mXSS Attacks: Attacking well-secured Web-Applications
by using innerHTML Mutations

Mario Heiderich
Horst Goertz Institute for IT

Joérg Schwenk
Horst Goertz Institute for IT

Tilman Frosch
Horst Goertz Institute for IT

Security Security Security
Ruhr-University Bochum, Ruhr-University Bochum, Ruhr-University Bochum,
Germany Germany Germany

mario.heiderich@rub.de

Jonas Magazinius
Chalmers University of
Technology, Sweden

joerg.schwenk@rub.de

tilman.frosch@rub.de

Edward Z. Yang
Stanford University, USA
ezyang@stanford.edu

jonas.magazinius@chalmers.se

ABSTRACT

Back in 2007, Hasegawa discovered a novel Cross-Site Scrip-
ting (XSS) vector based on the mistreatment of the backtick
character in a single browser implementation. This initially
looked like an implementation error that could easily be
fixed. Instead, as this paper shows, it was the first example
of a new class of XSS vectors, the class of mutation-based
XSS (mXSS) vectors, which may occur in innerHTML and
related properties. mXSS affects all three major browser
families: IE, Firefox, and Chrome.

We were able to place stored mXSS vectors in high-profile
applications like Yahoo! Mail, Rediff Mail, OpenExchange,
Zimbra, Roundcube, and several commercial products. m-
XSS vectors bypassed widely deployed server-side XSS pro-
tection techniques (like HTML Purifier, kses, htmlLawed,
Blueprint and Google Caja), client-side filters (XSS Auditor,
IE XSS Filter), Web Application Firewall (WAF) systems,
as well as Intrusion Detection and Intrusion Prevention Sys-
tems (IDS/IPS). We describe a scenario in which seemingly
immune entities are being rendered prone to an attack based
on the behavior of an involved party, in our case the browser.
Moreover, it proves very difficult to mitigate these attacks:
In browser implementations, mXSS is closely related to per-
formance enhancements applied to the HTML code before
rendering; in server side filters, strict filter rules would break
many web applications since the mXSS vectors presented in
this paper are harmless when sent to the browser.

This paper introduces and discusses a set of seven differ-
ent subclasses of mXSS attacks, among which only one was
previously known. The work evaluates the attack surface,
showcases examples of vulnerable high-profile applications,
and provides a set of practicable and low-overhead solutions
to defend against these kinds of attacks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

CCS’13, November 04-08, 2013, Berlin, Gernany.

Copyright 2013 ACM 978-1-4503-2477-9/13/11 ...$15.00.
http://dx.doi.org/10.1145/2508859.2516723.

Mutation J innerHTMLu XSS Fiter XSS Filter

Browser Web Application
—a
HTML XSS n ik,
Rendering Executes v
Vs 3

Victims

Figure 1: Information flow in an mXSS attack.

1. INTRODUCTION

Mutation-based Cross-Site-Scripting (mXSS).

Server- and client-side XSS filters share the assumption
that their HI'ML output and the browser-rendered HTML
content are mostly identical. In this paper, we show how this
premise is false for important classes of web applications that
use the innerHTML property to process user-contributed con-
tent. Instead, this very content is mutated by the browser,
such that a harmless string that passes nearly all of the de-
ployed XSS filters is subsequently transformed into an active
XSS attack vector by the browser layout engine itself.

The information flow of an mXSS attack is shown in Fig-
ure 1: The attacker carefully prepares an HTML or XML
formatted string and injects it into a web application. This
string will be filtered or even rewritten in a server-side XSS
filter, and will then be passed to the browser. If the browser
contains a client-side XSS filter, the string will be checked
again. At this point, the string is still harmless and cannot
be used to execute an XSS attack.

However, as soon as this string is inserted into the brower’s
DOM by using the innerHTML property, the browser will mu-
tate the string. This mutation is highly unpredictable since
it is not part of the specified innerHTML handling, but is a
proprietary optimization of HTML code implemented differ-
ently in each of the major browser families. The mutated

Description Section |

Backtick Characters breaking Attribute | 3.1
Delimiter Syntax
XML Namespaces in Unknown Elements | 3.2
causing Structural Mutation
Backslashes in CSS Escapes causing | 3.3
String-Boundary Violation
Misfit Characters in Entity Representa- | 3.4
tion breaking CSS Strings
CSS Escapes in Property Names violating | 3.5
entire HTML Structure
Entity-Mutation in non-HTML Docu- | 3.6
ments
Entity-Mutation in non-HTML context of | 3.7
HTML documents

Table 1: Overview on the mXSS vectors discussed
in this paper

string now contains a valid XSS vector, and the attack will
be executed on rendering of the new DOM element. Both
server- and client side filters were unable to detect this at-
tack because the string scanned in these filters did not con-
tain any executable code.

Mutation-based XSS (mXSS) makes an impact on all three
major browser families (IE, Firefox, Chrome). Table 1 gives
an overview on the mXSS subclasses discovered so far, and
points to their detailed description. A web application is
vulnerable if it inserts user-contributed input with the help
of innerHTML or related properties into the DOM of the
browser. It is difficult to statistically evaluate the number
of websites affected by the seven attack vectors covered in
this paper, since automated testing fails to reliably detect
all these attack prerequisites: If innerHTML is only used to
insert trusted code from the web application itself into the
DOM, it is not vulnerable. However, it can be stated that
amongst the 10.000 most popular web pages, roughly one
third uses the innerHTML property, and about 65% use Java-
Script libraries like jQuery [7], who abet mXSS attacks by
using the innerHTML property instead of the corresponding
DOM methods.

However, it is possible to single out a large class of vulner-
able applications (Webmailers) and name high-profile state-
of-the-art XSS protection techniques that can be circum-
vented with mXSS. Thus the alarm we want to raise with
this paper is that an important class of web applications is
affected, and that nealy all XSS mitigation techniques fail.

Webmail Clients.

Webmail constitutes a class of web applications particu-
larly affected by mutation-based XSS: nearly all of them (in-
cluding e.g. Microsoft Hotmail, Yahoo! Mail, Rediff Mail,
OpenExchange, Roundcube and other tools and providers)
were vulnerable to the vectors described in this paper. These
applications use the innerHTML property to display user-
generated HTML email content. Before doing so, the con-
tent is thoroughly filtered by server-side anti-XSS libraries
in recognition of the dangers of a stored XSS attack. The
vectors described in this paper will pass through the filter
because the HTML string contained in the email body does
not form a valid XSS vector — but would require only a sin-

gle innerHTML access to be turned into an attack by the
browser itself.

Here the attacker may submit the attack vector within the
HTML-formatted body of an email. Most webmail clients do
not use innerHTML to display this email in the browser, but
a simple click on the “Reply” button may trigger the attack:
to attach the contents of the mail body to the reply being
edited in the webmail client, mostly innerHTML access is
used.

HTML Sanitizers.

We analysed a large variety of HTML sanitizers such as
HTML Purifier, htmLawed, OWASP AntiSamy, jSoup, kses
and various commercial providers. At the time of testing, all
of them were (and many of them still are) vulnerable against
mXSS attacks. Although some of the authors reacted with
solutions, the major effort was to alert the browser ven-
dors and trigger fixes for the innerHTML-transformations.
In fact, several of our bug reports have led to subsequent
changes in browser behavior. To protect users, we have
decided to anonymise names of several formerly affected
browsers and applications used as examples in our work.

