WaVe: a verifiably secure WebAssembly sandboxing runtime

Evan Johnson! Evan Laufert

Shravan Narayan®

tUC San Diego tStanford

Abstract—The promise of software sandboxing is flexible, fast
and portable isolation; capturing the benefits of hardware-
based memory protection without requiring operating system
involvement. This promise is reified in WebAssembly (Wasm), a
popular portable bytecode whose compilers automatically insert
runtime checks to ensure that data and control flow are con-
strained to a single memory segment. Indeed, modern compiled
Wasm implementations have advanced to the point where these
checks can themselves be verified, removing the compiler from
the trusted computing base. However, the resulting integrity
properties are only valid for code executing strictly inside
the Wasm sandbox. Any interactions with the runtime system,
which manages sandboxes and exposes the WebAssembly System
Interface (WASI) used to access operating system resources,
operate outside this contract. The resulting conundrum is how to
maintain Wasm’s strong isolation properties while still allowing
such programs to interact with the outside world (i.e., with the
file system, the network, etc.). Our paper presents a solution to
this problem, via WaVe, a verified secure runtime system that
implements WASI. We mechanically verify that interactions
with WaVe (including OS side effects) not only maintain Wasm’s
memory safety guarantees, but also maintain access isolation for
the host OS’s storage and network resources. Finally, in spite of
completely removing the runtime from the trusted computing
base, we show that WaVe offers performance competitive with
existing industrial (yet unsafe) Wasm runtimes.

1. Introduction

WebAssembly (Wasm) is a portable bytecode designed
to run everywhere at near-native speeds [[1]], [2]. Unlike most
other bytecodes, Wasm was designed with safety in mind
from the start: Wasm code runs in a sandboxed environment,
because the compiler (or interpreter) inserts runtime checks
that restrict the code to its own region of memory. As a
result, Wasm has become popular beyond its original home,
the Web; it has been used to isolate code on edge clouds [3l],
[4], embedded devices [3]], blockchains [6], browsers [7]],
[8], and network proxies [9].

At the surface, Wasm’s safety guarantees are clear: a
Wasm program is isolated to its own sandboxed region of
memory as long as the Wasm compiler (or interpreter) inserts
safety checks in all the right places. Getting safety checks
right, then, has become a focus of serious effort. Researchers
have fuzzed Wasm compilers [10], [[L1], verified the safety of
Wasm binaries [[12], and built verified Wasm compilers [13]
and interpreters [14]. Unfortunately, enforcing strong memory
isolation alone is not enough.

Stefan Savage'
*UIuC

Zijie Zhao* Dan Gohman®
Deian Stefanf Fraser Brown*
®Fastly Labs *CMU

In practice, every Wasm program relies on a runtime
system—and today, that runtime system is trusted. It’s
trusted to correctly set up and tear down Wasm sandboxes,
which involves low-level memory management code that’s
error-prone even in memory-safe languages like Rust [15]],
[[L6]. More significantly, the runtime is trusted to correctly
implement the WebAssembly System Interface (WASI) [17]],
the interface Wasm programs use to read files, make network
requests, and otherwise access operating system resources.
Implementing WASI is also extremely tricky.

For one, WASI was based on (a subset of) POSIX [18]
and so inherits many of POSIX’s flaws; as one example,
WASI, like POSIX, is written in informal English. This
means that WASI runtimes must implement an interface from
informal semantics, and for different OS platforms—each
with slightly different, similarly informal specifications [19].

Another challenge in implementing WASI is correctly
enforcing security. First, the runtime must enforce Wasm’s
memory isolation end-to-end, i.e., ensure that every hostcall
into the runtime (and, in turn, every syscall into the underly-
ing OS) on behalf of one sandbox does not read or clobber
memory that belongs to another sandbox or the runtime itself.
Second, the runtime must enforce WASI’s resource isolation
policies, which restrict the sandbox’s access to resources like
the file system and network. To do this, developers must
essentially replicate parts of the kernel’s logic (e.g., how
paths are resolved)—which they do by wrapping system calls
with low-level glue code and security checks. In practice,
they often get it wrong [20], [21], [22]], [23]], [24], [25]
and, unfortunately, this is not surprising: there’s a history of
bugs in similar sandbox runtime systems, and a history of
attackers exploiting those bugs [26l], [27], [28].

In response to this problem, we built WaVe, a new Wasm
runtime system that is verifiably secure, fast, and WASI-
compliant across POSIX platforms. At its core, WaVe uses
automated verification to ensure that the runtime code, even
when calling into the underlying OS, preserves Wasm’s
memory isolation guarantees and correctly restricts each
sandbox’s access to OS resources like the filesystem and
network. Two insights make WaVe work in practice.

First, we believe that security policies (e.g., memory
isolation, filesystem isolation, and network isolation) should
be explicit and decoupled from enforcement. This not only
makes it clear (and easy to audit) which policies WaVe
enforces but also ensures that WaVe enforces a uniform
policy across all WASI hostcalls for all target operating
systems. This also makes it easy to safely extend the runtime
with new functionality. For example, beyond the core set

of WASI hostcalls, WaVe exposes the networking hostcalls
described in the WASI-sockets proposal [29] and enforces
the proposal’s described safety policy.

Our second insight is to only model OS semantics in
as much detail as necessary to capture any system call’s
effects on security. For example, WaVe’s model of the
POSIX read(fd,buf,count) syscall does not model kernel
data structures (e.g., file descriptor tables, inodes, or buffer
caches); instead it only models its impact on memory
isolation—read may write count bytes starting at buf—
and its impact on filesystem isolation—read may read from
file (descriptor) fd. This makes it possible to “pay as you go”
(e.g., you don’t need to specify details about file descriptors
if you only care about memory isolation). It also makes
it possible for us to reuse specifications across operating
systems. For example, though POSIX semantics actually
vary across operating systems [19], our abstract semantics
make it possible for WaVe to largely share specifications
across Linux and MacOS.

We implement WaVe (with support for WASI on Linux
and MacOS) in roughly 7.3K lines of Rust. Most of this
code is untrusted and verified using Prusti [30]]; the code that
is trusted (beyond the verification tool itself) is specification
code—the Wasm/WASI security policy (43 lines of code)
and OS specifications (567 lines). While this code is short
enough to be auditable, we use host- and system-call fuzzing
to evaluate the correctness of our specification (and thus the
security of WaVe); our fuzzing effort didn’t reveal any bugs.

We also evaluate WaVe on dimensions other than security:
functional correctness, portability, and performance. First,
we differentially fuzz WaVe against four popular runtimes,
including the Wasmtime [31]] used in production at Fastly;
we find that our implementation of WASI is consistent with
these runtimes on both Linux and MacOS. And, second,
we measure the performance overhead of WaVe relative to
Wasmtime on micro-benchmarks (e.g., LMbench [32]) and
macro-benchmarks (e.g., SQLite [33] and SPEC CPU [34]).
We find that WaVe’s performance is comparable to—and
often better than—Wasmtime’s, while also providing stronger
(verifiable) security guarantees.

Open source All source code, including WaVe and our
benchmarks, are available at wave.programming.systems.

2. Overview

In this section, we give background on WASI runtimes,
and describe how bugs in system interfaces can break
language-level sandboxing guarantees. Then, we introduce
WaVe and describe how it prevents isolation-breaking bugs
by construction.

2.1. The WASI runtime

WAST’s goal is to expose a system interface to Wasm
code that is flexible enough to implement standard libraries
like libc and portable enough to run across different operating
systems. WASI accomplishes this by providing low level
OS-agnostic APIs (known as hostcalls) to talk to the under-
lying operating system—defining, for example, hostcalls for

accessing the filesystem and network [35]. These hostcalls
are exposed to potentially malicious code running inside the
Wasm sandbox, and WASI runtimes enforce a common safety
policy described in the WASI spec to limit the resources
exposed to sandboxed code.

WASPD’s safety guarantees WASI implementations are ex-
pected to make three guarantees about how the sandbox
interacts with the OS: they must guarantee memory isolation,
file system isolation, and network isolation (Figure [I)).

Memory isolation ensures that all memory reads and
writes performed on behalf of the sandbox operate on mem-
ory that belongs to the sandbox (i.e., lies within the sandbox’s
linear memory). File system isolation ensures that each file
the sandbox accesses is within the sandbox’s assigned root
directory. For example, a sandbox assigned /foo/bar as its
root directory would be able to access /foo/bar/data.txt
and /foo/bar/img.png but not /foo/secret.txt. Network
isolation ensures that each socket created by the sandbox
belongs to known and explicitly allowed network protocols
(e.g., the sandbox only uses TCP and UDP). It also ensures
that these sockets only connect to addresses specified by the
host application in an allow-list that cannot be modified by
the sandbox.

It is the responsibility of the WASI runtime to enforce
these safety guarantees for all hostcalls exposed to the
sandbox.

Hostcalls enforce WASI’s safety guarantees Hostcalls are
responsible for checking the safety of hostcall parameters
and translating them from the sandbox to the OS. They
must perform this check-and-translate process such that
any interactions with the underlying operating system do
not violate the runtime’s isolation invariants. Consider, for
example, the path_remove_directory hostcall in WASI:
fn path_remove_directory(sbox: &VmCtx,

dirfd: i32, path: SboxPtr, path_len: u32) {...}
This WASI hostcall deletes the directory at path, relative to
file descriptor dirfd (i.e., if dirfd referred to a directory
at /foo/bar and path is ./baz, this call should remove
/foo/bar/baz). To implement path_remove_directory
correctly, the runtime must:

o Check that the buffer specified by path and path_len
is entirely within the sandbox’s allocated memory.

o Check that path is within the sandbox’s root directory—
making sure to account for symbolic links.

o Translate path from the sandbox’s string representation
to the OS’s representation and convert it to a path
relative to the sandbox’s root directory.

« Invoke the OS with the correct set of flags (on POSIX,
path_remove_directory(sbox, dirfd, path, path_len)
calls unlinkat (host_dirfd, host_path, AT_REMOVEDIR)).

o Translate the system call return error code from the
OS’s representation to the WASI representation.

And, at each step, the runtime needs to account for portability
across all POSIX systems.

Unsurprisingly, each steps is also error prone: memory
bounds checks may contain integer overflows and off-by-one
errors, path translation may mishandle OS semantics (e.g.,

https://wave.programming.systems

L Y S T

Property Guarantee

Memory isolation

All memory accesses performed on behalf of the sandbox lie within the its linear memory.

Filesystem isolation

Each file the sandbox accesses is within the its assigned root directory.

Network isolation

Each socket the sandbox creates belongs to a known and explicitly allowed protocol.
These sockets only connect to addresses specified in an allow-list that the sandbox cannot modify.

Figure 1: Safety properties WaVe enforces and their security guarantees.

bool SharedMemory::Invoke(...) {
if (NULL == shared_memory->map_addr_ ||
offset + len > shared_memory->size_) {
NULL_TO_NPVARIANT (xresult);
return false;
} else // copy len bytes into shared memory

}

Figure 2: Memory safety bug in the NaCl runtime.

not taking symbolic links into account), and system call
invocation may misuse the POSIX interface by using the
wrong combination of flags to uphold the runtime’s safety
policy. And since existing runtimes rely on ad-hoc policy
enforcement, the developer is responsible for placing all the
right checks in all the right places. Understandably, they do
not always do so.

2.2. Unsafety in sandboxing runtimes

Unsafety in the runtime can take one of two forms: the
runtime can inadvertently violate the sandbox’s memory
isolation guarantees, or the runtime can incorrectly limit the
sandbox’s access to OS resources like the file system or
network. Memory safety bugs and resource isolation bugs
can both lead to sandbox escapes.

