Free and Open

COMMUNICATIONS

Il 0N the [Internet

The Use of Push Notification in Censorship Circumvention

Diwen Xue Roya Ensafi
University of Michigan University of Michigan

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license visit

https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain
View, CA 94042, USA.

Free and Open Communications on the Internet 2023(1), 22-32

© 2023 Copyright held by the owner/author(s).

https://creativecommons.org/licenses/by/4.0/

The Use of Push Notification in Censorship Circumvention

Diwen Xue

Roya Ensafi

University of Michigan

Abstract

Push notifications provide a way for applications to deliver
time-sensitive information directly to users. In recent years,
they have gained widespread adoption across mobile and
desktop platforms. In this paper, we explore the use of push
notification services for censorship circumvention. Supported
with measurements, we argue that push notifications offer
high availability, as blocking them would incur significant
collateral damage, making them ideal candidates to tunnel
circumvention traffic.

We present two censorship circumvention systems that
leverage push notification as a transport. PushRSS is a
blocking-resistant content aggregator that tunnels RSS up-
dates through a push notification network. Once bootstrapped,
the tool remains operational even if the server IP is outright
blocked. PushProxy is a general-purpose proxy that routes
user’s downstream traffic through a push notification service,
while keeping upstream an independent channel. By decou-
pling the downstream from upstream, PushProxy mitigates
the ability of network adversaries to perform per-flow traffic
analysis, while providing performance comparable to popular
symmetric proxies. Although these systems have their limita-
tions, we believe push notification still holds potential as a cir-
cumvention transport that complements existing approaches.

1 Introduction

ISPs, advertisers, and national governments are increasingly
disrupting, manipulating, and monitoring Internet traffic.
With authoritarianism at rise, more networks have deployed
censorship policies, as the free flow of information and ex-
change of ideas on the Internet have been perceived as a
threat by repressive regimes. In response, numerous circum-
vention tools have been proposed and implemented over the
years [2,6,10,13,26,27,32,33,45]. As censorship measures
continue to advance alongside technology and detection meth-
ods, it is crucial for tool designers to continually explore and
experiment with novel methods for circumventing censorship.

In this work, we explore the use of push notification as a
transport for circumvention traffic. Push notification services,
also referred to as cloud messaging, enable applications to
transmit time-sensitive information directly to users. These

Push Notification
Application Provider

Server

Registration
&getToken

Publish

A Subscribe - - - -3
]
1

Client Device

Application
Client

Figure 1: Workflow of Push Notification Services.

services have seen widespread adoptions in recent years, with
over 600 billion messages sent to 2 billion users in HI 2021
from one provider alone [4]. Examples of providers include
Google Firebase Cloud Messaging (GCM) and Apple Push
Notification Service (APNS). These providers offer a cost-
effective and highly customizable solution for delivering user-
specific contents directly to the targeted app.

Push notification has become a widely integrated feature in
both mobile and desktop applications, and there is currently
no alternative mechanism that offers a similar functional-
ity. As a result, blocking push notification services outright
can cause significant collateral damage for state-level cen-
sors, which is a common criterion for effective censorship
circumvention [40]. Compared to other circumvention sys-
tems, however, push notification services typically conform to
a Publish/Subscribe model (Figure 1) and have limitations on
the traffic patterns they support. Despite this, certain types of
applications could still improve their availability by tunneling
traffic through push notification providers.

In essence, push notification services function as one-way
channels that relay information from an app server to an app
client. Importantly, they do not require any direct connec-
tion between the server and the client, and is expected to
remain operational even if the app itself is censored down to
IP level. We present two circumvention systems that lever-
age the blocking-resistant property of such channels. First,
PushRSS is a content aggregator on Android that enables
users to subscribe to structured feeds (e.g. RSS) and receive
updates tunneled through push notification networks. We pro-
vide details on its design and explore potential applications,

both as a standalone system and as an add-on that stream-
lines the bootstrapping process of existing circumvention
tools. Additionally, we design and implement PushProxy, a
general-purpose asymmetric proxy written in Go that routes
downstream traffic through push notification services, while
keeping upstream an independent channel. Such decoupling
provides additional defense against traffic analysis compared
to symmetric proxies, as it reduces the information an attacker
with a limited network perspective can learn or correlate.

We evaluate the potential of push notification as a trans-
port for circumvention traffic in terms of both availability and
performance. We conduct large-scale, longitudinal measure-
ments to test for potential censorship practices against push
notification services across regions and networks. Our find-
ings indicate that only a small number of ASes actively inter-
fere with push notification connections over HTTPS, with the
majority of blocking incidents taking place in China during
politically sensitive times. Interestingly, we also discovered
evidence indicating that the Chinese censors were wary of
outright blocking push notification services in the long run
and had made whitelist exceptions after only days of block-
ing, presumably due to the substantial collateral damage that
would result. We evaluate the performance of push notifi-
cation as a downstream transport by comparing PushProxy
with symmetric tools (OpenVPN/Shadowsocks) in a realistic
setting. Our analysis demonstrated a comparable performance
between these tools in terms of both latency and bandwidth.
While there are certain limitations, we believe that push no-
tification can still serve as a viable circumvention transport
that complements existing approaches.

2 Push Notification for Circumvention

Push notification services enable applications to deliver
time-sensitive messages to user devices, relayed by service
providers’ networks. Examples of such services include
Google Firebase Cloud Messaging (GCM/FCM), Apple Push
Notification Service (APNS), Microsoft Push Notification
Service, efc.. Fundamental to many mobile and desktop apps
that require timely alert to users of updates or new messages,
push notification services have seen significant growth in im-
plementation and usage, with a recent article showing that
over 600 billion messages were sent to over 2 billion users in
six months from one provider alone [4].

Users may have the misconception that push notifications
are sent directly by application servers. However, these mes-
sages are in fact sent from application servers to push no-
tification providers, who subsequently deliver them to the
targeted user devices. The exact implementation differs from
provider to provider, but they generally conform to a Pub-
lish/Subscribe model, as shown in Figure 1. First, a newly
installed app needs to undergo an enrollment procedure by
reaching out to a push notification provider. Following this,
the client device acquires a device- and app-specific registra-

tion token. Next, the app client registers with the app server,
providing its registration token and subscription information
such as username, groupname, or interested topics. In order
to send a notification, the application server sends a request
to the push notification provider, which is indexed by the
registration token belonging to the targeted client, and also
includes notification payloads.