This paper makes the following contributions:

1. We identify an undocumented but long-existing threat
against web applications, which enables an attacker
to conduct XSS attacks, even if strong server- and
client-side filters are applied. This novel class of attack
vectors utilize performance-enhancement peculiarities
present in all major browsers, which mutate a given
HTML string before it is rendered. We propose the
term mXSS (for Mutation-based XSS) to describe this
class of attacks to disambiguate and distinguish them
from classic, reflected, persistent and DOM-based XSS
attacks.

2. We discuss client- and server-side mitigation mecha-
nisms. In particular, we propose and evaluate an in-
browser protection script, entirely composed in Java-
Script, which is practical, feasible and has low-overhead.
With this script, a web application developer can im-
plement a fix against mXSS attacks without relying
on server-side changes or browser updates. The script
overwrites the getter methods of the DOM properties
we identified as vulnerable and changes the HTML
handling into an XML-based processing, thereby ef-
fectively mitigating the attacks and stopping the mu-
tation effects’.

3. We evaluated this attack in three ways: first, we an-
alyzed the attack surface for mXSS and give a rough
estimate the number of vulnerable applications on the
Internet; second, we conducted a field study testing
commonly used web applications such as Yahoo! Mail
and other high profile websites, determining whether
they could be subjected to mXSS attacks; third, we
have examined common XSS filter software such as
AntiSamy, HTML Purifier, Google Caja and Blueprint
for mXSS vulnerabilities, subsequently reporting our
findings back to the appropriate tool’s author(s).

'In result, one can purposefully choose XML-based process-
ing for security-critical sites and HTML-based processing for
performance-critical sites.

2. PROBLEM DESCRIPTION

In the following sections, we describe the attack vectors
which arise from the use of the innerHTML property in web-
sites. We will outline the history of findings and recount a
realistic attack scenario. The problems we identify leave
websites vulnerable against the novel kind of mXSS attacks,
even if the utilized filter software fully protects against the
dangers of the classic Cross-Site Scripting.

2.1 The innerHTML Property

Originally introduced to browsers by Microsoft with In-
ternet Explorer 4, the property quickly gained popularity
among web developers and was adopted by other browsers,
despite being non-standard. The use of innerHTML and
outerHTML is supported by each and every one of the com-
monly used browsers in the present landscape. Consequently,
the W3C started a specification draft to unify innerHTML
rendering behaviors across browser implementations [20].

An HTML element’s innerHTML property deals with cre-
ating HTML content from arbitrarily formatted strings on
write access on the one hand, and with serializing HTML
DOM nodes into strings on read access on the other. Both
directions are relevant in scope of our paper — the read access
is necessary to trigger the mutation while the write access
will attach the transformed malicious content to the DOM.
The W3C working draft document, which is far from com-
pletion, describes this process as generation of an ordered
set of nodes from a string valued attribute. Due to being
attached to a certain context node, if this attribute is eval-
uated, all children of the context node are replaced by the
(ordered) node-set generated from the string.

To use innerHTML, the DOM interface of element is en-
hanced with an innerHTML attribute/property. Setting of
this attribute can occur via the element.innerHTML=value
syntax, and in this case the attribute will be evaluated im-
mediately. A typical usage example of innerHTML is shown
in Listing 1: when the HT'ML document is first rendered, the
<p> element contains the "First text" text node. When
the anchor element is clicked, the content of the <p> element
is replaced by the "New second text." HTML for-
matted string.

Listing 1: Example on innerHTML usage
<script type="text/javascript">

var new = "New second<\/b> text.";
function Change () {

document.all.myPar.innerHTML = new;
}

</script>

<p id="myPar">First text.</p>

Change text above!

outerHTML displays similar behavior with single exception:
unlike in the innerHTML case, the whole context (not only
the content of the context node) will be replaced here. The
innerHTML-access changes the utilized markup though for
several reasons and in differing ways depending on the user
agent. The following code listings show some (non security-
related) examples of these performance optimizations:

Listing 2: Examples for internal HTML mutations

to save CPU cycles
<!-- User Input -->
<s class="">hello goodbye

<!-- Browser-transformed Output -->
<S>hello goodbye</S>

The browser — in this case Internet Explorer 8 — mutates
the input string in multiple ways before sending it to the lay-
out engine: the empty class is removed, the tag names are
set to upper-case, the markup is sanitized and the HTML
entities are resolved. These transformations happen in sev-
eral scenarios:

1. Access to the innerHTML or outerHTML properties
of the affected or parent HT'ML element nodes;

2. Copy (and subsequent paste) interaction with the HTML
data containing the affected nodes;

3. HTML editor access via the contenteditable attribute,
the designMode property or other DOM method calls
like document.ezecCommand();

4. Rendering the document in a print preview container
or similar intermediate views. Browsers tend to use
the outerHTML property of the HTML container or
the innerHTML.

For the sake of brevity, we will use the term innerHTML-
access to refer to some or all of the items from the above
list.

2.2 Problem History and Early Findings

In 2006, a non-security related bug report was filed by a
user, noting an apparent flaw in the print preview system
for HTML documents rendered by a popular web browser.
Hasegawa’s 2007 analysis [11] of this bug report showed that
once the innerHTML property of an element’s container
node in an HTML tree was accessed, the attributes delim-
ited by backticks or containing values starting with backticks
were replaced with regular ASCII quote delimiters: the con-
tent had mutated. Often the regular quotes disappeared,
leaving the backtick characters unquoted and therefore vul-
nerable to injections. As Hasegawa states, an attacker can
craft input operational for bypassing XSS detection systems
because of its benign nature, yet having a future possibility
of getting transformed by the browser into a code that exe-
cutes arbitrary JavaScript code. An example vector is being
discussed in Section 3.1. This behavior constitutes a funda-
mental basis for our research on the attacks and mitigations
documented in this paper.

2.3 Mutation-based Cross-Site Scripting

Certain websites permit their users to submit inactive
HTML aimed at visual and structural improvement of the
content they wish to present. Typical examples are web-
mailers (visualization of HTML-mail content provided by
the sender of the e-mail) or collaborative editing of com-
plex HTML-based documents (HTML content provided by
all editors).

To protect these applications and their users from XSS at-
tacks, website owners tend to call server-side HTML filters
like e.g. the HTML Purifier, mentioned in Section 5.1, for

assistance. These HTML filters are highly skilled and con-
figurable tool-kits, capable of catching potentially harmful
HTML and removing it from benign content. While it has
become almost impossible to bypass those filters with regu-
lar HTML/Javascript strings, the mXSS problem has yet to
be tackled by most libraries. The core issue is as follows: the
HTML markup an attacker uses to initiate an mXSS attack
is considered harmless and contains no active elements or
potentially malicious attributes — the attack vector exam-
ples shown in Section 3 demonstrate that.

Only the browser will transform the markup internally
(each browser family in a different manner), thereby unfold-
ing the embedded attack vector and executing the malicious
code. As previously mentioned, such attacks can be labeled
mXSS — XSS attacks that are only successful because the
attack vector is mutated by the browser, a result of behav-
ioral mishaps introduced by the internal HTML processing
of the user agents.

