Where The Light Gets In: Analyzing Web Censorship
Mechanisms in India

Tarun Kumar Yadav*
IIIT Delhi, India
tarun14110@iiitd.ac.in

Piyush Kumar Sharma
IIT Delhi, India
piyushs@iiitd.ac.in

ABSTRACT

In this work we present a detailed study of the Internet censorship
mechanism in India. We consolidated a list of potentially blocked
websites from various public sources to assess censorship mecha-
nisms used by nine major ISPs. To begin with, we demonstrate that
existing censorship detection tools like OONI are grossly inaccurate.
We thus developed various techniques and heuristics to correctly
assess censorship and study the underlying mechanism used by
these ISPs. At every step we corroborated our finding manually
to test the efficacy of our approach, an exercise largely ignored by
several others. We fortify our findings by adjudging the coverage
and consistency of censorship infrastructure, broadly in terms of
average number of network paths and requested domains the in-
frastructure censors. Our results indicate a clear disparity among
the ISPs, on how they install censorship infrastructure. For instance,
in Idea network we observed the censorious middleboxes in over
90% of our tested intra-AS paths, whereas for Vodafone, it is as
low as 2.5%. We conclude our research by devising our own novel
anti-censorship strategies, that does not depend on third party tools
(like proxies, Tor and VPN etc.). We managed to access all blocked
websites in all ISPs under test.

KEYWORDS
Censorship, OONI, India

1 INTRODUCTION

Free and open communication over the Internet, and its censorship,
is a widely debated topic. It is not surprising that an overwhelming
majority of prior studies on censorship activities and their mech-
anism, primarily center around overtly censorious nations like
China [27, 34, 40, 52] and Iran [23]. Most of these studies involve
reporting censorship activities, with some categorically focusing
on the in-depth description of the actual censorship techniques and

“All the three authors have equal intellectual contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

IMC 18, October 31-November 2, 2018, Boston, MA, USA

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5619-0/18/10...$15.00
https://doi.org/10.1145/3278532.3278555

Akshat Sinha*
IIT Delhi, India
akshat14132@iiitd.ac.in

252

Devashish Gosain*
IIT Delhi, India
devashishg@iiitd.ac.in

Sambuddho Chakravarty
IIT Delhi, India
sambuddho@iiitd.ac.in

mechanism that are employed by such nations i.e. — describing the
network location of the censorship infrastructure — what triggers
them — and how are clients notified of such filtering.

Through our studies over the past few years, we discovered that
even democratic nations like India, have slowly, and rather covertly,
evolved an infrastructure for large-scale Internet censorship, involv-
ing several privately and federally operated ISPs. India’s Internet
censorship policies have remained arbitrary (at best ambivalent)!.
Over time several networks have upped their barriers against users
accessing sites, which the administration “believes” to be “unfit for
consumption”, resulting in enough citizens facing web censorship.

Our previous work [21] emphasized on hypothetical scenarios
of potential (future) large scale censorship (or surveillance) by the
state. A mere preliminary report was also presented highlighting
the inconsistent web censorship policies amongst ASes.

We thus formally approached the authorities, filing a Right to
Information [15] request (RTI), inquiring about the policies and
mechanism the government uses to block content. In response, the
authorities shared that while the censorship policies are confiden-
tial, the onus of implementing them lied with the individual ASes
who could employ any mechanism they chose.

Ambiguous answer from authorities motivated us to conduct
our own detailed analysis of the different censorship mechanisms
the major network operators of the country employ. We began our
research by compiling a corpus of about 1200 potentially blocked
sites (PBWs), curated from various Internet sites (e.g. Herdict [6],
Citizen Lab [10]). Thereafter, we obtained network connections for
nine popular ISPs — Airtel, Idea, Vodafone, Reliance Jio, MTNL,
BSNL, Siti, Sifi and NKN.

For gauging censorship, we ran the popular censorship assess-
ment tools like OONI [18] on clients hosted in these networks.
OONI runs two sets of tests, one at the client and other at their
remote control site (assumed to be unfiltered). A mismatch between
the results signals potential censorship. However, our initial tests
yielded considerably high false positives and negatives when tested
for different ISPs. For instance, in Airtel, we obtained a false positive
rate of ~ 80% and a false negative rate of ~ 11.6%.

We thus decided to devise our own analysis techniques. We began
by observing the ensuing network connection traffic between our
client and the censored site. In one particular ISP network, we
observed that whenever the client connected to the censored site,
it received a valid HTTP response bearing a statutory censorship

!For e.g. in August 2015, the government issued orders to block 857 websites, but later
backtracked under public outcry [13]

notification with appropriate sequence number and bits (e.g. FIN,
RST) in the TCP headers that enforce the client to disconnect with
the server. Eventually, the actual response from the censored site
also arrives, but by then the connection is already terminated, and
the packet is discarded.

All such protocol exchanges hinted toward the presence of ma-
licious network elements (we collectively call middleboxes) that
snoop (or intercept) users’ traffic and upon observing requests to
filtered sites, inject the aforementioned crafted packets to censor
traffic.

To identify the network location of such censorship infrastruc-
tures, we devised a technique which we collectively call Itera-
tive Network Tracing (INT), that works on the principle used by
traceroute. It is quite similar to those proposed earlier by Xu et
al. [52] and involves sending web requests to censored sites but
with increasing IP header TTL values. These messages encounter
middleboxes, that are triggered upon the arrival of request to the
censored sites.

Using our approach, INT, and various heuristics which we de-
veloped after observing peculiarities of censorship techniques, we
conducted an investigative study of various censorship mechanism,
employed by major ISPs in the country. Our research engages long-
term data collections to answer the following questions:

e What sequence of protocol messages triggers censorship?

e Exactly what techniques are employed by ISP networks to
filter users’ requests to censored sites?

e Approximately what fraction of network paths are impacted
by these censors?

o Is censorship uniform and consistent across the various ISPs?
More specifically -
— Do various ISPs block the same set of sites?
— Do various censorship devices of an ISP (aka the middle-

boxes) block the same set of sites?
e How hard or easy is it to bypass such censorship mechanism?

Unlike several previous efforts, that directly draw conclusions
based on the results generated by their respective techniques [30, 31,
44] ours, at every possible step, involves corroborating the results
via manually connecting to the sites and inspecting the results.

The key contribution of our research efforts, spanning over 18
months, involves detailed answers to all the aforementioned ques-
tions. Our findings show that four of these ISPs viz. Airtel, Vodafone,
Idea and Reliance Jio (potentially carrying a large fraction of net-
work traffic [21]), employ stateful inspection of HTTP requests
alone to censors access. For some ISPs, like Idea Cellular, we de-
tected the presence of censorship infrastructure in over a very large
fraction (>90%) of the intra-AS network paths.

Others, viz. BSNL and MTNL, prime government operators, poi-
son DNS responses for censored sites. In our measurements, we
found about 600 censorious DNS resolvers spread across the two
ISPs.

Traffic of non-censorious ISPs transiting the censorious ones
often gets inadvertently filtered. We observed such phenomenon
for various non-censorious ISPs in India. For example, censorship in
Vodafone network causes collateral damage to NKN, an otherwise
non-censorious educational network.

253

Through our detailed explorations, we discovered network mid-
dleboxes that either intercept traffic (like trans-proxies) or merely
snoop on users traffic and sends back specially crafted messages
disconnecting the client-server connection. While a vast majority
of previous efforts, like [35, 42, 49] report the latter, we discover
the presence of intercepting middleboxes (similar to Syria [25]) in
one of the ISPs.

Finally, while overtly censorious nations have evolved mecha-
nisms to counter censorship circumvention (proxies and VPNs) [17,
30], we demonstrate simple, yet effective, techniques that can be
used to bypass censorship, that do not rely on such proxies, and
may go undetected by such censors. Our approach relies on iden-
tifying the packets generated from the middleboxes and filtering
them at the client, or sending crafted requests that are not detected
by the middleboxes, but are correctly recognized by the server. This
is harder for ISPs to identify which work by restricting access to
anti-censorship infrastructure. Moreover, efforts to retrofit the so-
lution into existing censorship middleboxes may incur high costs
on the part of the middlebox manufacturers and the ISPs, without
factoring in downtimes and potential failures.