While several previous works have explored the secu-
rity and privacy aspects of the push notification ecosys-
tem [11, 29,30, 49], to the best of our knowledge, we are
the first to explore the use of push notification in the con-
text of Internet censorship. Our study is motivated by the
following considerations, which have previously guided the
development of other circumvention systems [40]:

High Collateral Damage Push notifications have been
widely integrated into mobile and desktop apps as a means to
reach to their users. There’s no other mechanism that offers
a similar functionality. Blocking a push notification service
would result in noticeable effects from end-users and would
affect all apps relying on the service.

Low Latency, Low cost, Mid Bandwidth Push notifica-
tion services operate in real time to deliver time-sensitive in-
formation that requires user’s attention. Both FCM and APNS
allow a single push message to carry up to 4 KiB of payload
and can be directly processed by the targeted app, without vis-
ible prompts to users. The service is offered at no additional
cost', a significant advantage over other high-availability
systems using cloud providers or blockchain [10,20,22].

Plausible Fingerprints Compared to circumvention meth-
ods that rely on mimicry or randomization for obfuscation,
which have been shown to be flawed in practice [25,47], push
notification-based systems offer more realistic fingerprints as
the traffic is tunneled within legitimate connections to the ac-
tual service endpoints. Moreover, as push messages are TLS-
encrypted, DPIs cannot block by keyword or destination app.

On the other hand, the Publish/Subscribe model of push
notification has certain limitations, as it restricts the types of
communication patterns that can be supported. Specifically, it
is most suitable for scenarios where the volume and frequency
of downstream traffic are asymmetrically higher than that of
upstream traffic, such as content aggregation services or web
browsing, where outbound requests are often lighter than
inbound responses. In the next sections, we present two tools
that leverage push notification as a circumvention transport.

3 PushRSS: Blocking-resistant Aggregator

We first present PushRSS, a blocking-resistant RSS aggre-
gator that tunnels content updates through push notification
services. An RSS Aggregator is a content distribution service
that allows users to subscribe to various RSS feeds, collects

1A developer subscription is needed for APNS

3. PushRSS regularly
fetch content updates
from subscribed
sources of RSS feeds.

1. After download,
PushRSS client connects
to a push notification
1
1 1
1

provider to retrieve
device identifiers. Push
---------- Provider
1
= . 927 ® Tm
/ 926 © PY CT) 27 ®
BN < PushRSS & PushRSS)

NYT > World News

ast Update: 2022-12-1

2. PushRSS bootstraps!
by registering device !
identifiers, encryption !

keys, and !
subscriptions.

https://rss.nytimes.com

Refresh Key Majid

Copy To ClipBoard

Figure 2: Workflow of PushRSS After the initial registration,
PushRSS server continues to push updates to the client through
a push notification service.

the latest contents on their behalf, and then delivers all updates
to the user in a single location for easy access. The traffic
pattern generated by an RSS aggregator is highly asymmetric:
only a one-time registration and feed subscription need to be
sent upstream, while downstream traffic can be fairly sizable
depending on the number of sources subscribed to and the size
and frequency of updates. This traffic pattern aligns well with
the Publish/Subscribe model of push notification services.

Unlike traditional RSS aggregators that rely on direct con-
nections between a client app and a server, PushRSS tunnels
downstream traffic carrying regular content updates through a
push notification provider’s network. Users are only required
to perform a one-time bootstrapping step, registering their de-
vice tokens and subscription lists. PushRSS then continuously
fetches updates and delivers them using push notification as
a transport. As it doesn’t require a direct connection to its
server, once bootstrapped, PushRSS can continue to operate
even if the server IP is blocked.

3.1 Design

Figure 2 provides an overview of PushRSS’s workflow. Af-
ter download, PushRSS client contacts a push provider (e.g.
APNS, FCM, etc.) to register the device, retrieve device to-
kens, and send them to the PushRSS server along with a list of
subscribed publishers providing feeds compatible with RSS
2.0 format [37]. The PushRSS server then regularly fetches
updates from the subscribed publishers, parses the contents
into structured formats, and then delivers to the client by
embedding the contents inside the “data” field of push notifi-
cation requests, indexed by the client’s identifiers.

Bootstrapping When the PushRSS app is launched for
the first time, it registers the app’s instance with a push notifi-
cation provider to obtain device- and app-specific identifiers,
typically in the form of tokens. PushRSS client then attempts
to send the device identifiers, public keys to encrypt update
payloads, and user-specified subscription list directly to the
PushRSS server. However, if direct communication to the
server is blocked in a censored region, the user may instead
use out-of-band channels, such as domain fronting, email
services, or encrypted instant messaging apps, to send this
information. For Android devices, another option to send
upstream registration info is to use FCM’s "upstream push
notifications," which allows the client to send push messages
back to the app server via the XMPP protocol [17].

Encryption and Reliable Delivery Most push notifica-
tion services do not offer built-in end-to-end encryption. For
example, Google FCM uses point-to-point encryption with
two separate TLS connections connecting the FCM server
to the app server and client device. To achieve end-to-end
encryption, the PushRSS client registers its public key with
the PushRSS server at bootstrapping time. For each subse-
quent push notification update, the payload is encrypted with
an ephemeral, message-specific key, which is then encrypted
with the client’s public key and added to the message. The
final push notification payload includes the encrypted update
and a signature to ensure integrity. External solutions, such
as Capillary [23], exist to simplify the process of sending
end-to-end encrypted push notification messages.

A reliable delivery mechanism is required to transmit up-
date contents that exceed the maximum payload size of a
single push notification message (4 KiB for APNS/FCM).
To address this, we draw inspiration from previous work on
VoIP-based circumvention systems that use XOR-based en-
coder/decoder to ameliorate potential packet loss [43]. Specif-
ically, we can transmit a redundant push notification message
after every N messages, which is constructed by XOR-ing the
previous N messages together. This ensures that the original
content can be recovered as long as N out of N + 1 messages
from the same group are received by the client. The value of
N is determined based on network conditions and the choice
of push notification provider.

3.2 Applications

PushRSS facilitates the delivery of contents when their pub-
lishers and users are separated by firewalls. PushRSS only
distributes contents based on subscriptions and does not al-
low users to request contents on-demand due to the lack of
a persistent upstream channel. Despite this limitation, there
are still several applications that can benefit from this type
of communication pattern. For example, a user living in a
country with strict censorship on news and media can use
PushRSS to receive a continuous feed from global news agen-
cies and personal blogs. In these situations, the network traffic

between the user and the content source is highly asymmet-
ric: the upstream channel is only required at bootstrapping
time, while the downstream channel needs to be censorship-
resistant, reliable over time, and have acceptable bandwidth.
We note that all major news publishers offer standard RSS
feeds categorized by region, sector, and interest. Additionally,
platforms such as Medium.com and tools like WordPress RSS
plugin make it easy for individual publishers to publish their
contents in RSS-compatible formats.

