
Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Audit-Report SolidiFi Wallet Staking Feature 01.2024
Cure53, Dr.-Ing. M. Heiderich, MSc. H. Moesl-Canaval, MSc. A. Schloegl

Index
Introduction

Scope

Test Methodology

Identified Vulnerabilities

CLE-02-004 WP1: Unfixed vulnerability from previous audit (Medium)

Miscellaneous Issues

CLE-02-001 WP1: Insufficient root and emulator checks for Android devices (Low)

CLE-02-002 WP1: Flare Portal API key leakage (Medium)

CLE-02-003 WP1: Unfixed miscellaneous issue from previous audit (Info)

CLE-02-005 WP1: Vulnerable dependencies (Low)

Conclusions

Cure53, Berlin · 01/30/24 1/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Introduction
“DeFi, Trading & Payments. All in one. At SolidiFi we specialize in blockchain applications
specifically for the XRPL, XinFin and Flare blockchains. ”

From https://solidifi.app/

This report has been compiled to elucidate the outcomes of a Cure53 cryptography review
and source code audit against the SolidiFi Wallet application’s staking feature, which was
performed in early 2024 and funded by CloudElements.

To offer some background information, the assessment was requested during initial
discussions held in November 2023. Cure53 then assembled a three-person team of highly
proficient pentesters and scheduled the review for CW02 January 2024. In total, the client
invested four working days to achieve the expected degree of coverage against the targets.
These were placed into a single Work Package (WP) entitled WP1: Cryptography reviews &
code audits against SolidiFi staking feature.

In actuality, the SolidiFi Wallet application has been examined by Cure53 previously,
specifically during the audit performed in January and February 2023 (documented under
report CLE-01). Albeit, one must mention that this current project focused on a specific
feature rather than the entire application, in contrast to the previous engagement.

To assist the undertakings, sources, test-supporting documentation, and other assorted
pieces of information or data required for access or general purposes were handed over in
advance. The provision of sources rendered the evaluation process compliant with a white-
box methodology.

A number of preparatory initiatives were completed ahead of the actual reviews. These were
performed in late December 2023 (CW51) and early January 2024 (CW01) to create an
ideal and hindrance-free testing environment.

A dedicated and shared Slack channel was established to foster communications between
the two organizations. All employees from both sides that played an active part in this
project were invited to join the channel. Cure53 would like to extend its appreciation to
CloudElements for a seamless collaboration process, which required minimal cross-team
queries due to the excellent scope composition. The test team relayed a swathe of status
updates when required, elaborating both the general audit progress and noteworthy findings,
though live reporting was deemed surplus to requirements.

Concerning the security impacting discoveries, a total of five tickets were documented
following reasonable examination depth against the WP1 item in focus. Only one of those
was categorized as a security vulnerability, while the remaining four pertained to best
practice advice or minor detriments.

Cure53, Berlin · 01/30/24 2/14

https://cure53.de/
https://solidifi.app/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Cure53 considers this a small yield of findings in general; perhaps expected, considering the
concise nature of the scope and audit time frame. Nonetheless, similar procedures against
alternative products have generated a substantially higher volume of faults than those
witnessed here, indicating robust security paradigms.

The altogether positive outcome is compounded by the fact that no new security
vulnerabilities were identified at all. However, several findings noted in CLE-01 (including
one vulnerability) have either not yet been mitigated or require additional amendments to the
developer team’s fixes. Cure53 would be remiss not to restate the importance of correctly
and swiftly addressing all findings, regardless of their perceived exploitation probability or
severity score.

To summarize, Cure53 is pleased to confirm that the SolidiFi Wallet staking feature exhibits
sufficient stability under the current configuration. The guidance proposed throughout this
document should nonetheless be adhered to in order to fortify the premise to an industry
leading standard.

Onward, the report continues by detailing the scope and test setup, itemizing the software
components, methodology, and materials, inter alia.

Following, a dedicated section presents the exhaustive test methodology, demonstrating the
areas covered and tests executed. This transparency hopefully verifies the meticulousness
of the analyses, despite the limited number of identified findings.

