GoHop: Personal VPN to Defend from Censorship

Yuzhi Wang*, Ping Ji, Borui Ye*, Pengjun Wang*, Rong Luo*, Huazhong Yang*

* Department of Electronic Engineering, Tsinghua University, China
T NEMO Research Lab, City University of New York, USA
¥ School of Computer Science, Beijing University of Posts and Telecommunications, China

Corresponding Author:

Abstract—Internet censorship threatens people’s online privacy, and in
recent years, new technologies such as high-speed Deep Packet Inspection
(DPI) and statistical traffic analysis methods had been applied in
country scale censorship and surveillance projects. Traditional encryption
protocols cannot hide statistical flow properties and new censoring
systems can easily detect and block them “in the dark”. Recent work
showed that traffic morphing and protocol obfuscation are effective ways
to defend from statistical traffic analysis. In this paper, we proposed a
novel traffic obfuscation protocol, where client and server communicate
on random port. We implemented our idea as an open-source VPN tool
named GoHop, and developed several obfuscation method including pre-
shared key encryption, traffic shaping and random port communication.
Experiments has shown that GoHop can successfully bypass internet
censoring systems, and can provide high-bandwidth network throughput.

Index Terms—VPN, privacy protection, random port, traffic morphing,
protocol obfuscation, censorship circumvention

I. INTRODUCTION

Internet censorship is a threat to people’s online privacy and
their freedom to get information. There’re some softwares, including
Tor [1], SSH Tunnel, VPN, etc., which can provide encrypted tunnel
helping people to bypass censoring systems. These softwares used
to be effective because censoring systems could only inspect packets
with plaintext.

However, with the improvement of traffic analysis techniques, it’s
possible for the censoring authority to extract sensitive information
from encrypted packets since encryption does not change packet
flow’s statistical properties such as packet size, arrival time and
direction.

Previous work has shown that with statistical information leaked
from encrypted traffic, it’s possible to detect traffic class and other
information from encrypted traffic. Wright et al. [2] and White et
al. [3] showed that an observer can identify key phrases or even
recognize words from encrypted Voice-over-IP (VoIP) conversation
since packet sizes from variable-bit-rate (VBR) voice encoder are
related to the words in the speech. Dusi et al. [4] showed that net-
work administrators can use traffic’s statistical fingerprints to detect
whether an application protocol is used as a tunnel to encapsulate
another illegitimate protocol. Wright et al. [5] has shown that utilizing
machine-learning techniques, it is not only possible to identify the
protocol of an encrypted flow, but also track the number of TCP
connections inside an IPSec VPN tunnel. Murdoch et al. [6] presented
traffic analysis techniques enabling adversaries to detect Tor nodes
and track the anonymous stream back to the initiator.

Traffic analysis techniques can not only be utilized to identify
security threats, but also violates user privacy [7]. Moreover, it
enables censoring authorities to detect whether an user is using anti-
censorship softwares to visit blocked websites [8].

Most widely used anti-censorship software still use only encryption
to protect plaintext leakage, and with traffic analysis techniques

ISBN 978-89-968650-3-2

27

yz-wangl2@mails.tsinghua.edu.cn

being put into practice, some anonymous network protocols were
blocked [9, 10].

In order to prevent statistical property leakage, flow obfuscation
protocols were introduced. Tor is one of the anonymous network pro-
tocols got blocked in many ISPs, so Tor team developed a framework
named pluggable transport [11] to handle traffic obfuscation. The Tor
team and community developed several traffic obfuscation tools for
Tor and some of them has been released to the public. Obfsproxy [12]
is the first pluggable transport implementation which transforms Tor
traffic to innocent-looking traffic using encryption. Flashproxy [13]
uses browsers to proxy Tor traffic, and it switches its upstream
peer frequently so that it’s hard to be detected by the adversary.
SkypeMorph [14] implemented traffic morphing for Tor and disguise
Tor traffic to Skype VoIP traffic. Shadowsocks [15] is a cross-platform
SOCKS proxy which uses pre-shared key to encrypt in tunnel traffic.
Blond et al. [16] proposed a novel anonymity network named Aqua as
a replacement for Tor, which can provide both anonymity and high-
bandwidth. Aqua is still in early development and can only support
file-sharing rather than common Internet usage.

In this paper, we proposed GoHop, a VPN software with innate
traffic obfuscation features. Unlike Tor which provide SOCKS proxy,
GoHop provides a VPN, so that users need not configure browsers
or other internet applications. We developed several obfuscation
approaches for GoHop, including pre-shared master key, traffic
shaping and random port communication, detailed description will
be presented later.

