
Symbolic Security Analysis of
Ruby-on-Rails Web Applications

Avik Chaudhuri
University of Maryland, College Park

avik@cs.umd.edu

Jeffrey S. Foster
University of Maryland, College Park

jfoster@cs.umd.edu

ABSTRACT
Many of today’s web applications are built on frameworks that in-
clude sophisticated defenses against malicious adversaries. How-
ever, mistakes in the way developers deploy those defenses could
leave applications open to attack. To address this issue, weintro-
duce Rubyx, a symbolic executor that we use to analyze Ruby-on-
Rails web applications for security vulnerabilities. Rubyx specifi-
cations can easily be adapted to a variety of properties, since they
are built from general assertions, assumptions, and objectinvari-
ants. We show how to write Rubyx specifications to detect suscep-
tibility to cross-site scripting and cross-site request forgery, insuf-
ficient authentication, leaks of secret information, insufficient ac-
cess control, as well as application-specific security properties. We
used Rubyx to check seven web applications from various sources
against our specifications. We found many vulnerabilities,and each
application was subject to at least one critical attack. Encourag-
ingly, we also found that it was relatively easy to fix most vulner-
abilities, and that Rubyx showed the absence of attacks after our
fixes. Our results suggest that Rubyx is a promising new way todis-
cover security vulnerabilities in Ruby-on-Rails web applications.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—Symbolic
execution; F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Specification tech-
niques, Mechanical verification

General Terms
Languages, Security, Verification

Keywords
web-application security, symbolic execution, automatedanalysis

1. INTRODUCTION
Today, online services are a crucial part of many industriessuch

as banking, government, healthcare, and retail. Unfortunately, the
web applications that underlie these services often face serious se-
curity threats, and vulnerabilities in these applicationscan lead to
loss of revenue, damage to credibility, and legal liability.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’10,October 4–8, 2010, Chicago, Illinois, USA.
Copyright 2010 ACM 978-1-4503-0244-9/10/10 ...$10.00.

Many web applications are built on top of frameworks whose
APIs provide extensive defense mechanisms against common at-
tacks such as cross-site scripting (XSS) and cross-site request forgery
(CSRF). However, the mere existence of these APIs is insufficient—
to be effective they must be used correctly by the programmer, who
must ensure that the logic of the web application cooperateswith
the design of the APIs. Moreover, even if security-relevantAPIs are
used correctly, application-specific security vulnerabilities, such as
insufficient access control checks or leaks of confidential informa-
tion, could still remain.

In this paper, we propose addressing this challenge by usingsym-
bolic execution[19, 15] to analyze Ruby-on-Rails (or just “Rails”)
web applications. Rails is a popular framework based on Ruby, an
object-oriented scripting language. We focus on server-side code,
and we are concerned with protecting the web application andhon-
est users from dishonest users or other adversarial clients.

We developed Rubyx, a symbolic executor for Rails, and use it
to detect potential vulnerabilities such as XSS, CSRF, susceptibility
to session manipulation, and allowing unauthorized access, among
others. Unlike most previous work on web-application security [17,
4, 7, 33], we do not study such threats in isolation; by using sym-
bolic execution, we can perform end-to-end reasoning aboutall of
these vulnerabilities simultaneously. And although the low-level
details of our approach are targeted toward Rails, we believe the
same ideas can be applied to other web application frameworks.

Briefly, symbolic execution involves running code withsymbolic
variables, which are unknowns that range over sets of concrete
values. At conditional branches involving symbolic variables, the
symbolic executor consults an underlying Satisfiability Modulo The-
ory (SMT) solver to decide which branches could be taken. If both
are possible, the executor conceptually forks execution, trying both
paths. Thus, if run to completion, symbolic execution exploresall
paths and hence can verify the absence of vulnerabilities.

Of course, verifying all paths in general would be intractable,
since programs can have an unbounded number of paths. How-
ever, we have found that web applications are typically “broad” and
“shallow”—while there are many possible requests and responses,
each request-response path is usually short. Hence this domain is
ideal for symbolic execution, because the shallowness of the paths
controls the exponential blowup from branches. To handle un-
bounded data structures, we rely on the small model hypothesis—
we initialize databases with a small number of symbolic objects,
and prove the absence of vulnerabilities up to that bound. Thus,
soundness in our setting is the same as in bounded model checking.

A major advantage of our approach is that it isprogrammable: it
can be used to specify and check arbitrary properties of interest. In
Rubyx, the programmer callsassert e to check that the (arbitrary)
Ruby expressione always evaluates totrue; assume e to tell Rubyx

to assume thate holds; and defines methods namedinvariant to
specify properties that must be invariant during execution.

Using this simple interface, we show how to encode a variety
of security properties at various levels of abstraction. Weimple-
mented a proxy Rails API that simulates the original API, and
uses notions such as principals—distinguished by knowledge of
secrets—and trust to assert XSS safety, CSRF protection, and pass-
word authentication. At a high level, XSS safety specifies that only
trusted strings can be part of a response; CSRF safety specifies that
the principal that sends a request must be at least as trustedas the
principal that receives the response; and password authentication
specifies that senders and receivers of requests are at leastas trusted
as the logged-in user. These specifications concisely rule out sev-
eral classic attacks as well as recent variants studied in the litera-
ture [4]. Moreover, our specifications are generic: we can check for
XSS safety, CSRF protection, and password authentication simply
by symbolically executing a target application in conjunction with
our proxy API.

In addition to these generic security specifications, we canalso
use Rubyx to specify and check application-specific security prop-
erties, such as access control and functional correctness.We be-
lieve that the breadth of these properties, along with the generic
properties above, demonstrates the flexibility and power ofusing
Rubyx to reason about security vulnerabilities.

Rubyx is implemented on top of DRails, a tool we developed
previously to “compile” Rails code by making many implicit Rails
conventions explicit, which simplifies analysis [1]. Rubyxuses
Yices [29] as its SMT solver. To improve performance, Rubyx uses
several optimizations, including a careful encoding of thenecessary
constraints in Yices as well as caching to reduce solver queries.

We applied Rubyx to analyze security of seven Rails applications
obtained from various sources. Rubyx found several seriousvul-
nerabilities in these applications, including XSS, CSRF, authenti-
cation failures, insufficient access control, and application-specific
problems. Encouragingly, we found that it was generally easy to
manually fix these vulnerabilities, and that after doing so Rubyx
could show that the attacks were eliminated for the fixed applica-
tions. Rubyx took between half a minute to 3 minutes in its analysis
of these programs, which range from 5k–20k lines of code. Infor-
mally, we found the effort required to apply Rubyx to be similar
to what we would expect in testing, and we believe this approach
will prove viable in practice. Finally, our experiments revealed
several common misunderstandings about the defense mechanisms
provided by Rails. We have reported these observations to the Rails
security team, and are working with them on improving the design
and documentation of these mechanisms.

In summary, this paper makes the following contributions:

• We study a range of attacks and defenses in Rails, and explain
the intricacies of correctly using Rails security APIs—going much
deeper than the rough overview in the OWASP guide [36]. We be-
lieve this discussion is of independent interest, as our experiments
indicate that developers often do not appreciate the subtleties of
Rails’s defenses, often rendering them ineffective (Section 2).

• We introduce Rubyx, which we believe is the first symbolic
execution engine for Ruby and for Rails. The broad and shallow
nature of Rails applications makes them a particularly attractive tar-
get for symbolic execution. Rubyx includes several optimizations,
including SMT solver query caching (Section 3).

