
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Security-Review Report Contour 11.2020
Cure53, Dr.-Ing. M. Heiderich, M. Wege, MSc. N. Krein, MSc. D. Weißer

Index
Introduction

Scope

Test Methodology

Phase 1: General security posture checks

Phase 2: Manual code audits and penetration tests

Phase 1: General security posture checks

Application/Service/Project Specifics

Organization/Team/Infrastructure Specifics

Evaluating the Overall Posture

Phase 2: Manual code auditing & pentesting

Identified Vulnerabilities

CON-01-004 WP1: contour certgen stores private keys as world-accessible (Low)

Miscellaneous Issues

CON-01-001 WP2: Build system lacks PIE and RELRO executable flags (Low)

CON-01-002 WP1: Improper error handling in grpcOptions function (Info)

CON-01-003 WP1: shutdown-manager Envoy health check lacks retry logic (Info)

CON-01-005 WP1: Support of weak cipher-suites (Info)

Conclusions

Cure53, Berlin · 12/16/20 1/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“Contour is an Ingress controller for Kubernetes that works by deploying the Envoy
proxy as a reverse proxy and load balancer. Contour supports dynamic configuration
updates out of the box while maintaining a lightweight profile.”

From https://github.com/projectcontour/contour

This report documents the results of a security assessment targeting the Contour
software complex. Carried out by Cure53 in late 2020, the project entailed a penetration
test, a source code audit and a broader review of the security posture characterizing the
Contour software project.

The work was requested by CNCF and promptly executed by Cure53 in mid-to-late
November 2020, precisely in CW46 and CW47. The investigation took place in a close
collaboration with the Contour development team.

A team of Cure53 senior testers was chosen and included five skill-matched members.
Together they prepared, conducted, finalized and documented this assessment. The
allocated budget was twenty person-days, with the majority of time spent on testing the
given scope. For better structuring and to make sure that all key areas of interest for
Contour/CNCF are covered, Cure53 worked with two work packages:

• WP1: Security Review & Source Code Audit against “Contour v1.10.0”
• WP2: Penetration Test against prod-like “Contour v1.10.0” deployment

As this delineation has proven not granular enough, it is important to note that WP1 also
included a comprehensive security posture review rather than being limited to looking at
the project sources only. This is reflected in the split of work into two phases,
subsequently occurring on the project’s timeline. In WP1 Phase 1, Cure53 completed
general security posture checks, while Phase 2 concentrated on manual code audits and
penetration tests.

White-box methods were deployed, as dictated by the established best practices within
Cure53-CNCF cooperation. At any rate, all source code pertinent to Contour is available
on GitHub as OSS. Thus, Cure53 also managed to deploy a working environment using
a GCP architecture for testing without any hurdles.

The project started on time and progressed efficiently. Communications with the Contour
project team were done using a dedicated private channel on the CNCF Slack
workspace, wherein all involved personnel could contribute to the ongoing discussions
and work. Communications were very helpful and productive and, given the good

Cure53, Berlin · 12/16/20 2/23

https://cure53.de/
https://github.com/projectcontour/contour
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

preparations for this test, not much of a back and forth was needed. Cure53 was able to
ask questions and share feedback about the emerging conclusions and findings.

In terms of concrete findings in the realm of security vulnerabilities and general
weaknesses, Cure53 managed to spot only five issues. Only one should be seen as an
actual vulnerability, while the remaining items are weaknesses with rather low or even
negligible exploitation potential. This is supported by the scores ascribed to the
discoveries, which are mostly set to Low or even just Info. Quite clearly, the results can
be interpreted as very impressive. In the time dedicated to the assessment, the Contour
project’s code and deployment made a very solid impression of being free from major
risks.

In the following sections, the report will first shed light on the scope and key test
parameters, WPs, phases and setup. Next, the report proceeds to a dedicated chapter
on test coverage and methodology to highlight what Cure53 looked at during the
penetration tests, infrastructure reviews and code audits, even if a given area yielded no
findings. The report moves forward with the results of the security posture review
executed in Phase 1 of the project, followed by a section covering the high-level results
of Phase 2, i.e. the code audits and penetration test. The preceding sections are added
for the sake of transparency on the tasks completed in this assessment.

The spotted findings will then be discussed, first by category (vulnerability/general
weakness) and chronologically within the latter section. Alongside technical descriptions,
PoC and mitigation advice are supplied when applicable. Finally, the report will close
with broader conclusions about this late autumn 2020 project. Cure53 elaborates on the
general impressions and reiterates the verdict based on the testing team’s observations
and collected evidence. Tailored recommendations for the Contour complex are also
incorporated into the final section.