Subsequently, the report systematically lists all findings, starting with the detected
vulnerabilities and followed by the general weaknesses. Each finding will be accompanied
by a detailed technical explanation, a Proof-of-Concept (PoC) or steps to reproduce where
applicable, code excerpts, and specific mitigation or remediation recommendations.

Finally, the report concludes with a comprehensive summary of Cure53's overall
impressions and insights. This section offers a critical estimation of the staking feature's
perceived security posture, highlighting demonstrable strengths as well as areas for
improvement.

Fix note: This report has been modified to include fix notes for each issue that has been
successfully closed by the maintainers. The rest of the report was left untouched.

Cure53, Berlin · 01/30/24 3/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Scope
• Cryptography reviews & source code audits against SolidiFi Wallet staking feature

◦ WP1: Cryptography reviews & code audits against SolidiFi staking feature
▪ Source code:

• Branch:
◦ master

• Commit hash:
◦ 9a31a9f

▪ Documentation:
• Visual overview of staking within SolidiFi:

◦ https://www.youtube.com/watch?v=UL8j_4-l-y4
• Technical overview of a tool developed by Flare:

◦ This tool uses a similar method, including the usage of FlareJS
▪ https://docs.flare.network/user/staking/staking-cli/

▪ Staking documentation:
• Solidifi-staking-documentation.pdf

▪ SolidiFi Wallet documentation:
• Solidifi-wallet-design-documentaion-v13.pdf

▪ Flare Wallet:
• Sample wallet address:

◦ 0x32b5B06815Ecc2F74446361078BA08ab398d66B8
◦ Test-supporting material was shared with Cure53
◦ All relevant sources were shared with Cure53

Cure53, Berlin · 01/30/24 4/14

https://cure53.de/
https://docs.flare.network/user/staking/staking-cli/
https://www.youtube.com/watch?v=UL8j_4-l-y4
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Test Methodology
This section documents the testing methodology applied by Cure53 during this CLE-02
project and discusses the resulting coverage, shedding light on how various components
were examined. Further clarification concerning areas of investigation subjected to deep-
dive assessment is offered, especially in the absence of significant security vulnerabilities
detected.

Accordingly, Cure53 hopes that the following passages enhance understanding of the
methods and techniques employed by the testers during the assessment procedures. The
primary focus was to evaluate SolidiFi’s security posture through validation of both
successful and unsuccessful approaches, offering insight into amelioration opportunities:

• To initiate proceedings, the review team analyzed the staking feature and all
associated classes located in src/screens/Staking. These undertakings confirmed
that sensitive data handling and transaction signing are conducted using the ethers1

library. The avoidance of custom cryptographic operations means that the
implementation adheres to industry best practices. This vetting process also
encompassed an examination of the JSON-RPC calls utilized within the business
logic, which ultimately verified that this area was risk averse.

• Regarding the detected flaws, the Cure53 consultants immediately verified the
ability to install the app’s Play Store version on multiple rooted and emulated
devices, as filed under ticket CLE-02-001. As a consequence, one could leverage
the app for dynamic testing via the Frida framework2. The staking flow entails a
number of activities, including (but not limited to) the transfer of funds between the
c- and p-chains, c- and p-chain address binding, reward claims, and the actual
staking transactions. Here, the technical team was able to verify and intercept all
internally initiated JSON-RPC calls. However, despite strenuous efforts, Cure53 was
unable to identify a breach strategy that would permit private key extraction or
fraudulent signature generation on a device that is not attacker-controllable.

• The assessors utilized the broken root detection to perform supplementary
investigations of the SolidiFi app and intercept TLS traffic from the mobile device
using corresponding proxy software (i.e., Burp Suite3). Here, Cure53 was able to
successfully intercept the API key employed for the Flare explorer API, as
demonstrated in ticket CLE-02-002. In spite of the SolidiFi team’s proactive
measures to address the initial vulnerability during the assessment, this report
underscores an additional attack vector that facilitates API exfiltration, which must
be monitored accordingly.

