUntilFirstUserAuthentication7 encryption,  which  stores  the
decryption key in memory while the device is locked. Cure53 considers this to be the
least secure form of data protection available on iOS. A malicious attacker with physical
access to the device could leverage this  weakness to read the decryption  key from
memory and gain access to local app data files without needing to unlock the device.
Further scrutiny revealed that some of the unprotected files display access to the VPN
configuration and alternative information.

5 https://developer.apple.com/ios/universal-links/
6 https://blog.trendmicro.com/trendlabs-security-intelligence/ios-url-scheme-susceptible-to-hijacking/
7 https://developer.apple.com/.../nsfileprotectioncompleteuntilfirstuserauthentication

Cure53, Berlin · 11/23/22                                                                          11/25

https://cure53.de/
https://developer.apple.com/documentation/foundation/nsfileprotectioncompleteuntilfirstuserauthentication
https://cwe.mitre.org/data/definitions/200.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:R/S:U/C:H/I:L/A:N
https://web.archive.org/web/20210506135108/https:/blog.trendmicro.com/trendlabs-security-intelligence/ios-url-scheme-susceptible-to-hijacking/
https://developer.apple.com/ios/universal-links/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

To replicate this issue, a jailbroken phone was left at rest for a few minutes on the lock
screen, then all application files were retrieved for inspection of any potential data leak.
Notably, this also can be achieved on a non-jailbroken device via reading the decryption
key from the memory and the file afterward. A handful of examples revealed by the app
files retrieved during device lock can be consulted below:

Affected file:
/var/mobile/Containers/Data/Application/<GUID>/Library/Preferences/
com.expressvpn.iosvpn.plist

Affected code:
[...]
TjsonV$class _�� �{"protocol":"udp","password":"xxx","ip":"connect.expressvpn.com
","username":"aaa","ipsec_host":"connect.expressvpn.com","openVpnConfig":"dummy_
config","port":"500"} Z$classnameX$classes^ServerObjectV2 ▒^ServerObjectV2YJSON� �
ModelXNSObjec▒$)27ILQSX^choqs▒*3BFU_▒hW11.58.03A ^. aWsucces_blog_20220816_ip� ���
,       
O {"lastKnownFlagValidity":683433406.17491603,"lastFailedConnection":683340924.�
45887995,"lastConnectionFailureReason":{"tyEe":"un3A ^.PYSOME �
IDFAload":"Th3A ^. ? 3A ]< ut."}, ntConnectionMode":"offline"}3A ]< !� ��� � � �Ȭ ������ � �
v 3A ^+ $� � �
,M`| 0NZs $&'()*-.1XYZcfijlmnpqrg [...]����� ������

The extent of this issue is perhaps best illustrated by the output of the  tar  command,
which is able to read most files after the phone has remained passive on the lock screen
for a few minutes. This clearly demonstrates that most files are currently unprotected at
rest.

Commands:
tar cvfz files_locked.tar.gz * > unprotected_files.txt 2> protected_files.txt
wc -l protected_files.txt
wc -l unprotected_files.txt

Output:
3 protected_files.txt
229 unprotected_files.txt

To mitigate this issue, Cure53 recommends integrating the Data Protection capability at
application level8. This will ensure that application data files are protected at rest with the
strongest form of encryption available on iOS: NSFileProtectionComplete9. Furthermore,
in  order  to  protect  cached  entries,  one  can  subclass  NSURLCache with  a  custom
version that stores URL responses in a custom SQLite database with file protection set

8 https://developer.apple.com/documentation/.../com_apple_developer_default-data-protection
9 https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete

Cure53, Berlin · 11/23/22                                                                          12/25

https://cure53.de/
https://developer.apple.com/documentation/foundation/nsfileprotectioncomplete
https://developer.apple.com/documentation/bundleresources/entitlements/com_apple_developer_default-data-protection
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

to  NSFileProtectionComplete10. Alternatively, before the request is sent, caching could
be disabled with a code snippet similar to the one shown below.

