Symbolic Security Analysis of
Ruby-on-Rails Web Applications

Avik Chaudhuri
University of Maryland, College Park

avik@cs.umd.edu

ABSTRACT

Many of today’s web applications are built on frameworkg itha
clude sophisticated defenses against malicious advessalrow-
ever, mistakes in the way developers deploy those deferssd ¢
leave applications open to attack. To address this issuéntwe
duce Rubyx, a symbolic executor that we use to analyze Raby-o
Rails web applications for security vulnerabilities. Rutspecifi-
cations can easily be adapted to a variety of propertiese ey
are built from general assertions, assumptions, and oljeati-
ants. We show how to write Rubyx specifications to detectequsc
tibility to cross-site scripting and cross-site requesgéoy, insuf-
ficient authentication, leaks of secret information, ifisignt ac-
cess control, as well as application-specific security @rigs. We
used Rubyx to check seven web applications from variouscesur
against our specifications. We found many vulnerabilitesl each
application was subject to at least one critical attack. dbnag-
ingly, we also found that it was relatively easy to fix mostnart
abilities, and that Rubyx showed the absence of attacks aiite
fixes. Our results suggest that Rubyx is a promising new wdjsto
cover security vulnerabilities in Ruby-on-Rails web apations.

Categories and Subject Descriptors

D.2.5 [Software Engineering: Testing and Debugging-Symbolic
executionF.3.1 [Logics and Meanings of Program§ Specifying
and Verifying and Reasoning about Progranpecification tech-
niques, Mechanical verification

General Terms
Languages, Security, Verification

Keywords

web-application security, symbolic execution, automatealysis

1. INTRODUCTION

Today, online services are a crucial part of many indussigh
as banking, government, healthcare, and retail. Unfotélypahe
web applications that underlie these services often fateusese-
curity threats, and vulnerabilities in these applicatioas lead to
loss of revenue, damage to credibility, and legal liahility

Permission to make digital or hard copies of all or part o thiork for

personal or classroom use is granted without fee providaticbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyies prior specific
permission and/or a fee.

CCS’10,0ctober 4-8, 2010, Chicago, lllinois, USA.

Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

Jeffrey S. Foster
University of Maryland, College Park

jfoster@cs.umd.edu

Many web applications are built on top of frameworks whose
APIs provide extensive defense mechanisms against comitnon a
tacks such as cross-site scripting (XSS) and cross-sitesefprgery
(CSRF). However, the mere existence of these APIs is ingerifie-
to be effective they must be used correctly by the progranmwies
must ensure that the logic of the web application coopenaits
the design of the APIs. Moreover, even if security-relevsPls are
used correctly, application-specific security vulneriébs, such as
insufficient access control checks or leaks of confidenti@rima-
tion, could still remain.

In this paper, we propose addressing this challenge by sgimg
bolic executiorf19, 15] to analyze Ruby-on-Rails (or just “Rails”)
web applications. Rails is a popular framework based on Raiby
object-oriented scripting language. We focus on serag-sode,
and we are concerned with protecting the web applicatiorhane
est users from dishonest users or other adversarial clients

We developed Rubyx, a symbolic executor for Rails, and use it
to detect potential vulnerabilities such as XSS, CSRF eni#aility
to session manipulation, and allowing unauthorized ac@ssng
others. Unlike most previous work on web-application sgg{t7,

4, 7, 33], we do not study such threats in isolation; by usig-s
bolic execution, we can perform end-to-end reasoning aalbof
these vulnerabilities simultaneously. And although the-level
details of our approach are targeted toward Rails, we belieg
same ideas can be applied to other web application framework

Briefly, symbolic execution involves running code wiymbolic
variables which are unknowns that range over sets of concrete
values. At conditional branches involving symbolic vatésh the
symbolic executor consults an underlying Satisfiabilityddlm The-
ory (SMT) solver to decide which branches could be takenotfib
are possible, the executor conceptually forks executigimg both
paths. Thus, if run to completion, symbolic execution exgdall
paths and hence can verify the absence of vulnerabilities.

Of course, verifying all paths in general would be intratgab
since programs can have an unbounded number of paths. How-
ever, we have found that web applications are typically &oi‘aand
“shallow”—while there are many possible requests and neses,
each request-response path is usually short. Hence thiaidasn
ideal for symbolic execution, because the shallownesseopéths
controls the exponential blowup from branches. To handle un
bounded data structures, we rely on the small model hypisthes
we initialize databases with a small number of symbolic cisje
and prove the absence of vulnerabilities up to that boundusTh
soundness in our setting is the same as in bounded modelicgeck

A major advantage of our approach is that ipisgrammable it
can be used to specify and check arbitrary properties ofdsteln
Rubyx, the programmer calissert e to check that the (arbitrary)
Ruby expression always evaluates tioue; assume ¢ to tell Rubyx

to assume that holds; and defines methods namedhriant to
specify properties that must be invariant during execution

Using this simple interface, we show how to encode a variety
of security properties at various levels of abstraction. iwvple-
mented a proxy Rails API that simulates the original API, and
uses notions such as principals—distinguished by knoveleafgy
secrets—and trust to assert XSS safety, CSRF protectidrpass-
word authentication. At a high level, XSS safety specifies tmly
trusted strings can be part of a response; CSRF safety ssettifit
the principal that sends a request must be at least as trastiu:
principal that receives the response; and password aithgon
specifies that senders and receivers of requests are ad$dassted
as the logged-in user. These specifications concisely utlsev-
eral classic attacks as well as recent variants studiedeifitédra-
ture [4]. Moreover, our specifications are generic: we catklior
XSS safety, CSRF protection, and password authenticaitioplys
by symbolically executing a target application in conjumictwith
our proxy API.

In addition to these generic security specifications, weatao
use Rubyx to specify and check application-specific secpribp-
erties, such as access control and functional correctn&gsbe-
lieve that the breadth of these properties, along with theege
properties above, demonstrates the flexibility and powaersirig
Rubyx to reason about security vulnerabilities.

Rubyx is implemented on top of DRails, a tool we developed
previously to “compile” Rails code by making many impliciais
conventions explicit, which simplifies analysis [1]. Rubyzes
Yices [29] as its SMT solver. To improve performance, Rubggs
several optimizations, including a careful encoding ofrteeessary
constraints in Yices as well as caching to reduce solverigsier

We applied Rubyx to analyze security of seven Rails apjdinat
obtained from various sources. Rubyx found several serals
nerabilities in these applications, including XSS, CSRREhanti-
cation failures, insufficient access control, and apglicaspecific
problems. Encouragingly, we found that it was generallyy é¢as
manually fix these vulnerabilities, and that after doing sadbyX
could show that the attacks were eliminated for the fixediegpl
tions. Rubyx took between half a minute to 3 minutes in itdysis
of these programs, which range from 5k—20k lines of codeorinf
mally, we found the effort required to apply Rubyx to be sanil
to what we would expect in testing, and we believe this apgroa
will prove viable in practice. Finally, our experiments ealed
several common misunderstandings about the defense nigcisan
provided by Rails. We have reported these observationgtBdils
security team, and are working with them on improving thegtes
and documentation of these mechanisms.

In summary, this paper makes the following contributions:

assume/assert annotation mechanism. We believe that naiseo
formal specifications of some of these properties are ngt el
and important for end-to-end security analysis of web apgilbns,
but that they help clarify the relevant security concernd aan
serve as a guideline for Rails developers (Section 4).

e \We evaluate Rubyx and our specifications on seven Rails-appli
cations. We discovered several serious attacks agairss typli-
cations, and that the vulnerabilities were generally ghifiorward
to fix (Section 5). We are working with the Rails security team
to ensure that such vulnerabilities can be more easily adoiy
future developers.