2 BACKGROUND AND RELATED WORK

According to ONI report, India is among the list of countries that
restricts the Internet content and ranks India as “Partly Free” [9].
Internet censorship in India can be traced back to the year 1999,
where website of the popular Pakistani daily newspaper ‘Dawn’
was blocked from access within India, immediately after the Kargil
War [14]. Since then, there are numerous instances of Internet cen-
sorship recorded [9] by the orders of the government to an extent
of Internet shutdowns. In the year 2015, there were at least 22
instances of Internet shutdowns in different parts of the country
[50]. And later in the same year, ISPs were directed by the govern-
ment to block 857 websites, on the basis of restricting access to
pornographic content [3].

Very recently transparency reports published by Facebook [4]
and Google [5] confirm that censorship in India is on the rise. It
indicates that there were a total of 21 instances of complete Internet
shutdowns and 1, 228 instances of content removal by Facebook
because a majority of content restricted was alleged to violate local
laws relating to defamation of religion and hate speech.

Thus, we conducted a detailed study of web censorship trends
pertaining to Indian ISPs, specifically aimed to explore the censor-
ship mechanism and its associated infrastructure deployed in the
country. We thus begin by discussing important studies in the area
of Internet Censorship, primarily reporting the type and mechanism
of censorship. Zittrain [55] in his seminal analysis of censorship
observed IP, keyword and DNS filtering in China. Later many stud-
ies focused on censorship specific to particular countries for eg.,
China [27, 51], Pakistan [42], Italy [19], Greece [48] Iran [23], Egypt
and Libia [28] etc. Verkamp et al. [47] extended this work by de-
ploying clients in 11 countries to identify their network censorship
activities encompassing IP and URL filtering, keyword filtering
and DNS based censorship etc. Gill et al. [33] rather than deploy-
ing clients, used data gathered by the OpenNet Initiative to detect
censorship in 77 countries.

Dalek et al. [29] used data from Shodan [16] to identify URL
filtering products deployed across many countries including Qatar,
Yemen, Saudi Arabia and India. For large scale detection of cen-
sorship across multiple countries, there are several projects which
provide tools to determine censorship policy: HerdictWeb [54],
CensMon [45], Encore [24], OONI [18] and Augur [43].

However, a significant portion of censorship literature focuses
only on the People’s Republic of China — Great Firewall of China
(GFW) [27, 30, 31, 38, 41, 49, 52, 53, 55]. Winter et al. [17] studied
how DPI-enabled routers detect Tor bridges based on specific TLS
cipher suits. Others such as [39] reported that China is heavily
contributing towards collateral damage by DNS filtering. Khattak et
al. [37] observed that GFW operates similarly to NIDS and found ex-
ploitable flaws in state management of GFW. Later Wang et al. [49]
reported that GFW has evolved over a period of time and previous
solutions to bypass it [37] are now ineffective. They proposed a
novel tool, INTANG, to bypass GFW using carefully crafted packets,
without relying on proxies or VPNs.

In the year 2017, we [21] explored that Indian ISPs have inco-
herent censorship policies and they implement their own content
filters resulting in dramatic differences in the censorship experi-
enced by customers. Also, we studied the hypothetical scenario —
assuming in future, the Government of India plans to implement
strict censorship what would be the probable ‘key points’ for them
to place the filters, for different censorship mechanisms viz., IP
filtering, Prefix Hijack, DNS filtering etc.

In this research, we rather carried out a comprehensive study
on the ‘present’ Internet censorship implementation in India, a
vital study missing in our previous analysis. Thus, in this work we
developed our own heuristics, with which we tried determining
the type of censorship mechanism involved (and in some cases the
approximate location of the censorship infrastructure as well). At
every step we validated our results against the ground truth, an
effort largely ignored by several others in the recent and distant
past.

3 DATA COLLECTION AND APPROACH

For our research, we curated a list of potentially blocked websites
(which we refer to as PBW) from different sources which include
Citizen Labs [10], Herdict [6] and various past government and
court orders of the country [11]. The list includes a total of 1200
websites which we consider to be sensitive (and thus potentially
censored). They span across 7 major categories viz., escort ser-
vices, pornography, music, torrent sites, politics, tools and social
networks.

We commenced our research by using the already popular cen-
sorship detection tool, OONI [?]. A client which intends to detect
possible instances of censorship (at different layers of network
stack) installs OONI probe. This fully-automated tool, reports the
blocked websites and possible underlying censorship mechanisms
being used. After running OONI from five different vantage points
we observed that it results in high false positives and negatives.
Thus, we created our own scripts to detect Internet censorship in
India.

254

Popular Censorship Type

ISPs Total DNS TCP HTTP
MTNL 0.57,0.42 | 0.44,0.10 | 0,0 | 0.60,0.64
Airtel 0.19,0.11 0,0 0,0 | 0.19,0.11
Idea 0.57,0.62 0,0 0,0 | 0.57,0.62
Vodafone | 0.69,0.82 0,0 0,0 | 0.70,0.78
Jio 0.34,0.15 0,0 0,0 | 0.36,0.14

Table 1: Accuracy of OONI: Precision and recall values, mea-
sured in various ISPs.

3.1 The OONI tool

Open Observatory of Network Interference (OONI) [?], is an open
source tool under the Tor project and is designed to detect censor-
ship.

We executed OONI on five popular ISP networks, using the
PBW, and recorded the results. To corroborate our findings we also
manually checked the sites that were reported by OONI as being
censored. To our surprise, we observed very few true positives. An
exceedingly large number of sites which were reported as being
censored were however easily accessible.

Table 1 summarizes our findings. The rows represent the ISPs,
columns correspond to the type of censorship reported by OONI,
and each entry is a 2-tuple (P,R) representing the precision and
recall.

To explain our results better we use the example of data gathered
for Airtel (a major ISP of the country?). The OONI tool reported that
about 78 sites (Bp) were being blocked by the Airtel. Upon manual
inspection we observed this number to be much higher, i.e. 133 (By).
Only 15 websites (Bp N Byy) that were actually being censored were
also correctly detected by OONI. This provides us with a precision
of 0.19 (|Bo N By|/|Bol) and a recall of 0.11 (|[Bo N Bpg|/|Bm]).
Similar results were observed for other ISPs as well.

Such low values of precision and recall can be attributed to the
fact that OONI tool uses rudimentary approaches to detect potential
censoring activities. For instance, while detecting DNS filtering, it
compares the IP address of a given host name returned by Google
DNS resolver (which they assume to not be tampered) with the
IP address mapped to that website by the client’s ISP. If the two
IP addresses of the same website are different they assume it to
be censorship. But, in many cases differences in URL resolution is
likely an artifact of network hosting architectures (e.g. CDNs).

Also, while detecting HT TP filtering, OONI sends an HTTP re-
quest to a given website over the network where the client (running
the OONI probe) is hosted. Following that, the same request is sent
from the control server (of OONI). HTTP responses obtained from
these requests are compared (based on a threshold) and the website
is assumed to be filtered if the responses differ. However, while
conducting our experiments, we observed that in spite of observing
difference in HTTP responses, that OONI uses to report censorship,
the websites were actually not blocked. We explain the reasons for
incorrect reporting in detail in section 7.

Thus, for our research, we abandoned OONI and created our
own semi-automated scripts to record the censorship instances
by various ISPs across India. For instance, similar to OONI, we
tried sending GET requests to PBWs from the client in test ISPs and

2In terms of network paths it intercepts [21]

through Tor. If the difference in responses was less than a certain
threshold we considered them non-censored, otherwise we manually
inspect the responses further, unlike OONI, which directly flags
them as censored. For instance, in Airtel network, we observed
that for 390 PBWs, the difference between the contents of HTTP
responses was more than 30%. On manually verifying (i.e., iden-
tifying the censorship message in HTTP response) we confirmed
that 156 of those (i.e., 40%) were actually blocked. We repeated the
same experiments for several other ISPs and found that 30 — 40% of
the websites which would have been flagged as censored by OONI
were actually false positive. Thus, we selected 0.3 as the threshold
for our experiments (explained in detail in subsection 3.4).

We now present our approach for determining the type of cen-
sorship (DNS, TCP/IP and HTTP) and mechanisms behind them.

3.2 DNS Blocking

I Background: For ordinary netizens, DNS resolution is the pri-
mary step for accessing any website. URL entered by such netizens
is first resolved to its associated correct IP address. Thus, invariably
censors exploit this step, and often return an incorrect IP address,
resulting in website’s unavailability.

DNS based blocking can be achieved by (1) DNS poisoning [46]—
whereby a corrupt(-ed) resolver replies with the incorrect IP for
specific DNS queries. (2) DNS injection [22] — where some middle-
box between the client and resolver intercepts the DNS query and
deliberately responds with a forged response bearing an incorrect
IP address.