The main contributions of this paper are:

« VPN with traffic obfuscation: At the time of writing, GoHop
is the only published VPN software with build-in traffic obfus-
cation.

Simple but effective traffic obfuscation protocol: We designed
a flexible flow obfuscation framework and developed several
obfuscation methods. Each of them is quite simple and easy
to understand, but experiment has shown that they are very
effective. Furthermore, because of GoHop’s simplicity, it runs
much faster than other censorship circumvention softwares.
Ready-to-use implementation: We published GoHop under an
open-source license ', GoHop currently supports Linux operat-
ing system, and we have been using it to bypass censorship for
several months.

The rest of the paper is organized as follows. In Section II, we
first present our threat model, assumptions and GoHop’s design
goal. In Section III, we introduce GoHop’s obfuscation methods,
and implementation details comes in Section IV. Experiment results
are shown in Section V. In Section VI, we discuss future work and
conclude in Section VII.

Uhttps://github.com/bigeagle/gohop

February 16~19, 2014 ICACT2014

II. ASSUMPTIONS AND DESIGN GOALS

A. Threat Model and Assumptions

Our threat model is similar to other censorship circumvention
tools [13], there are 4 objects in our model:

Client: The client-side GoHop program, which locates in the
region where Internet access is under censorship.

Server: The server-side program, whose ISP does not filter
Internet contents.

Adversary: The censoring authority, who can inspect every
packet get through its network boundary.

Target: An Internet peer, such as a website, which is blocked
in the region where client locates, but can be accessed by the
server.

We assume that the adversary does not intend to block the whole
Internet, it has a blacklist and only filters sites with potentially
inappropriate contents. Furthermore, the adversary does not want
to slow down the Internet speed too much, which means it can
only use simple and fast methods to detect inappropriate traffic.
This is a realistic assumption because both whitelist-based filtering
and too-complexed traffic inspection methods costs too much. The
adversary is actively improving its censoring techniques, so detect-
and-blocking anti-censorship traffic is possible. We further assume
that the adversary cannot install malicious software such as backdoors
on client’s computer, this is necessary because if the client is under
adversary’s control, any encryption or obfuscation method lose all
effectiveness.

One key difference between GoHop and Tor (and Tor’s plugins),
is that GoHop does not intend to provide public service. Instead, it’s
designed as a personal VPN tool. That is, the the client user and
server user are ether in trust relationship, or even the same person.
Thus, there can be pre-shared information, such as PGP key pairs,
between the client and server before connection.

According to these assumptions, the client and server can commu-
nicate with each other, the adversary is willing to inspect packets in
the traffic between them, but does not block the server, and is not
willing to decrypt the traffic using brute force. And the server has
the ability to relay the traffic between client and target site, and the
traffic between client and server is encrypted and obfuscated, so the
client can successfully get access to the target.

B. Design Goals

GoHop’s design goals are:

« Hard to detect: Since the adversary is improving its censoring

techniques, if GoHop traffic can be easily detected, the server
will be blocked. In order to achieve this goal, both encryption
and obfuscation are necessary.
Fast: Internet traffic now contains much richer contents than
that 10 years ago, people are willing to watch HD videos and
use cloud computing to help everyday work, while existing
censorship circumvention tools like Tor can only achieve the
speed at 200 KB/s, which can only support basic web-surfing.
Flexible and easy to maintain: GoHop need to update obfus-
cation algorithms frequently to follow the improving censorship
techniques, thus demanding GoHop can be easily configured to
use different obfuscation protocols and add new algorithms.

We developed several obfuscation techniques to achieve the first
goal, and these obfuscation methods are relatively simple so that the
throughput performance can satisfy new internet surfing needs.

ISBN 978-89-968650-3-2

28

III. OBFUSCATION TECHNIQUES IN GOHOP

Some of the aforementioned obfuscation protocols has been proved
to be effective and applicable in practice, and it’s not difficult to find
the common methods of these protocols:

o Encrypting: Encryption can easily make data values in obfus-
cated packets look randomly distributed, and also protect data
from sniffing.

« packet padding: To hide the flow’s packet-size property, packet
padding is a easy way. But it’s been proved that only if the
padded packet is near the size of MTU, padding does not help
a lot to defeat statistical traffic analysis[17].

