
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report 1Password Core 11.-12.2021
Cure53, Dr.-Ing. M. Heiderich, MSc. S. Moritz, MSc. F. Fäßler

Index
Introduction

Scope

Identified Vulnerabilities

1PW-18-003 WP2: Windows malware can trivially backdoor .html and .js (High)

1PW-18-006 WP2: Malware can trivially intercept URL handler (Medium)

Miscellaneous Issues

1PW-18-001 WP1: Insufficient validation of emails in onepassword URL (Info)

1PW-18-002 WP1: Missing deprovisioning of TPM enclave key (Low)

1PW-18-004 WP2: DoS for update via Windows registry deletion (Low)

1PW-18-005 WP1: Outdated Electron version used (Info)

Conclusions

Introduction
“Millions of customers and more than 100,000 businesses trust 1Password to keep their
most important information safe. At 1Password we believe everyone deserves to be safe
online. That's why we're building modern, accessible apps with privacy and security at
their core.”

From https://1password.com/company/

This report describes the results of a security assessment of the 1Password complex,
particularly the 1Password core code and software. Carried out by Cure53 in late
November and early December 2021, the project included a penetration test and a
dedicated audit of the source code.

Registered as 1PW-18, the project was requested by 1Password in early 2021 as part of
the annual penetration testing plan. It was scheduled for the last quarter of 2021 to allow
ample time for preparations on both sides. The project is the latest of a total of eighteen
testing iterations that took place, explaining the test label 1PW-18.

Cure53, Berlin · 02/03/22 1/14

https://cure53.de/
https://1password.com/company/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

As for the precise timeline and specific resources, Cure53 completed the examination as
scheduled, in CW47 and CW48. A total of fourteen days were invested to reach the
coverage expected for this assignment, whereas a team of three senior testers has been
composed and tasked with this project’s preparation, execution and finalization. All
members of the testing team were already familiar with the 1Password software
compound via previous project work.

For optimal structuring and tracking of tasks, the work was split into two separate work
packages (WPs):

• WP1: 1Password core codebase & software, written predominantly in Rust
• WP2: High-level research questions asked by the 1Password Team

As mentioned, this test and audit is part of the yearly penetration testing and code
auditing routine executed by Cure53 against several elements of the 1Password
software compound. In this test iteration, it was planned to look at builds for several
platforms, but, ultimately, the scope was changed because not all items planned for this
testing round were fully ready for testing. In the end, the following areas were covered:

• Key focus on the new Windows Hello feature and
• Key focus on the Browser + CLI integration on Linux
• High-level questions regarding macOS client

Cure53 was, as usual for engagements between 1Password and Cure53 given access
to a very detailed scope document explaining all areas of interest and access
parameters. This was provided alongside sources, binaries, documentation and
everything else that was needed. The above indicates that white-box methodology was
the approach of choice for this project.

The project progressed effectively on the whole. All preparations were done in CW46 to
foster a smooth transition into the testing phase. As usual, preparatory work on the
1Password team’s side was exceptionally good. Over the course of the engagement, the
communications were done using a private, dedicated and shared Slack channel set up
between the respective workspaces of Cure53 and 1Password. New channel was set up
and all involved personnel could join the discussions.

The discussions throughout the test were very good and productive and not many
questions had to be asked. The scope was well-prepared and clear, greatly contributing
to the fact that no noteworthy roadblocks were encountered during the test. It has to be
stated that the 1Password team, as in other tests before, was very helpful and did
whatever was necessary to make it possible for Cure53 to get good coverage over the

Cure53, Berlin · 02/03/22 2/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

scope with the chosen approaches. The assistance spanned fast answers to all
questions, very quick turnaround times and generally excellent test-support. Ongoing
interactions positively contributed to the overall outcomes of this project.

Cure53 offered frequent status updates about the test and the emerging findings. Live-
reporting was done for several of the findings to allow the 1Password team an early
review of the issues and more time to ask questions about the possible fixes to be
developed and deployed.

The Cure53 team managed to get very good coverage over the WP1-WP2 scope items.
Among five security-relevant discoveries, two were classified to be security
vulnerabilities and three to be general weaknesses with lower exploitation potential. It
can be deduced that the results of this project put 1Password in a very positive light. The
number of issues is small and only one item was marked as High. Cure53 strongly
believes that frequent testing contributes to 1Password maturing and being in a good
state. Two of the findings assume malware to be in place to function, whereas others are
rather limited in terms of actual risks. Note that one of those findings, see 1PW-18-003,
is quite similar to an issue reported several months ago as 1PW-10-010, so it could have
potentially been avoided.