Cure53, Berlin · 12/16/20 3/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Security Review & Source Code Audit against Contour v1.10.0

◦ WP1: Security Review & Source Code Audit against “Contour v1.10.0”
◦ WP2: Penetration Test against prod-like “Contour v1.10.0” deployment

▪ https://github.com/projectcontour/contour
• branch/tag ‘release 1.10’
• commit 92420b8e0b123afb475bb7df9f50c85da29592cb

▪ GCP/Kubernetes with three VM instances
• 35.242.240.72 (node)
• 34.107.12.224 (node)
• 34.107.21.235 (node)
• 34.107.79.192 (cluster)

Cure53, Berlin · 12/16/20 4/23

https://cure53.de/
https://github.com/projectcontour/contour
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Test Methodology
The following paragraphs describe the metrics and methodologies used to evaluate the
security posture of the Contour project and codebase. In addition, it includes results
pertinent to individual areas of the project’s security properties that were either selected
by Cure53 or singled out by other involved parties as calling for a closer inspection.

Similarly to previous tests for CNCF, this assignment was also divided into two phases.
The general security posture and maturity of the audited codebase of Contour has been
examined in Phase 1. The usage of external dependencies has been audited, security
constraints for Contour configurations were examined and the documentation had been
deeply studied in order to get a general idea of security awareness levels at Contour.

This was followed by research on how security reports and vulnerabilities are handled
and whether a healthily secure infrastructure is seen as a serious matter. The latter
phase covered actual tests and audits against the Contour codebase, with the code
quality and its hardening evaluated.

Phase 1: General security posture checks
As mentioned earlier, Phase 1 concentrated on general qualities of the audited project.
Here, a meta-level perspective on the overall security posture is reached by providing
details about the language specifics, configurational pitfalls and documentation. An
additional view on how Contour handles vulnerability reports and how the disclosure
process works is provided as well. A perception rooted in the maturity of Contour is
given, solely on the meta-level. Actual impressions linked to the code quality relate to
Phase 2 of the audit process.

Phase 2: Manual code audits and penetration tests
For this component, Cure53 performed a best-effort code review and attempted to
identify security-relevant areas of the project’s codebase and inspect them for flaws that
are usually present in distributed systems. This is an addition to the previous maturity
analysis and supplies a more detailed perspective on the project’s implementation when
it comes to security-relevant portions of the code. Still, this Phase was limited by the
budget and cannot be seen as complete without a large-scale code review with an in-
depth analysis of the multiple parts forming the project’s scope. As such, the goal was
not to reach an extensive coverage but to gain an impression about the overall quality of
Contour and determine which parts of the project areas deserve thorough audits in the
future.

Later chapters of this report will also elaborate on what was being inspected, why and
with what implications for the Contour software complex.

Cure53, Berlin · 12/16/20 5/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Phase 1: General security posture checks
This Phase is meant to provide a more detailed overview of the Contour project’s
security properties that are seen as somewhat separate from both the code and the
Contour software. The first few subsections of the posture audit focus on more abstract
components of a specific project instead of judging the code quality itself. Later
subsections look at elements that are linked more strongly to the organizational and
team aspects of Contour. In addition to the items presented below, the Cure53 team also
focused on the following tasks to be able to conduct a cross-comparative analysis of all
observations.

• The documentation was examined to understand all provided functionality and
acquire examples of what a real-world deployment of Contour looks like. The
extensive architectural design documentation was reviewed as well.

• Several variants of Kubernetes test-clusters were deployed to understand which
options are available and how the different parts of such deployments work
together to form a functioning unit.

• The network topology and connected parts of the overall architecture were
examined. This also included consideration of relevant runtime- and
environment-specifications that are necessary to run Contour.

• The main control flow of the Contour software was followed and the general
structure of the codebase has been analyzed.

• High-level code audits have been conducted. This was necessary to get a quick
impression of the overall style and to reach an understanding of which areas are
interesting for a more deep-dive approach in Phase 2 of the audit.

• Normally, past vulnerability reports in Contour would have been checked out to
spot interesting areas that suffered in the past. However, Contour only ever
received a single vulnerability report.

• Concluding on the steps above, the project’s maturity was evaluated; specific
questions about the software were compiled from a general catalogue according
to individual applicability.

Cure53, Berlin · 12/16/20 6/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Application/Service/Project Specifics
In this section, Cure53 will share insights on the application-specific aspects which lead
to a good security posture. These include the choice of programming language,
selection and oversight of external third-party libraries, as well as other technical aspects
like logging, monitoring, test coverage and access control.

Language Specifics

Programming languages can provide functions that pose an inherent security risk and
their use is either deprecated or discouraged. For example, strcpy() in C has led to many
security issues in the past and should be avoided altogether. Another example would be
the manual construction of SQL queries versus the usage of prepared statements. The
choice of language and enforcing the usage of proper API functions are therefore crucial
for the overall security of the project.

