
 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Pentest-Report 1Password B5 Web & API 10.-11.2021
Cure53, Dr.-Ing. M. Heiderich, MSc. S. Moritz, MSc. N. Krein

Index
Introduction

Scope

Identified Vulnerabilities

1PW-17-001 WP1: Reusable authorization token in localStorage (Medium)

1PW-17-003 WP2: Missing check allows spoofing of Activity Logs (Low)

1PW-17-004 WP2: DoS against other users via blocklist (Medium)

1PW-17-006 WP1: Client-side DoS via invalid encrypted data in vaults (High)

Miscellaneous Issues

1PW-17-002 WP2: Inconsistent check leads to faulty Activity Logs (Low)

1PW-17-005 WP2: Information disclosure via WebSocket channel (Low)

Conclusions

Introduction
“1Password is the easiest way to store and use strong passwords. Log in to sites and fill
forms securely with a single click.”

From https://1password.com/

This report describes the results of a security assessment of the 1Password B5 web
application complex. Carried out by Cure53 in October 2021, the project included a
penetration test and a dedicated audit of the source code.

Registered as 1PW-17, the project was requested by 1Password in April 2021 and then
scheduled as part of the more structured series of security-centered assessments
conducted by Cure53 for the 1Password team. Examinations of the 1Password B5
application have taken place with certain regularity in 2020 and 2021.

As for the precise timeline and specific resources allocated to 1PW-17, Cure53
completed the examination in mid-to-late October 2021, namely in CW40 and CW41. A
total of fourteen days were invested to reach the coverage expected for this assignment,
whereas a team of three senior testers has been composed and tasked with this

Cure53, Berlin · 11/23/21 1/16

https://cure53.de/
https://1password.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

project’s preparation, execution and finalization. All testers in this group were already
familiar with the 1Password B5 web app compound via previous project work.

For optimal structuring and tracking of tasks, the work was split into two separate work
packages (WPs):

• WP1: 1Password B5 web application frontend, written predominantly in TS
• WP2: 1Password B5 web application backend, written predominantly in GoLang

Cure53 was given access to a dedicated 1Password B5 test environment as well as
furnished with all relevant sources. Additionally, test-supporting documentation, lots of
details pertinent to focus areas and related documentation were provided to make sure
the project can be executed in line with the agreed-upon framework. Following best
practices established during past cooperation, the methodology utilized in 1PW-17 was
accordingly white-box.

The project progressed effectively on the whole. All preparations were done in CW39 to
foster a smooth transition into the testing phase. Over the course of the engagement, the
communications were done using a private, dedicated and shared Slack channel which
was spun up by 1Password. All partaking team members could join test communications
there. The discussions throughout the test were very good and productive and not many
questions had to be asked. The scope was well-prepared and clear, with no noteworthy
roadblocks encountered during the test.

Cure53 offered frequent status updates about the test and the emerging findings. Live-
reporting was performed as usual and the Cure53 team managed to acquire good
coverage over the test targets delineated for WP1 and WP2 of this 1PW-17 project.

Among six security-relevant discoveries, four were classified to be security vulnerabilities
and two to be general weaknesses with lower exploitation potential. It needs to be noted
that this is a good result for 1Password, largely asserting that frequent engagement with
external tests and audits positively contributes to the security posture of the complex.

None of the findings were marked as Critical and only one discovery represented a
borderline High risk. This problem would let an attacker cause a DoS of the 1Password
account under certain circumstances related to invalid vault data submission. Other
flaws related to DoS and possible reuse of leaked information in browser storage
containers. Both the severities and the total number of issues can be seen as
manageable.

Cure53, Berlin · 11/23/21 2/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

In the following sections, the report will first shed light on the scope and key test
parameters, as well as the structure and content of the WPs. Next, all findings will be
discussed in grouped vulnerability and miscellaneous categories, then following a
chronological order in each group. Alongside technical descriptions, PoC and mitigation
advice are supplied when applicable. Finally, the report will close with broader
conclusions about this autumn 2021 project. Cure53 elaborates on the general
impressions and reiterates the verdict based on the testing team’s observations and
collected evidence. Tailored hardening recommendations for the 1Password B5 web
application complex are also incorporated into the final section.