We believe these results suggest that symbolic executigann
eral, and Rubyx in particular, is a promising approach faeckng
and preventing security vulnerabilities in web applicasio

2. ATTACKS AND DEFENSES IN RAILS

In this section we discuss several important vulnerabgitihat
can arise in Rails programs. In Section 4, we will see how teate
these vulnerabilities using Rubyx.

For illustration, we use examples fropubmgr an application
developed by one of the authors to manage publications by-mem
bers of our research group. Specificalybmgrmaintains a data-
base of users, authors, and publications. An author musgbaLip
member or a co-author of a group member; each author may have
several publications. Conversely, a publication may bkelihto
several authors, some of which must be group members. Adisti
guished useradmin may identify other users as group members.
Such users can then manage their co-authors and publisation

Like all Rails applicationspubmgr consists of three kinds of
componentsmodels—Ruby classes that interface to the database;
views—either HTML pages with embedded Ruby code or, equiva-
lently, Ruby methods that generate HTML pages; emtrollers—
methods that are invoked when the client requests a web page.
controller receives as inputs any GET or POST parametersisub
ted by the user, as well as state information encoded in g®®e
As a controller runs, it may redirect to other controllerse models
to access the database, and return by specifying which Vieuld
be rendered in response to the user’s request.

2.1 XSS

Several web attacks useoss-site scriptingXSS) to execute ar-
bitrary (malicious) code on the browser. In XSS attacks, e
sary embeds executable code (likely JavaScript) in texidiel the
web application’s database. When a user receives a web page ¢
taining those compromised fields, the browser executesdde, ¢
possibly leaking the user’s secrets or carrying out opamativith

¢ We study a range of attacks and defenses in Rails, and explainthe user’s privileges on behalf of the adversary.

the intricacies of correctly using Rails security APIs—ggpimuch
deeper than the rough overview in the OWASP guide [36]. We be-
lieve this discussion is of independent interest, as ouexEnts
indicate that developers often do not appreciate the didstlef
Rails’s defenses, often rendering them ineffective (8ec)).

e We introduce Rubyx, which we believe is the first symbolic
execution engine for Ruby and for Rails. The broad and shallo
nature of Rails applications makes them a particularlyetive tar-
get for symbolic execution. Rubyx includes several optatians,
including SMT solver query caching (Section 3).

© ©® N o U b W N P

=
o

11

e We show how to encode specifications of low-level security:
properties such as XSS, CSRF, password authenticationsend 13
crecy, and several application-specific properties, uftngyx's

To illustrate potential attacks, consider the followingleo

class AuthorsController
def insert_author
@author = Author.new(params[:name], params[:webpage])
@author.save; render view_author
end
def find_author
@author = Author.find(params[:id]); render view_author
end
end
module AuthorsView
def view_author()
show(@author.name); show(@author.webpage)
end
end

1
1
17

o o

1
19
20

©

2
2
23
24

N P

This code contains two controllers. The fiissert_author, is given
a name and a web page, which are passed in vigdtzens hash.
On line 3, the controller creates a neéwthor, which is a model
representing a database row. The controller then writesiéime
author to the database and cailsv_author to display a web page

25
26
27

class AuthorsController # continued
protect_from_forgery :only => :insert_author
end

This call ensures that POSTsiteert_author must include a param-

in response. That view shows the author's name and web pageeter namedauthenticity_token (automatically included by Rails in

(line 12). Along the same lines, tlied_author controller looks up

forms), and this parameter must match an internal tokennedti

the input authoiid in the database and renders the same view to by form_authenticity token(), which is part of the Rails API. Here

show the author’s information.

Unfortunately, while this code is straightforward, it isalvul-
nerable to XSS attacks: an attacker caniasert_author to create
an author whose name or web page contains malicious code.

A typical countermeasure against XSS is to sanitize anytiet
may ultimately be rendered by the browser, to ensure thatsted

28

30
31
32

inputs do not embed executable code. One way to do this is Raib

is to validate text before writing it to the database, as exdbde:

class Author # model for Author
validates_format_of :name, ... # regexp
end

Here the programmer calls thealidates_format_of method to tell
Rails that before theame field can be written to the database, it
must match a given regular expression (elided by ...). lnway
we can prevent code from being included in author names.
Another countermeasure is to HTML-escape text before alyspl
Here is code to do just that whenever thebpage field is rendered:

module AuthorsView
def view_author() ...; show(html_escape (@author.webpage)) end
end

34
35

Both of these countermeasures prevent executable cods-in di

played web pages. Critically, however, the programmer maist
member to use them to enable their protection. Moreoveicaot
that even for something as simple as sanitization thereitieeeht
approaches, and the point at which sanitization is appliag vary.

2.2 CSRF

Recently, cross-site request forgefCSRF) has emerged as a

is a fragment of the code we use in Rubyx for this part of the: API

class Controller::Base
def form_authenticity_token
session[:_csrf_token] ||= fresh (TOKEN)
end
def forgery_safe?
Ipost? || (params[:authenticity_token] == form_authenticity_token)
end
end

On line 30, form_authenticity _token() either return the current to-
ken (stored insession[:_csrf_token]) or generates a fresh one (if
session[:_csrf_token] is nil). The methodforgery_safe? then en-
sures that this token matches the parameighenticity_token for
POST requests.

Finally, we must account for “insider attacks,t., attacks by
users of the application (against other users of the apjaita To
understand this issue, we need to look again at the implement
tion of token generation on line 30 above. The complicatiereh
is thatsession[:_csrf_token] is not reset automatically by Rails be-
tween logins, hence different users that log in from the skirasl-
dress could inadvertently be given the same CSRF token. of@ pr
erly protect against CSRF, the application should alwaymgh
session[:_csrf_token] to nil before logging in a user, so that the to-
ken is regenerated whenever a different user logs in. Railsges
a methodreset_session , which has just this effect:

class Controller::Base # continued
def reset_session () session = {} end
end

powerful technique for several web attacks. CSRF has been de We should stress that this mechanism is fairly delicategtample,
scribed by some experts as a sleeping giant, because its jowe callingreset session after logging out a user may be inadequate,

(as yet) widely underestimated. CSRF attacks work as fallow
Suppose that a user interacts with a web applicationhile also
browsing another web sitB. Pages retrieved from® may cause
the user’s browser to send further requests (e.g., GET sts)f@r
images) on behalf of the user. By compromising &tean attacker
can control those requests; in particular, such requestbesent

since we cannot assume that a malicious user will politedydot
(and most applications will still log in a different userexix.

Our experiments suggest thatet_session is seldom used cor-
rectly (if at all) to prevent CSRF attacks. One possible ogas
that the Rails documentation foegset_session focuses on XSS
attacks, and developers may think it is unnecessary if thig t

to applicationA, and appear to come from the user when in fact Other measures to prevent XSS. In contrast, when we dewklope

they come from the attacker. This is especially harmful & tb-

quests ar@mon-idempoteni.e., they cause state changes).
Preventing these attacks in Rails requires employing akver

lated countermeasures. First, we ensure that any callgrtagt

a specification for CSRF protection (Section 4), we pinpadrihe
significance ofeset_session for CSRF.

