
Maximum Likelihood, Logistic Regression,
and Stochastic Gradient Training

Charles Elkan
elkan@cs.ucsd.edu

January 10, 2014

1 Principle of maximum likelihood
Consider a family of probability distributions defined by a set of parameters θ.
The distributions may be either probability mass functions (pmfs) or probability
density functions (pdfs). Suppose that we have a random sample drawn from
a fixed but unknown member of this family. The random sample is a training
set of n examples x1 to xn. An example may also be called an observation, an
outcome, an instance, or a data point. In general each xj is a vector of values, and
θ is a vector of real-valued parameters. For example, for a Gaussian distribution
θ = 〈µ, σ2〉.

We assume that the examples are independent, so the probability of the set is
the product of the probabilities of the individual examples:

f(x1, . . . , xn; θ) =
∏
j

fθ(xj; θ).

The notation above makes us think of the distribution θ as fixed and the examples
xj as unknown, or varying. However, we can think of the training data as fixed
and consider alternative parameter values. This is the point of view behind the
definition of the likelihood function:

L(θ;x1, . . . , xn) = f(x1, . . . , xn; θ).

Note that if f(x; θ) is a probability mass function, then the likelihood is always
less than one, but if f(x; θ) is a probability density function, then the likelihood
can be greater than one, since densities can be greater than one.

1

The principle of maximum likelihood says that given the training data, we
should use as our model the distribution f(·; θ̂) that gives the greatest possible
probability to the training data. Formally,

θ̂ = argmaxθ L(θ;x1, . . . , xn).

The value θ̂ is called the maximum likelihood estimator (MLE) of θ. In general
the hat notation indicates an estimated quantity; if necessary we will use notation
like θ̂MLE to indicate the nature of an estimate.

2 Examples of maximizing likelihood
As a first example of finding a maximum likelihood estimator, consider estimating
the parameter of a Bernoulli distribution. A random variable with this distribution
is a formalization of a coin toss. The value of the random variable is 1 with
probability θ and 0 with probability 1− θ. Let X be a Bernoulli random variable,
and let x be an outcome of X . We have

P (X = x) =

[
θ if x = 1

1− θ if x = 0

]
Usually, we use the notation P (·) for a probability mass, and the notation p(·) for
a probability density. For mathematical convenience write P (X) as

P (X = x) = θx(1− θ)1−x.

Suppose that the training data are x1 through xn where each xi ∈ {0, 1}. The
likelihood function is

L(θ;x1, . . . , xn) = f(x1, . . . , xn; θ) =
n∏
i=1

P (X = xi) = θh(1− θ)n−h

where h =
∑n

i=1 xi. The maximization is performed over the possible scalar
values 0 ≤ θ ≤ 1.

We can do the maximization by setting the derivative with respect to θ equal
to zero. The derivative is

d

dθ
θh(1− θ)n−h = hθh−1(1− θ)n−h + θh(n− h)(1− θ)n−h−1(−1)

= θh−1(1− θ)n−h−1[h(1− θ)− (n− h)θ]

2

which has solutions θ = 0, θ = 1, and θ = h/n. The solution which is a maximum
is clearly θ = h/n while θ = 0 and θ = 1 are minima. So we have the maximum
likelihood estimate θ̂ = h/n.

The log likelihood function, written l(·), is simply the logarithm of the likeli-
hood function L(·). Because logarithm is a monotonic strictly increasing function,
maximizing the log likelihood is precisely equivalent to maximizing the likeli-
hood, and also to minimizing the negative log likelihood.

For an example of maximizing the log likelihood, consider the problem of
estimating the parameters of a univariate Gaussian distribution. This distribution
is

f(x;µ, σ2) =
1

σ
√

2π
exp[−(x− µ)2

2σ2
].

The log likelihood for one example x is

l(µ, σ2;x) = logL(µ, σ2;x) = − log σ − log
√

2π − (x− µ)2

2σ2
.