The main properties of an encrypted packets flow that an adversary
can make use of includes:

« Plaintext, or fixed bytes

o Packet size

o Arrival time, and inter-arrival time
o Packet direction

In order to thwart statistical traffic analysis, we need to disguise
traffic properties as much as possible, so three obfuscation methods
were put in to practice: pre-shared key encryption to avoid plaintext,
traffic shaping to change packet size, and random port communication
to disguise inter-arrival time and hide packet direction.

A. Pre-shared Key Encryption

Since GoHop is a personal VPN tool, server and client are able
to share a master key (or each other’s public key) before connection
establishment.

One reason to use pre-shared key is to avoid unencrypted key
exchange. Although it’s unlikely that the censoring authority would
inspect every packet and trace the key exchange to decrypt payload
data, the flow is indeed at risk.

Another and more important reason is that with the help of a
pre-shared key, all data in the packet can be encrypted, including
header, payload and even useless padding bytes. This enables true
randomness of packet data distribution. In many protocols [18], only
payload data is encrypted while packet headers are still in plaintext,
this enables the censoring system to identify the protocol with only
some packet header information.

B. Traffic Shaping

Traffic shaping is to change the packet size and timing properties
of the flow, misleading the adversary to detect the traffic as another or
unable to determine the true traffic class. Padding can be treated as the
most naive traffic shaping method, while previous work has proved
that small size padding does not influence the accuracy of traffic
analysis very much unless every packet is padded to MTU. [17] The
main difference between packet padding and traffic shaping is that
padding only increase the packet size, while traffic shaping also split
large packets to some smaller packet pieces, and can transform the
statistical properties of on traffic class to another, thus cheating the
adversary.

Wright et al. [7] has shown that traffic morphing can be quite
an efficient defence against traffic analysis with both strong privacy
protection ability and low overhead. Monghaddam et al. [14] imple-
mented this idea and successfully made Tor traffic morph into Skype
video traffic in two ways: naive traffic shaping and Wright’s traffic
morphing.

Monghaddam’s experiment showed that the two techniques have al-
most equally effective, while naive traffic shaping is less efficient but
much easier to implement. What’s more, Wright’s traffic morphing is

February 16~19, 2014 ICACT2014

a offline algorithm which needs to know source traffic properties and
target traffic properties before figuring out the transforming matrix,
while naive traffic shaping only need to know the target traffic
properties and can transform the traffic on the go.

Unlike Tor, whose payload is mainly HTTP traffic and has a
relatively more static traffic property distribution, GoHop is a VPN
service and many other protocols such as FTP, SSH or POP3 can run
over, and its traffic property varies as the playload protocol.

Wright’s static traffic morphing technique cannot satisfy our need
of dynamic source traffic, so we take Monghaddam’s naive traffic
shaping as our traffic shaping method.

C. Random Port

Although we’re not able to know how a real-world censoring
system exactly works, according to common sense and some existing
traffic analysis projects [19], we can guess that the adversary’s traffic
identifying module has a concept of TCP connection or UDP session.
That is, if two packets between two hosts has different ports, they
are thought to belong to two different traffic flows.

In GoHop, we break this traditional common logic, that GoHop’s
packets are transported in many ports randomly.

There’re three major benefits of random port datagrams: first,
traditional 5-tuple based session detection was broken, so that flow
properties on “direction” would be leaked minimally; second, the
inter-arrival time of packet on each port would also distribute
randomly; last but not least, if the random range is large enough,
for example, 10,000 ports, then the throughput on each port can be
quite low, increasing the difficulty to analyze the traffic’s statistical
properties.

IV. IMPLEMENTATION

We implemented GoHop in Go [20] on Linux. In this section,
we first present the architecture and data flow of GoHop, and then
introduce detailed implementation of key obfuscation techniques.

A. Architecture

GoHop TCP/IP Stack

Plaintext
Virtual Interface i_ ________

Traffic Shaping Traffic Rebuild

|

Obfuscated Packets

Tun/Tap Device

HH

Sending Phase ——————> Receiving Phase - - - - - - -

Fig. 1. GoHop Architecture and Data Flow

The basic architecture and data flow of GoHop is shown in figure 1.
The server and client shares the same architecture, the only difference
between them is that the server need to handle multiple clients while
the client only communicates with one server.

High-level packet routing process is done by Linux’s network tools,
including iptables and iproute?2.

ISBN 978-89-968650-3-2

29

1) Session Establishment: GoHop server need to start before the
client. The first thing GoHop does after start is to initialize an AES-
128-CBC cypher with the pre-shared key. The server then create and
configure a virtual interface using Linux’s tun/tap device APL
After that, the server starts serving on several UDP ports. Now the
server is ready to serve clients.