Notice that using CSRF protection is not that easy, and ¢hgck
that CSRF protection is used correctly requires delicaasaring.

change state are POST requests. In the following code, we useWe need to track dynamic checks that ensure requests are;POST

Rails’s before_filter method to specify thaénsure_post must be
called before a request is routed to theert_author controller.

class AuthorsController # continued

before_filter :ensure_post, :only => :insert_author

def ensure_post() redirect_to :error unless request.post? end
end

Second, since POST requests can still be surreptitiousbieds

from other web sites open in the browser [36], we require that

POST requests include a secret token, which is only availabl

we need to distinguish new objects based on context to elifter
ate tokens generated for different users; and so on. Tecbside-
veloped for reasoning about trace properties of securibyopols
may apply [14]—but such techniques require extensive atioois
that the usual Rails developer cannot be expected to provite
contrast, our symbolic execution-based analysis can lyeatiify
CSRF safety for such code.

2.3 Session manipulation
Next, we consider session manipulation attacks. Sessiguns u

web pages that may legitimately send POSTs. We do this by call ally maintain crucial state. For example, after a user sssfady

ing Rails’sprotect_from_forgery method:

authenticates (and logs in), the identity of the user isroft®red

3
4
41
42
43
44
45
46
47
48

S ©

4
50
51
52
53
54
55
56
57
58
59

©

in the session and trusted by the web application. Furthernas

whether the current user is a member of our research group and

we have seen above, CSRF tokens are stored in sessions. Thusf not, redirects the user to lagin controller, thus ensuring that

maintaining the integrity of sessions is very importantdecurity.

Rails provides two modes for storing sessionsddiabase-store
mode, the session is stored in the database, a sessiorfiatanti
stored in a cookie. This mode is secure but involves soméeaer
since the database must be accessed for every request.

In contrast, incookie-storemode (the default), the session is
stored in the cookie as a marshaled string. This is efficlarttre-
quires that the session be cryptographically protectethfegrity;
otherwise the attacker may be able to fool the server with Ik ma
ciously crafted session. Thus, in Rails, a session sentégeafver
is hashed with a server-side secret, and the hash is vefiedéry
request. Unfortunately, this does not fully guarantee thegrity
of sessions, because it does not guard agaapshy attacks For
example, consider the following code, which defines a cdetro
methodauthenticate for logging in users ipubmge

class UsersController
def authenticate
password = User.find(params[:id]).password
unless params[:password] == password
if session[:retrying] then redirect_to :error
else session[:retrying] = true; redirect_to :login end
end
session[:user_id] = params([:id]
end
end

Here the user’s password is looked up (line 41) and, if nohdou
the user is given one chance to retry (lines 42—45). The figtlgling
of session tracks whether the user has already retried. Unfortu-
nately, this code is vulnerable to a replay attack: if somer €els
to log in, that user can replay the session before the try dab “r
back” the state ofetrying, effectively allowing any number of tries.
The Rails documentation recommends not maintaining seasit
information in the session, although it does not help in dieg
what information is sensitive. In our experience, whenaler
velopers store non-standard information in sessions ipgs®o
cut down on database accesses), there is a high probabitity t
application-specific properties can be violated usingagpttacks.
Safe use of cookie-store mode requires careful programaauirgy
thorough reasoning about sensitive information and sessio
Replay attacks are easy to detect with symbolic executign, b
exploring paths in which the current session may be any of afse
past sessions. In contrast, specialized techniques thadtiake
session replay into account would be unsound in Rails.

2.4 Unauthorized access

Finally, applications can implement access control to @név
unauthorized access to data and enforce specific secrecin-and
tegrity properties. The following code snippet illustsatme way
we enforce authorization ipubmgr

class PublicationsController
before_filter :internal_user, :only => :show_manuscript
before_filter :user_is_author, :only => :edit_publication
def internal_user
redirect_to :login unless User.internal?(session[:id])
end
def user_is_author
all = Publication.find(params[:id]).authors
redirect_to :login unless all.include?(User.author(session[:id]))
end
end

This code specifies filters before the controllsisw_manuscript
andedit_publication (not shown). Thénternal_user method checks

only internal users can view unpublished manuscripts (sesgc

property). Similarly, theuser_is_author method ensures that the
current user is an author of the publication to be edited,hsb t
authors can edit only their own publications (an integritygerty).

As with the previous examples, we can see that Rails provides
support for preventing unauthorized access, but it isgtilto the
programmer to determine how to code their access contraig us
the Rails API. Moreover, reasoning about this code reliestbar
security properties, such as correct password autheoticand
safety against session manipulation, CSRF, XSS, and so an. O
symbolic execution-based approach is very effective bee#ican
reason uniformly and simultaneously about all of these @rtigs.

3. SYMBOLIC EXECUTION WITHRUBYX

As we saw in the previous section, ensuring that Rails’srigcu
defenses are used correctly requires reasoning about roany |
level details of code. This is a perfect task for symbolicoexe
tion, which can automatically explore many possible progexe-
cutions, including corner cases that may be hard to find wiker
In this section, we discuss the design of Rubyx, our symhmtic
ecution engine for Rails. In Section 4, we give details of hogv
encode detection of security vulnerabilities using Rubyx.

At its core, Rubyx is a Ruby source code interpreter, with one
key difference: in addition to modeling concrete prograrues,
Rubyx can interpret programs that contaymbolic variableswhich
are unknowns that represent arbitrary sets of concretesaRubyx
tracks these unknowns as they flow through the program. Rubyx
also maintaingath conditionsthat track constraints on symbolic
variables; initially, the path condition is simpisue.

When we reach a branch with a guardhat involves symbolic
variables, we conceptually split the currevarld (i.e., the state of
the Ruby program) into two new worlds, one in whighs con-
joined with the path condition, and one in whiefp is conjoined
with the path condition. We pass the new path conditions to an
SMT solver, Yices [29], to decide whether one or both condai
are actually satisfiable,e., whether the corresponding world is
reachablefrom the start of the program. We continue executing
the reachable world(s) forward, splitting the worlds in fbaure
as necessary. In this way, Rubyx can simulate all paths ghrou
the program that are reachable for any concrete valueshairt-
known might take. More discussion of symbolic execution ban
found elsewhere [19, 15].

3.1 Specification and verification

Rubyx includes several built-in primitives for specifyiagd check-
ing properties. The method caiesh (n) returns a fresh symbolic
variable named after, which may be any Ruby symbal.€., in-
terned Ruby string). (The name is just a convenience in sihaked-
ing Rubyx’s output.) Such a symbolic variable can range avgr
Ruby object, although its structure is constrained by sytset op-
erations on it. The method calksume (p) conjoins the path con-
dition with p, which may be any Ruby expression. (In conditional
tests in Rubyfalse andnil are both treated dalse and all other
values are treated &ime.) Theassume primitive is used to specify
a precondition for a property we wish to verify. Dually, thetimod
call assert (p) checks whether the path condition impligsif not,
Rubyx reports an error. In other wordssert specifies postcondi-
tions for properties we wish to verify.

