
Matryoshka: Hiding Secret Communication in Plain Sight

Iris Safaka
EPFL

Christina Fragouli
UCLA

Katerina Argyraki
EPFL

Abstract

We want to enable a pair of communicating users to ex-
change secret messages while hiding the fact that se-
cret communication is taking place. We propose a lin-
guistic steganography approach, where each human mes-
sage is hidden in another human-like message. A hard
open question is how to keep the steganographic mes-
sage small – existing related tools tend to blow up its
size, thereby revealing the use of steganography. We
encrypt by compressing each message, mapping it to a
plausible sequence of words (using a language model),
and letting the human user edit the outcome to produce a
human-like message; we decrypt with a Viterbi-like state
decoder. Our approach aims in producing text that a hu-
man can edit and fix with minimal effort. As a first step,
we build a prototype of our system that helps users en-
crypt English messages (into English messages), and we
report on first experiments on Mechanical Turk.

1 Introduction

When we use free communication systems (e.g., Google,
Hotmail, Facebook etc.) there is an implicit agreement
that these systems will send advertisements to the users.
The economic underpinnings of such systems have been
routine now for a few years and users have mostly be-
come aware of this tradeoff. Hundreds of millions of
users use these systems daily.

From a privacy preservation point of view it should
be noted that most messages exchanged between users
do not necessarily raise privacy concerns. Addition-
ally, the notion of privacy varies from user to user even
though there is general acceptance that messages relat-
ing to health, finance, relationships, religious beliefs etc.
may be viewed by many as potentially private. Out of
tens of e-mails sent daily, there may be just one or two
that we might want to keep private from the communica-
tion system.

This paper proposes a linguistic approach to confiden-
tiality, reclaiming our right to keep some information pri-
vate. Our approach takes as input a short human sen-
tence and maps it to other human sentences, which can
be mapped back to the original one by a correspondent
privy to an agreed code. It thus hides the message in
plain sight: it not only keeps the message secret, but also
the fact that we have something to hide.

We argue that such an approach is more desirable than
simply using cryptographic encryption. A messaging
service provider can detect cryptographically encrypted
messages, has no incentive to encourage encryption – if
widespread, it could harm its revenue – and could, in
retaliation, treat our traffic preferentially. And service
providers are not the only potential evil entities. They
may themselves want plausible deniability in enabling
users to exchange secret messages; the communication
system may want to be able to tell the government “I
cannot possibly know whether these users are exchang-
ing secret messages”. A linguistic encryption approach
that creates encrypted messages indistinguishable from
our regular correspondence would directly address such
concerns.

Unfortunately, existing linguistic steganography ap-
proaches would not be a good fit for our needs. Several
of them are easy to detect once we know how the encoder
works (see Section 7). Most of them encrypt sentences
at a very low rate, leading to encrypted text that is much
longer than the secret, which can again give away the
presence of steganography. Apart from achieving a high
rate of encryption, we need low encoding and decoding
complexity that still leads to undetectable encryption.

Which brings up the question: what is non-detectable
linguistic steganography? Clearly, a message either
looks like human speech or it does not, if a human so
asserts. But open communication systems cannot possi-
bly afford human operators look through the billions of
e-mails exchanged every day, and randomized sampling
would not catch the small percentage of encrypted mes-

1

sages we anticipate. Thus we pose the reverse of Turing’s
famous test: can a machine tell if a sentence has been
written by a human or not? and can it do so, if it needs
to process billions of e-mails – thus in a computationally
efficient manner?

We present in this paper the design and evaluation
of an approach that performs well on the best machine-
based test we could devise, by combining automated text
generation with human-in-the-loop help. Our approach
builds dictionaries that efficiently map natural language
text to natural language text. The encoder uses the dictio-
nary to produce candidate steganographic text. We then
ask the human user to polish the resulting word sequence
to human-like sentences. To decode, we use a completely
automated approach based on Viterbi decoding.

We think that using a bit of human help is not bad.
We optimize our system to require minimal intervention
from the human user and evaluate through Mechanical
Turk experiments the time of human effort it requires
(less than a few minutes in most cases). We think this
is an acceptable amount of effort for the one message per
day we may want to protect; and having a human polish-
ing the sentences makes it very hard for a machine to de-
tect it is steganographic text. At the same time, the need
for some human effort, even minimal, makes our ap-
proach non-threatening to communication systems: we
expect that most people would not be willing to put in
the extra minutes for every e-mail they send.

