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ABSTRACT
We develop a means to detect ongoing per-country anomalies in
the daily usage metrics of the Tor anonymous communication
network, and demonstrate the applicability of this technique to
identifying likely periods of internet censorship and related events.
The presented approach identi�es contiguous anomalous periods,
rather than daily spikes or drops, and allows anomalies to be ranked
according to deviation from expected behaviour.

The developed method is implemented as a running tool, with
outputs published daily by mailing list. This list highlights per-
country anomalous Tor usage, and produces a daily ranking of
countries according to the level of detected anomalous behaviour.
This list has been active since August 2016, and is in use by a number
of individuals, academics, and NGOs as an early warning system
for potential censorship events.

We focus on Tor, however the presented approach is more gen-
erally applicable to usage data of other services, both individually
and in combination. We demonstrate that combining multiple data
sources allows more speci�c identi�cation of likely Tor blocking
events. We demonstrate the our approach in comparison to exist-
ing anomaly detection tools, and against both known historical
internet censorship events and synthetic datasets. Finally, we detail
a number of signi�cant recent anomalous events and behaviours
identi�ed by our tool.

CCS CONCEPTS
• Networks → Network measurement; • Social and profes-
sional topics → Technology and censorship; • Security and
privacy → Pseudonymity, anonymity and untraceability;
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1 INTRODUCTION
Nation states, and others, increasingly employ internet �ltering
as a means of controlling access to information, and as a tool to
limit social and political organisation. Given the central role that
the internet plays in communications for a large proportion of the
global population, understanding the application and development
of �ltering technologies, and the e�ects of these methods on in-
dividuals and society, is of great importance. Whilst analyses of
known �ltering regimes allow us to identify tools, techniques, and
limitations of �ltering approaches, we consider that discovering
internet �ltering behaviour in less-studied regions is of great im-
portance.

Much existing research into internet �ltering has focused either
on observing practices of states already known engage in �ltering,
or in the development of censorship circumvention tools. Whilst
multilateral studies of censorship have been conducted, most no-
tably the seminal work of Deibert et al. [11], these approaches have
typically amalgamated manual country-speci�c investigations. In
the case of Deibert et al., countries were hand-ranked according to
a number of broad criteria for internet freedom, based on network
measurements as well as media reporting and expert interviews.

The work presented here provides a means to alert researchers
and activists to developing events that may otherwise have been
missed by focusing on patterns of circumvention tool usage around
the world. As an initial step our tool currently reports new anom-
alies and a current ranking of most anomalous countries to a mail-
ing list on a daily basis. The <infolabe-anomalies> mailing list
has been running publicly since August 2016, has subscribers from
academia and civil society organisations, and has provided the �rst
known detection of a number of signi�cant ongoing Tor-related
blocking events that we detail in §7.

1.1 Contributions
This work presents a theoretical contribution to network anomaly
detection, a practical contribution in the form of an implemented
tool for detecting anomalous events in Tor usage data, a resource
in the form of a public dataset of detected anomalies in historical
Tor tra�c, and a practical analysis demonstrating the detection of
real-world events: we identify known, previously unreported, and
newly-detected �ltering-related events.

We make the following practical contributions:

• An open tool to detect and highlight anomalies in per-country
usage of the Tor network;
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• a continually-updated daily ranking of the most anomalous
countries in terms of their usage of Tor.

These are built on our key methodological contribution:

• An approach for detecting and quantifying anomalous peri-
ods of per-country Tor usage incorporating multiple usage
measurements.

We validate the e�ectiveness of our approach in detecting both
a range of arti�cial anomalies, and known reported �ltering events
against the Tor network. We also demonstrate our approach’s im-
proved detection accuracy compared to the existing Tor metrics
anomaly detector, as well showing its additional capabilities in
terms of identifying anomalous periods and ranking anomalies by
strength.

1.2 Problem and Approach
When an entity, such as a state or ISP, chooses to �lter or block
certain types of information, the resulting patterns of tra�c re�ect
the intervention in the form of statistical anomalies. In a global
system, in which many entities may be interfering with tra�c or
publicising their attempts to do so, it is desirable to identify localised
anomalies and to gain an understanding of their nature.

To detect anomlies, we model each country’s Tor usage relative
to the behaviour of other countries, not as an individual time series.
A given country’s usage pattern is judged as anomalous if it deviates
from its previous behaviour relative to other countries.

The usage patterns of a tool such as Tor, explicitly developed
and publicised as a means for bypassing network censorship, are
a�ected by a range of factors such as �ltering, social and political
unrest, unrelated network outages, and media reporting [4]. The
work presented here therefore identi�es statistical anomalies in Tor
usage metrics, but we highlight that such anomalies serve as an
indicator, not a proof, of censorship or interference.

In later sections we make use of both standard Tor tra�c and
blocking-resistant bridge node tra�c to identify direct blocking of
Tor. Combining anomalies across metrics allows identi�cation of
declines in normal usage combined with rises in blocking-resistant
bridge usage. This corresponds to users being unable to access Tor
normally, and so switching to blocking resistant approaches. As
we demonstrate in §7, this provides a targeted identi�cation of
�ltering-related anomalies.