Violating memory isolation in the runtime To understand
the implications of memory isolation bugs in system inter-
faces, consider the C++ snippet from the NaCl toolkit in
Figure [2| This code implements an interface for accessing
shared memory across the sandbox boundary. The function
takes an offset parameter—the offset within the shared
memory—and a len parameter—the number of bytes to
read (or write). On lines 3 and 4, the function checks that
the access is within the memory region and, if so, it copies
len bytes into the shared memory (on line 7). Though these
checks look reasonable at first glance, they are incorrect:
a sufficiently large sum of offset and len may overflow
to a value that is smaller than shared_memory->size. This
allows an attacker to access memory beyond the shared
memory bounds, including memory that belongs to the
runtime or to other sandboxes [36].

We chose an example from NaCl to stress that this
problem is also present in non-Wasm SFI systems. Similar
errors occur in industrial Wasm runtimes as well [37]]. Indeed,
we found similar integer overflow bugs in both the WAMR
and Wasmer runtimes [38]], [25], [39], [40].

While memory safety errors are primarily a problem in
runtimes written in C/C++ (as many runtimes are [5], [41],
[42]), they can also occur in memory safe languages when

I I T R S

11

fn path_remove_directory(sbox: &WasiSbox,
dirfd: __wasi_fd_t, path: WasmPtr, path_len: u32) {
// Copy path from the sandbox to the runtime
let path_str = sbox.get_sbox_str(path, path_len);

// Check and translate the path
let host_path = validate_host_path(dirfd, path_str);

// Invoke the 0S to remove the directory at path
state.fs_remove_dir(path_str);

3

Figure 3: Filesystem isolation bug in the Wasmer runtime (simpli-
fied).

the runtime interacts with unsafe interfaces like the system
call interface. This is because system calls are not aware
of application-level safety policies (like subprocess isolation
schemes) and will happily read or write to any memory
location, regardless of whether the application considers it
safe or not. System calls are also not aware of what OS
resources the sandbox is permitted to access, and bugs in the
runtime’s resource isolation enforcement can lead to sandbox
escapes.

Violating resource isolation in the runtime WASI runtimes
are not just expected to prevent memory isolation bugs, they
are also required to prevent resource isolation bugs. For
example, WASI runtimes must enforce that sandboxes only
access files within the sandbox’s assigned root directory. And
even when runtimes implement safety checks correctly, they
may suffer from inconsistent policy enforcement since they
rely on ad-hoc application of these checks.

Consider the path_remove_directory hostcall [43] as
implemented in the Wasmer [44] runtime (shown in Figure [3).
On line 4, the hostcall reads a path from the sandbox. On
line 7, the hostcall validates the path by checking that it lies
within the sandbox’s root directory, and rewrites the path
to its location on the host operating system, relative to the
sandbox’s root directory. However, on line 10, the hostcall
invokes the OS to delete the unchecked path provided by
the sandbox. This lets the sandbox delete files outside its
root directory, breaking the runtime’s promise of filesystem
isolation.

This path validation and translation procedure is correctly
applied in eight other hostcalls. But here it’s not. This
oversight is a symptom of the ad-hoc policy enforcement that
current sandboxing runtimes rely on—it is the developer’s
responsibility to put all the right checks in all the right places.
Instead of placing the burden of correctness on the developer,
we can use an automatic verifier to check that the runtime’s
isolation policy holds true—and remove this runtime code

1 fn wasi_path_remove_directory(ctx: &mut VmCtx,
> dirfd: u32, path: u32, path_len: u32) -> Result<()> {
3 if !(path+path_len < ctx.memlen && path <=
— path+path_len) {
return Err(EFault);
}

let mut pathname: Vec<u8> = Vec::new();
pathname.reserve_exact(path_len as usize);
// VERIFIER CHECKS:
10 // (1): pathname.len() == path_len as usize
1 // (2): (ctx.memtpath) + (ctx.memt+path_len) <
— (ctx.memtctx.memlen) & (path <= path+path_len)
2 memcpy(pathname, ctx.mem + path, path_len);
13 ...
14 let os_dirfd = ctx.translate_fd(dirfd)?;
15 let host_path = ctx.translate_path(pathname, false,
- fd)?;
16 // VERIFIER KNOWS:
17 // ctx.is_in_sbox_fs(host_path)
18 ...
19 // VERIFIER CHECKS:
20 // ctx.is_in_sbox_fs(host_path)
21 let res = unlinkat(ctx, os_dirfd, host_path,
— AT_REMOVEDIR);
2 return translate_errno(res);

23}

Figure 4: WaVe’s implementation of the path_remove_directory
hostcall. For clarity, the code is annotated with the conditions that
WaVe checks to prevent bugs—these annotations do not need to
be written by the developer.

© ® 9 o u R

from the TCB entirely. WaVe runtime does precisely this.

2.3. Securing the runtime with WaVe
WaVe is a verifiably secure WASI runtime. WaVe

addresses the problems current WASM runtimes face—

enforcing policies ad hoc, mishandling complex OS seman-
tics, and misusing the POSIX interface—by maintaining
WAST’s safety guarantees with the help of an automatic
verifier. Instead of relying on implicit developer knowledge
about POSIX and OS semantics, WaVe uses an explicit
OS specification that describes the effects that each syscall
has on userspace memory and the OS. Instead of relying
on developers to put all the right safety checks in all the
right places, WaVe uses a single centralized, auditable, and
testable (§6) safety policy that it enforces with an automatic
verifier. In total, WaVe enforces memory isolation, file system
isolation, and network isolation (described in the safety
policy) by statically proving that system calls are used safely.

Consider the two bugs from Section 2.2}—the memory
isolation bug in NaCl caused by an integer overflow in a
bounds check, and the filesystem isolation bug in Wasmer
caused by missing checks. WaVe can catch both these types
of bugs by statically checking preconditions on potentially
unsafe runtime operations (i.e, using memcpy to copy code
to/from the sandbox, and allowing the sandbox to access the
file system).

To understand how WaVe prevents these classes of
bugs, consider WaVe’s implementation of the WASI

path_remove_directory hostcall, shown in Figure 4} The
code is annotated with the conditions that WaVe checks to
prevent such bugs; note that these annotations are added
purely for clarity, and the conditions WaVe checks are
actually described just once in the safety policy file.

On lines 3-5, the hostcall performs a bounds check
on the path and path_len parameters to ensure that the
path buffer is within the sandbox’s memory. It checks that
path+path_len is less than the upper bound of sandbox
memory (a lower bound is not necessary since path is an
unsigned offset into the sandbox’s linear memory), and that
path+path_len does not overflow. Later, on line 12, the
hostcall goes to memcpy the data out of the sandbox. At the
memcpy, the WaVe verifier statically checks that the buffer
is within sandbox memory, does not overflow, and fits into
the destination buffer; see the VERIFIER CHECKS comment
on line 4. Had the runtime code on lines 3—5 not checked
for integer overflow, the verifier would register an error.

On line 15, the sandbox translates pathname from the
sandbox’s string representation to the OS’s representation,
and checks that pathname is within the sandbox’s root
directory. After this call, the verifier knows that host_path
is within the sandbox’s root directory (line 22); that’s because
ctx.is_in_sbox_fs(host_path) is the developer-written
postcondition of the translate_path method. All the devel-
oper must do is write the postcondition; the verifier automat-
ically checks that the implementation of translate_path
enforces that postcondition.

On line 21 the hostcall invokes the OS to remove the
directory. Here, the verifier recognizes that unlinkat is
reading and writing to OS state (per the OS specification),
so it statically checks that host_path is within the sandbox’s
root directory. It is! But if the code were buggy—and the
verifier could not guarantee that host_path is within the
sandbox’s root directory, the verifier would throw an error
and prevent the buggy code from even compiling.

3. Design

In this section, we describe the design of WaVe, a
verifiably secure WASI-compliant Wasm runtime. First, we
describe our threat model for malicious sandbox code attempt-
ing to compromise the runtime (including other sandboxes).
Then, we describe WaVe’s design and implementation, and
give an overview of how it uses an automatic verifier to
prove safety against sandbox escapes. Finally, we explain
in more detail how WaVe models unsafe behavior in the
sandboxing runtime using effects: the potentially unsafe
actions performed on behalf of the sandbox that can inspect
or modify runtime and OS state.

3.1. Threat model

Our assumptions reflect the threat model of industrial
Wasm runtimes. We assume that sandboxed code is malicious
and will try to escape the sandbox by making a sequence
of arbitrary hostcalls with arbitrary arguments. We don’t
consider sandbox escapes caused by data corruption or

wasi_read(fd,,...)

Wasm

WaVe
v read(fd,,...)
check
X translate 0s

—

¥
OS Spec f———)

Verifier

Safety Policy |~———)

Ountrusted O trusted Overified

I--Safe / Unsafe

Figure 5: WaVe mediates the sandbox’s requests for OS resources
(hostcalls) via WASI. Given an OS specification and a safety policy,
WaVe statically verifies that it only executes safe hostcalls.

control-flow-hijacking within the sandbox; several tools [[12]],
[14], [13] already eliminate this attack vector.

We assume that each sandbox is allocated—and has exclu-
sive access to—a root directory that contains all the data the
sandbox is permitted to access, and an allow-list describing
the network addresses the sandbox is permitted to access. We
also assume that the sandbox’s root directory only contains
regular files, symbolic links, and trusted device files (i.e., no
files with special semantics like /proc/self/mem). Finally,
we assume only a single thread per sandbox, and assume that
all functions exposed by WASI are synchronous; this is in
line with the Wasm and WASI standards, respectively. Host
applications may be running multiple sandboxes concurrently,
though, so each sandbox has its own unique runtime state (in
WaVe as in industrial runtimes).

3.2. WaVE’s design

WaVe is a Wasm runtime that implements the WebAssem-
bly System Interface: it exposes the 45 WASI-specified
hostcalls to the sandbox, which the sandbox invokes when
it requires access to OS resources like the file system or
network. WaVe also manages the sandbox-specific state
used to execute the hostcalls, such as the list of open file
descriptors for a sandbox.

When a sandbox makes a hostcall, WaVe (like other
Wasm runtimes) dynamically checks that the hostcall’s
arguments are safe (e.g., all pointers are within sandbox
memory); then, WaVe translates these arguments to the host
OS’s representation, invokes the OS, and finally translates
the return value back to the sandbox representation. This
process (Figure [5) is standard for WASI implementations.
What isn’t standard is that WaVe statically verifies that
this check-and-translate process correctly enforces the
runtime’s safety policy.

Conceptually, a hostcall is safe if it preserves the proper-
ties that the runtime is attempting to verify; in WaVe, those
properties are currently memory safety, filesystem isolation,
and network isolation. Mechanically, a hostcall is safe if
it sufficiently constrains all potentially unsafe operations
defined in an OS specification such that the guarantees in
the safety policy hold. We describe our design goals, OS
specification, and safety policy in more detail next.

Design goals Wasm runtime designers face two challenges
when trying to safely implement WASI: (1) the syscalls that
the runtime interacts with are informally specified, and specs
and syscalls vary across different architectures; (2) the code

to enforce Wasm’s safety guarantees is sprinkled throughout
the runtime—and forgetting to, for example, check if pointers
are within the sandbox at a single memcpy can break safety.
We thus designed WaVe with three goals in mind:

1) Provide two centralized, explicit specifications, one
of the safety policy and one of syscall behavior. These
specifications make it clear both what the runtime must
enforce and what each individual syscall does.

2) Pay only for what we prove, since exhaustively speci-
fying syscall behavior is difficult and time-consuming.
In contrast, in WaVe, developers only specify the syscall
behavior that’s relevant to their safety policy.

3) Decouple the OS specification from the safety policy,
and the policy specification from its enforcement. In-
stead of specifying correctness at each syscall—like the
runtime enforces correctness at each syscall—the WaVe
safety policy exists in only one place. The OS spec and
the safety policy are also independent, which makes it
easy to test the spec (§6) and re-use both the spec and
the policy across different runtimes.

We describe OS specification and safety policy next.