Additionally, PushRSS can facilitate the bootstrapping
stage for existing circumvention systems. Sometimes referred
to as the Identifier Distribution Problem, bootstrapping is
often the weakest link in many circumvention systems and
has been studied in previous research [18,31,40,44]. Many
circumvention systems require pre-shared secrets for boot-
strapping, such as server IP, port, obfuscation key, efc., which
need to be regularly updated on both sides, for example, when
rotating to a new IP/port after a blocking event. To address
this, some circumvention client apps offer a “subscription”
feature to replace static keys, allowing server operators to
publish and update configurations on a URL that is constantly
being polled by the client app. Integrating PushRSS’s pub-
lish/subscribe model into existing circumvention systems may
further optimize this process by changing the “polling” pro-
cess into a “pushing” process: instead of clients repeatedly
polling the URL where the configuration is stored, the server
can automatically push updates to the client whenever a sub-
scribed configuration is changed. This approach not only
improves efficiency, but it also enhances resilience against
blocking through the use of push notification services.” This
proposed identifier distribution approach is illustrated in Ap-
pendix Figure 9.

4 PushProxy: Asymmetric Proxy Based on
Push Notification Services

We design and implement PushProxy. At a high level, Push-
Proxy sends users’ downstream traffic through a push notifi-
cation service (Google FCM [15] in our case), while keeping
upstream an independent/direct channel. We first provides an
overview of the proxy system in § 4.1. Then, we describe a
few design details in § 4.2 that enhance the usability despite
the inherent constraints of push notification services, such as
rate limiting and the lack of reliability.

The key advantage of PushProxy over traditional symmet-
ric proxies comes from its ability to decouple the upstream
and downstream traffic. Such decoupling, sometimes referred
to as “triangular routing” [36,43], mitigates the ability of a
network adversary to perform website fingerprinting or deep
packet inspection (DPI) for censorship at the per-flow level

2For example, OutlineVPN offers a subscription feature called “dynamic
key” [14] and recommends to store configurations on pad.riseup.net. How-
ever, the site itself is blocked in many regions including China.

AL AL
=
r
(/2]
>

FCM
Sender
Scheduler

AppID: XXX

c FdCMl_ , | Androidipixxx o
recential | pheviceToken:XXX

Files Security Token

Figure 3: PushProxy Overall Diagram. PushProxy routes down-
stream traffic through a push notification service, while keeping
upstream an independent channel. In our implementation, we used
FCM for downstream and XOR-obfuscated UDP for stream.

(i.e., based on 3-tuple or 4-tuple, but not on the aggregate traf-
fic a client sends/receives). For example, previous work on
attacking obfuscated circumvention tools using traffic analy-
sis often assume an adversary with symmetric visibility and is
able to correlate a flow’s upstream traffic with its downstream
traffic [8,21,28,41,48]. Triangular routing makes such corre-
lation more challenging, especially when different transport
protocols are used in each direction. While triangular rout-
ing itself does not obfuscate the underlying traffic, it can be
complementary to existing obfuscation strategies by further
limiting the amount of information an adversary can learn or
correlate. Compared to other triangular routing designs such
as CensorSpoofer and ReQrypt [36,43], PushProxy prevails
due to its use of service tunneling to hide the downstream
traffic inside legitimate, persistent connections to push no-
tification servers. This approach eliminates the need for IP
spoofing and results in improved blocking resistance and bet-
ter compatibility with NAT. Additionally, push notification
services have lower latency and higher bandwidth compared
to other channels used in existing designs (e.g. VoIP), leading
to an improvement of performance (see § 5).

4.1 Design

Figure 3 illustrates the components of a PushProxy system.
The PushProxy client listens on a local address for incom-
ing connections and the PushProxy server forwards the data
stream to an HTTP proxy on the server side. Both the client
and the server are implemented in Golang.

Bootstrapping Users of PushProxy need to complete a
bootstrapping stage before they can use the tool. Similar to
symmetric, authenticated proxies (e.g. obfs4, shadowsocks),
PushProxy assumes that some information are shared between
the client and the server prior to usage, including server iden-
tifiers (upstream listening address and FCM senderID [15])
and client identifiers (FCM’s deviceToken). All client iden-
tifiers are generated by registering with FCM, which can be
done either at client side or server side. An optional ClientID
can be specified to support a multi-client setting where a sin-

gle instance of PushProxy server is shared between multiple
PushProxy clients.

Downstream Downstream data is base64-encoded and
included in the “data” field of FCM messages, which are sent
by Firebase Go SDK and received from persistent connections
that the client maintains with FCM endpoints. Notification
(user prompt) for these data-carrying push messages is dis-
abled. We set the time-to-live field to zero in order to avoid
throttling by FCM °, which essentially makes downstream a
best-effort channel. We do not define additional fields for traf-
fic control (e.g. SEQ, ACK) but instead rely on the reliability
provided by upper layer protocols (See § 4.2).

Upstream Our proof-of-concept uses XOR-obfuscated
UDP packets to carry upstream traffic, similar to the XOR
patch [34] developed to obfuscate Open VPN traffic. However,
PushProxy is designed to be flexible regarding how upstream
traffic is handled and in no way depends on specific upstream
transport to function. We believe PushProxy’s asymmetric
routing potentially allows for more flexible obfuscator de-
sign, as for each direction, half of the traffic is dummy data
that could be arbitrarily interleaved with the uni-directional
application streams.

4.2 Reliability, Multiplexing, Encryption

Since the delivery of push notification messages is a best-
effort process, we need to introduce an additional sequenc-
ing mechanism to provide a reliable interface to tunnel user
stream over the potentially unreliable push notification trans-
port. Several options are available from previous work, such
as to use forward error correction algorithms (e.g. [43]) or to
implement custom reliability schemes (e.g. [39]).

Instead, PushProxy employs a TurboTunnel design by sep-
arating an abstract reliability layer from the underlying cir-
cumvention transports [19]. Figure 10 illustrates this design,
where a KCP session is built on top of the obfuscation layer
using UDP or push notification for different directions. The
KCP session is tuned to optimize for the push notification
provider being used. For example, downstream MTU in our
implementation is configured as the maximum payload size
of an FCM message with framing overhead subtracted. Mul-
tiplexing support is added by smux [38]. Encryption at the
KCP layer is disabled and delegated to the application layer.