Cure53, Berlin · 11/23/21 3/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Scope
• Penetration-Tests & Code Audits against 1Password B5 Web Application

◦ WP1: 1Password B5 Web Application Frontend, written predominantly in TS
▪ Test environment:

• https://1pw17testcompany.b5test.com/
▪ All relevant sources were shared with Cure53

◦ WP2: 1Password B5 Web Application Backend, written predominantly in GoLang
▪ Key focus areas:

• New 1Password vault invite flow
• Service account authorization feature
• Item sharing feature
• Duo v4 MFA integration

▪ All relevant sources were shared with Cure53
• Test user-accounts:

◦ https://1pw17testcompany.b5test.com/
▪ U: seba@cure53.de
▪ U: niko@cure53.de

◦ https://1pw17second.b5test.com/
▪ U: seba@cure53.de

◦ https://1pw17third.b5test.com
▪ U: seba@cure53.de

◦ https://1pw17fourth.b5test.com
▪ U: seba@cure53.de

◦ Duo MFA:
▪ https://admin-da89dc78.duosecurity.com/login
▪ U: seba@cure53.de

◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 11/23/21 4/16

https://cure53.de/
mailto:seba@cure53.de
https://admin-da89dc78.duosecurity.com/login
mailto:seba@cure53.de
https://1pw17fourth.b5test.com/
mailto:seba@cure53.de
https://1pw17third.b5test.com/
mailto:seba@cure53.de
https://1pw17second.b5test.com/
mailto:niko@cure53.de
mailto:seba@cure53.de
https://1pw17testcompany.b5test.com/
https://1pw17testcompany.b5test.com/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Identified Vulnerabilities
The following sections list both vulnerabilities and implementation issues spotted during
the testing period. Note that findings are listed in chronological order rather than by their
degree of severity and impact. The aforementioned severity rank is simply given in
brackets following the title heading for each vulnerability. Each vulnerability is
additionally given a unique identifier (e.g. 1PW-17-001) for the purpose of facilitating any
future follow-up correspondence.

1PW-17-001 WP1: Reusable authorization token in localStorage (Medium)
Note: The 1Password team has accepted this finding as a low severity issue. They
cannot follow the provided recommendation for usability reasons, but are looking to
mitigate the risk of accidentally long-lived authentication tokens by introducing an opt-
out for storing this in a future version of item sharing.

During the assessment of the newly introduced item sharing feature, the discovery was
made that the currently implemented authentication mechanism is prone to several local
attack scenarios. The feature furnishes the option to define a set of accessors via email
addresses. These determine where the item can be shared.

After the email gets confirmed via an OTP token, an additional authorization token is
returned and is stored in the localStorage. Due to the fact that items in the localStorage
remain after the browser is closed and the token is reusable, a local acting adversary is
able to use this token to access all valid items shared with the email address.

Moreover, the expiration date of the authorization token is set to one month, which
greatly increases the likelihood of being exploited. Please keep in mind that URLs are
stored together with the location.hash value in the browser’s history, which also make it
attractive as a route to easily access unexpired shared items.

Affected content of localStorage:
console.log(localStorage.getItem('token_<email>'))

Resulting content:
{"token":"lMVEQPMSTxKdHtJjMp7RFROLqwSIZa8h","email":"seba+inviter@cure53.de","ex
piresAt":"2021-11-05T09:56:27.717Z"}

It is recommended to cease storing sensitive data such as tokens in the localStorage1.
Instead, it is advisable to use the HTML5 sessionStorage which stores data for the
current browser session only. Thus, the data is deleted once the browser has been

1 https://dev.to/rdegges/please-stop-using-local-storage-1i04

Cure53, Berlin · 11/23/21 5/16

https://cure53.de/
https://dev.to/rdegges/please-stop-using-local-storage-1i04
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

closed and local attackers have no access to previously-stored data in a new browser
session. In addition, in order to further harden the current implementation, consideration
should be given to limiting the token's expiry and performing email verification for each
item shared to the address.

1PW-17-003 WP2: Missing check allows spoofing of Activity Logs (Low)
Note: The 1Password team has reviewed the issue and confirms it is present, but was
not able to accept this issue. This is a known and accepted consideration in how item
sharing works: 1Password cannot access your secrets, and therefore cannot see what
secrets users share. As a result, 1Password can only verify if a user shares a secret
they have access to, but not which of those secrets that is.

It was found that the Activity Log feature available for higher-privileged 1Password users
suffers from several spoofing attacks related to the shared items. The current
implemented design randomly generates secret bytes for each new share. A unique
UUID, a token and a rawKey are derived from these. The rawKey is used to encrypt the
content, which is sent along with the token, the UUID of the shared item, the UUID of the
vault and the UUID of the item to the server.