• We show how to encode specifications of low-level security
properties such as XSS, CSRF, password authentication, andse-
crecy, and several application-specific properties, usingRubyx’s

assume/assert annotation mechanism. We believe that our concise
formal specifications of some of these properties are not only new
and important for end-to-end security analysis of web applications,
but that they help clarify the relevant security concerns and can
serve as a guideline for Rails developers (Section 4).

• We evaluate Rubyx and our specifications on seven Rails appli-
cations. We discovered several serious attacks against these appli-
cations, and that the vulnerabilities were generally straightforward
to fix (Section 5). We are working with the Rails security team
to ensure that such vulnerabilities can be more easily avoided by
future developers.

We believe these results suggest that symbolic execution ingen-
eral, and Rubyx in particular, is a promising approach for detecting
and preventing security vulnerabilities in web applications.

2. ATTACKS AND DEFENSES IN RAILS
In this section we discuss several important vulnerabilities that

can arise in Rails programs. In Section 4, we will see how to detect
these vulnerabilities using Rubyx.

For illustration, we use examples frompubmgr, an application
developed by one of the authors to manage publications by mem-
bers of our research group. Specifically,pubmgrmaintains a data-
base of users, authors, and publications. An author must be agroup
member or a co-author of a group member; each author may have
several publications. Conversely, a publication may be linked to
several authors, some of which must be group members. A distin-
guished user,admin, may identify other users as group members.
Such users can then manage their co-authors and publications.

Like all Rails applications,pubmgr consists of three kinds of
components:models—Ruby classes that interface to the database;
views—either HTML pages with embedded Ruby code or, equiva-
lently, Ruby methods that generate HTML pages; andcontrollers—
methods that are invoked when the client requests a web page.A
controller receives as inputs any GET or POST parameters submit-
ted by the user, as well as state information encoded in the session.
As a controller runs, it may redirect to other controllers, use models
to access the database, and return by specifying which view should
be rendered in response to the user’s request.

2.1 XSS
Several web attacks usecross-site scripting(XSS) to execute ar-

bitrary (malicious) code on the browser. In XSS attacks, an adver-
sary embeds executable code (likely JavaScript) in text fields in the
web application’s database. When a user receives a web page con-
taining those compromised fields, the browser executes the code,
possibly leaking the user’s secrets or carrying out operations with
the user’s privileges on behalf of the adversary.

To illustrate potential attacks, consider the following code:

1 class AuthorsController
2 def insert_author
3 @author = Author.new(params[:name], params[:webpage])
4 @author.save; render view_author
5 end
6 def find_author
7 @author = Author.find(params[:id]); render view_author
8 end
9 end

10 module AuthorsView
11 def view_author()
12 show(@author.name); show(@author.webpage)
13 end
14 end

This code contains two controllers. The first,insert_author, is given
a name and a web page, which are passed in via theparams hash.
On line 3, the controller creates a newAuthor, which is a model
representing a database row. The controller then writes thenew
author to the database and callsview_author to display a web page
in response. That view shows the author’s name and web page
(line 12). Along the same lines, thefind_author controller looks up
the input authorid in the database and renders the same view to
show the author’s information.

Unfortunately, while this code is straightforward, it is also vul-
nerable to XSS attacks: an attacker can useinsert_author to create
an author whose name or web page contains malicious code.

A typical countermeasure against XSS is to sanitize any textthat
may ultimately be rendered by the browser, to ensure that untrusted
inputs do not embed executable code. One way to do this in Rails
is to validate text before writing it to the database, as in the code:

15 class Author # model for Author
16 validates_format_of :name, ... # regexp
17 end

Here the programmer calls thevalidates_format_of method to tell
Rails that before thename field can be written to the database, it
must match a given regular expression (elided by . . .). In this way
we can prevent code from being included in author names.

Another countermeasure is to HTML-escape text before display.
Here is code to do just that whenever thewebpage field is rendered:

18 module AuthorsView
19 def view_author() ...; show(html_escape (@author.webpage)) end
20 end

Both of these countermeasures prevent executable code in dis-
played web pages. Critically, however, the programmer mustre-
member to use them to enable their protection. Moreover, notice
that even for something as simple as sanitization there are different
approaches, and the point at which sanitization is applied may vary.

2.2 CSRF
Recently,cross-site request forgery(CSRF) has emerged as a

powerful technique for several web attacks. CSRF has been de-
scribed by some experts as a sleeping giant, because its power is
(as yet) widely underestimated. CSRF attacks work as follows.
Suppose that a user interacts with a web applicationA while also
browsing another web siteB. Pages retrieved fromB may cause
the user’s browser to send further requests (e.g., GET requests for
images) on behalf of the user. By compromising siteB, an attacker
can control those requests; in particular, such requests can be sent
to applicationA, and appear to come from the user when in fact
they come from the attacker. This is especially harmful if the re-
quests arenon-idempotent(i.e., they cause state changes).

Preventing these attacks in Rails requires employing several re-
lated countermeasures. First, we ensure that any calls thatmay
change state are POST requests. In the following code, we use
Rails’s before_filter method to specify thatensure_post must be
called before a request is routed to theinsert_author controller.

21 class AuthorsController # continued
22 before_filter :ensure_post, :only => :insert_author
23 def ensure_post() redirect_to :error unless request.post? end
24 end

Second, since POST requests can still be surreptitiously issued
from other web sites open in the browser [36], we require that
POST requests include a secret token, which is only available to
web pages that may legitimately send POSTs. We do this by call-
ing Rails’sprotect_from_forgery method:

25 class AuthorsController # continued
26 protect_from_forgery :only => :insert_author
27 end

This call ensures that POSTs toinsert_author must include a param-
eter named:authenticity_token (automatically included by Rails in
forms), and this parameter must match an internal token returned
by form_authenticity_token(), which is part of the Rails API. Here
is a fragment of the code we use in Rubyx for this part of the API:

28 class Controller::Base
29 def form_authenticity_token
30 session[:_csrf_token] ||= fresh (:TOKEN)
31 end
32 def forgery_safe?
33 !post? || (params[:authenticity_token] == form_authenticity_token)
34 end
35 end

On line 30, form_authenticity_token() either return the current to-
ken (stored insession[:_csrf_token]) or generates a fresh one (if
session[:_csrf_token] is nil). The methodforgery_safe? then en-
sures that this token matches the parameter:authenticity_token for
POST requests.

Finally, we must account for “insider attacks,”i.e., attacks by
users of the application (against other users of the application). To
understand this issue, we need to look again at the implementa-
tion of token generation on line 30 above. The complication here
is thatsession[:_csrf_token] is not reset automatically by Rails be-
tween logins, hence different users that log in from the sameIP ad-
dress could inadvertently be given the same CSRF token. To prop-
erly protect against CSRF, the application should always change
session[:_csrf_token] to nil before logging in a user, so that the to-
ken is regenerated whenever a different user logs in. Rails provides
a method,reset_session , which has just this effect:

36 class Controller::Base # continued
37 def reset_session () session = {} end
38 end

We should stress that this mechanism is fairly delicate; forexample,
calling reset_session after logging out a user may be inadequate,
since we cannot assume that a malicious user will politely log out
(and most applications will still log in a different user after).

Our experiments suggest thatreset_session is seldom used cor-
rectly (if at all) to prevent CSRF attacks. One possible reason is
that the Rails documentation forreset_session focuses on XSS
attacks, and developers may think it is unnecessary if they take
other measures to prevent XSS. In contrast, when we developed
a specification for CSRF protection (Section 4), we pinpointed the
significance ofreset_session for CSRF.