Suppose that we have training data {x1, . . . , xn}. The maximum log likelihood
estimates are

〈µ̂, σ̂2〉 = argmax〈µ,σ2〉[−n log σ − n log
√

2π − 1

2σ2

n∑
i=1

(xi − µ)2].

The expression in square brackets is to be optimized simultaneously over two
variables. Fortunately, it can be simplified it into two sequential univariate opti-
mizations. Eliminating the minus signs makes both these optimizations be mini-
mizations. The first is

µ̂ = argminµ

n∑
i=1

(xi − µ)2

while the second is
σ̂2 = argminσ2 [n log σ +

1

2σ2
T]

where T =
∑n

i=1(xi − µ̂)2. In order to do the first minimization, write (xi − µ)2

as (xi − x̄+ x̄− µ)2. Then

n∑
i=1

(xi − µ)2 =
n∑
i=1

(xi − x̄)2 + 2(x̄− µ)
n∑
i=1

(xi − x̄) + n(x̄− µ)2.

3

The first term
∑n

i=1(xi − x̄)2 does not depend on µ so it is irrelevant to the min-
imization. The second term equals zero, because

∑n
i=1(xi − x̄) = 0. The third

term is always positive, so it is clear that it is minimized when µ = x̄.
To perform the second minimization, work out the derivative symbolically and

then work out when it equals zero:

∂

∂σ
[n log σ +

1

2
σ−2T] = nσ−1 +

1

2
(−2σ−3)T

= σ−1(n− Tσ−2)
= 0 if σ2 = T/n.

Maximum likelihood estimators are typically reasonable, but they may have is-
sues. Consider the Gaussian variance estimator σ̂2

MLE =
∑n

i=1(xi − x̄)2/n and
the case where n = 1. In this case σ̂2

MLE = 0. This estimate is guaranteed to be
too small. Intuitively, the estimate is optimistically assuming that all future data
points x2 and so on will equal x1 exactly.

It can be proved that in general the maximum likelihood estimate of the vari-
ance of a Gaussian is too small, on average:

E[
1

n

n∑
i=1

(xi − x̄)2;µ, σ2] =
n− 1

n
σ2 < σ2.

This phenomenon can be considered an instance of overfitting: the observed
spread around the observed mean x̄ is less than the unknown true spread σ2 around
the unknown true mean µ.

3 Conditional likelihood
An important extension of the idea of likelihood is conditional likelihood. Re-
member that the notation p(y|x) is an abbreviation for the conditional probability
p(Y = y|X = x) where Y and X are random variables. The conditional like-
lihood of θ given data x and y is L(θ; y|x) = p(y|x) = f(y|x; θ). Intuitively,
Y follows a probability distribution that is different for different x. Technically,
for each x there is a different function f(y|x; θ), but all these functions share the
same parameters θ. We assume that x itself is never unknown, so there is no need
to have a probabilistic model of it.

Given training data consisting of 〈xi, yi〉 pairs, the principle of maximum con-
ditional likelihood says to choose a parameter estimate θ̂ that maximizes the prod-
uct
∏

i f(yi|xi; θ). Note that we do not need to assume that the xi are independent

4

in order to justify the conditional likelihood being a product; we just need to as-
sume that the yi are independent when each is conditioned on its own xi. For
any specific value of x, θ̂ can then be used to compute probabilities for alternative
values y of Y . By assumption, we never want to predict values of x.

Suppose that Y is a binary (Bernoulli) outcome and that x is a real-valued
vector. We can assume that the probability that Y = 1 is a nonlinear function of a
linear function of x. Specifically, we assume the conditional model

p(Y = 1|x;α, β) = σ(α +
d∑
j=1

βjxj) =
1

1 + exp−[α +
∑d

j=1 βjxj]

where σ(z) = 1/(1 + e−z) is the nonlinear function. This model is called logistic
regression. We use j to index over the feature values x1 to xd of a single example
of dimensionality d, since we use i below to index over training examples 1 to
n. If necessary, the notation xij means the jth feature value of the ith example.
Be sure to understand the distinction between a feature and a value of a feature.
Essentially a feature is a random variable, while a value of a feature is a possible
outcome of the random variable. Features may also be called attributes, predictors,
or independent variables. The dependent random variable Y is sometimes called
a dependent variable.

