
Identifying VPN Servers through Graph-Represented Behaviors
Chenxu Wang

Institute of Information Engineering,
Chinese Academy of Sciences

School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China

Jiangyi Yin∗
Institute of Information Engineering,

Chinese Academy of Sciences
School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China

Zhao Li
Institute of Information Engineering,

Chinese Academy of Sciences
Beijing, China

Hongbo Xu
Institute of Information Engineering,

Chinese Academy of Sciences
School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China

Zhongyi Zhang
Institute of Information Engineering,

Chinese Academy of Sciences
School of Cyber Security, University
of Chinese Academy of Sciences

Beijing, China

Qingyun Liu
Institute of Information Engineering,

Chinese Academy of Sciences
Beijing, China

ABSTRACT
Identifying VPN servers is a crucial task in various situations, such
as geo-fraud detection, bot traffic analysis and network attack iden-
tification. Although numerous studies that focus on network traffic
detection have achieved excellent performance in closed-world sce-
narios, particularly those methods based on deep learning, they
may exhibit significant performance degradation due to changes
in network environment. To mitigate this issue, a few studies have
attempted to use methods based on active probing to detect VPN
servers. However, these methods still have two limitations. They
cannot handle situations without probing responses and are limited
in applicability due to their focus on specific VPNs. In this work,
we propose VPNChecker, which utilizes the graph-represented be-
haviors to detect VPN servers in real-world scenarios. VPNChecker
outperforms existing methods in four offline datasets. The results
from our datasets, containing multiple different VPNs, indicate that
VPNChecker has better applicability. Furthermore, we deploy VP-
NChecker in an Internet Service Provider’s (ISP) environment to
evaluate its effectiveness. The results show that VPNChecker can
improve the coverage of sophisticated detection engines and serve
as a complement to existing methods.

CCS CONCEPTS
• Security and privacy; • Network security; • Security proto-
cols;

KEYWORDS
VPN Server Detection, Active Probing, Node Classification

∗Corresponding author, yinjiangyi@iie.ac.cn

This work is licensed under a Creative Commons Attribution
International 4.0 License.

WWW ’24, May 13–17, 2024, Singapore, Singapore
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0171-9/24/05.
https://doi.org/10.1145/3589334.3645552

ACM Reference Format:
ChenxuWang, Jiangyi Yin, Zhao Li, HongboXu, Zhongyi Zhang, andQingyun
Liu. 2024. Identifying VPN Servers through Graph-Represented Behav-
iors. In Proceedings of the ACM Web Conference 2024 (WWW ’24), May
13–17, 2024, Singapore, Singapore. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3589334.3645552

1 INTRODUCTION
Due to the growing demand for privacy protection, VPN have
become increasingly popular tool [9]. Specifically, VPN can encrypt
clients’ network traffic and even hide clients’ identities to ensure
communication security. However, VPN may also be exploited to
conduct geo-fraud, network attacks, malicious crawling, among
other abusive situations [16, 17, 35, 38]. For example, a website
may identify an incoming IP address as located in Los Angeles,
while the client behind this IP may actually be located in New
York. Many websites (e.g., Netflix, ChatGPT) restrict incoming IPs
to protect their commercial interests. Nevertheless, VPN can help
clients bypass these copyright protection strategies. Consequently,
detecting VPN servers to prevent abusive activities is necessary.

In the field of VPN servers detection, much research focuses
on network traffic detection [45, 50, 51]. Benefiting from advances
in artificial intelligence technology, many researchers utilize ma-
chine learning and deep learning algorithms to identify anonymous
servers from network traffic. In particular, those deep learning-
based methods exhibit high performance in lab environments. How-
ever, Xie et al. [44] demonstrate that many deep learning-based
methods might exhibit significant performance degradation when
the network environment differs from the training scenarios. Their
experiments indicate that some methods achieve an F1-score higher
than 0.99 in the training environment, but the F1-score can fall be-
low 0.40 in other testing situations. The sophisticated real-world
network environment [5, 30, 34, 48, 49] may contain packet loss,
network delay, partial network failures, and network updates. All
of these network phenomena could alter traffic features, resulting
in performance degradation for these traffic-based methods. The
significant performance loss caused by the network environment
inspires us to explore a method that does not rely on any network
traffic payload information.

1790

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3589334.3645552
https://doi.org/10.1145/3589334.3645552
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3589334.3645552&domain=pdf&date_stamp=2024-05-13

WWW ’24, May 13–17, 2024, Singapore, Singapore Chenxu Wang et al.

Figure 1: Active Probing Illustration

Recently, several works [12, 27, 47] have begun to detect VPN
servers based on active probing, which is unaffected by the testing
network environment. Specifically, researchers send probes to a
target server and determine whether it is a VPN server based on the
response information. Owing to different configuration strategies,
responses from VPN servers and normal servers may be different.
For instance, a normal server might return error information and
close the connection after receiving an unexpected request packet,
while VPN servers may remain silent until timeout, as shown in
Figure 1. While previous methods based on active probing have
promoted the development of VPN servers detection, they still
exhibit two critical limitations: i) We discover that 16.44% of servers
in our dataset do not respond with any information, and previous
works cannot handle this situation. ii) They only focus on certain
specific VPNs, which may lead to performance degradation when
their methods are applied to other VPNs.

To overcome these limitations, we utilize graph-represented be-
haviors to detect VPN servers. Our design is based on the following
considerations: i) Compared to VPN servers, normal servers are
accessed by numerous clients and typically exhibit a more sophis-
ticated connection relationship. We construct a communication
graph to capture servers’ connection behaviors. This graph relies
on communication information and can detect VPN servers that
lack probing response information. ii) A client might access multi-
ple VPN servers in a short time, and these servers may share the
same configuration strategy and show similar probing responses.
We construct a probing graph based on this phenomenon and uti-
lize some new features related to probing response behaviors to
capture the general characteristics of VPN servers and enhance the
method’s detection ability.

Experimental results on four offline datasets demonstrate that
our method achieves state-of-the-art (SOTA) performance. Our
VPN datasets include at least 43 VPNs, and experimental results
show that our method has better applicability. This paper aims to
detect VPN servers in a real-world context. Therefore, we deploy
our model in an ISP’s environment and compare it with industrial
detection engines. The results show that our model can assist these
engines in identifying VPN servers.

In summary, the contributions of this work are:
New Paradigm: To the best of our knowledge, we are the first

to combine the features of active probing and node communication
relationship to detect VPN servers, offering a unique perspective
on VPN server detection.

New Technique: We present VPNChecker, which detects VPN
servers using graph-represented behaviors. VPNChecker not only

exhibits better applicability but also outperforms previous methods
and can enhance the coverage of sophisticated detection engines.

New Observation:We display some new observations regard-
ing VPN servers, such as ‘Stealth Ports’. Based on these observa-
tions, we introduce several new features, including response types
and port distribution, which can assist the security community in
identifying abused VPN servers.

Ethics and Privacy: The offline dataset in this paper is derived
from the real world. To mitigate potential privacy and ethical risks,
our ISP partner anonymizes all client IPs and provides us only with
traffic logs, including ports, IPs, and domains. While it’s true that
any detection technology harbors the potential for misuse, the inno-
vations detailed in this paper can also help the privacy community
better understand network behaviors, thereby empowering efforts
to safeguard user data against breaches. Any data we obtain from
the detection engine is only used for evaluation purposes. Given
our limited dataset, the result may not fully represent the actual
capabilities of these detection engines, and our purpose is not to
distinguish which is the best.