We extend a line of research initially proposed by Jackson and
Mudholkar [18] for application in industrial process control, and
later employed by Lakhina et al. [22] to detect network-wide tra�c
anomalies from per-link data in high-performance networks. Our
approach di�ers from that of [22] in a number of ways. Firstly, we do
not assume that the underlying set of time series are stationary, but
instead allow for series to evolve over time. Secondly, we account for
seasonality in time series. Most importantly, however, we identify
per-country anomalies rather than global. Finally, we dynamically
adapt our anomaly thresholds for each series to account for long-
term evolution of the data.

We directly apply our tool to analysis of Tor usage anomalies,
and report on its demonstrated utility for detecting anomalies of
practical concern to activists and NGOs working to support cen-
sorship circumvention and freedom of expression. A number of

such actors subscribe to our public mailing list, and have used our
detection results to identify newly-emerging �ltering behaviours.

2 EXISTINGWORK
Internet �ltering has received attention from various �elds. Techni-
cal research has focused on mechanisms of censorship and the de-
velopment of circumvention approaches. The social sciences have
investigated motivations of censors, and their legal, economic, and
societal e�ects.

2.1 Technical Analysis
Arguably the most well-known national-level �ltering system is
that of China, commonly known as the Great Firewall. One of the
earliest signi�cant studies of this system was presented by Clayton
et al.[5], who isolated one mechanism by which connections were
interrupted if particular keywords were identi�ed in tra�c. The
mechanism discovered by Clayton et al. resulted in TCP RST pack-
ets being sent from an intermediary router to both source and desti-
nation of a connection if a �ltering criterion was met. The authors
further demonstrated that if the two endpoints of the connection
ignored the TCP RST, the connection could successfully continue.

In more recent work, it has become apparent that the Chinese
approach to �ltering is both complex and evolving. In two recent
papers, a group of anonymous researchers have explored manipu-
lation, or poisoning, of DNS records that pass through China [2, 3].
This work has identi�ed DNS manipulation as one of the most
prevalent forms of �ltering in China. Similarly, Wright [37] demon-
strated that DNS censorship had di�erent e�ects between di�erent
regions within China, with signi�cant variation in the nature of
the DNS poisoning seen across the country. Similarly, Farnan et al.
[14] showed that the approach taken to DNS poisoning in China
resulted in pollution of both network requests and DNS servers
themselves.

Crandall et al.[7] make use of latent semantic analysis to derive,
from known terms blocked in HTTP tra�c going into China, seman-
tically related keywords that might also be blocked. These derived
keywords can then be veri�ed by the simple process of attempt-
ing to make HTTP connections into China containing the suspect
words. This approach aims to produce a continually-updated list
of blocked terms that could be used to maintain an understand-
ing of those terms most o�ensive to the �ltering authorities. Simi-
larly, Darer et al. [9, 10] have used keyword- and crawling-based
approaches to discover previously unindenti�ed blocked domains.

2.2 Global Studies
Perhaps the most comprehensive study to date of global �ltering
practices is given by Deibert et al. [11]. In this work the authors
carried out a range of remote and in-country analyses over a number
of years, incorporating both technical measurements and interviews
with local experts. The resulting research presented a series of
snapshots of individual countries, with both an overview of the
social, political, and technical landscape, and censorship practices
rated on a simple scale in various categories of content: political,
social, con�ict and security, and internet tools.
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Some forms of �ltering act not at the network layer, but on appli-
cation level or social �ltering. King et al. [21] studied manual cen-
sorship practices in Chinese long-form blogging, and demonstrated
that the Chinese censorship authorities were chie�y concerned
with preventing calls to collective action whilst allowing signi�cant
levels of government criticism.

2.3 Anomaly Detection
The Tor project maintain a censorship �agging tool, as described
by Danezis[8]. This tool uses a particle-�ltering approach to model
the ratio of daily connections for each country in a seven-day time
period. If a country’s ratio of current to past users increases or
decreases signi�cantly more than the average of the �fty largest
Tor-using countries, then an anomaly is �agged. These reported
anomalies are available at the Tor Project’s metrics portal [29]. We
evaluate our approach’s accuracy against that of Danezis in §6.

A related approach was used by Lakhina et al. [22] to identify
network-wide anomalies in high-speed networks. This work as-
sumed that long-term network usage was stable, and made use of
data gathered from a restricted set of link-level observation points
to detect network-wide anomalies. Our approach relaxes both of
these assumptions, neither of which hold for the Tor metrics data.
These extensions are discussed in greater detail in §4.1.2.

Several other works have extended or expanded aspects of [22],
notably [34], [39], and [16]. These largely focus, however, on using
a small number of network observation points to infer network-
wide anomalies, and as such typically begin from relatively low-
dimensional data. Our approach inverts this concept by detecting
per-observation anomalies across a dataset with several hundred
dimensions, representing individual countries’ usage, in order to
highlight states displaying anomalous behaviour.

3 CONCEPTS
In this section we discuss the fundamental techniques underlying
our approach, and discuss their application to the dataset we use in
the rest of this work.

3.1 Tor
Tor [12] is an approach to anonymous web-browsing that o�ers
realistic compromises between latency, usability, and the strength
of the anonymity properties that it provides. The most visible end-
user aspect of Tor is the Tor Browser Bundle, which provides a
web-browser that both uses the Tor network for transport, and is
tailored to reduce identi�ability of end users.