The rest of the paper is organized as follows. Sec-
tion 2 summarizes our setup and high level approach;
Sections 3 and 4 describe our encoder and decoder re-
spectively; Section 5 presents experimental results and
Section 7 reviews related work.

2 Setup and Block Diagram

Problem statement. We want to enable two commu-
nication parties, Alice and Bob, to exchange short se-
cret messages, masked as innocuous messages, over their
messaging provider, such that an adversary, Eve, is un-
able to distinguish between normal messages and those
carrying hidden information. We assume that Eve has ac-
cess to all the messages crossing the internal infrastruc-
ture of the service provider and that the load of messages
is large enough to prevent Eve from visually inspecting
each one of them; she instead runs detection algorithms
to identify the existence of steganography. Note that this
does not imply that our approach is de-facto vulnerable
to human inspection attacks – the “human-in-the-loop”
is a significant step toward successfully mitigating these
attacks. It rather implies that the load is such that Eve
does not have any better strategy than running a detec-
tion algorithm.

Figure 1: Encoder and decoder block diagrams.

Block Diagram. Our approach consists of using an en-
coder and decoder that run before and after we use the
messaging service, as shown in Fig. 1. At the encoder,
we use the following blocks: Compression compresses
the secret message we want to send into a bit sequence;
Bits-to-Words Mapping breaks each sequence into sub-
sequences of a fixed length, and maps each one to a word
among a set of possible choices (at this point we may
also output additional words to better approximate hu-
man language); User enhancement is the stage where the
human user is presented with a candidate sequence of
words, and is asked to add words so that the result is
as close as possible to human natural language. At the
decoder, the block Text Cleaning removes the words in-
serted by the human user; the block Words-to-Bits maps
the remaining words back to bit sequences, the concate-
nation of which gets decompressed to the hidden mes-
sage from the Decompression component.

Optionally, a symmetric-key encryption block may be
added in our system so as to ensure confidentiality of the
secret message even in the case where Eve has both iden-
tified the existence of steganography and retrieved the
hidden bit sequence. For example, an AES-GCM scheme
[9] in 128-bit block cipher mode for authenticated en-
cryption could be applied on the output of the Compres-
sion block. In that case the resulting bit sequence would
be of the same or slightly larger length (up to 128 bits,
depending on the length of the produced authentication
tag that gets appended at the end of the ciphertext). In
this paper, we do not assert the cryptographic strength of
our approach and in fact we have not tested our scheme
for it. Our contribution is the idea of open communica-
tion that preserves privacy at low cost while cohabitating
with the advertisement-driven means of communication.

We next describe the design choices for each of the
blocks in Fig.1 and their implementation.

2

3 Encoder

3.1 Compression

We use a mixed Huffman codebook C to compress a mes-
sage into a bit sequence, in a lossless way. The symbol
alphabet includes all printable ASCII characters (lower
and capital case letters, numbers, space, digits, punctua-
tion) and the set of the 300 most frequently used words
in written English (that make up about 65% of all written
material [6]). We denote with C and C−1 the compres-
sion and decompression functions respectively. We use
the character Huffman to enable to compress names and
other unusual words; and the word Huffman to efficiently
compress the most common words.

To built the codebook, we derive the frequencies of the
characters and the words from a large training text (total-
ing approx. 78M characters, 13M words). The resulting
codebook yields a 52% compression ratio on average1,
which is 7% better than if we considered a symbol al-
phabet of only printable ASCII. Alice and Bob use the
same pre-computed codebook to compress/decompress
messages, that can be included in the resources of their
encoder/decoder. In a smarter version of our system,
we could compress using a word Huffman that includes
words that are most common in messages considered pri-
vate, such as love, hate, pregnancy, etc.

3.2 Bits to Words Mapping

To map bits to words, we first parse the bit sequence
into sub-sequences of length b bits2. Each sub-sequence
uniquely identifies a set of words that we call a bin and
denote as B. Inside each of the 2b bins we have placed
p bin words. We call the unique mapping between b-bit
sequences and bins a dictionaryD and we denote with D
the bits to bin conversion and with D−1 the reverse oper-
ation. WB is the set of all bin words and WS the set of
stop words, i.e., words not included in D.