3. EXPLOITS

The following sections describe a set of innerHTML-based
attacks we discovered during our research on DOM mutation
and string transformation. We present the code purposefully
appearing as sane and inactive markup before the transfor-
mation occurs, while it then becomes an active XSS vector
executing the example method xss() after that said trans-
formation. This way server- and client-side XSS filters are
being elegantly bypassed.

The code shown in Listing 3 provides one basic example
of how to activate (Step 2 in the chain of events described
in Section 4) each and any of the subsequently following
exploits — it simply concatenates an empty string to an ex-
isting innerHTML property. The exploits can further be
triggered by the DOM operations mentioned in Section 2.2.
Any innerHTML-access mentioned in the following sections
signifies a reference to a general usage of the DOM opera-
tions framed by this work.

Listing 3: Code-snippet — illustrating the minimal
amount of DOM-transaction necessary to cause and

trigger mXSS attacks

<script>

window.onload = function(){
document .body.innerHTML += ’7;

</script>

We created a test-suite to analyze the innerHTML trans-
formations in a systematic way; this tool was later published
on a related website dedicated to HITML and HTML5 secu-

rity implications 2. The important innerH TML-transformations

are highlighted in the code examples to follow.

3.1 Backtick Characters breaking Attribute De-

limiter Syntax

This DOM string-mutation and the resulting attack tech-
nique was first publicly documented in 2007, in connection
with the original print-preview bug described in Section 2.2.
Meanwhile, the attack can only be used in legacy browsers
as their modern counterparts have deployed effective fixes
against this problem. Nevertheless, the majority of tested

2innerHTML
innerhtml, 2012

Test-Suite, http://htmlbsec.org/

web applications and XSS filter frameworks remain vulner-
able against this kind of attack — albeit measurable exis-
tence of a legacy browser user-base. The code shown in List-
ing 4 demonstrates the initial attack vector and the resulting
transformation performed by the browser engine during the
processing of the innerHTML property.

Listing 4: innerHTML-access to an element with
backtick attribute values causes JavaScript execu-
tion

<!-- Attacker Input -->

<!-- Browser Output -->

3.2 XML Namespaces in Unknown Elements
causing Structural Mutation

A browser that does not yet support the HTML5 standard
is likely to interpret elements such as article, aside, menu
and others as unknown elements. A developer can decide
how an unknown element is to be treated by the browser: A
common way to pass these instructions is to use the xmlins
attribute, thus providing information on which XML names-
pace the element is supposed to reside on. Once the zmlins
attribute is being filled with data, the visual effects often
do not change when compared to none or empty names-
pace declarations. However, once the innerHTML property
of one of the element’s container nodes is being accessed, a
very unusual behavior can be observed. The browser pre-
fixes the unknown but namespaced element with the XML
namespace that in itself contains unquoted input from the
zmins attribute. The code shown in Listing 5 demonstrates
this case.

Listing 5: innerHTML-access to an unknown ele-
ment causes mutation and unsolicited JavaScript ex-

ecution
<!-- Attacker Input -->

<article xmlns="urn:img src=x
onerror=xss()//">123

<!-- Browser Output -->

<img src=x onerror=xss()//:article xmlns="urn:img
src=x onerror=xss()//">123</img src=x
onerror=xss()//:article>

The result of this structural mutation and the pseudo-
namespace allowing white-space is an injection point. It is
through this point that an attacker can simply abuse the
fact that an attribute value is being rendered despite its
malformed nature, consequently smuggling arbitrary HTML
into the DOM and executing JavaScript. This problem was
reported and fixed in the modern browsers. A similar issue
was discovered and published by Silin 3.

3Gilin, A., XSS using “wmlins” attribute in custom tag
when copying innerHTML, http://html5sec.org/7xmlns#
97, Dec. 2011

3.3 Backslashes in CSS Escapes causing String-

Boundary Violation

To properly escape syntactically relevant characters in
CSS property values, the CSS1 and CSS2 specifications pro-
pose CSS escapes. These cover the Unicode range and allow
to, for instance, use the single-quote character without risk.
This is possible even inside a CSS string that is delimited by
single quotes. Per specification, the correct usage for CSS es-
capes inside CSS string values would be: property: ’v\61
lue’. The escape sequence is representing the a character,
based on its position in the ASCII table of characters. Uni-
code values can be represented by escaping sequences such
as \20AC for the € glyph, to give one example.

Several modern browsers nevertheless break the security
promises indicated by the correct and standards-driven us-
age of CSS escapes. In particular, it takes place for the in-
nerHTML property of a parent element being accessed. We
observed a behavior that converted escapes to their canon-
ical representation. The sequence property: ’val\27ue’
would result in the innerHTML representation PROPERTY:
’val’ue’. An attacker can abuse this behavior by inject-
ing arbitrary CSS code hidden inside a properly quoted and
escaped CSS string. This way HTML filters checking for
valid code that observes the standards can be bypassed, as
depicted in Listing 6.

Listing 6: innerHTML-access to an element using
CSS escapes in CSS strings causes JavaScript exe-

cution
<!-- Attacker Input -->

<p style="font-family:’ar\27\3bx\3a
expression\28xss\28\29\29\3bial > "></p>

<!-- Browser QOutput -->
<P style="FONT-FAMILY: ’ar

’;x:expression(xss());ial’"></P>

Unlike the backtick-based attacks described in Section 3.1,
this technique allows recursive mutation. This means that,
for example, a double-escaped or double-encoded character
will be double-decoded in case that innerHTML-access oc-
curs twice. More specifically, the \5c 5c escape sequence
will be broken down to the \5c sequence after first inner-
HTML-access, and consequently decoded to the \ character
after the second innerHTML-access.

During our attack surface’s evaluation, we discovered that
some of the tested HTML filters could be bypassed with the
use of &#amp;x5c 5¢ 5¢ 5c or alike sequences. Due to the
backslashes’ presence allowed in CSS property values, the
HTML entity representation combined with the recursive
decoding feature had to be employed for code execution and
attack payload delivery.

The attacks that become possible through this technique
range from overlay attacks injecting otherwise unsolicited
CSS properties (such as positioning instructions and nega-
tive margins), to arbitrary JavaScript execution, font injec-
tions (as described by Heiderich et al. [14]), and the DHTML
behavior injections for levering XSS and ActiveX-based at-
tacks.

3.4 Misfit Characters in Entity Representation
breaking CSS Strings

Combining aforementioned exploit with enabling CSS-escape

decoding behavior results in yet another interesting effect

observable in several browsers. That is, when both CSS es-
cape and the canonical representation for the double-quote
character inside a CSS string are used, the render engine
converts them into a single quote, regardless of those two
characters seeming unrelated. This means that the \22,
", " and " character sequences will be con-
verted to the ’ character upon innerHTML-access. Based
on the fact that both characters have syntactic relevance
in CSS, the severity of the problems arising from this be-
havior is grand. The code example displayed in Listing 7
shows a mutation-based XSS attack example. To sum up
and underline once again, it is based on fully valid and inac-
tive HTML and CSS markup that will unfold to active code
once the innerHTM L-access is involved.