Managed by the Tor Project, Tor has developed into a global net-
work of volunteer-run relays that forward tra�c on behalf of other
users. The network makes use of an onion routing approach that
build encrypted circuits between relays, preventing most realistic
adversaries from linking Tor users to particular streams of tra�c
exiting the network.

The most sigi�cant aspect of the Tor network for the present
work is that, by its nature, users’ tra�c is relayed via third parties.
As such, and in addition to its anonymity properties, Tor provides
a means to bypass many forms of internet �ltering. Censorship
circumvention is a core aspect of the Tor Project’s goals, and sig-
ni�cant ongoing research work[26, 33, 36] is aimed at ensuring

that Tor is resilient against attacks and continues to o�er means to
evade national-level �lters.

While the extent and popularity of Tor’s use in regions that
experience signi�cant levels of �ltering, such as China, is open to
debate [32], Tor is known to have been blocked actively by a number
of states, including China and Iran, that object to its use to bypass
local internet restrictions and to act anonymously. Signi�cantly,
Tor is also arguably the highest-pro�le censorship circumvention
tool at the international level and has received signi�cant media
coverage, making it one of the tools of choice for internet activists.

3.1.1 Tor Metrics Data. Tor’s role as a high-pro�le censorship
circumvention network make it a useful indicator of global �ltering
practices. To support analysis of the tool, the Tor project provide
estimated daily per-country usage statistics, gathered by counting
the number of client requests to central directory authorities on a
daily basis.

It is assumed that each client, on average, will make ten requests
per day, and as such the aggregate user statistics are divided by ten
to provide a �nal estimate of usage. This data is averaged across
each 24-hour period to provide the average number of concurrently
connected Tor clients for that day[30]. Whilst the number of dis-
tinct clients per day cannot be estimated with any accuracy, the
methodology of the Tor metrics portal provides a su�ciently stable
estimate.

From these estimates we obtain a set of 251 time series repre-
senting individual countries according to the GeoIP database used
by Tor. These time series comprise daily observations ranging from
the beginning of September 2011 to the time of writing. From these,
we remove those countries whose Tor usage never rises above 100
users to discount countries whose variance is too high to allow
meaningful anomaly detection.

In later sections, we combine normal usage trends in Tor with
censorship-resistant bridge node usage to identify correlated anom-
alies. This is discussed in further detail in §4.4.

3.2 Principal Component Analysis
Principal component analysis was developed by Pearson[27] as
a means to produce tractable low-dimensional approximations of
high-dimensional datasets. The original set of variables, which may
display correlations, are transformed to a set of linearly uncorre-
lated variables know as principal components.

When data displays a high degree of correlation between vari-
ables then a small number of the most signi�cant principal com-
ponents may be su�cient to describe the original data to a high
degree of accuracy. In many practical scenarios, high dimensional
data can be described using only two or three of the most signif-
icant principal components. See [19] for a detailed treatment of
principal component analysis and the various choices and compro-
mises to be made when applying the technique.

The practical result of this is that our results are not in�uenced
by countries with large usage numbers; the principal component
analysis considers variance, not magnitude, in calculating the con-
tribution of each country to the model.
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4 APPROACH
The basic operation of our approach are described here, and are
given as pseudocode in Algorithm 1.

1 PCATagAnomaly
input :usage← Set of per-country time series
output :anomalies← Set of per-country anomaly time

series
2 (Clean data; remove seasonality)
3 medians ← {median residual errors for each country}
4 mads ← {median absolute deviations (MADs) of

residual errors for each country}
5 foreach day in usage do
6 pc ← calculate principal components over all

countries’ usage[(day-179):day]
7 foreach country do
8 recons ← reconstruct day value for country

using pc[1 : 12]
9 obsv ← observed value for �nal day for country

10 err ← abs( obsv - recons ).
11 medianscountry ← update median using err
12 madscountry ← update MADs using

medianscountry and err
13 if abs(err ) > abs(madscountry × 2.5 ) then
14 anomaliescountry×day ← 1
15 end
16 else
17 anomaliescountry×day ← 0
18 end
19 end
20 end
Algorithm1: Basic anomaly tagging algorithm. (Anomalymag-
nitudes omitted for brevity.)

4.1 Overview
Starting from Tor’s per-country usage data, we initially remove all
countries whose usage never rises above 100 users, to avoid the
unacceptably high variance in such data. We then apply the STL
algorithm to identify and remove any seasonality – in our case
weekly trends – in individual countries.

For each 180-day period in the dataset we apply a principal
component analysis over the usage time series for all countries,
resulting in a set of components for that time window. Taking the
true observed usage for each country for the �nal day of each
window, we calculate the approximated value from the �rst 12
principal components. This provides the expected value for each
country based on previous behaviour1.

For each country we calculate the di�erence between the true
value and the reconstructed value, providing a residual error that
was not captured by the restricted set of principal components.

1Using the full set of principal components at this stage would result in a perfect
reconstruction of the original observed values.

We maintain a rolling calculation of both the median observed
residual error and the median absolute deviation of the errors for
each country. We mark a day as anomalous if the observed resid-
ual error falls outside of 2.5 median absolute deviations from the
median.

We now detail the individual steps listed above, and justify our
choices of parameters.