Notice that using CSRF protection is not that easy, and checking
that CSRF protection is used correctly requires delicate reasoning.
We need to track dynamic checks that ensure requests are POST;
we need to distinguish new objects based on context to differenti-
ate tokens generated for different users; and so on. Techniques de-
veloped for reasoning about trace properties of security protocols
may apply [14]—but such techniques require extensive annotations
that the usual Rails developer cannot be expected to provide. In
contrast, our symbolic execution-based analysis can readily verify
CSRF safety for such code.

2.3 Session manipulation
Next, we consider session manipulation attacks. Sessions usu-

ally maintain crucial state. For example, after a user successfully
authenticates (and logs in), the identity of the user is often stored

in the session and trusted by the web application. Furthermore, as
we have seen above, CSRF tokens are stored in sessions. Thus,
maintaining the integrity of sessions is very important forsecurity.

Rails provides two modes for storing sessions. Indatabase-store
mode, the session is stored in the database, a session identifier is
stored in a cookie. This mode is secure but involves some overhead
since the database must be accessed for every request.

In contrast, incookie-storemode (the default), the session is
stored in the cookie as a marshaled string. This is efficient,but re-
quires that the session be cryptographically protected forintegrity;
otherwise the attacker may be able to fool the server with a mali-
ciously crafted session. Thus, in Rails, a session sent by the server
is hashed with a server-side secret, and the hash is verified for every
request. Unfortunately, this does not fully guarantee the integrity
of sessions, because it does not guard againstreplay attacks. For
example, consider the following code, which defines a controller
methodauthenticate for logging in users inpubmgr.

39 class UsersController
40 def authenticate
41 password = User.find(params[:id]).password
42 unless params[:password] == password
43 if session[:retrying] then redirect_to :error
44 else session[:retrying] = true ; redirect_to :login end
45 end
46 session[:user_id] = params[:id]
47 end
48 end

Here the user’s password is looked up (line 41) and, if not found,
the user is given one chance to retry (lines 42–45). The field:retrying
of session tracks whether the user has already retried. Unfortu-
nately, this code is vulnerable to a replay attack: if some user fails
to log in, that user can replay the session before the try to “roll
back” the state of:retrying, effectively allowing any number of tries.

The Rails documentation recommends not maintaining sensitive
information in the session, although it does not help in deciding
what information is sensitive. In our experience, wheneverde-
velopers store non-standard information in sessions (possibly to
cut down on database accesses), there is a high probability that
application-specific properties can be violated using replay attacks.
Safe use of cookie-store mode requires careful programmingand
thorough reasoning about sensitive information and sessions.

Replay attacks are easy to detect with symbolic execution, by
exploring paths in which the current session may be any of a set of
past sessions. In contrast, specialized techniques that donot take
session replay into account would be unsound in Rails.

2.4 Unauthorized access
Finally, applications can implement access control to prevent

unauthorized access to data and enforce specific secrecy andin-
tegrity properties. The following code snippet illustrates one way
we enforce authorization inpubmgr:

49 class PublicationsController
50 before_filter :internal_user, :only => :show_manuscript
51 before_filter :user_is_author, :only => :edit_publication
52 def internal_user
53 redirect_to :login unless User.internal?(session[:id])
54 end
55 def user_is_author
56 all = Publication.find(params[:id]).authors
57 redirect_to :login unless all.include?(User.author(session[:id]))
58 end
59 end

This code specifies filters before the controllersshow_manuscript
andedit_publication (not shown). Theinternal_user method checks

whether the current user is a member of our research group and,
if not, redirects the user to alogin controller, thus ensuring that
only internal users can view unpublished manuscripts (a secrecy
property). Similarly, theuser_is_author method ensures that the
current user is an author of the publication to be edited, so that
authors can edit only their own publications (an integrity property).

As with the previous examples, we can see that Rails provides
support for preventing unauthorized access, but it is stillup to the
programmer to determine how to code their access controls using
the Rails API. Moreover, reasoning about this code relies onother
security properties, such as correct password authentication and
safety against session manipulation, CSRF, XSS, and so on. Our
symbolic execution-based approach is very effective because it can
reason uniformly and simultaneously about all of these properties.

3. SYMBOLIC EXECUTION WITH RUBYX
As we saw in the previous section, ensuring that Rails’s security

defenses are used correctly requires reasoning about many low-
level details of code. This is a perfect task for symbolic execu-
tion, which can automatically explore many possible program exe-
cutions, including corner cases that may be hard to find otherwise.
In this section, we discuss the design of Rubyx, our symbolicex-
ecution engine for Rails. In Section 4, we give details of howwe
encode detection of security vulnerabilities using Rubyx.

At its core, Rubyx is a Ruby source code interpreter, with one
key difference: in addition to modeling concrete program values,
Rubyx can interpret programs that containsymbolic variables, which
are unknowns that represent arbitrary sets of concrete values. Rubyx
tracks these unknowns as they flow through the program. Rubyx
also maintainspath conditions, that track constraints on symbolic
variables; initially, the path condition is simplytrue.

When we reach a branch with a guardp that involves symbolic
variables, we conceptually split the currentworld (i.e., the state of
the Ruby program) into two new worlds, one in whichp is con-
joined with the path condition, and one in which¬p is conjoined
with the path condition. We pass the new path conditions to an
SMT solver, Yices [29], to decide whether one or both conditions
are actually satisfiable,i.e., whether the corresponding world is
reachablefrom the start of the program. We continue executing
the reachable world(s) forward, splitting the worlds in thefuture
as necessary. In this way, Rubyx can simulate all paths through
the program that are reachable for any concrete values that the un-
known might take. More discussion of symbolic execution canbe
found elsewhere [19, 15].

3.1 Specification and verification
Rubyx includes several built-in primitives for specifyingand check-

ing properties. The method callfresh (n) returns a fresh symbolic
variable named aftern, which may be any Ruby symbol (i.e., in-
terned Ruby string). (The name is just a convenience in understand-
ing Rubyx’s output.) Such a symbolic variable can range overany
Ruby object, although its structure is constrained by subsequent op-
erations on it. The method callassume (p) conjoins the path con-
dition with p, which may be any Ruby expression. (In conditional
tests in Ruby,false andnil are both treated asfalse, and all other
values are treated astrue.) Theassume primitive is used to specify
a precondition for a property we wish to verify. Dually, the method
call assert (p) checks whether the path condition impliesp; if not,
Rubyx reports an error. In other words,assert specifies postcondi-
tions for properties we wish to verify.

Lastly, Rubyx supportsobject invariants. A method definition
of the form def invariant () p end in any class maintainsp as an
invariant for all objects of that class. More precisely, weassume p

when an object instance is created, and weassert p whenever there
is an update that changes the object’s state. Rubyx uses an efficient
algorithm that monitors parts of the state relevant to an invariant
and re-enforces the invariant only when those parts are modified.

3.2 Integration with Yices and Optimizations
As with most symbolic execution systems, Rubyx’s capabilities

and performance depend heavily on exactly how it uses Yices,its
underlying SMT solver. Next, we will discuss some of the key
challenges we encountered in working with Ruby, Rails, and Yices.

First, Ruby hashes, such asparams and session, are used per-
vasively in code. To reason as generally as possible in thesesit-
uations, we model hashes with uninterpreted functions in Yices,
which allows us to leave the hashes as unknowns while still sup-
porting usual lookup, update, and equality operations [24].