Listing 7: innerHTMHL-access to an element using
CSS strings containing misfit HTML entities causes

JavaScript execution
<!-- Attacker Input -->

<p style="font-family:’ar";x=
expression(xss())/*ial’"></p>

<!-- Browser Output -->
<P style="FONT-FAMILY: ’ar’;x=expression/(
xss())/*ial’"></P>

We can only speculate about the reasons for this surpris-
ing behavior. One potential explanation is that in case when
the innerHTML transformation might lead the \22, ",
" and " sequences to be converted into the actual
double-quote character (”), then — given that the attribute
itself is being delimited with double-quotes — an improper
handling could not only break the CSS string but even dis-
rupt the syntactic validity of the surrounding HTML. An
attacker could abuse that to terminate the attribute with a
CSS escape or HTML entity, and, afterwards, inject crimson
HTML to cause an XSS attack.

Our tests showed that it is not possible to break the
HTML markup syntax with CSS escapes once used in a
CSS string or any other CSS property value. The mutation
effects only allow CSS strings to be terminated illegitimately
and lead to an introduction of new CSS property-value pairs.
Depending on the browser, this may very well lead to an XSS
exploit executing arbitrary JavaScript code. Supporting this
theory, the attack technique shown in Section 3.5 considers
markup integrity but omits CSS string sanity considerations
within the transformation algorithm of HTML entities and
CSS escapes.

3.5 CSS Escapes in Property Names violating
entire HTML Structure

As mentioned in Section 3.4, an attacker cannot abuse
mutation-based attacks to break the markup structure of
the document containing the style attribute hosting the CSS
escapes and entities. Thus far, the CSS escapes and entities
were used exclusively in CSS property values and not in
the property names. Applying the formerly discussed tech-
niques to CSS property names instead of values forces some
browsers into a completely different behavior, as demon-
strated in Listing 8.

Listing 8: innerHTML-access to an element with
invalid CSS property names causes JavaScript exe-

cution
<!-- Attacker Input -->

<img style="font-fa\22on-
load\3dxss\28\29\20mily: ’arial’" src="test
-jpg" />

<!-- Browser Output -->

<IMG style="font-fa"onload=xss() mily:
’arial’" src="test.jpg">

Creating a successful exploit, which is capable of executing
arbitrary JavaScript, requires an attacker to first terminate
the style attribute by using a CSS escape. Therefore, the
injected code would trigger the exploit code while it still fol-
lows the CSS syntax rules. Otherwise, the browser would
simply remove the property-value pair deemed invalid. This
syntax constraint renders several characters useless for cre-
ating exploits. White-space characters, colon, equals, curly
brackets and the semi colon are among them. To bypass
the restriction, the attacker simply needs to escape those
characters as well. We illustrate this in Listing 8. By escap-
ing the entire attack payload, the adversary can abuse the
mutation feature and deliver arbitrary CSS-escaped HTML
code.

Note that the attack only works with the double-quote
representation inside double-quoted attributes. Once a web-
site uses single-quotes to delimit attributes, the technique
can be no longer applied. The innerHTM L-access will con-
vert single quotes to double quotes. Then again, the \22
escape sequence can be used to break and terminate the at-
tribute value. The code displayed in Listing 9 showcases this
yet again surprising effect.

Listing 9: Example for automatic quote conversion
on innerHTML-access

<!-- Example Attacker Input -->

<p style=’fo\27\220:bar’>

<!-- Example Browser Output -->
<P style="fo’"o: bar"></P>

3.6 Entity-Mutation in non-HTML Documents

Once a document is being rendered in XHTML/XML
mode, different rules apply to the handling of character enti-
ties, non-wellformed content including unquoted attributes,
unclosed tags and elements, invalid elements nesting and
other aspects of document structure. A web-server can in-
struct a browser to render a document in XHTML/XML
by setting a matching MIME type via Content-Type HTTP
headers; in particular the MIME text/zhtml, text/zml, ap-
plication/zhtml+zml and application/zml types can be em-
ployed for this task (more exotic MIME types like image/svg
+zml and application/vnd.wap.zhtml+zml can also be used).

These specific and MIME-type dependent parser behav-
iors cause several browsers to show anomalies when, for in-
stance, CSS strings in style elements are exercised in com-
bination with (X)HTML entities. Several of these behaviors
can be used in the context of mutation-based XSS attacks,
as the code example in Listing 10 shows.

Listing 10: innerHTML-access to an element with
encoded XHTML in CSS string values causes Java-

Script execution
<!-- Attacker Input -->

<style>*{font-family:’ar<img
src="test.jpg"
onload="xss()"/>ial ’}</style>

<!-- Browser Output -->
<style>*{font-family:’ar<img src="test.jpg"
onload="xss()"/>ial ’}</style>

Here-above, the browser automatically decodes the HT'ML
entities hidden in the CSS string specifying the font family.
By doing so, the parser must assume that the CSS string
contains actual HTML. While in text/html neither a muta-
tion nor any form or parser confusion leading to script exe-
cution would occur, in text/zhtml and various related MIME
type rendering modes, a CSS style element is supposed to be
capable of containing other markup elements. Thus, without
leaving the context of the style element, the parser decides
to equally consider the decoded img element hidden in the
CSS string, evaluate it and thereby execute the JavaScript
connected to the successful activation of the event handler.
This problem is unique to the WebKit browser family, al-
though similar issues were spotted in other browser engines.
Beware that despite a very small distribution of sites us-
ing MIME types such as text/zhtml, text/zml, application/z-
html+zml and application/ zml (0.0075% in the Alexa Top
1 Million website list), an attacker might abuse MIME sniff-
ing, frame inheritance and other techniques to force a web-
site into the necessary rendering mode, purposefully acting
towards a successful exploit execution. The topic of security
issues arising from MIME-sniffing has been covered by by
Barth et al., Gebre et al. and others (2,3, 8].

3.7 Entity-Mutation in non-HTML context of
HTML documents

In-line SVG support provided in older browsers could lead
to XSS attacks originating in HTML entities that were em-
bedded inside style and similar elements, which are by de-
fault evaluated in their canonic form upon the occurrence
of innerHTMUL-access. This problem has been reported and
mitigated by the affected browser vendors and is listed here
to further support our argument. The code example in List-
ing 11 showcases anatomy of this attack.

Listing 11: Misusing HTML entities in inline-SVG

CSS-string properties to execute arbitrary Java-

Script

<!-- Attacker Imnput -->

<p><svg><style>*{font-family:’
</style><img/src=x	
onerror=xss()// ’}</style></svg></p
>

<!-- Browser Output -->

<p><svg><style>*{font-family:’
</style></svg><img src="x" onerror="xss()"
/>°}</p>

This vulnerability was present in a popular open-source
user agent and has been since fixed successfully, following a
bug report.

3.8 Summary

In order to initiate the mutation, all of the exploits shown
here require a single access to the innerHTML property of
a surrounding container, while except for the attack vector
discussed in Section 3.1, all other attacks can be upgraded
to allow recursive mutation — making double-, triple- and
further multiply-encoded escapes and entities useful in the
attack scenario, immediately when multiple innerHTML-
access to the same element takes place. The attacks were
successfully tested against a large range of publicly available
web applications and XSS filters — see Section 4.