2 BACKGROUND
VPN Communication Behaviors: During the VPN communica-
tion process, a VPN client typically exhibits the following behaviors:
i) Authentication: The client might need to send login information
to the server for authentication, especially when utilizing com-
mercial VPNs, such as TorGuard. ii) Fast-connection: To optimize
network performance, the VPN client may attempt to connect to
several servers across various locations and select the one with
the shortest response time. Subsequently, the VPN client estab-
lishes a secure communication tunnel with the selected server. iii)
Keep-Alive: To prevent traffic leakage [31], the VPN client may
continuously send packets to ensure that the server remains active.
Consequently, when communicating via the VPN tunnel, clients
may connect to multiple VPN servers. These VPN servers might
belong to the same vendor and share configuration strategies.
Probing Response Behaviors: Active probing [27] is commonly
utilized to identify VPN servers. VPN servers usually exhibit one of
three response behaviors after receiving probes: i) Keep Silent: If the
request lacks authentication information, the VPN server remains
silent and does not respond with any content [12]. ii) Expected
Response: The server replies with content that matches the standard
protocol. For instance, when researchers send an OpenVPN request
to a server and receive a byte sequence that matches the response
format [26], they can infer that this server is an OpenVPN server. iii)
Unexpected Response: The server returns various error messages,
non-standard protocol responses.

3 DESIGN OF VPNCHECKER
3.1 High Level Description of VPNChecker
VPNChecker is designed to identify VPN servers in real-world
scenarios, which are more sophisticated than a lab environment.
Given a detection time window 𝑡 , we use 𝑠𝑡(𝑖,∗) to represent the
set of servers accessed by client 𝑖 . There are 𝑛 clients who access
servers within a time window of 𝑡 . VPNChecker aims to identify

1791

Identifying VPN Servers through Graph-Represented Behaviors WWW ’24, May 13–17, 2024, Singapore, Singapore

Figure 2: VPNChecker Model Architecture

Figure 3: Motivation of Probing Graph (S means server)

VPN servers from this set 𝑆 .

𝑆 =
∑𝑛
𝑖 𝑠

𝑡
(𝑖, 𝑣𝑝𝑛 𝑠𝑒𝑟𝑣𝑒𝑟𝑠) ∪

∑𝑛
𝑖 𝑠

𝑡
(𝑖, 𝑛𝑜𝑟𝑚𝑎𝑙 𝑠𝑒𝑟𝑣𝑒𝑟𝑠) (|𝑠

𝑡
(𝑖,∗) | >= 0) (1)

We observe that the VPN servers’ probing information and com-
munication relationship may differ from that of normal servers.
For instance, normal servers might respond with error messages
after receiving a TCP probe with a random payload. However, VPN
servers might directly close the connection. In terms of communica-
tion relationship, normal servers are typically accessed by a myriad
of clients, leading to more sophisticated connection relationships
compared to VPN servers. Therefore, we utilize both the probing
graph and the communication graph to capture these features and
detect VPN servers.

The architecture of VPNChecker is depicted in Figure 2. We
firstly construct the probing and communication graphs, embed-
ding relevant information within their nodes. Subsequently, we
encode each graph, concatenate their features, and use a classifier
to identify the VPN servers. Finally, we deploy our system in the
real world.

3.2 Probing Graph Construction
Port is widely used to reveal the services supported by servers.
Given a detection time window 𝑡 , we refer to the ports used by each
server in a client’s access server sequence as an𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 , as
illustrated in Figure 3. Servers might provide various services using
different ports. However, the clients’ server access sequences only
show partial ports of a server, so collecting only the ports from the
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 might lose some information. To this end, we con-
duct port scanning for each server to supplement more information.
Specifically, we send TCP SYN and UDP packets to each server,
which is a common method [26]. If we receive any TCP or UDP

response, we determine that the port is open. We refer to the ports
obtained from active probing as the 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛.

Contrary to our intuition, the probing port combination of many
VPN servers is not random. We assume that if a port combination
appears fewer than 10 times, it may be random. Such combinations
account for only 18.47% of the total. Furthermore, we discover that
servers belonging to the same vendor may have similar probing
port combinations. This might be because servers from the same
provider often share a deployment strategy. For example, Psiphon3
servers typically use the probing port combination {443, 53, 22},
{443, 554, 22}, and so on. For more details, please refer to Appendix
A. This phenomenon inspires us to construct a graph using this
similarity.

Given the time window 𝑡 , we assume that the server 𝑠 𝑗 and
𝑠𝑘 in the set 𝑠𝑡(𝑖,∗) use similar probing port combination P(𝑠 𝑗)
and P(𝑠𝑘), indicating they offer similar services. This similarity
𝜁 is computed by using formula J . We use PG𝑡 to describe this
relationship, where E𝑡 and D𝑡 represent the edge and node sets,
respectively, and N(𝑚) signifies the set of nodes that connect to
node𝑚. Please note that not every server has a connected node.
To facilitate subsequent computations, we add self-loops for such
isolated nodes. The node features of this graph are mainly derived
from the active probing, therefore we refer to PG𝑡 as the probing
graph.

J (P(𝑠 𝑗) , P(𝑠𝑘)) =
|P(𝑠 𝑗) | ∩ |P(𝑠𝑘) |
|P(𝑠 𝑗) | ∪ |P(𝑠𝑘) |

(2)

E𝑡
𝑖 =

{
(𝑠 𝑗 , 𝑠𝑘) | 𝑠 𝑗 , 𝑠𝑘 ∈ 𝑠𝑡(𝑖,∗) 𝑎𝑛𝑑 J (P(𝑠 𝑗) , P(𝑠𝑘)) >= 𝜁

}
(3)

E𝑡 =
⋃𝑛

𝑖=1 E𝑡
𝑖

D𝑡 =
⋃𝑛

𝑖=1 𝑠
𝑡
(𝑖,∗) (4)

E𝑠𝑒𝑙 𝑓 −𝑙𝑜𝑜𝑝 =
{
(𝑚, 𝑚) |𝑚 ∈ D𝑡 𝑎𝑛𝑑 𝑚 ∉ N(𝑚)

}
(5)

PG𝑡 = < D𝑡 , E𝑡 ∪ E𝑠𝑒𝑙 𝑓 −𝑙𝑜𝑜𝑝 > (6)
Our probes include application layer probes and transport layer

probes. From the application layer probes, we extract features re-
lated to response types. Based on the transport layer probes, we
derive features concerning response time, response length, termi-
nation state, and port distribution.
Application Layer Probes: Application layer probes include both
traditional VPN protocol probes and popular protocol probes. Our
design is based on the following observation: i) Many VPN servers
still utilize traditional protocols [27], such as PPTP, IPSec, SSTP,
and OpenVPN. In our dataset, at least 27.15% of VPN servers deploy

1792

WWW ’24, May 13–17, 2024, Singapore, Singapore Chenxu Wang et al.

these traditional VPN protocols. Consequently, we believe that
traditional VPN protocols probes can help us discover VPN servers.
ii) To bypass detection, many VPN servers disguise their traffic to
popular protocols and use the standard ports [32, 36, 40].

Specifically, our traditional VPN protocol probes and popular
protocol probes encompass SSTP, IPSec, OpenVPN, PPTP, FTP, SSH,
DNS, HTTP and TLS. We employ these probes to obtain response
types for each server. To accelerate probing speed, all of application
layer probes are sent to standard ports only. An overview of probe
content is shown in Table 1. The response types reveal not only
whether the server supports the corresponding protocol but also
the server’s deployment strategy. Below are two examples of our
probes and we refer interested readers to [3] for more details.