The OS specification The OS specification file contains a
specification for each system call WaVe uses to implement
the 45 WASI hostcalls, e.g., for close(fd), it specifies
that the runtime accesses a file descriptor on the host file
system (§3.3). Specifications are over effects, potentially
unsafe actions (e.g., memory writes) that the runtime tracks
in an effects trace (see Section [3.3). WaVe supports both
Linux and MacOS, so when the syscall interface differs
between the two OSes, WaVe uses two separate specs—
one for Linux and one for MacOS. In this way, the OS
specification is easy to extend to new operating systems: the
developer only needs to add specifications for the system
calls that differ from those of existing, supported OSes.

The safety policy WaVe’s safety policy is centralized into a
single auditable policy file. The policy is expressed in terms
of a set of constraints on the trace of effects (§3.3) written
in plain Rust. At verification-time, WaVe attempts to prove
that every effect that hostcalls could cause adheres to this
safety policy; if not, WaVe throws an error.

WaVe’s safety policy follows the “pay as you prove”
model: proving properties like file system isolation and
network isolation are independent, so developers only need
to prove the properties they use (although proving memory
safety is prerequisite to proving any other property). The
policy spec is also easy to extend: all the developer needs to
do is add an extra constraint in this policy file; the automatic
verifier will ensure that this policy holds everywhere in the
runtime, or reject it if the policy doesn’t hold.

Runtime function contracts Though WaVe attempts to
automatically verify the safety policy, it sometimes asks the
developer to annotate runtime functions with preconditions
and postconditions (written in plain Rust). The developer is
only responsible for declaring a pre/postcondition contract,
not proving it: the verifier analyzes the runtime code to
ensure that each contract is valid. If an implementation does
not uphold its contract—or if a contract’s postcondition isn’t

(1) Trace before: | effectg

fn wasi_path_remove directory(ctx...
dirfd: u32, path: u32, path_len: u32)
-> Result<()> {
/..
(2) [1et res = unlinkat(host_path, ...);]—
/7
return translate errno(res);

}

(3) Trace after: [effecto | effectlleffectnl PathAccessAt(path, ...)]
—

[Safety Policy]—»[

Verifier]

Safe / Unsafe

Figure 6: At verification time, WaVe checks that if a safety policy
holds before each hostcall, the safety policy holds after. WaVe does
this by proving that: given an safe effects trace at hostcall entry
(1), when the effects the hostcall causes (according to the OS spec)
are appended to the trace (2), that the trace is still safe at hostcall
exit (3).

strong enough to prove the safety policy—the verifier alerts
the developer to try again. In practice, the annotation burden
is small: WaVe has ~ 300 lines of these contracts for its
4646 lines of verified code, and they are largely repetitive
(e.g., many of them simply record that a buffer being passed
around is within sandbox memory).

3.3. Modeling unsafe behavior with effects

In this section, we describe how WaVe models unsafety
in the runtime in order to statically verify that all hostcalls re-
spect safety policies; Section 4| details the proof of safety for
memory safety, filesystem isolation, and network isolation.

WaVe models potentially unsafe actions as (extensible)
effects; for example, a memory write could unsafely overwrite
safety-critical data in the runtime (e.g., a function pointer),
so WaVe tracks writes as effects. WaVe records a list of every
effect that could occur during the execution of each hostcall
in the effects trace. Specifications for syscalls and unsafe
runtime functions like memcpy describe how these functions
alter the effects trace. For each hostcall, WaVe guarantees
that if the trace was safe upon entering the hostcall, it is
safe after the hostcall. Figure [6] shows how WaVe proves
this guarantee: when the verifier inspects a statement that
is defined in the OS spec, it appends the effect described
by the spec onto the trace. For example, when the verifier
inspects the path_remove_directory function and reaches
the unlinkat system call, it appends a PathAccessAt effect
that describes every possible path that the system call could
access. At the function exit, the verifier proves that for all
possible values of path, the trace is still safe, and if it isn’t,
the verifier throws an error.

Next, we describe WaVe’s effects, effects trace, and effect
specifications in more detail; we also describe how to model
new effects in order to verify more properties. Finally, we
sketch how WaVe uses the trace to verify safety properties.

Effects WaVe proves safety, with respect to a given policy, by
verifying that the runtime sufficiently constrains the effects
that the sandbox can have. WaVe models the effects necessary
to verify its three safety policies. For example, WaVe enforces

enum Effect {
MemRead(addr, len),
MemWrite(addr, len),
FdAccess(fd),
PathAccessAt(dirfd, path, follows_symlinks),
SockCreation(domain, socktype, protocol),
Shutdown(fd),
NetConnect(ip, port),
}

Figure 7: The effects WaVe uses to model potentially dangerous
behaviors.

a property called filesystem isolation (§4.2) wherein the
runtime constrains a sandbox to a single directory which
acts as the sandbox’s root directory, the policy used by other
WASI implementations [45]], [3], [31]. To verify that the
runtime enforces this policy, WaVe tracks each function
in the runtime that can access the filesystem paths via the
PathAccessAt effect. WaVe then verifies filesystem isolation
by proving that the runtime cannot cause PathAccessAt
effects outside the sandbox’s root directory. Similarly, WaVe
verifies memory safety (§4.1I)) and network isolation (§4.3)
by placing constraints on other effects.

Figure [/| shows the seven different effects that WaVe
currently models in order to verify its three safety prop-
erties. Some effects correspond directly to system calls
(e.g., SockCreation corresponds to the socket system call),
whereas others refer to a type of OS resource being accessed
(PathAccessAt for an unopened file, and FdAccess for
an already opened file). Some are even more general: the
MemRead and MemWrite effects are used both to model kernel
memory accesses to userspace buffers (e.g., the read system
call) and potentially unsafe unsafe userspace accesses to
memory via functions like memcpy, which is used to quickly
copy data into and out of the sandbox.

The effects trace WaVe records a list of every effect that
could occur during the execution of each hostcall in the
effects trace. By applying a safety policy to the this trace,
WaVe can reason about all possible sequences of effects that
can occur during execution. The trace is a ghost variable: it
exists only at verification-time. Thus, the trace can only be
referenced by other verification-time constructs (e.g., function
contracts), not by actual code. Finally, the trace is append-
only: the history of effects that have occurred cannot be
rewritten. This makes it easier to reason about traces at the
cost of expressiveness (e.g., we cannot prove that every file a
sandbox opens gets closed, §9); in practice, the append-only
trace is sufficient for modeling safety properties enforced by
existing runtimes.

At verification-time, WaVe inspects and manipulates the
trace using three operations:

fn len(&self) -> usize;

fn lookup(&self, idx: usize) -> Effect;

fn push(&mut self, effect: Effect) -> ();
WaVe uses len to inspect the length of the trace to, for exam-
ple, apply the constraint that after WaVe appends an effect to
the trace, old_trace.len() + 1 == trace.len(). WaVe
uses lookup to inspect the effect at a provided index into
the array (for example, trace.lookup(trace.len() - 1)

returns the most recent effect). WaVe uses push to append an
effect to the trace. WaVe pushes effects to the trace inside the
specifications for system calls and unsafe runtime functions.

Specifying effects Specifications for syscalls (and unsafe
runtime functions) in WaVe describe how functions alter the
trace. They do so using a two-state predicate which relates
the structure of the trace upon entering an unsafe function
to the trace upon exiting the function. For example, the
specification for the openat syscall is:
#[ensures(effects! (trace,effect!(

PathAccessAt, dirfd, path,
N1
fn openat(dirfd: usize, path: [u8; 40967,

flags: i32) -> isize;

This ensures annotation is a postcondition on openat that
specifies that the syscall accesses path relative to directory
dirfd; therefore, it extends the trace by the PathAccessAt
effect, while leaving the rest of the trace unmodified. Each
function that invokes this syscall is now responsible for
proving that, across all possible executions, the syscall only
emits effects that satisfy the runtime’s security policy. If,
on any possible execution, the runtime does not correctly
constrain all effects, the verifier produces an error.
Extending WaVe’s specifications WaVe proves the safety
of the runtime by constraining the kinds of effects that can
occur—so WaVe is restricted to proving safety over the
effects that it explicitly tracks. Those effects (Figure [7/) may
not be sufficient to prove all safety policies that a runtime
may require in the future. For example, if developers are
concerned about timing attacks and want to restrict the ways
in which a sandbox can access clocks on the host system,
the effects in Figure [/] are not sufficient. Since we can’t
predict every policy that developers may want to prove—
and therefore, what effects they need to track—we designed
WaVe’s effects system to be easily extensible.

To extend WaVe with a new effect and a new policy

governing how that effect should be constrained, there are
three things a developer must do. First, they must add the
effect to the enum shown in Figure /| Then, they must
update the specifications of any syscalls or runtime functions
that emit this effect (e.g., for the clock example, specify
that clock_gettime retrieves the current time). Finally, they
need to add checks—guided by the verifier—to satisfy the
new safety policy.
The WaVe-hostcall safety contract WaVe ensures that for
every hostcall exposed to the sandbox, if the trace was safe
when entering the hostcall (with respect to the specified safety
policy) then it is safe after the hostcall. Furthermore, WaVe
is robustly safe [46]: its safety policy holds regardless of
what arguments the sandbox invokes the hostcall with. Since
WaVe proves that the trace is safe before and after every
hostcall, and the trace is empty (and therefore vacuously safe)
on startup, WaVe proves that for any sequence of hostcalls,
with any arguments, the safety policies always holds.

4. Verification

In this section, we show how WaVe verifies its three
safety properties—memory safety, filesystem isolation, and

network isolation—and end by explaining how WaVe checks
that the sandbox has been set up and torn down correctly.

4.1. Memory safety

WaVe verifies that the runtime and OS do not violate
Wasm’s memory safety guarantees—namely, that all system
calls and unsafe memory operations that the runtime performs
(e.g., memcpy) read and write only to the sandbox’s linear
memory. By verifying that every hostcall the sandbox makes
is memory safe, WaVe extends the sandbox’s memory safety
guarantee outside the sandbox itself, ensuring end-to-end
memory safety. Proving end-to-end memory safety is a
prerequisite for proving resource isolation properties like
network isolation (§4.3) and filesystem isolation (§4.2),
since these properties rely on the integrity of runtime data
structures, which may be compromised if the sandbox can
read and write to arbitrary locations in memory.

Next, we introduce the effects WaVe uses to prove
memory safety, explain how WaVe constrains those effects,
and finally discuss how WaVe verifies the memory safety of
more complex system calls, like readv and writev.

The MemRead and MemWrite effects To verify that all unsafe
memory operations fall within the sandbox’s linear memory
region, WaVe tracks two effects: MemRead and MemWrite.
MemRead(addr, len) and MemWrite(addr, len) denote
that the runtime or OS is performing an unsafe read/write
of len bytes starting at addr. The specifications for syscalls
(e.g., read, write, or getrandom) and unsafe memory op-
erations (e.g., memcpy) emit MemRead and MemWrite effects.
For example, the specification for the read system call is:
#[ensures(effects! (trace,effect! (MemWrite, buf, len)))]
fn read(fd:usize, buf:*mut u8, len:usize) -> isize;

This states that read system call writes len bytes to buf.

Proving memory safety WaVe verifies that every MemRead
and MemWrite respects the sandbox’s memory isolation
policy, i.e., falls within the sandbox’s linear memory
region. Specifically, for each MemRead(ptr, 1len) and
MemWrite(ptr, len) effect, WaVe verifies:

(1) ptr >= linmem_base &&

(2) ptr + len < linmem_base + linmem_len &&

(3) linmem_base <= linmem_base + linmem_len &&

(4) ptr <= ptr + len

Lines 1-2 of this predicate check that the buffer the runtime is
writing to or reading from is in the sandbox’s linear memory.
Lines 3—4 check that neither the buffer nor the linear memory
region overflow, i.e., that there are no integer overflows in
the bounds checking. WaVe uses this specification to verify
both simple I/O operations that use read and write, which
perform a single read/write to memory, and more complex
vectored I/O operations with readv and writev.