4.1.1 Removal of Seasonality. Per-country Tor usage data, as
with much network usage data, exhibits signi�cant seasonality,
typically on a weekly basis, re�ecting changes between usage on
weekdays and at weekends. This continual cyclical change in usage
can reduce the accuracy of principal component analysis due to
varying levels of seasonality exhibited by di�erent countries.

We employ the Seasonal and Trend Decomposition using Loess
(STL) method of Cleveland et al. [6] to remove the seasonal compo-
nent of each series, leaving the trend component and the residual
noise as inputs to our anomaly detector. In later sections, however,
we show the original data with seasonality restored.

4.1.2 Rolling Analysis. Principal component analysis does not
account for ordering in observations, and as such cannot account
for evolution of a dataset according to trends or seasonablity. To
account for developing patterns, therefore, we perform a rolling
principal component analysis over smaller time windows within
the series. For the purposes of our experiments, we make use of
a 180-day window as a balance between su�cient data for useful
principal component analysis, given the number of dimension in
the data, against the evolution of the daily Tor metrics. See Ringberg
et al. [31] for a discussion of the sensitivity of PCA to such factors.

4.1.3 Selection of Components. For PCA, the full set of princi-
pal components allows reconstruction of the full data set. As fewer
components are selected, less variance in the original dataset is cap-
tured. A common approach to selecting an appropriate number of
components for modelling is to make use of Kaiser’s criterion [20]
to select only those principal components with eigenvalue greater
than 1, representing those components that provide more infor-
mation than a single average component. Based on this heuristic,
our experimental results suggest twelve principal components as
broadly optimal across the dataset.

With appropriately calculated principal components, we can
reconstruct an approximate value for each day’s Tor usage based
on previous behaviour. We highlight that at no point do we pre-
dict forecasted values for usage in future days. In each case, we
reconstruct a day’s usage based on principal components in order
to compare against the true observed value, and thus to calculate
deviance from prior behaviour relative to other countries.

4.2 Calculation of Residuals
After reconstructing data from principal components, the result is
a set of residuals that express variances in the observed data not
captured by the current principal component model. A su�ciently
large-scale residual represents behaviour that deviates signi�cantly
from previous patterns, and is thus of interest.
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4.3 Identifying Anomalies through Residuals
The residual errors calculated during the reconstruction accounts
for variance in the dataset that is not expressed by the chosen
principle components in the approximate model.
• Positive residuals represent drops in expected Tor usage for
a country.
• Negative residuals represent increases in expected Tor usage
for a country.
• Magnitude of residuals expresses howmuch a country varies
from its previous behaviour relative to other countries.

A key advantage of identifying anomalies from residual errors
rather than raw usage numbers is that it incorporates the expected
trend of the data. This identi�es anomalous periods even when no
visible shift in usage is seen: a �at usage trendwhere the expectation
is a rise or fall is correctly identi�ed as anomalous by our approach.
This capacity to identify anomalies in apparently typical usage is an
important and unusual aspect of our technique, taking advantage
of the relative patterns of usage between countries.

A second advantage of this approach is that each day can be
judged as anomalous or not based on a model of behaviour rela-
tive to other countries. As such, in contrast to many other anomaly
detection approaches, we identify periods of anomalous behaviour
in which a country may be experiencing ongoing elevated or re-
duced usage. Other approaches typically �ag an individual day as a
signi�cant spike or drop, but cannot identify ongoing periods as
anomalous. This capability greatly aids our ability to study time-
bounded changes in Tor usage.

4.4 Combining Features to Identify Targeted
Filtering

It is fundamental to the broader goals of this work that usage anom-
alies in appropriately selected tra�c, and in particular from circum-
vention tools, can be indicative of the imposition or relaxation of
�ltering. At the same time, it is clear that other types of event, both
technical and sociopolitical, can lead to shifting patterns of usage
in these tools.

We aim to identify two forms of event: �rstly, direct blocking
of the Tor network; secondly, changing characteristics of Tor us-
age in response to exogenous factors. The censorship of a major
international website, such as YouTube, has the potential to drive
a noticeable number of users to Tor, and as such Tor becomes a
useful proxy variable [35] for a broader class of �ltering behaviour.
We discuss this in relation to speci�c events in §7.

For the �rst of these classes of event, we detect likely candidates
by carrying out anomaly detection on multiple metrics and combin-
ing outputs to highlight periods in which anomalies were detected
in more than one series. The most useful of these for our purposes
is to combine negative trends in standard Tor usage with positive
trends in blocking-resistant bridge node usage, re�ecting users
unable to access Tor normally switching to the tool’s blocking-
resistant mode.

As suchwe can identify days inwhich both standard and blocking-
resistant time series were anomalous. Even without re�nements,
such as allowing time lags between anomalies in each series, this
approach already highlight a number of signi�cant cases, which
are illustrated in §7.

4.5 Expected Error and Anomalous Threshold
A key element in the approach presented in this work is to deter-
mine an appropriate threshold for events to be considered anoma-
lous. The size of this threshold value is inherently linked to the
expected error in the technique. We here discuss and justify our
approach to calculating this threshold, making use of robust statis-
tics[17] to minimise false detection rates.

A naïve anomalous threshold can be de�ned as a proportion of
the usage for that day. If the reconstructed value deviates by more
than some percentage of the observed value, an anomaly is detected.