Second, we found that strings appear pervasively in code (inpar-
ticular as inputs and outputs), and we often want to treat them as
arbitrary unknowns while still supporting concatenation and other
operations. In our experience, burdening Yices with constraints
generated by string operations leads to poor performance. Instead,
we evaluate and reason about string operations abstractly in Rubyx
by maintaining partial solutions for strings in the state.

Third, defining an appropriate datatype for Ruby values in Yices
is crucial for sound reasoning with (in)equalities. Unfortunately,
Yices does not allow the kind of recursive datatype definitions nec-
essary to express most Ruby values. We get around this problem by
using an uninterpreted type in the definition, and carefullydesign-
ing the form of constraints so that this type is always interpreted as
the original datatype when solving those constraints.

Overall, we put a lot of effort into ensuring that Yices can de-
termine the satisfiability of constraints generated by Rubyx. We
encode queries in the decidable fragment of the input language of
Yices, so Yices should always terminate with either "satisfiable" or
"unsatisfiable" on our queries. This is in contrast to related tools
for which theorem provers may fail and require further annotations
or dynamic checks [6].

Finally, we implemented a number of optimizations in Rubyx
to dramatically improve performance. Most importantly, wefound
that many of the worlds Rubyx explores share logically identical
path conditions. Thus, we maintain a cache of constraints that
Yices has already solved, and avoid resolving such constraints.

Another important factor for performance is the ordering ofclauses
in the constraints passed to Yices. On several occasions we found
that changing the ordering can reduce Yices solving time from al-
most an hour to less than a second. Thus, we keep constraints in
a normalized form, with clauses sorted in a fixed order. Our or-
dering is designed to place simple conditions before more complex
ones, and Yices calls have never taken more than a couple of min-
utes (at the extreme) with our ordering. Maintaining clauses in a
normalized order also improves cache hits.

Our last important optimization is to implement some basic oper-
ations, such as lattice operations on secrecy levels (see Section 4),
in Yices rather than in Rubyx. This increases the complexityof the
constraints passed to Yices, but greatly reduces branchingin the
interpreter, which saves space and time.

4. SECURITY ANALYSIS WITH RUBYX
There are three steps to analyzing Rails applications with Rubyx.

First, we apply DRails, a tool we previously developed [1] tomake
Rails code easier to analyze by making many implicit Rails conven-
tions explicit. For example, DRails explicitly adds database access
methods to models, inserts calls torender that are implicit in Rails,
and translates HTML with embedded Ruby code into pure Ruby.

60 # No XSS
61 assert (output.trust?) unless (Prin.receiver == Lattice.Bot)
62 # Secrecy
63 assert (Lattice.leq (output.secrecy?, Prin.receiver))
64 # No CSRF
65 assert (Lattice.leq (Prin.receiver, Prin.sender)) if params[:post]
66 assert params[:post] if (Session.modified? || Db.modified?)
67 # Authentication
68 assert (Lattice.leq (session[Prin.Id], Prin.receiver))
69 assert (Lattice.leq (session[Prin.Id], Prin.sender)) if params[:post]

Figure 1: Specifications of common security properties

We likely could have used Rubyx for this purpose, but as DRails
was already developed it was convenient to start with.

Second, we import proxy implementations of (a subset of) the
remaining Rails API methods, the browser, and the web server.
Overall, the imported code amounts to less than 150 lines of Ruby.
Besides providing a functional environment for the application pro-
gram to run in, the imported code specifies and verifies some com-
mon, low-level security properties.

Finally, we execute ananalysis script, provided by the devel-
oper, that includes several symbolic “tests.” Each such test popu-
lates the database with some symbolic objects, defines some invari-
ants for those objects, assumes some preconditions, sends symbolic
requests to the browser interface, receives responses, andasserts
some postconditions. The goal of the analysis script is to direct
the exploration of paths and specify and verify further, high-level
properties of the application.

After running the analysis script, Rubyx reports the reachable
worlds in which the properties do not hold,i.e., it reports satisfiable
path constraints that cause assertion failures, which in turn encode
feasible path traces to exploit bugs.

Secrecy lattice and principals. Low-level security properties of
code ultimately rely on the preservation of secrets, such astokens
and passwords. Thus, our specifications are based onprincipals,
which are secrecy levels in a lattice. In practice, the principals
include various users (as identified by the application), the appli-
cation itself (⊤), and the attacker (⊥); they are partially ordered
by their knowledge of secrets, with⊤ > honest users> ⊥. The
honest users do not know each others’ secrets; dishonest users leak
their secrets to the attacker; and the application’s secrets are exclu-
sive. To model secrecy levels, our proxy implementation includes
a classLattice with constantsBot andTop and a methodleq.

For any interaction (request and response) with the web appli-
cation, we consider three roles:Ps, the principal that sent the re-
quest;Pr, the principal that received the response; andPi, the prin-
cipal of the logged-in user. Our proxy implementation includes
a classPrin to model these roles: we havePs = Prin.sender,
Pr = Prin.receiver, andPi = session[Prin.Id]. While Prin.Id is
constant for an application (e.g., for pubmgr, Prin.Id = :id), the
rolesPs, Pr, andPi may change between interactions; all of these
are set by the analysis script.

With these roles, we specify four low-level security properties—
No XSS, Secrecy, No CSRF, Authentication—in the proxy browser
interface, so that they are verified for every interaction. These
specifications rule out the kinds of vulnerabilities discussed in Sec-
tion 2. The exact specifications are shown in Figure 1; we discuss
these in detail in later subsections, but for now, observe that the
specifications are quite simple despite covering several properties.

Furthermore, in combination they facilitate reasoning about end-
to-end security:No XSSandSecrecytogether imply preservation
of the secrecy lattice, whileNo CSRFandAuthenticationrely on

secrecy to ensure the soundness of access control. Finally,other
high-level properties specified in analysis scripts, such as enforcing
that operations maintain consistency of the database, typically rely
on these low-level properties for the specifications to be correct.

Analysis scripts. Analysis scripts typically proceed as follows.
First, the database is populated with objects containing unknown
fields. For example, to create aUser the developer may call:

70 User.create(fresh (:ATTRIBUTES))

The create method, automatically added by DRails, populates the
fields of a newUser object according to the argument and saves
the object in the database. In this case, we pass in a fresh un-
known hash (named afterATTRIBUTES), and so Rubyx will in
turn introduce fresh unknowns for all fields in theUser object.
Also, those unknowns will automatically be constrained by any
invariant s given by the developer. For example, we may require
that thehashed_pwd attribute should be the cryptographic hash of
the@password field.

Having established an appropriate state, various controllers are
“tested” by sending requests with unknown parameters. For exam-
ple, the developer may request the browser to send alogin request
to UserController:

71 response = Browser.exec(UserController, :login, fresh (:PARAMS))

The parameters are given by a fresh unknown hash, and so param-
eters like the POST/GET type of the request and the CSRF token
carried by the request, as well as other request-specific parameters
such as a password, will be unknowns. Any conditions on such pa-
rameters that are established dynamically by code—such as check-
ing the type of the request, matching the CSRF token, checking the
password, and so on—cause Rubyx to explore alternative worlds
with the relevant constraints. And in each of those worlds, Rubyx
will check the low-level security properties in Figure 1.

In addition, the developer may specify and verify other proper-
ties. For example:

72 assume Browser.session[:id]
73 response = Browser.exec(UserController, :update, fresh (:PARAMS))
74 # Update by admin
75 assert (User.admin?(Prin.sender)) if Db.modified?(User)

Here the developer assumes that the session id is non-nil , indicating
a successful login. Then the developer sends a request for anupdate
operation, and asserts that if theUser database is modified, then the
user is an administrator.