Verifying Vectored I/O Vectored I/O allows programs to
perform multiple reads to (or writes from) different non-
contiguous userspace buffers in a single system call. For
example, consider the readv system call:

readv(int fd, const struct iovec *iov, int iovcnt)

This system call reads iovent buffers from the file fd into
the buffers iov [47]]. For a readv call to be safe, WaVe
proves that each iovec element in iov, of type:

struct iovec {
void *iov_base;
size_t iov_len;

/* Starting address */
/* Number of bytes */

¥

is within the sandbox’s linear memory. To prove this, WaVe
appends iovcnt MemWrite effects to the trace, and checks
them exactly as it would check the Memwrite created by
a single read call. This way, WaVe can apply its single,
centralized security specification to many different system
calls, which reduces the size of the trusted computing base.

4.2. Filesystem isolation

WaVe allows sandboxes to access the files within a single
directory—the sandbox’s root directory that the runtime
specifies at module instantiation-time. This policy is similar
to those used in the file system isolation components of
Linux namespaces [48] and FreeBSD jails [49], but is finer-
grained: instead of applying the jail per-process or per-thread,
Wasm runtimes use per-sandbox jails. WaVe enforces this
per-sandbox filesystem jail policy by exclusively accessing
paths through system calls like openat and mkdirat.

System calls like openat(dirfd, path,...) and
mkdirat(dirfd, path,...) access files (here path)
relative to the dirfd file descriptor. For example,
openat(dirfd, "a.json”,...) opens /sbx/a.json if
dirfd refers to the /sbx directory. WaVe exclusively
uses *at calls for file system access to ensure that each
sandbox resolves paths relative to its own root directory,
rather than the host’s current working directory. When
the sandboxed application makes a non-*at system call,
WaVe rewrites it to a *at call: open(”a. json") becomes
openat (sandbox.rootdirfd, ”a.json”)[ﬂ By design, all
path-based hostcalls in WASI can be rewritten this way [17].

Using *at system calls alone, however, is not sufficient
to prevent the sandbox from escaping its root directory: for
example, openat (sandbox.rootdirfd,"”../secret.txt")
will still traverse the sandbox’s root directory and access an
illegal file. WaVe prevents this illegal sandbox behavior by
tracking and constraining the PathAccessAt effect.

The PathAccessAt effect WaVe enforces filesystem iso-
lation by constraining the PathAccessAt(dirfd, path,
follows symlinks) effect. The PathAccessAt effect says
that the runtime accessed a path on the filesystem relative to
file descriptor dirfd, i.e., a path access through a *at system
call, by potentially following symlinks (follows_symlinks).
For example, the specification for the open system call is:
#[ensures(effects! (trace,effect!(

PathAccessAt,

dirfd, path,

)1

pub fn openat(
dirfd: usize, path: [u8; 4096], flags: i32
) —> isize;

Iflag_set(flags, libc::0_NOFOLLOW)

1. This is done inside the sandbox by a WASI-compatible version of
libe [50]

The follows_symlinks argument denotes that the path
will expand terminal symlinks. Different system calls have
different semantics for expanding symlinks: readlinkat
does not follow a symlink if it is the last file in the path
(instead, it reads the contents of the symlink), while openat
will follow terminal symlinks unless the O_NOFOLLOW flag
is set. WaVe expands symlinks before performing safety
checks on paths to make the actual safety checking as simple
as possible. And, to ensure that the runtime expands sym-
links correctly—and can therefore reason about path access
control—WaVe verifies its symlink expansion algorithm.

Verifying symbolic link expansion Before checking whether
a path is within a sandbox’s root directory, WaVe expands all
symlinks within the path. This prevents cases in which a sand-
box rooted at /sbx accesses a path /sbx/evil/data. json
which is seemingly within its root directory—but actually
contains a symlink outside the root (e.g., evil — /secrets).

Symlink expansion is a complex recursive procedure that
mirrors OS path resolution in userspace—and, unsurprisingly
notoriously error-prone [26], [S1]]. For example, the POSIX
path resolution specification [52]] states that the OS decides
to expand a symlink based on four different factors: (1) what
system call is being invoked; (2) whether the current directory
entry being processed is the final component in the path; (3)
whether particular flags are set (e.g., AT_SYMLINK_NOFOLLOW,
AT_SYMLINK_FOLLOW, and O_NOFOLLOW); and (4) how many
symlinks have already been expanded.

WaVe safely navigate this complexity by statically veri-
fying that the expansion procedure does not produce paths
that (still) contain symbolic links. This is necessary and
sufficient for reasoning about filesystem isolation. Even if
WaVe’s symlink expansion algorithm contains bugs, WaVe
can guarantee that it doesn’t violate filesystem isolation.

Mechanically, WaVe verifies two conditions. First, it
verifies that for all prefixes of a resolved path, each prefix
does not refer to a symlink:
forall(|i: usize| (i < path.len() - 1) ==>

'is_symlink(path.prefix(i)))
The prefix(n) method returns the first n components
of the path: for the path ./foo/bar, path.prefix(0) is
./, path.prefix(1) is ./foo, and path.prefix(2) is
./foo/bar. The is_symlink predicate is true for symlinks
(as checked by the readlinkat system call). Second, WaVe
verifies that the final path entry is either (1) not a symlink,
or (2) part of a path WaVe has translated for a system call
that does not follow terminal symlinks (e.g., readlink):
Ifollows_symlinks ||

(follows_symlinks && !is_symlink(&path))

By asserting these two conditions, WaVe checks that,
for every possible path output by its symlink expansion
algorithm, each path component is not a symlink. This is
true even when symlinks are recursively expanded: when
WaVe finds a symlink in a path, it also guarantees that all path
components in that symlink have been properly expanded.

Verifying filesystem isolation Once WaVe has expanded
all symbolic links in a path, it can verify that the path
is within the sandbox’s root directory. For the effect

PathAccessAt(dirfd, path, follows_symlinks), WaVe
verifies three conditions:
(1) is_relative(path) &&
(2) dirfd == ctx.rootdirfd &&
(3) forall(|i: usize| (i < path.len() - 1) ==>
(depth(path.prefix(i)) >= 0)
The first two conditions—that path is relative and dirfd
is the sandbox’s root directory—guarantee that the runtime
interprets path relative to the sandbox’s root [52], [53]]. To
guarantee that the sandbox stays within its root directory,
WaVe statically verifies a third condition: that for all paths,
each of its prefix paths have a path depth of at least zero.
We compute path depth by essentially counting the number
of ../ components; for example, ./foo/../.. has depth
—1, while ./ has a depth of 0 and ./foo/bar has a depth
of 2. By restricting all path prefixes to have a depth greater
or equal to zero, WaVe disallows paths like . ./foo, which
have a depth of zero, but still lie outside the sandbox’s root
directory, and ensures that the sandbox never escapes its root
directory.

4.3. Network isolation

WaVe verifies that a sandbox’s network access conforms
to the WASI sockets proposal [29]. This proposal specifies
that sandboxes should be able to make outgoing TCP/UDP
over IPv4 network connections, but only to addresses (i.e.,
ip:port pairs) present in an allow-list that the host application
creates at module instantiation—timeﬂ This policy can be used
to, for example, allow a sandbox to connect to a database
server on the local network, but disallow it exfiltrating data
to an outside server. By verifying this proposed interface,
we provide a verified reference implementation of WASI
sockets, which can guide future safe implementations. To
prove the WASI-socket safety policy holds for all hostcalls,
WaVe tracks two effects: SockCreation and NetConnect.

The SockCreation and NetConnect effects To prove that
the runtime enforces network isolation, WaVe tracks two
effects: SockCreation(domain, socktype, protocol)—
the sandbox has created a socket of the recorded domain, type,
and protocol—and NetConnect(ip, port)—the sandbox
has connected a socket to an ip:port address. The OS speci-
fication for the socket system call emits the SockCreation
effect and the connect system call emits the NetConnect
effect. By constraining these two effects, WaVe verifies that
the sandbox can only create sockets of known protocols (TCP
and UDP over IPv4), and that the sandbox’s sockets can only
connect to network addresses in the sandbox’s allow-list.

Proving network isolation To prove that every socket the
sandbox creates belongs to known protocols, WaVe matches
on the domain and socktype of SockCreation effects:
domain == IPv4 && (socktype == TCP || socktype == UDP)
This lets WaVe immediately reject unknown network proto-
cols that might have surprising semantics, e.g., the sandbox
creating a UNIX domain socket and performing IPC.

2. Since the implementation of WaVe, the proposal has been extended
with support for domain name resolution and IPv6. We leave the verification
of this extended interface for future work.

To prove that the sandbox only connects to addresses in
its allow-list, WaVe verifies that the runtime (dynamically)
checks that the address is in the allow-list. Specifically, WaVe
verifies that for each SockConnect(ip,port) effect, the ip
and port are in the allow list:
ctx.net_allow_list.contains(addr, port)

WaVe uses a fixed-size allow-list (an array of ip:port pairs),
so the net_allow_list.contains predicate simply checks
that the addr and port arguments are equal to the first entry,
or the second, or the third, etc. Moreover, WaVe verifies
that the allow-list has not been modified as a part of its
vmContext well-formedness contract (§4.4).

WaVe verifies that the allow-list has not been modified
for two reasons: the first is simply that the WASI-socket
API does specify any way for a sandbox to be able to
change its own allow-list. The second reason is that, to
verify that a socket is within the allow-list at time-of-use,
WaVe must know that the allow-list has not been altered
since the hostcall checked it. We use a similar technique to
prove that, throughout execution, from setup to teardown, the
sandbox’s allocated memory region is not unsafely modified.

4.4. Setup and teardown

Wasm sandboxes guarantee that they never access mem-
ory outside of their allocated memory regions; however,
this memory safety guarantee is predicated on the runtime
correctly setting up the sandbox by (1) allocating the sand-
box’s 4GB linear memory region and (2) making sure that
accesses beyond the linear memory trap [54]. Existing Wasm
runtimes do this in two steps: they use mmap to allocate 8GB
of read-write memory and then, using mprotect, they make
the second 4GB a no-access guard page. WaVe statically
checks that the runtime correctly sets up this region, and
that hostcalls can never invalidate the linear memory region.

To verify that the runtime correctly set up linear memory,
WaVe simply checks that the runtime’s linear memory pointer
is the result of calling mmap and mprotect with correct
arguments. At teardown, WaVe ensures that the runtime’s
teardown function munmaps this region. This specification
for setup and teardown is specific to one style of enforcing
linear memory isolation (e.g., if the sandbox explicitly checks
bounds before every memory access, the guard page could be
excluded); however, this guard-page model is what runtimes
use in practice [3], [31]], [42].

Beyond the setup and teardown, WaVe also verifies that
hostcalls never invalidate the sandbox’s linear memory region
(e.g., by changing page permissions or altering the linear
memory pointer) as a part of a well-formedness contract:

VmContext well-formedness WaVe maintains a VmContext
structure per sandbox. The VmContext contains metadata
about its sandbox, including the location of the sandbox’s
linear memory, the list of file descriptors the sandbox has
opened, and the arguments and environment for the sandbox.
WaVe verifies that hostcalls—and the rest of the runtime
outside the TCB—are only able to modify the context in safe
ways, since the safety of hostcalls depends on the context
being well-formed. The well-formedness predicate is shown

I - N R N R

pub fn ctx_well_formed(ctx: &mCtx) -> bool {
ctx.memlen == LINEAR_MEM_SIZE &&
ctx.argc < 1024 &&
ctx.envc < 1024 &&
ctx.arg_buffer.len() < 1024 * 1024 &&
ctx.env_buffer.len() < 1024 * 1024 &&
netlist_unmodified(&ctx.net_allow_list) &&
valid_linmem(raw_ptr(ctx.mem.as_slice()))

Figure 8: WaVe’s VMContext well-formedness predicate.

in Figure[8] On line 2, it checks that the size of linear memory
for the sandbox has not changed since compile-time. On
lines 3-6, the predicate sets an upper bound on the number
of arguments (and environment variables) and the total size
for these arguments. On line 7, it ensures that the network
allow-list has not been modified since the host application
initialized the sandbox (§4.3). On line 8, the predicate checks
the pointer to the linear memory has not been modified.