II. Identifying sites filtered using DNS requests: In order to
identify DNS filtering by ISPs, we selected PBWs that could other-
wise be successfully resolved via Tor circuits (ending in exit nodes
in non-censorious nations). Thereafter, we attempted to resolve
these PBWs through ISPs under test.

A URL might resolve to multiple IPs everytime a resolution is
attempted. Further, these responses may also differ when resolution
is attempted via Tor and from the ISPs under test (due to reasons
such as CDN based hosting). Thus, URL resolutions, attempted
via Tor and the tested ISPs, resulting in an overlapping set of IPs,
were considered to be uncensored and eliminated from further
inspection.

In order to ascertain DNS filtering on the remaining URLs (among
the PBWs), we first tested the following intuition: an ISP may de-
liberately resolve multiple blocked websites to some unique IP
addresses. We went ahead and performed DNS resolution for all
these remaining URL from the ISP under test.

Invariably, we found several blocked websites resolving to the
same IP address belonging to an ISP under test. In general, several
sites may resolve to the same IP address, an artifact of modern
commercial hosting. Thus, before conducting our measurements
we eliminated sites that were actually hosted with the same IP.

Additionally, in several cases the blocked URLSs also resolved to
bogon IP [1] addresses.

Hence, we applied the following heuristic to decide if the DNS
responses were seemingly manipulated by the censor.

(1) Resolved IPs belong to the same AS that hosts the client: None

of the PBWs were hosted in the clients’ AS. Thus if any of
the resolved IPs belong to the clients’ AS (the one under test),

255

the AS is considered censorious and the corresponding URL
is marked censored.

(2) Resolved IPs are Bogons: If any of the resolved IPs is a bo-
gon [1], we consider the AS to be censorious and the URL as
being censored.

We applied these heuristics and identified the manipulated IP
address responses and removed the corresponding URLSs from fur-
ther analysis. In order to confirm that only the aforementioned
strategies, and none others, are employed by the tested ISPs, we
sent HTTP request to the remaining IPs (obtained initially when
resolution was attempted from the tested ISPs), via Tor and man-
ually inspected the corresponding response to confirm that they
were as expected.

III. Identifying DNS filtering mechanism: After identifying
the set of websites which are censored due to DNS filtering, we
intended to identify the mechanism behind the blocking. To that
end, we began by identifying all open DNS resolvers of the ISP under
consideration. To do this we sent DNS queries requesting resolution
for otherwise uncensored sites (e.g. our own institution’s website)
whose correct IP address is known beforehand, to the entire IPv4
address space of the said ISP. DNS resolvers, even if censorious but
otherwise configured correctly, are expected to respond to such
queries with legitimate IP addresses.

In order to identify only the censorious resolvers, we sent 1200
DNS queries, corresponding to the individual PBWs, to each of the
DNS resolvers (in each of the individual censorious ISPs). Resolvers
which responded with manipulated IP address (for any of the DNS
queries), are considered to be censorious.

To determine how and where censorship happens, i.e. if cen-
sorious DNS responses were due to middleboxes or by the poisoned
resolvers, we used a variant of INT (as shown in figure 1). We be-
gan by identifying the router-level path between the client and
the censorious resolvers using traceroute. Thereafter, the client
sends DNS requests (corresponding to PBWs) to only censorious
DNS resolver by iteratively increasing IP TTL values. Identifying
censorship mechanism involved checking if the responses (between
the client and a PBW) arrive from any network hop other than the
last one. Such responses are likely due to middleboxes, else they
are due to poisoned resolvers.

In all our tests we received manipulated IP addresses from the
last hop only, indicating the presence of DNS poisoning.

3.3 TCP/IP Packet Filtering

Network protocol header based filtering is a rather ill defined, al-
beit very commonly assumed, network censorship technique. It is
frequently believed by netizens that ISPs filter traffic based on IP
addresses and port numbers. Not surprisingly several past research
efforts focused on detecting censorship where authors claimed
that ISPs filter traffic based on IP addresses. To that end, they pri-
marily relied on packet drops corresponding to TCP connection
attempts [43] and claimed them to be due to IP-level censorship.
In general, such techniques may often mis-classify various kinds
of systemic failures such as network congestion, outages and de-
lays in route re-computations, as IP address based censorship. Also,

Destination

—, Sensitive request
(with increasing TTL)

<— Censored response
TTL=9

| <— Actual response

Figure 1: Iterative Network Tracer: Client sends a crafted
query (DNS query/HTTP GET request) containing a blocked
domain with increasing TTL. Censorship response is ob-
served from the censor’s network element.

unlike HTTP censorship, which often involves users receiving cen-
sorship notification packets, IP address filtering may reveal no in-
formation to the client, making it hard to distinguish from the other
reasons mentioned. Such scenarios are very difficult to validate (an
important, and often ignored aspect of prior research [43]).

Nevertheless, we used a straightforward approach to detect filter-
ing based on network and transport protocol headers. We attempted
TCP 3 — way handshakes with the PBWs. These were tunnelled
through Tor circuits terminating in non-censorious countries. For
those websites where the connection succeeded (via Tor), we again
attempted five subsequent TCP 3 — way handshakes (from the ISP
under test) with a delay of approximately two seconds between
each of them. If it failed in all the attempts, it implied TCP/IP filter-
ing. However, in none of the tested ISPs, we ever obtained this form of
censorship.

3.4 HTTP Filtering

L Background: HTTP filtering aims at hampering the commu-
nication between client and server by observing content of HTTP
packets. The censor can achieve this type of filtering by deploying
middleboxes in the network (placed between client and blocked
domain).

II. Detecting HTTP filtering: In our experiments, we tested
all our chosen ISPs for potential censorship using our curated list
of 1200 PBWs. We began by creating Tor circuits terminating in
non-censorious countries. Through these, we tried accessing all the
PBWs. The retrieved contents were compared against the contents
obtained when directly accessing the respective PBWs, from our
clients hosted in the individual ISPs.

One may expect that in case of overt censorship the difference
between the aforementioned responses to be very high (e.g., >80%).
However, there might be false negatives in case the differences are
lower. We thus chose a relatively lower difference threshold of about
30%. Manual inspection of site content, when the differences were
lower than this threshold, revealed no censorship. Whereas, when
the difference was greater than 30%, we found several instances
of censorship notifications. In general we observe that whatever
threshold we take for measuring the difference between HTTP

256

responses, for the cases where difference is more than the thresh-
old, we need manual inspection. Depending upon the censorship
response and ISP under test, the threshold may be adjusted accord-

ingly.

III. Which HTTP messages trigger censorship: We began our
study of determining what triggers censorship by observing the pro-
tocol messages between client and PBWs. For e.g., for a client hosted
in Airtel, we observed that after sending an HTTP GET request to
a PBW (following a regular TCP 3-way handshake), a HTTP 200
OK response packet arrived, whose source IP address is that of the
PBW. It had the TCP FIN bit set and payload carried the censor-
ship notification. TCP FIN bit forced the client’s browser to initiate
TCP 4-way connection termination with the PBW. Eventually, the
packet from the PBW also arrived. We were thus unsure as to what
triggered censorship — requests from the client to the PBW or their
responses?

In the past researchers have reported middleboxes in China that
inspect both request from the client and response from the server
for censoring content [26, 27]. Thus, we also required heuristics to
determine if censorship was triggered by requests or by responses.

In order to distinguish between the two possibilities, we adopted
the following approach. Initially, the client runs traceroute to
obtain the number of hops (n) to the actual website. Thereafter, the
client establishes a TCP connection with the website and sends
two consecutive HT TP GET requests for the blocked website. The
IP header of the first request has a TTL value of n — 1 and is not
expected to reach the site, and thus no responses from the site are
expected. Whereas, the second is sent to the site bearing a TTL
value of n (and is expected to be handled like a regular request).

Depending upon what the middleboxes en route inspect, there
could be three possibilities:

e Possibility 1 (Middlebox get triggered only by the request):
Both the above requests would traverse the middlebox that
would respond back with a censorship notification-cum-
disconnection message.

e Possibility 2 (Middlebox get triggered only by the response):
The middlebox would be triggered when it inspects the re-
sponse messages, which happens only when the request
actually reaches the site and elicits it (i.e. only corresponding
to the second request).

e Possibility 3 (Middlebox triggered by request and/or response):
The middlebox sends censorship notification for both the
requests.

In our measurements, we observed censorship notification-cum-
disconnection packet for both the requests (i.e. for TTL=n — 1 and
TTL=n). This directly rules out the possibility 2, i.e when middle-
boxes are triggered only through responses.