Lastly, Rubyx supportebject invariants A method definition
of the formdefinvariant () p end in any class maintaing as an
invariant for all objects of that class. More precisely, assume p

when an object instance is created, anchasert p whenever there
is an update that changes the object’s state. Rubyx usefi@aref
algorithm that monitors parts of the state relevant to aariant

and re-enforces the invariant only when those parts arefraddi

3.2 Integration with Yices and Optimizations

As with most symbolic execution systems, Rubyx’s capaédit ¢,
and performance depend heavily on exactly how it uses Yites, s

60
61
62
63
64
65

-3
=)

underlying SMT solver. Next, we will discuss some of the keys

No XSS

assert (output.trust?) unless (Prin.receiver == Lattice.Bot)
Secrecy

assert (Lattice.leq (output.secrecy?, Prin.receiver))
No CSRF

assert (Lattice.leq (Prin.receiver, Prin.sender)) if params[:post]
assert params[:post] if (Session.modified? || Db.modified?)
Authentication
assert (Lattice.leq (session[Prin.ld], Prin.receiver))
assert (Lattice.leq (session[Prin.Id], Prin.sender)) if params[:post]

challenges we encountered in working with Ruby, Rails, aive&!

First, Ruby hashes, such params andsession, are used per-
vasively in code. To reason as generally as possible in thiese
uations, we model hashes with uninterpreted functions ce¥|
which allows us to leave the hashes as unknowns while sfi su
porting usual lookup, update, and equality operations.[24]

Second, we found that strings appear pervasively in codeafin
ticular as inputs and outputs), and we often want to treanthe
arbitrary unknowns while still supporting concatenatiom &ather
operations. In our experience, burdening Yices with cansts
generated by string operations leads to poor performamnsgedd,
we evaluate and reason about string operations abstrad®yibyx
by maintaining partial solutions for strings in the state.

Third, defining an appropriate datatype for Ruby values oe¥i
is crucial for sound reasoning with (in)equalities. Untworately,
Yices does not allow the kind of recursive datatype definginec-
essary to express most Ruby values. We get around this prdiyle
using an uninterpreted type in the definition, and carefdégign-
ing the form of constraints so that this type is always intetgd as
the original datatype when solving those constraints.

Overall, we put a lot of effort into ensuring that Yices can de
termine the satisfiability of constraints generated by RubWwe
encode queries in the decidable fragment of the input layegod
Yices, so Yices should always terminate with either "satigé" or
"unsatisfiable" on our queries. This is in contrast to reldtmls
for which theorem provers may fail and require further aatiohs
or dynamic checks [6].

Finally, we implemented a number of optimizations in Rubyx
to dramatically improve performance. Most importantly, feend
that many of the worlds Rubyx explores share logically it
path conditions. Thus, we maintain a cache of constrairds th
Yices has already solved, and avoid resolving such conssrai

Another important factor for performance is the orderinglafises
in the constraints passed to Yices. On several occasionsumel f
that changing the ordering can reduce Yices solving timen fad-
most an hour to less than a second. Thus, we keep constraints i
a normalized form, with clauses sorted in a fixed order. Our or
dering is designed to place simple conditions before monepbex
ones, and Yices calls have never taken more than a couplenef mi
utes (at the extreme) with our ordering. Maintaining clauisea
normalized order also improves cache hits.

Our last important optimization is to implement some bagpiere
ations, such as lattice operations on secrecy levels (seE®5d),
in Yices rather than in Rubyx. This increases the complexityre
constraints passed to Yices, but greatly reduces branchitige
interpreter, which saves space and time.

4. SECURITY ANALYSIS WITH RUBYX

There are three steps to analyzing Rails applications withyiR.
First, we apply DRails, a tool we previously developed [liitake
Rails code easier to analyze by making many implicit Raite/eo-
tions explicit. For example, DRails explicitly adds datsdbaccess
methods to models, inserts callséader that are implicit in Rails,
and translates HTML with embedded Ruby code into pure Ruby.

Figure 1: Specifications of common security properties

We likely could have used Rubyx for this purpose, but as DRail
was already developed it was convenient to start with.

Second, we import proxy implementations of (a subset of) the
remaining Rails API methods, the browser, and the web server
Overall, the imported code amounts to less than 150 linesiby/R
Besides providing a functional environment for the appiaapro-
gram to run in, the imported code specifies and verifies some co
mon, low-level security properties.

Finally, we execute amnalysis script provided by the devel-
oper, that includes several symbolic “tests.” Each suchpegu-
lates the database with some symbolic objects, defines swaue-i
ants for those objects, assumes some preconditions, sgniisl&c
requests to the browser interface, receives responsesassedts
some postconditions. The goal of the analysis script is tectli
the exploration of paths and specify and verify furtherhhligvel
properties of the application.

After running the analysis script, Rubyx reports the reaha
worlds in which the properties do not hold., it reports satisfiable
path constraints that cause assertion failures, whichrmencode
feasible path traces to exploit bugs.

Secrecy lattice and principals Low-level security properties of
code ultimately rely on the preservation of secrets, sudokens
and passwords. Thus, our specifications are basqgtinoipals
which are secrecy levels in a lattice. In practice, the mpials
include various users (as identified by the applicatiord, appli-
cation itself (T'), and the attackerl(); they are partially ordered
by their knowledge of secrets, with > honest users> L. The
honest users do not know each others’ secrets; dishoneastleak
their secrets to the attacker; and the application’s searetexclu-
sive. To model secrecy levels, our proxy implementatioruities
a clasd.attice with constant®ot andTop and a methodkq.

For any interaction (request and response) with the wel-appl
cation, we consider three role®;, the principal that sent the re-
quest;P,., the principal that received the response; @cthe prin-
cipal of the logged-in user. Our proxy implementation imes
a classPrin to model these roles: we hav@, = Prin.sender,
P = Prin.receiver, and P; session[Prin.Id]. While Prin.ld is
constant for an applicatiore(g, for pubmgt Prin.ld = :id), the
rolesP;, P, andP; may change between interactions; all of these
are set by the analysis script.

With these roles, we specify four low-level security prdjees—
No XSS$SecrecyNo CSRFE Authenticatior—in the proxy browser
interface, so that they are verified for every interactionhe§e
specifications rule out the kinds of vulnerabilities dismain Sec-
tion 2. The exact specifications are shown in Figure 1; weudisc
these in detail in later subsections, but for now, obsereg ttie
specifications are quite simple despite covering sevecglagties.

Furthermore, in combination they facilitate reasoninguatemd-
to-end security:No XSSand Secrecytogether imply preservation
of the secrecy lattice, whilBlo CSRFand Authenticationrely on

secrecy to ensure the soundness of access control. Fiotdbyf
high-level properties specified in analysis scripts, swchrdorcing
that operations maintain consistency of the databasealpirely
on these low-level properties for the specifications to brecoo.

Analysis scripts Analysis scripts typically proceed as follows.
First, the database is populated with objects containirighown
fields. For example, to creatdJaer the developer may call:

the database mode, only the session identifier is storedaokies
while the session information itself is stored in the das&bdn this
mode there is not much room for session manipulation, and so i
our proxy implementation, the browser is not allowed tociftbe
Rails internal@session field.

On the other hand, in the cookie-store mode, the browsekdrac
the current session internally, and sessions are storetbgnaphi-
cally MAC-ed in the cookie. Thus, requests may change thesnur
session by changing the cookie. In our proxy implementation

70| User.create(fresh (ATTRIBUTES))

abstract MAC-ing of an object by an identity operation with the

The create method, automatically added by DRails, populates the Side effect of includinge in a private list. Verifying the MAC of
fields of a newUser object according to the argument and saves & then redupes to checking whetheis in this list. This encoding
the object in the database. In this case, we pass in a fresh un-llows sessions to be replayed but not forged. Moreoverpmmxy
known hash (named aftXTTRIBUTES), and so Rubyx will in implementation ensures t_hat principals cannot know (ansl ttan-
turn introduce fresh unknowns for all fields in thiser object. not replay) sessions received by other principals.