OpenVPN (TCP) Response Type: We send a TCP packet con-
taining \x38{8}\x00\x00\x00\x00 to a target server. If the server
respondswith \x00{1}\x40{*}\x00\x00\x00\x00, it strongly sug-
gests that the server is running an OpenVPN service [27] since this
response content matches the standard OpenVPN format. We set
this response type as RT𝑜 = 1 (𝑜 means OpenVPN). Previous works
[12, 47] have shown that VPN servers may employ configurations
to bypass probing attempts. We observe that VPN servers might
have the following response types after they receiving an OpenVPN
probe: i) The server directly rejects the TCP connection, indicated
by RT𝑜 = 2. ii) The server remains silent until a timeout occurs,
which is represented as RT𝑜 = 3. iii) The server responds with
an empty packet after establishing a TCP connection, denoted by
RT𝑜 = 4. We observe that while many servers utilize port 1194
for communication in the real world, only 3.76% of those return
a standard OpenVPN protocol response. This suggests that many
VPN servers adopt probe-resistant strategies. Therefore, a detailed
analysis of response type is necessary. All of these response types
enable us to understand the server in greater detail than simply
focusing on whether a response is received.

Although popular probing tools like Nmap are also capable of
probing VPN protocols, existing research [21, 24] suggest that
servers might filter their probes due to exposed probing finger-
prints. Therefore, we design probes using a public Python library
[11] instead of using existing probing tools. Our probing result
indicates that our VPN protocol probes have a response success
rate about twice that of Nmap.

DNS Response Type: The DNS protocol allows clients to assign
a DNS resolver to query the IP addresses of domains. We consider
that the response behaviors of VPN servers, which mimic DNS traf-
fic and use port 53, may differ from normal servers. To distinguish
between VPN and normal servers, we assign the target server as a
DNS resolver and send a DNS query about google.com (a common
test domain). The response types of servers include: i) The server
answers with the IPs of google.com, indicating it is a DNS server,
denoted as RT𝑑 = 1 (𝑑 means DNS). ii) The server responds with
All nameservers failed to answer, represented as RT𝑑 = 2.
Our intuition is that google.com, being one of the most globally
popular domains, is likely cached in a DNS resolver. We discover
that 34.24% of responsive VPN servers fail to answer, while only
18.89% of responsive normal servers provide that response. This dif-
ference can help us detect VPN servers. iii) The server does not reply
with any response until a timeout occurs, referred to as RT𝑑 = 3.

All of these response types can reveal a server’s configuration for
port 53.

In general, we utilize these application layer probes to gather
response type features for each target server. These features can
disclose server configurations and aid us in detecting VPN servers.

Table 1: Summary of Application Layer Probes

Name UDP/TCP Probe Content Port
SSTP TCP \x53\x53\x54\x50\x5F... 443
IPSec UDP {8}\x01\x10... 500
OpenVPN TCP&UDP \x38{8}\x00\x00\x00\x00 1194
PPTP TCP \x00\x9c\{6}\x00\x01... 1723
FTP TCP Python TCP Connection 21
SSH TCP Python TCP Connection 22
DNS UDP Query google.com 53
HTTP TCP GET / HTTP/1.1\r\n... 80
TLS TCP Python SSL Connection 443

Transport Layer Probes: The transport layer probes encompass
both TCP and UDP probes. We extract the features of response time,
response length, termination state and port distribution based on
these probes.

Response Time and Length: As defined earlier, refer to the
ports observed in the ISP’s environment as 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 . We
probe each 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡 using TCP and UDP probes with 1500
bytes (standard Maximum Transmission Unit (MTU)) to collect
the total packet length (PL), packet count (PC) and time dura-
tion (DT , calculated as the difference between the last and first
response times). To accelerate the probing process, we set the max-
imum timeout period to 300 seconds. For servers with multiple
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 , we select results that exhibit the maximum values
for PL, PC and DT . We observe that these features may differ
between VPN and normal servers. For instance, VPN servers prefer
to reply with a longer response time and a shorter response packet
after receiving a TCP probe, as shown in Figure 4 and Figure 5. We
believe this may be a strategy for VPN to reduce the exposure risk.

Figure 4: Response Length Figure 5: Response Time

Termination State: TCP servers might terminate a connection
if they receive bytes that cannot be parsed. Previous research [12]
has indicated that receiving bytes beyond a certain threshold can
lead a server to send a FIN packet, while a Linux server that closes
a TCP connection with unread bytes in its buffer might trigger
an RST packet. The RST/FIN threshold represents the minimum
byte count that triggers an RST/FIN packet. Existing work [47] has
shown that the RST threshold distribution differs between VPN

1793

Identifying VPN Servers through Graph-Represented Behaviors WWW ’24, May 13–17, 2024, Singapore, Singapore

and normal servers. Therefore, while some servers might close the
connection and not respond with content to avoid discovery, their
termination behavior can also be utilized to detect VPN servers.

We consider that the RST/FIN threshold is influenced by a server’s
configuration strategy. Drawing from prior works [7, 12, 47], we uti-
lize the RST and FIN thresholds as features to detect VPN servers.
We randomly send TCP probes to estimate these thresholds for
each server. We assume the value of RST/FIN threshold is smaller
than the standard MTU. Notably, while the MTU is 1500 bytes,
sending 1500 probes is unnecessary. We can use the binary search
method to optimize probing. The scope of our probe ports contains
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 and the ports enumerated in Table 1. To ensure
consistent feature dimensions and facilitate subsequent calcula-
tions, for servers with multiple 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 entries, we select
one with the smallest RST/FIN threshold. If this port matches the
ports in Table 1, we also record its value.

Port Distribution: We perform port scanning for every server
and refer to the ports obtained by probing as 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡𝑠 . We
discover that servers may use multiple ports to communicate with
clients in the ISP’s environment. However, some of these ports do
not respond to any message after receiving our probe, not even
with a message to close the connection. We compute the difference
in ports (DP, DP = 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 − 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡𝑠) to describe
this phenomenon, which we refer to as ‘Stealth Ports’. In other
words,DP means the ports provide service for clients but prohibits
probing. In our dataset, the average length DP of VPN servers is
about 2.5 times that of normal servers. This difference may be due
to some VPN servers adopting a more strict probe-resistant strategy.
Additionally, we also compute the number of |𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 | and
|𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 ∪𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡𝑠 | as features to detect VPN servers.

The port distribution sequence of server may reveal the services
supported by the server. Our dataset indicates that approximately
90% of servers utilize fewer than 35 ports. Therefore, such sparse
distribution (35/65535) poses a challenge to feature representation.
We design the following formula to compress the port distribution
into a 10-dimensional feature vectorV . The intention of this for-
mula is to retain some information about the server’s port patterns
while compressing the features. Where 𝐼 is an indicator function,
𝑝 𝑗 is port 𝑗 from 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 ∪ 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡𝑠 . The indicator
function takes the value 1 when two ports are the same and 0 when
they are different.

V = V0 ⊕ V1 ⊕ ... ⊕ V9 (7)

V𝑖 =

𝑚∑︁
𝑗=1

I(𝑝 𝑗 𝑚𝑜𝑑 10, 𝑖) (8)

Generally, we obtain features derived from response types, re-
sponse time, response length, termination state, and port distribu-
tion for every server using the aforementioned method. As defined
earlier, the probing graph is referred to as PG𝑡 . Given the PG𝑡 ,
we utilize the aforementioned features as initial node features F𝑟 .
Subsequently, we use GraphSAGE M to refine these node features
through neighbor feature aggregation and use the 𝑙𝑠𝑡𝑚 as the ag-
gregation function. The final featuresA𝑟 (𝑢) for each node 𝑢 in this
graph are as follows:

A𝑟 (𝑢) = M𝑙𝑠𝑡𝑚 (F𝑟 (𝑢),H𝑟 (𝑢)) (9)

Where F𝑟 (𝑢) represents the initial features of 𝑢 andH𝑟 (𝑢) repre-
sents the neighbors’ features of node𝑢. As the neighboring nodes in
this graph provide similar services, we consider that the aggregation
operation can enhance the feature representation.