Like many other software stacks that integrate into Kubernetes, Contour is written in Go.
Go has proven to offer higher levels of memory safety compared to other languages that
compile to native code. It is quite rare to spot direct memory safety issues that other
languages such as C and C++ suffer from. Things like buffer overflows, type confusions
or Use-After-Free vulnerabilities are directly taken care of by Go’s internal memory
management system itself. The compiler equally makes sure that memory bounds are
automatically verified by placing checkpoints into the generated assembly. Although it is
still possible to write unsafe Go code, Contour refrains from doing so.

As such, the code is written with best practices in mind. Extensive nesting of conditional
statements is avoided. Functions return early, usually by throwing descriptive error
messages via fmt.Errorf. Test cases and production code are sufficiently separated,
although not specifically in distinguished directories. Documentation in form of
commented code is somewhat present, but the specifications inside the design folder
more than make up for that. Additionally, gosec is deliberately added as a linter for
automatic security checks against common pitfalls.

External Libraries & Frameworks

While external libraries and frameworks can also contain vulnerabilities, it is nonetheless
beneficial to rely on sophisticated libraries instead of reinventing the wheel with every
project. This is especially true for cryptographic implementations, since those are known
to be prone to errors.

Since Contour integrates into Kubernetes, deploys the Envoy proxy and additionally
extends Kubernetes’ Ingress API, it heavily relies on third party code and libraries. For
example, TLS certificate handling relies on Go’s crypto/x509, crypto/tls and
encoding/pem libraries all of which are well tested and established in most Go software

Cure53, Berlin · 12/16/20 7/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

stacks. Envoy itself has a rather good security track record with post-mortem
discussions for past detected vulnerabilities. Generally no concerns were found to be
present in the used third-party packages. All appear to be widely recognized by the
community and seem to be under active development.

Configuration Concerns

Complex and adaptable software systems usually have many variable options which can
be configured accordingly to what the actually deployed application necessitates. While
this is a very flexible approach, it also leaves immense room for mistakes. As such, it
often creates the need for additional and detailed documentation, in particular when it
comes to security.

Actual concern lies in the communication between Contour and the Envoy proxy since
communication between both parties can be forced to plain-text. During the setup phase,
however, Contour makes sure to generate all the necessary certificates for a TLS-
encrypted connection between Contour and Envoy. It also has to be made sure that the
Envoy administrative interface is not accidentally bound to a network interface that
listens to something other than localhost. Contour’s again makes sure that, by default,
only kubectl’s port-forward command can be used to access the interface. Most of the
other configurational settings that are of security concern are up to the users. They have
to make sure that all routing conditions, prefix and header matches are correctly defined
within the configuration files.

Access Control

Whenever an application needs to perform a privileged action, it is crucial that an access
control model is in place to verify appropriate permissions. Furthermore, if the
application provides an external interface for interaction purposes, some form of
separation and access control may be required.

Contour’s deployment of Envoy suffered from an access control issue in the past in
which the shutdown-manager could be invoked with a simple GET request to terminate
Envoy’s routing. This is described in more detail in CVE-2020-151271. The root cause of
this issue was that the shutdown-manager’s endpoint was accessible to anyone that
could reach the Envoy’s Kubernetes node on the network.

Contour does not implement any sort of access control in the form of additional
authentication and there are no direct workarounds to prevent this issue in vulnerable
versions. The only reliable method here is to upgrade to a fixed version where the
shutdown endpoint cannot be reached via HTTP. Other sensitive endpoints that require
limited access are Envoy’s admin interface and Contour’s /debug/pprof service. For

1 https://nvd.nist.gov/vuln/detail/CVE-2020-15127

Cure53, Berlin · 12/16/20 8/23

https://cure53.de/
https://nvd.nist.gov/vuln/detail/CVE-2020-15127
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

both, it is made sure that they are only listening on localhost and require port forwarding
via kubectl to reach the appropriate endpoints. As Contour is mainly used as a load
balancer or reverse-proxy, the remaining ACL restrictions are mostly dependent on the
network config and specific usage scenario.

Logging/Monitoring

Having a good logging/monitoring system in place allows developers and users to
identify potential issues more easily or get an idea of what might be going wrong. It can
also provide security-relevant information, for example when a verification of a signature
fails. Consequently, having such a system in place has a positive influence on the
project.

Contour offers a pretty elegant way of debugging and some logging mechanisms. For
example, the contour serve command supports two command line flags that can either
enable general debug logging of Contour, or verbose logging of interactions between
Contour and der Kubernetes API server. Similar options are present for Envoy as well,
whereas the envoy command allows to specify a log-level flag. An option that is
specifically interesting for proxy scenarios is traffic mirroring. With the mirror setting, one
can nominate selected services to receive copies of the received traffic to a different
service or port. This is especially useful for analyzing the same traffic by separate
instances.

