Free and Open

COMMUNICATIONS

Il 0N the [Internet

Crowdsourcing the Discovery of Server-side Censorship Evasion Strategies

Nhi Tran Kevin Bock Dave Levin
University of Maryland University of Maryland University of Maryland

This work is licensed under the Creative Commons Attribution 4.0 International License. To view a copy of this license visit

https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain
View, CA 94042, USA.

Free and Open Communications on the Internet 2023(1), 88-90

© 2023 Copyright held by the owner/author(s).



https://creativecommons.org/licenses/by/4.0/

Crowdsourcing the Discovery of Server-side Censorship Evasion Strategies

Nhi Tran, Kevin Bock, Dave Levin
University of Maryland

1 Introduction

A recent advance in the field of censorship evasion is that of
server-side censorship evasion, in which a server manipulates
packets during a TCP three-way handshake in order to bypass
censorship on the client’s behalf [1]. The packet manipula-
tions exploit weaknesses in how censors track or tear-down
connections so that they are unable to censor a client’s for-
bidden request. Server-side evasion strategies are particularly
appealing because they do not require clients to take any addi-
tional action or install additional software; indeed, the client
avoids censorship even if they did not realize they were being
censored in the first place. This results in easier and safer
deployment, and it has been adopted by multiple censorship
evasion tools [7].

A limitation of server-side evasion is the difficulty in dis-
covering the evasion strategies in the first place. In the past, re-
searchers studied censorship systems and handcrafted packet
manipulation strategies that could bypass the censor [3,4, 8].
More recently, researchers have proposed multiple solutions
towards automating the discovery of these packet manip-
ulation strategies, including Geneva [2], Alembic [5], and
SYMTCP [9]. All of these require client-side instrumenta-
tion for their training phase: even when packet manipulation
strategies are deployed exclusively at the server, each tool
still requires the control of a client during training to issue
requests through a censor. This poses a significant limitation:
it is challenging for researchers to get access to machines in
every network of interest.

In this extended abstract, we sketch a design for how we
can automatically discover censorship evasion strategies with-
out having direct control over the clients that participate in
training. We propose a distributed training model in which
users can visit a website with an unmodified web browser,
and, after providing their informed consent, contribute to dis-
covering censorship evasion strategies. The idea is that users’
browsers can generate forbidden requests to a server under
our control, and we can make use of those interactions with
the censor to discover censorship evasion strategies. By al-
lowing many users under a given censor to contribute to a
single training pool, we can distribute the burden of training

and gain broader test coverage for strategies. We describe our
distributed training model as an extension of Geneva.

2 Background

Geneva [2] is a genetic algorithm that discovers packet manip-
ulation strategies to bypass censorship, through the process of
evolution over a series of discrete generations. The censorship
evasion strategies that Geneva discovers only need to be run
on one side of the connection: either client-side or server-side.
Training Geneva requires both a client and a server whose
communication crosses a censor. In server-side training, the
client merely sends unmodified requests that trigger censor-
ship; all of the packet manipulations occur server-side.

While it trains, Geneva maintains a population pool of
strategies, wherein each strategy is a series of modifications
to perform on network traffic. It evaluates each strategy using
a fitness score, and those with the highest fitness are more
likely to survive to the next generation, at which point they
may also undergo mutations. This process repeats iteratively,
logging any successful evasion strategies. At first, Geneva’s
initial population pool of strategies generally performs very
poorly, but as the worst strategies are eliminated, Geneva
explores the space of potential strategies that do not break the
TCP connection.

3 Design

Put simply, our tool allows any willing user to use their
browser as the client in performing Geneva’s server-side train-
ing.

User Experience From the user’s perspective, they visit a
website in an unmodified browser with minimal requirements
(JavaScript), from within a network that the user suspects is
experiencing censorship. Before conducting any experiments,
the user is presented with an informed consent form describ-
ing the experiment as well as the potential benefits and risks.'
If the user consents, then the browser automatically coordi-
nates with a server under our control and runs the experiments;

TOONI has an easy-to-understand description of risks [6], which we
believe can serve as a good starting point for our informed consent.



during this, the webpage informs the user that the experiment
is underway, showing them the specific domains being used
in its testing, and including a button that allows them to stop
the experiment at any time. If the server is unable to trigger
or detect censorship, then it terminates the experiment and
informs the user. When the training is complete, the webpage
debriefs the user, providing a detailed summary of what tran-
spired (number of requests, which domains), and the project’s
contact information.

Despite such minimal user interaction and no downloads
whatsoever, we posit that this will suffice for allowing us to
discover new censorship evasion strategies in a wide range of
new networks.

Geneva training The servers we control will run many in-
stances of Geneva’s genetic algorithm and host the public
facing website. Specifically, each server will run many train-
ing pools; each pool is a population of strategies that Geneva’s
genetic algorithm is evolving. The server maintains at least
one training pool for each censorship system we want to train
against; in our initial version, we plan for only a few pop-
ulation pools and to start by targeting individual countries
with centralized censorship systems (such as China or Iran).
As users are available to contribute to each training pool, the
server instructs their browser to make forbidden requests to
isolated ports on which the server runs select strategies from
the pool. By monitoring the success or failure of each strategy,
the server can evolve each training pool in isolation for each
censor. As we are constrained by the types of requests that a
browser can generate and direct at our server, we are limited
to training against HTTP and HTTPS censorship.

Protecting Users The most important consideration of this
design is protecting users. First, we require that all users
provide informed consent before participating in training.
Our system will explain what their browser will do in clear,
concise language, (internationalized to different languages)
and the system will require that users give consent by typing
a message that says they understand and agree.

