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Dear colleagues, the story you are about to hear is 
true. Only the names have been changed to protect 
innocent computer scientists...
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A manager oversees several teams, all are using the same data to build 
predictive models for different products. The manager seeks to ensure both 
fairness and accuracy across the products.

Each team is solving a different prediction task. 
There is no company policy on fairness, thus no shared guidelines.

● Team alpha is fully focused on accuracy, but is oblivious (neighbors say they are 
apathetic) about fairness issues.

● Team beta, team nu and team gamma are all interested in fairness. Each team is 
really excited to implement this and has read the literature, but each team has 
selected different fairness definitions. 

● Team zeta would like to improve the fairness of their predictions, but has no 
idea how to incorporate or measure fairness.

● The manager has decided to independently verify that all released products 
are fair
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A manager oversees several teams, all are using the same data to build 
predictive models for different products. The manager seeks to ensure both 
fairness and accuracy across the products.

Challenges: 

● Some teams do not have the expertise (or interest) to design fairer 
models. 

● Different teams use different definitions of fairness. 
● Incorporating fairness can have different impacts on the performance of 

the models across products. 
● Auditing all the predictive models for fairness can be challenging when 

each team has its own recipe.



This tutorial will outline how representation 
learning can be used to address fairness problems, 
outline the (dis-)advantages of the representation 
learning approach, discuss existing algorithms and 
open problems.
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A Framework for Fair 
Representation Learning



Data Regulator

Determines fairness 
criteria, determines data 
source(s), audits results

Data User

Computes ML model 
given sanitized data

Data Producer

Computes the fair 
representation given 
data regulator criteria
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McNamara, Ong and Williamson (AIES 2019) P 7
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Data Regulator

Fairness 
Criteria 

Sensitive 
attribute 

Group 
stat.

Distance 

Representation 
Learning ML Model

Data

Input Output

Data Producer Data User



Objectives
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The data regulator determines which fairness criteria 
to use, and (optionally) audits the results.

When training:
● Input: interaction with 

users/experts/judges/policy to determine 
fairness criteria

● Output: fairness criteria

Data 
Regulator

● INPUT: Data
● OUTPUT: Fairness criteria

AUDITING
● INPUT: Models
● OUTPUT: Satisfactory? 

When auditing:
● Input (for auditing the data producer):

○ Learned representation
● Input (for auditing the data user):

○ Data and model predictions
● Output: 

○ Are fairness criteria satisfied?



One of the key tasks of the data regulator is 
determining the fairness criteria
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The most common algorithmic fairness criteria are 
individual fairness and group fairness...



Individual 
Fairness
Data Regulator



Stock and Cisse, 2018

Individual Fairness: Similar individuals treated similarly
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Pairs of similar individuals playing the same sport classified differently.  



Individual Fairness: Similar individuals treated similarly
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Data Regulator: Which individuals are similar?
equiv., which individuals should be treated similarly?

One approach:
● Define a partition of the space into disjoint cells 

such that similar individuals are in the same cell.
● Individuals in the same cell should be treated 

similarly even if they are apparently different 
(e.g. dots with different colored attributes). 



Dwork et al., (2012)
Cisse and Koyejo (2020, In Prep) P 14

Data Regulator: Which individuals are similar?
quiv., which individuals should be treated similarly?

 

Remark: Individual fairness implies algorithmic robustness (c.f. Xu & Mannor 2011).   

Individual Fairness: Similar individuals treated similarly



Cisse and Koyejo (2020, In Prep)

Algorithmic Robustness Implies Generalization 
 Individual Fairness Implies Generalization 
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Challenge: Individually fair models with low training error + generalization



Challenge: Can we learn a representation of the data such that                   is a 
good metric to compare instances ? 

Lipschitz Continuity implies Individual Fairness
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Good news: One can achieve fairness through Lipschitz regularization. 
Bad news: Data is non-Euclidean (e.g. images, graphs):                  .



Individual Fairness: Advantages and Challenges  
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Advantages:
● Intuitive and easy to explain to the data producer (and to non-experts)
● Individual fairness implies generalization (c.f. Xu & Mannor, 2012)
● Individual fairness implies statistical parity given regularity conditions 

(Dwork et al., 2012)

Challenges:
● Regulator must provide a metric or a set of examples to be treated similarly. 