Proposed fix (before request sent):
configuration.requestCachePolicy = .reloadIgnoringCacheData

An  alternative  mitigatory  action  could  be  to  clear  all  cached  responses  after  the
response is received.

Proposed fix (after response received):
URLCache.shared.removeAllCachedResponses()

In addition to the above, SQL Cipher11 could be considered to encrypt SQLite databases
at rest. The encryption key should be stored in the iOS keychain while data remains
protected. For additional mitigation guidance, please feel free to peruse the blog post
entitled Best practices to avoid security vulnerabilities in your iOS app12.

This vulnerability is rated a 4.4

View the breakdown of each component of the scoring below:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:N

CWE: https://cwe.mitre.org/data/definitions/200.html 

EXP-11-009 WP1: Magic login via launch-app deep link facilitates DoS (Low)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

During a deep-dive review of the iOS app’s implemented deep links, the discovery was
made  that  the  application  suffers  from  a  client-side  Denial-of-Service  attack.
ExpressVPN  provides  the  option  to  authenticate  users  via  a  magic  login  link  that
contains an activation token. In the eventuality an invalid token is sent to the application
via the launch-app path’s  activation_token parameter, the implemented feature will not
sufficiently handle it. As a result, a loading spinner is displayed preventing users from a
prolonged engagement with the product, such as connecting to the VPN or using the
password manager.

10 https://stackoverflow.com/questions/27933387/nsurlcache-and-data-protection
11 https://www.zetetic.net/sqlcipher/ios-tutorial/
12 http://blogs.quovantis.com/best-practices-to-avoid-security-vulnerabilities-in-your-ios-app/

Cure53, Berlin · 11/23/22                                                                          13/25

https://cure53.de/
https://cwe.mitre.org/data/definitions/200.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:N
http://blogs.quovantis.com/best-practices-to-avoid-security-vulnerabilities-in-your-ios-app/
https://www.zetetic.net/sqlcipher/ios-tutorial/
https://stackoverflow.com/questions/27933387/nsurlcache-and-data-protection
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Affected file:
xv_iphone/SuperXV/HomeViewController.m

Affected code:
(void)handleMagicLoginToken:(NSString*)token {
[...]
   [self showProgressView:@""];
   [XCClientManager.instance checkIfDifferentAccountThanToken:token
      withCompletionHandler:^(BOOL isDifferent) {
         if (!isDifferent) {
            // Deep link is related to current account
            [...]
         }
[...]

The following PoC underlines the method by which a malicious app or page would be
able to force the app showing the spinner animation via opening the example deep link.

PoC link:
expressvpn://app-bus/launch-app?activation_token=ABC

Steps to reproduce:
1. Open the ExpressVPN app and sign in with your user.
2. Click the menu on the VPN tab.
3. Open the example deep link provided above.

However, since the attack can only be instigated with two prerequisites — namely the
device must constitute an iPhone and the previous tab opened must constitute VPN —
any tangible  impact  is  considered  relatively  low.  Nevertheless,  Cure53 recommends
improving all  error-handling processes in general,  for example when a non-functional
token is sent via the aforementioned deep link. By doing so, an additional check should
ensure that the application halts displaying the spinner animation in the eventuality an
error has occurred.

This issue is rated a 3.6

View the breakdown of each component of the scoring below:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:C/C:N/I:N/
A:L 

CWE: https://cwe.mitre.org/data/definitions/703.html 

Cure53, Berlin · 11/23/22                                                                          14/25

https://cure53.de/
https://cwe.mitre.org/data/definitions/703.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:C/C:N/I:N/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:R/S:C/C:N/I:N/A:L
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Miscellaneous Issues
This section covers any and all noteworthy findings that did not lead to an exploit but
might assist an attacker in successfully achieving malicious objectives in the future. Most
of these results are vulnerable code snippets that did not provide an easy way to be
called.  Conclusively,  while  a  vulnerability  is  present,  an exploit  might  not  always be
possible.