The logistic regression model is easier to understand in the form

log
p

1− p
= α +

d∑
j=1

βjxj

where p is an abbreviation for p(Y = 1|x;α, β). The ratio p/(1 − p) is called
the odds of the event Y = 1 given X = x, and log[p/(1 − p)] is called the log
odds. Since probabilities range between 0 and 1, odds range between 0 and +∞
and log odds range unboundedly between −∞ and +∞. A linear expression of
the form α +

∑
j βjxj can also take unbounded values, so it is reasonable to use

a linear expression as a model for log odds, but not as a model for odds or for
probabilities. Essentially, logistic regression is the simplest reasonable model for
a random yes/no outcome whose probability depends linearly on predictors x1 to
xd.

For each feature j, exp(βjxj) is a multiplicative scaling factor on the odds
p/(1 − p). If the predictor xj is binary, then exp(βj) is the extra odds of having
the outcome Y = 1 rather than Y = 0 when xj = 1, compared to when xj = 0.
If the predictor xj is real-valued, then exp(βj) is the extra odds of having the

5

outcome Y = 1 when the value of xj increases by one unit. A major limitation
of the basic logistic regression model is that the probability p must either increase
monotonically, or decrease monotonically, as a function of each predictor xj . The
basic model does not allow the probability to depend in a U-shaped way on any
xj .

Given the training set {〈x1, y1〉, . . . , 〈xn, yn〉}, we learn a logistic regression
classifier by maximizing the log joint conditional likelihood. This is the sum of
the log conditional likelihood for each training example:

LCL =
n∑
i=1

logL(θ; yi|xi) =
n∑
i=1

log f(yi|xi; θ).

Given a single training example 〈xi, yi〉, the log conditional likelihood is log pi if
the true label yi = 1 and log(1− pi) if yi = 0, where pi = p(y = 1|xi; θ).

To simplify the following discussion, assume from now on that α = β0 and
x0 = 1 for every example x, so the parameter vector θ is β ∈ Rd+1. By group-
ing together the positive and negative training examples, we can write the total
conditional log likelihood as

LCL =
∑
i:yi=1

log pi +
∑
i:yi=0

log(1− pi).

The partial derivative of LCL with respect to parameter βj is∑
i:yi=1

∂

∂βj
log pi +

∑
i:yi=0

∂

∂βj
log(1− pi).

For an individual training example 〈x, y〉, if its label y = 1 the partial derivative is

∂

∂βj
log p =

1

p

∂

∂βj
p

while if y = 0 it is

∂

∂βj
log(1− p) =

1

1− p

(
− ∂

∂βj
p
)
.

Let e = exp[−
∑d

j=0 βjxj] so p = 1/(1 + e) and 1− p = (1 + e− 1)/(1 + e) =
e/(1 + e). With this notation we have

∂

∂βj
p = (−1)(1 + e)−2

∂

∂βj
e

6

= (−1)(1 + e)−2(e)
∂

∂βj
[−
∑
j

βjxj]

= (−1)(1 + e)−2(e)(−xj)

=
1

1 + e

e

1 + e
xj

= p(1− p)xj.

So
∂

∂βj
log p = (1− p)xj and

∂

∂βj
log(1− p) = −pxj.

For the entire training set the partial derivative of the log conditional likelihood
with respect to βj is

∂

∂βj
LCL =

∑
i:yi=1

(1− pi)xij +
∑
i:yi=0

−pixij =
∑
i

(yi − pi)xij

where xij is the value of the jth feature of the ith training example. Setting the
partial derivative to zero yields∑

i

yixij =
∑
i

pixij.

We have one equation of this type for each parameter βj . The equations can be
used to check the correctness of a trained model.

Informally, but not precisely, the expression
∑

i yixij is the average value over
the training set of the ith feature, where each training example is weighted 1 if its
true label is positive, and 0 otherwise. The expression

∑
i pixij is the same aver-

age, except that each example i is weighted according to its predicted probability
pi of being positive. When the logistic regression classifier is trained correctly,
then these two averages must be the same for every feature. The special case for
j = 0 gives

1

n

∑
i

yi =
1

n

∑
i

pi.