Also, those unknowns will automatically be constrained by a 4 2 XSS

invariant s given by the developer. For example, we may require K K It . h i
that thehashed_pwd attribute should be the cryptographic hash of . Next we tackle XSS attgc s Recall from Section 2.1 t _atsRa|
includes two defenses: usinglidates_format_of to prevent fields

the @password field. ith code f bei dinthe datab hi
Having established an appropriate state, various coetsolre wit code from being store. In the database, or caling_escape
to sanitize strings before display.

“tested” by sending requests with unknown parameters. ¥ame T K o> Rail impl .
ple, the developer may request the browser to selndimrequest o ’trac_ samtlzatlpn, our Rails proxy 1mp emenFatlon
Ruby’s String class with a trust level. For a strisgcalling s.trust?

to UserController: . L .
returns true if the string is trusted, and callingrusted marks a
string as trusted. We reduce Rails’s sanitization routinesstate-

: ments on trust. To encodeml_escape , we simply implement it
The parameters are given by a fresh unknown hash, and so-paramgg 4 proxy API that returns a trusted code of the string passied
eters like the POST/GET type of the request and the CSRF token

carried by the request, as well as other request-specifioygers 76| module View::Base # continued
such as a password, will be unknowns. Any conditions on saeh p’’| defhtml_escape (s) s.trusted end
rameters that are established dynamically by code—suchezke ol end
ing the type of the request, matching the CSRF token, chgdkia
password, and so on—cause Rubyx to explore alternativedsvorl
with the relevant constraints. And in each of those worldshyx
will check the low-level security properties in Figure 1. N T —
o . . 7

tielsn ig?gl)?:aqt;}gdeveloper may specify and verify other prop 80| def save() assume @name.trust?; Author.db << self end

) ' 81| end

82| def Author.invariant () @db.forall {Jauthor| author.name.trust?} end

71| response = Browser.exec(UserController, :login, fresh :PARAMS))

We translatevalidates_format_of into trust assumptions. For
example, here is a translation of the callvidates_format_of
from Section 2.1:

7
7
7
7

N

assume Browser.session[:id]
response = Browser.exec(UserController, :update, fresh :PARAMS))
Update by admin

[}

Since we will reject any unsanitized strings, we can assursave,
which writes to the database, thatme is trusted (line 80). (Note

a8

assert (User.admin?(Prin.sender)) if Db.modified?(User)

Here the developer assumes that the session id isihgndicating
a successful login. Then the developer sends a request ipriate
operation, and asserts that if theer database is modified, then the
user is an administrator.

The constraint passed to Yices to check this assertion m4ll i
clude various facts that arise from the specifications ofdivelevel

that we do not check the regular expression tiahe is tested
against; Rubyx assumes it is correct.) This maintains aonaait
ically generated invariant of the database: thee fields of all
author objects in it are trusted (line 82). In turn, this ingat im-
plies that anynames retrieved from the database are trusted.

Once we have established the trust of strings, we can reason
about XSS. In our proxy implementation, any strings disgthin

properties in Figure 1. For example, the request must be POSTa response are concatenated to @wutput field of the response.
(by our enforcement that only POST requests may write to the In Rubyx, concatenating string with string y sets the trust ok

database); the sender musttewser.session[:id] (by CSRF pro-
tection and write authentication for POST requests); Bigiser.
session[:id] must be aradmin (by a specific dynamic check in the
application code, not shown).

In the following subsections, we explain our formal speeific
tions for the common security properties in Figure 1. Theszs
ifications apply to any Rails application that uses the RaR$ in
standard, recommended ways to achieve security. Othdicafipn-
specific properties that may arise are discussed on a casasky
basis for our experimental benchmarks in Section 5.

4.1 Session manipulation

Since session manipulation can be used to violate otheeprop
ties, it is important to implement sessions faithfully. B&that in

to the minimum of the trusts of andy. We also assume that any
strings passed as parameters in a request are untrustesth@mot).
Then the specification dflo XSSshown on line 61 of Figure 1, is
simply that the@output field of a response must lristedunless
the output is received by an attacker.

This technique captures the key principle behind defergaiast
XSS: that inputs must be sanitized before they flow to outgBys
assuming that inputs may be untrusted and requiring thautsit
be trusted, we effectively force inputs that flow to outputpass
through some sanitization mechanisms, which in turn “Bléss
untrusted strings as trusted. (We handle SQL injectionlartyj
but do not mention it further since we have not seen SQL iigect
vulnerabilities in Rails—the applications we've studiddays use
secure Rails APIs for database queries and updates.)

8.
8
8!
86
87
88

g~

session[:_csrf_token] = ? session[:_csrf_token] = ...
session[Prin.Id] = nil session[Prin.Id] = nil

login ’ authenticate "

work

session[._csrf_token] = ...
session[Prin.ld] = ...

logout

Figure 2: State machine forsession

4.3 CSRF

Next, we consider CSRF attacks. Recall that for any interact
with the web application, we consider princigl, the sender, and
P., the receiver. CSRF is possible becat®eand P, may be
different. Thus, our specification of CSRF safety is simply:

(CSRF safety)For any non-idempotent reque#t, > P,..

Informally, any principal that controls behaviors of the web ap-
plication must be at least as trusted the principal that \@ehose
behaviors In particular, if P, is an honest user, theR; cannot
be the attacker, although it may B% itself or another honest user
> P, (or perhaps even the web application).

We specify CSRF safety in Rubyx with two assertions. On liie 6
of Figure 1, we require that POST requests have the righicala
ship between sender and receiver, and on line 66 we specity th
any requests that change the session or database must be POST

To reason about CSRF protection, we must track which prin-
cipal each string came from. Hence, similarly to trust Isviel
Section 4.2, we extend clasging with a secrecy attribute, which
contains d.attice element describing the string’s principal.

Recall from Section 2.2 that defense against CSRF requines e
ploying several different countermeasures: ensuring BRI T re-
quests can change state; including and checking for a seadret
session[:_csrf_token] in legitimate requests (achieved by calling
protect_from_forgery); and callingeset_session at the right point
to create fresh tokens for new users.

To understand how these countermeasures provide CSRIf, safet
we argue abstractly about an application. Consider Figundizh
shows a state machine describing the life cyclesefsion[:_csrf
_token] and the currently logged-in principal when CSRF protec-
tion is used correctly. Here, the user is initially at thecklatate,
wheresession[Prin.Id] is nil andsession[:_csrf_token] is irrelevant.
We move to the gray state when a login request is receivediahw
point a freshsession[;_csrf_ token] is generated. We then move to
the white state when password authentication succeedsh\atgo
setssession[Prin.Id]. We stay in that state doing work, and eventu-
ally return to the black state by logging out.

Thus, P, may change only in the black state. If an implementa-
tion matches the state machine in Figure 2, teasion[:_csrf_token]
must change whenevé?,, may have changed. More precisely,
the following assertion, which we include forgery_safe? (Sec-
tion 2.2), will hold, sincgorm_authenticity_token (Section 2.2) re-

these two equalities together, we haaeams[:authenticity_token].
secrecy = P;.

Finally, we assume that any string sent with a request mug ha
secrecy leveK P; (i.e, that senders can only send messages at
their secrecy level or below). Then we hgw@ams[:authenticity
token].secrecy < Ps, and thusP,. < Ps, which is CSRF safety for
POST requests.