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the structure and content of the WPs. Next, all findings will be
discussed in grouped vulnerability and miscellaneous categories, then following a
chronological order in each group. Alongside technical descriptions, PoC and mitigation
advice are supplied when applicable. Finally, the report will close with broader
conclusions about this late 2021 project. Cure53 elaborates on the general impressions
and reiterates the verdict based on the testing team’s observations and collected
evidence. Tailored hardening recommendations for the 1Password complex are also
incorporated into the final section.

Cure53, Berlin · 02/03/22 3/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration tests and code audits against 1Password core code & software

◦ WP1: 1Password Core codebase & software, written predominantly in Rust
▪ In scope were builds for several platforms and their general security properties.
▪ Key features in scope for this assignment:

• Newly implemented Windows Hello feature
• Improvements of Browser Integration feature on Linux
• Newly added integration with CLI

◦ WP2: High-level research questions asked by the 1Password team
▪ Q1: "In what way do we not protect well against system processes running with

the same privileges as the current user?"
▪ Q2: "Can same-user privilege processes perform successful active attacks

against the desktop apps?"
▪ Q3: "Can same-user privilege processes learn anything about vault contents of

the desktop application when it’s locked?"
▪ Q4: "In what way can we reasonably improve our resilience against attacks that

use administrative privileges?"
▪ Q5: "Does our application contain exploitable desktop/electron based

vulnerabilities, potentially those that can be leveraged by shared vaults?"
▪ Q6: "Is browser communication something that can be hijacked?"

• Test-user-accounts
◦ Account 1:

▪ https://seba-1pw18.b5test.com/
▪ U: seba@cure53.de

◦ Account 2:
▪ https://fabian1pw18.b5test.com/
▪ U: fabian @cure53.de

• All relevant binaries have been shared with Cure53:
• Detailed test-supporting material has been shared with Cure53
• All relevant sources have been shared with Cure53

Cure53, Berlin · 02/03/22 4/14

https://cure53.de/
mailto:fabian@cure53.de
mailto:fabian@cure53.de
https://fabian1pw18.b5test.com/
mailto:seba@cure53.de
https://seba-1pw18.b5test.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. 1PW-18-001) for the purpose of facilitating any
future follow-up correspondence.

1PW-18-003 WP2: Windows malware can trivially backdoor .html and .js (High)
Note: Like many Windows applications, 1Password installs to a location in the user’s
local application directory, which comes with the important limitations noted. The
developers are working on ways to make a protected installation which installs to the
Program Files directory more widely available.

For enterprise customers, 1Password already offer an MSI installer for enterprise
deployments that installs to the Program Files directory and is not affected by this issue.
For regular installs, 1Password is working on a solution that provides a protected install
for as many users as possible. Unfortunately, this does come with certain trade-offs in
the reliability and security of the 1Password for Windows’ installation and automatic
updates. 1Password wants to get those trade-offs just right before they roll out a fix.

During a previous engagement dedicated to reviewing the macOS client, it was noticed
that malware can trivially backdoor the Electron files (see 1PW-10-010). This was also
confirmed to be the case on Windows. This happens when files are not installed into a
trusted folder, as is currently the case. Malware can simply modify the HTML and
JavaScript code of the 1Password client, making extractions of unlocked passwords
trivial.

Steps to reproduce (on Windows):
1. Ensure that 1Password has been terminated
2. Go to the location of the app.asar file, i.e., C:\Users\<Username>\AppData\Local\

1Password\app\8\resources
3. Unpack the application files with npx asar extract app.asar app_unpacked
4. The unpacked files are now written to the app_unpacked folder. To show the

backdooring capabilities, simply create a backdoor.js file and load it in the
primary.html via <script src="backdoor.js"></script>

5. The backdoor.js file will be executed when the 1Password app is opened. A
simple alert(1) can prove the successful JavaScript execution. To simply extract
all revealed passwords from the UI elements, the innerText property of the root
element document.getElementById('root').innerText can be read.