5. Implementation

WaVe is written in Rust, and verified using the Prusti [30]
verification framework. In total, WaVe consists of 7264
lines of code (LoC). The bulk of this code (5907 LoC)
is untrusted—both the runtime (4646 LoC) and proof of
safety (1261 LoC) are checked.

The remaining code (1357 LoC) is our TCB. The
specifications and proof definitions make up 809 lines in
the TCB: the safety policy is 43 lines of code, the OS
specification (for Linux and MacOS together) is 567 lines of
code, and verifier definitions (e.g., defining the effects trace)
make up the last 227 lines. The other 548 lines of code in
the TCB are our extensions to Prusti. Since Prusti does not
support certain features (e.g., bitwise operations) we added
trusted wrappers (e.g., for each bitwise operation). As Prusti
matures (e.g., support for bitwise operations [S5] is currently
in progress), we hope to eliminate this code from the TCB.

6. Correctness evaluation

We evaluate the correctness of WaVe’s specification and
implementation by asking two questions:

1) Does WaVe’s specification accurately model real OS
and trusted code behavior?

2) How does the semantics of WaVe’s WASI implementa-
tion compare to those of other runtimes?

To answer the first question, we fuzz the pre- and post-
conditions of WaVe’s trusted code, including the system call
interface. We find no bugs in WaVe’s OS specification, but
one (non-isolation-breaking) in WaVe’s sandbox-teardown.
To answer the second question, we create a differential fuzzer
for testing runtimes’ WASI implementations. We find that
WaVe’s WASI semantics agree with the majority for all of
our fuzzer testcases, but find a number of inconsistencies in
other runtimes. We describe these results in detail next.

Checking specifications Our specification fuzzer extracts the
specification from trusted functions and uses them to generate
test cases for the trusted functions. Specifically, our fuzzer

(1) uses specification pre-conditions to generate test cases
that are well-formed; (2) runs those test cases on a given
trusted function using QuickCheck [56]; (3) checks that the
function’s output conforms to the expected post-condition—
any violation signals a bug in the specification. To check
specs for system calls that directly modify linear memory
(readv, writev, preadv, and pwritev), we use AFL [57] to
fuzz a C program that calls each syscall, and ensures that the
syscall’s memory accesses match our specifications. Before
each system call, our tool removes read and write permissions
from all mapped pages except the code segment, the top of
the stack, the pages required by AFL, and the location the
specification says should be written. Then, during execution,
if one of these syscalls attempts to access an address that
does not have proper read or write permissions, the call will
result in a tool-detectable EFAULT error.

After running each fuzzer for 24 hours, we found a
single bug: the teardown function was not properly closing
the home directory file descriptor. This bug does not break
isolation, and therefore falls outside of the scope of WaVe’s
safety specification, but it could cause a denial-of-service
by exhausting the file descriptor-space of the host process.
Note also that this type of testing isn’t foolproof (e.g., it
relies on a testcase hitting a bug, and relies on the kernel to
correctly return EFAULTs)—but it does build confidence that
our understanding of the syscalls’ specifications are correct.

Fuzzing WASI implementations To determine how WaVe’s
WASI semantics compare to those of other runtimes, we
create a differential fuzzer that (1) randomly generates
test files that contain sequences of system calls and (2)
executes those test files on different runtimes, comparing
their behavior. The fuzzer takes as input a list of constraints
around inputs to system calls (e.g., it’s illegal to close a
file that’s been closed before). It uses this list to generate
a file containing likely-legal long chains of syscalls, and
then logs an execution trace of each runtime on the file; this
trace includes the return value (if it exists), modifications
of pointers passed into the call, and modifications to any
environment variables. Any inconsistency in the traces signals
a bug or an under specification in WASI, since each runtime
intends to implement the same Wasm [54]] and WASI [[17]]
standard (§2). Our fuzzer finds differences across four
different runtimes—Wasmer [44], Wasmtime [31], Wamr [5],
and WaVe. We don’t find any bugs in WaVe, but highlight
three interesting bugs in other runtimes next.

The first bug is in Wasmer and Wasmtime implementa-
tions of posix_fallocate(fd, offset, length). If the
size of the file is less than offset+length, the file is
supposed to increase in size to this sum; otherwise, the
file size should be left unchanged. With an offset and
length of zero, however, Wasmer incorrectly truncates the
file size to offset+len on both Linux and MacOS [58]];
Wasmtime [S9] incorrectly truncates the file size on MacOS.
Wasmtime confirmed the bug [59] and are working on a fix.

The second Wasmer issue [60] arises when a file that has
been opened more than once (resulting in multiple different
file descriptors) is closed. Closing one of these file descriptors

should still allow the other file descriptors to be used: instead,
in Wasmer, they are invalidated. For example, after calling
close(fd1), a subsequent call to read(fd2, ...) fails
even if there are still bytes left to be read in the file. Finally,
Wasmer does not correctly enforce access modes: it allows
writing to file descriptors opened with the O_RDONLY flag,
and reading from file descriptors opened with the O_WRONLY
flag [58]].

7. Performance evaluation

We evaluate WaVe’s runtime performance by answering
the following questions:
1) What is WaVe’s overhead on individual hostcalls?
2) What is WaVe’s overhead on end-to-end applications?

To answer these questions, we measure the performance
of WaVe compared to Wasmtime [31]], a state-of-the-art
industrial WebAssembly runtime. We exclude the other two
runtimes from Section [(f} WAMR [3] and Wasmer [44],
since they did not successfully complete the performance
benchmarks (e.g., they failed the SQLite benchmark integrity
checks). We evaluate WaVe’s performance on three sets of
benchmarks: LMbench [32], SQLite [33]] (version 3.38.0),
and the SPEC2006 CPU benchmarks [34]. We find that WaVe
has comparable performance to Wasmtime; using a verifiably
secure runtime does not unduly burden performance. In fact,
on four of six microbenchmarks and all seven end-to-end
applications, WaVe outperforms Wasmtime.

Machine setup We run all experiments on a 2.1GHz Intel
Xeon Platinum 8160 machine with 96 cores and 1 TB of
RAM running Arch Linux 5.16.4. We compile all benchmarks
using the Clang compiler (version 10.0.0) to compile from
C/C++ to Wasm, then compile the results to x86-64 using one
of two toolchains: Wasmtime (version 0.31.0), or the Wasm2c¢
compiler [61] (as it is interoperable with WaVe). To improve
the consistency of all experiments, we isolate benchmarks
to a single CPU and disable hyperthreading, dynamic CPU
frequency scaling, and Intel TurboBoost. Furthermore, we
run all benchmarks on a ramfs to improve the consistency
of filesystem operations (of the OS itself): since we are
primarily interested in runtime overheads (rather than the
baseline system call overhead), we aim to reduce noise from
the OS as much as possible.

7.1. What is WaVe’s overhead on single hostcalls?

To measure WaVe’s overhead on individual hostcalls, we
use LMbench [32]], a benchmark suite designed to measure
the latency of OS services (e.g., syscalls, context switches,
etc). We use the relevant syscall latency benchmarks (i.e.,
we exclude syscalls that are not supported by WASI) as
a way to measure hostcall latency. To compare WaVe and
Wasmtime’s performance, we measure six hostcalls, including
a null call that measures trampoline overhead of the runtimes
by measuring the time it takes to make a hostcall into the
runtime and immediately return. We also measure two WaVe
hostcalls that are not implemented in Wasmtime: socket and
connect. For each hostcall, we run one million consecutive
trials and report the average latency.

IS

WaVe
Wasmtime

N w

Execution Time over Raw Syscall (%)
=]

0 “I‘

read write stat fstat open
Hostcall

Figure 9: Average hostcall execution time as a percentage compared

to raw syscalls
namd libquantum lbm
Benchmark

N
3

WaVe
Wasmtime

astar sqlite

n
o

=
o

=
o

o
wl

Hostcall Latency over Raw Syscalls (%)
o
o

bzip2 mcf

Figure 10: Total hostcall latency for end-to-end benchmarks as a
percentage compared to the total hostcall latency with raw syscalls

Figure [0] shows results for the LMbench micro bench-
marks. WaVe’s null call is 99ns faster than Wasmtime’s
null call. Out of the five non-null hostcalls, compared to
OS syscalls, WaVe has overheads of 1.1x to 4.07x (mean:
2.16x), while Wasmtime has overheads of 1.61x to 3.69x
(mean: 2.43x). On the two network hostcalls WaVe has an
overhead of 1.05x and 1.01x respectively; we don’t report
Wasmtime numbers since Wasmtime does not yet implement
this WASI proposal.

In four of the six hostcalls implemented in both WaVe
and Wasmtime, WaVe is faster. The remaining two hostcalls,
stat and open, require resolving the symbolic links in a path
(see Section for details). Wasmtime’s path translation
is more mature and better optimized—and consequently, it
translates paths faster than WaVe. We plan to implement
Wasmtime’s optimizations in the future, and by verifying
both algorithms under the same safety policy, verify that
this optimized path translation process is just as safe as
our more-naive path translation algorithm. Even with slower
path translation, using WaVe today should not meaningfully
impact performance: calls that require path resolution are
infrequent—there are generally many read/write calls for
each open—and thus have little impact on the performance
of end-to-end applications as we show next.

7.2. What is WaVe’s overhead applications?

We evaluate WaVe on two sets of end-to-end applica-
tions: the SPEC 2006 benchmarks [34]] and SQLite’s speed
benchmarks [33]]. For both sets of benchmarks, we measure
the sum round-trip latency of executing hostcalls—the total
time that the benchmark spends in the runtime, from the time
that the sandbox invokes a hostcall (e.g., open) to the time
that control returns to the sandbox application, including the
time spent in the OS. We also measure the total time spent
in the OS to act as a baseline latency—by comparing OS
latency to total runtime latency, we can deduce the overhead
that the runtime incurs. We find that our verified runtime,
WaVe, outperforms Wasmtime in all end-to-end applications.

SPEC CPU 2006 SPEC is a popular benchmark suite for
measuring the performance of compilers and novel CPU
architectures. We evaluate WaVe on the SPEC benchmark
not only because it’s standard, but also because it exhibits a
variety of I/O behaviors: each individual benchmark invokes
between 9 and 7,512 hostcalls, with a geometric mean of 488
hostcalls per benchmark. We evaluate WaVe’s performance
on the six Wasm-compatible SPEC 2006 benchmarks; we
only exclude benchmarks that are not compilable with Wasm
(e.g., because of exceptions or need for more than 4GB of
memory).

The first six columns of Figure [T0] show the total hostcall
latency for WaVe, Wasmtime, and the OS on SPEC. In all six
benchmarks, WaVe outperforms Wasmtime. This is largely
incidental: we designed WaVe to be easy to verify using
automated reasoning tools, and consequently, the code is
simple and has little indirection. This also makes the code
easy for the compiler to analyze: we found, for example,
that the default Rust release-profile optimizations were able
to effectively inline and optimize the hostcall code.

Additionally Wasmtime has some support for WASI
asynchronicity, which adds a layer of instrumentation to
hostcalls that adds to hostcall latency. How much this layer
of indirection contributes to Wasmtime hostcall latency is
hard to measure as the code responsible for adding support
to asynchronicity is not easily separable from the regular
hostcall code. Though both WaVe and Wasmtime can be
further optimized, we find these results encouraging: building
a high-assurance verified runtime does not need to come at
the cost of performance.