Constructing a metric requires significant domain expertise and human insight. 
● Fairness of the representation heavily depends on the quality of the metric 

chosen by the regulator. 
● Optimizing and measuring individual fairness is generally more computationally 

expensive than other measures



Group Fairness
Data Regulator



●

●

●

Image Source: wikipedia; Sensitivity_and_specificity

Group Fairness: Similar Classifier 
Statistics Across Groups

Regulator: 
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Cisse and Koyejo (2020, In Prep)

(Im-)possibility Results for 
Group-Fair Classification
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Group Fairness: Advantages and Challenges  
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Advantages:

1. Efficient to compute, measure and enforce for the data producer and regulator.
2. Often easier to explain to policy-makers (as in terms of population behavior)
3. Much more existing work, strategies for representation learning

Challenges:

1. Data regulator must determine which classifier statistic(s) to equalize.
2. Fairness of the representation depends on the quality of the fairness metric chosen 

by the regulator. 
3. Group fairness can lead to (more) violated individual fairness, e.g., intersectionality 

can lead to fairness gerrymandering (Kearns et. al., 2018), and other issues 
(McNamara et. al., 2019)



Goodhart’s Law; Goodhart, 1981;  
Strathern, 1997

The Data Regulator: Measuring (Un-)fairness
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● Regulator must choose how to measure (un-)fairness
○
○

● For ML, we generally specify all measures apriori and optimize them
● However, all metrics will have failure cases, i.e., unusual situations with 

non-ideal behavior
● One productive approach is to select measures that best capture tradeoffs 

relevant to the context

● However, remember that there are no magic metrics or measures; 
Measurement 101: all measures have blind spots

“When a measure becomes a target, it ceases to be a good measure.”



Figure from Hiranandani et. al (NeurIPS 2019)

Metric Elicitation

Poster # 226; Wednesday
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Another key task of the data regulator is to audit the 
learning system (e.g., Madras et al., 2018)
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The most efficient approach is to audit the learned 
representation, i.e., the data producer

For complex label-dependent settings, or for an 
adversarial data user, the data regulator must audit 
the final model, i.e., the data user



P 25

Data Regulator

Fairness 
Criteria 

Sensitive 
attribute 

Group 
stat.

Distance 

Representation 
Learning ML Model

Data

Input Label

Data Producer Data User



Objectives

The data producer computes the representation 
given the fairness criteria and input data.

There are a variety of methods for representation 
learning with individual fairness or group fairness 
constraints, which, in turn, can be label 
(in-)dependent.

● Inputs: 
○ Data
○ Fairness criteria

Alternatively
● Output: 

○ Learned representation 
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Data 
Producer

● INPUT: Fairness criteria
● OUTPUT: Representation



Representation learning is the task of estimating a 
concise and informative data summary, usually 
implemented as a low-dimensional data 
transformation.
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Approaches in common use include PCA and 
non-linear autoencoders.



Individual 
Fairness
Data Producer



Image Source: Weinberger and Saul, 2009.

Individual Fairness: 
Metric Learning Approach 

Regulator 

treated similarly
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Producer: Learns a distance metric

Cisse and Koyejo (2020, In Prep)



Individual Fairness: 
Metric Learning Approach 

Regulator 

treated similarly 
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Producer: Equivalently, learn a representation

Cisse and Koyejo (2020, In Prep)
Image Source: Weinberger and Saul, 2009.



Group Fairness
Data Producer



Learning Fair Representations; 
Zemel et. al, ICML 2013

Group fairness with representative prototypes
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● Representation: 
Via prototypes, defined by parameterized mixture model that stochastically 
maps data to prototypes

● Prediction:
Parameterized mixture model that stochastically maps prototypes to labels

● Fairness Measure:
Statistical parity
i.e., group averaged label probability across groups
Trained to minimize the weighted average of data approximation,  
prediction quality, and statistical parity



Learning Fair Representations; 
Zemel et. al, ICML 2013

Group fairness, and individual fairness with ambient metric
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The Variational Fair Autoencoder  
Louizos et. al, ICLR 2016

Semi-supervised variational autoencoder + MMD fairness
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● Representation: 
Variational autoencoder

● Prediction:
Logistic regression, Random forests

● Fairness Measure:
Statistical parity
Implemented by penalizing MMD of stochastic 
embeddings across  groups  

● Trained using variational inference + MMD regularization.