Leveraging the current design, an adversary is able to send other items, vault UUIDs or
other encrypted content that do not belong to the shared item. This allows spoofing
entries to create fake logs of shared items, whereby other content was made publicly
available. The impact can be considered limited due to the fact that this might be used in
scenarios where admins safely rely on the values behind shared items.

Affected request (decrypted):
POST /api/v3/itemshare HTTP/2
Host: 1pw17testcompany.b5test.com
X-Agilebits-Mac: v1|19|oLlvjks7SgGGwzYe
X-Agilebits-Session-Id: ZIEBQG5J4NE7FMNFXV6JFUYS5Q
[...]

{
 "uuid" : "ngcj47nuwsaa24dr2pc6i5zqau",
 "token" : "5nzdbyuza7w7ep75i7sathqs5e",
 "vaultUuid" : "k2l2l5ushqwardrwzu5r5y2wxu",
 "itemUuid" : "dzidcgo2ki6poscx25cxar35ru",
 "itemVersion" : 1,
 "encOverview" : {
[...]

Cure53, Berlin · 11/23/21 6/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Steps to reproduce:
1. Open the item selected for sharing with others.
2. Open b5-*min.js in the DevTools and place a breakpoint on line:

e.post('/api/v3/itemshare', t).then(Object(o.unsafeDecodeAs) (f))]

3. Click on “Share…” and “Get Link to Share”.
4. Open the console in DevTools and add the UUID of an item that is supposed to

be shown in the logs: t.itemUuid="<itemUUID>"
5. Continue the script and open the resulting share link.

As a result, the initial item is shown on the shared page, whereby the spoofed item is
displayed in the logs.

Since the server has no knowledge about decrypted contents and the issue does not
seem to be solvable on the client-side, the risk is somewhat diminished. Still, it is
recommended to implement additional verifications in order to raise the bar for further
exploitations.

1PW-17-004 WP2: DoS against other users via blocklist (Medium)
Note: The 1Password team confirms this issue is present and has accepted it as a best
practice issue. 1Password has no plans to address this in the short term but are looking
at alternatives for their request filter mechanisms that would be less susceptible to this
issue.

It was found that the 1Password web application is still prone to a Denial-of-Service
attack. While the issue has already been reported by Cure53 in January 2019 (see
1PW-01-005), it was found that it has still not been addressed accordingly. The
implemented defense mechanism adds an IP to the blocklist if some of the defined
strings are added to request parts, for instance to the URL.

After the IP is added, the client is no longer able to reach the application and the status
403 Forbidden is returned. This effectively prevents the users from a prolonged
engagement with the product if a prepared URL gets sent from the client. Please note
that those URLs can also be opened without user-action from other origins, for example
via simple fetch requests.

Affected files:
server/src/main/middleware/filter.go

Affected code:
func filter(hosts []string, handler http.Handler) http.Handler {

Cure53, Berlin · 11/23/21 7/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

requestAnalyzer := activedefence.NewRequestAnalyzer(hosts,
pathsRequiringSession())

 return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 ip := r.Header.Get(remote.XIPHeader)

 if blocklist.Includes(ip) && !allowlist.Includes(ip) {
 renderForbidden(w, r, "Blocklist is returning blocklisted response")
 return
 }
[...]
banList.AddFilter(`alert(`)
[...]

PoC URL:
https://1pw17testcompany.b5test.com/alert(

The following PoC shows how such a request can be fired from other origins. Please
note that accessing the response via JavaScript is not needed for this type of attack.

PoC HTML (via fetch):
<script>fetch("https://1pw17testcompany.b5test.com/alert(")</script>

Nevertheless, it is recommended to switch to a more WAF-based approach, which would
only block specific requests instead of both requests and IPs. This would prevent
exploiting the behavior as a stepping stone for further Denial-of-Service attacks against
1Password users.

1PW-17-006 WP1: Client-side DoS via invalid encrypted data in vaults (High)
Note: The 1Password team confirms this issue was present and has addressed this in
currently released versions of their product.

During the assessment of the client-side parts of the B5 application, the discovery was
made that the application suffers from a Denial-of-Service attack. During vault creation,
an access object containing encrypted keys is sent to the server. In case the object
contains invalid encrypted data, the client-side parts will throw the error of “Key IDs do
not match” during decryption. As a result, all functionalities that require accessing
decrypted vault content are affected, including Dashboard, People, Vaults or
Integrations.