1 https://docs.ethers.org/v5/getting-started/
2 https://frida.re/
3 https://portswigger.net/burp

Cure53, Berlin · 01/30/24 5/14

https://cure53.de/
https://portswigger.net/burp
https://frida.re/
https://docs.ethers.org/v5/getting-started/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Lastly, Cure53 scrutinized the previous penetration test report to ascertain whether follow-up
remediation actions had been implemented by the CloudElements developers. As such, the
following pertinent observations were made:

• The PIN is now stored through the adoption of Expo SecureStore4, which assures
the confidentiality and integrity of data at rest using AES-GCM.

• The original recommendation to modify the launch mode for
com.cloudelements.solidifi.MainAcitivity has not been complied with, as reported in
ticket CLE-02-004.

• The internal browser now only operates on https:// connections, while traffic
between the WebView and React Native code is encrypted using AES-GCM.

• Blurring is now correctly implemented in the app, nullifying any leakage potential
when the app assumes a backgrounded state. Additionally, all attempts to mirror the
device’s display to a computer using scrcpy5 were met with a black screen.

• Following further testing, Cure53 verified that Android backups are no longer
permitted.

• URL parsing is now handled by the URL class, while protocol verification is
performed using the protocol property.

• Root detection has been incorporated via jail-monkey6; however, the ability to install
and operate the app on two alternate rooted devices and an emulator confirmed that
these checks are wholly insufficient. For supporting guidance, please refer to ticket
CLE-02-001.

4 https://www.npmjs.com/package/expo-secure-store
5 https://github.com/Genymobile/scrcpy
6 https://www.npmjs.com/package/jail-monkey

Cure53, Berlin · 01/30/24 6/14

https://cure53.de/
https://www.npmjs.com/package/jail-monkey
https://github.com/Genymobile/scrcpy
https://www.npmjs.com/package/expo-secure-store
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Identified Vulnerabilities
The following section lists all vulnerabilities and implementation issues identified during the
testing period. Notably, findings are cited in chronological order rather than by degree of
impact, with the severity rank offered in brackets following the title heading for each
vulnerability. Furthermore, all tickets are given a unique identifier (e.g., CLE-02-001) to
facilitate any future follow-up correspondence.

CLE-02-004 WP1: Unfixed vulnerability from previous audit (Medium)
Fix note: This issue was fixed and the fixes were verified by Cure53, the problem as
described no longer exists.

This ticket serves to reiterate a specific vulnerability identified during the previous source
code audit that remains unmitigated. An analysis of both the source code and application
provided for this test iteration confirmed that the following flaw remains outstanding and
requires remediation at the earliest opportunity.

CLE-01-003 WP1: Android application vulnerable to task hijacking

Generally speaking, a plethora of internal tasks function collectively and simultaneously
within any Android application. Whenever the application operates, a back stack is actioned
that defines the previous task opened or achieved. In this context, Cure53’s endeavors
indicated that the application is still vulnerable to task hijacking. Accordingly, attackers can
manipulate victim users into unintentionally opening a malicious application that deviates
from the originally intended entity.

To mitigate this issue, Cure53 recommends setting the launch mode to singleInstance, as
reported during the prior CLE-01 engagement. This alteration will prevent other activities
from joining tasks belonging to the application. Alternatively, the CloudElements developers
could incorporate a quick and effective fix by configuring taskAffinity="".

Cure53, Berlin · 01/30/24 7/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Miscellaneous Issues
This section covers any and all noteworthy findings that did not incur an exploit but may
assist an attacker in successfully achieving malicious objectives in the future. Most of these
results are vulnerable code snippets that did not provide an easy method by which to be
called. Conclusively, while a vulnerability is present, an exploit may not always be possible.

CLE-02-001 WP1: Insufficient root and emulator checks for Android devices (Low)
Fix note: This issue was fixed and the fixes were verified by Cure53, the problem as
described no longer exists.