SQLite To measure WaVe’s performance on end-to-end
benchmarks, we evaluate it on SQLite’s speed benchmarks.
These benchmarks perform common database tasks: two
example benchmarks are executing (1) 50,000 INSERTs into
table with no index and (2) 10,000 four-ways joins. We
use these benchmarks because databases are I/O intensive:
SQLite’s speed benchmarks invoke 811K hostcalls.

The final column of Figure [I0]shows total hostcall latency
for WaVe, Wasmtime, and the OS on SQLite speed. WaVe
introduces a 1.11x overhead when compared to OS latency,
and Wasmtime introduces a 1.59x overhead. WaVe is faster
because 800K of the 811K SQLite hostcalls are reads or
writes—and WaVe’s implementation of these hostcalls are
faster Wasmtime’s (see Figure [9).

8. Related Work

Our work addresses an open problem—the security of
SFI runtime systems [62]. To do so, we draw on a rich
history of research into trustworthy software fault isolation
and secure system interfaces.

Verified SFI Over the years, there have been numerous
efforts to verify the safety of sandboxed code. The most
common approach is binary verification [12], [63], [64], [41],
[63], i.e., analyzing binaries produced by SFI compilers to
ensure that the compiler put all the right safety checks in
all the right places. The alternative to binary verification
is to formally verify the SFI compiler [66]], [67], [13] and
ensure that all binaries produced by the compiler are properly
sandboxed. While both approaches meet their stated goals of
verifying the safety of sandboxed code, they operate under
two trust assumptions: (1) that the SFI runtime is fully trusted
and bug-free and (2) that all interactions of sandboxed code
with the SFI runtime are safe.

Our work compliments these efforts by eliminating the
need to trust the runtime or the sandbox interactions with
it. Indeed, combining our verified runtime, WaVe, with with
a binary verifier like VeriWasm [12], means we can extend
Wasm’s isolation guarantees end-to-end: VeriWasm ensures
that sandboxed code is isolated to the sandbox boundary,
WaVe preserves this isolation (and resource isolation) when
the sandbox code communicates with the external world.

Modeling and verifying system interfaces Like OS kernels,
WaVe exposes a system interface to untrusted code by
securely mediating access to the underlying resources. There
is a long history of work on modeling and verifying OS
kernels, going back to the late seventies work on PSOS [68].
Commuter [69], for example, models how system calls read
and write to kernel data structures to find opportunities
for conflict-free executions of system calls. Other systems
verify safety properties like memory safety and functional
correctness of OS kernels [70], [71], [72]], [73], [74]], hyper-
visors [73], [76], and TEE safety monitors [77].

A significant amount of effort has been put specifically
into verifying the correctness of file system implementations.
For example, researchers have built file systems that are
functionally correct [78]], [79] and secure [80], even in
the presence of crashes [81], [82], [83l], [84] and concur-
rency [85], [86], [19]. These developments have even been
brought to the world of embedded systems via verified flash
file systems [87]], [88], [89], and TEEs [90]. Since WaVe
relies on operating system correctness, we find this work
largely complimentary: by using a verified OS like seL4 [73],
for example, we can remove the OS from WaVe’s trusted
computing base and extend our security guarantees in turn.

Verifying object capabilities Another related line of work
is that of object capability verification. Object capabilities
can be used to enforce fine-grained privilege separation to
protect privileged state from untrusted code [91]]. Previous
work has developed program logics for reasoning about object
capabilities [92] and verified fragments of object capability
code in Coq [93], even in the context of sandboxing [94] and
OS security [95]]. These efforts share a similar goal to WaVe,

trying to protect OS state from untrusted sandboxes. WaVe,
however, verifies the runtime for a industrial sandboxing
interface and reckons with the complex OS semantics needed
for doing so.

Hardening system interfaces Multiple systems mediate
syscalls to enforce application-level policies when interfacing
with the operating system. In the context of high-level
language runtimes, for example, several systems isolate
native code and restrict this native code’s syscall invocations
by modifying the underlying runtime (e.g., for Java [96],
[971, 1981, 1990, [100], [101] and .NET [102]). System
call interposition, more broadly, is widely deployed—e.g.,
Linux’s seccomp-bpf [103] is used to restrict syscalls in
systems like Chrome and OpenSSH. Unlike WaVe, these
efforts focus on enforcing a single process-level policy
(instead of fine grain per-sandbox policies). And, with the
exception is Pailoor et al.’s work on using program synthesis
to automatically generate syscall policies [104], they lack
formal guarantees.

Runtimes for trusted execution environments like Intel
SGX [1105], [106], [LO7]], [LO8]] share some similarities to
WaVe—they must check and translate syscalls’ results—but
have the added challenge of defensing against an (untrusted)
OS from Iago attacks [[109]] and tricky race conditions [110].

Finding bugs in runtimes While bug-finding does not
guarantee safety, finding and removing bugs is a low-cost way
to harden a runtime. Previous work has used static analysis
to find bugs in the FFI layers of OCaml [[111], Python [112]],
Java [113]], [114]], and JavaScript [115]. Another popular
method for bugfinding in runtimes is fuzzing [116], [L17],
in particular, for JavaScript engines [118], [119], [120],
hypervisors [121]], [[122], syscall interfaces [123], [19], and
file systems [124], [125], [126].

9. Limitations

In this section, we discuss limitations related to both how
WaVe verifies and what WaVe verifies—neither the loader
nor safety of sandboxes running multiple threads.

Concurrency While WaVe allows for host applications to run
multiple sandboxes concurrently (§3.1)), it cannot guarantee
safety if a single sandbox is running multiple threads
concurrently. While this threat model is in line with current
Wasm and WASI standards, support for multithreading inside
sandboxes is in progress [127]], and when it is standardized,
developers will expect runtimes to support it. Verifying
such a runtime requires reasoning about locking of runtime
structures and time-of-check-to-time-of-use bugs, a notorious
source of vulnerabilities for secure syscall monitors [26]. We
leave this as future work.

WaVe similarly does not reason about concurrent pro-
cesses. This means, a concurrent process—with the right
filesystem permissions—could modify the underlying filesys-
tem to help sandboxed code bypass our filesystem isolation
checks [26]. This is possible because our path resolution is
not atomic. While we could make resolution atomic (e.g., as
Wasmtime recently did), the implications of this more-power

attacker model on the rest of WASI are unclear—and, indeed,
not considered by other runtimes.

Loader WaVe securely allocates and deallocates linear mem-
ory regions for sandboxes, initializes runtime data structures,
and handles requests from sandboxes during execution—but
it loads the sandbox code from a file to memory with dlopen.
The dynamic library loading process is complex and error-
prone [128], [129], [130]. To provide true end-to-end safety,
WaVe would have to verify the dynamic library loading
process as well; this is future work.

Expressivity of modular verification WaVe verifies that
if a safety policy holds before each hostcall, the safety
policy holds after that hostcall. This makes it impossible to
express global properties that aren’t invariant before each
call; for example, expressing “all file descriptors opened by
the sandbox have been closed properly” isn’t true before
each hostcall, but it may be true during sandbox teardown.
We found the current model to be capable of expressing the
safety properties for WASI, but, as WASI expands, WaVe
may need more sophisticated proof methods.

10. Conclusion

WebAssembly provides safe, portable, and fast isolation—
as long as the Wasm compiler and runtime are correct. This
paper addresses runtime correctness by verifying that the
runtime’s sandbox setup and teardown are memory safe, and
that the runtime’s WebAssembly System Interface imple-
mentation preserves memory safety, filesystem isolation, and
network isolation. When combined with a binary verifier like
VeriWasm or with a verified Wasm compiler (or interpreter),
our verified runtime, WaVe, provides an almost complete
end-to-end isolation guarantee. These guarantees do not
come with the typical cost of verified software: huge proof
obligations and poor performance. WaVe is designed to take
advantage of modern automated reasoning tools and only
requires one (untrusted) annotation for every seventeen lines
of code. And, WaVe offers performance similar to production
Wasm runtimes like Wasmtime on both microbenchmarks
and end-to-end benchmarks like SPEC and SQLite—on most
benchmarks, WaVe even outperforms Wasmtime. We did not
intend to build a fast runtime. But, it turns out, forcing
ourselves to write simple code that can be automatically
verified results in code that is easier for the compiler to
optimize too.

Acknowledgements

Many thanks to Lin Clark, Chris Fallin, Ranjit Jhala, Tyler
McMullen, Till Schneidereit, David Thien, Luke Wagner,
and Conrad Watt for fruitful discussions. Thanks to the
WAMR, Wasmtime, and Wasmer teams for responding to our
reports. This work was supported in part by a Sloan Research
Fellowship; by the NSF under Grant Numbers CNS-2155235,
CCF-1918573, CNS-2120642, and CAREER CNS-2048262;
by a gift from Intel; and by DARPA HARDEN under contract
#N66001-22-9-4017.

References

(1]

(2]

(3]

(4]

(1]

(6]

(71

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

[23]

A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the web
up to speed with WebAssembly,” in PLDI, 2017.

“WebAssembly,”
WebAssembly.

https://developer.mozilla.org/en-US/docs/

Pat Hickey, “Announcing Lucet: Fastly’s native WebAssembly com-
piler and runtime,” https://www.fastly.com/blog/announcing-lucet-
fastly-native- webassembly-compiler-runtime, 2019.

K. Varda, “WebAssembly on Cloudflare workers,” https://
blog.cloudflare.com/webassembly-on-cloudflare-workers/, 2018.

“WebAssembly micro runtime,” https://github.com/bytecodealliance/
wasm-micro-runtime, 2021.

B. Dale, “Polkadot’s Gavin Wood: WebAssembly is the future of
smart contracts, but ‘legacy’ EVM is right now,” 2021. [Online].
Available: https://www.coindesk.com/tech/2021/05/25/polkadots-
gavin-wood-webassembly-is-the-future-of-smart-contracts- but-
legacy-evm-is-right-now/

S. Narayan, C. Disselkoen, T. Garfinkel, N. Froyd, E. Rahm, S. Lerner,
H. Shacham, and D. Stefan, “Retrofitting fine grain isolation in the
Firefox renderer,” in USENIX Sec, 2020.

Nathan Froyd, “Securing Firefox with WebAssembly,” https:
/fhacks.mozilla.org/2020/02/securing- firefox- with-webassembly/,
2020.

“Envoy proxy,” https://www.envoyproxy.io/, 2022.

Wasmtime, “cargo fuzz targets for Wasmtime,” 2022. [Online].
Available: https://github.com/bytecodealliance/wasmtime/tree/main/
fuzz

P. Ventuzelo, “A journey into fuzzing WebAssembly virtual machines,”
https://1.blackhat.com/USA-22/Wednesday/US-22- Ventuzelo- A-
Journey-Into-Fuzzing- WebAssembly- Virtual-Machines.pdf, 2022.

E. Johnson, D. Thien, Y. Alhessi, S. Narayan, F. Brown, S. Lerner,
T. McMullen, S. Savage, and D. Stefan, “/loBepsiit, HO IpoBepsiit:
SFI safety for native-compiled Wasm,” in NDSS. Internet Society,
2021.

J. Bosamiya, W. S. Lim, and B. Parno, “Provably-safe multilingual
software sandboxing using WebAssembly,” in USENIX Sec, Aug.
2022.

C. Watt, “Mechanising and verifying the WebAssembly specification,”
in CPP, 2018.

“Use after free in lucet,” https://github.com/advisories/GHSA-hf79-
8hjp-1rvq, 2021.

B. Alliance, “Wasmtime security advisories,” 2022. [Online].
Available: https://github.com/bytecodealliance/wasmtime/security/
advisories

“WebAssembly system interface,” https://wasi.dev.