Due to the fact that the behavior is also exploitable for lower-privileged users and it
affects the whole 1Password account, the issue was rated as High.

Cure53, Berlin · 11/23/21 8/16

https://cure53.de/
https://1pw17testcompany.b5test.com/alert(
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected file:
client/web-api/src/model/symmetric_key.ts

Affected code:
public decrypt = async (json: JweB): Promise<Uint8Array> => {
 if (CONTENT_TYPE !== json.cty) {
 throw new Error("Unexpected content type");
 }
 if (json.kid !== this.uuid) {
 throw new Error("Key IDs do not match");
 }
[...]

The following PoC shows how a faulty vault entry can be created.

PoC request example:
{
 "uuid" : "fbgkclhge7vbxthhlfsrk6dhwf",
 "type" : "U",
 "attrVersion" : 1,
 "contentVersion" : 1,
 "encAttrs" : {
 "kid" : "2skapppepcf4krmir32zpt2qx4",
 "enc" : "A256GCM",
 "cty" : "b5+jwk+json",
 "iv" : "BvAy24vWyl5-yQcs",
 "data" : "-
AFRgqx3XellWUHQ_87crCw8TX3GFVAyUBKl1v5T5Yw6M9xL3JZ83db7_eAqTvjjSZiR9sg5p__xDsiA9
vn-
z1y4cUHVhLBvoTDD5LyE0B8n2IhcmNBc5pUAu_9ZoT8vm0H5jqZEpyn7ENVFibGJewtp4JE_aNt2PZVn
AclYK7G7vmvuZXpqvr3szm6DcWtYoTbgfOee84LD1GCdCzpoL9PYAapSCul_wKMJc76_"
 },
 "access" : [{
 "vaultUuid" : "fbgkclhge7vbxthhlfsrk6dhwf",
 "accessorType" : "user",
 "accessorUuid" : "QMV4E5KYXJGLDFEVJRPYSR72YQ",
 "acl" : 2147483646,
 "leaseTimeout" : 0,
 "vaultKeySN" : 1,
 "encryptedBy" : "3ohtmkjj4emonbbnemjgpzho3y",
 "encVaultKey" : {
 "kid" : "3ohtmkjj4emonbbnemjgpzho3y",
 "enc" : "RSA-OAEP",
 "cty" : "b5+jwk+json",
 "data" : "INVALID"
 }
 }, {
 "vaultUuid" : "fbgkclhge7vbxthhlfsrk6dhwf",

Cure53, Berlin · 11/23/21 9/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 "accessorType" : "group",
 "accessorUuid" : "qz3gw6t42vwdlgswpivbxeblhq",
 "acl" : 1,
 "leaseTimeout" : 0,
 "vaultKeySN" : 1,
 "encryptedBy" : "xujdyj4y2o3tdvdaeze2zob4ai",
 "encVaultKey" : {
 "kid" : "xujdyj4y2o3tdvdaeze2zob4ai",
 "enc" : "RSA-OAEP",
 "cty" : "b5+jwk+json",
 "data" : "INVALID"
 }
 }, {
 "vaultUuid" : "fbgkclhge7vbxthhlfsrk6dhwf",
 "accessorType" : "group",
 "accessorUuid" : "abszsozul3zrtf2csq4dmqx22e",
 "acl" : 2,
 "leaseTimeout" : 0,
 "vaultKeySN" : 1,
 "encryptedBy" : "xk2tbxw6fyfhrp7rkrufoahzfi",
 "encVaultKey" : {
 "kid" : "xk2tbxw6fyfhrp7rkrufoahzfi",
 "enc" : "RSA-OAEP",
 "cty" : "b5+jwk+json",
 "data" : "INVALID"
 }
 }, {
 "vaultUuid" : "fbgkclhge7vbxthhlfsrk6dhwf",
 "accessorType" : "group",
 "accessorUuid" : "kc5gnate6iqlfdrfvlc3cjghxu",
 "acl" : 2,
 "leaseTimeout" : 0,
 "vaultKeySN" : 1,
 "encryptedBy" : "ilaprfxvecjz36itrky5zajaoi",
 "encVaultKey" : {
 "kid" : "ilaprfxvecjz36itrky5zajaoi",
 "enc" : "RSA-OAEP",
 "cty" : "b5+jwk+json",
 "data" : "INVALID"
 }
 }]
}

Steps to reproduce:
1. Create a new vault and intercept the request with the provided Burp plugin.
2. Replace the content in the data field of an accessor object with invalid data (see

PoC above).
3. Send the edited request to the server.