EXP-11-002 WP1: Absent jailbreak detection (Info)
Note from ExpressVPN: To support users who choose to jailbreak their devices, the
ExpressVPN iOS application will continue to be supported on jailbroken devices. We’ve
added a warning for users who choose to do this to make them aware of the potentially
increased security issues that arise from a jailbroken device. 

Testing confirmed that the iOS app does not currently implement any form of jailbreak
detection at the time of writing. As a result, the app does not alert users to the security
implications  of  running the app in  an environment  of  this  nature.  This  issue can be
confirmed by installing the app on a jailbroken device and validating the app's complete
lack  of  warning.  To  mitigate  this  issue,  Cure53  recommends  implementing  a
comprehensive  jailbreak  solution.  Notably,  the  application  will  always  remain  at  a
disadvantage  since  the  user  holds  root  access  and  the  application  does  not.
Mechanisms such as these should always be considered circumventable in the hands of
a skilled and dedicated attacker.

Some  freely  available  libraries  for  iOS  constitute  IOSSecuritySuite13 and
DTTJailbreakDetection14, though custom checks are also possible in Swift applications15.
These solutions  should be considered bypassable  but  will  suffice for  the purpose of
warning users regarding the risk of operating the application on a jailbroken device. For
an optimal outcome in this scenario, one can recommend testing commercial and open
source  solutions  against  well-known  Cydia  tweaks,  such  as  LibertyLite16,  Shadow17,
tsProtector 8+18, and A-Bypass19. Based on the results gathered, the ExpressVPN team
could subsequently determine the most secure approach for this framework.

This issue is rated a 0.0

13 https://cocoapods.org/pods/IOSSecuritySuite
14 https://github.com/thii/DTTJailbreakDetection
15 https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
16 http://ryleyangus.com/repo/
17 https://ios.jjolano.me/
18 http://apt.thebigboss.org/repofiles/cydia/
19 https://repo.rpgfarm.com/

Cure53, Berlin · 11/23/22                                                                          15/25

https://cure53.de/
https://repo.rpgfarm.com/
http://apt.thebigboss.org/repofiles/cydia/
https://ios.jjolano.me/
https://ryleyangus.com/repo/
https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
https://github.com/thii/DTTJailbreakDetection
https://cocoapods.org/pods/IOSSecuritySuite
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

View the breakdown of each component of the scoring below:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/
A:N 

CWE: https://cwe.mitre.org/data/definitions/356.html 

EXP-11-004 WP1: WebView weaknesses via SFSafariViewController usage (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

During the code review,  the discovery was made that  the iOS app currently utilizes
SFSafariViewController.  Unfortunately,  this  WebView  component  cannot  disable
JavaScript, follows HTTP redirects, shares cookies and other website data with Safari,
and cannot be obfuscated by other views or layers, which defeats any security-screen
protections otherwise correctly implemented by the iOS app.  The root  cause for  this
issue originates from the following file:

Affected file:
xv_iphone/SuperXV/Library/SXVWebViewController.swift

Affected code:
import SafariServices
final class SXVWebViewController: SFSafariViewController {
   override init(url URL: URL, configuration: 
SFSafariViewController.Configuration) {
     super.init(url: URL, configuration: configuration)
     customizeUI()
}
   init(url URL: URL) {
      let configuration = SFSafariViewController.Configuration()
      super.init(url: URL, configuration: configuration)
      customizeUI()
   }
   private func customizeUI() {
      preferredControlTintColor = .fn_primaryTint
      preferredBarTintColor = .fn_primaryBackground
  }
}

To mitigate  this  issue,  Cure53  advises  replacing  the current  SFSafariViewController
implementation  with  the  safer  and  more  performant  WKWebView20.  Amongst  other
benefits,  WKWebViews  permits disabling JavaScript, does not share cookies or other
website data with Safari, and can be obfuscated by other views or layers.