“POSIX.1-2008, IEEE 1003.1-2008,” The Open Group Base Specifi-
cations Issue 7, 2008.

T. Ridge, D. Sheets, T. Tuerk, A. Giugliano, A. Madhavapeddy, and
P. Sewell, “SibylFS: formal specification and oracle-based testing
for POSIX and real-world file systems,” in SOSP, 2015.

J. Konka, “Fix rights check for fd_pread and fd_pwrite,” https:
//github.com/bytecodealliance/wasmtime/pull/579, 2019.

P. Hickey, “wasi-common: UNC paths are not handled correctly
on windows,” https://github.com/bytecodealliance/wasmtime/issues/
2650, 2021.

L. Persaud, “Appending to file does not work,” https://github.com/
wasmerio/wasmer/issues/936, 2019.

whitequark, “Symlink check makes WASI unusable under wine,”
https://github.com/bytecodealliance/wasmtime/issues/2008, 2020.

[24]

[25]

[26]

[27]

[28]

[29]

[30]
[31]
[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

——, “Opening files with O_TRUNC does not truncate them on Win-
dows,” |https://github.com/bytecodealliance/wasmtime/issues/2009,
2020.

W. Huang, “Add more operand stack overflow checks for fast-
interp,” https://github.com/bytecodealliance/wasm-micro-runtime/
commit/d6e781af281601e6b93601ebfcd6d2fd675960dal 2022.

T. Garfinkel, “Traps and pitfalls: Practical problems in system call
interposition based security tools,” in NDSS, 2003.

Native Client team, “Native Client security contest archive,”
https://developer.chrome.com/docs/native-client/community/
security-contest, 2009.

R. J. Connor, T. McDaniel, J. M. Smith, and M. Schuchard, “PKU
pitfalls: Attacks on PKU-based memory isolation systems,” in
USENIX Sec, 2020.

“WASI sockets proposal,” https://github.com/WebAssembly/wasi-
sockets, 2022.

“prusti-dev,” https://github.com/viperproject/prusti-dev.
“Wasmtime,” https://wasmtime.dev, 2021.

L. W. McVoy, C. Staelin er al,, “Imbench: Portable tools for
performance analysis.” in USENIX ATC, 1996.

M. Owens and G. Allen, SQLite. Springer, 2010.

J. L. Henning, “SPEC CPU 2006 benchmark descriptions,” in ACM
SIGARCH Computer Architecture News, 2006.

L. Clark, “Standardizing WASI: A system interface to run WebAssem-
bly outside the web,” https://hacks.mozilla.org/2019/03/standardizing-
wasi-a-webassembly-system-interface/, 2019.

“Issue 53: SRPC Shared Memory Infoleak / Memory cor-
ruption,” https://bugs.chromium.org/p/nativeclient/issues/detail ?1id=
53&q=srpc_shml&can=1,

“CVE-2022-28990 - wasm3 heap overflow,” https://nvd.nist.gov/vuln/
detail/CVE-2022-28990, 2022.

D. Stefan, “Potential bug in WAMR’s
wasm_exec_env_alloc_wasm_frame,” Personal communication
with WAMR team, Nov. 2022.

A. d’Antras and D. Stefan, “potential overflow in
get utf8 string,” Personal communication with the Wasmer
security team, Dec. 2021.

D. Stefan, “Fix potential integer overflows in WasmPtr memory access
methods,” https://github.com/wasmerio/wasmer/pull/2786, 2022.

B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy,
S. Okasaka, N. Narula, and N. Fullagar, “Native client: A sandbox
for portable, untrusted x86 native code,” in IEEE S&P, 2009.

“UVWasi,” https://github.com/nodejs/uvwasi, 2022.

»

B. Coenen, “feat(wasi): add rename for a directory + fix remove_dir,
2021. [Online]. Available: https://github.com/wasmerio/wasmer/
commit/e0e12f9d9ff41a512e44bd497324eeb0f7 1 abfe2

Wasmer, “Wasmer - universal WebAssembly runtime,” https://
wasmer.i0/, 2019.

Node.js Foundation, “Node.js,” https://nodejs.org/en/, 2019.

M. Patrignani and D. Garg, “Robustly Safe Compilation,” in ESOP,
2019.

“Posix readv man page,” https://man7.org/linux/man-pages/man2/
readv.2.htmll

E. W. Biederman and L. Networx, “Multiple instances of the global
Linux namespaces,” in Proceedings of the Linux Symposium, vol. 1,
2006.

»

P-H. Kamp and R. N. Watson, “Jails: Confining the omnipotent root,
in SANE, 2000.

“WASI libc: a libc for WebAssembly programs built on top of WASI
system calls,” https://github.com/WebAssembly/wasi-libc.

https://developer.mozilla.org/en-US/docs/WebAssembly
https://developer.mozilla.org/en-US/docs/WebAssembly
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://www.fastly.com/blog/announcing-lucet-fastly-native-webassembly-compiler-runtime
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://blog.cloudflare.com/webassembly-on-cloudflare-workers/
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://www.coindesk.com/tech/2021/05/25/polkadots-gavin-wood-webassembly-is-the-future-of-smart-contracts-but-legacy-evm-is-right-now/
https://www.coindesk.com/tech/2021/05/25/polkadots-gavin-wood-webassembly-is-the-future-of-smart-contracts-but-legacy-evm-is-right-now/
https://www.coindesk.com/tech/2021/05/25/polkadots-gavin-wood-webassembly-is-the-future-of-smart-contracts-but-legacy-evm-is-right-now/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://hacks.mozilla.org/2020/02/securing-firefox-with-webassembly/
https://www.envoyproxy.io/
https://github.com/bytecodealliance/wasmtime/tree/main/fuzz
https://github.com/bytecodealliance/wasmtime/tree/main/fuzz
https://i.blackhat.com/USA-22/Wednesday/US-22-Ventuzelo-A-Journey-Into-Fuzzing-WebAssembly-Virtual-Machines.pdf
https://i.blackhat.com/USA-22/Wednesday/US-22-Ventuzelo-A-Journey-Into-Fuzzing-WebAssembly-Virtual-Machines.pdf
https://github.com/advisories/GHSA-hf79-8hjp-rrvq
https://github.com/advisories/GHSA-hf79-8hjp-rrvq
https://github.com/bytecodealliance/wasmtime/security/advisories
https://github.com/bytecodealliance/wasmtime/security/advisories
https://wasi.dev
https://github.com/bytecodealliance/wasmtime/pull/579
https://github.com/bytecodealliance/wasmtime/pull/579
https://github.com/bytecodealliance/wasmtime/issues/2650
https://github.com/bytecodealliance/wasmtime/issues/2650
https://github.com/wasmerio/wasmer/issues/936
https://github.com/wasmerio/wasmer/issues/936
https://github.com/bytecodealliance/wasmtime/issues/2008
https://github.com/bytecodealliance/wasmtime/issues/2009
https://github.com/bytecodealliance/wasm-micro-runtime/commit/d6e781af281601e6b93601ebfcd6d2fd675960da
https://github.com/bytecodealliance/wasm-micro-runtime/commit/d6e781af281601e6b93601ebfcd6d2fd675960da
https://developer.chrome.com/docs/native-client/community/security-contest
https://developer.chrome.com/docs/native-client/community/security-contest
https://github.com/WebAssembly/wasi-sockets
https://github.com/WebAssembly/wasi-sockets
https://github.com/viperproject/prusti-dev
https://wasmtime.dev
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://hacks.mozilla.org/2019/03/standardizing-wasi-a-webassembly-system-interface/
https://bugs.chromium.org/p/nativeclient/issues/detail?id=53&q=srpc_shm1&can=1
https://bugs.chromium.org/p/nativeclient/issues/detail?id=53&q=srpc_shm1&can=1
https://nvd.nist.gov/vuln/detail/CVE-2022-28990
https://nvd.nist.gov/vuln/detail/CVE-2022-28990
https://github.com/wasmerio/wasmer/pull/2786
https://github.com/nodejs/uvwasi
https://github.com/wasmerio/wasmer/commit/e0e12f9d9ff41a512e44bd497324eeb0f71abfe2
https://github.com/wasmerio/wasmer/commit/e0e12f9d9ff41a512e44bd497324eeb0f71abfe2
https://wasmer.io/
https://wasmer.io/
https://nodejs.org/en/
https://man7.org/linux/man-pages/man2/readv.2.html
https://man7.org/linux/man-pages/man2/readv.2.html
https://github.com/WebAssembly/wasi-libc

(511

[52]

[53]

[54]

[55]

[56]

(571

[58]
[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(711

[72]

[73]

[74]

[75]

[76]

R. N. Watson, J. Anderson, B. Laurie, and K. Kennaway, “Capsicum:
Practical capabilities for UNIX,” in USENIX Sec, 2010.

“Posix path resolution specification,” https://man7.org/linux/man-
pages/man7/path_resolution.7.html,

“Posix openat specification,” https://man7.org/linux/man-pages/man2/
open.2.html,

“WebAssembly core specification,” https://www.w3.org/TR/wasm-
core-1/,

vakaras, “Prusti bitvectors pr,” 2022. [Online]. Available: https:
/lgithub.com/viperproject/prusti-dev/pull/859

K. Claessen and J. Hughes, “Quickcheck: a lightweight tool for
random testing of haskell programs,” ACM SIGPLAN Notices, vol. 46,
no. 4, 2011.

“google/afl,” https://github.com/google/AFL, 2013.
Z. Zhao, “Wasmer bugs submitted to security mailing list,” 2021.

zzjas, “posix_fallocate truncates file on macos #2973,” 2021. [Online].
Available: https://github.com/bytecodealliance/wasmtime/issues/2973

——, “Double open the same file, close one fd, weird offset issue
#3188, 2021. [Online]. Available: https://github.com/wasmerio/
wasmer/issues/3188

“wasm2c: Convert wasm files to c source and header,” https]
/lgithub.com/WebAssembly/wabt/tree/main/wasm2c| 2021.

G. Tan et al., Principles and implementation techniques of software-
based fault isolation. Now Publishers, 2017.

L. Zhao, G. Li, B. De Sutter, and J. Regehr, “ARMor: fully verified
software fault isolation,” in EMSOFT, 2011.

G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan,
“RockSalt: Better, faster, stronger SFI for the x86,” in PLDI, 2012.

S. McCamant and G. Morrisett, “Evaluating SFI for a CISC archi-
tecture.” in USENIX Sec, 2006.

F. Besson, S. Blazy, A. Dang, T. Jensen, and P. Wilke, “Compiling
sandboxes: Formally verified software fault isolation,” in ESOP.
Springer, Cham, 2019.

J. A. Kroll, G. Stewart, and A. W. Appel, “Portable software fault
isolation,” in CSF, 2014.

R. J. Feiertag and P. G. Neumann, “The foundations of a provably
secure operating system (PSOS),” in MARK. IEEE, 1979.

A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and
E. Kohler, “The scalable commutativity rule: Designing scalable
software for multicore processors,” SOSP, 2013.

J. Yang and C. Hawblitzel, “Safe to the last instruction: automated
verification of a type-safe operating system,” in PLDI, 2010.

R. Gu, Z. Shao, H. Chen, X. N. Wu, J. Kim, V. Sjoberg, and
D. Costanzo, “CertiKOS: An extensible architecture for building
certified concurrent OS kernels,” in OSDI, 2016.

L. Nelson, H. Sigurbjarnarson, K. Zhang, D. Johnson, J. Bornholt,
E. Torlak, and X. Wang, “Hyperkernel: Push-button verification of
an OS kernel,” in SOSP, 2017.

G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,
R. Kolanski, and G. Heiser, “Comprehensive formal verification
of an OS microkernel,” TOCS, vol. 32, no. 1, 2014.

G. C. Hunt and J. R. Larus, “Singularity: Rethinking the software
stack,” ACM SIGOPS Operating Systems Review, vol. 41, no. 2,
2007.

