) Google Cloud Platform

Running Your Modern .NET

Application on Kubernetes

© 2018 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other company and product names may be
trademarks of the respective companies with which they are associated.

Table of Contents

Executive summary

Why is it important to build cloud-native applications?
What’s the big deal about containers?
Challenges with running containers at scale
The power of ephemeral computing

What is Kubernetes?

Container-as-a-Service (CaaS), the new kid on the Xaa$ block
Kubernetes on Google Cloud Platform

How to containerize PetShop

Kubernetes setup for PetShop

Demo of Kubernetes autoscaling capabilities

Conclusion

© 2018 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other company and product names may be
trademarks of the respective companies with which they are associated.

O 0o N oo uun 1 B W N

[N
N W O

Executive summary

What is a cloud-native application? For the past two white papers in this series, we have
covered this subject by applying the principles of a microservice architecture as well as other
application modernization techniques, but have we fully achieved the goals we established at
the outset of our journey?

Before we answer that, let’s first agree on a the formal definition of a cloud-native application:
According to the Cloud Native Computing Foundation (CNCF), A cloud-native application should
have the following characteristics:

1. Containerized. Each part (applications, processes, etc.) is packaged in its own
container. This facilitates reproducibility, transparency, and resource isolation.

2. Dynamically orchestrated. Containers are actively scheduled and managed to optimize
resource utilization.

3. Microservices-oriented. Applications are segmented into microservices. This
significantly increases the overall agility and maintainability of applications.

With this definition, it would seem we are missing a couple of elements in order to call our
modified PetShop a true cloud-native application--containers and orchestration.

In this final white paper of the series, we will introduce these missing pieces and show readers
why and how they can be applied to our application so that it can achieve the status of being
cloud-native.

Why is it important to build cloud-native applications?

A recurring theme we hear is the call for IT to innovate at the speed of business. As businesses
are being impacted by disruptive forces that are occurring at an accelerated rate,
correspondingly, IT is being pressured to iterate and release software at a faster pace in order to
keep up. When done right, cloud-native architecture represents the best approach we have
today to provide the agility, reliability, and scale needed to meet this challenge. For companies
that have adopted the cloud as the new default, the cloud-native approach should be a natural
choice for the development of green-field applications. Even for brown-field applications,
cloud-native architecture should be considered if the migration cost can be justified, because
while we cannot predict the future, we can be certain the velocity for change is not going to slow
down anytime soon. Hence, if a system is of critical importance to the business, then it should
be justifiable to make the necessary investments so that it can respond quickly.

This cloud-native approach is being promoted not because it's fashionable; there are pragmatic
motivations to be achieved. The approach works well with continuous delivery to achieve faster
time-to-value, it scales well, and it is efficient to operate. Most importantly, when combined with
the right application architecture, such as the microservices architecture we have prescribed for
PetShop, it can greatly reduce risk in a new way — by going fast but safe.

Many organizations are executing the idea of “You build it, you run it” by leveraging the
cloud-native approach. The basic idea behind this phrase is developers who develop code will
be responsible for deploying the code right to production as well. That’s right, production. And
the only reason why organizations can safely execute this idea is because:

a. The scope of microservices is granular so impact will be limited and isolated;
b. With container technology, they can easily roll back if something does go wrong with
any given deployment.

This is precisely how the cloud-native architecture achieves the notion of fast-but-safe.

What's the big deal about containers?

Speed and agility are what every company craves in the Internet age. As a software developer,
or architect, nothing ever seems to be fast enough for our users. Moreover, speed is addictive.
Once you get a taste of it, whether it's from the development, deployment, or operation, you
want more of it. In recent years, more and more developers are preaching the phrase “develop
and test at the speed of Docker" as THE way to achieve speed with safety. The reason for this is
that containers are indeed helping companies across industries accelerate software
development and deployment at scale, while reducing costs and saving IT departments time.

Here’s how: Prior to the advent of containers, one of the biggest resource drains in the software
development lifecycle was the discrepancy between the various application hosting
environments along the deployment pipeline. Anywhere along the pipeline from a developer’s
laptop, to test, staging, and finally, production, there could be any number of configuration
differences that could cause the application to run improperly. It could take hours, or even days,
to understand and track down the root cause for these discrepancies, and that’s simply a terrible
waste of time and resource. Containers are revolutionizing this process by providing great
environmental fidelity. With the portable nature of containers, you are, by definition, running your
system under an identical environment, from development all the way to production! The high
adoption rate for containers as a critical part of software development has proven containers
should be a fundamental part of any enterprise application development and hosting strategy.
Containers not only facilitate an application modernization roadmap, but they prepare one’s IT
environment for the future.