Cure53, Berlin · 11/23/21 10/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

4. Click on Dashboard or Vaults and observe an error being thrown. The account is
no longer usable.

It is recommended to introduce proper exception handling on the affected client-side
parts of the application. By doing so, an error would not interrupt a continuous
engagement with the product. The web interface should still be displayed even when
undecryptable data is passed.

Miscellaneous Issues
This section covers those noteworthy findings that did not lead to an exploit but might aid
an attacker in achieving their malicious goals in the future. Most of these results are
vulnerable code snippets that did not provide an easy way to be called. Conclusively,
while a vulnerability is present, an exploit might not always be possible.

1PW-17-002 WP2: Inconsistent check leads to faulty Activity Logs (Low)
Note: The 1Password team has accepted this finding as a best practice issue and will
address it in an upcoming release.

A further investigation of 1PW-17-003 revealed that the application lacks some proper
checks when a shared item entry is being created. The affected code part does not
prevent creating new audit event records with UUIDs that already exist in the database.
Due to the fact that an entry is firstly created in the Activity Log component, inconsistent
data can be created in the logs of events pointing to other shared items, even if the final
creation fails.

Affected file:
server/src/db/audit/item_share.go

Affected code:
// CreateItemShare creates a new audit event record when sharing an item
externally
func CreateItemShare(tx *datastore.Tx, userSession *model.UserSession, vaultItem
*model.VaultItem, vault *model.Vault, shareUUID string) error {

event := userSession.NewAuditEvent(ActionShare, ObjectVaultItem,
vaultItem.ID, vaultItem.UUID, &model.AuxInfo{ID: vault.ID, UUID: vault.UUID,
Info: shareUUID})

if err := tx.AddAuditEvent(event); err != nil {
return errors.Wrapf(err, "CreateItemShare audit failed for user %d

%s, item %v, vault %v, share %v", userSession.UserID, userSession.UserUUID,
vaultItem, vault, shareUUID)

}

Cure53, Berlin · 11/23/21 11/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Affected request (decrypted):
POST /api/v3/itemshare HTTP/2
Host: 1pw17testcompany.b5test.com
X-Agilebits-Mac: v1|19|oLlvjks7SgGGwzYe
X-Agilebits-Session-Id: ZIEBQG5J4NE7FMNFXV6JFUYS5Q
[...]

{
 "uuid" : "ngcj47nuwsaa24dr2pc6i5zqau",
 "token" : "5nzdbyuza7w7ep75i7sathqs5e",
 "vaultUuid" : "k2l2l5ushqwardrwzu5r5y2wxu",
 "itemUuid" : "dzidcgo2ki6poscx25cxar35ru",
 "itemVersion" : 1,
 "encOverview" : {
[...]

It is recommended to first check if the received UUID of a shared item already exists in
the Activity Log component. By doing so, the operation should be aborted, which would
prevent creating entries having the same UUID.

1PW-17-005 WP2: Information disclosure via WebSocket channel (Low)
Note: The 1Password team has accepted this finding as a low severity issue and is
working on a different way to handle the described notification messages that is not
susceptible to this.

It was found that the B5 web application discloses information via the notification feature
using WebSockets. Notifications are used to send confirmations back to the client in
case data was successfully updated on the server.

Due to a missing check, a valid WebSocket connection can be established without
knowing a corresponding UUID of a connected device. This lets adversaries obtain valid
session IDs or device UUIDs from other users who have updated an entry. The behavior
can also be used to track some activities about a user.

Affected file:
cmd/b5notifier/main.go

Affected code:
path := strings.TrimPrefix(r.URL.Path, "/")
params := strings.Split(path, "/")
if len(params) != 3 {
 l.Warning(r, "["+ip+"] Invalid number of parameters:
"+strconv.Itoa(len(params)))
 http.Error(w, "Method not allowed", 405)

Cure53, Berlin · 11/23/21 12/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

 return
}

accountUUID := params[0]
userUUID := params[1]
deviceUUID := params[2]
[...]