Note that in the state machine in Figure 2, we generate a new
CSRF token for a login request. Traditionally CSRF attackech
focused only on work transitions, hence it seems we coule hav
generated fresh tokens after authentication. Howeveenticlo-
gin CSRFattacks have been studied [4], which focus on authentica-
tion transitions. Itis easy to see that generating CSRFsiiefore
authentication, as we have done, prevents login CSRF attdsé&.

Furthermore, note that for authentication transitions, masy
reasonably assume th&t # P, i.e, Ps will never aid any less
trustedP, in authentication. For instance, an honest yBgwill
not try to authenticate for a dishonest uggt or for another honest
user< Ps. Thus, for authentication transitions that are CSRF safe
we actually havePs = P;..

Finally, note that key to our proof above was the assertianttie
secrecy of the CSRF token must be equal to the receiver. We pro
pose this as a design principle for CSRF safety. Indeedpitipes
the main insight behind eliminating CSRF attacks, embotti¢kis
combined use oprotect_from_forgery and reset_session —the
secrecy of the CSRF token must always be related to the pahci
viewing the behaviors of the web application, and since sumfin-
cipal may change between logout and login, the CSRF tokem mus
also change between logout and login. Otherwise, the attanky
learn the token for an honest user, or the token for an attackyg
serve an honest user—either of which can break CSRF safety.

4.4 Authentication and Access Control

Next, we show how Rubyx can assert the correctness of pass-
word authentication, meaning that sends and receivesaftben-
tication can be assumed to come from the logged-in user (@ra m
trusted principal). Formally, our specification is as falfo(see
lines 68 and 69 in Figure 1).

(Password authentication)Suppose thaP; # nil (i.e., a user is
logged in). Then:

For any POST requesP; > P;, and 1)
For any POST or GET reques®,. > P; 2)

To authenticate correctly, web applications usually samecheck
passwords using a combination of cryptographic hashingsait
ing” to avoid known attacks. In our proxy Rails API, we inckud
a basic model of string concatenation and hashing. Our imple
mentation ensures that for any stringsy, andz, if z # y then
Crypto.hash(z) # Crypto.hash(y) andz + z # y + z. (HereCrypto
is a placeholder for the name of the relevant Ruby class.)

Given this API, Rubyx can reason about typical authenticati
strategies. As a concrete example, consider the followaalgc

turnssession[:_csrf_token] after generating a token if required:

class Controller::Base
def forgery_safe?
assert (form_authenticity_token.secrecy == Prin.receiver)
... # see line 33
end
end

Thus we can concludsession[:_csrf_token].secrecy = P;-.
Now, for any POST requeskrgery_safe? (Section 2.2) estab-

929

lishessession[:_csrf_token] = params[:authenticity_token]. Putting

class UsersController
def authenticate # POST
u = User find(params[:id])
if (u.hashed_pwd == Crypto.hash(params[:password] + u.salt))
session[:id] = u.id; render :logout_form
else redirect_to :abort end
end
end
class User
def password() @password end
def password=(x)
@password = x; hashed_pwd = Crypto.hash(x + salt)

101
102
103
104
105
106
107

end
end
def User.invariant
@db.forall {Jul|
(u.password.secrecy == u.id) &&
(u.hashed_pwd == Crypto.hash(u.password + u.salt)}
end

Notice that the programmer has supplied an invariant (/@S-
106) that specifies that the password’s secrecy level igitbéthe
user, as well exactly how the hashed password is computeid. Th
invariant describes the stored password information atityr and
lets us leave it otherwise as an unknown.

Using this invariant, Rubyx can assert that the code impiese
correct password authentication as follows. Supposethat nil.
For some usar = User.find(params[:id]), the code above establishes
the following conditions:

u.hashed_pwd

u.id
u.password.secrecy
u.hashed_pwd

Crypto.hash(params[:password] + u.salt)
session[:id] (= P;)

u.id

Crypto.hash(u.password + u.salt)

Combining these equations with those for cryptographicimas
and string concatenation above, we hparams[:password].secrecy

to the common security properties, we also checked that aser
always properly authorized, as outlined in Section 2.4.

The coffeeapplication was developed by another member of our
research group to track use of a shared coffee machine. Tiie ap
cation maintains an inventory of coffee capsules availablount
of each user’s tokens, which are exchanged for coffee; anddh-
sumption of coffee by users. Some users have administrative
ileges and can refill tokens for other users and adjust threntovy
of capsules. We checked to ensure that administrativelggies
cannot be circumvented, and that counts of capsules, tpkeads
user consumption all match up correctly.

The depotapplication is used as the main running example in
a popular book for Rails developers [27]. Since its codeeslfr
available, we expect that many developers use that codetagta s
ing point for their own applications. Thadepotapplication main-
tains a database of products, and records orders of prdolyctss-
tomers. It also maintains accounts of administrators, wkahle
to edit information on products, including their prices. @ecked
to ensure that administrative privileges are required topedduct
information, and to introduce other administrators to thstem.
We also checked to ensure customers are charged the caicect p
for any product they order.

The chuckslistapplication is a classified ad system inspired by

= P;. Furthermore, as in Section 4.3, we assume any string sentcraigslist. The application maintains a database of adstesidau-

with a request must have secrecy levelP,. Then we haveP; =
params[:password].secrecy < Ps. This establishes (1). But since
we are performing authentication, by CSRF safety we Ifave=
‘Ps, and hence (2) also holds.

After authentication has occurre®, and P; remain constant.
(Recall thatP,. can change only in the black state, @Addoes not
change in the white state.) Thi#s > P;, from (2) at authentica-
tion time, continues to hold. Moreover, by CSRF safety weehav
Ps > P., and so (1) also continues hold.

Of course, authentication is useful only if we implement som
access control, for which we need to track dynamic condstiom
P; itself, of the formP; > P, for some access privilege,. By
the above theorem, these conditions will im@y > P, for write
access privileges, arfd. > P, for read access privileges.

4.5 Secrecy

Finally, note that the above properties rely on the presienvaf
the secrecy latticd,e., principals do not eventually know secrets
of unrelated principals. We specify this in line 63 of Figdreby
requiring that any strings received in a response must hesresy
levels< P,, so that the receiver could have already known them.

5. EXPERIMENTS AND RESULTS

We used Rubyx to analyze seven Rails applications with aerang
of non-trivial security and correctness requirements. HBppli-
cations were developed within our research group, but iexlep
dently of this project (so they did not take any particulavadage
of Rubyx’s strengths or weaknesses). The remaining apigita
were obtained from external sources.

5.1 Applications and Properties

We begin by describing each web application in our expertsjen
along with their application-specific access control anulesiness
properties. For all of the applications, we also checkedHermpres-
ence of session manipulation, XSS, CSRF, and authenticatio
tacks, using the specifications in Section 4.

As discussed earlier, timibmgrapplication, which we used for

thors. It also maintains accounts for users, some of whomtraeg
administrative privileges. Authors manage ads, users gena-
thors, and users with administrative privileges manageraikers.
The system relies on a sophisticated access control mashieh

we included as part of the application. We checked for séaera
cess control properties, such as: authors cannot edit adthef
authors, and administrative privileges cannot be circurteak

Theboxroomapplication is a secure file sharing system that main-
tains access control metadata for files. Users are membegrsigss,
and permissions are associated with groups and files. Wéethec
that several expected access control properties hold, aicion-
administrators cannot modify the permissions for grouptfdes,
and users cannot access a file they do not have permissiocessac

Themysticapplication is a trouble ticket system. The application
maintains a database of (outstanding and resolved) ticketsell
as accounts for customers, technical-staff members, amihesd
trators. Customers post tickets, technical-staff membeddress
those tickets, and administrators manage their accourtis. d&é-
velopers claim a clear separation of these duties in thesysind
we check to ensure that this is indeed the case.