3.3 Communication Graph Construction
We gather client IPs, server IPs, and ports from the ISP’s environ-
ment. Additionally, we collect the domains of each server from its
Pointer Record (PTR) and the certificate’s Common Name (CN).
These domains have been frequently utilized in server analysis. For
each server, we query their certificate from port 443 and 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
𝑃𝑜𝑟𝑡𝑠 . We note that despite the certificate being defaultly deployed
on port 443, about 18.40% of certificates are deployed on other ports.
Therefore, it is necessary to consider the 𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑃𝑜𝑟𝑡𝑠 . Given
an observation time window 𝑡 , we construct a graph CG𝑡 to de-
scribe the communication relationships among servers. Where L𝑖

represents a node of client IP, server IP, and domain, ℎ denotes the
number of nodes, and R(L𝑖) signifies the edges between node L𝑖

and others. we refer to this graph as the communication graph.

CG𝑡 = <
⋃ℎ

𝑖=1L𝑖 ,
⋃ℎ

𝑖=1R(L𝑖) > (10)

We consider that the communication behaviors of VPN servers
may be different from that of normal servers. Additionally, previ-
ous work [4] has show that topological features are beneficial in
graph classification. Therefore we use topological features as the
initial node embedding vector in CG𝑡 . The topological features are
derived from degree, eigenvector centrality, pagerank, closeness
centrality, local clustering coefficient and K-core. These metrics
can reveal the intrinsic structural properties and significance of
nodes within a network, providing a representation of the node
relationships. These metrics are widely used in graph analysis [29]
and the code for constructing these features can be found in public
Python libraries [14], more details can be found in Appendix B.

We use the GraphSAGE M to capture the features of each node
and choose the aggregation function to be𝑚𝑒𝑎𝑛. In this graph, we
useA𝑐 (𝑣) to describe the feature of node 𝑣 . Where F𝑐 (𝑣) represents
the initial features of node 𝑣 andH𝑐 (𝑣) represents the neighbors’
features of node 𝑣 .

A𝑐 (𝑣) = M𝑚𝑒𝑎𝑛 (F𝑐 (𝑣),H𝑐 (𝑣)) (11)

3.4 Detection Model
We use the probing graph and the communication graph to rep-
resent probing response behaviors and communication behaviors,
respectively. For target server 𝑥 , we obtain the features from the
probing graph and the communication graph using the methods de-
scribed above. Subsequently, we use the formula Y(𝑥) to enhance
their features and then concatenate all the features together. Where
R(𝑥) represents a linear layer, containing learnable parametersW
and 𝑏, R(𝑥)∗ denotes a linear layer with its own set of learnable
parameters W and 𝑏. Finally, we use Z(𝑥) to predict servers.

R(𝑥) = W𝑥 + 𝑏 (12)

Y(𝑥) = R1𝑡𝑎𝑛ℎR2 (A𝑐 (𝑥)) 𝐶𝑂𝑁𝐶𝐴𝑇 R3𝑡𝑎𝑛ℎR4 (A𝑟 (𝑥)) (13)

Z(𝑥) = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (R5𝑅𝑒𝐿𝑢 (R6 (Y(𝑥)) (14)

1794

WWW ’24, May 13–17, 2024, Singapore, Singapore Chenxu Wang et al.

4 EXPERIMENTS
4.1 Dataset
Offline Dataset: Maghsoudlou et al. [27] disclose that VPN traffic
accounts for at least 2.6% in their ISP’s environment. There are
million of servers in our ISP’s environment within one day. Conse-
quently, collecting and labeling VPN servers becomes a significant
challenge. Fortunately, previous work [31] has indicated that many
VPN servers are centrally deployed in some Autonomous Systems
(AS), such as 9009 and 60068. We obtain these servers’[31] labels
from our industry partner, who claims that their labels are derived
from threat intelligence and their detection model. Our partner can
identify various server types including VPN servers, Proxy servers,
and normal servers. To expedite the data collection process, we
regard VPN servers in the aforementioned ASs as seed IPs.

We present a new context-based dataset collection method that
assists researchers in collecting VPN servers in the real world. The
data collection procedure is as follows: i) Sequence collection: Given
a time window 𝑡 , we record the timestamp T𝑖 when client 𝑖 accesses
the seed IPs. Owing to IP-sharing access technologies, such as Net-
work Address Translation (NAT) [33], multiple endpoints might be
behind one client IP. VPN software allows a portion of application
traffic to be routed through the VPN tunnel, while it routes other
traffic outside this tunnel [52]. As a result, clients may access mul-
tiple VPN servers within a short time. For client 𝑖 , we gather the
server access sequence during the 2𝜑 seconds [T𝑖 − 𝜑 , T𝑖 + 𝜑]. ii)
Server collection: Since the VPN servers in the same server access
sequence may be deployed on different ASs, we can collect many
VPN servers from this window. iii) Data Processing: The client may
access numerous server IPs within a short time. For instance, we
observe that some IPs even access over 1,000 server IPs in just 10
seconds. To eliminate these abnormal sequences, we choose only
the server access sequences with a length smaller than 𝜚 .

Table 2: Offline Dataset Distribution

Category Count Percent

VPN 6840
Psiphon3 6.64%, NordVPN 1.09%,
PIA 0.92%, ExpressVPN 0.05%,
Surfshark 0.04%, Others 5.20%

Proxy 6295 13.54%
Normal 33346 71.74%
Total 46481 100%

The distribution of the offline dataset is shown in Table 2. We
organize these data into four datasets: VPN and normal servers
(D1), popular VPN and normal servers (D2), unpopular VPN and
normal servers (D3), and Proxy and normal servers (D4).

There are more than 43 (refer to Table 7 in Appendix) different
VPN servers in our dataset. The servers of the top three VPNs
(Psiphon3, NordVPN, PIA) account for 55.95% of all VPN servers,
and these VPNs have a certain probe-resistant ability.

We use D2 to enable the model to focus on features of popular
VPNs and to demonstrate the model’s identification ability. We em-
ploy D3 to learn features across a wide range of VPNs, showcasing
its broad applicability. Considering the partial functional similarity
between Proxies with VPNs, we also use D4 to explore the model’s
potential detection ability to Proxies. We refer interested readers to
[3] for more details about the datasets.

Online Dataset: To test the performance of our model in the
online environment, we deploy it in the environment of our ISP part-
ner. Unlike the offline dataset, we do not specify seed IPs during the
data collection process. We collect 65,636 client access sequences,
which contain 512,170 server IPs.

4.2 Offline Experiments
Implementation Details: During the data collection stage, we
set an observation time window 𝜑 to 10 seconds, the largest server
sequence access length 𝜚 to 50 and the 𝑃𝑟𝑜𝑏𝑖𝑛𝑔 𝑃𝑜𝑟𝑡 𝐶𝑜𝑚𝑏𝑖𝑛𝑎𝑡𝑖𝑜𝑛

similarity 𝜁 to 0.5 by default. In the subsequent model training stage,
the maximum training epoch is set to 150. We choose Adam as the
optimizer and set the learning rate to 0.005. Each experiment is
conducted 10 times, with the results being averaged for display. To
eliminate the impact of data imbalance, we use the downsampling
strategy (randomly discarding samples) to ensure consistency be-
tween the positive and negative sample. The models are evaluated
by utilizing Accuracy (AC), Precision (PR), Recall (RC), and F1-score
(F1). As we have mentioned, servers may not respond with any
information after receiving probes. In this situation, we set the cor-
responding feature value of each model to 0. In our offline dataset,
16.44% of servers do not provide any probing response information.
Comparison Experiments: Although much work has been done
in the field of VPN server detection, it primarily focuses on traffic in-
formation. These methods extract features based on traffic payload,
which may be affected by the network environment. In our scenario,
we primarily extract features from active probing. Our goal is not
to replace traffic-based methods, but to demonstrate that not using
traffic features can also be feasible. To this end, we only select those
methods that are based on active probing for comparison.