4. ATTACK SURFACE

The attacks outlined in this paper target the client-side
web application components, e.g. JavaScript code, that use
the innerHTML property to perform dynamic updates to
the content of the page. Rich text editors, web email clients,
dynamic content management systems and components that
pre-load resources constitute the examples of such features.
In this section we detail the conditions under which a web
application is vulnerable. Additionally, we attempt to es-
timate the prevalence of these conditions in web pages at
present.

The basic conditions for a mutation event to occur are
the serialization and deserialization of data. As mentioned
in Section 2, mutation in the serialization of the DOM-tree
occurs when the innerHTML property of a DOM-node is ac-
cessed. Subsequently, when the mutated content is parsed
back into a DOM-tree, e.g. when assigned to innerHTML
or written to the document using document.write, the mu-
tation is activated.

The instances in Listing 12 are far from being the exclusive
methods for a mutation event to occur, but they exemplify
vulnerable code patterns. In order for an attacker to exploit
such a mutation event, it must take place on the attacker-
supplied data. This condition makes it difficult to statisti-
cally estimate the number of vulnerable websites, however,
the attack surface can be examined through an evaluation of
the number of websites using such vulnerable code patterns.

Listing 12: Code snippets — vulnerable code pat-
terns

// Native JavaScript / DOM code
a.innerHTML = b.innerHTML;

a.innerHTML += ’additional content’;
a.insertAdjacentHTML (’beforebegin’, b.
innerHTML) ;

document .write(a.innerHTML) ;

// Library code
$(element) .html (’additional content’);

4.1 InnerHTML Usage

Since an automated search for innerHTML does not de-
termine the exploitability of its usage, it can only serve as
an indication for the severity of the problem. To evaluate
the prevalence of innerHTML usage on the web, we con-
ducted a study of the Alexa top 10,000 most popular web
sites. A large fraction of approximately one third of these
web sites utilized vulnerable code patterns, like the ones in
Listing 12, in their code for updating page content. Major
websites like Google, Amazon, EBay and Microsoft could
be identified among these. Again, this does not suggest that

these web sites can be exploited. We found an overall of
74.5% of the Alexa Top 1000 websites to be using inner-
HTML-assignments. While the usage of innerHTML is very
common, the circumstances under which it is vulnerable to
exploitation are in fact hard to quantify. Note though that
almost all applications applied with an editable HTML area
are prone to being vulnerable.

Additionally, there are some notable examples of poten-
tially vulnerable code patterns identifiable in multiple and
commonly used JavaScript libraries, e.g. jQuery [7] and
SWFObject [27]. Indeed, more than 65% of the top 10,000
most popular websites do employ one of these popular li-
braries (with 48,87% using jQuery), the code of which could
be used to trigger actual attacks. Further studies have to be
made as to whether or not web applications reliant on any
of these libraries are affected, as it largely depends on how
the libraries are used. In certain cases, a very specific set
of actions needs to be performed if the vulnerable section
of the code is to be reached. Regardless, library’s inclusion
always puts a given website at risk of attacks.

Ultimately, we queried the Google Code Search Engine
(GCSE) as well as the Github search tool to determine which
libraries and public source files make use of potentially dan-
gerous code patterns. The search query yielded an over-
all 184,000 positive samples using the GCSE and 1,196,000
positive samples using the Github search tool. While this
does not provide us with an absolute number of vulnerable
websites, it shows how widely the usage of innerHTML is
distributed; any of these libraries using vulnerable code pat-
terns in combination with user-generated content is likely to
be vulnerable to mXSS attacks.

4.2 Web-Mailers

A class of web applications particularly vulnerable to m-
XSS attacks are classic web-mailers — applications that fa-
cilitates receiving, reading and managing HTML mails in a
browser. In this example, the fact that HTML Rich-Text
Editors (RTE) are usually involved, forms the basis for the
use of the innerHTML property, which is being triggered
with almost any interaction with the mail content. This
includes composing, replying, spell-checking and other com-
mon features of applications of this kind. A special case of
attack vector is sending an mXSS string within the body
of an HTML-formatted mail. We analyzed commonly used
web-mail applications and spotted mXSS vulnerabilities in
almost every single one of them, including e.g. Microsoft
Hotmail, Yahoo! Mail, Rediff Mail, OpenExchange, Round-
cube, and many other products — some of which cannot yet
be named for the sake of user protection. The discovery
was quickly followed with bug reports sent to the respective
vendors, which were acknowledged.

4.3 Server-Side XSS Filters

The class of mXSS attacks poses a major challenge for
server-side XSS filters. To completely mitigate these at-
tacks, they would have to simulate the mutation effects of
the three major browser families in hopes of determining
whether a given string may be an mXSS vector. At the same
time, they should not filter benign content, in order not to
break the web application. The fixes applied to HTML san-
itizers, as mentioned in the introduction, are new rules for
known mutation effects. It can be seen as a challenging task

to develop new filtering paradigms that may discover even
unknown attack vectors.

S. MITIGATION TECHNIQUES

The following sections will describe a set of mitigation
techniques that can be applied by website owners, devel-
opers, or even users to protect against the cause and im-
pact of mutation XSS attacks. We provide details on two
approaches. The first one is based on a server-side filter,
whereas the other focuses on client-side protection and em-
ploys an interception method in critical DOM properties ac-
cess management.

5.1 Server-side mitigation

Avoiding outputting server content otherwise incorrectly
converted by the browsers is the most direct mitigation strat-
egy. In specific terms, the flawed content should be re-
placed with semantically equivalent content which is con-
verted properly. Let us underline that the belief stating
that “well-formed HTML is unambiguous” is false: only a
browser-dependent subset of well-formed HTML will be pre-
served across innerHTML-access and -transactions.

A comprehensible and uncomplicated policy is to simply
disallow any of the special characters for which browsers
are known to have trouble with when it comes to a proper
conversion. For many HTML attributes and CSS proper-
ties this is not a problem, since their set of allowed values
already excludes these particular special characters. Unfor-
tunately, in case of free-form content, such a policy may be
too stringent. For HTML attributes, we can easily refine
our directive by observing that ambiguity only occurs when
the browser omits quotes from its serialized representation.
Insertion of quotes can be guaranteed by, for example, ap-
pending a trailing whitespace to text, a change unlikely to
modify the semantics of the original text. Indeed, the W3C
specification states that user agents may ignore surrounding
whitespace in attributes. A more aggressive transformation
would only insert a space when the attribute was to be seri-
alized without quotes, yet contained a backtick. It should be
noted that backtick remains the only character which causes
Internet Explorer to mis-parse the resulting HTML.

For CSS, refining our policy is more difficult. Due to the
improper conversion of escape sequences, we cannot allow
any CSS special characters in general, even in their escaped
form. For URLs in particular, parentheses and single quotes
are valid characters in a URL, but are simultaneously con-
sidered special characters in CSS. Fortunately, most major
web servers are ready to accept percent encoded versions of
these characters as equivalent, so it is sufficient to utilize
the common percent-escaping for these characters in URLs
instead.