20 https://developer.apple.com/documentation/webkit/wkwebview

Cure53, Berlin · 11/23/22                                                                          16/25

https://cure53.de/
https://developer.apple.com/documentation/webkit/wkwebview
https://cwe.mitre.org/data/definitions/356.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

This issue is rated a 0.0

View the breakdown of each component of the scoring below:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/
A:N 

CWE: https://cwe.mitre.org/data/definitions/657.html 

EXP-11-006 WP1/3: Memory corruption weaknesses via insecure functions (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Testing confirmed that the ExpressVPN application leverages certain functions that can
lead to memory corruption vulnerabilities. Whilst this weakness does not appear to be
easily exploitable at the time of testing, the application’s attack surface is unnecessarily
increased  as  a  result  and  could  facilitate  greater  potential  for  memory  corruption
vulnerabilities in the future. This issue was identified in the following files during the code
review:

Affected file:
xv_iphone/Trident/Sources/SharedLib/XVClientBridge.m

Affected code:
xc_global_options global_opts;
memset(&global_opts, 0, sizeof(global_opts));
memcpy(global_opts.obfskey, key, XC_GLOBAL_OBFS_KEY_SIZE);
global_opts.os_name = xc_os_name_ios;
global_opts.os_version = systemVersion.UTF8String;
global_opts.client_version = appVersion.UTF8String;
global_opts.installation_id = installID.UTF8String;
global_opts.app_variant = [self getAppVariant];
memcpy(global_opts.data_file_key, dataFileKey.bytes, dataFileKey.length);
memcpy(global_opts.data_file_iv, dataFileIV.bytes, dataFileKey.length);
int rc = xc_global_init(&global_opts);
if (rc != 0) {
[...]

Affected file:
xv_iphone/Trident/Sources/Lightway Bridge/HeliumTransportUDP.m

Affected code:
if ((msg.msg_flags & MSG_TRUNC) || (msg.msg_flags & MSG_CTRUNC)) {
   [self posixError:@"Control message truncated"];

Cure53, Berlin · 11/23/22                                                                          17/25

https://cure53.de/
https://cwe.mitre.org/data/definitions/657.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

   return;
}
struct cmsghdr* cmsg;
uint64_t timestamp = 0;
for (cmsg = CMSG_FIRSTHDR(&msg); NULL != cmsg; cmsg = CMSG_NXTHDR(&msg, cmsg)) {
   if (cmsg->cmsg_len == CMSG_LEN(sizeof(uint64_t)) && cmsg->cmsg_level == 
SOL_SOCKET &&
      cmsg->cmsg_type == SCM_TIMESTAMP_MONOTONIC) {
         memcpy(&timestamp, CMSG_DATA(cmsg), sizeof(uint64_t));
         break;
      }
}

Affected file:
xv_iphone/Trident/Sources/Lightway Bridge/HeliumMultiClient.m

Affected code:
static void HeliumMuxDebugLogCallback(he_mux_client_t *mux, void *context, const
char *fmt, ...) {
   // Get our context back
   HeliumMultiClientImpl *client = (__bridge HeliumMultiClientImpl *)(context);
   char *buf = NULL;
   va_list va;
   va_start(va, fmt);
   vasprintf(&buf, fmt, va);
   va_end(va);
   [client debugLog:[NSString stringWithFormat:@"Balloon: %s", buf]];
   free(buf);
}

Affected file:
xv_libballoon/libballoon-filter/src/packet_filter.c

Affected code (strtok):
char *tok = strtok(p, " ");
tok = strtok(NULL, "\n");
tok = strtok(p, "\n");

Additionally, another known weakness persists via usage of the strncpy function. In the
eventuality  not  all  characters  are  copied  from a  source  string,  the  function  will  not
append a null character by default21. Since alternative functions such as  strlen rely on
the  null-byte  termination  in  strings,  the  function  would  search  for  the  next  null-byte
available  in  memory.  This  behavior  can  incur  significant  issues  —  such  as  buffer
overflows — if integrated to other elements in an incorrectly validated manner. However,
in the following example, the len parameter is not utilized for initializing or copying data.