The results are shown in Table 3. OOVF [47] focuses on the
servers that use the OpenVPN protocol and primarily uses the
features related to response time to detect VPN servers. DPP [12]
aims to identify servers deploying probe-resistant protocols, princi-
pally extracting features from RST/FIN thresholds, response time,
and response content. The aforementioned studies have greatly
inspired our work. However, since their methods primarily focus
on specific VPN(s), and result in decreased performance onD1,D2,
and D3. Since OOVF only focuses on the OpenVPN protocol, it
has the worst performance on D4. ACER [7] is designed to detect
shadowsocks proxy, so it performs better than OOVF and DPP in
D4. ACER extracts features from response time, TCP flags, and
packet information created during active probing. This method is
also adaptable for detecting VPN servers. Our model can also use
GCN [20], GAT [37], GIN [46], SGC [42] to aggregate graph fea-
tures. We also show their performance in Table 3. The results show
that VPNChecker achieves the highest F1-score on all datasets.
Ablation Experiments: As our detection target is VPN servers,
we conduct ablation experiments on D1, D2 and D3. The results
are displayed in Table 4. To facilitate presentation, we denote the
probing graph as 𝑃𝐺 , the communication graph as𝐶𝐺 , and𝑊 signi-
fies ‘without’. The results clearly indicate that both 𝑃𝐺 and 𝐶𝐺 are
beneficial for detection, with 𝑃𝐺 contributing most significantly.
This demonstrates that probing features are more important than
topological features. The results of𝑊 /𝐺 reveal that our model sur-
passes previous methods by solely utilizing features from response

1795

Identifying VPN Servers through Graph-Represented Behaviors WWW ’24, May 13–17, 2024, Singapore, Singapore

Table 3: Offline Experiments

Model D1 : ALL VPN and Normal D2 : Popular VPN and Normal D3 : Unpopular VPN and Normal D4 : Proxy and Normal
AC PR RC F1 AC PR RC F1 AC PR RC F1 AC PR RC F1

OOVF [47] 0.7793 0.8350 0.7042 0.7641 0.8282 0.8555 0.8018 0.8278 0.7049 0.7856 0.5718 0.6619 0.5369 0.6040 0.2425 0.3460
DPP [12] 0.6559 0.6224 0.8018 0.7008 0.7045 0.6517 0.8927 0.7534 0.6284 0.6125 0.7963 0.6924 0.7047 0.6933 0.7903 0.7386
ACER [7] 0.6788 0.7042 0.6337 0.6337 0.7052 0.6692 0.6692 0.7530 0.7269 0.7468 0.7074 0.7266 0.8176 0.8118 0.8450 0.8281
GCN 0.8353 0.8878 0.7675 0.8233 0.8575 0.8549 0.8612 0.8581 0.8374 0.9119 0.7467 0.8211 0.8071 0.7553 0.9084 0.8248
GAT 0.8307 0.8788 0.7671 0.8192 0.8673 0.9616 0.7650 0.8521 0.8358 0.8938 0.7623 0.8229 0.8064 0.7611 0.8932 0.8218
GIN 0.8404 0.8337 0.8504 0.8420 0.8451 0.7928 0.9343 0.8577 0.8410 0.9474 0.7222 0.8196 0.8302 0.7735 0.9337 0.8461
SGC 0.8333 0.9009 0.7490 0.8180 0.8710 0.9536 0.7798 0.8580 0.8399 0.9156 0.7487 0.8238 0.8180 0.7728 0.9006 0.8318

VPNChecker 0.8565 0.8382 0.8835 0.8603 0.8932 0.8864 0.9019 0.8941 0.8672 0.8949 0.8323 0.8625 0.8447 0.7915 0.9356 0.8575

Table 4: Ablation Experiments

Method D1 : ALL VPN and Normal D2 : Popular VPN and Normal D3 : Unpopular VPN and Normal
Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1

W/G 0.8399 0.8807 0.7903 0.8330 0.8890 0.9248 0.8508 0.8863 0.8399 0.8803 0.7870 0.8311
W/PG 0.5582 0.5334 0.9288 0.6777 0.5675 0.5411 0.8890 0.6727 0.6279 0.5866 0.8673 0.6999
W/CG 0.8511 0.8492 0.8538 0.8515 0.8529 0.9739 0.7253 0.8314 0.8363 0.8616 0.8616 0.8616
W/lstm 0.8397 0.9100 0.7539 0.8246 0.8719 0.9774 0.7613 0.8560 0.8235 0.8481 0.7878 0.8169
W/tanh 0.8531 0.8744 0.8246 0.8488 0.8691 0.9807 0.7530 0.8519 0.8286 0.9209 0.7191 0.8076
W/MLP 0.8579 0.8685 0.8436 0.8559 0.8626 0.9816 0.7391 0.8433 0.8291 0.8800 0.7623 0.8170
Linear 0.8584 0.8636 0.8514 0.8574 0.8641 0.8872 0.8342 0.8599 0.8384 0.8680 0.7984 0.8317
CNN 0.8621 0.8973 0.8177 0.8557 0.8774 0.9105 0.8372 0.8723 0.8590 0.8930 0.8158 0.8527
LSTM 0.8246 0.8850 0.7461 0.8096 0.8645 0.9828 0.7419 0.8455 0.8224 0.8903 0.7353 0.8054

VPNChecker 0.8565 0.8382 0.8835 0.8603 0.8932 0.8864 0.9019 0.8941 0.8672 0.8949 0.8323 0.8625

types, response time, response length, termination state, and port
distribution. This indicates that our extracted features are more
efficient. In the 𝑃𝐺 , we use 𝑙𝑠𝑡𝑚 as the aggregation function in
GraphSAGE. The𝑊 /𝑙𝑠𝑡𝑚 means we use the default method𝑚𝑒𝑎𝑛.
The better result of 𝑙𝑠𝑡𝑚might be attributed to the 𝑙𝑠𝑡𝑚 aggregation
function’s superior information mining ability compared to𝑚𝑒𝑎𝑛.
We also conduct ablation experiments about replacing 𝑡𝑎𝑛ℎ with
𝑟𝑒𝑙𝑢 and removing𝑀𝐿𝑃 in feature fusion. The results show that all
the structures are necessary. Additionally, the results from using a
Linear layer, 𝐶𝑁𝑁 , 𝐿𝑆𝑇𝑀 as classifiers indicate that our classifier
is more suitable.
Sensitivity Experiments: We conduct sensitivity experiments on
sequence length 𝜚 , observation time 𝜑 and similarity threshold 𝜁 as
mentioned in Implementation Details section. Figure 6-a illustrates
that shorter client access sequence lengths correlate with higher
F1-score. This may be because shorter sequences contain a higher
proportion of VPN servers. In the construction process of the 𝑃𝐺 , we
observe that VPN servers might utilize the same port combinations
as normal servers, which can lead to misclassifications. When the
proportion of VPN servers increases, such misclassifications are
reduced. Figure 6-b shows that the model is not sensitive to time
𝜑 . This may be because the data distribution is consistent across
different time windows. Figure 6-c indicates that changes in the
similarity threshold do not significantly impact the results, possibly
because some VPN have a stable port combination.