The constraint passed to Yices to check this assertion will in-
clude various facts that arise from the specifications of thelow-level
properties in Figure 1. For example, the request must be POST
(by our enforcement that only POST requests may write to the
database); the sender must beBrowser.session[:id] (by CSRF pro-
tection and write authentication for POST requests); andBrowser.
session[:id] must be anadmin (by a specific dynamic check in the
application code, not shown).

In the following subsections, we explain our formal specifica-
tions for the common security properties in Figure 1. These spec-
ifications apply to any Rails application that uses the RailsAPI in
standard, recommended ways to achieve security. Other, application-
specific properties that may arise are discussed on a case-by-case
basis for our experimental benchmarks in Section 5.

4.1 Session manipulation
Since session manipulation can be used to violate other proper-

ties, it is important to implement sessions faithfully. Recall that in

the database mode, only the session identifier is stored in a cookie,
while the session information itself is stored in the database. In this
mode there is not much room for session manipulation, and so in
our proxy implementation, the browser is not allowed to affect the
Rails internal@session field.

On the other hand, in the cookie-store mode, the browser tracks
the current session internally, and sessions are stored cryptographi-
cally MAC-ed in the cookie. Thus, requests may change the current
session by changing the cookie. In our proxy implementation, we
abstract MAC-ing of an objectx by an identity operation with the
side effect of includingx in a private list. Verifying the MAC of
x then reduces to checking whetherx is in this list. This encoding
allows sessions to be replayed but not forged. Moreover, ourproxy
implementation ensures that principals cannot know (and thus, can-
not replay) sessions received by other principals.

4.2 XSS
Next we tackle XSS attacks. Recall from Section 2.1 that Rails

includes two defenses: usingvalidates_format_of to prevent fields
with code from being stored in the database, or callinghtml_escape
to sanitize strings before display.

To track sanitization, our Rails proxy implementation extends
Ruby’sString class with a trust level. For a strings, callings.trust?
returns true if the string is trusted, and callings.trusted marks a
string as trusted. We reduce Rails’s sanitization routinesinto state-
ments on trust. To encodehtml_escape , we simply implement it
as a proxy API that returns a trusted code of the string passedto it:

76 module View::Base # continued
77 def html_escape (s) s.trusted end
78 end

We translatevalidates_format_of into trust assumptions. For
example, here is a translation of the call tovalidates_format_of
from Section 2.1:

79 class Author # continued
80 def save() assume @name.trust?; Author.db << self end
81 end
82 def Author.invariant () @db.forall {|author| author.name.trust?} end

Since we will reject any unsanitized strings, we can assume in save,
which writes to the database, thatname is trusted (line 80). (Note
that we do not check the regular expression thatname is tested
against; Rubyx assumes it is correct.) This maintains an automat-
ically generated invariant of the database: thename fields of all
author objects in it are trusted (line 82). In turn, this invariant im-
plies that anynames retrieved from the database are trusted.

Once we have established the trust of strings, we can reason
about XSS. In our proxy implementation, any strings displayed in
a response are concatenated to the@output field of the response.
In Rubyx, concatenating stringx with string y sets the trust ofx
to the minimum of the trusts ofx andy. We also assume that any
strings passed as parameters in a request are untrusted (notshown).
Then the specification ofNo XSS, shown on line 61 of Figure 1, is
simply that the@output field of a response must betrustedunless
the output is received by an attacker.

This technique captures the key principle behind defenses against
XSS: that inputs must be sanitized before they flow to outputs. By
assuming that inputs may be untrusted and requiring that outputs
be trusted, we effectively force inputs that flow to outputs to pass
through some sanitization mechanisms, which in turn “bless” the
untrusted strings as trusted. (We handle SQL injection similarly,
but do not mention it further since we have not seen SQL injection
vulnerabilities in Rails—the applications we’ve studied always use
secure Rails APIs for database queries and updates.)

authenticate login

logout

session[:_csrf_token] = ?

session[Prin.Id] = nil

session[:_csrf_token] = …

session[Prin.Id] = nil

session[:_csrf_token] = …

session[Prin.Id] = …

login authenticate auau

work

Figure 2: State machine forsession

4.3 CSRF
Next, we consider CSRF attacks. Recall that for any interaction

with the web application, we consider principalPs, the sender, and
Pr, the receiver. CSRF is possible becausePs andPr may be
different. Thus, our specification of CSRF safety is simply:

(CSRF safety)For any non-idempotent request,Ps ≥ Pr.

Informally, any principal that controls behaviors of the web ap-
plication must be at least as trusted the principal that views those
behaviors. In particular, ifPr is an honest user, thenPs cannot
be the attacker, although it may bePr itself or another honest user
> Pr (or perhaps even the web application).

We specify CSRF safety in Rubyx with two assertions. On line 65
of Figure 1, we require that POST requests have the right relation-
ship between sender and receiver, and on line 66 we specify that
any requests that change the session or database must be POST.

To reason about CSRF protection, we must track which prin-
cipal each string came from. Hence, similarly to trust levels in
Section 4.2, we extend classString with a secrecy attribute, which
contains aLattice element describing the string’s principal.

Recall from Section 2.2 that defense against CSRF requires em-
ploying several different countermeasures: ensuring onlyPOST re-
quests can change state; including and checking for a secretvalue
session[:_csrf_token] in legitimate requests (achieved by calling
protect_from_forgery); and callingreset_session at the right point
to create fresh tokens for new users.

To understand how these countermeasures provide CSRF safety,
we argue abstractly about an application. Consider Figure 2, which
shows a state machine describing the life cycle ofsession[:_csrf
_token] and the currently logged-in principal when CSRF protec-
tion is used correctly. Here, the user is initially at the black state,
wheresession[Prin.Id] is nil andsession[:_csrf_token] is irrelevant.
We move to the gray state when a login request is received, at which
point a freshsession[:_csrf_ token] is generated. We then move to
the white state when password authentication succeeds, which also
setssession[Prin.Id]. We stay in that state doing work, and eventu-
ally return to the black state by logging out.

Thus,Pr may change only in the black state. If an implementa-
tion matches the state machine in Figure 2, thensession[:_csrf_token]
must change wheneverPr may have changed. More precisely,
the following assertion, which we include inforgery_safe? (Sec-
tion 2.2), will hold, sinceform_authenticity_token (Section 2.2) re-
turnssession[:_csrf_token] after generating a token if required:

83 class Controller::Base
84 def forgery_safe?
85 assert (form_authenticity_token.secrecy == Prin.receiver)
86 ... # see line 33
87 end
88 end

Thus we can concludesession[:_csrf_token].secrecy = Pr.
Now, for any POST request,forgery_safe? (Section 2.2) estab-

lishessession[:_csrf_token] = params[:authenticity_token]. Putting

these two equalities together, we haveparams[:authenticity_token].
secrecy = Pr.

Finally, we assume that any string sent with a request must have
secrecy level≤ Ps (i.e., that senders can only send messages at
their secrecy level or below). Then we haveparams[:authenticity_
token].secrecy ≤ Ps, and thusPr ≤ Ps, which is CSRF safety for
POST requests.

Note that in the state machine in Figure 2, we generate a new
CSRF token for a login request. Traditionally CSRF attacks have
focused only on work transitions, hence it seems we could have
generated fresh tokens after authentication. However, recently lo-
gin CSRFattacks have been studied [4], which focus on authentica-
tion transitions. It is easy to see that generating CSRF tokensbefore
authentication, as we have done, prevents login CSRF attacks also.