In words, the empirical base rate probability of being positive must equal the
average predicted probability of being positive.

7

4 Stochastic gradient training
There are several sophisticated ways of actually doing the maximization of the to-
tal conditional log likelihood, i.e. the conditional log likelihood summed over all
training examples 〈xi, yi〉; for details see [Minka, 2007, Komarek and Moore, 2005].
However, here we consider a method called stochastic gradient ascent. This
method changes the parameter values to increase the log likelihood based on one
example at a time. It is called stochastic because the derivative based on a ran-
domly chosen single example is a random approximation to the true derivative
based on all the training data.

As explained in the previous section, the partial derivative of the log condi-
tional likelihood with respect to βj is

∂

∂βj
LCL =

∑
i

(yi − pi)xij

where xij is the value of the jth feature of the ith training example. The gradient-
based update of the parameter βj is

βj := βj + λ
∂

∂βj
LCL

where λ is a step size. A major problem with this approach is the time complexity
of computing the partial derivatives. Evaluating

∑
i(yi − pi)xij for all j requires

O(nd) time where n is the number of training examples and d is their dimen-
sionality. Typically, after this evaluation, each βj can be changed by only a small
amount. The partial derivatives must then be evaluated again, at high computa-
tional cost again, before updating βj further.

The stochastic gradient idea is that we can get a random approximation of the
partial derivatives in much less thanO(nd) time, so the parameters can be updated
much more rapidly. In general, for each parameter βj we want to define a random
variable Zj such that

E[Zj] =
∂

∂βj
LCL.

For logistic regression, one such Zj is n(yi − pi)xij where i is chosen randomly,
with uniform probability, from the set {1, 2, . . . , n}. Based on this, the stochastic
gradient update of βj is

βj := βj + λZ = βj + λ(yi − pi)xij

8

where i is selected randomly and n has been dropped since it is a constant. As be-
fore, the learning rate λ is a multiplier that controls the magnitude of the changes
to the parameters.

Stochastic gradient ascent (or descent, for a minimization problem) is a method
that is often useful in machine learning. Experience suggests some heuristics for
making it work well in practice.

• The training examples are sorted in random order, and the parameters are
updated for each example sequentially. One complete update for every ex-
ample is called an epoch. Typically, a small constant number of epochs is
used, perhaps 3 to 100 epochs.

• The learning rate is chosen by trial and error. It can be kept constant across
all epochs, e.g. λ = 0.1 or λ = 1, or it can be decreased gradually as a
function of the epoch number.

• Because the learning rate is the same for every parameter, it is useful to
scale the features xj so that their magnitudes are similar for all j. Given
that the feature x0 has constant value 1, it is reasonable to normalize every
other feature to have mean zero and variance 1, for example.

Stochastic gradient ascent (or descent) has some properties that are very useful in
practice. First, suppose that xj = 0 for most features j of a training example x.
Then updating βj based on x can be skipped. This means that the time to do one
epoch is O(nfd) where n is the number of training examples, d is the number of
features, and f is the average number of nonzero feature values per example. If
an example x is the bag-of-words representation of document, then d is the size of
the vocabulary (often over 30,000) but fd is the average number of words actually
used in a document (often under 300).

Second, suppose that the number n of training examples is very large, as is the
case in many modern applications. Then, a stochastic gradient method may con-
verge to good parameter estimates in less than one epoch of training. In contrast,
a training method that computes the log likelihood of all data and uses this in the
same way regardless of n will be inefficient in how it uses the data.

For each example, a stochastic gradient method updates all parameters once.
The dual idea is to update one parameter at a time, based on all examples. This
method is called coordinate ascent (or descent). For feature j the update rule is

βj := βj + λ
∑
i

(yi − pi)xij.