For both the remaining possibilities the middleboxes could in-
spect both requests and responses. In order to distinguish these
possibilities, we crafted our own HTTP GET request such that PBW
interprets it correctly but not the middlebox. For e.g., in Airtel
network, merely manipulating the case of the HT TP header field
Host and changing it to HOST was sufficient for the request to go
undetected by the middlebox (while correctly interpreted by the
PBW). We show in section 6 that for all ISPs, we managed to bypass
the censorship by only modifying the HTTP header fields of the

GET request. This confirms that middleboxes are only inspecting the
requests (possibility 1) and not the responses, as otherwise, we would
still be receiving censorship notifications when the responses, carrying
censored content, would encounter the said middleboxes.

IV. How GET request triggers the middlebox: Since middle-
boxes inspect the GET request for potential censorship, we intend
to confirm exactly how the middleboxes get triggered. By default
a regular GET request bares only the domain name along with the
requested page. We first ran traceroute to obtain the number of
hops to the server. Then, we crafted a GET request whose IP TTL
was set to the value of penultimate hop, such that it passes the
middlebox but never reaches the server. Thus, we ensured that
response (if) received is from the middlebox and not the actual
server.

In the payload, we fudged the domain name and its offset within
the request, to determine exactly what triggered censorship. For
e.g., we set the HTTP Host field to that of an uncensored site, while
the domain name of the censored site was positioned at a random
offset within the HTTP header (say beyond the requested page
indicated in the GET field). In all our tests we observed only when
the Host field is set to the domain name of the censored site, we
observed the censorship response. Further details of more related
experiments are presented in section 5.2.

As described ahead in section 5, in three of the four ISP where
we observed HTTP censorship, the middlebox responds back to the
client with a variant of the aforementioned censorship notification-
cum-disconnection messages. These were mostly HTTP 200 OK
responses carrying the statutory censorship notification along with
appropriate TCP bits enabled that force the client to terminate the
connection with the PBW. They bore appropriate sequence and
acknowledgement numbers (along with other protocol header in-
formation) to make them indistinguishable from legitimate packets
which the client’s underlying protocol stack expects, w.r.t. the initial
TCP connection to the PBW.

In section 6, we show how we exploit this knowledge of pro-
tocol header idiosyncrasies, along with deliberate fudging of the
requested domain name in the Host field of the GET requests to
sidestep censorship.

V. Identifying location of HTTP middleboxes: After charac-
terizing the blocking behavior, we intended to identify the network
location of middleboxes viz., IP address. As earlier 3.2, we first ran
traceroute to determine the number of hops between the client
and a PBW (to be tested). We then use INT (shown in figure 1)
whereby following a regular TCP handshake to the PBW, we sent
series of crafted HTTP GET request to it, with increasing TTL values
until it encounters the middlebox. The middlebox, upon observing
the GET request, bearing the domain name of the PBW, responds
with a censorship-notification-cum-disconnection message (with
TCP FIN/RST bit set). Correlating the TTL value of the request
(observed by the middlebox) against the IP address hops reported
by traceroute helped us identify the middleboxes.

257

4 EXPERIMENTAL SETUP AND ETHICAL
CONSIDERATIONS

All our experiments were carefully designed to avoid any uninten-
tional or unethical network disruptions or system downtimes and
failures, of third-parties, including individuals, ISPs, institutions
and governments. To perform our large-scale censorship studies,
we used our own client machines hosted in various networks. For
this we bought connections of about nine popular Indian ISPs. To
augment our results we used hosts deployed outside India — about
50 planetlab hosts (which by default provide “sudo”-able adminis-
trative access), about ten virtual machines in various cloud hosting
services and around ten more hosts placed in institutions where we
had collaborators, who were kind enough to lend us their infras-
tructure (granting administrative access and all essential privileges
to conduct our experiments).

In our initial studies, we sent traffic to a small sample of PBWs
(which were curated from various sources, as already explained
in section 3), from each of the clients under our control. Using
pcap we passively inspected the protocol responses to determine
the actual mechanism through which censorship was enforced (as
explained ahead).

Further, we also conducted large-scale studies to quantify the
impact of censorship. Our efforts involved sending HTTP GET
requests (~ 440 Bytes) to Alexa top-1000 sites, from the clients we
controlled, at every 8-10 second intervals. This was slow enough
to not impact network performance of other users.

5 EXPERIMENTAL RESULTS

In order to determine the censorship mechanism we inspected for
DNS, TCP/IP and HTTP blocking for the list of PBWs in nine major
ISPs of the country (as explained in section 3). For all ISPs, we found
instances of DNS and HTTP filtering only.

5.1 DNS filtering

We began our study by identifying the open DNS resolvers in a
chosen ISP. Thereafter applying our heuristics presented in sub-
section 3.2 we determined which of the 1200 curated PBWs were
being censored along with their corresponding DNS resolvers.

We observed poisoned DNS resolvers in only two of the nine
ISPs, viz., MTNL and BSNL.

Before presenting the results, we propose two metrics to analyze
the extent of DNS filtering within the ISPs:

1.Coverage: Ideally all DNS resolvers of an ISP must be poisoned.
We define coverage as the fraction of all the resolvers of the ISP
which are poisoned.

2.Consistency: Ideally the same set of sites must be blocked by all
the poisoned resolvers of an ISP. We determined the set of filtered
URLs as well, as all the resolvers that blocked them. For every fil-
tered URL we determine the fraction of poisoned resolver blocking
it. Consistency is the average of these fractions.

In MTNL, we found a total of 448 resolvers, out of which 383
were poisoned, ie. coverage was around 77%. Whereas, in BSNL

we found only 17 poisoned resolvers out of a total of 182 (a smaller
coverage of around 9.3%).

The consistency of each ISP can be inferred from figure 2. Web-
sites which are blocked in any of the two ISPs are represented on
the X-axis. The percentage of resolvers blocking the website are
represented on Y-axis. For the sake of preserving anonymity, we
represent the sites with unique numbers, rather than actual names.
It can be clearly seen from the figure that in general a single website
(for eg., website ID 450) is blocked by more number of resolvers in
MTNL (44%) than in BSNL (6.6%). The consistency metric in MTNL
(42.4%) is also higher than that of BSNL (7.5%).

- MTNL
- BSNL

100 -

90

80

70

60

50

w04

30

20

W it et e e .
0

AW Syl W SN

PRSI

Percentage of resolvers blocking the website
<
3
"

Individual Website ID

Figure 2: Consistency of DNS resolvers.

5.2 HTTP filtering

We found HTTP filtering in four out of nine ISPs. As already dis-
cussed in section 3.4, ISPs have deployed middleboxes which inspect
the packets between the client and blocked websites with an intent
to censor traffic.

We began by identifying all those websites, among the 1200
PBWs, that were censored by the ISP. For instance in Airtel, we
observed a total of 234 websites to be censored. The corresponding
number for the remaining three ISPs is presented in the last col-
umn of table 2. Using the approach described in subsection 3.4 we
determined that censorship was triggered solely due to request and
not the response.

Finally, we attempted to find the actual network location of
the middleboxes with a variant of INT, involving crafted HTTP
GET requests. However, we were unable to pinpoint the exact IP
address of the middleboxes in most of our measurements because
of anonymization by the ISP. We discuss this in detail in section 7.

We now present in the behavior of the different types of mid-
dleboxes, we identified in the wild and describe their censorship
mechanisms in detail.

5.2.1 Types of middleboxes. In our experiments, we identified
two kinds of middle-
boxes—viz. Interceptive Middlebox (IM) and Wiretapping Middlebox

T 1
100 150 200 250 300 350 400 450 500 550

258

(WM). IMs are akin to transparent proxies which intercept connec-
tions between the client and server and establish a new connection
to the server. In our studies, we found IMs that intercept client—
PBW request and respond with censorship notification messages,
while dropping the actual requests.

The other, i.e. WMs, involve a host that is connected to an active
network element via a wiretap. It receives a copy of all the pack-
ets exchanged and inspects for requests that need to be censored.
Thereafter, it crafts responses and sends it back to the censor, with
appropriate TCP header bits to terminate existing connections.

However, the WMs cannot outpace the client-PBW traffic flow,
as they work with a copy of the packets. Thus, they are not as
effective in filtering every single request with real-time efficiency,
compared to IMs. For WMs, roughly in 3 out of 10 attempts to access
blocked website, the middleboxes were ineffective in censoring the
content. Whereas, for IMs, all such attempts were unsuccessful.

Interceptive middleboxes. We used our variant of INT (explained
in subsection 3.4) to first obtain the location of middlebox in the
network path intervening the client and a filtered site.