Furthermore, note that for authentication transitions, wemay
reasonably assume thatPs 6> Pr, i.e., Ps will never aid any less
trustedPr in authentication. For instance, an honest userPs will
not try to authenticate for a dishonest userPr, or for another honest
user< Ps. Thus, for authentication transitions that are CSRF safe
we actually havePs = Pr.

Finally, note that key to our proof above was the assertion that the
secrecy of the CSRF token must be equal to the receiver. We pro-
pose this as a design principle for CSRF safety. Indeed, it provides
the main insight behind eliminating CSRF attacks, embodiedin this
combined use ofprotect_from_forgery and reset_session —the
secrecy of the CSRF token must always be related to the principal
viewing the behaviors of the web application, and since sucha prin-
cipal may change between logout and login, the CSRF token must
also change between logout and login. Otherwise, the attacker may
learn the token for an honest user, or the token for an attacker may
serve an honest user—either of which can break CSRF safety.

4.4 Authentication and Access Control
Next, we show how Rubyx can assert the correctness of pass-

word authentication, meaning that sends and receives afterauthen-
tication can be assumed to come from the logged-in user (or a more
trusted principal). Formally, our specification is as follows (see
lines 68 and 69 in Figure 1).

(Password authentication)Suppose thatPi 6= nil (i.e., a user is
logged in). Then:

For any POST request:Ps ≥ Pi, and (1)

For any POST or GET request:Pr ≥ Pi (2)

To authenticate correctly, web applications usually storeand check
passwords using a combination of cryptographic hashing and“salt-
ing” to avoid known attacks. In our proxy Rails API, we include
a basic model of string concatenation and hashing. Our imple-
mentation ensures that for any stringsx, y, andz, if x 6= y then
Crypto.hash(x) 6= Crypto.hash(y) andx+ z 6= y + z. (HereCrypto
is a placeholder for the name of the relevant Ruby class.)

Given this API, Rubyx can reason about typical authentication
strategies. As a concrete example, consider the following code:

89 class UsersController
90 def authenticate # POST
91 u = User.find(params[:id])
92 if (u.hashed_pwd == Crypto.hash(params[:password] + u.salt))
93 session[:id] = u.id; render :logout_form
94 else redirect_to :abort end
95 end
96 end
97 class User
98 def password() @password end
99 def password=(x)

100 @password = x; hashed_pwd = Crypto.hash(x + salt)

101 end
102 end
103 def User.invariant
104 @db.forall {|u|
105 (u.password.secrecy == u.id) &&
106 (u.hashed_pwd == Crypto.hash(u.password + u.salt)}
107 end

Notice that the programmer has supplied an invariant (lines103–
106) that specifies that the password’s secrecy level is the id of the
user, as well exactly how the hashed password is computed. This
invariant describes the stored password information abstractly, and
lets us leave it otherwise as an unknown.

Using this invariant, Rubyx can assert that the code implements
correct password authentication as follows. Suppose thatPi 6= nil .
For some useru = User.find(params[:id]), the code above establishes
the following conditions:

u.hashed_pwd = Crypto.hash(params[:password] + u.salt)
u.id = session[:id] (= Pi)

u.password.secrecy = u.id
u.hashed_pwd = Crypto.hash(u.password + u.salt)

Combining these equations with those for cryptographic hashing
and string concatenation above, we haveparams[:password].secrecy
= Pi. Furthermore, as in Section 4.3, we assume any string sent
with a request must have secrecy level≤ Ps. Then we havePi =
params[:password].secrecy ≤ Ps. This establishes (1). But since
we are performing authentication, by CSRF safety we havePr =
Ps, and hence (2) also holds.

After authentication has occurred,Pr andPi remain constant.
(Recall thatPr can change only in the black state, andPi does not
change in the white state.) ThusPr ≥ Pi, from (2) at authentica-
tion time, continues to hold. Moreover, by CSRF safety we have
Ps ≥ Pr, and so (1) also continues hold.

Of course, authentication is useful only if we implement some
access control, for which we need to track dynamic conditions on
Pi itself, of the formPi ≥ Pa for some access privilegePa. By
the above theorem, these conditions will implyPs ≥ Pa for write
access privileges, andPr ≥ Pa for read access privileges.

4.5 Secrecy
Finally, note that the above properties rely on the preservation of

the secrecy lattice,i.e., principals do not eventually know secrets
of unrelated principals. We specify this in line 63 of Figure1, by
requiring that any strings received in a response must have secrecy
levels≤ Pr, so that the receiver could have already known them.

5. EXPERIMENTS AND RESULTS
We used Rubyx to analyze seven Rails applications with a range

of non-trivial security and correctness requirements. Twoappli-
cations were developed within our research group, but indepen-
dently of this project (so they did not take any particular advantage
of Rubyx’s strengths or weaknesses). The remaining applications
were obtained from external sources.

5.1 Applications and Properties
We begin by describing each web application in our experiments,

along with their application-specific access control and correctness
properties. For all of the applications, we also checked forthe pres-
ence of session manipulation, XSS, CSRF, and authentication at-
tacks, using the specifications in Section 4.

As discussed earlier, thepubmgrapplication, which we used for
examples throughout the paper, was developed by one of the au-
thors to manage publications of our research group. In addition

to the common security properties, we also checked that users are
always properly authorized, as outlined in Section 2.4.

Thecoffeeapplication was developed by another member of our
research group to track use of a shared coffee machine. The appli-
cation maintains an inventory of coffee capsules available; a count
of each user’s tokens, which are exchanged for coffee; and the con-
sumption of coffee by users. Some users have administrativepriv-
ileges and can refill tokens for other users and adjust the inventory
of capsules. We checked to ensure that administrative privileges
cannot be circumvented, and that counts of capsules, tokens, and
user consumption all match up correctly.

The depotapplication is used as the main running example in
a popular book for Rails developers [27]. Since its code is freely
available, we expect that many developers use that code as a start-
ing point for their own applications. Thedepotapplication main-
tains a database of products, and records orders of productsby cus-
tomers. It also maintains accounts of administrators, who are able
to edit information on products, including their prices. Wechecked
to ensure that administrative privileges are required to edit product
information, and to introduce other administrators to the system.
We also checked to ensure customers are charged the correct price
for any product they order.

The chuckslistapplication is a classified ad system inspired by
craigslist. The application maintains a database of ads andtheir au-
thors. It also maintains accounts for users, some of whom mayhave
administrative privileges. Authors manage ads, users manage au-
thors, and users with administrative privileges manage other users.
The system relies on a sophisticated access control module,which
we included as part of the application. We checked for several ac-
cess control properties, such as: authors cannot edit ads ofother
authors, and administrative privileges cannot be circumvented.

Theboxroomapplication is a secure file sharing system that main-
tains access control metadata for files. Users are members ofgroups,
and permissions are associated with groups and files. We checked
that several expected access control properties hold, suchas non-
administrators cannot modify the permissions for groups and files,
and users cannot access a file they do not have permission to access.

Themysticapplication is a trouble ticket system. The application
maintains a database of (outstanding and resolved) tickets, as well
as accounts for customers, technical-staff members, and adminis-
trators. Customers post tickets, technical-staff membersaddress
those tickets, and administrators manage their accounts. The de-
velopers claim a clear separation of these duties in the system, and
we check to ensure that this is indeed the case.

Finally, thertplan application is a planning system for project
tasks. The application maintains a database of projects, each of
which has several tasks. It also maintains accounts for users, who
are allocated various tasks, and records the work those users have
put into those tasks. Apart from expected access control properties,
we checked that the project and user databases have a consistent
record of the total work done.