We have implemented these mitigation strategies in HTML
Purifier, a popular HTML filtering library [32]; as HTML
Purifier does not implement any anomaly detection, the fil-
ter was fully vulnerable to these attacks. These fixes were
reminiscent of similar security bugs that were tackled in
2010 [31] and subsequent releases in 2011 and 2012. In that
case, the set of unambiguous encodings was smaller than
that suggested by the specification, so a very delicate fix
had to be crafted in result, both fixing the bug and still
allowing the same level of expressiveness. Since browser
behavior varies to a great degree, a server-side mitigation
of this style is solely practical for the handling of a subset

of HTML, which would normally be allowed for high-risk
user-submitted content. Furthermore, this strategy cannot
protect against dynamically generated content, a limitation
which will be addressed in the next section. Note that prob-
lems such as the backtick-mutation still affect the HTML
Purifier as well as Blueprint and Google Caja; they have
only just been addressed successfully by the OWASP Java
HTML Sanitizer Project 4.

5.2 Client-side mitigation

Browsers implementing ECMA Script 5 and higher of-
fer an interface for another client-side fix. The approach
makes use of the developer-granted possibility to overwrite
the handlers of innerHTML and outerHTML-access to in-
tercept the performance optimization and, consequently, the
markup mutation process as well. Instead of permitting a
browser to employ its own proprietary HTML optimization
routines, we utilize the internal XML processor a browser
provides via DOM. The technique describing the wrapping
and sanitation process has been labeled TrueHTML.

The TrueHTML relies on the XMLSerializer DOM object
provided by all of the user agents tested. The XMLSerial-
izer can be used to perform several operations on XML doc-
uments and strings. What is interesting for our specific case
is that XMLSerializer.serializeToString() will accept an
arbitrary DOM structure or node collection and transform
it into an XML string. We decided to replace the inner-
HTML-getters with an interceptor to process the accessed
contents as if they were actual XML. This has the following
benefits:

1. The resulting string output is free from all mutations
described and documented in Section 3. The attack
surface can therefore be mitigated by a simple replace-
ment of the browsers’ innerHTML-access logic with
our own code. The code has been made available to a
selected group of security researches in the field, who
have been tasked with ensuring its robustness and re-
liability.

2. The XMLSerializer object is a browser component.
Therefore, the performance impact is low compared
to other methods of pre-processing or filtering inner-
HTMIL-data before or after mutations take place. We
elaborate on the specifics of the performance impact
in the 6 Section.

3. The solution is transparent and does not require ad-
ditional developer effort, coming down to a single Java-
Script implementation. No existing JavaScript or DOM
code needs to be modified, the script hooks silently into
the necessary property accessors and replaces the in-
secure browser code. At present, the script works on
all modern browsers tested (Internet Explorer, Firefox,
Opera and Chrome) and can be extended to work on
Internet Explorer 6 or earlier versions.

4. The XMLSerializer object post-validates potentially
invalid code and thereby provides yet another level of
sanitation. That means that even insecure or non-well-
formed user-input can be filtered and kept free from
mutation XSS and similar attack vectors.

1OWASP Wiki, https://www.owasp.org/index.php/
OWASP_Java_HTML_Sanitizer_Project, Feb. 2013

5. The TrueHTML approach is generic, transparent and
website-agnostic. This means that a user can utilize
this script as a core for a protective browser exten-
sion, or apply the user-script to globally protect herself
against cause and impact of mutation XSS attacks.

6. EVALUATION

This section is dedicated to description of settings and
dataset used for evaluating the performance penalty intro-
duced by TrueHTML. We focus on assessing the client-side
mitigation approach. While HTMLPurifier has been changed
to reflect determination for mitigating this class of attacks,
the new features are limited to adding items on the inter-
nal list of disallowed character combinations. This does not
measurably increase the overhead introduced by HTMLPu-
rifier. Performance takes a central stage as a focus of our
query, as the transfer overhead introduced by TrueHTML is
exceptionally low. The hittp archive® has analysed a set of
more than 290,000 URLs and over the course of this project
it has been determined that the average transfer size of a
single web page is more than 1,200 kilobyte, 52kB of which
are taken up by HTML content and 214kB by JavaScript.
The prototype of TrueHTML is implemented in only 820
byte of code, which we consider to be a negligible transfer
overhead.

6.1 Evaluation Environment

To assess the overhead introduced by TrueHTML in a re-
alistic scenario, we conducted an evaluation based on the
Alexa top 10,000 most popular web sites. We crawled these
sites with a recursion depth of one. As pointed out in Sec-
tion 4, approximately one third of these sites make use of
innerHTML. In a next step we determine the performance
impact of TrueHTML in a web browser by accessing 5,000
URLSs randomly chosen from this set. Additionally, we assess
the performance of TrueHTML in typical useage scenarios,
like displaying an e-mail in a web mailer or accessing pop-
ular websites, as well as, investigate the relation between
page load time overhead and page size in a controlled envi-
ronment.

To demonstrate the versatility of the client-side mitiga-
tion approach, we used different hardware platforms for the
different parts of the evaluation. The Alexa traffic ranking
data on virtual machines constituted the grounds for per-
forming this evaluation. Each instance was assigned one
core of an Intel Xeon X5650 CPU running at 2.67GHz and
had access to 2 GB RAM. The instances ran Ubuntu 12.04
Desktop and Mozilla Firefox 14.0.1. As an example for a
mid-range system, we used a laptop with an Intel Core2Duo
CPU at 1.86GHz and 2GB RAM, running Ubuntu 12.04
Desktop and Mozilla Firefox 16.0.2, so that to assess the
performance in typical usage scenarios.

The evaluation environment is completed by a proxy server
to inject TrueHTML into the HTML context of the vis-
ited pages, and a logging infrastructure.Once a website has
been successfully loaded in the browser, we log the URL
and the user-perceived page loading time using the Navi-
gation Timing API defined by the W3C Web Performance
Working Group [29]. We measure this time as the differ-
ence between the time when the onload event is fired and
the time immediately after the user agent finishes prompt-

*http://www.httparchive.org/, Nov. 2012

ing to unload the previous document, as provided by the
performance.timing.navigationStart method.

6.2 Evaluation Results

Using the virtual machines we first determine the user-
perceived page loading time of the unaltered pages. In a
second run we use the proxy server to inject TrueHTML
and measure the page loading time again. We calculate the
overhead as the increase of page loading time in percentage
ratios of the loading time the page needed without True-
HTML. The minimum overhead introduced by TrueHTML
is 0.01% while the maximum is 99.94%. On average, True-
HTML introduces an overhead of 30.62%. The median result
is 25.73%, the 90th percentile of the overhead is 68.37%.
However, the significance of these results is limited as we
are unable to control for network-induced delay. In order to
eliminate these effects, we conducted the following experi-
ments locally.

Using the laptop, we determined how the user experience
is affected by TrueHTML in typical scenarios, like using a
web mailer or browsing popular webpages. We therefore
assigned document.body.innerHTML of an otherwise empty
DOM to the content of a typical email body of a multi-
part message (consisting of both the content types text/-
plain and text/html), the scraped content of the landing
pages of google.com, yahoo.com, baidu.com, duckduckgo.
com, youtube.com, and the scraped content of a map dis-
play on Google Maps, as well as of a Facebook profile and
a Twitter timeline. Each generated page was accessed three
times and the load times logged per criteria described earlier
on. The data were generated locally, thus the results do not
contain network-induced delays. Table 2 shows the average
values.