4.3 Rate Limit

According to FCM documentation, there is a per-destination
rate limit for sending push notifications [15]. The rate limit is
set to 5000 messages per hour, which when combined with
the maximum payload size of 4 KiB gives a sub-optimal
bandwidth of 40kbps. While occasional bursts of traffic are
allowed (we were able to get a maximum throughput of Smbps

3https://firebase.google.com/docs/cloud-messaging/concept-options#ttl

38901 87.2% u
5607 71.8% S
1930 60.0%

4812 IS 18 8%
4847 IR 18.7%
9808 ESENANANA 124%
56046 PSS 11.5%
56048 EEIEEEEEE 114%
4134 BXEREXER) 102%
9121 18 2.19%
453888 1.9%
125788 1.79%
20918 04%
184038 0.4%
70181 0.3%
98291 03%
33561 03%
93811 03%
61281 0.2%
0.0 02 04 0.6 08
Percentage of Requests to FCM endpoints with Anomalies

ASN

Figure 4: Hyperquack Measurement Results - We run Hyperquack
for 7 months and aggregate connection anomalies at AS level.

before push notification messages are getting dropped), we
believe staying below rate limit would provide more stable
proxy connections for users.

‘We notice that the rate limit is specified per deviceToken.
Therefore, instead of maintaining one connection between
PushProxy client and FCM, we register N client instances
and spawn N persistent connections to FCM, each parameter-
ized by a unique deviceToken. PushProxy server sends push
notification using N deviceTokens in a round-robin manner,
while PushProxy client simultaneously listens with N push
receivers and processes the data as soon as one becomes ready.
Rate limits are enforced by specifying a maximum window
size (in number of packets in flight) for the KCP session. The
maximum window size is calculated as N x MaxRate /s*RTT,
where RT'T is the Round Trip Time and N is the number of
available deviceTokens to send push notifications to. In § 5,
we show that the downstream push notification channel can
be scaled to support general browsing activities while staying
under the rate limit specified by the service provider.

5 Evaluation

We assess the viability of using push notifications as a trans-
port for circumvention traffic, considering both its availability
across regions and over time, as well as its performance in
comparison with other circumvention tools.

5.1 Availability

To use push notification services for effective censorship cir-
cumvention, it is crucial that these services are not subject to
blocking themselves, particularly in regions where censorship
is prevalent. We conduct measurements to test for potential
censorship practices against push notification services across
regions and networks. To be consistent with our prototype
implementation, we focus on Google FCM, one of the largest
push notification providers worldwide. We aim to determine
1) Which networks (ASes) actively block connections to FCM
services? And 2) Does FCM offer high availability by remain-
ing reachable over time?

BB Anomaly EEER Matched/Expected
5000
£ 4000
5
£
2
2
g 3000
2
c
2
£ 2000
z
1000 |
N ||||||||||| ||||I| |||| |||||| ||| |||| || || |
~ O DI GO > A D
\ 0\\" P SO ,(\,\7‘/7‘«,(\ NV Y NSNS
SRS AQ n“ Q Q% ,Q%A,Qo‘ ,@ 91\ ’\Q'\/\Q"’\e'\/\e'\/\\'\/\\"’\\m’\\'\/\'\/& N /'\,W\"« ’\"”\’Q\’\’Q\’VQ\'VQ\
VPP YYD A I A B L L A N L R

Figure 5: Longitudinal Hyperquack results for China.

Methodology We used peer-reviewed technique Hyper-
quack [35] to measure potential HTTPS blocking against con-
nections to FCM endpoints. Hyperquack measures keyword
blocking at the application layer using web servers located
in a targeted region/network. It first builds up a template of
expected behaviors for a targeted web server. Next, it sends
HTTPS requests with targeted SNIs and monitors for potential
signs of blocking (e.g., TCP reset, blockpage, timeout efc.).

We target FCM endpoints found in the official documen-
tation [3], included in Appendix Table 1. The measurement
commenced on June 27, 2022 and continued until January
24, 2023. During this period, we conducted four rounds of
Hyperquack measurements each week.

Results We collected a total of 5,555,298 measurements,
targeting web servers located in 1,632 unique ASes. We ag-
gregated results at the AS level, removing servers whose be-
haviors showed a large discrepancy from other servers in their
network and only reporting on ASes where we had a suffi-
cient number of targets (> 20). Figure 4 shows the aggregated
results. We found that only a small number of ASes actively
interfere with HTTPS connections to FCM endpoints. Among
the ASes with the highest percentage of anomalies, AS5607,
AS1930, and AS786 exhibited aggressive blocking behaviors
that were dissimilar to any other ASes in their respective coun-
tries. Since anomalies were also measured in these networks
for other Google-related services and many other “benign”
domains, we believe it is unlikely that the anomalies we ob-
served suggest targeted censorship against FCM services.

China stands out as a notable exception, as there is a cer-
tain level of consistency in the interference observed across
ASes, indicating potential nation-wide, coordinated efforts
to block FCM. Longitudinal analysis of measurements con-
ducted on web servers located in China (Figure 5) reveals that
the majority of blocking events occurred between September
22 and September 30, 2022, during which almost all mea-
surements failed with TCP reset. This is corroborated by
user reports online of other Google services being unavailable
during the same time period [16]. On the eve of the Party’s
National Congress, the most sensitive political event in the
country, China’s online censor tightened its grip by aggres-

1.0

— - PushProxy (N=100)

038

0.6

00
Total Download Time (s)

Figure 6: Bandwidth The median total download time is 2.70s for
Shadowsocks, 9.68s for OpenVPN (UDP), 94.92s for PushProxy
(N = 10), and 16.46s for PushProxy (N = 100). All tests were
conducted at 3:00 AM Beijing Time (GMT+8)

sively blocking all subdomains of the form *. google.com”.
The blocking was later lifted for FCM endpoints on October
1. However, it is important to note that the censor did not
simply reverse the blocking rule for *.google.com, as many
subdomains that were blocked on September 22, including
{docs/groups/sites }.google.com, continue to remain blocked
as of February 2023. The lifting of the blocking specifically
for FCM suggests that an exception was made due to the dis-
ruption caused to services and apps that rely on FCM for their
functionality. This further highlights that push notification, as
a circumvention transport, benefits from the high collateral
damage that a censor has to sustain by blocking it.