GoHop client first sends several “port knock™ packets to every port
that server listens, and chooses one of them to send the handshake
datagram. The server would assign an IP address to the client via an
ACK packet, then the client is able to initialize its virtual interface.
Hence the session is successfully established.

As a proof-of-concept implementation, the session keeps little
information, but nothing in principle prevents us to enhance the
features. For example, there can be a dynamic, randomly generated
session cypher, increasing the security of GoHop. We put this off as
our future work.

2) Frame Processing and Forwarding: When GoHop reads a
frame from virtual interface, which is sent from an upper-layer
application, such as web browser, it first sends this frame to the
traffic shaping oracle, and then this frame would be encapsulated in
several transformed packets, and then chooses a random port to send
these packets out to the other GoHop peer. Before the packet was
being sent, the cipher would encrypt this packet.

The receiving phase is the reverse process of sending. When a
packet comes from any port that GoHop listens, it would be decrypted
to plaintext, and then sent to the frame-rebuild buffer. The traffic
shaping oracle then rebuild these transformed packets to one frame,
then send it up to the virtual interface. Then upper-layer application
can be able to process that frame as normal.

The only difference between server and client in this phase is that
before sending a packet out, the server need to determine which client
it should send to, a.k.a, determine the right UDP address.

B. Packet Format

GoHop traffic is sent via UDP. There are 3 reasons to use UDP
instead of TCP:

« UDP has less overhead: the UDP packet header is 8 bytes while
TCP is 32 bytes.

UDP is faster, especially for VPN traffic: As a VPN service,
TCP will run at an upper layer, which means there is no need
to guarantee reliability on VPN layer, what’s more, if TCP flow
control had run twice, the speed would be extremely slow.
UDP is more hidden: TCP is a stateful, connection-oriented
protocol, the 3-way handshake is very easy too be detected by
the adversary.

The packet layout is shown in figure 2, where the size of each
field is up on the field name in bytes. The IV field is the initial
vector of AES cypher, other partes (shaded in figure) are encrypted
using AES-128-CBC. Flag is an 8-bit field, it can both identify the
packet type and set some options. Seq is a 32-bit unsigned sequence
number. Because traffic shaping method may split a frame into several
packets, there is a Len field denoting the size of frame, and Prefix
denotes the prefix of the packet slice in the whole frame. The Sid
denotes the session id. Since there are both payload data and noise
padding in a packet, the D1en field denotes the length of payload
data.

16 1 4 2 2 4 2
| v | Flag | Seq | Len |Preﬁx | Sid | Dlen |

0-1400
Data |

0-1400
Padding |

Fig. 2. GoHop UDP packet layout

February 16~19, 2014 ICACT2014

C. Traffic Shaping

The traffic shaping phase is similar to SkypeMorph [14], since
GoHop also utilizes Monghaddam’s naive traffic shaping method.

One key component of traffic shaping is the traffic shaping oracle,
the only function of the oracle is to generate the next size of packet
in the traffic. The algorithm of this function is described as follows:
the oracle first read a packet-size Cumulative Distribution Function
(CDF) of the target traffic, such as Skype video, denoted as a, where
x; represents the probability that a packet is smaller than or equal to
4; every time it needs to generate the next packet size, it first generate
a random float number in [0, 1] denoted as Z, then search from x for
the x; which is smaller than and nearest to Z, then return j as the
next packet size.

A

1
| frames
1

frames

| Sending Buffer | | Reassembler |

A fragmented

frames I packets
1

NextSize
| Traffic Shaper | |

fragmented
packets

Receiving Buffer |

,1 fragmented

’ packets

Send to
random port

Receive from
any port

Fig. 3. Data Flow of GoHop Traffic Shaping

The data flow of the traffic shaping phase is shown in figure 3.
The traffic shaper reads next packet size token from the oracle and a
frame from sending buffer, and then pads the frame if it’s small than
token size, or fragmentates it if it’s bigger than token size.

When receiving packets from the Internet, the reassembler would
re-assemble the packet fragments into a whole frame and then send
it to upper layer.

D. Random Port

UDP sockets

Fig. 4. Random Port Implementation

Random port can be easily implemented with the help of Go’s
concurrent feature. As is shown in figure 4, For each port, GoHop
would spawn a goroutine (similar to thread) to listen on, and as soon
as a packet arrives, it would be put into a global channel. Upper layer
processes packets from this channel, just like packets are from one
socket.