21 https://devblogs.microsoft.com/oldnewthing/20050107-00/?p=36773

Cure53, Berlin · 11/23/22                                                                          18/25

https://cure53.de/
https://devblogs.microsoft.com/oldnewthing/20050107-00/?p=36773
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Affected code (strncpy):
strncpy(buf, domain, MAX_DOMAIN_LENGTH - 1);
size_t len = strlen(buf);

Where possible, Cure53 advises avoiding C functions with known potential to introduce
memory corruption vulnerabilities such as  memcpy,  strcpy,  strncpy, strcat, and similar.
Subsequently, protection for the remaining cases could be integrated via usage of the -
fstack-protector-all and  -D_FORTIFY_SOURCE=2  compiler flags. One can additionally
recommend  replacing  the  strtok  function  with  its  strtok_r22 alternative.  Moreover,  if
strncpy is used, it should be ensured that the resulting string always appends a null-byte
character.  This  can be achieved manually  or  via other functions such as  snprintf  or
strlcpy.  For  additional  mitigation  guidance,  please  feel  free  to  refer  to  the  Apple
documentation article Avoiding Buffer Overflows and Underflows23.

This issue is rated a 0.0

View the breakdown of each component of the scoring below:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/
A:N 

CWE: https://cwe.mitre.org/data/definitions/119.html 

EXP-11-007 WP1/2: Clear-text password storage in iOS Keychain (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Testing confirmed that the application stores the master password for the ExpressVPN
Keys functionality in clear-text in the keychain. Storage of user passwords in clear-text is
considered a negative practice if implemented on either the client- or server-side. 

A  malicious  attacker  able  to  gain  access  to  the  contents  of  the  iOS keychain  may
leverage this  weakness to enumerate the master  password,  which some users may
reuse for other online services. This scenario may be successfully instigated if attackers
have physical access to an unlocked device and are able to provide a valid fingerprint
(i.e. stolen via silicon techniques) or Face ID (i.e. forcing the victim user). 

Please note that the exploitability of this issue is drastically reduced due to adequate
storage  in  the  iOS  keychain  with  an  optimal  access  control  of

22 https://wiki.sei.cmu.edu/…/c/STR06-C.+Do+not+assume+that+strtok%28%29+leaves+the+parse+strin
23 https://developer.apple.com/.../Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html

Cure53, Berlin · 11/23/22                                                                          19/25

https://cure53.de/
https://cwe.mitre.org/data/definitions/119.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
https://developer.apple.com/library/archive/documentation/Security/Conceptual/SecureCodingGuide/Articles/BufferOverflows.html
https://wiki.sei.cmu.edu/confluence/display/c/STR06-C.+Do+not+assume+that+strtok()+leaves+the+parse+string+unchanged
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

kSecAttrAccessibleAfterFirstUnlockThisDeviceOnly24.  The  clear-text  password  was
located at runtime in the iOS Keychain as follows:

Level of Access Field Value

WhenPasscodeSetThisDeviceOnly AutomaticUnlockMasterPassword cure53[...]

The  root  cause  for  this  issue  appears  to  be  the  lack  of  encryption  of  the  master
password, as can be deduced in the following code:

Affected file:
xv_iphone/SuperXV/PasswordManager/Library/PWMBiometricAuthenticator.swift

Affected code:
// MARK: - Keychain Methods - Biometric Context

  private func keychainQueryForStoredMasterPassword(context: LAContext) -> 
[String: Any] {
    let account = "AutomaticUnlockMasterPassword"
    let server = "pmgr.expressvpn.com"
    let accessGroup = "group.com.expressvpn.iosvpn"

    return [
      kSecClass as String: kSecClassInternetPassword,
      kSecAttrAccount as String: account,
      kSecAttrServer as String: server,
      kSecUseAuthenticationContext as String: context,
      kSecAttrAccessGroup as String: accessGroup,
    ]
  }