Finally, thertplan application is a planning system for project
tasks. The application maintains a database of projecth ef
which has several tasks. It also maintains accounts fospagdro
are allocated various tasks, and records the work thoss hage
put into those tasks. Apart from expected access contrpipties,
we checked that the project and user databases have a eahsist
record of the total work done.

5.2 Attacks

Figure 3 summarizes the results of our experiments. We group
our results by property, shown across the top of the figiNe:
XSS No CSRF-Authentication Secrecy access control, and other
application-specific correctness properties. For eacpestg a
check mark indicates no vulnerabilities found, a cross niadk
cates some exploitable security vulnerability, and a doeshark
indicates that a potential security vulnerability exidist it may
not be exploitable. We indicate that some vulnerabilitiesdcue to

examples throughout the paper, was developed by one of the au replay attacks with an. For most exploitable or potential vulner-

thors to manage publications of our research group. In iaddit

abilities, we attempted to fix the code so that the vulneitghilas

XSS | CSRF | Auth. | Secr.| Acc. Corr.
pubmgr [/ x (1) v v N/A
coffee | 7 (2) x (1) Vv Vv x (2) |V
depot | x(2) x(10) | v/ Vv Vv x" (7)
chuckslist| / x (1) Vv Vv x (=) | N/A
boxroom | / % (5) Vv Vv Vv mo(2)
mystic | x (17) | x(8) Vv Vv x"(6) | N/A
rtplan | / % (1) % (16) | +/ 7 (=) | v
v/ =no vuln. found x = vuln. found ? = potential vuln. found
(n) = n lines of fixes) = did not fix =replay attack

Figure 3: Experimental Results and Fixes

eliminated (as checked by Rubyx). The number of fixes isdiste
in the figure; we show a dash where we chose not to attempt fixes
because doing so might require pervasive changes.

As we can see, Rubyx detected many vulnerabilities, and/ever
application had at least one. At the same time, except faethr
cases we were able to fix the vulnerabilities with a small neimb
of changes. Since Rubyx explores all possible program peihs
a given symbolic state, once we have eliminated all deteatiéd
nerabilities from that state we can guarantee the secufithat
application from any instantiation of that state.

Next, we discuss the vulnerabilities we found in more detail

XSS.Rubyx found XSS attacks in three applicationscdrffee the
attributes of a capsule (including a text description) aoe san-

LoC Running time Yices stats

orig. (s) re-run(%)| %time # calls
pubmgr | 7,450 32.6 37.2% | 91.4% 352
coffee| 7,928 67.5 4.0% | 97.8% 142
depot | 5,338 32.5 16.6% | 94.8% 265
chuckslist| 12,554 175.2 10.8% | 95.7% 519
boxroom | 13,727 123.1 32.0% | 95.6% 347
mystic | 20, 350 28.2 30.3% | 71.8% 169
rtplan 9,849 195.3 1.5% | 99.1% 163

Figure 4: Performance

cause it shows how even a developer who pays attention taityecu
can get it wrong.

In chuckslistadministrative privileges are not protected—anybody
can sign up as an administrator, and any existing user cainobt
administrative privileges. Additionally, any author camnially be-
come a user and manage other authors in the system. For exampl
an author and all its ads may be removed without an existieg us
logging in. Finally, any author can edit any ad in the systém.
fact, chucklistdoes not actually maintain any relationship between
users and authors, which is surprising, because at theatatddovel
they have very similar attributes.

In mystic the claimed separation of duties is violated. Anybody
can sign up as an administrator and can modify others’ a¢soun
Furthermore, privileges granted to a logged-in user aredtio the
session, and so session replay can be used to defeat revodadr

itized, and hence can be used for XSS attacks. We categorizedexample, even if a technical-staff member’s privilegesraveked

this issue as a potential, rather than definite, vulnetgithiecause
only administrators can modify attributes. However, thi se-
flects poor security practice because administrators ameédXSS
attacks to steal passwords from other users.

In depot a product’s information includes information on orders
that were placed on it, and the text of such orders is notigadit
Thus, any customer that places an order can mount XSS attacks
other customers and administrators who view this data. |&ilyi
in mystic users can mount XSS attacks on other users.

CSRF.Rubyx found CSRF attacks against all applicationgpub-
mgr, the vulnerability exists because the controller for lomgin
a new user does not useset_session —instead it simply resets
session[:user] to nil, but does not also satssion[:_csrf_token] to
nil. In coffee the developer does ussset_session , but in the con-
troller for logging out a user instead of logging in—henceRES
attacks are enabled by simply not logging out. Similar peois
occur inchuckslist rtplan, depot boxroom andmystic Moreover,
the latter three also do not require that all state-changigests
are POST, enabling yet more CSRF attacks.

Authentication. Only one applicationytplan, failed to correctly
authenticate users. Strangely, here users do not requessvpeds
to log in, although users do have password attributes in theaen

Access control.Rubyx found critical violations of access control in
several applications. lcoffee non-administrators can change their
token counts or even grant themselves administrator pges. The
problem is that the code to update a user’s information céte e

all of the attributes of that user, even in cases when only some in
formation should being updated. The developecaffeetried to
prevent the token count and administrator bit from beingatpd

in non-administrative mode by rendering one of them as mray-
and not rendering the other in the relevant form. Unfortelyat
this is not enough: a simple browser setting can make rebd-on
parameters writable, and any missing parameters can bedbgs
extending the form manually. This is an interesting exampée

by an administrator, it may replay a stale session to keepinge
information on outstanding tickets.

In rtplan, any user can promote anyone to an administrator. Fur-
thermore, thésadmin attribute of a user is stored in the session, so
a user whose administrative privileges have been revoke#esp
acting as an administrator by replaying a stale sessiomn&éty,
however, administrator privileges do not seem to have angtion
in this application, so we must consider these attacks benig

Application-specific security properties. Finally, Rubyx found
violations of application-specific correctness propsriigtwo cases.
In depot Rubyx found attacks in which the price in an order does
not match the price of the ordered products. The problenaishie
shopping cart of a customer—which is used to place the order—
stored in the session, which can be replayed. Thus, a custoaye
add some products to the cart, save the session, and empmigrthe
Later, the administrator may increase those productsepriBut
then the customer can replay his session and check out,gptagn
lower prices. Indeed, the database is not consulted befacing

an order—there is complete trust in the session.

In boxroom Rubyx found a potential vulnerability in a clipboard
implementation that could be exploited by a replay attackwH
ever, the clipboard is not yet enabled, and so the attackestla
until the clipboard is actually used.

5.3 Performance

Finally, we briefly discuss Rubyx’s performance, summatire
Figure 4. The applications we analyzed ranged from 5k to 2f@is|
of code. The running times for the original applications evbe-
tween half a minute to 3 minutes. (Note that if an assertids,fa
Rubyx reports a bug and continues, assuming that the assari
tually succeeded.) On average, around 90% of the time wawg spe
on calls to Yices; indeed, one such call took 75 seconds oL®5f
seconds of total running time. Caching such calls not only im
proved performance (we observed a high cache hit rate),lgoit a
allowed us to analyze the applications “incrementally."ddad,
during our experiments we often ran partial analysis seript an

unfamiliar application to get intermediate results, anentincre-
mentally added assumptions and assertions to get the fmatse
caching prevented the cumulative analysis times from bigwip

quadratically across runs. The resulting experience washrtike

testing. To measure this effect, note that re-running tredyars
took only 2—-40% of the original running times, and the fraati
went down as the time spent on calls to Yices went up.