5.2 Attacks
Figure 3 summarizes the results of our experiments. We group

our results by property, shown across the top of the figure:No
XSS, No CSRF, Authentication, Secrecy, access control, and other
application-specific correctness properties. For each property, a
check mark indicates no vulnerabilities found, a cross markindi-
cates some exploitable security vulnerability, and a question mark
indicates that a potential security vulnerability exists,but it may
not be exploitable. We indicate that some vulnerabilities are due to
replay attacks with anr. For most exploitable or potential vulner-
abilities, we attempted to fix the code so that the vulnerability was

XSS CSRF Auth. Secr. Acc. Corr.
pubmgr

√
×(1)

√ √ √
N/A

coffee ? (2) ×(1)
√ √

× (2)
√

depot ×(2) ×(10)
√ √ √

×r (7)
chuckslist

√
×(1)

√ √
× (−) N/A

boxroom
√

×(5)
√ √ √

?r (2)
mystic ×(17) ×(8)

√ √
×r(6) N/A

rtplan
√

×(1) ×(16)
√

?r (−)
√

√
= no vuln. found × = vuln. found ? = potential vuln. found

(n) = n lines of fixes (−) = did not fix r = replay attack

Figure 3: Experimental Results and Fixes

eliminated (as checked by Rubyx). The number of fixes is listed
in the figure; we show a dash where we chose not to attempt fixes
because doing so might require pervasive changes.

As we can see, Rubyx detected many vulnerabilities, and every
application had at least one. At the same time, except for three
cases we were able to fix the vulnerabilities with a small number
of changes. Since Rubyx explores all possible program pathsfrom
a given symbolic state, once we have eliminated all detectedvul-
nerabilities from that state we can guarantee the security of that
application from any instantiation of that state.

Next, we discuss the vulnerabilities we found in more detail.

XSS.Rubyx found XSS attacks in three applications. Incoffee, the
attributes of a capsule (including a text description) are not san-
itized, and hence can be used for XSS attacks. We categorized
this issue as a potential, rather than definite, vulnerability because
only administrators can modify attributes. However, this still re-
flects poor security practice because administrators coulduse XSS
attacks to steal passwords from other users.

In depot, a product’s information includes information on orders
that were placed on it, and the text of such orders is not sanitized.
Thus, any customer that places an order can mount XSS attackson
other customers and administrators who view this data. Similarly,
in mystic, users can mount XSS attacks on other users.

CSRF.Rubyx found CSRF attacks against all applications. Inpub-
mgr, the vulnerability exists because the controller for logging in
a new user does not usereset_session —instead it simply resets
session[:user] to nil , but does not also setsession[:_csrf_token] to
nil . In coffee, the developer does usereset_session , but in the con-
troller for logging out a user instead of logging in—hence CSRF
attacks are enabled by simply not logging out. Similar problems
occur inchuckslist, rtplan, depot, boxroom, andmystic. Moreover,
the latter three also do not require that all state-changingrequests
are POST, enabling yet more CSRF attacks.

Authentication. Only one application,rtplan, failed to correctly
authenticate users. Strangely, here users do not require passwords
to log in, although users do have password attributes in the model.

Access control.Rubyx found critical violations of access control in
several applications. Incoffee, non-administrators can change their
token counts or even grant themselves administrator privileges. The
problem is that the code to update a user’s information can write to
all of the attributes of that user, even in cases when only some in-
formation should being updated. The developer ofcoffeetried to
prevent the token count and administrator bit from being updated
in non-administrative mode by rendering one of them as read-only
and not rendering the other in the relevant form. Unfortunately,
this is not enough: a simple browser setting can make read-only
parameters writable, and any missing parameters can be passed by
extending the form manually. This is an interesting example, be-

LoC Running time Yices stats
orig. (s) re-run(%) % time # calls

pubmgr 7, 450 32.6 37.2% 91.4% 352
coffee 7, 928 67.5 4.0% 97.8% 142
depot 5, 338 32.5 16.6% 94.8% 265

chuckslist 12, 554 175.2 10.8% 95.7% 519
boxroom 13, 727 123.1 32.0% 95.6% 347

mystic 20, 350 28.2 30.3% 71.8% 169
rtplan 9, 849 195.3 1.5% 99.1% 163

Figure 4: Performance

cause it shows how even a developer who pays attention to security
can get it wrong.

In chuckslist, administrative privileges are not protected—anybody
can sign up as an administrator, and any existing user can obtain
administrative privileges. Additionally, any author can trivially be-
come a user and manage other authors in the system. For example,
an author and all its ads may be removed without an existing user
logging in. Finally, any author can edit any ad in the system.In
fact,chucklistdoes not actually maintain any relationship between
users and authors, which is surprising, because at the database level
they have very similar attributes.

In mystic, the claimed separation of duties is violated. Anybody
can sign up as an administrator and can modify others’ accounts.
Furthermore, privileges granted to a logged-in user are stored in the
session, and so session replay can be used to defeat revocation. For
example, even if a technical-staff member’s privileges arerevoked
by an administrator, it may replay a stale session to keep viewing
information on outstanding tickets.

In rtplan, any user can promote anyone to an administrator. Fur-
thermore, theisadmin attribute of a user is stored in the session, so
a user whose administrative privileges have been revoked can keep
acting as an administrator by replaying a stale session. Strangely,
however, administrator privileges do not seem to have any function
in this application, so we must consider these attacks benign.

Application-specific security properties. Finally, Rubyx found
violations of application-specific correctness properties in two cases.
In depot, Rubyx found attacks in which the price in an order does
not match the price of the ordered products. The problem is that the
shopping cart of a customer—which is used to place the order—is
stored in the session, which can be replayed. Thus, a customer may
add some products to the cart, save the session, and empty thecart.
Later, the administrator may increase those products’ prices. But
then the customer can replay his session and check out, paying the
lower prices. Indeed, the database is not consulted before placing
an order—there is complete trust in the session.

In boxroom, Rubyx found a potential vulnerability in a clipboard
implementation that could be exploited by a replay attack. How-
ever, the clipboard is not yet enabled, and so the attack is latent
until the clipboard is actually used.

5.3 Performance
Finally, we briefly discuss Rubyx’s performance, summarized in

Figure 4. The applications we analyzed ranged from 5k to 20k lines
of code. The running times for the original applications were be-
tween half a minute to 3 minutes. (Note that if an assertion fails,
Rubyx reports a bug and continues, assuming that the assertion ac-
tually succeeded.) On average, around 90% of the time was spent
on calls to Yices; indeed, one such call took 75 seconds out of195
seconds of total running time. Caching such calls not only im-
proved performance (we observed a high cache hit rate), but also
allowed us to analyze the applications “incrementally.” Indeed,
during our experiments we often ran partial analysis scripts on an

unfamiliar application to get intermediate results, and then incre-
mentally added assumptions and assertions to get the final results;
caching prevented the cumulative analysis times from blowing up
quadratically across runs. The resulting experience was much like
testing. To measure this effect, note that re-running the analyses
took only 2–40% of the original running times, and the fraction
went down as the time spent on calls to Yices went up.

6. RELATED WORK
Some necessary background on important threats and defenses

for web-application security can be found in [26, 35], whilean ex-
cellent resource for Rails security in particular is [36].