4.3 Online Experiments
We deploy our system in an ISP’s environment and analyze 512,170
servers, identifying 6,143 suspicious VPN servers among these. We
compared it with four industry detection engines: IPQualityScore
[17], VPNAPI.io [38], SPUR [35], IPInfo [16] as detailed in Table 5.
Ground truth construction: i) We collect domain names asso-
ciated with servers. Specifically, we query the PTR records and

(a) (b) (c)

Figure 6: (a), (b), (c) show the result of Sequence Length, Se-
quence Time and Similarity, respectively.

Table 5: Online Experiments

Industry Engine Count Coverage Ratio
IPQualityScore [17] 4403 0.9724
VPNAPI.io [38] 4315 0.8937
IPInfo [16] 766 0.1587
SPUR [35] 3074 0.6367

Ground truth 4528 1.0000

certificate SANs using Linux commands and gather HTTP host
and TLS SNI records from the ISP environment. ii) Following the
method outlined in [9], we identify VPN servers by checking for
the ‘vpn’ character in their domain names (e.g., vpngate.net). In
this step, we obtain 211 VPN servers. iii) We collect popular VPNs’
domains, such as surfshark.com and torguard.org. If a server de-
ploys a VPN domain, we consider it a VPN server. From this step,
we acquire 146 VPN servers. iv) Using the method from [27], we
identify VPN servers by sending VPN protocol probes, resulting
in 453 VPN servers. v) IPQualityScore, VPNAPI.io, and SPUR are
designed to identify VPN, proxy, and Tor servers, so they have more
powerful identification capabilities. IPInfo offers multi-dimensional
IP data, but its capacity to detect VPN servers is limited to only

1796

WWW ’24, May 13–17, 2024, Singapore, Singapore Chenxu Wang et al.

a few instances. We adopte a simple voting strategy for ground
truth selection: we only select servers that are marked as VPN by
at least two of IPQualityScore, VPNAPI.io, and SPUR. In this step,
we obtain 4396 VPN servers. Totally, we obtain 4528 deduplicated
VPN servers from step ii) to step v).
False alarms analysis: VPNChecker identifies 6143 VPN servers.
We check the 1615 (6143-4528) IPs and discover 522 IPs identified as
proxy or Tor by detection engines. This because proxy/Tor servers
often have similar features to VPN servers. Considering that these
servers may also be abused, we think that these are not false alarms.
For the remaining 1093 (1615-522) IPs, we try our best to analyze
them, and there is no evidence to indicate that they are VPN servers.
Specifically, we check whether an IP is in the VPN/abuse IP range
provided by [1, 2, 19, 31]. For the remaining 1093 (1615-522) IPs,
we count the number of visits to these servers within one hour.
Among them, 205 Server IPs have been visited less than 10 times.
We believe that the risk of these IPs being false alarms is very low.

Among the 6143 VPN servers identified by VPNChecker, 4528
are VPN, 522 are proxy/Tor servers and 1093 IPs are vague IPs. Our
online experiments show that VPNChecker can identify more VPN
IPs detection engines. Therefore, our method can help industrial
engines improve their detection capabilities.

5 DISCUSSION AND LIMITATIONS
Adaptive attacks: VPNChecker outperforms other models across
various datasets, partially due to the possibility that attackers have
altered their tactics in response to previous detection methods.
Detection and anti-detection form a continual game of chase. At-
tackers may refine their strategies to reveal fewer server features
after our method becomes public. For instance, they might random-
ize the RST/FIN threshold. However, this requires modifying the
operating system’s source code. Attackers can also alter commu-
nication behaviors to disrupt the node connection relationships
within our graph, but this could compromise user experience. In
general, while attackers can employ strategies to bypass our detec-
tion, these strategies are likely to incur additional costs.
Limitation: In this paper, we mainly focus on the features of active
probing and topology. We assume that security researchers have
the ability to receive probe responses and obtain node connection
relationships. However, our method may be limited in some sce-
narios. If researchers conduct server detection at the gateway, they
may not be able to obtain complex node interaction relationships.
In this situation, although our method can still be applied, ablation
experiments indicate that our model’s performance would decline.
If researchers conduct detection in situations where internet access
is not available, our method is not applicable.

6 RELATEDWORK
6.1 Based on Network Traffic
Numerous works focus on network traffic detection and almost of
them can be used to identify VPN servers. Several studies [6, 8, 28,
41, 43] extract features from various statistical information, such as
time intervals, packet lengths, and byte entropy, and then employ
machine learning or rule-based methods for detection. For instance,
Wu et al. [43] suggest that while servers may randomize traffic
to evade detection, researchers can use byte entropy to identify

traffic. Some research [23, 45, 50, 51] centers on feature extraction
from packet length sequences and arrival interval sequences, uti-
lizing deep learning methods for classification. For example, Jiang
et al. [18] use sequence information to construct traffic graphs,
subsequently employing Graph Neural Networks for identification.
Some studies [22, 25] utilize raw packets as features for detection,
achieving excellent classification results. Although the above works
achieve excellent classification results in the training environment,
these methods may have performance loss due to the changes in
environment. For example, Xie et al. [44] show that some methods
might show performance degradation in different networks.

6.2 Based on Active Probing
Traditional Protocols: Traditional VPN protocols, such as IPsec
[15] and PPTP [13], are still widely used[19, 27]. These protocols
are open-source and primarily designed to keep communications
secure rather than to resist detection. Owing to their open-source
and non-resistant nature, researchers can easily construct VPN
requests and send probe packets to target servers. By analyzing the
response content, they can determine whether the server provides
VPN services. Maghsoudlou et al. [27] use this method to discover
more than 9.8M VPN servers on the Internet.
Probe-Resistant Protocols: Some studies [12, 47] have pointed
out that many VPN servers deploy probe-resident protocols, such
as Psiphon’s obfuscation SSH protocol. These servers reply only
to requests that include authentication information. Since it is dif-
ficult to acquire authentication information, researchers cannot
receive any response after sending probing packets. Frolov et al.
[12] observe that probing with popular protocols, such as HTTP,
can effectively filter most normal servers out. Additionally, they
find that TCP timeout and data thresholds can be used to distin-
guish VPN servers from others. Xue et al. [47] discover that some
commercial OpenVPN servers also deploy authentication mecha-
nisms and they utilize the timeout and RST thresholds to detect
these OpenVPN servers. Some studies [7, 10, 39] are not directly
aimed at detecting VPN servers but offer methods that could be
applied to detect VPN servers. Fifield et al. [10, 39] indicate that
HTTP and TLS response may aid in classification. Cheng et al. [7]
suggest that researchers could focus on metrics such as timeout,
TCP flags and response packet length.

7 CONCLUSION
In this paper, we introduce a new method for detecting VPN servers
using a probing graph and a communication graph. We present
some interesting features, such as response types and port distri-
bution, which can help the security community enhance server
detection capabilities. Our experimental results demonstrate that
using features of active probing and topological relationships is
feasible. The results also show that our method outperforms pre-
vious methods and can help industrial detection engines enhance
coverage ratios.

ACKNOWLEDGMENTS
This work is supported by the Scaling Program of Institute of
Information Engineering, CAS (Grant No. E3Z0041101 and No.
E3Z0191101).