No doubt about it, we’re at an inflection point with containers, similar to where virtual machines
were roughly 10 years ago. There is a great deal of momentum behind the technology as

developers, architects, and operations personnel are discovering the benefits it provides.
Specifically, containers provide convenient development and packaging tools for developers that
spread into IT and operations, dramatically lessening the discrepancies, hence increasing the
velocity and accuracy of software releases. That's something we, as a industry, have never had
before.

Challenges with running containers at scale

Now that we’ve established the validity and benefits of container usage, let’s take it a step
further by discussing how they are typically used in a production environment.

With the advent of microservices, it's not unusual to have tens, hundreds, or even thousands of
container instances running across multiple hosts in order to support a particular production
workload. It's one thing to spawn a few container instances by hand when we’re developing
software, but to use containers at scale, in a production environment, we must consider how the
following list of requirements can be accomplished:
e Scheduling of container instances: which instance of the VM (or bare metal) should host
the new container instance in order to maximize and optimize system resources?
e Monitoring of containers, when a container fails (and they will), what’s going to stop the
errant instance and restart another healthy instance?
e When load increases, what is going to do the load-balancing by automatically starting
more instances of container to take on the extra traffic?
e What if your company needs zero-downtime deployment?

Still think you can manage this by hand? | sure hope not, and this is why container orchestration
framework such as Kubernetes, Mesosphere DC/OS, and Docker Swarm exist: to provide
some, or all, of this functionality so we can focus on running our applications, safely, and
reliably.

The power of ephemeral computing

Before we go further about the tooling needed for managing containers at scale, we need to
touch on the notion of reliability for cloud-native applications. Traditionally, we tend to define
reliability of a system in terms of its ability not to fail. We thought we could accomplish the
Herculean feat of writing the perfect software, designing the perfect infrastructure, and running
the perfect operation. I'm not sure about your experience, but | know personally, | have yet to
come across any application system that doesn't fail. It's time for us to face the facts: failure is
inevitable. Instead of trying to avoid it (if that's even possible), cloud-native architecture actually
anticipates it by defining reliability in terms of a system's resilience (i.e., its ability to mask
system failures by failing fast and recovering rapidly so any failures are not perceived by the end
user). Servers go down, stacks overflow, we have defects in our code—that’s just the facts of
life. Instead of doing the diminishing return act of hunting down every ever-elusive defect in a
system, cloud-native architecture argues our time can be better spent by designing our system
to handle failure gracefully and quickly.

The way we do that in the world of containers is to stop treating them as pets, but rather as
cattle. Huh you say? The metaphor comes from the idea that if one treats containers as pets
(the way we have gotten used to with physical machines and VMs), like naming them, then each
instance will likely have special characteristics, making them difficult to replace. If they get sick
(malfunction), one spends time nursing them back to health, which will take valuable time and
resources. Whereas if one treats containers like cattle, indistinguishable from one to the next,
you simply replace the ill with a brand new healthy container instance of the same type. The
idea that a container instance can come and go (i.e., they are ephemeral), is how cloud-native
applications achieve their reliability and scalability under the covers. Containers expect your
code to start up and shut down quickly so the container orchestrator can do its job: scale
properly, mask failures, and maximizes system resource. Make no mistake about i, this is a
fundamental shift in thinking, where architecting for failure is the rule rather than exception.

What is Kubernetes?

Even though there are a number of container orchestration frameworks available in the
marketplace, in recent years, Kubernetes has really sprung ahead of the others.

Kubernetes is an open source platform for automating deployments, scaling, and operations of
application containers across clusters of hosts, providing a “platform” for container-centric
infrastructure. It addresses all the challenges that were described above. Among its key features
are:

Automated deployment and replication of containers

Online scale-in and scale-out of container clusters

Load balancing over groups of containers

Rolling upgrades of application containers

Resiliency, with automated rescheduling of failed containers (i.e., self-healing of
container instance)

e Controlled exposure of network ports to systems outside of the cluster

This open-source software project was started in 2014 by Google and builds upon Google’s
internal cluster management system, called Borg, that has been refined internally at Google for
more than a decade. To give you an idea of Kubernetes’ popularity and the scale of its
community, as of 2017, Google cited that the Kubernetes project has received more than 400
man-years worth of contribution since its inception!