Unit/Regression and Fuzz-Testing

While tests are essential for any project, their importance grows with the scale of the
endeavor. Especially for large-scale compounds, testing ensures that functionality is not
broken by code changes. Furthermore, it generally facilitates the premise where features
function the way they are supposed to. Regression tests also help guarantee that
previously disclosed vulnerabilities do not get reintroduced into the codebase. Testing is
therefore essential for the overall security of the project.

Contour integrates unit-tests for certain functionalities it offers. This mostly includes tests
for certificate and TLS secret generation, path and header matching conditions and so
forth. All of these are scattered throughout the codebase in the various _test.go files and
are self-contained for each package they are part of. This also includes simple
regression tests for the previously reported DOS issue in the shutdownmanager.
Recommended testing routines and software like gosec are used as an additional linter,
thus leading to a positive impression made by this realm.

Cure53, Berlin · 12/16/20 9/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Documentation

Good documentation contributes greatly to the overall state of the project. It can ease
the workflow and ensure final quality of the code. For example, having a coding
guideline which is strictly enforced during the patch review process ensures that the
code is readable and can be easily understood by a spectrum of developers. Following
good conventions can also reduce the risk of introducing bugs and vulnerabilities to the
code.

The Contour project has an elaborate documentation2 which is well-organized and
explains features with sample configurations which can be easily reproduced. An
additional introduction page3 includes a few steps to get started with Contour. Commits
must follow a guideline in order to keep up consistency and maintainability. The team is
organized in terms of who works on what, making sure that work is not duplicated.

Organization/Team/Infrastructure Specifics
This section will describe the areas Cure53 looked at to find out about the security
qualities of the Contour project that cannot be linked to the code and software but rather
encompass handling of incidents. As such, it tackles the level of preparedness for critical
bug reports within the Contour development team. In addition, Cure53 also investigated
the degree of community involvement, i.e. through the use of bug bounty programs.
While a good level of code quality is paramount for a good security posture, the
processes and implementations around it can also make a difference in the final
assessment of the security posture.

Security Contact

To ensure a secure and responsible disclosure of security vulnerabilities, it is important
to have a dedicated point of contact. This person/team should be known, meaning that
all necessary information such as an email address and preferably also encryption keys
of that contact should be communicated appropriately.

The project has a very detailed SECURITY.md which provides all necessary information
to report a security issue including a contact address and elaborate instructions on how
to create a report and what to include. It is explicitly stated that security related bug
reports must not be filed on GitHub. In addition, the process behind patching and
disclosing issues is explained. However, the project could benefit from additionally
protecting the initial reports with PGP.

2 https://projectcontour.io/docs/v1.10.0/
3 https://projectcontour.io/getting-started/

Cure53, Berlin · 12/16/20 10/23

https://cure53.de/
https://projectcontour.io/getting-started/
https://projectcontour.io/docs/v1.10.0/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Security Fix Handling

When fixing vulnerabilities in a public repository, it should not be obvious that a particular
commit addresses a security issue. Moreover, the commit message should not give a
detailed explanation of the issue. This would allow an attacker to construct an exploit
based on the patch and the provided commit message prior to the public disclosure of
the vulnerability. This means that there is a window of opportunity for attackers between
public disclosure and wide-spread patching or updating of vulnerable systems.
Additionally, as part of the public disclosure process, a system should be in place to
notify users about fixed vulnerabilities.

As there is only one publicly resolved security issue in Contour, there is no sample set to
judge the handling of security fixes on. The issue in question is CVE-2020-15127, a
Denial-of-Service vulnerability in the Envoy deployment. Alongside a release that fixes
the issue, a security advisory was published to describe the vulnerability and its impact.
Besides the updates of the Envoy version, none of the commits or issues in the
repository indicate security issues.

Bug Bounty

Having a bug bounty program acts as a great incentive in rewarding researchers and
getting them interested in projects. Especially for large and complex projects that require
a lot of time to get familiar with the codebase, bug bounties work on the basis of the
potential reward for efforts.

The Contour project does not have a bug bounty program at present, however this
should not be strictly viewed in a negative way. This is because bug bounty programs
require additional resources and management, which are not always a given for all
projects. However, if resources become available, establishing a bug bounty program for
Contour should be considered. It is believed that such a program could provide a lot of
value to the project.

Bug Tracking & Review Process

A system for tracking bug reports or issues is essential for prioritizing and delegating
work. Additionally, having a review process ensures that no unintentional code, possibly
malicious code, is introduced into the codebase. This makes good tracking and review
into two core characteristics of a healthy codebase.

Normal bugs with no impact on Contour's security can be filed as issues in the repository
on GitHub. The corresponding issue template includes everything that is needed to
create an appropriate bug report. Users who want to contribute fixes or features should
follow the guidelines in the CONTRIBUTING.md readme stating that larger changes
should be discussed first before contributing any code. All contributions must conform to

Cure53, Berlin · 12/16/20 11/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

a certain set of rules and all tests have to run successfully. The existence of a review
process is hinted in a document about the work on the Contour project4.