For sending phase, upper layer puts packets to another global chan-
nel, then the scheduling algorithm would determine which goroutine
to take that packet, then that goroutine would send the packet to the
Internet.

ISBN 978-89-968650-3-2

30

V. EXPERIMENTS

Corresponding to our design goals, we perform our experiment
in two phases: obfuscation effectiveness test and throughput perfor-
mance test.

A. Obfuscation Effectiveness

In the effectiveness test, we deploy GoHop server on a VPS with
128MB memory located in Seattle, US, the client runs on a PC
located in Beijing, china. We set MTU of virtual interface to 1400
since there is a 82-byte overhead of VPN-tunnel and encryption. The
random port range is 40100 to 40200, and the target traffic shape
is packet size uniformly distributed from O to MTU. As soon as
GoHop starts, the client PC can successfully access websites blocked
in China.

In order to test the effectiveness of our obfuscation method, we
collect two types of traffic, HTTP and SSH, from the client. When
collecting data, we collect one piece from the virtual interface, which
is the traffic from and to user applications, and another piece at the
physical interface, which is the traffic that can be inspected by the
adversary.

We use Wright’s visualized classifying method [21] to evaluate our
effectiveness as shown in figure 5.

Figure 5(a)-5(e) shows the effect of traffic shaping. Figure 5(a) and
figure 5(d) are heatmaps for HTTP and SSH, where x axis is time
and y axis is packet size and client-to-server packet size is positive
and server-to-client packet size is negative. From the figure we can
see that for HTTP traffic, the server-to-client packets are often as
large as MTU, while client-to-server packets are quite small. SSH
traffic is very different from HTTP, both directions traffic’s packet
size is small, which carry human-interactive information. With this
traffic visualization method, observers can easily identify the traffic’s
application protocol without inspecting packet content. [21]

Figure 5(b) and figure 5(e) are heatmaps for GoHop packets that
carry HTTP and SSH. We can see that GoHop successfully changed
the in-tunnel traffic distribution, and expect for throughput, there is no
much difference between HTTP and SSH in packet size distribution
from human’s view. Since we did not change the timing property of
traffic, we can still tell that HTTP needs more packets than SSH.

TABLE I
STATISTICAL PROPERTIES OF PACKET SIZE
Protocol Max Min Mean Variance D (K-S) p (K-S)
HTTP 1400 40 610 409867 - -
SSH 1226 52 247 138053 - -
GH(HTTP) 1482 73 783 163598 0.019 0.20
GH(SSH) 1482 90 782 163889 0.022 0.11

Figure 5(c) and table I present more detailed properties on packet
size. Figure 5(c) is the CDF of packet size for HTTP, SSH and
GoHop. We can see that CDF of HTTP differs much with SSH, but
GoHop traffic CDF for SSH and HTTP is almost the same. Table I
shows several statistical metrics for packet size. These metrics for
original HTTP and SSH varies a lot, but for GoHop obfuscated traffic,
the metrics are almost the same. We further conduct Kolmogorv-
Smirnov test [22] for first 3000 packets of GoHop traffic, the D value
for both HTTP and SSH traffic is smaller than the threshold (0.025)
and p value is larger than 0.05, so we cannot reject the hypothesis
that the traffic shaper successfully morphed packet size distribution
of both HTTP and SSH traffic to uniform distribution.

Figure 5(f) shows the throughput comparison between whole
GoHop traffic and that on one specified port. Since GoHop use

February 16~19, 2014 ICACT2014

1.0 T T

1500F— T T T T = 1500 f T .i T = . -
£ 1000f { & 1000} | : 0.8} - 1
> > ! i ! e
£ s00f, { 2 s00p ; { 1 0.6} - .
7] W | i ' ~
N Qim0 Ey e——— - B N 0t - [m] o
o s A i I } Y04l 7 | — wTTP I
g -500f { § -500f Lo ; . s s
i -1000+ | i -10004 ') - } 3| 1 0.2 L — - GoHop(HTTP) |
—1500k 'm=r =y cp e —1500 L R, ey b] oolm" _ CoropiEsH)
0 100 200 300 400 500 600 700 800 0 100 200 300 400 500 600 700 800 0 400 800 1200 1500
time (s) time (s) packet size (byte)
(a) HTTP packet size with time (b) GoHop(HTTP) packet size with time (c) CDF of packet size
. . . We—
_ 1500 F 1 1500 F | 1 . — Throughput
& 1000 - & 1000} P 5 107 — Throughput {port 40120)
> > I 0 2
2 500t - 2 500f .- 210 1
T w8 ol Sy |
i . @ [2
g -500| - B -500f ‘ 1 E—’ 10°]
& -1000 - ® —1000} [R o 1
(= ' o [} I
-1500¢ . ‘ .] -1500L ‘ ‘ S)
Q 50 100 150 0 50 100 150 0 100200 300 400500600 700800900
time (s) time (s) time (s)

(d) SSH packet size with time

(e) GoHop(SSH) packet size with time

(f) Port throughput

Fig. 5. Flow Properties GoHop

random port for UDP communication, the throughput on one single
port is significantly lower than the whole traffic. So it’s more difficult
to be detected by the adversary.