Cure53’s dynamic testing of the SolidiFi Android application verified the ability to launch the
app successfully on both rooted and emulated devices, contrary to design goal 7.5.1
outlined in the accompanying PDF document. The first device employed for this procedure
represented a OnePlus 8 operating LineageOS, rooted with Magisk. In this instance, Magisk
utilized its Zygisk feature, which operates a portion of Magisk within the Zygote daemon,
thus concealing its presence from specific apps. However, Magisk was not actively
obfuscated from the SolidiFi app. Notably, this device failed to pass any of the Play Integrity
API7 checks.

Moreover, Cure53 extended this evaluation process by using a second device, i.e., a Pixel
4, which was also rooted with Magisk. On this occasion, measures to obscure the rooting
were not initiated, indicating that the SolidiFi app’s current root detection functionalities are
suboptimal.

Despite the fact that the library employed for root detection accurately identifies the device in
question as rooted, the steps outlined below confirm that the app fails to implement any
measures to restrict operations on a device of this nature:

Steps to reproduce:
1. Install and run the Frida8 server on the device, then connect it to a PC.
2. Initiate SolidiFi locally with the following PoC script command:

Command:
frida -U -l root_check_poc.js -f com.cloudelements.solidifi

3. Save the following PoC script inside root_check_poc.js within your current
operational directory:

var Main = function() {
 Java.perform(function() {

7 https://developer.android.com/google/play/integrity
8 https://frida.re/

Cure53, Berlin · 01/30/24 8/14

https://cure53.de/
https://frida.re/
https://developer.android.com/google/play/integrity
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Java.use('com.gantix.JailMonkey.Rooted.RootedCheck').isJailBroken.imp
lementation = function() {
 let retval = this.isJailBroken();
 console.log(`isJailBroken returned: ${retval}`)
 return retval
 }
 });
};

Java.perform(Main);

4. Run the aforementioned script and note that the return value of JailMonkey’s
isJailBroken function is logged.

Example output:
isJailBroken returned: true

To mitigate this issue, Cure53 advises performing a thorough examination of the
application's integrity check to identify and rectify the logic error that overlooks the failed root
check outcome. According to the Frida script output, the detection mechanism appears to
function correctly. However, the issue emanates from the method by which this information
is processed and likely originates from either the JailMonkey library or SolidiFi codebase. As
such, one can safely assume that the subpar emulator detection protocols suffer from a
correlating (if not identical) weakness.

CLE-02-002 WP1: Flare Portal API key leakage (Medium)
Fix note: This issue was fixed and the fixes were verified by Cure53, the problem as
described no longer exists.

During the course of the security review, Cure53 found that the application inadvertently
revealed Flare Portal API keys, potentially granting unauthorized parties access to paid API
features. In addition, the observation was made that the API key is extractable from the
Android application APK file by utilizing tools such as hermes-dec9.

This unauthorized access may incur significant financial charges and could result in the
enforcement of limitations against the application's service usage. The paid Flare Portal API
solution facilitates a gateway to Flare's blockchains and connected chains. With this in mind,
API key leakage might lead to numerous plausible ramifications, such as monthly quota
exhaustion by automated interactions; extensive financial damage in the event that billing
limits are exceeded; and functional restrictions upon the application due to Denial-of-Service
(DoS) attacks.

9 https://github.com/P1sec/hermes-dec

Cure53, Berlin · 01/30/24 9/14

https://cure53.de/
https://github.com/P1sec/hermes-dec
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

The following API key was located within the app during this test iteration:

API key identified:
TzA77Y<redacted>

This API key enables permission to various Flare API endpoints, while the subscription
incurs $0.0002 per API call once the subscription limit is reached. The following cURL
command can be adopted to misuse the leaked API key:

cURL:
$ curl -X GET "https://flare-explorer.flare.network/api?
module=account&action=eth_get_balance&address=0x32b5B06815Ecc2F74446361078B
A08ab398d66B8&block=latest" -H "accept: application/json" -H "X-Apikey:
TzA77Y<redacted>"

To mitigate this issue, Cure53 advises implementing an orchestration layer (serverless
function) between the app and resource that can forward the request with the required API
key or secret. This revised approach would prevent direct API consumer access to the
secrets in question. Furthermore, the developer team should ensure that only mobile-related
User-Agents are able to submit data to the serverless function.