Even with informed consent, some users may not accurately
conceptualize the risk of participating in training. To reduce
the number of times each user will trigger censorship, the
system will impose limitations on how frequently the user
can generate forbidden requests.

It is also critical that the system protects user privacy. We
will collect the minimal amount of information on users as
possible. We will not store any source IP addresses or any
identifying information about their browser; instead, we will
store only AS-level information alongside randomized, short-
lived client identifiers. Fortunately, this coarse-grained infor-
mation suffices for server-side evasion strategies.

Identifying the Censor If multiple users from different
countries train in the same population pool, clients may face
difficulties in triggering censorship, as different countries have
different censorship systems put into place. To avoid these

difficulties, the server must identify which censor a user is
coming from. The server will start with identifying the user’s
ASN and determine if that ASN has already been tested to
trigger censorship. If the server does not know how to trigger
censorship for that ASN, the user cannot participate in the
training session at that time. However, if the server does know
how, the user will then be allowed to participate in the training
session and send requests to server, testing if the censor will
behave in the way that we expect it to.

Triggering Censorship In order to evaluate censorship eva-
sion strategies during training, we must be able to trigger
censorship destined to our server from a browser. Compared
to other networking tools, browsers are more limited in the
types of requests they can generate. For example, we cannot
independently control the Host: header of HTTP requests
or the Server Name Indication (SNI) field of TLS requests,
which commonly store the destination domain of a request.
We propose two paths forward to trigger censorship.

First, we plan to use keyword-based censorship. This would
allow us to trigger censorship by including forbidden key-
words in requests. Some censors have been known to censor
specific keywords when included in HTTP parameters, in-
cluding the GFW [1,2]. This gives us an easy mechanism to
trigger HTTP censorship, but it has at least two limitations.
First, it will not allow us to trigger censorship everywhere,
because not all censors employ keyword-based censorship.
Second, the mechanisms by which a country censors keyword-
based censorship (and thus the strategies that evade them) do
not necessarily apply to other forms of censorship.

Our second planned approach for triggering censorship
is to abuse overblocking. Researchers have identified that
some censors use regular expressions to block certain do-
main names, and sometimes, those regular expressions are
too broad. For example, a country looking to block forpo-
Jject.org with a regular expression might accidentally also
block mentorproject.org. We propose registering domains
that contain other censored domains and pointing them back
to our server. In this way, we can legitimately address requests
to a censored domain and have it still be routed to our server.

4 Conclusion

Server-side censorship evasion strategies are compelling be-
cause they do not require any client-side changes whatsoever.
In this extended abstract, we have sketched the design of a
system that will allow us to discover new server-side strate-
gies with unmodified clients, as well. Central to our design is
the respect and protection of users; to this end, we believe that
informed consent is of paramount importance. We welcome
feedback on this work-in-progress tool.



Acknowledgments

We thank the anonymous reviewers and our shepherd, Micah
Sherr, for their helpful feedback. This work was supported in
part by NSF award CNS-1943240.

References

[1]

(3]

[4]

Kevin Bock, George Hughey, Louis-Henri Merino, Tania
Arya, Daniel Liscinsky, Regina Pogosian, and Dave Levin.
Come as You Are: Helping Unmodified Clients Bypass
Censorship with Server-side Evasion. In ACM SIG-
COMM, 2020.

Kevin Bock, George Hughey, Xiao Qiang, and Dave
Levin. Geneva: Evolving Censorship Evasion. In ACM
Conference on Computer and Communications Security
(CCS), 2019.

Sheharbano Khattak, Mobin Javed, Philip D. Anderson,
and Vern Paxson. Towards Illuminating a Censorship
Monitor’s Model to Facilitate Evasion. In USENIX Work-
shop on Free and Open Communications on the Internet
(FOCI), 2013.

Fangfan Li, Abbas Razaghpanah, Arash Molavi Kakhki,
Arian Akhavan Niaki, David Choffnes, Phillipa Gill, and
Alan Mislove. lib.erate, (n): A library for exposing (traffic-

(5]

(6]

(7]

(8]

(9]

classification) rules and avoiding them efficiently. In
ACM Internet Measurement Conference (IMC), 2017.

Soo-Jin Moon, Jeffrey Helt, Yifei Yuan, Yves Bieri, Su-
jata Banerjee, Vyas Sekar, Wenfei Wu, Mihalis Yan-
nakakis, and Ying Zhang. Alembic: Automated Model
Inference for Stateful Network Functions. In Sympo-
sium on Networked Systems Design and Implementation
(NSDI), 2019.

OONI. Risks: Things you should know before running
OONI Probe. https://ooni.org/about/risks/.

Psiphon Packet = Manipulation: Packetman.
https://pkg.go.dev/github.com/Psiphon-
Labs/psiphon-tunnel-core/psiphon/common/
packetman.

Zhongjie Wang, Yue Cao, Zhiyun Qian, Chengyu Song,
and Srikanth V. Krishnamurthy. Your State is Not Mine:
A Closer Look at Evading Stateful Internet Censorship.
In ACM Internet Measurement Conference (IMC), 2017.

Zhongjie Wang, Shitong Zhu, Yue Cao, Zhiyun Qian,
Chengyu Song, Srikanth V. Krishnamurthy, Kevin S.
Chan, and Tracy D. Braun. SymTCP: Eluding State-
ful Deep Packet Inspection with Automated Discrepancy
Discovery. In Network and Distributed System Security
Symposium (NDSS), 2020.


https://ooni.org/about/risks/
https://pkg.go.dev/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/packetman
https://pkg.go.dev/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/packetman
https://pkg.go.dev/github.com/Psiphon-Labs/psiphon-tunnel-core/psiphon/common/packetman