Evaluating the Overall Posture
Choosing Go has been a great decision and automatically reduces the potential for
introducing memory-safety-related issues. Additionally, the excellent documentation
along with the established processes for patches and contributions further reduce the
risk of security vulnerabilities. A topic worth mentioning is that of a bug bounty program
since these require good funding and it is understandable that smaller projects are likely
unable to secure these. However, with future growth of the project and potentially
increased resources, a bug bounty scheme should definitely be considered.

Phase 2: Manual code auditing & pentesting
This section comments on the code auditing coverage within areas of special interest
and documents the steps undertaken during the second phase of the audit against the
Contour software complex.

• The contour command line interface code has been audited and only one minor
issue was spotted, i.e. CON-01-004. It has to be noted that the referred
command line options of the Contour binary are not used during a standard setup
according to the client.

• The code was analyzed for any security critical debug code in production parts
without any results.

• The build system of Contour and its Makefile has been analyzed with regards to
security related hardening and compiler flags. One additional recommendation
has been raised in CON-01-001.

• The connection between Contour and Envoy is using gRPC. The code was
audited for security-related settings of the gRPC layer and only one minor
improvement has been proposed in relation to a missing return value check, see
CON-01-002. Besides that, no security issues have been identified.

• HTTP header rewriting and prefix rewriting have been analyzed and audited with
particular care, though no issues have been spotted.

• The configuration of Contour and its parsing-related code has been analyzed and
no issues have been spotted. It has to be noted that Contour puts a lot of trust
into the operator using Contour and the application logic sometimes leaves
values read from input files unrestricted to a meaningful range.

• The shutdownmanager has been audited for logic bugs, and only one minor
improvement was spotted related to re-transmission in case HTTP requests
towards Envoy are failing, see CON-01-003.

4 https://projectcontour.io/resources/how-we-work/

Cure53, Berlin · 12/16/20 12/23

https://cure53.de/
https://projectcontour.io/resources/how-we-work/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• Contour uses a DAG to store Ingresses, HTTP proxies and HTTP listeners. The
related code has been analyzed and no issues have been spotted.

• Cryptographic primitives used within Contour have been checked and no issues
have been identified.

• The contour-authserver source code repository has only been used as a
reference implementation and was not reviewed in-depth.

• Generally speaking, the manual code audit has confirmed that the entire
codebase is very clean and in good shape.

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. CON-01-001) for the purpose of facilitating any
future follow-up correspondence.

CON-01-004 WP1: contour certgen stores private keys as world-accessible (Low)

During an audit of the Contour application, it was noticed that the certgen command for
generating new TLS certificates, used for bootstrapping gRPC over TLS, offers an option
named pem, allowing to store the generated key material including public/private key
pairs for Contour and Envoy, with file permissions 0666. Moreover, the certgen
command provides an additional option to persist the generated public/private key pairs
as Kubernetes secrets in YAML form, also with file permissions 0666.

This insecure default file permissions grants read and write permissions to anyone. It is
important to note that the configured umask5 of the Linux system, where the Contour
binary is invoked, gets applied when creating the referred private key files.

If a malicious entity is capable of obtaining the public/private key pair of Contour and/or
Envoy, they can potentially eavesdrop communication between Contour and Envoy or
impersonate one or the other on behalf of each component. This is because the
public/private key pair is used to perform mutual client authentication.

Affected Files:
• contour/cmd/contour/certgen.go
• contour/internal/certgen/certgen.go
• contour/internal/certgen/output.go

5 https://man7.org/linux/man-pages/man2/umask.2.html

Cure53, Berlin · 12/16/20 13/23

https://cure53.de/
https://man7.org/linux/man-pages/man2/umask.2.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:

contour/cmd/contour/certgen.go:

func OutputCerts(config *certgenConfig, kubeclient *kubernetes.Clientset, certs
map[string][]byte) error {

[...]
if config.OutputPEM {

[...]
if err := certgen.WriteCertsPEM(config.OutputDir, certs,

force); [...]
if config.OutputYAML {

[...]
if err := certgen.WriteSecretsYAML(
config.OutputDir, secrets, force);

[...]
}

contour/internal/certgen/certgen.go:

func WriteCertsPEM(outputDir string, certdata map[string][]byte, force
OverwritePolicy) error {

[...]
err = writePEM(outputDir, "contourkey.pem",

certdata[ContourPrivateKeyKey], force)
if err != nil {

return err
}

[...]

return writePEM(outputDir, "envoykey.pem",
certdata[EnvoyPrivateKeyKey], force)

}

func writePEM(outputDir, filename string, data []byte, force OverwritePolicy)
error {

filepath := path.Join(outputDir, filename)
f, err := createFile(filepath, force == Overwrite)
if err != nil {

return err
}
_, err = f.Write(data)
return checkFile(filepath, err)

}

func WriteSecretsYAML(outputDir string, secrets []*corev1.Secret, force
OverwritePolicy) error {

for _, s := range secrets {

Cure53, Berlin · 12/16/20 14/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

filename := path.Join(outputDir, s.Name+".yaml")
f, err := createFile(filename, force == Overwrite)
[...]
if err := checkFile(filename, writeSecret(f, s)); err != nil

{
return err

}
[...]