This approach is problematic. Critically, di�erent countries may
be modelled more or less accurately than others. As such, countries
that are typically modelled poorly would produce a high proportion
of anomalous periods.

As such, we calculate an ongoing threshold based on the charac-
teristics of each country. By tracking the expected residual value
for each country an expected anomalous threshold can be deter-
mined based on typical observed errors.

The standard approach of basing this threshold on the mean
and standard deviations are, however, not robust against outliers
in the dataset due to their assumption that errors are Gaussian.
We therefore calculate thresholds based on the median absolute
deviation about the median (MAD) to de�ne the expected error in
normal usage [24].

The median is robust against outliers in the dataset; a small num-
ber of extreme events do not signi�cantly alter its value. Similarly,
by taking the median of the absolute deviations about the median
as a measure of the statistical dispersion in the dataset, we avoid
anomalies from overly a�ecting the remaining data points.

As a default, we consider events as anomalous if they fall out-
side of 2.5 median absolute deviations2 from the rolling median
value. See [24] for a discussion of the robustness of the median and
MAD against outliers, and a justi�cation of a 2.5 median absolute
deviation threshold.

4.6 Ranking of Countries
The size of the residual error from the principal componenet anal-
ysis provides a convenient metric by which to rank countries ac-
cording to the level of anomalous behaviour that they exhibit in a
given time period. We make use of the size of the median absolute
deviation about the median to rank countries, as shown in Figure 1.

We now proceed to discuss the application of our technique, and
the validation of the approach.

In §6 we evaluate our approach against synthetically injected
anomalies in the data to analyse the e�ectiveness of our detection
methods as the magnitude and severity of the anomalies vary. We
also compare our detection mechanism against the small number
of veri�ed reported blocking events against the Tor network.

Finally, in §7 we conduct a series of analyses of the Tor metrics
data to identify anomalous countries and speci�c periods of anoma-
lous behaviour.

2Corresponding to roughly one expected false positive every 80 days. See §6 for an
experimental analysis of false positives in our approach.
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Figure 1: Ten most anomalous countries according to me-
dian absolute deviation of residuals over the previous year.
Grey areas highlight detected anomalous periods.

5 ETHICS
Conducting research into network �ltering presents a number of
ethical issues [38]. The most signi�cant of these is that approaches
to investigating network �ltering may require direct access to �l-
tered networks. In practice this often involves the participation of
in-country experts to conduct local network tests.

Due to the uncertain legal, or quasi-legal, status of violating or
investigating state-level network �lters, it is generally impossible to
quantify the risks to research participants in carrying out network
tests. The classic models of informed consent used in many other
�elds of research can be di�cult to apply for a number of reasons,
the most important of which is the lack of meaningful informed
consent a�orded by automated testing on behalf of users, and the
legal uncertainty surrounding attempted access to �ltered resources
on a test subject’s network connection.

We therefore assert that, where possible, research into network
�ltering should make use of passive measurements and existing
available data sources. The work in this paper is a deliberate attempt
to maximise the e�ectiveness of such a passive approach.

6 VALIDATION
In this section, we judge the e�cacy of our method in terms of its
ability to detect anomalies, in a variety of circumstances, as well as
its false classi�cation rate.

A signi�cant di�culty in validating unsupervised machine learn-
ing systems is that it is largely impossible to obtain comprehensive
ground truth for internet �ltering events, nor are there publicly-
available exhaustive lists of �ltering events. Indeed, the work here
was motivated partially in an attempt to allow a more exhaustive

tracking of such events. Filtering is, by and large, an opaque pro-
cess that is rarely announced. Even when states do choose to �lter
connections openly, the details of that �ltering are not typically
made public.

As observed in [15], this is an inherent problem in unsupervised
anomaly detection algorithms. In the the following sections we
address this lack by injecting arti�cial anomalies into a synthetic
dataset and comparing this to the Tor Project’s existing anomaly
detection approach, as well as evaluating our method against an
existing list of known �ltering events.

In the following, we examine both false positive and false nega-
tive rates in evaluating detection rates of anomalous behaviour. A
false positive in this context is a period in which there is no gen-
uinely anomalous activity, but anomalous activity is reported. A
false negative is a period in which there is anomalous activity but
is is not detected.

6.1 Evaluation in Synthetic Data
To test our approach, and to create a fair comparison against the
existing deployed tool from the Tor Project, we inject arti�cial
anomalies into synthetic data generated according to underlying
features of real-world Tor usage.

An alternative test for false negatives is to compare the results
from our approach with an external list of known censorship events.
This allows us to test whether periods exist in which we did not
detect anomalous behaviour during a period where external sources
believe an event occurred. We take this approach in §6.5.

6.2 Generating Synthetic Data
To evaluate our approach against an approximation of real-world
data, we use the underlying features of genuine observed Tor data
to generate a synthetic set of time series.

To do so, we select a year-long period of Tor data in which no
major global events can be observed. This was to avoid an unfair
basis for comparison between our approach and that of the Danezis.
As such, we selected the year running from the 1st January 2014 to
the 31st December 2014.

To remove, as far as possible, genuine anomalies from this dataset
we �rst decompose the series into trend, seasonal, and residual
components through use of the STL algorithm [6]. This allowed
us to preserve seasonal properties of the data separately from the
underlying trend. We emphasise that, whilst STL is also used in our
anomaly detection approach, the application of it here preserves,
rather than removes, the underlying features of the data and thus
is not unfairly biasing the synthetic dataset towards our approach.