Example: Assume a dictionary of size 4 entries (b= 2)
with bins B0 = {to, the, an}, B1 = {I, we, you}, B2 =
{music, piano, weather}, B3 = {like, hate, hear}, and a
message that has been compressed into the bit sequence
“01110010”. This gets mapped into a bin sequence as
follows: “01” corresponds to B1, “11” to B3, “00” to
B0, “10” to B2. Any selection of words from the bin
sequence B1, B3, B0, B2 embeds the hidden message,
e.g., the words “I like the weather”.

Alice and Bob share a pre-computed dictionary D, or
independently compute it by using the same text corpus
R plus a secret key K, as described next. Note that we

1We compress 4,825 sentences of length between 4 and 15 words.
2If needed, the compressed bit sequences is padded with 0’s at the

end. This operation is reverted while retrieving the hidden message.

can easily customize our approach to produce sentences
on a topic of interest of the user, by using bin words that
come from a specialized text; for instance, in one of our
experiments, we used words from a text on dreams, and
in another from texts on animals.

Dictionary Building. To be able to create natural lan-
guage sentences, we need to be able to find words be-
tween consecutive bins that would also appear close to
each other in human speech. We try to do so in two ways:
first, we populate each bin with p words drawn accord-
ing to the frequency distribution of the words in R, so
that each bin can have more frequent words and less in-
frequent words; second, we allow a bin word to appear in
more than one bin. E.g., assume that the word “sunny” is
placed only in bin B1, and the word “weather” in bin B2;
unless the bins occur in that order there is no chance that
these words could get selected together. Instead, if both
words appear in more than one bin, there exist more com-
binations of bin sequences that allow these words to get
selected. Repeating words in bins allows in addition for
the dictionary size to be more than |WB|

p entries, which
allows for larger b and greater covert rate. Clearly, re-
peating words in bins can be viewed as a form of “noise”
in the Alice-Bob channel.

We build our dictionary as follows. LetWR denote the
set of unique words derived from a text corpus R and E a
set of frequently used English words:

1. AssignWB =WR − E andWS =WR ∩ E .

2. For every word wi ∈WB, its number of occurrences
oi in the corpus R is counted, and its frequency of
occurrence fi is calculated as fi =

oi

∑
|WB|
j=0 o j

.

3. A vector v, with |v| = p · 2b, is constructed be re-
peating d fi · p · 2be times each word wi ∈WB. The
vector v is randomly shuffled, using K as seed.

4. All the elements between v[i] and v[i + p], i ∈
{0, p,2p . . . ,(p− 1)2b}, are placed in the bin B j,
j ∈ {0,1, . . . ,2b−1}. The setsWB andWS are ac-
cordingly updated3.

Word Choice. The next step is to select one word to
use from each bin, so that the sequence of words we
select form natural or nearly natural sentences. To this
end, we use an n-gram language model: n-grams are se-
quences of n words derived from a corpus; a correspond-
ing n-gram model captures the probability of any n words
appearing sequentially.

3Because of the rounding operation at step 3, some words with very
low frequency might not be eventually placed in a bin. At the end, the
sets WB and WS are accordingly updated to contain all words within
the bins and words from the corpus not placed in a bin, respectively.

3

We use the OpenGrm library [10] for generating an
n-gram language model LR, encoded as cyclic weighted
finite-state automaton (FSA), based on a corpus R. The
generated n-gram model is represented in the form of an
acceptor, i.e., an automaton with the input and output
labels of a transition being equal. Finite-state acceptors
are used to represent sets of strings; in the case of the
n-gram model, the set of n-grams observed in a corpus
R.

Every sentence in corpus R corresponds to a valid path
in the model LR. Every transition in the automaton is
associated with a weight that represents the probability
of the transition. For every valid path in the automaton,
an associated probability can be computed as the accu-
mulation of the transition weights along the path. We
smooth the model using the Witten-Bell algorithm [4] so
that there are valid paths in the model that do not corre-
spond to any sentence in corpus R. These paths model
unseen word sequences based on the statistics of the n-
grams observed in R.

Word Choice Algorithm. Given a bin sequence
B1, . . . ,Bm, a language model LR and a parameter k:

1. B1, . . . ,Bm is parsed into dm
k e sub-sequences, each

of k elements long.

2. For every sub-sequence, a corresponding FSA is
generated; we refer to this FSA as the bin model
associated with the given sub-sequence of bins:

(a) For every bin Bi, a state Si is created. A state
Sk+1 is also created.

(b) For every word w j ∈ Bi, a transition is added
from state Si to destination state Si+1. The
transition is marked with input label w j and
output label w j.