}

contour/internal/certgen/output.go:

func createFile(filepath string, force bool) (*os.File, error) {

err := os.MkdirAll(path.Dir(filepath), 0755)
[...]

flags := os.O_RDWR | os.O_CREATE | os.O_TRUNC
[...]

f, err := os.OpenFile(filepath, flags, 0666)
[...]

return f, nil
}

PoC:
As already indicated, the configured umask of the running Linux system is applied when
running the contour command, resulting in different file permissions than 0666.
Nevertheless, the default umask on standard Linux systems is usually set to 002 or 022,
which will still allow read access to the generated private key files.

$./contour certgen --pem
Writing certificates to PEM files in certs/
certs/cacert.pem created
certs/contourcert.pem created
certs/contourkey.pem created
certs/envoycert.pem created
certs/envoykey.pem created

$ ls -la certs
total 28
drwxr-xr-x 2 user user 4096 Nov 19 09:18 .
drwxrwxr-x 16 user user 4096 Nov 19 09:18 ..
-rw-rw-r-- 1 user user 1139 Nov 19 09:18 cacert.pem
-rw-rw-r-- 1 user user 1281 Nov 19 09:18 contourcert.pem
-rw-rw-r-- 1 user user 1679 Nov 19 09:18 contourkey.pem
-rw-rw-r-- 1 user user 1265 Nov 19 09:18 envoycert.pem
-rw-rw-r-- 1 user user 1675 Nov 19 09:18 envoykey.pem

$ cat certs/envoykey.pem

Cure53, Berlin · 12/16/20 15/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

-----BEGIN RSA PRIVATE KEY-----
[...]
-----END RSA PRIVATE KEY-----

$ cat certs/contourkey.pem
-----BEGIN RSA PRIVATE KEY-----
[...]
-----END RSA PRIVATE KEY-----

$./contour certgen --yaml
Writing "legacy" format Secrets to YAML files in certs/
certs/contourcert.yaml created
certs/envoycert.yaml created
certs/cacert.yaml created

$ ls -la certs
total 28
drwxr-xr-x 2 user user 4096 Nov 19 09:41 .
drwxrwxr-x 16 user user 4096 Nov 19 09:41 ..
-rw-rw-r-- 1 user user 1688 Nov 19 09:41 cacert.yaml
-rw-rw-r-- 1 user user 4137 Nov 19 09:41 contourcert.yaml
-rw-rw-r-- 1 user user 4115 Nov 19 09:41 envoycert.yaml

$ cat certs/contourcert.yaml
apiVersion: v1
data:
 tls.crt: [...]
 tls.key: [...]
kind: Secret
[...]

$ cat certs/envoycert.yaml
apiVersion: v1
data:
 tls.crt: [...]
 tls.key: [...]
kind: Secret
[...]

Cure53 wants to point out that private key files should never be stored with file
permissions 0666. 0600 should be used instead, only granting read and write
permissions to the owner of the file.

Cure53, Berlin · 12/16/20 16/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible

CON-01-001 WP2: Build system lacks PIE and RELRO executable flags (Low)
While checking the properties of the compiled Contour binary, it has been identified that
the resulting binary does not have the compiler time security hardening flags enabled.
The following security hardening options are missing:

• PIE
• RELRO

A detailed description of the referred security hardening compiler flags can be found
online6.

PoC:
The following PoC has been run on a Ubuntu 20.04 Virtual Machine.

$ sudo apt-get install golang
$ git clone https://github.com/projectcontour/contour.git
$ git clone https://github.com/slimm609/checksec.sh.git
$ cd contour
$ make build
$ cd ../checksec.sh
$ $./checksec --file=contour/contour --output=json
{ "contour/contour":
{ "relro":"no","canary":"yes","nx":"yes","pie":"no","rpath":"no","runpath":"no",
"symbols":"no","fortify_source":"yes","fortified":"2","fortify-able":"2" } }

Changing the build target within the Contour Makefile as follows results in a binary
having the referred compiler time options set:

[...]
go build -buildmode=pie -mod=readonly -v -ldflags="$(GO_LDFLAGS)" $(GO_TAGS) $
(MODULE)/cmd/contour
[...]