Thereafter, we sent crafted HTTP GET requests, bearing the cen-
sored domain in the Host field, with TTL values large enough to get
past the network hop, corresponding to the middlebox. Regardless
of further increments to this IP TTL value, we never observed the
expected ICMP TTL Expired responses, but rather received the
censorship notification messages, indicating that the middleboxes
might be intercepting and dropping these requests.

In order to verify that IMs are triggered only for the blocked
domains, we sent a crafted GET request where Host field bore a non-
censored domain, while also iteratively increasing IP TTL values.
Interestingly, we always received ICMP TTL Expired messages,
even when TTL was large enough for the packets to transit the
middlebox. This confirms that IMs only inspect Host field of HTTP
Get request.

We went a step ahead and selected an array of hosts we controlled
in different networks® outside Indian ISPs. On these machines, we
hosted an ordinary webserver. From our client, hosted in the ISP
under test, we created TCP connections to these remote machines.
The remote host simultaneously monitored its own traffic. The
client sent crafted GET requests with Host field requesting a cen-
sored domain. The destination IP address, however, was that of the
remote host. Upon traversing a censorious middlebox positioned
on the network path in-between, the client receives a censorship
notification-cum-disconnection packet, with TCP FIN bit set. The
subsequent 4-way disconnection always timed out (very likely
dropped by the middlebox). Finally, the client attempted terminat-
ing the connection by sendingR a RST packet.

The remote host however receives none of the packets, other
than the initial handshake messages and a RST packet. But, the TCP
sequence number of this RST packet differed from the terminal RST
packet sent by the client, thereby confirming that it was sent by a
middlebox. This confirmed the presence of IMs.

We repeated the same exercise, by replacing the Host field with
that of an uncensored domain. Interestingly enough, the request
reaches the remote host unfiltered. The functioning of the IMs can
be schematically shown in figure 3.

3Planetlab, cloud services and hosts in different universities

3 Way Handshake
e —
HTTR/1.1 10 blocked cqy ™~ :
ucked.com” _-”“"
—————————— psH)
........ 4 Msg N
- c“e
—-== 7= 0 OK B
<=7 20
N "FINTZEE ---------
________________ K
F'N - AER ___________ T x
; ~==ss|
FNvACK 7T .
RST (Seqey) ™" ====-. >
RST (Seq=Y)

Figure 3: Censorship mechanism of a Interceptive Middle-
box.

Wiretapping middleboxes. Similar to IMs, we used our own vari-
ant of INT, to first obtain the location of the middlebox in the
network path intervening the client and a filtered site.

Thereafter, we sent HTTP GET request to a blocked domain. We
then inspected the network traffic (at the client) for the said mes-
sage exchanges through pcap, and observed that the client receives
the censorship notification-cum-disconnection packet, with the
forged IP address (of the server) and TCP FIN+PSH bits enabled,
which thereby enforces connection termination. Further even be-
fore the termination process resolves, the client receives a fresh
TCP RST packet from the middlebox, bearing the forged IP address
of the server that forces the client to terminate the connection im-
mediately, regardless of whether the termination process, which is
underway, completes or not.

Surprisingly, actual response from the filtered site eventually
also arrived at the client, but the connection to the server was
already terminated. The client responded with a TCP RST packet
(as expected). Such behavior indicate the presence of WMs.

In order to confirm the censorship mechanism of WMs, we
adopted an approach similar to the one described for IMs, involv-
ing remote servers under our control. We sent crafted HTTP GET
requests bearing a filtered domain, to the remote servers under
our control. These packets elicit the censorship notification-cum-
disconnection messages, bearing the (forged) IP address of the
remote hosts. The remote hosts, however, upon receiving the GET
requests, ignore them as they do not host the requested domains.
The behavior of WMs is shown in figure 4.

Caveat: Are middleboxes stateful or do they inspect all pack-
ets? Our initial traffic inspections using pcap hint towards stateful
middleboxes that commence traffic inspection only after complete
TCP 3-way handshake is resolved.

To confirm our hunches we began with the client using traceroute
command to record the number of network hops between itself and
the filtered site. Thereafter the client sends a TCP SYN packet with
TTL just large enough to get the packet to the penultimate hop

259

______ 3 Way Handshake
GET/ HTTR/1 1 foer v ===
/11/Host: “blockeg.comy g
e g N ==
e e -
o KB e e "
(_ TP 2000655 - ot _ o= T ebsite co
Smmmmmmeaezill R 4=
e (FIN+ACK) _ . = = e 2
- ===
- L
_ - (‘,O“‘en ______
- psite e
g_________\,:‘ ________________ \F\N-\'P\C\q
frse et e
______________________ i
A
RST T
2 >

Figure 4: Censorship mechanism of a Wiretapping Middle-
box.

(and not the destination), thus avoiding a full-fledged TCP 3-way
handshake.

Following this, the client sent a crafted GET request whose Host
field pointed to a filtered domain bearing the TTL value, such that
it expires upon reaching the penultimate hop.

If the middleboxes commence traffic inspection upon observing
every fresh TCP SYN packet, they must also then inspect the subse-
quent crafted GET request and respond back to the client with the
censorship notification-cum-disconnection message. However, we
never observed censorship in such cases. All other similar heuris-
tics, such as starting by sending a SYN+ACK or not sending the
final ACK of a regular 3-way handshake, but then sending the
subsequent crafted GET request never elicited censorship messages.

Finally, a crafted HTTP GET request, bearing censorious domain
requests in the Host field, but with no preceding TCP handshake,
also does not seem to trigger censorship.

This confirms that the middleboxes are statefull and commence
traffic inspection only when they observe a complete TCP hand-
shake. These seem different from what were observed by Wang
et al. [49] who looked into the architecture of Chinese censorship
infrastructure.

5.2.2 Analyzing the Extent of HTTP Filtering. In order to analyze
the extent of HTTP filtering in an ISP we proposed variants of the
two previous metrics, viz. coverage and consistency.

1. Coverage: A censorious ISP which is willing to use HTTP fil-
tering must typically deploy middleboxes in a manner such that
they intercept all the router-level paths inside an ISP. Coverage is
the fraction of all such router-level paths that are intercepted by
middleboxes (we call them as poisoned paths).

2. Consistency: This metric attempts to answer the question —
“how uniformly does an ISP block content” Ideally same number of
websites must be blocked on all the poisoned paths of the ISP. In
such a case we say the ISP is 100% consistent. For every filtered URL
we determine the fraction of poisoned paths blocking it — (paths

that block a particular website)/(paths that block any website).
Consistency is the average of these fractions.

In order to find consistency and coverage we started our ex-
periments with single vantage point (VP) in the ISPs. As already
discussed earlier, HT TP censorship middleboxes are agnostic to the
destination IP addresses of the HTTP GET requests (as long as they
appear to be a part of an existing TCP connection). We harness
this behavior of middlebox to find their coverage and placement
statistics.

VP within ISPs: For each of the nine ISPs under considerations,
we establish TCP connections with Alexa top 1000 websites from
the client machine and sent GET requests with Host fields pointing
to all 1200 PBWs. Even if for single GET request we observed cen-
sorship, we considered that path to be poisoned by the middlebox.
For Reliance Jio ISP, we only observed 64 out of 1000 paths to be
tainted with middlebox. This gave us the hint that maybe middle-
boxes are not placed optimally to intercept a large fraction of ISP
paths.

VPs outside the ISPs: To further test our observations with
more VPs, we used various hosts outside India, but under our con-
trol (PlanetLab nodes, cloud infrastructure, and few other hosts in
various universities). Our aim was to find the maximum number of
middleboxes and the fraction of paths they intercept, inside an ISP.

For doing so, we began by scanning all live IP prefixes? for a
particular ISP, and searched for hosts with open TCP port 80. Then
we randomly sample two such IPs per prefix. We recorded the
router-level path leading and the number of hops to each of these
prefixes, from each vantage point, using traceroute.

We tailored our INT, targeting traces to each of these IPs (for
all ISPs), where for each targeted host, we send 1200 HTTP GET re-
quests, corresponding to each of the PBWs. Upon obtaining the cen-
sorship notification-cum-disconnection response for even a single
site, we considered the corresponding network path to be poisoned.

We summarize our results in table 2. Column two and three
represents coverage for an ISP from a single VP within ISP and
multiple VPs outside of the ISP. Column four describes which type
of middlebox (interceptive or wiretap) is deployed in the ISP and
last column describes the total number of websites blocked out of
1200 PBW. It can be observed that Idea has highest coverage (90%)
whereas Vodafone has very low coverage value (2.5%).