The results of the previous test show that the user-perceived
page load time is not only dependent on the size of the
content, but also reliant on the structure and type of the
markup. While the data show that in no case the user expe-
rience is negatively affected in the typical use cases, this kind
of evaluation does not offer a generic insight into how True-
HTML performance overhead relates to content size and the
amount of markup elements. To evaluate this in a controlled
environment, we generate a single <p></p> markup frag-
ment that contains 1kB of text. Again, we assigned doc-
ument .body.innerHTML of an otherwise empty DOM this
markup element between one and one hundred times, cre-
ating pages containing one element with 1kB text content,
scaling up to pages containing one thousand with 1000kB of
text content. As before, the data was generated locally. We
compare page load times with and without TrueHTML as
described above. While the load time increases slightly with
size and the amount of markup elements, it can be seen from
Figure 2 that the performance penalty introduced through
TrueHTML does not raise significantly.

7. RELATED WORK

XSS. First reported back in the year 2000 [6], Cross-Site
Scripting (XSS) attacks gained recognition and attention
from a larger audience with the Samy MySpace worm in
2005 [17]. Several types of XSS attacks have been described
thus far.

User-perceived page load times by page size (up to 1000kB)

600 800 1000

page size in kB (in 10kB steps)

Figure 2: Page load time plotted against page size/#markup elements

600 || I unaltered page
I page with TrueHTML
500
g
£ 400k
'§ 300
E 200
100
200 400
Content Size w/o TH w/ TH
DuckDuckGo 8.2 kB 336 ms 361 ms
Email Body 8.5 kB 316 ms 349 ms
Baidu.com 11 kB 336 ms 466 ms
Facebook profile 58 kB 539 ms 520 ms
Google 111 kB 533 ms 577 ms
Youtube 174 kB 1216 ms 1346 ms
Twitter timeline 190 kB 1133 ms 1164 ms
Yahoo 244 kB 893 ms 937 ms
Google Maps 299 kB 756 ms 782 ms

Table 2: User-perceived page load times ordered by
content size with and without TrueHTML (TH)

Reflected XSS, which typically present a user with an
HTML document accessed with maliciously manipulated pa-
rameters (GET, HTTP header, cookies). These parameters
are sent to the server for application logic processing and the
document is then rendered along with the injected content.

Stored XSS, which is injected into web pages through user-
contributed content stored on the server. Without proper
processing on the server-side, scripts will be executed for
any user that visits a web page with this content.

DOM XSS, or XSS of the third kind, which was first de-
scribed by Klein [18]. It may be approached as a type of
reflected XSS attack where the processing is done by a Java-
Script library within the browser rather than on the server.
If the malicious script is placed in the hash part of the URL,
it is not even sent to the server, meaning that server-side
protection techniques fail in that instance.

Server-side mitigation techniques range from simple char-
acter encoding or replacement, to a full rewriting of the
HTML code. The advent of DOM XSS was one of the main
reasons for introducing XSS filters on the client-side. The
IE8 XSS Filter was the first fully integrated solution [25],
timely followed by the Chrome XSS Auditor in 2009 [4].
For Firefox, client-side XSS filtering is implemented through
the NoScript extension®. XSS attack mitigation has been
covered in a wide range of publications [5, 8,9, 16, 26, 35].
Noncespaces [10] use randomized XML namespace prefixes
as a XSS mitigation technique, which would make detec-

5mXSS is mostly not in scope for these, thus remains unde-
tected

tion of injected content reliable. DSI [23] tries to achieve
the same goal based on a classification of HTML content
into trusted and untrusted content on the server side, sub-
sequently changing browser parsing behavior to take this
distinction into account. Blueprint [21] generates a model
of the user input on the server-side and transfers this model,
together with the user-contributed content, to the browser;
browser behavior is modified by injecting a Javascript li-
brary to process the model along with the input. While the
method to implement Blueprint in current browsers is re-
markably similar to our mitigation approach, it seems hard
to exclude the mXSS string from the model as it looks like
legitimate content. mXSS attacks are likely to bypass all
three of those defensive techniques given that the browser
itself is instrumented to create the attack payload from orig-
inally benign-looking markup.

Mutation-based Attacks. Weinberger et al. [30] give an
example where innerHTML is used to execute a DOM-based
XSS; this is a different kind of attack than those described
in this paper, because no mutations are imposed on the
content, and the content did not pass the server-side filter.
Comparable XSS attacks based on changes to the HTML
markup have been initially described for client-side XSS fil-
ters. Vela Nava et al. [24] and Bates et al. [4] have shown
that the IE8 XSS Filter could once be used to "weaponize”
harmless strings and turn them into valid XSS attack vectors
by applying a mutation carried out by the regular expres-
sions used by the XSS Filter, thus circumventing server-
side protection. Zalewski covers concatenation problems
based on NUL strings in innerHTML assignments in the
Browser Security Handbook [33] and later dedicates a section
to backtick mutation in his book “The Tangled Web” [34].
Other mutation-based attacks have been reported by Barth
et al. [1] and Heiderich [13]. Here, mutation may occur after
client-side filtering (WebKit corrected a self-closing script
tag before rendering, thus activating the XSS vector) or
during XSS filtering (XSS Auditor strips the code attribute
value from an applet tag, thus activating a second malicious
code source). Hooimeijer et al. describe dangers associated
with sanitization of content [15] and claim that they were
able, for each of a large number of XSS vectors, to produce
a string that would result in that valid XSS vector after san-
itization. The vulnerabilities described by Kolbitsch et al.
may form the basis for an extremely targeted attack by web

malware [19]. Those authors state that attack vectors may
be prepared for taking into account the mutation behavior of
different browser engines. Further, our work can be seen as
another justification of the statement from Louw et al. [22]:
”The main obstacle a web application must overcome when
implementing XSS defenses is the divide between its un-
derstanding of the web content represented by an HTML
sequence and the understanding web browsers will have of
the same”.

We show that there is yet another data processing layer
in the browser, which managed to remain unknown to the
web application up till now. Note that our tests showed
that Blueprint would have to be modified to be able to
handle prevention of mXSS attacks. The current status of
standardization can be retrieved from [20]. Aside from the
aforementioned “print preview problem” referenced in Sec-
tion 2.2, another early report on XSS vulnerabilities con-
nected to innerHTML was filed in 2010 for WebKit browsers
by Vela Nava [28]. Further contributions to this problem
scope have been submitted by Silin, Hasegawa and oth-
ers, being subsequently documented on the HTML5 Security
Cheatsheet [12].

8. CONCLUSION

The paper describes a novel attack technique based on
a problematic and mostly undocumented browser behavior
that has been in existence for more than ten years — initially
introduced with Internet Explorer 4 and adopted by other
browser vendors afterwards. It identifies the attacks enabled
by this behavior and delivers an easily implementable solu-
tion and protection for web application developers and site-
owners. The discussed browser behavior results in a widely
usable technique for conducting XSS attacks against appli-
cations otherwise immune to HTML and JavaScript injec-
tions. These internal browser features transparently convert
benign markup, so that it becomes an XSS attack vector
once certain DOM properties — such as innerHTML and out-
erHTML — are being accessed or other DOM operations are
being performed. As we label this kind of attack Mutation-
based XSS (mXSS), we dedicate this paper to thoroughly
introducing and discussing this very attack. Subsequently,
we analyze the attack surface and propose an action plan for
mitigating the dangers via several measurements and strate-
gies for web applications, browsers and users. We also sup-
ply research-derived evaluations of the feasibility and prac-
ticability of the proposed mitigation techniques.