After applying the above change and recompiling the Contour binary, it is evident that
RELRO and PIE are now enabled, as shown below:

6 https://wiki.archlinux.org/index.php/Arch_package_guidelines/Security#Golang

Cure53, Berlin · 12/16/20 17/23

https://cure53.de/
https://wiki.archlinux.org/index.php/Arch_package_guidelines/Security#Golang
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

$ $./checksec --file=contour/contour --output=json
{ "contour":
{ "relro":"full","canary":"yes","nx":"yes","pie":"yes","rpath":"no","runpath":"n
o","symbols":"no","fortify_source":"yes","fortified":"2","fortify-able":"2" } }

Cure53 encourages the use of all existing compiler security features in order to raise the
bar for attackers who aim to exploit vulnerabilities within Contour.

CON-01-002 WP1: Improper error handling in grpcOptions function (Info)
Note: This issue was a identified as a false alert after reporting and can thus be
considered obsolete.

During an audit of the gRPC-related code of Contour, it was noticed that the function
grpcOptions, responsible for building the gRPC options object, is not properly checking
the return value when creating the tlsconfig object. When there is an error while creating
the tlsconfig object, e.g. when it attempts to read a non-existing caFile, the function
tlsconfig returns a TLS config having the function pointer GetConfigForClient to always
return nil. Per the official documentation of the TLS Golang package7, the function
GetConfigForClient is called after a ClientHello message is received from a client during
the TLS handshake, and if the returned configuration is nil, no client-specific TLS
configuration is used.

Affected Files:
contour/cmd/contour/servecontext.go

Affected Code:
func (ctx *serveContext) grpcOptions(log logrus.FieldLogger) []grpc.ServerOption
{

[...]
if !ctx.PermitInsecureGRPC {

tlsconfig := ctx.tlsconfig(log)
creds := credentials.NewTLS(tlsconfig)
opts = append(opts, grpc.Creds(creds))

}
return opts

}

func (ctx *serveContext) tlsconfig(log logrus.FieldLogger) *tls.Config {
[...]
loadConfig := func() (*tls.Config, error) {

cert, err := tls.LoadX509KeyPair(ctx.contourCert,
ctx.contourKey)

if err != nil {

7 https://golang.org/pkg/crypto/tls/

Cure53, Berlin · 12/16/20 18/23

https://cure53.de/
https://golang.org/pkg/crypto/tls/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

return nil, err
}

ca, err := ioutil.ReadFile(ctx.caFile)
if err != nil {

return nil, err
}

certPool := x509.NewCertPool()
if ok := certPool.AppendCertsFromPEM(ca); !ok {

return nil, fmt.Errorf([...])
}

[...]
}

[...]
// Attempt to load certificates and key to catch configuration

errors early.
if _, lerr := loadConfig(); lerr != nil {

log.WithError(err).Fatal("failed to load certificate and
key")

}

return &tls.Config{
ClientAuth: tls.RequireAndVerifyClientCert,
Rand: rand.Reader,
GetConfigForClient: func(*tls.ClientHelloInfo) (*tls.Config,

error) {
return loadConfig()

},
}

}

Although the described issue does not have an immediate security impact, it is important
and considered good practice to properly check the return value of function invocations
in order to address and act on error conditions.

CON-01-003 WP1: shutdown-manager Envoy health check lacks retry logic (Info)
During a code review of the shutdownHandler inside Contour it was noticed that the
code is lacking a proper retry logic in case the HTTP POST request, used for draining
the connection pool of Envoy upon shutdown, is missing. Any communication over the
network can potentially fail due to various reasons, it is therefore good practice to
implement a retry mechanism to handle such situations.

Affected Files:
contour/cmd/contour/shutdownmanager.go

Cure53, Berlin · 12/16/20 19/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:
shutdownmanager.go:
func (s *shutdownContext) shutdownHandler() {

s.WithField("context", "shutdownHandler").Infof(
"waiting %s before draining connections", s.drainDelay)
time.Sleep(s.drainDelay)

// Send shutdown signal to Envoy to start draining connections
s.Infof("failing envoy healthchecks")
if err := shutdownEnvoy(); err != nil {

s.WithField("context", "shutdownHandler").Errorf(
"error sending envoy healthcheck fail: %v", err)

}
[...]

}

func shutdownEnvoy() error {
resp, err := http.Post(healthcheckFailURL, "", nil)
if err != nil {

return fmt.Errorf(
"creating healthcheck fail POST request failed: %s", err)

}

defer resp.Body.Close()
if resp.StatusCode != http.StatusOK {

return fmt.Errorf("POST for %q returned HTTP status %s",
healthcheckFailURL, resp.Status)

}
return nil

}

Cure53 recommends adding a retry handler for the POST request to Envoy in case the
HTTP request fails. This helps to eliminate the situation where Kubernetes forcefully
terminates the Pod after the grace period has elapsed.

CON-01-005 WP1: Support of weak cipher-suites (Info)
It was found that the supported list of ciphers, set during the configuration of the
downstream TLS context of Contour, supports SHA-1 for data integrity. Given the fact
that other, more robust cipher-suites are supported as well, this considerably reduces
the severity of this issue.