For Reliance Jio, we observed a very different behavior. While
we saw a relatively low coverage of about 6.4% when searching for
middleboxes from a vantage point positioned inside the network,
we found no middleboxes when probed from the remote VPs to IPs
belonging to the ISP (with open TCP port 80). There are two possible
explanations for this. Firstly, the middleboxes may be sub-optimally
positioned and thus the requests from the remote VPs are not
intercepted. Alternatively, the middleboxes maybe filtering request
not only on domain names but also for source IPs belonging to Jio
network itself. Since we were unable to pinpoint the IP addresses
of the middleboxes, we lacked the necessary information to further
quantify our findings.

After finding the coverage of different ISPs, we now present the
results obtained from computing consistency for each of them. In
figure 5, X-axis represents websites which are blocked in any of

4Live IP prefixes were obtained from CIDR report [2].

260

INY Coverage (%) | Coverage (%) | Middle- No. of
(VP: (VPs: Box websites
within ISP) outside ISP) Type blocked
Airtel 75.2 54.2 WM 234
Idea 92 90 ™M 338
Vodafone 11 2.5 M 483
Jio 6.4 0 WM 200
Table 2: HTTP filtering in different ISPs.
Airtel
100 Vodafone
1 Idea
2 9
®
2 1 . .
I
o
£ 70
o]
] 60
8 4
r 50
”]
£ 40
©
s]
"6 30
o
o
S
[=
@
o
]
o

0 50 100 150 200 250 300 350 400 450 500 550 600
Individual Website ID

Figure 5: Consistency of middleboxes.

the three ISPs (Vodafone, Airtel and Idea). The percentage of ISP
paths that block a particular website are represented on Y-axis. It
is evident from the figure, that on an average Idea network has
highest consistency (76.8%) followed by Airtel (12.3%) and then
Vodafone (11.6%). One may conclude that in Idea network a single
website is blocked on 76.8% of the poisoned paths, as opposed to
Airtel and Vodafone in which it is blocked by only ~ 11 — 12% of
the poisoned paths.

So far we discussed all details regarding HTTP filtering, but
ignore HTTPS. We observed fewer than five instances of HTTPS
filtering which were actually due to manipulated DNS responses by
poisoned resolvers, and not because of SNI field in TLS client hello.

5.3 Filtering by upstream Indian ISPs

An ISP shares contractual commercial agreements with its neigh-
bors for routing Internet traffic among themselves [32]. In our study
for ISPs like NKN, Sify” and Siti, we never observed any filtering
caused by their own policies. Rather, all the censorship instances
were solely due to the policies of its neighboring ISPs. Whereas, for
MTNL and BSNL it is the cumulative effect of its own and neighbors’
policies.

To precisely identify the locations of middleboxes, i.e. which ISP
they belong to, we used our tool INT. For cases, where we did not
observe the IP address of the middleboxes, we used idiosyncrasies

SWe could not independently study TATA communications because its customer
business had closed during the course of study.

of different middleboxes to identify the ISPs they belongs to (as
explained in subsection 7.3).

ISPs where censorship was observed due to upstream providers,
might indicate “collateral damage” (unintentional censorship) [20,
39] within the same country. This occurs when traffic of a non-
censorious ISP is filtered due to a neighboring censorious ISP. In
our studies we observed such unintentional censorship in several
non-censorious ISPs. Table 3 summarizes our findings.

ISPs Neighboring ISPs
(cesnored) | (causing censorship)
NKN Vodafone (69), TATA (8)
Sify TATA (142), Airtel (2)
Siti Airtel (110)

MTNL Airtel (25), TATA (134)
BSNL Airtel (1), TATA (156)

Table 3: Filtering by upstream providers: Non-censorious
ISPs observe censorship due to their censorious neighbors.
For e.g., in NKN, we observed 69 websites were blocked by
Vodafone and 8 were blocked by TATA communication.

6 ANTI-CENSORSHIP APPROACHES

We observed two types of censorship techniques in popular ISPs of
India viz., HTTP filtering and DNS poisoning. In order to bypass
them, we opted for techniques relevant to the middleboxes involved.
Our solutions are simple and extremely effective.

Evading DNS poisoning: In order to circumvent poisoned DNS re-
solver, we tested using OpenDNS, Google’s public DNS (8.8.8.8)
and many other non-poisoned resolvers which belong to non-
censorious countries like Ireland, Canada, and Sweden. With each
of them, we were able to bypass the DNS based censorship.
Evading HTTP filtering: As already explained in section 3.4 mid-
dlebox gets triggered upon merely identifying a blocked domain
in the HOST field of GET request. Our goal is to craft a GET request,
which is goes undetected by middlebox, but correctly interpreted by
the actual website. We tried various techniques involving string
fudging [36], such as manipulating the Host field values, prepend-
ing www to the website name, changing cases of the keywords like
HTTP, GET and HOST, adding spaces before and after the domain
name etc.. Additionally we also tried approaches, like sending frag-
mented GET requests and using HTTP 2.0 as the underlying web
protocol (instead of HTTP 1.1). Different approaches worked for
subverting different middleboxes.

I. Wiretapping middleboxes: There are two approaches with
which we bypassed these middleboxes.

e Changing the case of Host keyword in the GET request: Most
popular browsers, like Mozilla Firefox and Google Chrome,
use the title case for the Host keyword. Merely changing the
case (e.g. changing it to HOst, HoST, HoSt or HOSTetc.) was
sufficient for request to go undetected by the middleboxes
(of Airtel and Jio), but resulting in response from the actual
blocked webserver. This suggests that the webservers, corre-
sponding to the PBWs, adhere to RFC 2616 [8] and accept the

261

keyword Host agnostic of the case, while the middleboxes
look for exact keyword matches.

e Dropping the packets with RST or FIN bit set: As mentioned

earlier, the censorship notification-cum-disconnection packet
bears the TCP FIN bit set. Subsequently the middlebox also
sends a TCP RST packet to enforce the client to disconnect.
Using iptables utility, all the packets (of blocked website’s
IP) which have FIN or RST bit set were dropped by the kernel.
For Airtel, we observed that responses from middleboxes of
Airtel always bear a fixed IP-Identifier value of 242. Thus,
we added a general rule that FIN or RST packets with IP-
Identifier field 242 must be dropped. This effectively filters
the responses from the middleboxes.
Since the actual GET requests are not dropped by the mid-
dlebox, they reached the blocked website and elicit regular
responses. These response containing the actual content of
the website and are accepted by the client browser.

II. Interceptive middleboxes: We further found two types of
interceptive middleboxes i.e., one which sends only censorship
notification-cum-disconnection message to the client (overt) and
other which sends only a RST packet to the client without any
censorship notification (covert).

e Overt Censorship: To bypass such middleboxes which overtly
censors the content, we fudged the Host field of the GET
request. The standard domain request looks like
“Host: blocked.com”, i.e. only one space between ‘" and
‘blocked.com’. But, instead, if we place additional spaces
(or tab) in-between, ie. “Host: blocked.com”, then
the requests go undetected by the middleboxes, but servers
interpret them correctly. Also, adding extra spaces (or ta-
bles) after the domain name works, e.g. “Host :blocked.com

»

5

e Covert Censorship: For bypassing such middlebox we inten-
tionally inserted multiple Host fields (with different domain
names) embedded in the same GET request to check which
of those is inspected by the middlebox. In all the cases, we
observed that censorship is triggered upon inspecting only
the last Host keyword. Thus, by appending an uncensored
domain request to the array of such Host keywords, we
were able to bypass the middleboxes, but the server also
neglects it as the request is not a standard one. Thus we
crafted an unusual GET request, which looked something
like “GET / HTTP/1.1 Host : blocked.com...\r\n\r\n Host:
allowed.com”. This request is neglected by the middlebox
but on the other hand, accepted by the actual blocked web-
site. Since middlebox is only looking at last Host keyword, it
interprets that packet as non-suspicious and allows it to pass
through. The server, on the other hand, treats the ‘\r\n\r\n’
as the end of the GET request and the subsequent “Host:
allowed.com” as a separate request. Thus, the client receives
two responses from the website — the actual content due to
the first Host field and the BAD REQUEST message for the
subsequent one.

The Ant-Censorship tool — ESCAPER

We packaged all the aforementioned anti-censorship approaches
into a tool called “ESCAPER". The tool runs a local HTTP proxy
which needs to be configured in the browser. The client also needs
to add a file mentioning the filtered websites it would like to access.
The tool is written in Python and has been integrated with Mozilla
Firefox browser. It runs on Windows and Linux platforms. Currently,
it is maintained by us, and may be provided on-demand.