The Variational Fair Autoencoder  
Louizos et. al, ICLR 2016

Performance vs. group fairness
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Learning Controllable Fair Representations
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● Representation: 
Variational autoencoder

● Prediction:
Feedforward neural networks

● Fairness Measure:
Statistical parity, equal opportunity, equalized odds
Information-theoretic approximations to the fairness metrics,
combined with variational approximations for efficient estimation
Recovers approximations to existing methods as special cases

Learning Controllable Fair Representations 
Song et. al., AISTATS 2019



Learning Controllable Fair Representations 
Song et. al., AISTATS 2019

Controllable Fair Representations
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“Our method encourages representations that satisfy the fairness constraints while being 
more expressive, and that our method is able to balance the trade-off between multiple 
notions of fairness with a single representation and a significantly lower computational 
cost.”



Learning Controllable Fair Representations, 
Song  et. al., AISTATS 2019

Mutual 
Information 
measures can 
approximate 
fairness 
quantities
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The relationship between 
mutual information and 
fairness related quantities



An Adversarial Approach for Learning Fair Representations
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● Representation: 
Adversarially trained neural network autoencoder

● Prediction:
Feedforward neural networks

● Fairness Measure:
Statistical parity, equal opportunity, equalized odds
Specialized adversary loss functions for each fairness measure

Provide bounds on the fairness violation of any subsequent classifier using 
the learned representation

Flexibly Fair Representation Learning by Disentanglement, 
Madras  et. al., ICML 2018



Flexibly Fair Representation Learning by Disentanglement, 
Madras  et. al., ICML 2018

Adversarially Learning Fair Representations
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“We frame the data owner’s choice as a representation learning problem with an adversary 
criticizing potentially unfair solutions”



Flexibly Fair Representation Learning by Disentanglement, 
Madras  et. al., ICML 2018

Group fairness/performance tradeoff on Adult dataset
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Generative Adversarial Representations
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● Representation: 
Adversarially trained neural network autoencoder

● Prediction:
Feedforward neural networks

● Fairness Measure:
Statistical parity
Implemented by constructing representations that are robust against the 
optimal adversary

Learning Generative Adversarial RePresentations (GAP) under Fairness and Censoring Constraints
Liao et. al., 2019



Generative Adversarial Representations

P 43

“GAP leverages recent advancements in adversarial learning to allow a data holder to learn 
universal representations that decouple a set of sensitive attributes from the rest of the 

dataset”

Learning Generative Adversarial RePresentations (GAP) under Fairness and Censoring Constraints
Liao et. al., 2019
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Learning Generative Adversarial RePresentations (GAP) under Fairness and Censoring Constraints
Liao et. al., 2019



Fair Representations using Disentanglement
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● Representation: 
Variational autoencoder

● Prediction:
Feedforward neural networks

● Fairness Measure:
Statistical parity
Implemented by penalizing mutual information of sensitive and 
non-sensitive feature representations, which encourages disentanglement 

Flexibly Fair Representation Learning by Disentanglement, 
Creager et. al., ICML 2019



Flexibly Fair Representation Learning by Disentanglement, 
Creager et. al., ICML 2019

Fair Representations using Disentanglement
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“Can we … learn a flexibly fair representation that can be adapted, at test time, to be fair to a 
variety of protected groups and their intersections?”



Flexibly Fair Representation Learning by Disentanglement, 
Creager et. al., ICML 2019

Group Fairness, Performance Tradeoffs

P 47



Fairness of Disentangled Representations
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● Representation: 
Disentangled representations (independent of the fairness metric)

● Prediction:
Feedforward neural networks

● Fairness Measure:
Statistical parity
No explicit regularization for fairness measure.
Sensitive attributes are unknown during representation learning

On the Fairness of Disentangled Representations
Locatello et. al., NeurIPS 2019



On the Fairness of Disentangled Representations
Locatello et. al., NeurIPS 2019

Fairness of Disentangled Representations
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“Analyzing the representations of more than 12 600 trained state-of the-art disentangled 
models, we observe that several disentanglement scores are consistently correlated with 

increased fairness, suggesting that disentanglement may be a useful property to encourage 
fairness when sensitive variables are not observed.”



On the Fairness of Disentangled Representations
Locatello et. al., NeurIPS 2019

When do 
disentangled 
representations 
imply fairness?

P 50
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Objectives 

Data producer computes the machine learning 
model given the sanitized representation.

Most of the fairness responsibility is with the 
data producer and regulator. The data user need 
only remain compliant with the pre-specified 
expectations, e.g., avoid adding new features that 
can result in fairness violations.

● Inputs: 
○ Sanitized data

● Output: 
○ ML model
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Data User

● INPUT: Sanitized data
● OUTPUT: ML model
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Keep calm and 
carry on
Keep calm and 
carry ML on
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Data Regulator

Fairness 
Criteria 

Sensitive 
attribute 

Group 
stat.