9

The update for the whole parameter vector β̄ is

β̄ := β̄ + λ(ȳ − p̄)TX

where the matrix X is the entire training set and the column vector ȳ consists of
the 0/1 labels for every training example. Often, coordinate ascent converges too
slowly to be useful. However, it can be useful to do one update of β̄ after all
epochs of stochastic gradient ascent.

Regardless of the method used to train a model, it is important to remember
that optimizing the model perfectly on the training data usually does not lead to
the best possible performance on test examples. There are several reasons for this:

• The model with best possible performance may not belong to the family of
models under consideration. This is an instance of the principle “you cannot
learn it if you cannot represent it.”

• The training data may not be representative of the test data, i.e. the training
and test data may be samples from different populations.

• Fitting the training data as closely as possible may simply be overfitting.

• The objective function for training, namely log likelihood or conditional log
likelihood, may not be the desired objective from an application perspective;
for example, the desired objective may be classification accuracy.

5 Regularization
Consider learning a logistic regression classifier for categorizing documents. Sup-
pose that word number j appears only in documents whose labels are positive. The
partial derivative of the log conditional likelihood with respect to the parameter
for this word is

∂

∂βj
LCL =

∑
i

(yi − pi)xij.

This derivative will always be positive, as long as the predicted probability pi
is not perfectly one for all these documents. Therefore, following the gradient
will send βj to infinity. Then, every test document containing this word will be
predicted to be positive with certainty, regardless of all other words in the test
document. This over-confident generalization is an example of overfitting.

10

There is a standard method for solving this overfitting problem that is quite
simple, but quite successful. The solution is called regularization. The idea is to
impose a penalty on the magnitude of the parameter values. This penalty should
be minimized, in a trade-off with maximizing likelihood. Mathematically, the
optimization problem to be solved is

β̂ = argmaxβ LCL− µ||β||22

where ||β||22 =
∑d

j=1 β
2
j is the squared L2 norm of the parameter vector β of

length d. The constant µ quantifies the trade-off between maximizing likelihood
and making parameter values be close to zero.1

This type of regularization is called quadratic or Tikhonov regularization. A
major reason why it is popular is that it can be derived from several different points
of view. In particular, it arises as a consequence of assuming a Gaussian prior
on parameters. It also arises from theorems on minimizing generalization error,
i.e. error on independent test sets drawn from the same distribution as the training
set. And, it arises from robust classification: assuming that each training point lies
in an unknown location inside a sphere centered on its measured location.

Stochastic gradient following is easily extended to include regularization. We
simply include the penalty term when calculating the gradient for each example.
Consider

∂

∂βj
[log p(y|x; β)− µ

d∑
j=0

β2
j] = [

∂

∂βj
log p(y|x; β)]− µ2βj.

Remember that for logistic regression the partial derivative of the log conditional
likelihood for one example is

∂

∂βj
log p(y|x; β) = (y − p)xj

so the update rule with regularization is

βj := βj + λ[(y − p)xj − 2µβj]

1If β0 is the intercept of the model, then typically this parameter is not regularized. The intu-
itive reason is that every training example provides information about the intercept, that is about
the baseline probability of an example being positive, so there is enough information available to
avoid overfitting in the trained value of this parameter.

11

where λ is the learning rate. Update rules like the one above are often called
“weight decay” rules, since the weight βj is made smaller at each update unless
y − p has the same sign as xj .

Straightforward stochastic gradient ascent for training a regularized logistic
regression model loses the desirable sparsity property described above, because
the value of every parameter βj must be decayed for every training example. How
to overcome this computational inefficiency is described in [Carpenter, 2008].

Writing the regularized optimization problem as a minimization gives

β̂ = argminβ

n∑
i=1

− log p(yi|xi; β) + µ
d∑
j=0

β2
j .

The expression − log p(yi|xi; β) is called the “loss” for training example i. If the
predicted probability, using β, of the true label yi is close to 1, then the loss is
small. But if the predicted probability of yi is close to 0, then the loss is large.
Losses are always non-negative; we want to minimize them. We also want to
minimize the numerical magnitude of the trained parameters.