Much research on web-application security has focused on set-
tings where applications are untrusted, and users must be protected
from applications [16, 38, 20]. In contrast, applications are not con-
sidered inherently malicious in our setting—we assume thatsome
users may be malicious, and we care about verifying that applica-
tions and other users are protected from such malicious users.

The need for end-to-end web application security has been pre-
viously argued [13]. Existing techniques for achieving end-to-end
security for web applications include type systems [8, 5] and secure
compilation [32, 9, 3]. Most of these techniques rely on lattice-
based security with labels [12, 21, 10], as we do. An important dif-
ference between such techniques and ours is that we require almost
no label annotations. We also ignore implicit information flows.

Many specialized techniques have been developed to analyze
particular security properties of web applications [31, 23, 37, 18,
34]. In contrast, our approach can be used to check a wide range of
security properties. Some recent tools also use symbolic execution
for security analysis of JavaScript programs [2, 28].

Finally, most of the existing work on understanding web applica-
tion security focuses on injection attacks [30]. In comparison, the
other kinds of attacks we consider in this paper have received far
less attention; notable exceptions include [25, 11] on access control
and authentication, [17] on session integrity, and [4, 22] on CSRF.

7. CONCLUSION
We described a new approach that uses symbolic execution to

reason about the security of Ruby-on-Rails web applications. Our
symbolic executor, Rubyx, uses a simple assume/assert language
to describe a wide range of properties. We use Rubyx to specify
protection against XSS, CSRF, session manipulation, and unautho-
rized access, using basic notions such as principals, secrecy, and
trust levels. We applied Rubyx to seven applications, and found
a wide variety of vulnerabilities. Overall, our results suggest that
symbolic execution is a promising approach for analyzing web ap-
plications for security vulnerabilities.

Acknowledgments.We wish to thank the anonymous review-
ers for their helpful comments on this paper. This research was
supported in part by DARPA ODOD.HR00110810073.

8. REFERENCES
[1] Jong-hoon An, Avik Chaudhuri, and Jeffrey S. Foster. Static typing for Ruby on

Rails. InASE, 2009.
[2] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar,and M.D. Ernst.

Finding bugs in web applications using dynamic test generation and explicit
state model checking.IEEE Transactions on Software Engineering, 2010.

[3] I.G. Baltopoulos and A.D. Gordon. Secure compilation ofa multi-tier web
language. InTLDI, 2009.

[4] A. Barth, C. Jackson, and J.C. Mitchell. Robust defensesfor cross-site request
forgery. InCCS. ACM, 2008.

[5] Jesper Bengtson, Karthikeyan Bhargavan, Cédric Fournet, Andrew D. Gordon,
and Sergio Maffeis. Refinement types for secure implementations. InCSF,
2008.

[6] Gavin M. Bierman, Andrew D. Gordon, C̆at̆alin Hri̧tcu, and David Langworthy.
Semantic subtyping with an SMT solver. InICFP, 2010.

[7] Prithvi Bisht, P. Madhusudan, and V. N. Venkatakrishnan. Candid: Dynamic
candidate evaluations for automatic prevention of SQL injection attacks.ACM
Trans. Inf. Syst. Secur., 13(2), 2010.

[8] Adam Chlipala. Ur: Statically-typed metaprogramming with type-level record
computation. InPLDI, 2010.

[9] S. Chong, K. Vikram, A.C. Myers, et al. SIF: Enforcing confidentiality and
integrity in web applications. InUSENIX Security, 2007.

[10] Brian J. Corcoran, Nikhil Swamy, and Michael Hicks. Cross-tier, label-based
security enforcement for web applications. InSIGMOD, 2009.

[11] M. Dalton, C. Kozyrakis, and N. Zeldovich. Nemesis: Preventing
Authentication & Access Control Vulnerabilities in Web Applications. In
USENIX Security, 2009.

[12] Dorothy E. Denning. A Lattice Model of Secure Information Flow.
Communications of the ACM, 19(5), 1976.

[13] U. Erlingsson, B. Livshits, and Y. Xie. End-to-end web application security. In
HOTOS, 2007.

[14] Cédric Fournet, Andrew D. Gordon, and Sergio Maffeis. Atype discipline for
authorization in distributed systems. InCSF, 2007.

[15] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed automated random
testing. InPLDI, 2005.

[16] Arjun Guha, Shriram Krishnamurthi, and Trevor Jim. Using static analysis for
Ajax intrusion detection. InWWW, 2009.

[17] M. Johns. SessionSafe: Implementing XSS immune session handling.
ESORICS, 2006.

[18] N. Jovanovic, C. Kruegel, and E. Kirda. Pixy: A static analysis tool for
detecting web application vulnerabilities. InS&P, 2006.

[19] James C. King. Symbolic execution and program testing.Commun. ACM,
19(7), 1976.

[20] S. Maffeis, J.C. Mitchell, and A. Taly. Object capabilities and isolation of
untrusted web applications. InS&P, 2010.

[21] J. Magazinius, A. Askarov, and A. Sabelfeld. A Lattice-based Approach to
Mashup Security. InASIACCS, 2010.

[22] Z. Mao, N. Li, and I. Molloy. Defeating Cross-Site Request Forgery Attacks
with Browser-Enforced Authenticity Protection.Financial Cryptography and
Data Security, 2009.

[23] M. Martin, B. Livshits, and M.S. Lam. Finding application errors and security
flaws using PQL: a program query language. InOOPSLA, 2005.

[24] J. McCarthy. Towards a mathematical science of computation. Information
Processing, 62, 1962.

[25] G. Naumovich and P. Centonze. Static analysis of role-based access control in
J2EE applications.ACM SIGSOFT Software Engineering Notes, 29(5), 2004.

[26] OWASP. The ten most critical web application risks, 2010.
http://www.owasp.org/images/0/0f/OWASP_T10_-_2010_rc1.pdf.

[27] Sam Ruby, Dave Thomas, and David Heinemeier Hansson.Agile Web
Development with Rails. The Pragmatic Bookshelf, 2009.

[28] P. Saxena, D. Akhawe, S. Hanna, F. Mao, S. McCamant, and D. Song. A
Symbolic Execution Framework for JavaScript, 2010. Technical Report
UCB/EECS-2010-26, EECS Department, University of California, Berkeley.

[29] SRI. Yices: An SMT solver. http://yices.csl.sri.com/.
[30] Zhendong Su and Gary Wassermann. The essence of commandinjection attacks

in web applications. InPOPL, 2006.
[31] Omer Tripp, Marco Pistoia, Stephen J. Fink, Manu Sridharan, and Omri

Weisman. TAJ: Effective taint analysis for Java. InPLDI, 2009.
[32] K. Vikram, A. Prateek, and B. Livshits. Ripley: automatically securing web 2.0

applications through replicated execution. InCCS, 2009.
[33] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and G. Vigna.

Cross-site scripting prevention with dynamic data tainting and static analysis. In
NDSS, 2007.

[34] Gary Wassermann and Zhendong Su. Sound and precise analysis of web
applications for injection vulnerabilities. InPLDI, 2007.

[35] Web Application Security Consortium. Web applicationsecurity statistics,
2008. http://projects.webappsec.org/Web-Application-Security-Statistics.

[36] Heiko Webers. Ruby on rails security, v2. OWASP report:
http://www.owasp.org/images/2/26/Owasp-rails-security.pdf.

[37] Y. Xie and A. Aiken. Static detection of security vulnerabilities in scripting
languages. InUSENIX Security, 2006.

[38] Dachuan Yu, Ajay Chander, Nayeem Islam, and Igor Serikov. Javascript
instrumentation for browser security. InPOPL, 2007.