Affected request:
GET
/WVQEGA6WHBGVXCNC4SWFYFRGSU/AR2PKGCWBJAYPKJ2TF7COILNPM/vboioxt4rawx6iy66dg5s7dui
a HTTP/1.1
Host: b5n.b5test.com
Connection: Upgrade
Origin: https://1pw17second.b5test.com
Sec-WebSocket-Version: 13
Sec-WebSocket-Key: G1w+GCmY6ppqtm+Rw55jqQ==
[...]

For a successful attack, only a valid account UUID and a user UUID are required, which
are both obtainable from the API via a 1Password account. The following PoC shows
how such a connection can be established.

PoC:
<script>var s = new
WebSocket("wss://b5n.1password.com/<accountUUID>/<userUUID>/");s.onmessage =
function (event) {document.write(event.data)}</script>

However, the obtainable data could not be exploited in order to impersonate other users
or to access juicy data, thus explaining the Miscellaneous rating. This is mainly due to
the fact that for a working X-Agilebits-Mac header, a valid session key is required and
only known by the client.

Nevertheless, it is recommended that neither session IDs nor device UUIDs get
broadcasted via WebSockets to the connected clients. Moreover, it is advised to
implement an additional check which makes sure that a valid device UUID is required for
a valid WebSocket connection. It actually needs to belong to the user UUID.

Cure53, Berlin · 11/23/21 13/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

Conclusions
In this 1PW-17 project, which was a next iteration of the ongoing assessments pertaining
to the client- and server-side parts of the 1Password B5 web application, Cure53
examined various components through a selection of tailored approaches. To reiterate,
three members of the Cure53 team completed the project over the course of fourteen
days in October 2021.

While six issues were found during the audit, four of them were exploitable and two were
just hardening recommendations or best practices. It must be underlined that the project
concludes with a fine result for 1Password. The narrow span and low volume of issues is
a clear sign that an external attacker without in-depth insight into the software
implementation, codebase and architecture would have had a hard time when wanting to
cause noteworthy damage.

The basic idea behind the Cure53 investigation of the web applications was to find out
whether the existing functionality of the connected endpoints and its environment can be
deemed healthy enough to withstand attacks by malicious users. With the focus on
typical modern application problems, the issues connected with various types of injection
attacks and misconfigurations, which could compromise the server part of the
application, were investigated without significant success.

While most of the tests were performed on the created test-environments, all found
issues are also exploitable on the corresponding production environments. This is mainly
due to the fact that the offered sources differ only in the configuration settings and
basically show no differences in the respective implementations. Still, the security
posture of the applications running on production machines was also examined,
especially for the newly introduced services used by the item sharing feature. Thus, the
applications were checked for exposed sensitive services, insecure configurations, as
well for hidden files or routes.

Given long-term cooperation, a lot of attention was given to the newly introduced item,
which was here the sharing feature. As a result, three issues connected to Low and
Medium severities could be found in this area during this autumn 2021 review. This
corresponds to a solid result for the first review of a newly implemented feature.

To give more details, the first found issue - 1PW-17-001 - affects the client-side parts of
the item sharing feature. Items only made accessible to specific email addresses are
prone to some local attack scenarios due to the usage of the browser’s insecure
localStorage. In combination with the expiration duration of about one month, the
likelihood of it being exploited by local adversaries is heavily increased. It is

Cure53, Berlin · 11/23/21 14/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

recommended to follow the proposed mitigations in order to prevent credentials from
being compromised.

Moreover, two additional issues connected to the item sharing feature were found. They
lie in the Activity log component. Due to the implemented design, the server has no data
on decrypted data, which is encrypted on the client-side with a key derived from
randomly created secret bytes. This allows adversaries to send other UUIDs or
encrypted data to the server as it is shown in the logs (see 1PW-17-003). However,
since it only allows some spoofing, the issue was rated as Low. Nevertheless, it should
be taken into account to raise the bar of exploitation, making these attacks less
attractive.

A similar issue could be found regarding the creation of duplicate log entries of shared
items due to a missing check observed within the sharing flow. However, due to the fact
that it only fosters some inconsistencies, no further advantage could be found, hence the
Miscellaneous rating (see 1PW-17-002).

The server-side implementation of the newly designed invite flow has been analyzed as
well. This feature is now directly available in vault settings to give new users access to
specific vaults. In this testing process new groups of users have been created. They only
have access to one specific vault and exclusively have the permission to invite new
users into said vault. The frontend implementation of the UI does not show this, but the
logic behind the invite flow iterates over the request body and allows to specify multiple
vaults and user IDs to be added. It was made sure that the loops exit correctly whenever
vaults are specified but the necessary permissions are missing.