Cure53, Berlin · 02/03/22 5/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

6. Once the modification is done, simply repack the application rm app.asar; npx
asar pack ./app_unpacked app.asar

7. Start 1Password.app and observe the alert popping up.

As it was recommended in the previous ticket, 1Password should put a stronger
emphasis on making it possible to install the application into a safe place. This usually
requires the user to confirm the User Account Control dialog and disrupts the user
experience of installation, but otherwise the trivial backdooring remains possible.

1PW-18-006 WP2: Malware can trivially intercept URL handler (Medium)
Note: As noted in the recommendation of this finding, this issue is hard to resolve. On
Windows and Linux, limitations exist in terms of how much custom applications URIs -
and many other means of inter-process communication - can be trusted when assuming
a compromised machine.

The 1Password Security Design white-paper notes that there are limited protections for
certain information - including the secret key - on compromised machines. This issue
unfortunately highlights a security limitation of these platforms in that same category.
1Password can’t fix this issue right now, but if anything changes on Windows or Linux
desktops that allows the developers to defend against this in the future they will make
use of it.

It is trivial for Windows or Linux malware running as the same user as 1Password to
modify the onepassword:// URL handler in the registry. This allows the malware to
intercept each URL handler invocation, log the data and forward it to the real 1Password
binary. For the user there is no noticeable difference that this is happening.

PoC for Windows:

The following code is a simple C# application that prints the received arguments and
then passes the arguments to 1Password. This application should be compiled and
named 1Password.exe.

using System.Diagnostics;

Console.WriteLine("Intercepting onepassword://");
if (args != null && args.Length > 1)
{
 Console.WriteLine("Received program arguments:");
 for (int i = 0; i<args.Length; i++)
 Console.WriteLine(" | "+args[i]);
 Console.WriteLine("Redirect to 1Password");

Cure53, Berlin · 02/03/22 6/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 Process.Start("C:\\Users\\visua\\AppData\\Local\\1Password\\app\\
8\\1Password.exe", args[0] + " " + args[1]);
}
Console.ReadKey();

Steps to reproduce on Windows:
1. Find the onepassword entry in HKEY_USERS\...\Classes\onepassword
2. Go to …\onepassword\shell\open and modify the 1Password.exe path to the

PoC’s interception application from above.
3. Open any onepassword:// URL from the browser and observe how the PoC

application dumps the forwarded data
4. onepassword://team-account/add?email=mrrooni%401password.com&key=A3-

46REFP-XBLVZ5-YB5DZ-SPS9L-XFEFG-T3SV3&server=https://dark-
mode.b5dev.com

Steps to reproduce on Linux:
1. Copy /usr/share/applications/1password.desktop to a new file called

fake1Password.desktop
2. Modify the file to execute a program that should intercept the URL handler.
3. Install the new URL handler definition with

xdg-desktop-menu install fake1Password.desktop --novendor
4. Open a onepassword:// URI.

It is a very difficult task to protect 1Password from malware running on the same
machine. Registering the same URL handler is a particularly easy method for malware to
leak credentials from 1Password. Note that the Android equivalent of this attack is called
“insecure activity start”.

There seems to be no easy way to fix this because Windows does not offer any way to
tie registry permissions to process signatures. Thus, any program running as the same
user has access to the same registry. It probably would require a much more complex
program architecture, wherein a privileged 1Password service is running in parallel to
being responsible for management of the registry entries. The increased complexity
would also add the risk of privilege escalation exploits.

Cure53, Berlin · 02/03/22 7/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

1PW-18-001 WP1: Insufficient validation of emails in onepassword URL (Info)
Note: The 1Password team has accepted this finding as a best practice issue and are
looking to have this addressed in a future version of the app. That version will use
improved validation of email addresses.

It was found that the application does not properly validate contents of the email
parameter received via onepassword:// URLs. While other parts - such as the server
value - are correctly validated, the email parameter allows any characters, for example
"://","<>","{}","[]". Additionally, the domain name part can also be empty. This
unnecessarily increases its usability for other exploitation scenarios. However, due to the
fact that the application properly escapes content added to the sign-in form, the behavior
can currently be used for some Phishing and similar approaches exclusively, as shown
below.

Example URL:
onepassword://team-account/add?email=if+not+work+visit+https://
evil.com+for+login@&key=A3-P76RPV-6MS29W-569CZ-PGMR2-DJHHY-XXXXX&server=https%3A
%2F%2Fseba-1pw18.b5test.com%2F

While this does not introduce a security issue itself, it is nevertheless recommended to
introduce a proper input-validation that only permits characters that are allowed during
account-creation.