The underlying trend data is then smoothed using a 28-day
rolling median average. Due to the robust nature of the median
against small outliers, this approach preserves broad-scale trends in
the data whilst removing, as far as possible, small-scale deviations.
Without an objective labelled set of anomalies we cannot guarantee
that no anomalies were preserved in the �nal dataset, but a visual
inspection did not reveal any signi�cant causes for concern.

We then calculate, for each country, the mean and the standard
deviation of the residual errors after the trend and seasonal compo-
nents have been removed. This gives a base set of parameters from
which to generate random noise to be added to each series.

Session: Flow, Information and News  WebSci’18, May 27-30, 2018, Amsterdam, Netherlands

92



On Identifying Anomalies in Tor Usage with
Applications in Detecting Internet Censorship WebSci ’18, May 27–30, 2018, Amsterdam, Netherlands

To create the �nal synthetic dataset, we recombine the smoothed
underlying trend data with the seasonal component and add ran-
domised noise. As it is impossible to characterise the “true” noise
process without having labelled anomalies we conservatively add
Gaussian noise drawn according to the observed mean and stan-
dard deviation. This provides a “clean” dataset without anomalies,
based on real-world patterns of behaviour.

6.3 Injecting Anomalies
As with the underlying data, we generate anomalies based on prop-
erties observed in real-world data. The strength of the injected
anomalies is based on the average daily users for each country, and
magni�ed upwards or downwards gradually to create the anomaly.

To create an anomaly, the number of users in each set was in-
creased or decreased by 0–100%. Anomalies are added to the data
gradually, ranging over periods from one to four weeks. These pa-
rameters were selected based on observation of known anomalies
and visual inspection of the original dataset.

In total, for the year of synthetic data, we injected a total of 250
anomalies across all countries, randomly drawn from the space of
possible parameters.

This synthetic, labelled dataset provides the basis both for ob-
jective evaluation of the e�ectiveness of our technique, and as an
unbiased means of comparison between our approach and that of
[8]. We now evaluate the e�ectiveness of these two approaches.

6.4 Comparison of Tools
An evaluation of false positive and false negative rates in detect-
ing anomalous periods allows both an objective judgement on the
e�ectiveness of our approach, and a comparison against the exist-
ing tool used by the Tor Project [8]. To carry out this comparison,
we formatted the clean synthetic dataset appropriately for each
tool and compared the detected anomaly series from each to the
injected set of anomalies.

One problematic element of such a comparison is in the nature of
event reporting from each tool. As mentioned, our approach reports
day-by-day anomalies based on principal component modelling. By
comparison, [8] bases its detection on signi�cant spikes and dips
on a day-by-day basis. As such, it is far less likely that Tor Project’s
existing tool will report anomalous periods, but will instead detect
only the points at at which an anomaly starts and ends. This should
hypothetically result in a much higher detection accuracy rate for
our tool on a day-by-day comparison: an anomaly that lasts for
ten days will typically only produce two anomalously �agged days
in the Tor Project’s detection scheme, whereas it may result in
ten days for our tool as each day in the anomalous period may be
identi�ed. By contrast, however, our tool’s approach leaves us open
to a potentially higher false negative rate when a period is falsely
judged to be anomalous.

We highlight again, however, that this period-based rather than
event-based approach is one of the key strengths of our improved
approach – we report entire periods as anomalous rather than
simply identifying point anomalies.

As such, to compare, we perform a simple analysis: the output of
each tool is evaluated according to the ground truth in the labelled
synthetic dataset. Days correctly identi�ed as anomalous contribute

Tor Metrics Principal Component
True Positives 8.57% 20.08%
True Negatives 92.75% 94.25%
False Positives 7.25% 5.75%
False Negatives 91.43% 79.92%

Total Days Flagged 2962 2820
Minimal Detection Total1 88 139

Total anomalous days across entire set was 4214.
1 Anomalies during which at least one day was identi�ed.

Table 1: Comparison between Tor Metrics and Principal
Component approach on synthetic data.

to the true positive rate, whilst days marked as anomalous that
are not in the synthetic data contribute to the false positive rate.
Similarly, if a day is anomalous in the synthetic data and missed
by our tool, it contributes to the false negative rate, whilst days
correctly identi�ed as not anomalous contribute to the true negative
rate. These values are reported in Table 1.

Our principal component-based approach signi�cantly outper-
forms the currently deployed Tor Metrics detector both in marking
genuine anomalies and in avoiding marking non-anomalous days
incorrectly.

The overall detection rate of our approach is over twice that of
the alternative, at 20% of all genuinely anomalous days being iden-
ti�ed. This �gure is somewhat misleadingly low, however, as this
includes many correctly-identi�ed anomalous periods for which,
however, some individual days were not themselves considered
anomalous.

These results suggest that in realistic data generated from ob-
served real-world trends, the proposed principal component analysis-
based approach signi�cantly outperforms the existing deployed
tool.