S.-W. Li, X. Li, R. Gu, J. Nieh, and J. Z. Hui, “A Secure and
Formally Verified Linux KVM Hypervisor,” 2021.

A. Vasudevan, S. Chaki, P. Maniatis, L. Jia, and A. Datta, “liberSpark:
Enforcing verifiable object abstractions for automated compositional
security analysis of a hypervisor,” in USENIX Sec, 2016.

(77

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

A. Ferraiuolo, A. Baumann, C. Hawblitzel, and B. Parno, “Komodo:
Using verification to disentangle secure-enclave hardware from
software,” in SOSP, 2017.

S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb, L. O’Connor,
J. Beeren, Y. Nagashima, J. Lim, T. Sewell et al., “Cogent: Verify-
ing high-assurance file system implementations,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 2, 2016.

L. O’Connor, Z. Chen, C. Rizkallah, S. Amani, J. Lim, T. Murray,
Y. Nagashima, T. Sewell, and G. Klein, “Refinement through restraint:
Bringing down the cost of verification,” ACM SIGPLAN Notices,
vol. 51, no. 9, 2016.

A. Tleri, T. Chajed, A. Chlipala, F. Kaashoek, and N. Zeldovich,
“Proving confidentiality in a file system using disksec,” in OSDI,
2018.

H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek, and
N. Zeldovich, “Using crash hoare logic for certifying the FSCQ file
system,” in SOSP, 2015.

T. Chajed, H. Chen, A. Chlipala, M. F. Kaashoek, N. Zeldovich,
and D. Ziegler, “Certifying a file system using crash hoare logic:
Correctness in the presence of crashes,” CACM, 2017.

H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang, “Push-
button verification of file systems via crash refinement,” in OSDI,
2016.

H. Chen, T. Chajed, A. Konradi, S. Wang, A. Ileri, A. Chlipala,
M. E. Kaashoek, and N. Zeldovich, “Verifying a high-performance
crash-safe file system using a tree specification,” in SOSP, 2017.

T. Chajed, J. Tassarotti, M. Theng, R. Jung, M. F. Kaashoek,
and N. Zeldovich, “GoJournal: a verified, concurrent, crash-safe
journaling system,” in OSDI, 2021.

T. Chajed, J. Tassarotti, M. F. Kaashoek, and N. Zeldovich, “Verifying
concurrent, crash-safe systems with perennial,” in SOSP, 2019.

G. Ernst, J. Pfihler, G. Schellhorn, and W. Reif, “Inside a verified
flash file system: transactions and garbage collection,” in VSSTE,
2015.

G. Ernst, “A verified POSIX-compliant flash file system - modular
verification technology & crash tolerance,” 2017.

G. Schellhorn, G. Ernst, J. Pfdhler, D. Haneberg, and W. Reif,
“Development of a verified flash file system,” in ABZ, 2014.

S. Shinde, S. Wang, P. Yuan, A. Hobor, A. Roychoudhury, and P. Sax-
ena, “Besfs: A POSIX filesystem for enclaves with a mechanized
safety proof,” in USENIX Sec, 2020.

M. S. Miller, “Robust composition: Towards a unified approach to
access control and concurrency control,” Ph.D. dissertation, Johns
Hopkins University, Baltimore, Maryland, USA, May 2006.

D. Devriese, L. Birkedal, and F. Piessens, “Reasoning about object
capabilities with logical relations and effect parametricity,” in Euro
S&P, 2016.

D. Swasey, D. Garg, and D. Dreyer, “Robust and compositional
verification of object capability patterns.” Proceedings of the ACM
on Programming Languages, vol. 1, no. OOPSLA, 2017.

M. Sammler, D. Garg, D. Dreyer, and T. Litak, “The high-level
benefits of low-level sandboxing,” Proceedings of the ACM on
Programming Languages, vol. 4, no. POPL, 2019.

G. Heiser and K. Elphinstone, “L4 microkernels: The lessons from 20
years of research and deployment,” ACM Transactions on Computer
Systems, vol. 34, no. 1, Apr. 2016.

J. Siefers, G. Tan, and G. Morrisett, “Robusta: Taming the native
beast of the JVM,” in CCS, 2010.

M. Sun and G. Tan, “JVM-portable sandboxing of Java’s native
libraries,” in ESORICS. Springer, 2012.

https://man7.org/linux/man-pages/man7/path_resolution.7.html
https://man7.org/linux/man-pages/man7/path_resolution.7.html
https://man7.org/linux/man-pages/man2/open.2.html
https://man7.org/linux/man-pages/man2/open.2.html
https://www.w3.org/TR/wasm-core-1/
https://www.w3.org/TR/wasm-core-1/
https://github.com/viperproject/prusti-dev/pull/859
https://github.com/viperproject/prusti-dev/pull/859
https://github.com/google/AFL
https://github.com/bytecodealliance/wasmtime/issues/2973
https://github.com/wasmerio/wasmer/issues/3188
https://github.com/wasmerio/wasmer/issues/3188
https://github.com/WebAssembly/wabt/tree/main/wasm2c
https://github.com/WebAssembly/wabt/tree/main/wasm2c

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

D. Chisnall, B. Davis, K. Gudka, D. Brazdil, A. Joannou, J. Woodruff,
A. T. Markettos, J. E. Maste, R. Norton, S. Son et al., “CHERI
JNI: Sinking the Java security model into the C,” ACM SIGARCH
Computer Architecture News, vol. 45, no. 1, 2017.

M. Sun and G. Tan, “Nativeguard: Protecting android applications
from third-party native libraries,” in WISEC, 2014.

E. Athanasopoulos, V. P. Kemerlis, G. Portokalidis, and A. D.
Keromytis, “Nacldroid: Native code isolation for android applications,”
in ESORICS. Springer, 2016.

V. Afonso, A. Bianchi, Y. Fratantonio, A. Doupé, M. Polino,
P. de Geus, C. Kruegel, and G. Vigna, “Going native: Using a
large-scale analysis of android apps to create a practical native-code
sandboxing policy,” in NDSS, 2016.

P. Klinkoff, E. Kirda, C. Kruegel, and G. Vigna, “Extending .NET
security to unmanaged code,” International Journal of Information
Security, vol. 6, no. 6, 2007.

J. Edge, “A seccomp overview,” https://lwn.net/Articles/656307/, Sep.
2015.

S. Pailoor, X. Wang, H. Shacham, and I. Dillig, “Automated policy
synthesis for system call sandboxing,” Proceedings of the ACM on
Programming Languages, vol. 4, no. OOPSLA, 2020.

C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A practical
library OS for unmodified applications on SGX,” in USENIX ATC,
2017.

S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe,
J. Lind, D. Muthukumaran, D. O’keeffe, M. L. Stillwell et al.,
“SCONE: Secure Linux containers with Intel SGX,” in OSDI, 2016.

C. Priebe, D. Muthukumaran, J. Lind, H. Zhu, S. Cui, V. A. Sartakov,
and P. Pietzuch, “SGX-LKL: Securing the host OS interface for
trusted execution,” arXiv preprint arXiv:1908.11143, 2019.

A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from
an untrusted cloud with haven,” TOCS, vol. 33, no. 3, 2015.

S. Checkoway and H. Shacham, “lago attacks: Why the system call
API is a bad untrusted RPC interface,” ACM SIGARCH Computer
Architecture News, vol. 41, no. 1, 2013.

D. R. Ports and T. Garfinkel, “Towards application security on
untrusted operating systems.” in HotSec, 2008.

M. Furr and J. S. Foster, “Checking type safety of foreign function
calls,” in PLDI, 2005.

R. Monat, A. Ouadjaout, and A. Miné, “A multilanguage static
analysis of Python programs with native C extensions,” in SAS,
2021.

G. Tan and J. Croft, “An empirical security study of the native code
in the JDK,” in USENIX Sec, 2008.

G. Kondoh and T. Onodera, “Finding bugs in Java native interface
programs,” in ISSTA, 2008.

F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and D. Stefan,
“Finding and preventing bugs in JavaScript bindings,” in /[EEE S&P,
2017.

V. J. Manes, H. Han, C. Han, S. K. Cha, M. Egele, E. J. Schwartz,
and M. Woo, “The art, science, and engineering of fuzzing: A survey,”
IEEE Transactions on Software Engineering, vol. 47, no. 11, 2019.

X. Zhu, S. Wen, S. Camtepe, and Y. Xiang, “Fuzzing: a survey for
roadmap,” CSUR, 2022.

C. Holler, K. Herzig, and A. Zeller, “Fuzzing with code fragments,”
in USENIX Sec, 2012.

H. Han, D. Oh, and S. Cha, “CodeAlchemist: Semantics-aware code
generation to find vulnerabilities in JavaScript engines,” Jan. 2019.

S. Lee, H. Han, S. K. Cha, and S. Son, “Montage: A neural network
language Model-Guided JavaScript engine fuzzer,” in USENIX Sec,
2020.

[121]

[122]

[123]
[124]

[125]

[126]

[127]

[128]

[129]

[130]

S. Schumilo, C. Aschermann, A. Abbasi, S. Worner, and T. Holz,
“HYPER-CUBE: High-dimensional hypervisor fuzzing.” in NDSS,
2020.

G. Pan, X. Lin, X. Zhang, Y. Jia, S. Ji, C. Wu, X. Ying, J. Wang, and
Y. Wu, “V-shuttle: Scalable and semantics-aware hypervisor virtual
device fuzzing,” in SIGSAC. ACM, 2021.

“syzkaller - kernel fuzzer,” https://github.com/google/syzkaller.

W. Xu, H. Moon, S. Kashyap, P.-N. Tseng, and T. Kim, “Fuzzing
file systems via two-dimensional input space exploration,” in /EEE
S&P, 2019.

S. Kim, M. Xu, S. Kashyap, J. Yoon, W. Xu, and T. Kim, “Finding
semantic bugs in file systems with an extensible fuzzing framework,”
in SOSP, 2019.

J. Yang, C. Sar, and D. Engler, “Explode: a lightweight, general
system for finding serious storage system errors,” in OSDI, 2006.

kanishkarj, “WASI multi-threading and atomics,” 2021. [Online].
Available: https://github.com/WebAssembly/WASI/issues/296
“Linux kernel ELF core dump privilege elevation,” https:/isec.pl/en/
vulnerabilities/isec-0023-coredump.txt, 2005.

“In the lands of corrupted elves: Breaking ELF software with Melkor

fuzzer,” https://www.blackhat.com/docs/us- 14/materials/arsenal/us-
14-Hernandez-Melkor-Slides.pdf, 2014.

“CVE-2017-16997,"
16997/, 2017.

https://www.cvedetails.com/cve/CVE-2017-

https://lwn.net/Articles/656307/
https://github.com/google/syzkaller
https://github.com/WebAssembly/WASI/issues/296
https://isec.pl/en/vulnerabilities/isec-0023-coredump.txt
https://isec.pl/en/vulnerabilities/isec-0023-coredump.txt
https://www.blackhat.com/docs/us-14/materials/arsenal/us-14-Hernandez-Melkor-Slides.pdf
https://www.blackhat.com/docs/us-14/materials/arsenal/us-14-Hernandez-Melkor-Slides.pdf
https://www.cvedetails.com/cve/CVE-2017-16997/
https://www.cvedetails.com/cve/CVE-2017-16997/

	Introduction
	Overview
	The WASI runtime
	Unsafety in sandboxing runtimes
	Securing the runtime with WaVe

	Design
	Threat model
	WaVE's design
	Modeling unsafe behavior with effects

	Verification
	Memory safety
	Filesystem isolation
	Network isolation
	Setup and teardown

	Implementation
	Correctness evaluation
	Performance evaluation
	What is WaVe's overhead on single hostcalls?
	What is WaVe's overhead applications?

	Related Work
	Limitations
	Conclusion
	References
	References