5.2 Performance

We evaluate the performance of push notification as a down-
stream service-tunneling channel by comparing PushProxy
with other circumvention tools in a realistic setting. We
choose OpenVPN and Shadowsocks for comparison.

Methodology To emulate a realistic setting, we deployed
a PushProxy server, an OpenVPN Access Server (v2.10.3),
and a Shadowsocks server (go-shadowsocks2 v0.1.5) and co-
located them on a measurement machine located in Michigan,
USA. Next, we launched their corresponding clients from a
premium VM in Shanghai, China, and had the clients fetch
resources from a web server located in Virginia, USA through
one of the three proxying channels. We confirmed that the
client VM is located inside China with traceroutes and latency
measurements, and we also observed DNS and SNI-based
censorship behaviors similar to the ones previously noted in
studies on the GFW. The round trip time is around 219ms
between the China clients and the proxy servers, and 25ms
between the proxies and the web server.

Bandwidth To evaluate bandwidth, we performed 40 mea-
surements of the total time taken through different proxies to

“4Note that most of Google services have been blocked in China for years.
However, a handful of less-sensitive services, such as FCM, Google Docs,
and Google Translate, remained available before this blocking.

0.8

0.6 I
04 i

02 i

0 g w0 w0 600 800 1000
Time To First Byte (ms)
Figure 7: Time To First Byte - From 40 measurements, we found

the median time to first byte was 492ms for Shadowsocks, 508ms
for OpenVPN (UDP), and 572ms for PushProxy.

fetch a 10-megabyte file from the web server. As shown in
Figure 0, traditional symmetric proxies provide better band-
width, resulting in median download time of 2.70s and 9.68s
for Shadowsocks and OpenVPN, respectively. However, we
note that despite being under the constraints of rate limiting,
adding paralleled push notification receivers is an effective
way to scale up the downstream bandwidth. By increasing
the number of push receivers (V) from 10 to 100, the median
download time is reduced from 94.92s to 16.46s, without
breaking FCM’s rate limit. This gives us a bandwidth of
around 4.86 Mbps, which is significantly higher than other
service tunneling systems such as dnstt [2] (1.5 Mbps) or
CensorSpoofer [43] (64 Kbps) and is able to support general
browsing activities.

Time To First Byte (TTFB) We connected the clients
to proxies to request resources from the web server. We
performed 40 such measurements for PushProxy (N = 100),
Shadowsocks, and OpenVPN (UDP mode). Results are
shown in Figure 7. The median TTFB for Shadowsocks
and OpenVPN is 492ms and 508ms, respectively, and the
TTFB for PushProxy is 572ms.

Diurnal Patterns During the evaluation, we conducted
multiple rounds of bandwidth measurements and observed in-
termittent network slowdowns that resembled network conges-
tion, with increased packet losses and decreased throughput.
Further testing indicated that these slowdowns followed a diur-
nal pattern. Figure 8 shows a 48-hour period during which we
continuously performed the bandwidth measurements using
Shadowsocks and PushProxy. The graph clearly suggests that
for Shadowsocks, performance starts to degrade from 20:00
Beijing time (GMT+8) and only recovers after 2:00. During
these peak hours, the hourly-averaged downloading time for
the same file increased from 3 seconds to over 100 seconds.
Direct connection (without using any proxy) to the web server
results in similar slowdown. While we do not have ground
truth for why the slowdown is happening, previous research
examining transnational Internet performance has noted their
measurement clients in China suffer from occasional slow-

1004+ e

Shadowsocks

PushProxy
80

. .
60 . .o .
.

Download Time
]

. LI
. I.l S } % PO WY SRS F4
?4:[){) 20:00 02:00 08:00 14:00 20:00 02:00 08:00 14:00
Datetime in Bejing Time (HH:MM)

Figure 8: Bandwidth Diurnal Pattern - The performance of Push-
Proxy remains stable during peak hours.

downs following a similar diurnal pattern, which the authors
hypothesized financial motivations to be the cause [50].

Interestingly, we found that the performance of PushProxy
remained stable and exhibit acceptable throughput even dur-
ing these peak hours. We suspect the reason to be PushProxy’s
use of service tunneling in downstream direction through
FCM, whose endpoints domain names resolves to a domes-
tic IP from our China VPS. Previous work has found that
websites with servers physically located inside China do not
suffer from the diurnal slowdown pattern [50]. This suggests
that PushProxy, despite its use of triangular routing, may even
provide better user experience than symmetric proxies under
certain situations, such as web browsing where a higher down-
stream bandwidth during peak hours can make a significant
difference in the quality of the user’s experience.

6 Discussion

6.1 Publish/Subscribe Model of Circumvention

PushRSS strictly conforms to a Publish/Subscribe model, in
which users performs a one-time subscription for a publisher’s
feed, and PushRSS is responsible for delivering subsequent
content updates to all subscribers of the feed. While this ap-
proach offers several advantages (§ 2), the usefulness of the
tool is contingent on the availability of various feeds. This
publisher-centric approach is similar to that utilized by Cache-
Browser [24]. Although in this case publishers must invest
time and resources in presenting their contents in structured
formats, we believe they are likely motivated to do so in order
to increase the accessibility to their contents.

Many publishers, including major news outlets such as
NYT and BBC, already offer standard RSS feeds for their
content, which are often organized by region and topic. How-
ever, we found that these feeds typically only include a title
and a brief summary of each item, requiring users to click
through to the original source for the full story. The pres-
ence of paywalls and third-party resources (e.g., images) can
further detract from the user experience. We encourage pub-
lishers to use more expressive structures that provide enough
contents to reconstruct significant portions of a webpage and

offer a reading experience akin to traditional web browsing.
Alternatives to RSS include Telegram’s Instant Views [5]
and the BIFROST-T service [1], which parse webpages and
WordPress posts into structured formats.

6.2 Limitation

Traffic Analysis PushRSS and PushProxy do not protect
against fingerprinting attacks based on traffic analysis. A cen-
sor may be able to distinguish push notification flows carrying
circumvention traffic based on features such as packet length
and timing distribution. While there is no current evidence of
sophisticated traffic analysis deployment by real-world cen-
sors, simple rule-based filters could potentially suffice, as
high-frequency, high-bandwidth push notifications are quite
atypical from standard push notification usage and can be easy
for censors to identify and throttle. (e.g., it takes over 100
push notifications to load a typical website, contrasting no-
tably with the daily average of 46 push notifications received
by a smartphone [4].)