1797

Identifying VPN Servers through Graph-Represented Behaviors WWW ’24, May 13–17, 2024, Singapore, Singapore

REFERENCES
[1] 2023. FireHOL. iplists.firehol.org. Accessed: 2023-10-05.
[2] 2023. IBlockList. www.iblocklist.com/lists. Accessed: 2023-10-05.
[3] 2023. VPNChecker. https://github.com/chenxuStep/VPNChecker. GitHub

repository.
[4] Roy Abel, Idan Benami, and Yoram Louzoun. 2019. Topological based classifica-

tion using graph convolutional networks. CoRR abs/1911.06892 (2019).
[5] Mohammed Alfatafta, Basil Alkhatib, Ahmed Alquraan, and Samer Al-Kiswany.

2020. Toward a generic fault tolerance technique for partial network partitioning.
In 14th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). 351–368.

[6] Julian Andres Caicedo-Munoz, Agapito Ledezma Espino, Juan Carlos Corrales,
and Alvaro Rendon. 2018. QoS-Classifier for VPN and Non-VPN traffic based on
time-related features. Computer Networks 144 (2018), 271–279.

[7] Jiaxing Cheng, Ying Li, Cheng Huang, Ailing Yu, and Tao Zhang. 2020. ACER:
detecting Shadowsocks server based on active probe technology. Journal of
Computer Virology and Hacking Techniques 16 (2020), 217–227.

[8] Gerard Draper-Gil, Arash Habibi Lashkari, Mohammad Saiful Islam Mamun,
and Ali A Ghorbani. 2016. Characterization of encrypted and vpn traffic using
time-related. In Proceedings of the 2nd international conference on information
systems security and privacy (ICISSP). 407–414.

[9] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar Poese,
Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, et al. 2020. The lockdown effect: Implications of the COVID-19
pandemic on internet traffic. In Proceedings of the ACM internet measurement
conference. 1–18.

[10] David Fifield. 2017. Threat modeling and circumvention of Internet censorship.
University of California, Berkeley.

[11] Python Software Foundation. 2023. socket — Low-level networking interface.
https://docs.python.org/3/library/socket.html (Accessed on 2023-09-04).

[12] Sergey Frolov, Jack Wampler, and Eric Wustrow. 2020. Detecting Probe-resistant
Proxies.. In NDSS.

[13] NetworkWorkingGroup. 1993. The Point-to-Point Protocol (PPP). https://www.rfc-
editor.org/rfc/rfc2637.html (Accessed on 2023-09-03).

[14] Aric A. Hagberg, Daniel A. Schult, Pieter J. Swart, et al. 2023. NetworkX. https:
//networkx.org/ (Accessed on 2023-09-04).

[15] Internet Engineering Task Force (IETF). 2011. IP Security (IPsec) and Internet
Key Exchange (IKE). https://www.rfc-editor.org/rfc/rfc2637.html (Accessed on
2023-09-03).

[16] Ipinfo. 2023. The trusted source for IP address data, leading IP data provider -
IPinfo.io. https://ipinfo.io (Accessed on 2023-09-04).

[17] Ipqualityscore. 2023. Fraud Detection and Bot Detection Solutions | Detect Fraud
with IPQS. https://www.ipqualityscore.com (Accessed on 2023-09-04).

[18] Minghao Jiang, Zhen Li, Peipei Fu, Wei Cai, Mingxin Cui, Gang Xiong, and
Gaopeng Gou. 2022. Accurate mobile-app fingerprinting using flow-level rela-
tionship with graph neural networks. Computer Networks 217 (2022), 109309.

[19] Mohammad Taha Khan, Joe DeBlasio, Geoffrey M Voelker, Alex C Snoeren,
Chris Kanich, and Narseo Vallina-Rodriguez. 2018. An empirical analysis of the
commercial vpn ecosystem. In Proceedings of the Internet Measurement Conference
2018. 443–456.

[20] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[21] Martin Laštovička, Martin Husák, Petr Velan, Tomáš Jirsík, and Pavel Čeleda.
2023. Passive operating system fingerprinting revisited: Evaluation and current
challenges. Computer Networks 229 (2023), 109782.

[22] Xinjie Lin, Gang Xiong, Gaopeng Gou, Zhen Li, Junzheng Shi, and Jing Yu. 2022.
Et-bert: A contextualized datagram representation with pre-training transformers
for encrypted traffic classification. In Proceedings of the ACM Web Conference
2022. 633–642.

[23] Chang Liu, Longtao He, Gang Xiong, Zigang Cao, and Zhen Li. 2019. Fs-net: A
flow sequence network for encrypted traffic classification. In IEEE INFOCOM
2019-IEEE Conference On Computer Communications. IEEE, 1171–1179.

[24] Efrén López-Morales, Carlos Rubio-Medrano, Adam Doupé, Yan Shoshitaishvili,
RuoyuWang, Tiffany Bao, and Gail-Joon Ahn. 2020. Honeyplc: A next-generation
honeypot for industrial control systems. In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security. 279–291.

[25] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. 2020. Deep packet: A novel approach for encrypted
traffic classification using deep learning. Soft Computing 24, 3 (2020), 1999–2012.

[26] Gordon Fyodor Lyon. 2009. Nmap network scanning: The official Nmap project
guide to network discovery and security scanning.

[27] Aniss Maghsoudlou, Lukas Vermeulen, Ingmar Poese, and Oliver Gasser. 2023.
Characterizing the VPN Ecosystem in the Wild. In International Conference on
Passive and Active Network Measurement. Springer, 18–45.

[28] Shane Miller, Kevin Curran, and Tom Lunney. 2018. Multilayer perceptron neural
network for detection of encrypted VPN network traffic. In 2018 International
Conference On Cyber Situational Awareness, Data Analytics And Assessment (Cyber

SA). IEEE, 1–8.
[29] Neo4j. 2023. Graph Algorithms. https://neo4j.com/docs/graph-data-science/

current/algorithms/ (Accessed on 2023-09-04).
[30] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-

gadhara, and Matthew Wright. 2019. Tik-Tok: The utility of packet timing in
website fingerprinting attacks. arXiv preprint arXiv:1902.06421 (2019).

[31] Reethika Ramesh, Leonid Evdokimov, Diwen Xue, and Roya Ensafi. 2022. VPNa-
lyzer: systematic investigation of the VPN ecosystem. In Network and Distributed
System Security. 24–28.

[32] Nhien Rust-Nguyen, Shruti Sharma, and Mark Stamp. 2023. Darknet traffic
classification and adversarial attacks using machine learning. Computers &
Security 127 (2023), 103098.

[33] Teemu Rytilahti and Thorsten Holz. 2020. On Using Application-Layer Middlebox
Protocols for Peeking Behind NAT Gateways.. In NDSS.

[34] Danfeng Shan, Fengyuan Ren, Peng Cheng, Ran Shu, and Chuanxiong Guo. 2019.
Observing and mitigating micro-burst traffic in data center networks. IEEE/ACM
Transactions on Networking 28, 1 (2019), 98–111.

[35] Spur. 2023. Home - Spur. https://spur.us (Accessed on 2023-09-04).
[36] Pluggable Transports. 2023. Software Repository. https://software.

pluggabletransports.info (Accessed on 2023-09-04).
[37] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv preprint
arXiv:1710.10903 (2017).

[38] Vpnapi.io. 2023. VPN and Proxy Detection API. https://vpnapi.io (Accessed on
2023-09-04).

[39] GaukasWang, Jackson Sippe, Hai Chi, and EricWustrow. 2023. Chasing Shadows:
A security analysis of the ShadowTLS proxy. In In Free and Open Communications
on the Internet.

[40] Han Wang, Xiangyang Luo, and Yuchen Sun. 2020. An Obfs-based Tor Anony-
mous Communication Anline Identification Method. In 2020 6th International
Conference on Big Data and Information Analytics (BigDIA). IEEE, 361–366.