The primary issue here pertains to the fact that the user password is stored in clear-text
in the iOS Keychain, hence access to this data provides access to the account until the
password  is  altered.  A  more  secure  approach  would  be  to  generate  a  lengthy  and
random client-side token that the user transparently logs in with. This token should be
stored in the iOS Keychain rather than the user password, but could also be encrypted
with the user password for additional security. A similar approach is used by Veracrypt25

for  comprehensive  disk  encryption,  thereby  one  can  recommend  utilizing  a  strong
encryption or library such as cryptokit26 to store information of this nature. 

24 https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly  
25 https://www.veracrypt.fr/en/Encryption%20Scheme.html
26 https://developer.apple.com/documentation/cryptokit/

Cure53, Berlin · 11/23/22                                                                          20/25

https://cure53.de/
https://developer.apple.com/documentation/cryptokit/
https://www.veracrypt.fr/en/Encryption%20Scheme.html
https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

For additional mitigation guidance, please feel free to refer to the  OWASP Password
Storage Cheat Sheet27.

This issue is rated a 0.0

View the breakdown of each component of the scoring below:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/
A:N 

CWE: https://cwe.mitre.org/data/definitions/200.html 

EXP-11-008 WP1: Potential WebView XSS via insufficient sanitization (Info)
Fix Note: The issue was addressed by the ExpressVPN team and the fix was verified by
Cure53 who were able to review the related diff & PR. The issue no longer exists.

Testing  confirmed  that  the  ExpressVPN  iOS app  renders  diagnostic  information  via
means that could result in XSS from a privileged context. The app displays stored VPN
logs  via  the  loadHTMLString:formattedHTML28 method,  which  is  prone  to  XSS
vulnerabilities. Additionally, the WebView utilizes a nil baseURL parameter, which could
allow attackers to access local system files from JavaScript. Notably, the exploitation
potential of this issue remains relatively low since VPN logs are unlikely to contain user
input that in turn contains XSS payloads. Cure53 nevertheless recommends resolving
this  weakness  to  eliminate  any  risk  potential  originating  from  this  attack  vector.
Specifically,  the present issue was detected in the following location during the code
review:

Affected file:
xv_iphone/SuperXV/VPNLogViewController.m

Affected code:                                                               
action:@selector(copyPressed:)];
    [self.navigationItem setRightBarButtonItem:copyButton];
    self.webView.navigationDelegate = self;
}
    [...]    // Save the full vpn content in self.content
    [content appendString:vpnContent];
    self.content = content;
    // Update the UI
    NSString* formattedHTML = [NSString stringWithFormat:@"<html><body><pre>
%@</pre></body></html>", uiContent];
    [self.webView loadHTMLString:formattedHTML baseURL:nil];}[...]

27 https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
28 https://developer.apple.com/documentation/webkit/wkwebview/1415004-loadhtmlstring

Cure53, Berlin · 11/23/22                                                                          21/25

https://cure53.de/
https://developer.apple.com/documentation/webkit/wkwebview/1415004-loadhtmlstring
https://cwe.mitre.org/data/definitions/200.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

To  mitigate  this  issue,  Cure53  recommends  implementing  a  TextView  rather  than
WebView for these purposes to completely eliminate the possibility of XSS. Alternatively,
VPN logs  should  be sanitized  with  adequate  output-encoding  prior  to  concatenating
them into the WebView HTML. Finally, if possible, JavaScript should be disabled on the
WKWebView and the  baseURL  parameter should be set to a value other than  nil  or
file://[...] to avoid potential file access from JavaScript in the event of XSS.