6.4.1 Ranking. We have attempted, as far as possible, to under-
take a fair comparison of the quantitatively comparable elements
of these two approaches, despite signi�cant di�erences in their
output. In addition, however, our approach o�ers a number of ad-
vantages for analysis. The most signi�cant of these is the ability
to rank countries according to the strength of the anomalies they
have demonstrated over time in terms of deviation from expected
behaviour. The infolabe-anomalies mailing list reports daily the
top-ranking anomalous countries for the previous day, week, and
month in addition to a list of all countries anomalous for that day.

It is worth highlighting that whilst realtime detection is of great
interest to the commmunity, the ability to study historical anomalies
in the Tor metrics dataset is also of signi�cant value.

6.5 Detection of Known Events
Having calculated anomalous statistics over a synthetic data set,
we now aim to validate our approach by comparing anomalies de-
tected in real data against countries and periods in which internet
restrictions are known to have been applied, or in which signi�cant
events were occurring that may have in�uenced usage of circum-
vention tools.
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Date Country Description of Event
2012-10-18 Iran TLS key exchange DPI1.
2012-12-16 Syria DPI on TLS renegotiation.
2013-01-30 Japan Bridge blocked.
2013-03-09 Iran SSL handshake �ltered.
2013-03-26 China Probing obfs2 bridges.
2014-03-28 Turkey Tor website blocked.
2014-07-29 Iran Block directory authorities.
2015-02-01 China Obfs4 bridges blocked.
1 See §6.5 for a discussion of this particular anomaly.

Table 2: Complete list of reported, and detected, Tor block-
ing events.

For this purpose we use [1], a list of reported and veri�ed �ltering
events against the Tor network dating from 2008 to 2015. This list
includes a brief description of each reported event, the dates when
the event was �rst reported, and how the blocking was resolved.

The list of events used in this evaluation[1]was compiled through
bug reports, talks, examination of blog postings, and the use of
machine learning on blog postings to identify reports of censorship
automatically. As such, the exact timing of the events is somewhat
fuzzy; a blocking event against Tor could have occurred some time
before bug reports and blog postings were �led.

In addition, [1] is unfortunately brief, re�ecting a signi�cant lack
of data available concerning this topic. As discussed, a motivation
for this work is to provide a baseline of reliable indicators to allow
for potentially censorship-related anomalies to be identi�ed and
investigated more thoroughly.

The Tor Project’s metrics data does not cover the full time range
of the events listed in [1]. For those events that do fall within the
available data, we analyse here whether these would be detected
by our approach.

As shown in Table 2, only eight reported events coincide with
the available published metrics data. Of these, our approach suc-
cessfully classi�es all events as anomalous3. In all cases except the
Iranian DPI �ltering on TLS that occurred in 2012, our anomalies
coincide with the reported event from [1]. In the case of Iran in
2012, we detect an anomalous period beginning two weeks before
the reported event, corresponding to an immediate sharp fall in
Tor usage, followed by a longer period of slow decline over the
following month.

6.6 Recent Events
We have, in the course of investigating Tor metrics data with the
tool detailed in this work, discovered and reported a number of sig-
ni�cant Tor usage anomalies in countries including Ukraine, Israel,
Bangladesh, UAE, and Turkmenistan. In some of these cases anom-
alies are due to �ltering behaviour, such as Bangladesh’s blocking
of Facebook and chat applications in November 2015. In other cases
the anomalies are due to external factors such as Ukraine’s block-
ing of the popular Russian social networking site VKontakte in

3Two events corresponded to direct blocking of Tor bridge nodes, and these were
identi�ed as anomalous in the bridge usage statistics. All other anomalies were detected
in normal Tor usage.

Figure 2: Combined relay and bridge Tor usage anomalies.

May 2017 [25] that led to a large spike in circumvention tool usage.
Numerous other events have been detected, but space limitations
prevent signi�cant discussion of individual cases.

7 EXAMPLE RESULTS
Due to space constraints, we will not discuss speci�c cases in detail.
This section shows a number of example outputs that highlight
detected anomalies. As far as possible, we have extended the range
of time shown in each plot to highlight that detected anomalies are
not a frequent occurrence.

7.1 Most Anomalous Countries
Figure 1 illustrates the ten most anomalous countries according to
their median absolute deviation from the median in the past year.
Shaded regions denote periods of anomalous usage, according to
our tool.

7.2 Combined Tor Metric Anomalies
Figure 2 highlights example combined anomalies that demonstrate
periods in which Tor usage via normal relays and access via bridge
nodes experienced simultaneous but opposing anomalies.

Over the period included in the available Tor metrics data, which
covers late 2011 until the time of writing, our technique identi�ed
485 anomalous periods in which both Tor usage and bridge usage
were jointly anomalous, across 102 countries out of the total 251
for which Tor assigns usage statistics. This number is somewhat
in�ated due to the fact that a number of these anomalous periods
are separated only by a small number of days and are likely the
result of the same event.

Of these countries, Georgia had the highest number of combined
detected anomalies, with 16 anomalous periods identi�ed since
2011. The median number of anomalous periods over the set of
all 102 countries that showed any anomalous behaviour was four.
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Figure 3: Anomalous usage following Ukraine’s ban on ma-
jor Russian network services.

It is possible that this number may increase if the combination
of anomalous periods is made more �exible, as discussed in §4.4,
however this demonstrates that events that exceed the threshold
for combined anomalies are relatively rare.