6. RELATED WORK

[5] Jesper Bengtson, Karthikeyan Bhargavan, Cédric FauAmerew D. Gordon,
and Sergio Maffeis. Refinement types for secure implemienstin CSF,
2008.

[6] Gavin M. Bierman, Andrew D. Gordon,&&lin Hritcu, and David Langworthy.

Semantic subtyping with an SMT solver. IBFP, 2010.

Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishn@andid: Dynamic

candidate evaluations for automatic prevention of SQLcitnja attacksACM

Trans. Inf. Syst. Secud3(2), 2010.

[8] Adam Chlipala. Ur: Statically-typed metaprogramminghtype-level record
computation. IrPLDI, 2010.

[9] S. Chong, K. Vikram, A.C. Myers, et al. SIF: Enforcing dimtentiality and
integrity in web applications. ISENIX Security2007.

[7

Some necessary background on |mportant threats and defense[lo] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. Esetier, label-based

for web-application security can be found in [26, 35], wtale ex-
cellent resource for Rails security in particular is [36].

Much research on web-application security has focused Bn se

tings where applications are untrusted, and users musolbecped
from applications [16, 38, 20]. In contrast, applicatiors@ot con-
sidered inherently malicious in our setting—we assume sbate
users may be malicious, and we care about verifying thaiappl
tions and other users are protected from such malicious.user

The need for end-to-end web application security has been pr

viously argued [13]. Existing techniques for achieving ¢agnd
security for web applications include type systems [8, 5] secure
compilation [32, 9, 3]. Most of these techniques rely onidatt
based security with labels [12, 21, 10], as we do. An impadén
ference between such techniques and ours is that we redmiosta
no label annotations. We also ignore implicit informaticowfs.

Many specialized techniques have been developed to analyze

particular security properties of web applications [31, 23, 18,
34]. In contrast, our approach can be used to check a wide r@ing
security properties. Some recent tools also use symbadicution
for security analysis of JavaScript programs [2, 28].

Finally, most of the existing work on understanding web agapl
tion security focuses on injection attacks [30]. In compami, the
other kinds of attacks we consider in this paper have redeive
less attention; notable exceptions include [25, 11] onsgcentrol
and authentication, [17] on session integrity, and [4, 22C&SRF.

7. CONCLUSION

security enforcement for web applications StGMOD, 2009.

[11] M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis: \ating
Authentication & Access Control Vulnerabilities in Web Ajgations. In
USENIX Security2009.

[12] Dorothy E. Denning. A Lattice Model of Secure InfornaatiFlow.
Communications of the ACM9(5), 1976.

[13] U. Erlingsson, B. Livshits, and Y. Xie. End-to-end welpéication security. In
HOTOS 2007.

[14] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeigype discipline for
authorization in distributed systems.@8F, 2007.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed@mated random
testing. InPLDI, 2005.

[16] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. kfgstatic analysis for
Ajax intrusion detection. IWWW 2009.

[17] M. Johns. SessionSafe: Implementing XSS immune se$sindling.
ESORICS2006.

[18] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A statia#ysis tool for
detecting web application vulnerabilities. 8&P, 2006.

[19] James C. King. Symbolic execution and program testd@mmun. ACM
19(7), 1976.

[20] S. Maffeis, J.C. Mitchell, and A. Taly. Object capatids and isolation of
untrusted web applications. B&P, 2010.

[21] J. Magazinius, A. Askarov, and A. Sabelfeld. A Lattisased Approach to
Mashup Security. IRSIACCS2010.

[22] Z. Mao, N. Li, and I. Molloy. Defeating Cross-Site Regti€orgery Attacks
with Browser-Enforced Authenticity ProtectioRinancial Cryptography and
Data Security2009.

[23] M. Martin, B. Livshits, and M.S. Lam. Finding applicati errors and security
flaws using PQL: a program query languageO@PSLA 2005.

[24] J. McCarthy. Towards a mathematical science of comjmrtainformation
Processing62, 1962.

[25] G. Naumovich and P. Centonze. Static analysis of ralgel access control in
J2EE applicationsACM SIGSOFT Software Engineering Not28(5), 2004.

[26] OWASP. The ten most critical web application risks, @01
http://www.owasp.org/images/0/0ffOWASP_T10_-_20%0.pdf.

We described a new approach that uses symbolic execution to[27] Sam Ruby, Dave Thomas, and David Heinemeier Hangsgitre Web

reason about the security of Ruby-on-Rails web applicati@ur
symbolic executor, Rubyx, uses a simple assume/assenidgag

to describe a wide range of properties. We use Rubyx to gpecif

protection against XSS, CSRF, session manipulation, aadthn-

rized access, using basic notions such as principals, se@ed

trust levels. We applied Rubyx to seven applications, anchdo
a wide variety of vulnerabilities. Overall, our results gagt that
symbolic execution is a promising approach for analyzinty age-

plications for security vulnerabilities.

Acknowledgmentsie wish to thank the anonymous review-
ers for their helpful comments on this paper. This researab w

supported in part by DARPA ODOD.HR00110810073.

8. REFERENCES

[1] Jong-hoon An, Avik Chaudhuri, and Jeffrey S. FostertiStgping for Ruby on
Rails. INASE 2009.

[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkand M.D. Ernst.
Finding bugs in web applications using dynamic test gefmrand explicit
state model checkingEEE Transactions on Software Engineeri2§10.

[3] I.G. Baltopoulos and A.D. Gordon. Secure compilatioraghulti-tier web
language. IfTLDI, 2009.

[4] A.Barth, C. Jackson, and J.C. Mitchell. Robust deferisesross-site request
forgery. INCCS ACM, 2008.

Development with RailS’he Pragmatic Bookshelf, 2009.

[28] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, ai8bby. A
Symbolic Execution Framework for JavaScript, 2010. TecaliReport
UCB/EECS-2010-26, EECS Department, University of Catifar Berkeley.

[29] SRI. Yices: An SMT solver. http://yices.csl.sri.cam/

[30] Zhendong Su and Gary Wassermann. The essence of comnjectibn attacks
in web applications. 1fiPOPL, 2006.

[31] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridhaand Omri
Weisman. TAJ: Effective taint analysis for JavaRAhDI, 2009.

[32] K. Vikram, A. Prateek, and B. Livshits. Ripley: autoritatly securing web 2.0
applications through replicated executiondg&S 2009.

[33] P.Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegahd G. Vigna.
Cross-site scripting prevention with dynamic data tagnémd static analysis. In
NDSS 2007.

[34] Gary Wassermann and Zhendong Su. Sound and precigesisafweb
applications for injection vulnerabilities. RLDI, 2007.

[35] Web Application Security Consortium. Web applicat&ecurity statistics,
2008. http://projects.webappsec.org/Web-Applicat@turity-Statistics.

[36] Heiko Webers. Ruby on rails security, v2. OWASP report:
http://www.owasp.org/images/2/26/Owasp-rails-segymif.

[37] Y. Xie and A. Aiken. Static detection of security vuliadilities in scripting
languages. INSENIX Security2006.

[38] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor SeriBavascript
instrumentation for browser security. ROPL, 2007.