7 DISCUSSION

7.1 Count of middleboxes in the ISP

In the previous study on China [52] authors reported that they
found 495 router interfaces that have filtering device attached to
them. However, in India, we could not follow the same approach.
Throughout our research, we used traceroutes and INT, with
an intent of finding the location of censorship infrastructure. In
all our tested ISPs, generally middlebox (or routers to which they
are attached) show up as unresponsive routers (asterisked) when
probed using traceroute. It is natural to ask if IP address of the
middlebox is not known then can it be confirmed that the observed
the censorship is because of the tested ISP or one of its upstream
provider? We applied few heuristics:

(1) On the paths where we observed IPs of middleboxes, first
we confirmed that they belong to same tested ISP. Thereafter, we
recorded the corresponding censorship notifications, and used them
to classify other anonymized middleboxes.

(2) In path segments where asterisked router appeared between
visible ones, we checked if the latter belonged to the same ISP under
test. If so then we assumed that anonymized IPs belong to the same
ISP.

(3) The censorship notification messages have unique charac-
teristics for eg., in Airtel, the censorship notification packet has an
embedded iframe which redirects to “airtel.com/dot” and in Re-
liance JIO censored response redirects to its own unique IP address.
Using such unique characteristics we can easily identified the ISP
of anonymized middlebox.

7.2 Issues with OONI

As already explained in section 3.1, OONI performs two sets of
experiments for a given list of PBWs (1) accessing sites from client
machine and (2) and accessing the same from a control sever (of
OONI). If discrepancies in IP address resolutions (DNS censorship)
or retrieved site contents (HTTP censorship) are observed, OONI
flags the PBW as censored.

However, we found that results of OONI were misleading. They
suffer from both false positives and false negatives. We now outline
few possible reasons for false positives (incorrect flagging of sites
as being censored):

e An unavailable website, previously hosted on hosting ser-
vices (like GoDaddy) if removed, may result in different
HTTP responses when accessed from different locations —
an artifact of distributed hosting. Though not a case of cen-
sorship, OONI flags them as filtered.

e Many websites have dynamic content such as live news
feeds and advertisement embedded in the HTTP 200 OK

262

messages that are often location dependent. These are also
mis-classified by OONI as being censored.

Also, OONI tool inspects differences in HTTP headers and body
lengths of the response. If differences are greater than a threshold,
it considers the site to be filtered. We observe that for a website
hosted on CDN, the response at different geographic locations may
come through different servers having obvious differences in the
response metadata. In reality, such sites may not be blocked.

Thus when we created our scripts for detecting censorship, we
only calculated the difference in the content of the response, and
not the headers. If the difference is greater than the threshold (as
already explained in subsection 3.4), rather than directly reporting
them as blocked, we manually verified them for blocking.

We now discuss why OONI often fails to detect a censored site
(false negatives). In order to identify censorship, OONI calculates
the differences between (1) lengths of HTTP responses (obtained
via the control server and directly through the ISP under test) (2)
the HTTP header field names (3) the HTML title.

Even if one of the aforementioned condition does not hold true
[7, 12], OONI considers the website to be non-censored. The following
are few possible cases where OONI reports false negatives:

e We observed that for some websites, the response does not
bear any content, rather a redirection link sent by the ac-
tual server. Similarly, in the censorship notification-cum-
disconnection packets, there is an embedded iframe (which
redirects to blocked page). For both the cases, the difference
in the body length (of the responses) may be very less®. Thus,
violating the first condition.

e OONI flags a website as non-censored if the header fields
(and not their values) of both the HT TP response matches
exactly7. In our measurements, we observed that most of the
middleboxes use the same HTTP header as that of regular
websites. Thus, the headers of censorship notification-cum-
disconnection packets (generated by middleboxes) very often
match the headers of the responses from the actual websites.
So, OONI mistakenly classifies a censored website to be non-
censored, thus violating the second condition.

Unlike the regular responses from actual websites, the censor-
ship notification packets bore no HTML tags. OONI compares the
title tags only if atleast one word, in both the tags, is atleast five
characters long. Thus, in the absence of the title tags, OONI ignores
the inspection of the censorship notifications, thereby reporting
incorrect results.

7.3 Idiosyncrasy of middleboxes

o Idea middleboxes inspect traffic agnostic of their port num-
ber, while all the rest inspect only requests destined to TCP
port 80.

e WM specific to Airtel have a unique characteristic — all
packets generated from these middleboxes have a fixed IP-
ID value (242) in the IP header; for all others’, this is variable.

©Other variants of such scenarios are also possible for eg., a small sign up/login page
upon accessing the website.
7 As verified from source code.

e Some otherwise unavailable websites® were still blocked
by the ISPs (both through HTTP and DNS filtering). This
implies that ISPs are not updating their blacklists.

o Middleboxes (IM and WM) maintain a state for all transiting
TCP connections. They inspect all the connections for a
duration of 2 — 3 minutes, waiting for sensitive content to
arrive. If they do not receive any packet in that duration,
they time out and purge the corresponding TCP state data.
However, if fresh packets (corresponding to individual flows,
regardless of whether they carry GET requests or not) arrive
with the 2 — 3 minute window, the middleboxes reinstate the
inspection timeout.

8 CONCLUDING REMARKS

In this work, we report a comprehensive analysis of censorship
mechanism and infrastructure in nine popular ISPs of India. We
commenced our research using popular censorship detection tool,
OONIL. However, since we observed high false positives and nega-
tives, we discontinued using it. We developed our own automated
approach (Interative Network Tracing), along with various heuris-
tics, which we used to determine the type of censorship mechanism
involved (and in some cases the approximate location of the censor-
ship infrastructure as well). At every step we confirm our findings
against the ground truth, an effort largely ignored by several others
in the recent and distant past.

We found DNS and HTTP filtering as the only techniques of
censorship employed by these ISPs. Further, we evolved metrics,
viz. coverage and consistency that respectively describe how well
the censorship infrastructure covers the ISP and how consistent
they are in censoring filtered domains. In passing, we also observed
interesting cases of collateral damage within the ISPs of the same
country. Finally, we developed novel anti-censorship techniques, in-
volving local firewalling and manipulating the HTTP GET requests,
through which we were able to bypass all forms of censorship
without relying on conventional methods like proxies and VPNs.

9 ACKNOWLEDGEMENTS

We would like thank our reviewers and our shepherd Johanna
Amann for their valuable inputs which fortified our paper. Also, we
humbly thank our colleague, Aishwarya Jaiswal for her important
comments. Further, not only do we thank Dr. HB Acharya for his
inputs, but also for suggesting a title for this paper. Finally, we
would like to thank Persistent Systems Ltd., India for funding the
conference registration and travel.

REFERENCES
[1
(2]
[3]

Bogon ip addresses. https://ipinfo.io/bogon.

Cidr report. https://www.cidr-report.org/as2.0/.

Dna india. http://www.dnaindia.com/india/
report-government-orders-blocking-of\-857-pornographic-websites-2110545.
Facebook transparency report 2017. https://transparency.facebook.com/country/
India/2017-H1/.

Google transparency report 2017.
government-removals/by-country/IN.
Herdict:Help Spot Web Blockages. http://herdict.org/.

How ooni detects http filtering? https://ooni.torproject.org/nettest/
web- connectivity/.

[8] Http 1.1 rfc 2616. https://tools.ietf.org/html/rfc2616.

https://transparencyreport.google.com/

8Tested via Tor circuits ending in non-censorious country.

263

[

[10

[11

[12]

[13]

e
SO

(18

[19]

[21

[22

[23

[24]

[26]

[27

(28]

[29

(30]

[31

[32

(33]

Instances of internet censorship in india. https://opennet.net/research/profiles/
india.

List of potentially blocked websites in india — citizen labs. https://github.com/
citizenlab/test-lists/blob/master/lists/in.csv.

Ministry of it orders isp to ban sexual abuse material. http:
//www.meity.gov.in/content/order-issued-meity-isps-adopt-and-implement\
-iwf-resources-prevent-distribution-and.

Ooni source code. https://github.com/TheTorProject/ooni-probe/blob/master/
ooni/nettests/blocking/web_connectivity.py.

Porn websites blocked in india: Government plans om-
budsman for online content. http://gadgets.ndtv.com/

internet/news/porn-websites-blocked-in-india- government\
-plans-ombudsman-for-online- content-723485.