While it’s not a simple system to learn, its learning curve has been greatly reduced by the wealth
of community contributions such as in-person meetups in every major city in the world,
KubeCon (a developer and user conference for Kubernetes), tutorials, blog posts, support from
Google, and finally, an official Slack Channel. Most of all, it's an officially supported technology
from every major cloud provider--Google Cloud, Microsoft Azure, and AW--making it the leading
and most ubiquitous container orchestration framework available in the market.

We will finish up the argument for Kubernetes by showing its rapid adoption rate with a recent
survey done by RightScale:

YoY Respondents Using Container Tools

R oot — 9%
35%
[e
35%
— 27%
14%
r 20%
1%
T
8‘%}
7%
0y
Docker Datacenter mo asked ,7/5017

Mesosphere

Docker

Amazon ECS/EKS
Kubernetes

Azure Container Service
Google Container Engine

Docker Swarm

m2018
m2017

Rancher 304

Source: RightScale 2018 State of the Cloud Repon

(Source: RightScale 2018 State of the Cloud Report™ © 2018 RightScale, Inc. All rights
reserved. This work by RightScale is licensed under a Creative Commons Attribution 4.0
International License.)

Container-as-a-Service (CaaS), the new kid on the XaaS block

As mentioned earlier, Kubernetes is open and modular, you can run it on a VM or bare metal,
on-premises or in the cloud. A deep dive on the technical details of this system is well beyond
the scope this paper, but the amount of documentation available is more than plentiful, and |
would suggest one starts by looking at the official documentation.

To give one an idea of what is involved in setting up a Kubernetes cluster, here is a high-level
pictorial view of what the system looks like:

© 2018 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other company and product names may be
trademarks of the respective companies with which they are associated.

Master

Eted API Scheduler and
Server Controller Manager
Node Node Node
| Kubelet || Proxy | | Kubelet H Proxy | ‘ Kubelet H Proxy ‘
Pod Pod Pod Pod Pod Pod

[Container] [Container] [Container] [Container] [Container] [Container]

[Container] [Container] [Container] [Container] [Container J [Container]

Let’s just say it's not as simple as just setting up a few VMs and installing some software on top
of it. As a side note, if one is really interested in learning what'’s involved in setting up a
Kubernetes cluster by hand, from scratch, there is an excellent GitHub project put forth by
subject matter expert—Kelsey Hightower, a Google Developer Advocate—that goes through the
setup in all its gory detail.

Given its complexity, the question is should one be setting up Kubernetes by hand? Moreover,
should one devote ongoing resource to make sure it is kept up to date and well tuned? For most
organizations, the answer is clearly no.

As containers grow in ubiquity, all major cloud providers are offering Container-as-a-Service
(CaaS) as part of their XaaS services. CaaS is a form of container-based virtualization in which
container engines (such as Docker), orchestration, and the underlying computing resources are
delivered to users as a service, over the Internet, completely self-provisionable from a cloud
provider. CaaS helps organizations run containers at scale, alleviating developers and system
administrators from worrying about the container platform their applications depend on, enabling
them to focus on development of their container-based applications.

Kubernetes on Google Cloud Platform

As a Caa$S, Google Kubernetes Engine (GKE) provides a managed environment for deploying,
managing, and scaling your containerized applications using Google’s infrastructure.

This is a great value-add to Kubernetes for organizations, providing advanced cluster
management functionalities, such as:

Google Cloud Platform's load-balancing for Compute Engine instances

Node Pools to designate subsets of nodes within a cluster for additional flexibility
Automatic scaling of your cluster's node instance count

Automatic upgrades for your cluster's node software

Node auto-repair to maintain node health and availability

Deep integration with Stackdriver for logging and monitoring

For those companies that have aspirations to run modern, cloud-native applications and
operations, choosing GKE to host their container workload is a natural fit.