1PW-18-002 WP1: Missing deprovisioning of TPM enclave key (Low)
Note: The 1Password team has accepted this finding as a best practice issue and has
addressed it. Cure53 tested an early version of this feature, but publicly available
versions of the app with this feature are not affected. Released versions of the app will
deprovision the TPM secrets upon disabling the associated feature or when users
uninstall the app.

During the assessment of the newly introduced Windows Hello feature, the discovery
was made that the enclave key remains in the Microsoft Passport Key Storage after the
application has been closed or uninstalled. Since Windows binds access to those keys

Cure53, Berlin · 02/03/22 8/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

on the application-level and generally prevents exporting the private key, the risk can be
considered rather low.

Show stored keys:
certutil -csp "Microsoft Passport Key Storage Provider" -key

Remaining key material:
S-1-5-21-2039661907-1149013884-2761926641-1001/336fcb5c-76ce-46f4-b491-
84fdabd1729b/S-1-5-21-2039661907-1149013884-2761926641-1001//1Password-Enclave-
Key

Nevertheless, in order to further harden the application against potential local malware
threats, it is recommended to also remove the key material from the key storage after
the 1Password application was closed or at least deinstalled. This can be done via the
DeleteAsync1 function of the KeyCredentialManager API.

1PW-18-004 WP2: DoS for update via Windows registry deletion (Low)
Note: The 1Password team has accepted this finding as a low priority issue and is
looking to have this addressed in a future version of the app. That version will not fail if
the Windows registry doesn’t contain the expected information.

The Windows registry is generally an important threat surface for 1Password because
even when installed in a trusted location, other apps could modify the values. It was
found that when the registry entry is deleted, the 1Password application silently fails to
check for updates. Visually there are no indications that it failed; the user simply sees it
as if the latest version was being used.

Steps to reproduce:
1. Use the registry editor or programmatically delete the complete entry

\HKEY_CURRENT_USER\SOFTWARE\Microsoft\Windows\CurrentVersion\
Uninstall\1Password

2. Restart 1Password and click on “Check for Updates…”
3. The settings screen will then display “Version 8.5.0” with no way to actually

check for an update.

1Password has to be very careful using the Windows registry as a trusted source for
data, as it can easily be manipulated by malware on the same machine. This threat
surface will still exist once 1Password is installed in a protected folder, thus it has to be
used with care; see also 1PW-18-006 for additional comments.

1 https://docs.microsoft.com/en-us/uwp/api/windows.security.credentials.keycre...ger.deleteasync

Cure53, Berlin · 02/03/22 9/14

https://cure53.de/
https://docs.microsoft.com/en-us/uwp/api/windows.security.credentials.keycredentialmanager.deleteasync
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

1PW-18-005 WP1: Outdated Electron version used (Info)
Note: The developers have investigated this finding and have confirmed this is an
artifact of the testing process. As a result they have not accepted this issue. At the time
Cure53’s testing started, the provided build indeed used a slightly older version of
Electron. However, there are internal processes in place to update to the latest version
of Electron in a timely fashion. 1Password updated to a version of Electron unaffected
by the issues mentioned in this finding on December 1st, 2021, soon after Cure53
started their test.

During the assessment of the provided sources, the discovery was made that the
1Password Core application is linked to an outdated version of Electron.

At the time of writing, the latest available version in 15 is 15.3.22 and the linked version is
15.2.0. In version 15.3.13 some security updates for the embedded Chromium browser
were added. They address some heap buffer overflows and ‘use-after-free’ problems in
Skia, V8 engine and other components. Under certain conditions, this might allow an
adversary to escape the sandbox via a crafted HTML page.

However, the resulting impact can be considered rather low due to the fact that an
attacker needs to be able to render own HTML within the 1Password applications.
Nevertheless, it is recommended to always keep the version of Electron up to date. If an
update is not immediately feasible, it is recommended to at least ensure the patch notes
do not contain any security-relevant fixes.

2 https://www.electronjs.org/releases/stable?version=15
3 https://www.electronjs.org/releases/stable?version=15#other-changes-1531

Cure53, Berlin · 02/03/22 10/14

https://cure53.de/
https://www.electronjs.org/releases/stable?version=15#other-changes-1531
https://www.electronjs.org/releases/stable?version=15
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
In this round of audit, Cure53 was tasked with reviewing the newest, next iteration of
1Password Core apps, with a particular emphasis on new features for Windows and
Linux. To clarify, these features were the Windows Hello integration, the improved
browser integration on Linux and the CLI integration on Linux. While a special focus was
given to the aforementioned areas, other parts of the applications were also examined
by Cure53 in considerable depth.