This issue is rated a 0.0

View the breakdown of each component of the scoring below:
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/
A:N 

CWE: https://cwe.mitre.org/data/definitions/79.html 

Cure53, Berlin · 11/23/22                                                                          22/25

https://cure53.de/
https://cwe.mitre.org/data/definitions/79.html
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:L/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:N
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW35 and CW36 testing against the ExpressVPN iOS mobile app
by the Cure53 team - will now be discussed at length. To summarize, the confirmation
can be made that the components under scrutiny have garnered a positive impression,
with  the  vast  majority  of  significant  attack  vectors  successfully  deterred  and  only  a
relatively minimal yield of findings documented.

To provide context on the test setup, three members of the Cure53 team completed the
project over the course of sixteen days in August and September 2022. A total of nine
issues were detected during the audit, four of which were considered exploitable and
assigned to the Vulnerabilities section, whilst the remaining five were merely considered
hardening  recommendations  or  best  practice  implementations  and  were  therefore
assigned to the Miscellaneous section.

To ensure a smooth audit, Cure53 was provided with test-user accounts and a functional
ExpressVPN iOS application constituting version 11.58.0 (116835). Sources for the app
and  corresponding  dependencies  were  also  shared.  This  significantly  increased  the
effectiveness of  the  assessment,  allowing  the testing  team to  thoroughly  review the
application  for  potential  security  vulnerabilities  proliferating  in  the  code  and  running
environments.

The primary objective of Cure53 investigation’s of the iOS application was to determine
whether  the existing  functionality  of  the application  and its  connected endpoints  and
environments can be deemed healthy enough to withstand attacks by malicious users
and third-party applications. With a specific focus on commonly-found mobile application
issues relating to various types of injection attacks and misconfigurations — which could
compromise  the  application  or  the  authenticated  user  —  were  investigated  without
significant success.

As a result, only four exploitable issues were detected, three of which specifically related
to information disclosure. Testing confirmed that the iOS app would particularly benefit
from implementing a security screen overlay to prevent disclosure via either screenshots
and or background state (see EXP-11-001 for further guidance). This is a known issue
for mobile  security in  general,  therefore any mitigatory actions applied in this regard
would undoubtedly increase ExpressVPN user privacy.

Elsewhere,  another  issue was identified relating to custom deep-link scheme usage,
which facilitates iOS URL scheme hijacking attacks and could lead to both information
disclosure and user-account compromisation. Toward this, the development team should
adhere to the guidance proposed in ticket EXP-11-003.

Cure53, Berlin · 11/23/22                                                                          23/25

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Regarding the hardware-backed security enclave, the discovery was made that the iOS
keychain is utilized correctly, though user credentials should not be stored in clear-text in
the keychain as stipulated in ticket EXP-11-007. The final issue in the area of information
disclosure relates to improper file protection. In this regard, VPN settings and alternative
information  would  be  better  protected  at  rest  by  implementing  the  available  data
protection features in iOS, as documented in ticket EXP-11-005.

Conversely,  other  aspects  related  to  information  disclosure  garnered  a  positive
impression, since achieving a connection to a user’s real IP was deemed impossible.
Despite  the  known  WebRTC  leak  which  has  been  addressed  by  ExpressVPN,  no
additional side-channel leaks were detected, which is certainly a praiseworthy outcome.

Deep-dive  evaluations  into  deep-link  processing  were  also  conducted,  which
subsequently revealed an issue concerning Denial-of-Service attacks.  In light  of this,
Cure53 strongly recommends hardening the application against threats of this nature by
introducing a more reliable error-handling process, as detailed in ticket EXP-11-009.

The testing team also observed some leeway for minor hardening recommendations,
including configurations and feature usage that could be improved to better protect users
from potential  memory corruption vulnerabilities in iOS (see  EXP-11-006), as well  as
weaknesses that  may facilitate XSS attacks (see  EXP-11-004 and EXP-11-008) and
detection of jailbroken devices (see EXP-11-002).

Additionally, the password manager integration and associated features were examined
in-depth  by  Cure53.  Positively,  no  client-side  issues  were  detected  in  the  UI
components. The matching of domains, subdomains, and the integration of the Autofill
feature within the iOS ecosystem were also soundly handled in general.