How to containerize PetShop

There are no shortage of detailed tutorials, labs and other resources available on the web on
how to create Docker containers for your .NET Core applications, so for the sake of brevity, | will
simply highlight what to take note of when one is intending to deploy their Docker containers to
run on Google Cloud Platform. If one is interested in going through a step-by-step tutorial on
how to containerize an asp.net core application and have it be hosted on Google Kubernetes
Engine (GKE), I'd highly recommend this codelab: “Deploy ASP.NET Core app to Kubernetes on
Kubernetes Engine”.

Like all containerization processes, we start with a Dockerfile for each of the three microservices
we have for our application: Product, Profile, and Order.

Dockerfile for the Product Service:

FROM gcr.io/google—-appengine/aspnetcore:2.0
COPY . /app

ENV ASPNETCORE URLS=http://*:${PORT}

WORKDIR /app

ENTRYPOINT ["dotnet", "ProductServiceCore.dll"]

Dockerfile for the Profile Service:

FROM gcr.io/google-appengine/aspnetcore:2.0
COPY . /app

ENV ASPNETCORE URLS=http://*:${PORT}

WORKDIR /app

ENTRYPOINT ["dotnet", "ProfileServiceCore.dll"]

Dockerfile for the Order Service:

FROM gcr.io/google-appengine/aspnetcore:2.0
COPY . /app

ENV ASPNETCORE URLS=http: //*:${PORT}

WORKDIR /app

ENTRYPOINT (["dotnet", "OrderServiceCore.dll"]

Note the usage of gcr.io0/google-appengine/aspnetcore:2.0 as the container’s base image;
this is the official Docker image that has been optimized for running ASP.NET Core apps in
Google App Engine as well as Kubernetes Engine. It's highly recommended that this image be
used when containers are to be deployed to GAE and GKE.

Once the Dockerfiles are created, one can build the images by running the docker command:

Docker build -t gcr.io/YOUR PROJECT ID/orderservice:vl

To push the built images onto the Google Container Registry, a private repository for your
Docker images accessible from every Google Cloud project (but also from outside Google Cloud
Platform), one uses the following command :

gcloud docker -- push gcr.io/YOUR PROJECT ID/orderservice:vl

Once the images are pushed onto the registry, one can browse them via the web console:

= Google Cloud Platform g« I Q
[.‘.] Container Registry Images C! REFRESH
B Images

Registry location: gcr.io

\/

Build triggers

Name »

Build history BB hello-aspnetcore
BB orderservice
Bm petorder

B petproduct

B petprofile

Kubernetes setup for PetShop

Now that we have our Docker images created and uploaded onto the Google Container
Registry, we are ready to create the Kubernetes cluster to run them. One can choose to create
the cluster by either navigating to the web console, and fill in the cluster creation form:

© 2018 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other company and product names may be
trademarks of the respective companies with which they are associated.

= Google Cloud Platform ¢« I - Q
@ Container Engine & Create a container cluster

. :
s Container clusters A container cluster is a managed group of uniform VM instances for running

Kubernetes. Learn more
®2 Workloads

Name
& Discovery & load balancing cluster-1
H Configuration Description (Optional
B Storage
v
Zone
us-central1-a v

Cluster Version

1.7.8-gke.0 (default) -
Machine type

1vCPU v 3.75 GB memory Customize

Upgrade your account to create instances with up to 96 cores

Node image

“cos” provides better security and performance but has limitations that may affect some
users. Use "Ubuntu” if you are affected by these limitations. Note that Ubuntu requires
Kubernetes 1.6.4 or greater. Learn more

< Container-Optimized OS (cos) v

Or, simply create the cluster via the gcloud command line interface:
gcloud container clusters create petshop-dotnet-cluster \
--num-nodes 3 \
--machine-type nl-standard-1 \
--zone us-eastl-c

With the cluster created, we are now ready to deploy our services, and for that, we will use the
kubectl command line utility (setup by the gcloud SDK).

First we need to create pods. A Kubernetes pod is one or more containers that are tied together
for the purpose of cohesion and administration. We can create pods using the kubectl run option
(note the port of 8080, this is the default port used by the Google App Engine based image):

kubectl run profileservice \
--image=gcr.io/YOUR PROJECT ID/profileservice:vl --port=8080

© 2018 Google Inc. All rights reserved. Google and the Google logo are trademarks of Google Inc. All other company and product names may be
trademarks of the respective companies with which they are associated.

By using the run option, we have created a deployment object, the recommended option for
creating and scaling pods.