Another potential vector of attack enabled by analyzing
traffic of PushRSS is the de-anonymization of subscribers to
specific content feed. More specifically, an adversary sub-
scribing to a notification feed could potentially identify other
subscribers of the same feed by correlating their traffic char-
acteristics, using techniques based on packet timings and
sizes [7,9]. In this case, the goal of the adversary is not to
disrupt connectivity, but rather to ascertain that a user has
installed an anti-censorship tool or subscribed to a feed con-
taining sensitive contents. Such risks need to be recognized
and investigated. Potential mitigation strategies include intro-
ducing randomness in the delivery timing of notifications or
restricting access only to trusted users.

Platform Censorship Push notification providers that con-
sciously support censorship circumvention may face pressure
from the censor, who can threaten to block or take legal ac-
tion. The censor may demand the provider to disable push
notifications for circumvention apps or reduce the bandwidth
by lowering the rate limit, rendering push notification as a
transport less useful. A broader adoption of push notifica-
tions for circumvention purposes is likely to motivate censors
to impose stricter technical and policy controls over such
communication channels. However, we note that despite the
majority of Google services being blocked in China since
2014, push notifications powered by FCM remain accessible
as of June 2023. This observation may hint at the economic
and societal repercussions that would arise from blocking
such a service, possibly creating a backlash that outweighs
the benefits of censorship.

7 Related Work

Censorship circumvention necessitates traffic obfuscation to
evade detection and blocking by censors. Most obfuscation

strategies fall into three categories: mimicry, randomization,
or service-tunneling. Mimicry-based obfuscations [13,32,45]
work by simulating traffic characteristics of “benign” proto-
cols. Previous work have since found several attacks that
result in effective protocol fingerprinting, as seamlessly mim-
icking another protocol is extremely challenging [25,41]. On
the other hand, randomization-based strategies aim to elim-
inate all fingerprints by encrypting traffic into bits indistin-
guishable from random. However, being random could itself
becomes a feature and censors could block fully encrypted
traffic during politically sensitive times [47].

A logical extreme of mimicry, named service tunneling,
is to tunnel circumvention traffic over actual, public-facing
network services. Examples of this approach include Cloud-
Transport, SWEET, FreeWave, and dnstt, which relay cir-
cumvention traffic via cloud storage, email, VoIP, and DNS,
respectively [2, 10,26, 27]. PushProxy falls under this cate-
gory, as it tunnels downstream circumvention traffic through
existing, persistent connections between end user devices and
push notification servers. Service tunneling provides better
blocking resistance in that the address of the proxy server is
effectively hidden from the censor — the censor only sees the
address of the public-facing service. Blocking such services
outright would result in significant collateral damage and is
therefore unlikely to be implemented by the censor.

An additional feature of PushProxy is the decoupling of
upstream and downstream traffic. Such decoupling provides
some level of defense against traffic analysis by reducing
information exposed to attackers with a limited network per-
spective [12,42]. While correlation between the upstream and
downstream flows is still possible, network devices primarily
use the four tuple for connection identification, making corre-
lation challenging and likely causing false positives/negatives.
Using different transport protocols for upstream and down-
stream introduces additional complexity. PushProxy is similar
to CensorSpoofer [43] in that they both decouple upstream
and downstream traffic. However, PushProxy provides better
performance, as shown in § 5, due to its higher bandwidth
from push notification services compared to VoIP.

8 Conclusion

We explore the potential of using push notification for censor-
ship circumvention. Designed for time-sensitive tasks, push
notifications provide a downstream-only, blocking-resistant
data transport with low-latency, mid-bandwidth at minimal
cost. Empirical evidence suggests that adversaries are wary
of censoring push notification services due to the potential for
economic and social collateral damage. We present two tools,
PushRSS and PushProxy, that leverage this property to tunnel
downstream circumvention traffic. While these tools have
their limitations, we believe that push notification still shows
promise as a viable circumvention transport that complements
existing approaches.

9 Acknowledgment

The authors are grateful to the anonymous reviewers for
their constructive feedback. This material is based upon
work supported by the National Science Foundation un-
der Grant No.2237552, No.2141512, and the Defense Ad-
vanced Research Projects Agency (DARPA) under Agreement
HRO00112190127.

References

[1] Circumvention of website blocking by means of tele-
gram. https://www.qurium.org/bifrost-t/.

[2] DNS tunnel over DNS over HTTPS (DoH) or DNS over
TLS (DoT) resolvers. https://www.bamsoftware.com/
software/dnstt/.

[3] FCM ports and your firewall.
firebase.google.com/docs/cloud-messaging/
concept-options#messaging-ports-and-your-firewall.

[4] Push Notification Statistics (2021). https://www.
businessofapps.com/marketplace/push-notifications/
research/push-notifications-statistics/.

https://

[5] Telegram: Instant Views Explained. https://instantview.
telegram.org/.

[6] Alice, Bob, Carol, J. Beznazwy, and A. Houmansadr.
How China Detects and Blocks Shadowsocks. In ACM
Internet Measurement Conference (IMC), 2020.

[7] A. Back, U. Moller, and A. Stiglic. Traffic analysis
attacks and trade-offs in anonymity providing systems.
In Information Hiding: 4th International Workshop, IH
2001 Pittsburgh, PA, USA, April 25-27, 2001 Proceed-
ings, pages 245-257. Springer, 2001.

[8] D. Barradas, N. Santos, and L. Rodrigues. Effective
Detection of Multimedia Protocol Tunneling Using Ma-
chine Learning. SEC’18, USA, 2018. USENIX Associ-
ation.

[9] A. Bozorgi, A. Bahramali, F. Rezaei, A. Ghafari,
A. Houmansadr, R. Soltani, D. Goeckel, and D. Towsley.
I Still Know What You Did Last Summer: Inferring
Sensitive User Activities on Messaging Applications
Through Traffic Analysis. IEEE Transactions on De-
pendable and Secure Computing, 2022.

[10] C. Brubaker, A. Houmansadr, and V. Shmatikov.
CloudTransport: Using Cloud Storage for Censorship-
Resistant Networking. volume 8555, pages 1-20, 07
2014.

[11] Y. Chen, T. Li, X. Wang, K. Chen, and X. Han. Per-
plexed Messengers from the Cloud: Automated Security
Analysis of Push-Messaging Integrations. CCS 15,
page 1260-1272, New York, NY, USA, 2015. Associa-
tion for Computing Machinery.