To reiterate the context and resources, three members of the Cure53 team completed
the project over the course of fourteen days in November and December 2021. While
the overall number of six issues were found during the audit, two of them are exploitable
and four can be considered as a hardening recommendation and best practice advice.

The report separates issues into two Work Packages. The first package (WP1) relates to
problems found in the special focus areas, while the second work package (WP2) shows
issues that can affect 1Password Core applications if targeted systems are vulnerable
via local malware.

Cure53 needs to underline that the provided builds generally share the same codebase
and differ mainly in the parts that have to do with providing the applications’ functionality
on the respective operating systems. This also made it rather easy to compare different
functionalities between the operating systems, fostering understanding why and how
certain types of issues can be applicable to the other operating systems as well.

In the first step, Cure53 reanalyzed the configuration of the Electron framework, so as to
see if any new changes had been made. All the important flags, such as nodeIntegration
and contextIsolation, are set accordingly, thus reducing the impact of post-exploitation.
However, the current used version lacks important patches that address some buffer
overflows and ‘use after free’ flaws in the embedded Chromium browser (see 1PW-18-
005). It is, therefore, recommended to ensure that an update to the latest version takes
effect.

An additional task added to the test encompassed diving deeper into the IPC
mechanism of 1Password on Linux. Even though it was an extra task, it fit well into the
main focus area of this round and did not lead to a narrower coverage for the original
areas. 1Password is planning to simplify the authentication of the IPC on Linux by
checking the effective group ID of the connected peer. This implementation was
reviewed and tested, especially with regards to user-namespaces and whether they
could fool the check. No issues could be found in this realm.

Cure53, Berlin · 02/03/22 11/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

One of the main focus items on Cure53’s priority-list was the newly implemented
Windows Hello feature and the corresponding TPM usage. A TPM is generally used by
Windows for creating and storing cryptographic keys. It also can offer system
measurements for verifying system’s integrity in terms of secure usage of a TPM. Most
of the TPM functionality is provisioned by Windows itself, whereby access is generally
handled via corresponding Windows APIs, such as TPM Base Services (TBSI)4 or the
KeyCredentialManager API. Thus, the 1Password application makes proper use of those
functions during key derivation. In particular, reliance on RequestCreateAsync or
OpenAsync of the KeyCredentialManager API signifies that implementation standards
proposed by Microsoft are followed in the Windows Hello integration by 1Password.

The sources revealed that 1Password uses a static credential name. However, a further
test revealed that Windows separates access to those keys at the application-level. It
was neither possible to access credentials created by another process. nor to create a
fake credential entry with that static name. This is because Windows generally separates
such entries via SIDs and other UUIDs, doing so at the application-level. Additionally,
measures are correctly used to properly verify the system's integrity. Particularly, PCR
banks are checked for zero entries which could miss a compromise of the integrity of the
system.

Only one issue was found by Cure53 in the area above and is related to a missing
deprovisioning of the created key entry. However, due to the fact that private keys
generally cannot be extracted from the TPM, this risk can be considered low and was
only added as a hardening recommendation to prevent abuse in potential post-
exploitation scenarios (see 1PW-18-002).

Generally, the Windows Hello feature follows a new approach of trusting key material
created in the TPM. While this makes perfect sense, it also introduces some new risks in
other areas of Windows Hello. For example, a vulnerability to bypass Windows Hello
login via face recognition feature5 was found. While Windows generally trusts USB
devices during authentication for using webcams, the attack surface remains. Although
Windows fixed the found issue, this shows that 1Password could be affected in the
future if another Windows Hello bypass emerges. Nevertheless, Cure53 sees the
likelihood of being exploited as low, due to the fact that Windows might fix these types of
vulnerabilities in a shorter time.