Even though the server sometimes accepts requests to non-accessible vaults, it was
determined that this only happens when an invite to an accessible vault is already
present; the logic then simply skips all proceeding checks. This does not create any form
of vulnerability. Output-validation of the generated emails has been checked as well.
Some sinks like the created button URLs for accepting invites exist because of
dangerously looking sprintf calls. However, no issues transpired.

Another important refreshed feature that was covered in this pentest spanned the
DUOv4 implementation that is heavily based on redirects. Since the new flow leaves the
application context, it is stored in an encrypted session storage, whereas the key is
stored in the state parameter. Cure53 made sure that the session storage was correctly
cleared on each flow, even when the MFA flow failed in the end. Verification of
configurable DUO settings, to - for instance - prevent SSRF attacks via the DUO API
hostname, is also being done correctly through extensive use of validators to check for

Cure53, Berlin · 11/23/21 15/16

https://cure53.de/
mailto:mario@cure53.de

 Dr.-Ing. Mario Heiderich, Cure53
 Bielefelder Str. 14
 D 10709 Berlin
 cure53.de · mario@cure53.de

correct domain suffixes. The DUO code verification is also appropriate, with pinned DUO
certificates for the final verification code within the server-side MFA API.

A dedicated and requested reanalysis of permission checks for users with access to
creating service accounts was performed. Despite problems in the past (i.e. viewing the
secret automation as a way to forge JWTs and get access to restricted vaults), Cure53
was unable to reproduce past attack vectors or identify new ones. Similarly, it was not
possible to find any further ACL flows through the service account integration over a
newly configured connect server. Cure53 found that the permission matrix for vaults
works as intended. The testing team checked if previously found issues connected to
several DoS attacks were addressed accordingly. While the issues are properly fixed, a
new issue was found in this area (see 1PW-17-006). This time, invalid sent data during
vault creation allows adversaries to perform a permanent Denial-of-Service attack
affecting the entire 1Password account. Absence of a proper exception handling of
invalid keys means that the web interface cannot be displayed. This leads to a locked
account, so a clear recommendation is to first focus on fixing this issue to prevent DoS
attacks against 1Password accounts.

Another discovery affected the current notification feature, which was missing some
additional checks during the WebSocket creation. This meant adversaries could obtain
session IDs and device UUIDs of currently authorized users (see 1PW-17-005).
However, Cure53 could not see a way to turn this into a real vulnerability, hence the
Miscellaneous score. Nevertheless, it is recommended to further follow the principle of
minimalism and only send back data that is really required by the connected clients.

All in all, the examined 1Password B5 web application and the related specific areas
leave a very good and solid impression. Despite one High finding, the average impact of
discoveries was limited, thereby indicating quite stable protection against attacks that
could imaginably target the examined applications and services. However, the audit also
shows that there is still room for improvement, especially in the client-side parts. The
tested items somewhat suffered from insufficiently implemented exception handling and
the usage of the proven-unsuitable browser features linked to storing sensitive data.
Once the relevant issues are fixed, Cure53 will have greater confidence in the
1Password B5 web application being more properly secured for a continuative
production use. It is hoped that the listed flaws can increase the compound’s capacity to
deliver a secure foundation, at a level expected of password managers.

Cure53 would like to thank Stephen Haywood, Brett Bollman, Jasper Patterson,
Whymarrh Whitby, Rob Yoder, Rick van Galen and Artem Kresling from the 1Password
team for their excellent project coordination, support and assistance, both before and
during this assignment.

Cure53, Berlin · 11/23/21 16/16

https://cure53.de/
mailto:mario@cure53.de

	Pentest-Report 1Password B5 Web & API 10.-11.2021
	Index
	Introduction
	Scope
	Identified Vulnerabilities
	1PW-17-001 WP1: Reusable authorization token in localStorage (Medium)
	1PW-17-003 WP2: Missing check allows spoofing of Activity Logs (Low)
	1PW-17-004 WP2: DoS against other users via blocklist (Medium)
	1PW-17-006 WP1: Client-side DoS via invalid encrypted data in vaults (High)

	Miscellaneous Issues
	1PW-17-002 WP2: Inconsistent check leads to faulty Activity Logs (Low)
	1PW-17-005 WP2: Information disclosure via WebSocket channel (Low)

	Conclusions