[12] W. De la Cadena, A. Mitseva, J. Hiller, J. Pen-
nekamp, S. Reuter, J. Filter, T. Engel, K. Wehrle, and

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

[25]

A. Panchenko. TrafficSliver: Fighting Website Finger-
printing Attacks with Traffic Splitting. In Proceedings
of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, CCS *20, page 1971-1985,
New York, NY, USA, 2020. Association for Computing
Machinery.

K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimp-
ton. Protocol Misidentification Made Easy with Format-
Transforming Encryption. In Proceedings of the 2013
ACM SIGSAC Conference on Computer Communica-
tions Security, CCS ’13, page 61-72, New York, NY,
USA, 2013. Association for Computing Machinery.
OutlineVPN: Dynamic Access Keys. https://
www.reddit.com/r/outlinevpn/wiki/index/dynamic_
access_keys/.

About FCM messages. https:/firebase.google.com/
docs/cloud-messaging/concept-options.

The Great Firewall of China has blocked google.com
and all its subdomains. https://github.com/net4people/
bbs/issues/128.

FCM: Sending upstream messages on Android.
https://firebase.google.com/docs/cloud-messaging/
android/upstream.

N. Feamster, M. Balazinska, W. Wang, H. Balakrish-
nan, and D. Karger. Thwarting Web Censorship with
Untrusted Messenger Discovery. In Privacy Enhancing
Technologies, pages 125-140. Springer, 2003.

D. Fifield. Turbo Tunnel, a good way to design cen-
sorship circumvention protocols. In Free and Open
Communications on the Internet. USENIX, 2020.

D. Fifield, C. Lan, R. Hynes, P. Wegmann, and V. Pax-
son. Blocking-Resistant Communication through Do-
main Fronting. Proceedings on Privacy Enhancing
Technologies, 2015, 06 2015.

My Experience With the Great Firewall of China.
https://blog.zorinaq.com/my-experience-with-the-
great-firewall-of-china/.

Y. Han, D. Xu, J. Gao, and L. Zhu. Using blockchains
for censorship-resistant bootstrapping in anonymity net-
works. In C. Alcaraz, L. Chen, S. Li, and P. Sama-
rati, editors, Information and Communications Security,
pages 240-260, Cham, 2022. Springer International
Publishing.

G. Hogben and M. Perera. Capillary. https://github.
com/google/capillary, 2018.

J. Holowczak and A. Houmansadr. CacheBrowser:
Bypassing Chinese Censorship without Proxies Using
Cached Content. CCS ’15, page 70-83, New York, NY,
USA, 2015. Association for Computing Machinery.

A. Houmansadr, C. Brubaker, and V. Shmatikov. The

Parrot Is Dead: Observing Unobservable Network Com-
munications. In 2013 IEEE S&P.

https://www.qurium.org/bifrost-t/
https://www.bamsoftware.com/software/dnstt/
https://www.bamsoftware.com/software/dnstt/
https://firebase.google.com/docs/cloud-messaging/concept-options#messaging-ports-and-your-firewall
https://firebase.google.com/docs/cloud-messaging/concept-options#messaging-ports-and-your-firewall
https://firebase.google.com/docs/cloud-messaging/concept-options#messaging-ports-and-your-firewall
https://www.businessofapps.com/marketplace/push-notifications/research/push-notifications-statistics/
https://www.businessofapps.com/marketplace/push-notifications/research/push-notifications-statistics/
https://www.businessofapps.com/marketplace/push-notifications/research/push-notifications-statistics/
https://instantview.telegram.org/
https://instantview.telegram.org/
https://www.reddit.com/r/outlinevpn/wiki/index/dynamic_access_keys/
https://www.reddit.com/r/outlinevpn/wiki/index/dynamic_access_keys/
https://www.reddit.com/r/outlinevpn/wiki/index/dynamic_access_keys/
https://firebase.google.com/docs/cloud-messaging/concept-options
https://firebase.google.com/docs/cloud-messaging/concept-options
https://github.com/net4people/bbs/issues/128
https://github.com/net4people/bbs/issues/128
https://firebase.google.com/docs/cloud-messaging/android/upstream
https://firebase.google.com/docs/cloud-messaging/android/upstream
https://blog.zorinaq.com/my-experience-with-the-great-firewall-of-china/
https://blog.zorinaq.com/my-experience-with-the-great-firewall-of-china/
https://github.com/google/capillary
https://github.com/google/capillary

[26] A. Houmansadr, T. J. Riedl, N. Borisov, and A. C.
Singer. I want my voice to be heard: IP over Voice-
over-IP for unobservable censorship circumvention. In

Network and Distributed System Security Symposium,
2013.

A. Houmansadr, W. Zhou, M. Caesar, and N. Borisov.
SWEET: Serving the Web by Exploiting Email Tunnels.
IEEE/ACM Transactions on Networking, 25(3):1517—
1527, 2017.

C. Kwan, P. Janiszewski, S. Qiu, C. Wang, and C. Bo-
covich. Exploring Simple Detection Techniques for
DNS-over-HTTPS Tunnels. FOCI 21, page 3742,
New York, NY, USA, 2021. Association for Computing
Machinery.

H. Lee, T. Kang, S. Lee, J. Kim, and Y. Kim. Punobot:
Mobile botnet using push notification service in android.
In Y. Kim, H. Lee, and A. Perrig, editors, Informa-
tion Security Applications, pages 124—-137, Cham, 2014.
Springer International Publishing.

T. Li, X. Zhou, L. Xing, Y. Lee, M. Naveed, X. Wang,
and X. Han. Mayhem in the Push Clouds: Understand-
ing and Mitigating Security Hazards in Mobile Push-
Messaging Services. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications
Security, CCS ’14, page 978-989, New York, NY, USA,
2014. Association for Computing Machinery.

[27]

(28]

[29]

[30]

[31] P. Lincoln, I. Mason, P. Porras, V. Yegneswaran,
Z. Weinberg, J. Massar, W. Simpson, P. Vixie, and
D. Boneh. Bootstrapping Communications into an Anti-
Censorship System. In Free and Open Communications

on the Internet. USENIX, 2012.

H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and
I. Goldberg. SkypeMorph: Protocol Obfuscation for Tor
Bridges. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS *12,
page 97-108, New York, NY, USA, 2012. Association
for Computing Machinery.

[32]

[33] Learning more about the GFW’s active probing sys-
tem. https://blog.torproject.org/learning-more-about-
gfws-active-probing-system.

[34] OpenVPN_XORPatch. https://github.com/clayface/
openvpn_xorpatch.