Distance 

Representation 
Learning ML Model

Data

Input Label

Data Producer Data User



Data Regulator

Determines fairness 
criteria, determines data 
source(s), audits results

Data User

Computes ML model 
given sanitized data

Data Producer

Computes the fair 
representation given 
data regulator criteria
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McNamara, Ong and Williamson (AIES 2019)
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Pros of incorporating fairness using representation learning
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● Often much more efficient than alternatives, especially with re-use 
● Can be employed when the data user is untrusted, or apathetic about 

fairness
○

● Inherits other good properties from representation learning
○
○
○

● Audits can be much more efficient (especially when only auditing the 
representation)



Cons of incorporating fairness using representation learning
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● Less precise control of fairness/performance tradeoff
○
○

● May lead to fairness overconfidence 
○

○
● Startup costs can be high:

○



Pre-processing

● Individual fairness, e.g., 
Cisse et. al., 2020 

● Group fairness, e.g.,  
Zemel et. al, 2013

In-processing

● Individual fairness, e.g., 
Dwork et. al., 2012

● Group fairness, e.g., 
Hardt et. al., 2016

Post-processing

● Individual fairness: 
Dwork et. al., 2012

● Group fairness e.g., 
Hardt et. al., 2016

Alternative approaches for implementing algorithmic fairness
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Some tradeoffs when comparing algorithmic fairness approaches
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Ease of 
implementation 
and (re-)use

Scalability Ease of auditing Fairness / 
Performance 
tradeoff

Generalization

Pre-processing, e.g., 
representation 
learning

In-processing, i.e., 
joint learning and 
fairness regulation

Post-processing, 
e.g., threshold 
adjustment



Back to the story ...
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A manager oversees several teams, all are using the same data to build 
predictive models for different products. The manager seeks to ensure both 
fairness and accuracy across the products.

Each team is solving a different prediction task. 
There is no company policy on fairness, thus no shared guidelines.

● Team alpha is fully focused on accuracy, but is oblivious (neighbors say they are 
apathetic) about fairness issues.

● Team beta, team nu and team gamma are all interested in fairness. Each team is 
really excited to implement this and has read the literature, but each team has 
selected different fairness definitions. 

● Team zeta would like to improve the fairness of their predictions, but has no 
idea how to incorporate or measure fairness.

● The manager has decided to independently verify that all released products 
are fair
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A manager oversees several teams, all are using the same data to build 
predictive models for different products. The manager seeks to ensure both 
fairness and accuracy across the products.

Challenges: 

● Some teams do not have the expertise (or interest) to design fairer 
models. 

● Different teams use different definitions of fairness. 
● Incorporating fairness can have different impacts on the performance of 

the models across products. 
● Auditing all the predictive models for fairness can be challenging when 

each team has its own recipe.
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A manager oversees several teams, all are using the same data to build 
predictive models for different products. The manager seeks to ensure both 
fairness and accuracy across the products.

Representation learning to the rescue!

● Representation learning can be used to centralize fairness constraints, by 
moving the fairness responsibility from the data user to the data regulator

● Learned representation can simplify and centralize the task of fairness 
auditing

● Learned representations can be constructed to satisfy multiple fairness 
measures simultaneously

● Learned representations can simplify the task of evaluating the 
fairness/performance tradeoff, e.g., using performance bounds



Conclusion



● Fairness is a nuanced and challenging issue with many open 
problems, e.g., incorporating user agency, metric selection, ...

● Feedback loops are common in deployed systems, i.e., predictions 
leading to (user) actions, which are collected as new data. 

● Inappropriate data is often the source of bias, e.g., labels which are 
correlated with sensitive attributes due to sampling effects, 
non-causal data collection, systematic undersampling of 
sub-populations ...

● Collecting additional data may be the best way to improve both 
performance and fairness

Beyond algorithmic fairness
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Conclusion
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● Representation learning is a promising approach for implementing algorithmic 
fairness

● Fair representation learning can be implemented with modular separation between 
tasks/roles:

○ Data regulator: 
○ Data producer: 
○ Data user: 

● Some new-ish observations and results:
○
○
○
○



Lots of open questions!
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● For the data regulator: 
○
○

● For the data producer:
○
○

● And many more algorithmic questions:
○
○

● For the data user:
○
○



Thank you for 
your attention!
Questions?
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