B. Throughput Performance

1) Upper bound Performance: The first part of performance test is
upper bound test, which determines the best performance that GoHop
can reach. We deploy GoHop server on a desktop PC with a 4-core
3.0 GHz CPU and 8 GB memory, and GoHop client runs on a laptop
with 2-core 2.6 GHz CPU and 4 GB memory. These 2 computers are
connected via 1000 Mbps ethernet.

We utilize iperf tool to test throughput performance. We first
test the direct-link speed, and that results in 936 Mbps, which is near
to the theoretical speed of 1000 Mbps ethernet.

Then we test GoHop with 3 configurations:

1) traffic shaping off, communicate on one port

2) traffic shaping off, communicate on 100 ports
3) traffic shaping on, communicate on 100 ports

TABLE II
UPPER BOUND THROUGHPUT PERFORMANCE

Conf. Virtual NIC Physical NIC
1 76.8 Mbps 85.3 Mbps
2 78.5 Mbps 88.7 Mbps
3 58.1 Mbps 93.3 Mbps

The result is shown in table II, where virtual NIC speed is
the throughput on top of GoHop, which is the effective traffic for
applications, and physical NIC speed is the throughput on physical
link. From the results we can see, that the number of random ports
does not influence the performance of GoHop, while traffic shaping
produced much traffic overhead and only about 60% of traffic is valid.

2) Application Performance: Then we test the performance in
application scenario by downloading a 20 MB file? from an unblocked

Zhttp://mirrors kernel.org/debian/dists/stable/Contents-armel.gz

ISBN 978-89-968650-3-2

website. The GoHop server locates in Seattle, US and the client is
located in Beijing, China.

TABLE III
APPLICATION PERFORMANCE

Conf. Speed Packet Loss
direct 1544 KB/s 341/14803
1 960.8 KB/s 226/13259
2 999.1 KB/s 212/13146
3 697.3 KB/s 357/15573

Then we measure the speed of downloading the file, and the results
are shown in table III, where the configurations for GoHop is same as
that in upper bound test, and “direct” means direct download without
connecting GoHop. From the results we can see: 1) the number of
ports does not reduce throughput speed; 2) traffic shaping brought in
overhead and increases the packet loss rate, since it generates more
fragments in traffic.

We further use iperf to test the link speed between Beijing and
Seattle, which results in 96.7 Mbps. Thus we can conclude that the
bottleneck is the link speed between Beijing and Seattle instead of
GoHop.

As a comparison, Tor can provide speed ranging in 40-300 KB/s
and when introducing obfuscation plugins, the speed can only reach
30-80 KB/s [13, 14]. The overhead of traffic shaping is about 30%,
which is similar to SkypeMorph [14]. So GoHop can provide much
faster internet access than Tor.

VI. DISCUSSION AND FUTURE WORK

a) Performance: The performance test showed that GoHop can
be faster than Tor, one reason why Tor is slow is that Tor provides
high-level security and anonymity while GoHop’s encryption method
is relatively simpler. Whats more, Tor provides public service while
GoHop provides personal service, sharing bandwidth resource also
reduces Tor’s speed. Skypemorph [14] reduces Tor speed a lot since
it has to send the same amount of data as Skype does.

February 16~19, 2014 ICACT2014

But GoHop’s traffic shaping also brings in more than 30% traffic
overhead. There are two directions of work to reduce the overhead.
First, we can find a “better shape” as the target shape which does
not produce so much overhead. Another way is to find an optimal
mapping from source traffic to the target traffic, Wright’s has found
an optimal traffic morphing [7] method, but it’s only valid on traffic
with static distribution, while in practice we need an optimal traffic
morphing method with dynamic property distribution. We put these
off as our future work.

b) Security: GoHop is still in development, and now it’s im-
plementation is not secure enough. We did not implement dynamic
session key, So every packet for GoHop shares one master key. If
that key was leaked to an attacker, then he can decrypt all GoHop
traffic.