[35] R. S. Raman, P. Shenoy, K. Kohls, and R. Ensafi. Cen-
sored Planet: An Internet-wide, Longitudinal Censor-
ship Observatory. In Computer and Communications
Security. ACM, 2020.

[36] ReQrypt: A censorship circumvention tool.
github.com/basil00/reqrypt.

[37] RSS 2.0 Specification. https://support.google.com/
merchants/answer/160589?hl=en.

https://

[38] smux: A Stream Multiplexing Library for golang with
least memory usage(TDMA). https://github.com/xtaci/

10

SMux.
[39] Survey of techniques to encode data in DNS mes-
sages. https://www.bamsoftware.com/software/dnstt/
survey.html.
[40] M. C. Tschantz, S. Afroz, Anonymous, and V. Paxson.
SoK: Towards Grounding Censorship Circumvention in
Empiricism. In 2016 IEEE Symposium on Security and

Privacy (SP), 2016.

L. Wang, K. P. Dyer, A. Akella, T. Ristenpart, and
T. Shrimpton. Seeing through Network-Protocol Ob-
fuscation. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Secu-
rity, CCS ’15, page 57-69, New York, NY, USA, 2015.
Association for Computing Machinery.

M. Wang, A. Kulshrestha, L. Wang, and P. Mittal. Lever-
aging strategic connection migration-powered traffic
splitting for privacy, 2022.

Q. Wang, X. Gong, G. T. Nguyen, A. Houmansadr, and
N. Borisov. CensorSpoofer: Asymmetric Communica-
tion Using IP Spoofing for Censorship-Resistant Web
Browsing. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS "12,
page 121-132, New York, NY, USA, 2012. Association
for Computing Machinery.

[44] Q. Wang, Z. Lin, N. Borisov, and N. J. Hopper. rBridge:
User Reputation based Tor Bridge Distribution with Pri-
vacy Preservation. In Network and Distributed System
Security. The Internet Society, 2013.

[41]

[42]

[43]

[45] Z. Weinberg, J. Wang, V. Yegneswaran, L. Briesemeis-
ter, S. Cheung, F. Wang, and D. Boneh. StegoTorus: A
Camouflage Proxy for the Tor Anonymity System. In
Proceedings of the 2012 ACM Conference on Computer
and Communications Security, CCS *12, page 109-120,
New York, NY, USA, 2012. Association for Computing
Machinery.

[46] Wikipedia. Observer pattern — Wikipedia, the free en-
cyclopedia. http://en.wikipedia.org/w/index.php?title=
Observer%?20pattern&oldid=1135085404, 2023. [On-

line; accessed 23-January-2023].

M. Wu, J. Sippe, D. Sivakumar, J. Burg, P. Anderson,
X. Wang, K. Bock, A. Houmansadr, D. Levin, and
E. Wustrow. How the Great Firewall of China Detects
and Blocks Fully Encrypted Traffic. In 32th USENIX
Security Symposium (USENIX Security 23).

D. Xue, R. Ramesh, A. Jain, M. Kallitsis, J. A. Hal-
derman, J. R. Crandall, and R. Ensafi. OpenVPN is
Open to VPN Fingerprinting. In 31st USENIX Security
Symposium (USENIX Security 22), Boston, MA, 2022.
USENIX Association.

S. Zhao, P. P. C. Lee, J. C. S. Lui, X. Guan, X. Ma,
and J. Tao. Cloud-Based Push-Styled Mobile Botnets:
A Case Study of Exploiting the Cloud to Device Mes-

[47]

(48]

[49]

https://blog.torproject.org/learning-more-about-gfws-active-probing-system
https://blog.torproject.org/learning-more-about-gfws-active-probing-system
https://github.com/clayface/openvpn_xorpatch
https://github.com/clayface/openvpn_xorpatch
https://github.com/basil00/reqrypt
https://github.com/basil00/reqrypt
https://support.google.com/merchants/answer/160589?hl=en
https://support.google.com/merchants/answer/160589?hl=en
https://github.com/xtaci/smux
https://github.com/xtaci/smux
https://www.bamsoftware.com/software/dnstt/survey.html
https://www.bamsoftware.com/software/dnstt/survey.html
http://en.wikipedia.org/w/index.php?title=Observer%20pattern&oldid=1135085404
http://en.wikipedia.org/w/index.php?title=Observer%20pattern&oldid=1135085404

FCM endpoints used in Hyperquack measurement

mtalk.google.com
mtalk4.google.com
mtalk-staging.google.com
mtalk-dev.google.com
altl-mtalk.google.com
alt2-mtalk.google.com
alt3-mtalk.google.com
alt4-mtalk.google.com
altS-mtalk.google.com
alt6-mtalk.google.com
alt7-mtalk.google.com
alt8-mtalk.google.com

Table 1: FCM Endpoints used in Hyperquack measurement. The
set of endpoints were collected from the FCM documentation [3].

. proxykey.com proxykey.com

e
ﬁ

: @ 8
: 1
: 1
: 1
: V. !
: 1
TokenXX: proxykey.com :
: - !
: 1
: 1

Config: {
"ip": 1.1.1.1, —
"port": 12345,
"secret": KEY} _
device:
TokenXX
-

Push
Observer Key

X
J

A
1
1
1
1
1
1
1
1

&
xJ

A
1
1
1
1
1
1
1
1

Config: {
"ip"1.1.1.1,
"port": 12345,
"secret": KEY}

Config:

"ip": 1.1.1.1,
"port": 12345,
"secret": KEY}

config:
proxykey.com

Provider

Static Key

Dynamic Key

Figure 9: Different Identity Distribution Mechanisms. Observer
Key [46] changes the “polling” process from the dynamic key into a
“pushing” process by having the server automatically sends updates
to the client whenever a subscribed configuration is changed.

saging Service. In Proceedings of the 28th Annual
Computer Security Applications Conference, ACSAC
"12, page 119-128, New York, NY, USA, 2012. Associ-
ation for Computing Machinery.

P. Zhu, K. Man, Z. Wang, Z. Qian, R. Ensafi, J. Hal-
derman, and H. Duan. Characterizing Transnational
Internet Performance and the Great Bottleneck of China.
Proceedings of the ACM on Measurement and Analysis
of Computing Systems, 4:1-23, 05 2020.

[50]

Appendix

11

(User Streams | HTTP

(Multiplexing] smux

(Reliability] kcp-go
xor-UDP notli:;?:a':ion

Figure 10: The TurboTunnel Design of PushProxy. TurboTun-
nel [19] decouples reliability and obfuscation.