To view the deployed deployments:

kubectl get deployments

PS C:\k8s> kubectl get deployments
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE
orderservice 1

productservice
profileservice

To view the pods that are created under these deployments, use the following command:
kubectl get pods

PS C:\k8s> kubectl get pods
NAME STATUS RESTARTS
orderservice-1303125414-t4qxp Running ©

productservice-1613570133-kgkbp Running ©
profileservice-768811045-fzksq Running ©

Now that we have pods created and running, we need to expose them to the outside world since
by default, pods are only accessible by internal IP addresses within the cluster. To do that, we
need to create Kubernetes service, and specify LoadBalancer as its type. This requests the
underlying infrastructure to create a load-balanced front end with a publicly addressable IP
address:

kubectl expose deployment productservice --type="LoadBalancer" --port=80 --target-port=8080

To get the IP address of the load-balanced service:

kubectl get services

PS C:\k8s> kubectl get services
NAME CLUSTER-IP EXTERNAL-IP PORT(S)
kubernetes 10.31.240.1 <none> 443/TCP

orderservice 10.31.255.206 35.192.84.186 80:30232/TCP
productservice 10.31.254.100 146.148.100.155 80:31027/TCP
profileservice 10.31.240.251 35.184.95.183 80:30349/TCP

With these IP addresses in hand, we are ready to go back to the PetShop Web Site’s
web.config and input these addresses so the web site can properly connect to these

microservices:

<appSettings>
<!-- Web Services -->
<add key="ProductBaseURL" value="http://146.148.100.155/"/>
<add key="ProfileBaseURL" value="http://35.184.95.183/"/>
<add key="OrderBaseURL" value="http://35.192.84.186/"/>

‘ <add key="Event Log Source" value=".NET Pet Shop 4.0"/>
</appSettings>

Demo of Kubernetes autoscaling capabilities

We now have a fully cloud-native version of PetShop complete with microservices,
modernizations, containers, and that’s hosted in Google Kubernetes Engine (GKE). Let’'s show
off those capabilities by doing a demo of this powerful new implementation.

What we will do in this demo is to show how easy it is to enable autoscaling at the pod level as
well as the Kubernetes node level.

Quick primer:

e A pod represents a unit of deployment: a single instance of an application in Kubernetes,
which might consist of either a single container or a small number of containers that are
tightly coupled and share resources;

e Nodes in Kubernetes are the VM or server that host pods.

Kubernetes provides built-in support for pod-based autoscaling called Horizontal Pod
Autoscaling (HPA). HPA works by automatically scaling the number of pods in an application
based on observed CPU utilization. Since pods are hosted on Kubernetes node(s), there are
only a finite number of pods that can be spun up before a node runs out of resources for
creating new pods if load continues to grow. To fully realize the goal of container-based
autoscaling, one also needs a node-based autoscaling mechanism to work in conjunction with
HPA to scale the number of nodes. GKE offers an unique feature called Cluster Autoscaler that
works by automatically resizing the Kubernetes clusters based on the running workload
demands. Once Cluster Autoscaler is enabled, GKE will automatically add a new node to a
cluster once a node runs out of resources to fulfill a new pod creation request. Better yet, it
continues to monitor usage and if the load diminishes, GKE will correspondingly rightsize the
number of nodes to match the load, optimizing resources and cost. Conceptually, this is the
classic cloud elasticity model at play, with the added container layer.

For the convenience of the readers, we have created a video to demonstrate this set of
technologies, and you can access it here: https://www.youtube.com/watch?v=wO0FMVP37JEQ

Conclusion

We made it! We have completed the journey for taking the monolithic PetShop application and
re-architecting and modernizing it to be a cloud-native microservices-based application. Through
this journey, we took a legacy system that was hard to maintain and modernized it into an
efficient, cloud-native system that is ready to take full advantage of what cloud computing has to
offer. Perhaps best of all, we made it much easier to maintain going forward.

The scenario we chronicled is not unique. Many companies are saddled with systems that are
not easily sunset or wholesale replaced, yet in many cases, they are critical systems for the
company (i.e. the applications companies rely on for profits). In the age of digital transformation,
systems must adapt faster than ever before to meet demanding capability and performance
needs. A cloud-native approach of system delivery empowers organizations to meet these
challenges while accelerating the pace of innovation, all in a risk-averse and sustainable way.