References
[Carpenter, 2008] Carpenter, B. (2008). Lazy sparse stochastic gradi-

ent descent for regularized multinomial logistic regression. Techni-
cal report, Alias-i. Available at http://lingpipe-blog.com/
lingpipe-white-papers/.

[Komarek and Moore, 2005] Komarek, P. and Moore, A. W. (2005). Making lo-
gistic regression a core data mining tool with TR-IRLS. In Proceedings of
the Fifth IEEE International Conference on Data Mining (ICDM’05), pages
685–688.

[Minka, 2007] Minka, T. P. (2007). A comparison of numerical optimizers
for logistic regression. First version 2001. Unpublished paper available at
http://research.microsoft.com/∼minka.

CSE 250B Quiz 3, January 21, 2010

Write your name:
Let fθ(x; θ) where x ∈ R be the probability density function (pdf) of the uniform
distribution over the range 0 to θ. Precisely, fθ(x; θ) = 1/θ if 0 ≤ x ≤ θ while
fθ(x; θ) = 0 otherwise.

Let x1 to xn be an independent identically distributed (iid) sample from fθ for
some unknown true parameter value θ > 0. The maximum likelihood estimator
(MLE) of θ is θ̂ = maxi xi.

[3 points] In one or two sentences, explain intuitively the reason why this is the
MLE. You do not need to use any equations.

Note: The MLE above is an example of overfitting, since the true value of θ is
almost certainly larger than the MLE.

CSE 250B Quiz 4, January 27, 2011

Write your name:
Assume that winning or losing a basketball game is similar to flipping a biased
coin. Suppose that San Diego State University (SDSU) has won all six games that
it has played.

(a) The maximum likelihood estimate (MLE) of the probability that SDSU will
win its next game is 1.0. Explain why this is the MLE. (Using equations is not
required.)

(b) This MLE can be viewed as overfitting. Explain why.

CSE 250B Quiz 4, January 28, 2010
The objective function to be minimized when training an L2-regularized linear
regression model is

E =
n∑
i=1

(f(xi;w)− yi)2 + µ

d∑
j=0

w2
j

where the model is

f(xi;w) =
d∑
j=0

wjxij.

All notation above is the same as in the class lecture notes.

[3 points] Work out the partial derivative of the objective function with respect to
weight wj .

Answer. Let fi be an abbreviation for f(xi;w) and let di be an abbreviation for
∂
∂wj

fi. Note that di = xij . The expanded objective function is

E = [
n∑
i=1

f 2
i − 2fiyi + y2i] + µ

d∑
j=0

w2
j .

The partial derivative is

∂

∂wj
E = [

n∑
i=1

[2fidi − 2yidi + 0] + 2µwj

which is
∂

∂wj
E = 2[µwj +

n∑
i=1

(fi − yi)xij].

Additional note. Because the goal is to minimize E, we do gradient descent, not
ascent, with the update rule

wj := wj − λ
∂

∂wj
E.

The update rule says that if the average over all training examples i of (fi− yi)xij
is positive, then wj must be decreased. Assume that xij is non-negative; this
update rule is reasonable because then fi is too big on average, and decreasing wj
will make fi decrease. The update rule also says that, because of regularization,
wj must always be decreased even more, by 2λµ times its current value.

CSE 250B Quiz, February 3, 2011

Your name:
Suppose you are doing stochastic gradient descent to minimize the following error
function on a single training example:

E = e(f(x;w)− y))

Work out the stochastic gradient update rule as specifically as possible, when
the error function is absolute error: e(z) = |z|.

Hint: Use the notation e′(z) for the derivative of e(z).
Answer: For each component wj of the parameter vector w, the update rule is

wj := wj − α
∂

∂wj
E

where α is the learning rate. We can work out

∂

∂wj
E = e′(f(x;w)− y)

∂

∂wj
f

If e(z) = |z| then e′(z) = sign(z) so

wj := wj − α sign(f(x;w)− y)
∂

∂wj
f.

Intuitively, if f(x;w) is too large, and increasing wj makes f increase, then wj
should be decreased.