7.3 Ukraine Russian Service Ban
In early May 2017 the Ukrainian government blocked a number
of major Russian online services, used by a signi�cant number
of Ukrainian citizens, including social network sites VKontakte
and Odnoklassniki, mail provider mail.ru, and Yandex, a major
search engine[25]. Figure 3 shows a strong surge in Tor usage
in the immediate aftermath of this, causing Ukraine to rise to the
top of the daily anomaly rankings on the <name-redacted> mailing
list. This example represents a signi�cant anomaly in Tor usage
related to blocking of standard internet services beyond Tor, and is
in direct comparison to the Turkmenistan example of Figure 2 that
highlights blocking of the Tor network itself.

8 DISCUSSION
The validation and results of §6 and §7 demonstrate that our ap-
proach is practically useful for identifying both Tor blocking and,
more generally, for identifying periods of anomalous Tor usage. The
highlighted anomalies detected by our approach are strong indica-
tors of regions of likely interest to the internet �ltering research
and activist communities, and in particular in the combination of
normal Tor and bridge node usage.

More directly, the experimental validation in the previous section
demonstrates that our approach does detect a signi�cant number
of anomalies with varying magnitudes and durations.

9 FUTUREWORK
A main aspect of future work, for which these techniques were de-
veloped, will be to perform analysis on historical �ltering behaviour
and to maintain an ongoing watch for new potential �ltering events.
By combination with datasets such as Google’s Global Database of
Events, Language, and Tone (GDELT) [23], and through collabo-
ration with researchers and activists, the authors hope to develop
and maintain a contextualised time series of per-country �ltering
events for the bene�t of future researchers.

Whilst the work presented here has focused on the application
of our technique to Tor metrics data, the method is more generally
applicable. Applying the techniques presented here to other data

sources is the most obvious direct extension to this work. We have
made preliminary analyses based on data from Psiphon, CAIDA,
Measurement Lab [13], and the Wikimedia Foundation, as well as
evaluating data from the OONI Project [28] for its applicability in
detecting �ltering. Other data sources, such as social media, are
also likely candidates for analysis.

Given the results of combining multiple Tor metrics, an interest-
ing line of enquiry would be to investigate the speed with which
users respond to �ltering of Tor by adopting bridge nodes, and to
understand the proportion of users that make this change. As more
data sources are combined, further analysis of �ltering’s e�ects in
di�erent countries and under di�erent conditions becomes possible.

10 CONCLUSIONS
We have developed a principal component analysis-based multi-
variate anomaly detection system to detect anomalous periods in
per-country usage statistics of Tor metrics data. Our approach al-
lows detection of per-country anomalies in time series that are
non-stationary and that demonstrate signi�cant seasonality. Our
approach discounts global trends and even large-scale global events
by considering individual countries’ usage patterns as relative to
that of others.

We have demonstrated the application of this tool to data from
the Tor Project’s metrics portal, showing that it provides a means
to indicate potential censorship-related events, and others, at the
global level. We have further shown that combining multiple met-
rics to identify jointly-anomalous periods can greatly improve the
usefulness of the detected anomalies for identifying periods of di-
rect blocking of Tor.

This work presents a generally applicable tool for detecting a
broad class of internet �ltering events on a global scale, without the
need to focus on individual countries, and that dynamically adapts
to changing patterns of usage. Countries exhibiting anomalous
behaviour are automatically identi�ed, and can be subjected to
further, more targeted, investigation.

We have validated our approach both by evaluating detection
rates of injected anomalies in a synthetically-generated time series,
and demonstrated that our detection rates are signi�cantly higher
than those used in the existing anomaly detector used by the Tor
project. Additionally, our tool provides useful ranking of anomalies
according to strength, as well as highlighting anomalous periods
rather than single-day events.

We have further evaluated our tool by successfully comparing
detected anomalous periods with an external list of known Tor
blocking events. This evaluation successfully identi�ed each re-
ported blocking event, supporting the tool’s practical e�ectiveness
in detecting real-world anomalies.

Using our approach, we have demonstrated that combining
anomalies detected in multiple metrics can be an e�ective means
to identify more targeted forms of anomaly that indicate �ltering
behaviour. Our initial combination of opposite-signed normal Tor
usage and bridge node usage anomalies is a key step, but there are
other behaviours that could be of speci�c interest; there is also sig-
ni�cant potential for further combination with metrics from other
tools and data sources.
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Beyond the technique itself, the analyses presented in this work
have identi�ed several states that are known to engage in active
�ltering, but have also highlighted patterns of anomalous behaviour
in several states that have not received signi�cant attention from the
internet censorship research community. Conducting more detailed
investigations of these countries is a promising focus for future
research.

Our anomaly detection tool is running actively on a nightly basis,
with results output to a dedicated anomaly mailing list. This list
has an audience amongst NGOs and research projects working in
the �eld of investigating �ltering and circumventing censorship,
and has seen active use in detecting emerging real-world �ltering
events.

In addition to the underlying technique and tool developed to
detect anomalous periods of behaviour, we have suggested, and pro-
vided initial evidence, that the use of the Tor metrics data, amongst
other sources, is of use not only as an indicator of its own usage
patterns, but as a practical proxy variable for a much wider class
of political and social events. This presents signi�cant potential
for researchers, policy makers, and activists investigating global
freedom of expression.
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