Affected File:
contour/internal/envoy/auth.go

Cure53, Berlin · 12/16/20 20/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected Code:
Ciphers = []string{

"[ECDHE-ECDSA-AES128-GCM-SHA256|ECDHE-ECDSA-CHACHA20-POLY1305]",
"[ECDHE-RSA-AES128-GCM-SHA256|ECDHE-RSA-CHACHA20-POLY1305]",
"ECDHE-ECDSA-AES128-SHA",
"ECDHE-RSA-AES128-SHA",
//"AES128-GCM-SHA256",
//"AES128-SHA",
"ECDHE-ECDSA-AES256-GCM-SHA384",
"ECDHE-RSA-AES256-GCM-SHA384",
"ECDHE-ECDSA-AES256-SHA",
"ECDHE-RSA-AES256-SHA",
//"AES256-GCM-SHA384",
//"AES256-SHA",

}

SHA-1 has been proven to be vulnerable to collision attacks as of 20178. Although this
does not affect its usage as a MAC, safer alternatives such as SHA-256 or SHA-3 are
recommended.

8 https://shattered.io/

Cure53, Berlin · 12/16/20 21/23

https://cure53.de/
https://shattered.io/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
As already noted in the Introduction, the Contour project has clearly emerged victorious
from this Cure53 late 2020 assessment. This concerns many fronts, but should
especially be underscored with regard to the commendable overall security standing of
the project, including the project structure, documentation, coding style and development
team’s capacities and involvement. After dedicating twenty days to comprehensive
assessments of the items in scope, Cure53 can confirm that this is one of the most
mature and well-structured projects the Cure53 team has encountered in the frames of
the long-lasting cooperation with CNCF.

Besides the general praise, Cure53 would like to state that installation of several
deployment options on a Kubernetes cluster proved to be exemplary, though adapting
some of the configuration options was more challenging than expected. In addition,
communication with the development team has been very productive and without any
delays. Response times have been excellent. The codebase is clean and wisely relies
on Go, within which no impactful security issues could be spotted. The fact that there
were only five issues documented, all of them Low or Info, further contributed to the
overwhelmingly positive results obtained here.

Moving to some details about the infrastructure, the analysis demonstrated that Contour
is well-organized. The focus has been placed not only on the code itself, but also on the
aspects around it. This includes handling of security issues, bug reports and user-
contributions which are all described in the appropriate readme files. It is clear that a lot
of thought was put into organization and developing processes as no big issues were
found in this area. Although reported security flaws are mostly very short-lived, it would
be beneficial to add a PGP key to the corresponding email address.

As for the code and implementation, the code’s logic needs to be reiterated as written in
a clear and easy to follow manner. As already indicated, the choice of using Go as a
programming language has significant benefits in terms of security, especially over
languages such as C or C++ which are typically prone to memory corruption
vulnerabilities. It is remarkable that the same coding style has been applied over all very
different source files.

To conclude, from a security perspective, the analysis of Contour has not revealed
anything but minor issues having neither direct nor severe security impact. These flaws
should merely be considered as additional recommendations that further enhance the
already very robust security posture. The Contour project can already be considered as
mature and may only be judged as production-ready. The development team has to be
commended for their overall diligence and clearly observable enthusiasm for this project.

Cure53, Berlin · 12/16/20 22/23

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is hoped that the development continues along the established path and maintains the
exceptional quality standards set and observed to date.

Cure53 would like to thank Michael Michael, Steve Sloka, Nick Young and James Peach
from the Contour team as well as Chris Aniszczyk of The Linux Foundation for their
excellent project coordination, support and assistance, both before and during this
assignment. Special gratitude also needs to be extended to The Linux Foundation for
sponsoring this project.

Cure53, Berlin · 12/16/20 23/23

https://cure53.de/
mailto:mario@cure53.de

	Security-Review Report Contour 11.2020
	Index
	Introduction
	Scope
	Test Methodology
	Phase 1: General security posture checks
	Phase 2: Manual code audits and penetration tests

	Phase 1: General security posture checks
	Application/Service/Project Specifics
	Language Specifics
	External Libraries & Frameworks
	Configuration Concerns
	Access Control
	Logging/Monitoring
	Unit/Regression and Fuzz-Testing
	Documentation

	Organization/Team/Infrastructure Specifics
	Security Contact
	Security Fix Handling
	Bug Bounty
	Bug Tracking & Review Process

	Evaluating the Overall Posture

	Phase 2: Manual code auditing & pentesting
	Identified Vulnerabilities
	Miscellaneous Issues
	CON-01-001 WP2: Build system lacks PIE and RELRO executable flags (Low)
	CON-01-002 WP1: Improper error handling in grpcOptions function (Info)
	CON-01-003 WP1: shutdown-manager Envoy health check lacks retry logic (Info)
	CON-01-005 WP1: Support of weak cipher-suites (Info)

	Conclusions