Pertinently, the issue leading to the accidental initial disclosure of the API key in a request
has already been fixed by the developer team during the active assessment phase.
However, the shortcoming related to the extraction of API keys from files present on the
device requires resolution by means of the aforementioned orchestration layer or a similar
strategy.

CLE-02-003 WP1: Unfixed miscellaneous issue from previous audit (Info)
Fix note: This issue was fixed and the fixes were verified by Cure53, the problem as
described no longer exists.

This ticket serves to pinpoint a specific miscellaneous issue detected during the previous
source code audit that remains unresolved. Scrutiny of both the source code and the
application provided for this project confirmed that the following issue is outstanding and
requires attention.

CLE-01-002 WP1+2: BugSnag API key hardcoded in config

Decompiling the mobile application revealed that the BugSnag API key was still insecurely
baked into the AndroidManifest.xml and Info.plist files. Consequently, adversaries can abuse
this key to send fake reports or source maps to the platform dashboard, thus compromising
BugSnag data integrity.

Cure53, Berlin · 01/30/24 10/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

To mitigate this issue, Cure53 advises introducing an orchestration layer (serverless
function) between the app and resource that can forward the request with the required API
key or secret, as proposed in the preceding CLE-02-002 ticket.

CLE-02-005 WP1: Vulnerable dependencies (Low)
Fix note: This issue was fixed and the fixes were verified by Cure53, the problem as
described no longer exists.

During the security assessment, the observation was made that the SolidiFi app leveraged
outdated versions that are vulnerable to certain security risks. The following software
packages were identified as out-of-date and potentially insecure. Notably, the version
information provided is based on data collected at the time of testing. However, the
exploitation likelihood associated with these vulnerabilities depends on how the relevant
functionality is currently used in the targeted application.

The vulnerable dependencies can be obtained by running the following command within the
source code folder:

Command:
$ npm audit

follow-redirects <1.15.4
Severity: high
Follow Redirects improperly handles URLs in the url.parse() function -
https://github.com/advisories/GHSA-jchw-25xp-jwwc
fix available via `npm audit fix`
node_modules/follow-redirects

1 high severity vulnerability

Due to the limited scope and time allocation, the full potential impact of the findings remains
undetermined. Further internal investigations are recommended to assess this aspect
comprehensively.

The implementation of robust supply chain security is oftentimes significantly challenging.
There are often no simple or universal solutions, while the effectiveness of the chosen
frameworks can be heavily dependent on specific library versions.

To mitigate this issue, Cure53 recommends upgrading all affected libraries and establishing
a policy to ensure libraries remain up-to-date moving forward. This will allow the framework
to benefit from patches that have been rolled out for all flaws that have been previously
detected across various solutions. To achieve this, the CloudElements team could leverage
NPM’s npm audit fix functionality. However, the degree of protection may vary. Similarly,

Cure53, Berlin · 01/30/24 11/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

keeping all dependencies updated will inevitably become increasingly difficult to achieve if
the framework leverages an extensive number of third-party libraries.

Under certain circumstances, one may have to resort to either sending Pull Requests (PRs)
to the library maintainer or even forking the library entirely. CloudElements could consider
assigning a developer as the task owner to ensure this issue is not neglected or
deprioritized. Lastly, certain libraries may need to be replaced with actively maintained
alternatives in the long term.

Cure53, Berlin · 01/30/24 12/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

Conclusions
This feature audit procedure represents Cure53's second evaluation of the SolidiFi scope
following the inaugural 2023 iteration. CLE-01 was exclusively dedicated to the Android and
iOS applications and was approached via a mobile-specific penetration testing perspective,
while specific features were omitted from holistic scrutiny. In contrast, CLE-02 primarily
focused on newly introduced features, prioritizing the app’s staking feature for heightened
research.

Cure53 maintained consistent communication with the client via the private Slack channel
formed for this purpose. The channel was conducive to an effective analysis and the
maintainers readily provided assistance whenever requested.