To implement dynamic key, the session establishment part need
to be enhanced. We can adopt D-H key exchange [23] to create a
session cipher besides the master cipher, and encrypt packet payload
with session cipher and header with master cipher. Thus GoHop’s
security is improved.

¢) Ports: The random port communication is effective only if
the adversary has a concept of TCP connection or UDP session. The
adversary can still detect the range of ports that GoHop uses, and
random port loses its effectiveness of the adversary merges sessions
in that range. We can enhance this protocol that the range of random
port is also random and synchronized between client and server, and
there is also noise packet transmitting out side the range misleading
the adversary. Thus the real port that GoHop uses gets more hidden.

VII. CONCLUSIONS

In this paper, we introduced a novel censorship circumvention
tool named GoHop. GoHop is a VPN software which obfuscates its
traffic to thwart censoring authorities’ DPI and traffic analysis. Three
obfuscation method were used in GoHop: pre-shared key encryption,
traffic shaping and random port. The experiment results show that
GoHop successfully changes traffic’s packet size distribution, and
the throughput on a specified port is significantly lower than whole
traffic. GoHop is much faster than Tor, so it can provide better user
experience for internet surfing. GoHop is published as an open-source
software, and is available to be downloaded freely.

REFERENCES

[1] R. Dingledine, N. Mathewson, and P. F. Syverson, “Tor: The
Second-Generation Onion Router,” in USENIX Security Sympo-
sium, 2004, pp. 303-320.

C. V. Wright, L. Ballard, S. E. Coull, F. Monrose, and G. M.
Masson, “Spot Me if You Can: Uncovering Spoken Phrases in
Encrypted VoIP Conversations,” in IEEE Symposium on Security
and Privacy, 2008, pp. 35-49.

A. M. White, A. R. Matthews, K. Z. Snow, and F. Monrose,
“Phonotactic Reconstruction of Encrypted VoIP Conversations:
Hookt on Fon-iks,” in IEEE Symposium on Security and Pri-
vacy, 2011, pp. 3-18.

M. Dusi, M. Crotti, F. Gringoli, and L. Salgarelli, “Tunnel
Hunter: Detecting application-layer tunnels with statistical fin-
gerprinting,” Computer Networks, vol. 53, no. 1, pp. 81-97, Jan.
2009.

C. Wright, F. Monrose, and G. Masson, “On inferring appli-
cation protocol behaviors in encrypted network traffic,” The
Journal of Machine Learning Research, vol. 7, pp. 2745-2769,
2006.

(2]

(3]

(4]

(3]

ISBN 978-89-968650-3-2

32

[6] S.J. Murdoch and G. Danezis, “Low-Cost Traffic Analysis of
Tor,” in IEEE Symposium on Security and Privacy, 2005, pp.
183-195.

C. Wright, S. Coull, and F. Monrose, “Traffic Morphing: An
Efficient Defense Against Statistical Traffic Analysis.” NDSS,
pp. 237-250, 2009.

Q. Sun, D. R. Simon, Y. min Wang, W. Russell, V. N. Pad-
manabhan, and L. Qiu, “Statistical Identification of Encrypted
Web Browsing Traffic,” in IEEE Symposium on Security and
Privacy, 2002, pp. 19-30.

P. Winter and S. Lindskog, “How the Great Firewall of China
is Blocking Tor,” in Free and Open Communications on the
Internet. Bellevue, WA, USA: USENIX Association, 2012.
M. Maxstead, “Vpnreviewz advises mainland china users:
Most vpns are blocked but not all,” 2013. [Online]. Available:
http://www.prweb.com/releases/2013/4/prweb10607609.htm

Tor Project, “Pluggable transports.” [Online]. Available:
https://www.torproject.org/docs/pluggable-transports.html.en
——, “Obfsproxy.” [Online]. Available: https://www.torproject.
org/projects/obfsproxy.html.en

D. Fifield, N. Hardison, J. Ellithorpe, E. Stark, D. Boneh,
R. Dingledine, and P. Porras, “Evading censorship with browser-
based proxies,” in Proceedings of the 12th international confer-
ence on Privacy Enhancing Technologies, ser. PETS’12. Berlin,
Heidelberg: Springer-Verlag, 2012, pp. 239-258.