Rediff. http://www.rediff.com/computer/1999/jul05dawn.htm.

Right to information, a citizen gateway. http://rti.gov.in/.

Shodan-search engine for internet-connected devices. https://www.shodan.io/.
How the great firewall of china is blocking tor. In Presented as part of the 2nd
USENIX Workshop on Free and Open Communications on the Internet (Berkeley,
CA, 2012), USENIX.

Ooni: Open observatory of network interference. In Presented as part of the 2nd
USENIX Workshop on Free and Open Communications on the Internet (Berkeley,
CA, 2012), USENIX.

ACETO, G., MONTIERI, A., AND PEScAPE, A. Internet censorship in italy: An
analysis of 3g/4g networks. In Communications (ICC), 2017 IEEE International
Conference on (2017), IEEE, pp. 1-6.

AcHARYA, H., CHAKRAVARTY, S., AND GOsAIN, D. Few throats to choke: On the
current structure of the internet. In Local Computer Networks (LCN), 2017 IEEE
42nd Conference on (2017), IEEE, pp. 339-346.

ACHARYA, H., CHAKRAVARTY, S., AND GOSAIN, D. Mending wall: On the imple-
mentation of censorship in india. In SecureComm 2018 - 13th EAI International
Conference on Security and Privacy in Communication Networks (2017), Springer.
ANoNymous. The collateral damage of internet censorship by dns injection.
SIGCOMM Comput. Commun. Rev. 42, 3 (June 2012), 21-27.

ARYAN, S., ARYAN, H., AND HALDERMAN, J. A. Internet censorship in iran: A first
look. In FOCI (2013).

BURNETT, S., AND FEAMSTER, N. Encore: Lightweight measurement of web
censorship with cross-origin requests. ACM SIGCOMM Computer Communication
Review 45, 4 (2015), 653-667.

CHAABANE, A., CHEN, T., CUNCHE, M., DE CRISTOFARO, E., FRIEDMAN, A., AND
KAAFAR, M. A. Censorship in the wild: Analyzing internet filtering in syria. In
Proceedings of the 2014 Conference on Internet Measurement Conference (2014),
ACM, pp. 285-298.

CLAYTON, R., MURDOCH, S. J., AND WATsON, R. N. Ignoring the great firewall
of china. In International Workshop on Privacy Enhancing Technologies (2006),
Springer, pp. 20-35.

CRANDALL, J. R,, ZINN, D., BYRD, M., BARR, E. T., AND EasT, R. Conceptdoppler: a
weather tracker for internet censorship. In ACM Conference on Computer and
Communications Security (2007), pp. 352-365.

DAINOTTIL A., SQUARCELLA, C., ABEN, E., CLAFFY, K. C., CHIESA, M., Russo, M.,
AND PEscAPE, A. Analysis of country-wide internet outages caused by censorship.
In Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement
conference (2011), ACM, pp. 1-18.

DALEK, J., HAsELTON, B., NomaN, H., SENFT, A., CRETE-NISHIHATA, M., GILL,
P., AND DEIBERT, R.]. A method for identifying and confirming the use of url
filtering products for censorship. In Proceedings of the 2013 conference on Internet
measurement conference (2013), ACM, pp. 23-30.

EnsarL R, FIFIELD, D., WINTER, P., FEAMSTER, N., WEAVER, N., AND PAXSON, V.
Examining how the great firewall discovers hidden circumvention servers. In
Proceedings of the 2015 Internet Measurement Conference (2015), ACM, pp. 445-458.
ENSAFL R., WINTER, P., MUEEN, A., AND CRANDALL, J. R. Analyzing the great fire-
wall of china over space and time. Proceedings on privacy enhancing technologies
2015, 1 (2015), 61-76.

Gao, L., AND WANG, F. The extent of as path inflation by routing policies. In
Global Telecommunications Conference, 2002. GLOBECOM 02. IEEE (2002), vol. 3,
IEEE, pp. 2180-2184.

GiLL, P., CRETE-NISHIHATA, M., DALEK, ., GOLDBERG, S., SENFT, A., AND WISEMAN,
G. Characterizing web censorship worldwide: Another look at the opennet
initiative data. ACM Transactions on the Web (TWEB) 9, 1 (2015), 4.

Guo, S., AND FENG, G. Understanding support for internet censorship in china:
An elaboration of the theory of reasoned action. Journal of Chinese Political
Science 17, 1 (2012), 33-52.

Internet censorship in iran.

JERMYN, ., AND WEAVER, N. Autosonda: Discovering rules and triggers of cen-
sorship devices. In 7th USENIX Workshop on Free and Open Communications on
the Internet (FOCI 17). USENIX Association, Vancouver, BC. https://www. usenix.
org/conference/focil7/workshop-program/presentation/jermyn (2017).

KHATTAK, S., JAVED, M., ANDERSON, P. D., AND PaxsoN, V. Towards illuminating
a censorship monitor’s model to facilitate evasion. In FOCI (2013).

[38]

[39

[40]

(41

[42]
[43

[44]

[46

[47

[48

[49]

[50]

(51

[52]

[53]

(54
[55]

KNOCKEL, J., RUAN, L., AND CRETE-NISHIHATA, M. Measuring decentralization
of chinese keyword censorship via mobile games. In 7th {USENIX} Workshop
on Free and Open Communications on the Internet ({FOCI} 17) (2017), USENIX
Association.

Levis, P. The collateral damage of internet censorship by dns injection. ACM
SIGCOMM CCR 42, 3 (2012).

MacKInNoN, R. Flatter world and thicker walls? blogs, censorship and civic
discourse in china. Public Choice 134, 1-2 (2008), 31-46.

MaARrczaAK, B., WEAVER, N., DALEK, J., ENsaF1, R, FIr1ELD, D., MCKUNE, S., REY,
A., ScoTT-RAILTON,]., DEIBERT, R., AND PAXSON, V. ChinadAZs great cannon.
Citizen Lab 10 (2015).

NaBI, Z. The anatomy of web censorship in pakistan. In FOCI (2013).

PEARCE, P., ENSAFL R, L1, F., FEAMSTER, N., AND PAXsON, V. Augur: Internet-wide
detection of connectivity disruptions. In Security and Privacy (SP), 2017 IEEE
Symposium on (2017), IEEE, pp. 427-443.

PEARCE, P., JoNEs, B., L1, F.,, ENsAFL, R., FEAMSTER, N., WEAVER, N., AND PAXsON,
V. Global measurement of dns manipulation. In Proceedings of the 26th USENIX
Security Symposium (SecurityaAZ17) (2017).

SFAKIANAKIS, A., ATHANASOPOULOS, E., AND IoANNIDIS, S. Censmon: A web
censorship monitor. In USENIX Workshop on Free and Open Communication on
the Internet (FOCI) (2011).

SonN, S., AND SHMATIKOV, V. The hitchhikeraAZs guide to dns cache poisoning.
In International Conference on Security and Privacy in Communication Systems
(2010), Springer, pp. 466—483.

VERKAMP,].-P., AND GUPTA, M. Inferring mechanics of web censorship around
the world. In FOCI (2012).

VERVERIS, V., KARGIOTAKIS, G., FILASTO, A., FABIAN, B., AND ALEXANDROS, A.
Understanding internet censorship policy: The case of greece. In 5th USENIX
Workshop on Free and Open Communications on the Internet (FOCI) (2015).
WANG, Z., Cao0, Y., QIAN, Z., SONG, C., AND KRISHNAMURTHY, S. V. Your state is
not mine: a closer look at evading stateful internet censorship. In Proceedings of
the 2017 Internet Measurement Conference (2017), ACM, pp. 114-127.

WEsT, D. M. Internet shutdowns cost countries $2.4 billion last year. Center for
Technological Innovation at Brookings, Washington, DC (2016).

WRIGHT, J. Regional variation in chinese internet filtering. Information, Commu-
nication & Society 17,1 (2014), 121-141.

Xu, X., MAo, Z. M., AND HALDERMAN,]. A. Internet censorship in china: Where
does the filtering occur? In International Conference on Passive and Active Network
Measurement (2011), Springer, pp. 133-142.

YANG, Q., AND Liu, Y. WhataAZs on the other side of the great firewall? chinese
web usersaAZ motivations for bypassing the internet censorship. Computers in
human behavior 37 (2014), 249-257.

ZITTRAIN, J., BupIsH, R., AND Farts, R. Herdict: Help spot web blockages, 2014.
ZITTRAIN, J., AND EDELMAN, B. Internet filtering in china. IEEE Internet Computing
7, 2 (2003), 70-77.

264