Cure53 also examined the slightly improved changes related to the Browser Integration
feature on Linux and the corresponding keyring helper handling, which did not lead to

4 https://docs.microsoft.com/en-us/windows/win32/api/tbs/
5 https://www.cyberark.com/resources/threat-research-blog/bypassing-windows-hello...lastic-surgery

Cure53, Berlin · 02/03/22 12/14

https://cure53.de/
https://www.cyberark.com/resources/threat-research-blog/bypassing-windows-hello-without-masks-or-plastic-surgery
https://docs.microsoft.com/en-us/windows/win32/api/tbs/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

any finding in this area. Next, Cure53 also reviewed the 1Password Core applications in
terms of security against several local attack scenarios.

During a previous round it was found that malware on macOS could trivially backdoor
the html/js source files, which allows very simple access to the data stored in
1Password. As this round had a focus on Windows, the issue resurfaced in this OS.
1Password is currently installed into AppData which allows basic malware to easily
modify and backdoor the app (see 1PW-18-003). However, it was already announced
that 1Password might be installed into the Program Files, which would protect against
these threats.

Another general threat surface on Windows that has not been clearly documented
before spans non-administrative malware which can easily modify the registry entries
used by 1Password. A small Denial-of-Service issue was found when the entry was
deleted: the application fails to check for updates and shows no indication of that issue
to the user (see 1PW-18-004).

This also leads to another general attack technique that malware on Windows and Linux
could succeed with. For Windows and Linux, it is easy for unprivileged malware to
modify the URL handlers, as demonstrated in 1PW-18-006. This can be used to easily
redirect and “intercept” onepassword:// URLs. These URLs carry some important data,
but do not allow for a full vault takeover due to the missing password.

When looking at the reported issues with moderate severities, they are all in the realm of
a threat model that 1Password cannot really protect against anyway. Yet, it is still
commendable that 1Password has an interest in tackling this threat surface. The efforts
can significantly lower the risk of very simple malware attacking 1Password users.

It is generally a good design to have no privileged helper component as part of
1Password. This approach eradicates the attack surface for privilege escalations.
However, a middle-ground of using a privileged installer, which can manage locking
down Windows registry keys, installing the application into a safe location and so forth, is
a good step. On Linux this is already the case and prevents easy backdooring from
malware, which has proven possible on Windows.

In addition, the examined codebase of the corresponding 1Password Core applications
seem solid in regard to the security posture. It adheres to common best practices, which
results in this very good state.
In particular, it was checked whether the application makes use of dangerous functions
or implemented common pitfalls that could lead to major vulnerabilities, such as

Cure53, Berlin · 02/03/22 13/14

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

injection-based attacks, insufficient escaping of user input, path traversal issues, remote
code executions or privilege escalations attacks. None such flaws were spotted.

All in all, the examined 1Password Core applications for Windows, Linux and macOS
and the related specific areas leave a very good impression in terms of security. Cure53
more broadly confirmed during this audit that the provided builds have the capacity to
fend off many different attacks. This clearly shows that the 1Password team is aware of
the problems that modern applications tend to face. As a result, only one High and one
Medium-scored exploitable issues related to local malware threats could be found in this
test.

The very good result from this audit also clearly shows that 1Password is versed in using
and implementing existing security measures as much as possible. This helps
accordingly protect the applications against a range of different threats. However, some
weaknesses were found, mostly affecting the Windows client. They basically allowed a
trivial injection of malicious HTML/JavaScript into the context of the running application.
Additionally, some new attack vectors were discovered and show how registry entries
can also be used to attack the application. Still, well-chosen languages, such as Rust in
combination with a well-designed architecture complex underlines the solid picture
Cure53 acquired during the audit. Assuming that all relevant issues get fixed, Cure53
can evaluate 1Password Core applications as properly secured for a continued
production use. The complex is capable of delivering a secure foundation.

Cure53 would like to thank Stephen Haywood, Adam Caudill and Rick van Galen from
the 1Password team for their excellent project coordination, support and assistance,
both before and during this assignment.

Cure53, Berlin · 02/03/22 14/14

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report 1Password Core 11.-12.2021
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	1PW-18-003 WP2: Windows malware can trivially backdoor .html and .js (High)
	1PW-18-006 WP2: Malware can trivially intercept URL handler (Medium)

	Miscellaneous Issues
	1PW-18-001 WP1: Insufficient validation of emails in onepassword URL (Info)
	1PW-18-002 WP1: Missing deprovisioning of TPM enclave key (Low)
	1PW-18-004 WP2: DoS for update via Windows registry deletion (Low)
	1PW-18-005 WP1: Outdated Electron version used (Info)

	Conclusions