H. Mohajeri Moghaddam, B. Li, M. Derakhshani, and I. Gold-
berg, “SkypeMorph,” in Proceedings of the 2012 ACM con-
ference on Computer and communications security - CCS ’12.
New York, New York, USA: ACM Press, 2012, p. 97.
Clowwindy, Madeye, and L. Max, “Shadowsocks.” [Online].
Available: http://www.shadowsocks.org/

S. Le Blond, D. Choffnes, W. Zhou, P. Druschel, H. Bal-
lani, and P. Francis, “Towards efficient traffic-analysis resistant
anonymity networks,” Proceedings of the ACM SIGCOMM 2013
conference on SIGCOMM - SIGCOMM 13, p. 303, 2013.

E. Hjelmvik and W. John, “Breaking and improving protocol
obfuscation,” Chalmers University of Technology, Tech. Rep,
vol. 123751, 2010.

OpenVPN, “Security overview.” [Online]. Avail-
able: http://openvpn.net/index.php/open-source/documentation/
security-overview.html

E. Hjelmvik and W. John, “Statistical protocol identification
with spid: Preliminary results,” Swedish National Computer
Networking Workshop, 2009.

Google, “The go programming language,” 2006. [Online].
Available: http://golang.org

C. V. Wright, F. Monrose, and G. M. Masson, “Using visual
motifs to classify encrypted traffic,” in Proceedings of the 3rd
international workshop on Visualization for computer security
- VizSEC ’06. New York, New York, USA: ACM Press, 2006,
p. 41.

NIST, “Kolmogorov-smirnov goodness-of-fit test.” [On-
line]. Available: http://www.itl.nist.gov/div898/handbook/eda/
section3/eda35g.htm

W. Diffie and M. Hellman, “New directions in cryptography,”
Information Theory, IEEE Transactions on, vol. 22, no. 6, pp.
644-654, 1976.

[7

—

(8]

(9]

(10]

(1]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

February 16~19, 2014 ICACT2014

Yuzhi Wang received his B.S. degree in 2012 from
School of Telecommunication Engineering in Xidian
University, Xi’an, China, and he is currently a Ph.D.
student in Department of Electronic Engineering
in Tsinghua University, Beijing, China, under the
supervision of Prof. Huazhong Yang. Mr. Wang’s re-
search mainly focuses on Wireless Sensor Networks,
Internet of Things and Network Security.

Ping Ji received the B.A. degree in computer science
and technology from Tsinghua University, Beijing,
China, in 1998, and the Ph.D. degree in com-
puter science from the University of Massachusetts,
Ambherst, in 2003. Since 2003, she has been a faculty
member of the Master’s Program in Forensics Com-
puting at the Mathematics and Computer Science
Department, John Jay College of Criminal Justice,
New York, NY, and a faculty member of the Ph.D.
program in Computer Science of the Graduate Cen-
ter, City University of New York (CUNY), Flushing,

Pengjun Wang received the B.S. and Ph.D. degrees
from the NICS Group, Department of Electronic
Engineering, Tsinghua University, Beijing, China
in 2006 and 2011, respectively. Currently, he is
an Assistant Research Scientist in Department of
Electronic Engineering in Tsinghua University. His
recent research mainly focuses on Wireless Sensor
Networks and Structural Health Monitoring.

Rong Luo (M’05) received the double B.S. degree in
engineering physics and electronic engineering and
the Ph.D. degree from Tsinghua University, Beijing,
China, in 1992 and 1997, respectively. Currently,
she is an Associate Professor with the Department
of Electronic Engineering, Tsinghua University. Her
current research work is mainly on SoC design
technology, VLSI design, Wireless Sensor Networks
and Data Mining.

NY. Her research interests include protocol design, performance analysis,
and signaling for advanced networks services, network security, wireless and
sensor networks, and network measurements and performance modeling.

Borui Ye is currently an undergraduate student in
School of Computer Science, Beijing University
of Posts and Telecommunications, Beijing, China.
Ms. Ye’s research interests include Artificial Intelli-
gence, Machine Learning and Network Security.

Huazhong Yang (M’97-SM’00) received the B.S.
degree in microelectronics and the M.S. and Ph.D.
degrees in circuits and systems from Tsinghua Uni-
versity, Beijing, China, in 1989, 1993 and 1998,
respectively. Since 1993, he has been with the De-
partment of Electronic Engineering, Tsinghua Uni-

versity, where he has been a Full Professor since
1998. His research interests include CMOS radio-
frequency integrated circuits, VLSI system structure
for digital communications and media processing,
low-voltage and low- power ICs, and computer-aided
design methodologies for system integration, wireless sensor networks and
structural health monitoring.

ISBN 978-89-968650-3-2 33 February 16~19, 2014 ICACT2014