The examined codebase of the iOS application and dependencies in scope garnered a
solid impression from a security perspective. This strong foundation is corroborated by
the fact that the codebase adheres to common best practices. In particular, testing was
initiated  to  determine  whether  the  application  leveraged  dangerous  functions  or
implemented common pitfalls that could lead to major vulnerabilities, such as additional
injection-based  attacks,  path  traversal  issues,  arbitrary  file  handling,  or  common
erroneous  behaviors  such  as  XXE or  deserialization  attacks.  Static  analysis  tooling
seems integrated into the lifecycle also, which further reduces any error potential in this
regard. 

Cure53, Berlin · 11/23/22                                                                          24/25

https://cure53.de/
mailto:mario@cure53.de


         Dr.-Ing. Mario Heiderich, Cure53
         Bielefelder Str. 14
         D 10709 Berlin
         cure53.de · mario@cure53.de 

Aside from the aforementioned, the iOS application provided a number of further positive
impressions during this assignment that are worthy of mention here:

• No leaks were located via log messages or locked screens.
• No encrypted credentials or application secrets were identified.
• The application correctly disables clear-text HTTP communications.
• The application correctly validates SSL certificates.

In summation,  Cure53 strongly  advises  addressing all  issues identified  in  this  report
where possible,  including those considered  Informational and  Low.  This  will  not  only
strengthen the security posture of the platform, but also reduce the number of tickets
documented  in  future  security  engagements.  To  conclude,  the  ExpressVPN  mobile
application  for  iOS  plus  related  dependencies  and  features  in  scope  garnered  an
adequately solid impression in relation to security.

Despite the four identified vulnerabilities,  the average impact  marker merely hovered
between  Low and  Medium, which indicates stable protection against attacks targeting
the examined ExpressVPN application. This outcome provides ample evidence that the
ExpressVPN team is not only acutely aware of the myriad problems that modern iOS
applications  tend  to  face,  but  has  also  successfully  implemented  counteractive
measures to repel them.

However, the testing team also observed some leeway for improvement following the
completion of this audit, particularly in relation to information disclosure, as mentioned
previously. It's important to note that this information disclosure requires physical device
access, or the installation of a malicious application. This is considered an erroneous
and recurring antipattern that primarily persists due to misconfiguration and lack of best-
practice adherence.

Once all issues detailed in this report have been addressed and mitigated, Cure53 would
be  pleased  to  confirm  that  the  audited  versions  of  the  examined  application  and
dependencies in scope are sufficiently safeguarded for production use.

Cure53  would  like  to  thank  Brian  Schirmacher,  Steve  Lin,  Sam  Bultez,  and  Elie
Jacquelin from the ExpressVPN team for their excellent  project  coordination,  support
and assistance, both before and during this assignment.

Cure53, Berlin · 11/23/22                                                                          25/25

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report ExpressVPN iOS App 08.-09.2022
	Index
	Introduction
	Scope
	Severity Glossary
	Table of Findings
	Identified Vulnerabilities
	EXP-11-001 WP1: Information disclosure via absent security screen (Low)
	EXP-11-003 WP1: Potential phishing via iOS URL scheme hijacking (Medium)
	EXP-11-005 WP1: Absent data protection facilitates VPN config access (Medium)
	EXP-11-009 WP1: Magic login via launch-app deep link facilitates DoS (Low)

	Miscellaneous Issues
	EXP-11-002 WP1: Absent jailbreak detection (Info)
	EXP-11-004 WP1: WebView weaknesses via SFSafariViewController usage (Info)
	EXP-11-006 WP1/3: Memory corruption weaknesses via insecure functions (Info)
	EXP-11-007 WP1/2: Clear-text password storage in iOS Keychain (Info)
	EXP-11-008 WP1: Potential WebView XSS via insufficient sanitization (Info)

	Conclusions