[41] Liang Wang, Kevin P Dyer, Aditya Akella, Thomas Ristenpart, and Thomas
Shrimpton. 2015. Seeing through network-protocol obfuscation. In Proceedings
of the 22nd ACM SIGSAC Conference on Computer and Communications Security.
57–69.

[42] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[43] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson,
Xiaokang Wang, Kevin Bock, Amir Houmansadr, Dave Levin, and Eric Wustrow.
2023. How the Great Firewall of China detects and blocks fully encrypted traffic.
In 32nd USENIX Security Symposium (USENIX Security 23). 2653–2670.

[44] Renjie Xie, Yixiao Wang, Jiahao Cao, Enhuan Dong, Mingwei Xu, Kun Sun, Qi Li,
Licheng Shen, and Menghao Zhang. 2023. Rosetta: Enabling robust tls encrypted
traffic classification in diverse network environments with tcp-aware traffic
augmentation. In Proceedings of the ACM Turing Award Celebration Conference-
China 2023. 131–132.

[45] Hongbo Xu, Shuhao Li, Zhenyu Cheng, Rui Qin, Jiang Xie, and Peishuai Sun.
2022. VT-GAT: A Novel VPN Encrypted Traffic Classification Model Based on
Graph Attention Neural Network. In International Conference on Collaborative
Computing: Networking, Applications and Worksharing. Springer, 437–456.

[46] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful
are graph neural networks? arXiv preprint arXiv:1810.00826 (2018).

[47] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis Kallitsis, J Alex Halderman,
Jedidiah R Crandall, and Roya Ensafi. 2022. {OpenVPN} is open to {VPN}
fingerprinting. In 31st USENIX Security Symposium (USENIX Security 22). 483–
500.

[48] Ao Yu, Hui Yang, Kim Khoa Nguyen, Jie Zhang, and Mohamed Cheriet. 2020.
Burst traffic scheduling for hybrid E/O switching DCN: An error feedback spiking
neural network approach. IEEE Transactions on Network and Service Management
18, 1 (2020), 882–893.

[49] Yinbo Yu, Xing Li, Xue Leng, Libin Song, Kai Bu, Yan Chen, Jianfeng Yang, Liang
Zhang, Kang Cheng, and Xin Xiao. 2018. Fault management in software-defined
networking: A survey. IEEE Communications Surveys & Tutorials 21, 1 (2018),
349–392.

[50] Ruijie Zhao, Xianwen Deng, Yanhao Wang, Libo Chen, Ming Liu, Zhi Xue, and
Yijun Wang. 2022. Flow sequence-based anonymity network traffic identification
with residual graph convolutional networks. In 2022 IEEE/ACM 30th International
Symposium on Quality of Service (IWQoS). IEEE, 1–10.

[51] Zhuang Zou, Jingguo Ge, Hongbo Zheng, Yulei Wu, Chunjing Han, and
Zhongjiang Yao. 2018. Encrypted traffic classification with a convolutional long
short-term memory neural network. In 2018 IEEE 20th International Conference
on High Performance Computing and Communications; IEEE 16th International
Conference on Smart City; IEEE 4th International Conference on Data Science and
Systems (HPCC/SmartCity/DSS). IEEE, 329–334.

[52] Zscaler. 2023. Understanding PAC Files. https://help.zscaler.com/zia/
understanding-pac-file (Accessed on 2023-09-03).

1798

iplists.firehol.org
www.iblocklist.com/lists
https://github.com/chenxuStep/VPNChecker
https://docs.python.org/3/library/socket.html
https://www.rfc-editor.org/rfc/rfc2637.html
https://www.rfc-editor.org/rfc/rfc2637.html
https://networkx.org/
https://networkx.org/
https://www.rfc-editor.org/rfc/rfc2637.html
https://ipinfo.io
https://www.ipqualityscore.com
https://neo4j.com/docs/graph-data-science/current/algorithms/
https://neo4j.com/docs/graph-data-science/current/algorithms/
https://spur.us
https://software.pluggabletransports.info
https://software.pluggabletransports.info
https://vpnapi.io
https://help.zscaler.com/zia/understanding-pac-file
https://help.zscaler.com/zia/understanding-pac-file

WWW ’24, May 13–17, 2024, Singapore, Singapore Chenxu Wang et al.

A PORT COMBINATION
We show examples of some VPNs’ probing port combinations in
Table 6. Some VPNs may have multiple port combinations. For
instance, Psiphon3 has [443, 53, 22], [80, 554, 22], [80, 22], and other
combinations. This variability could be due to firewall restrictions
and the the complete set of port combinations may be [554, 22, 53,
80, 443]. Researchers can mitigate this issue by conducting probes
using nodes in different geographical locations.

Table 6: Example of Probing Port Combinations

VPN Name Probing Port Combination
Psiphon3 {22, 53, 443}
Psiphon3 {22, 443, 554}
Psiphon3 {22, 53, 443, 554}
Surfshark {443, 1443, 4000, 7443, 8443}

PIA {80, 443, 8443}
PIA {80, 443, 8080, 8443, 8888}

Hotspot Shield {80, 443, 563, 636, 993, 995}
Hotspot Shield {80, 443, 563, 636, 993, 995, 6000}
CyberGhost {443, 8080, 8081, 8443}

Easy {80, 443, 8080, 8088, 12345}
Vpnify {22}

HideMyAss {80, 443}
Tomato {22, 80, 443, 8000}
Touch {443, 8082, 8083}

Windscribe {443, 8443}

Table 7: VPNs in our dataset

VPN Name
AirVPN Fastestvpn ItopVPN
Browsec Fastvpnio VPN Just VPN

Cryptostorm Foxyproxy NordVPN
CyberGhost Gecko Opera

Daily HideMyAss PIA
Deeper Network Hotspot Shield Privatevpn

Easy Infvpn Proton
ExpressVPN IC Psiphon3
Witopia Xvpn Zenmate
Pure Trust Zone Thunder

Secure Android Tunnelbear Tomato
Supervpn360 Turbo TorGuard
Surfshark Ultrasurf SuperVPN
Vpnify Vpnunlimited Windscribe
Touch unknown

B TOPOLOGICAL FEATURES
Here is a brief introduction to the topological features.Degree: The
degree of a node in a graph is the number of edges incident to it.
Eigenvector Centrality: It is used to express the importance of
nodes, assuming that nodes connected to important nodes should
also possess higher importance. PageRank: PageRank is an algo-
rithm that calculates the ranking of nodes in a graph, originally
designed for ranking web pages. Closeness Centrality: Closeness
Centrality reflects the proximity of a node to all other nodes in
the network. Local Clustering Coefficient: The local clustering
coefficient is used to describe the connectivity between a node
and its neighbors. K-core: The k-core of a graph is a maximal sub-
graph where every vertex has at least degree 𝑘 , with 𝑘 reflecting
the node’s connectivity relative to other nodes in the network. The
above node features are very common in graph analysis, and re-
searchers can further extend the topological features to improve
model performance.

1799

	Abstract
	1 Introduction
	2 Background
	3 Design of VPNChecker
	3.1 High Level Description of VPNChecker
	3.2 Probing Graph Construction
	3.3 Communication Graph Construction
	3.4 Detection Model

	4 Experiments
	4.1 Dataset
	4.2 Offline Experiments
	4.3 Online Experiments

	5 DISCUSSION AND LIMITATIONS
	6 Related Work
	6.1 Based on Network Traffic
	6.2 Based on Active Probing

	7 CONCLUSION
	Acknowledgments
	References
	A Port combination
	B Topological Features