The insight gained from this publication indicates the
prevalence of risks and threats caused by the multilayer ap-
proach that the web is being designed with. Defensive tools
and libraries must gain awareness of the additional process-
ing layers that browsers possess. While server- as well as
client-side XSS filters have become highly skilled protection
tools to cover and mitigate various attack scenarios, mXSS
attacks pose a problem that has yet to be overcome by the
majority of the existing implementations. A string mutation
occurring during the communication between the single lay-
ers of the communication stack from browser to web appli-
cation and back is highly problematic. Given its place and
time of occurrence, it cannot be predicted without detailed
case analysis.

9. REFERENCES

[1] A. Barth. Bug 29278: XSSAuditor bypasses from
sla.ckers.org.
https://bugs.webkit.org/show_bug.cgi?id=29278.

[2] A. Barth, J. Caballero, and D. Song. Secure content
sniffing for web browsers, or how to stop papers from
reviewing themselves. In Security and Privacy, 2009
30th IEEE Symposium on, pages 360-371. IEEE, 2009.

[3] A. Barua, H. Shahriar, and M. Zulkernine. Server side
detection of content sniffing attacks. In Software
Reliability Engineering (ISSRE), 2011 IEEE 22nd
International Symposium on, pages 20-29. IEEE, 2011.

[4] D. Bates, A. Barth, and C. Jackson. Regular
expressions considered harmful in client-side XSS
filters. In Proceedings of the 19th international
conference on World wide web, WWW ’10, pages
91-100, 2010.

[5] P. Bisht and V. N. Venkatakrishnan. XSS-GUARD:
Precise Dynamic Prevention of Cross-Site Scripting
Attacks. In Conference on Detection of Intrusions and
Malware & Vulnerability Assessment, 2008.

[6] CERT.org. CERT Advisory CA-2000-02 Malicious
HTML Tags Embedded in Client Web Requests.
http://www.cert.org/advisories/CA-2000-02.html,
2012.

[7] T.j. Foundation. jQuery: The Write Less, Do More,
JavaScript Library. http://jquery.com/, Nov. 2012.

[8] M. Gebre, K. Lhee, and M. Hong. A robust defense
against content-sniffing xss attacks. In Digital
Content, Multimedia Technology and its Applications
(IDC), 2010 6th International Conference on, pages
315-320. IEEE, 2010.

[9] B. Gourdin, C. Soman, H. Bojinov, and E. Bursztein.
Toward secure embedded web interfaces. In
Proceedings of the Usenix Security Symposium, 2011.

[10] M. V. Gundy and H. Chen. Noncespaces: Using
randomization to defeat Cross-Site Scripting attacks.
Computers € Security, 31(4):612-628, 2012.

[11] Y. Hasegawa, Mar. 2007.

[12] M. Heiderich. HTML5 Security Cheatsheet.
http://htmlbsec.org/.

[13] M. Heiderich. Towards Elimination of XSS Attacks
with a Trusted and Capability Controlled DOM. PhD
thesis, Ruhr-University Bochum, 2012.

[14] M. Heiderich, M. Niemietz, F. Schuster, T. Holz, and
J. Schwenk. Scriptless attacks—stealing the pie without
touching the sill. In ACM Conference on Computer
and Communications Security (CCS), 2012.

[15] P. Hooimeijer, B. Livshits, D. Molnar, P. Saxena, and
M. Veanes. Fast and precise sanitizer analysis with
bek. In Proceedings of the 20th USENIX conference on
Security, SEC’11, pages 1-1, Berkeley, CA, USA,
2011. USENIX Association.

[16] M. Johns. Code Injection Vulnerabilities in Web
Applications - Exemplified at Cross-site Scripting.
PhD thesis, University of Passau, Passau, July 2009.

[17] S. Kamkar. Technical explanation of The MySpace
Worm.

[18] A. Klein. DOM Based Cross Site Scripting or XSS of
the Third Kind. Web Application Security
Consortium, 2005.

[19]

[20]

[21]

C. Kolbitsch, B. Livshits, B. Zorn, and C. Seifert.
Rozzle: De-Cloaking Internet Malware. In Proc. IEEE
Symposium on Security & Privacy, 2012.

T. Leithead. Dom parsing and serialization (w3c
editor’s draft 07 november 2012). http://dvcs.w3.
org/hg/innerhtml/raw-file/tip/index.html.

M. T. Louw and V. N. Venkatakrishnan. Blueprint:
Robust Prevention of Cross-site Scripting Attacks for
Existing Browsers. In Proceedings of the 2009 30th
IEEE Symposium on Security and Privacy, SP ’09,
pages 331-346, Washington, DC, USA, 2009. IEEE
Computer Society.

M. T. Louw and V. N. Venkatakrishnan. Blueprint:
Robust Prevention of Cross-site Scripting Attacks for
Existing Browsers. Proc. IEEE Symposium on
Security & Privacy, 2009.

Y. Nadji, P. Saxena, and D. Song. Document
Structure Integrity: A Robust Basis for Cross-site
Scripting Defense. In NDSS. The Internet Society,
2009.

E. V. Nava and D. Lindsay. Abusing Internet Explorer
8’s XSS Filters. http:
//p42.us/ie8xss/Abusing_IE8s_XSS_Filters.pdf.
D. Ross. IE8 XSS Filter design philosophy in-depth.
http://blogs.msdn.com/b/dross/archive/2008/07/
03/ie8-xss-filter-design-philosophy-in-depth.
aspx, Apr. 2008.

P. Saxena, D. Molnar, and B. Livshits.
SCRIPTGARD: Automatic context-sensitive

27]

(28]

29]

(30]

(31]
32]

(33]

(34]

35]

sanitization for large-scale legacy web applications. In
Proceedings of the 18th ACM conference on Computer
and communications security, pages 601-614. ACM,
2011.

B. van der Sluis. swfobject - SWFObject is an
easy-to-use and standards-friendly method to embed
Flash content, which utilizes one small JavaScript file.
http://code.google.com/p/swfobject/.

E. Vela. Issue 43902: innerHTML decompilation issues
in textarea. http://code.google.com/p/chromium/
issues/detail?id=43902.

W3C. Navigation Timing. http://www.w3.org/TR/
2012/PR-navigation-timing-20120726/, July 2012.
J. Weinberger, P. Saxena, D. Akhawe, M. Finifter,

E. C. R. Shin, and D. Song. A systematic analysis of
xss sanitization in web application frameworks. In
ESORICS, 2011.

E. Z. Yang. HTML Purifier CSS quoting full
disclosure. http://htmlpurifier.org/, Sept. 2010.
E. Z. Yang. HTML Purifier.
http://htmlpurifier.org/, Mar. 2011.

M. Zalewski. Browser Security Handbook.
http://code.google.com/p/browsersec/wiki/Main,
July 2010.

M. Zalewski. The Tangled Web: A Guide to Securing
Modern Web Applications. No Starch Press, 2011.

G. Zuchlinski. The Anatomy of Cross Site Scripting.
Hitchhiker’s World, 8, Nov. 2003.