The source code was accompanied by comprehensive documentation that meticulously
detailed all design objectives, use cases, and security considerations, allowing the Cure53
team members to quickly familiarize themselves with the underlying infrastructure. The
codebase, written in Typescript, boasts optimized structuring and clear organization, with the
source code presented in an easily comprehensible manner. This clarity eased the technical
team’s understanding of the corresponding functionalities.

Firstly, to ascertain the propensity for client-side issues such as DOM-based XSS, Cure53
perused the connected client-side JavaScript code. This verified that the React framework
has been correctly employed and that the implementation avoids associated pitfalls. The
management of sensitive data related to staking and cryptocurrency transactions is
conducted using the ethers library, which is an astute and widely adopted solution.
Moreover, critical assets such as private keys that require consistent protection are securely
encrypted and stored using the Expo SecureStore module.

Unfortunately, the ineffective jailbreak and emulator detection allowed the testers to
dynamically analyze the Android app, scrutinize HTTP traffic, and retrieve API keys. These
malicious activities have been documented in two distinct tickets, CLE-02-001 and CLE-02-
002. Additionally, one must highlight that the API key is directly extractable from the Android
APK file statically through reverse engineering.

Despite the core focus on staking (and thus API calls to backend systems), none of the
identified issues permitted the exfiltration or leakage of critical user assets. Furthermore, the
staking logic blocked all attempts to generate fraudulent signatures or instigate integrity
attacks.

The SolidiFi app relies on third-party libraries for specific operations, which means that
SolidiFi’s security efficacy is intrinsically tied to the resilience and defensive capabilities of
said libraries. In light of this, Cure53 strongly recommends enforcing a rigorous update
regimen for all dependencies within the staking feature.

Cure53, Berlin · 01/30/24 13/14

https://cure53.de/
mailto:mario@cure53.de

Dr.-Ing. Mario Heiderich, Cure53
Bielefelder Str. 14
D 10709 Berlin
cure53.de · mario@cure53.de

This proactive approach is crucial for timely identification and remediation of potential
security vulnerabilities within third-party libraries. While one outdated library was discovered
during testing, as documented in ticket CLE-02-005, the project supervisors’s prompt
resolution demonstrates admirable commitment to maintaining a secure software
environment.

The majority of the drawbacks detected during the previous audit have been resolved.
However, some issues still persist or have not been comprehensively mitigated, as filed
under tickets CLE-02-004 and CLE-02-003.

To conclude, Cure53 collated substantial evidence indicating that top-tier security
performance was a key consideration during initial system development. The
CloudElements team’s conformity to wider best practices is irrefutable; however, all points of
contention outlined in this report should be heeded to elevate the platform’s cyber
confidence even further.

The commitment to long-term security through regular assessments of the SolidiFi mobile
apps should be commended and continued. Given the inherent risks associated with mobile
applications handling sensitive data, particularly within the financial domain, maintaining a
robust security posture is not only recommended but critical. Any prevalent vulnerabilities,
especially within the staking feature, could result in significant financial losses and
reputational damage. Therefore, prioritizing ongoing security appraisals with a focus on
identifying and mitigating potential threats remains paramount.

Cure53 would like to thank Ferdi Zoet from the CloudElements team for his excellent project
coordination, support, and assistance, both before and during this assignment.

Cure53, Berlin · 01/30/24 14/14

https://cure53.de/
mailto:mario@cure53.de

	Audit-Report SolidiFi Wallet Staking Feature 01.2024
	Index
	Introduction
	Scope
	Test Methodology
	Identified Vulnerabilities
	CLE-02-004 WP1: Unfixed vulnerability from previous audit (Medium)

	Miscellaneous Issues
	CLE-02-001 WP1: Insufficient root and emulator checks for Android devices (Low)
	CLE-02-002 WP1: Flare Portal API key leakage (Medium)
	CLE-02-003 WP1: Unfixed miscellaneous issue from previous audit (Info)
	CLE-02-005 WP1: Vulnerable dependencies (Low)

	Conclusions