(c) For every state Si and for every word wr ∈WS,
a transition is added from state Si to desti-
nation state Si (self-loop). The transition is
marked with input label wr and output label
wr.

3. For every bin model generated, a sequence of q≥ k
words is produced:

(a) The bin model is intersected with LR; the re-
sulting FSA is the combined model.

(b) The shortest path in the combined model is
computed, i.e., the path with the highest prob-
ability. The output labels of the shortest path
is the sequence wi1, . . . ,wiq

The final stegotext w1, . . . ,wq′ , with q′ ≥ m, is formed
as the concatenation of the sequences wi1, . . . ,wiq, in the
order they were produced.

Note that the bin model is an acceptor that represents
a set A of all strings of words that can be derived by per-
forming the cartesian product between the bins of a bin
sub-sequence, namely all the possible combinations of
the bin words of the sub-sequence. This acceptor also
represents a set B of strings of words, which is a proper
superset of set A. Set B includes all the strings of A
augmented by an arbitrary number of stop words (words
from set WS), placed in-between the bin words and at
arbitrary places. The combined model model is an ac-
ceptor that represents strings of words accepted by both
the language model and the bin model. These strings
are essentially the ones appearing in the language model
and (a) contain words from the bins in the given sub-
sequence (in the order of the sub-sequence), (b) may or
may not include stop words. The probabilities of LR are
retained in the combined model; by selecting, thus, the
most probable path we select the most probable string of
the combined model that satisfies (a) and (b), and also is
the most likely to appear in natural language (according
to language model LR).

3.3 User Enhancement

The user is presented with a sequence of words and is
asked to polish this to human-understandable sentences
without changing the order of the given words – in our
user-enhancement interface the bin words are presented
in non-editable fields separated by editable fields where
the user may insert new words and reuse/delete poten-
tially generated stop words, at their will. In Fig. 2 we
demonstrate examples of user-enhanced outputs of our
encoder. Note that we have purposely excluded from
the bin words set the 100 most frequently used English
words (e.g., the words “a”, “and”, “to”, etc.) in order
to give flexibility to the user while enhancing the stego-
text. We do not allow the users to add words that are
included in the bins (our user-enhancement interface au-
tomatically checks and enforces this) since it would in-
troduce bits in the original compressed bit sequence and
could create ambiguity at the decoder. In our experi-
ments users rarely attempted to enhance using bin words.

We note here that our scheme is not restricted to solely
operate on the English language. The input of the en-
coder, i.e., the secret message, may be written in any
language, e.g., in French. Such a message would get
compressed using the French mixed Huffman codebook
– generated in the same fashion as the English codebook
(Section 3.1). The language of the output of our encoder
may also be chosen by the user and, in addition, indepen-
dently of the input language: for example, Alice wishes
to hide a message written in French and send to Bob a
stegotext written in German. To do so, she simply needs
a corpus R in German, out of which the dictionary DR

4

and the language model LR are created (exactly as de-
scribed in Section 3.2 with the only difference that set E
should contain the most popular words of the targeted
output language); these are used in the Bits-to-Words
block to map the compressed bit sequence (regardless
of which codebook was used during compression) into
German sentences which Alice finally enhances. This
is possible since no additional information about the tar-
geted output language is needed to build DR and LR other
than the one gained through the corpus R (frequency of
words, n-grams etc.).

4 Decoder

In this section we mainly describe the Decompression
block. Text Cleaning simply removes all words that are
not in the word bins, and have been inserted during the
User Enhancement. Words-to-Bits Mapping takes each
word wi and retrieves all bins into which this word ap-
pears. At this point we have a set of possible binary
sequences. Decompression decides which of these ac-
tually occurred, by attempting to decompress each using
our Huffman code and decide which of the resulting sen-
tences is a natural sentence. For this last task it uses a
state-based probability estimator.

Notation. Given a bin word wi and a dictionaryD with
bins B0, . . . ,B2b−1, we define a setAi as the set of bins in
which word wi appears. Given a sequence of bin words
w1, . . . ,wm there exists a unique sequence A1, . . . ,Am.
We define a set of states St , t ∈ {1, . . . ,dm

r e} and r ≤ m:

St =Ar(t−1)+1 × Ar(t−1)+2 . . . × Ar(t−1)+r,

where × denotes the cartesian product over sets. We re-
fer to r as the grouping factor.

By construction, every state in a set St is a distinct
sequence of r bins. We refer to state i ∈ St , as state i
at step t. Each state in every step is associated with a
state probability εi. We define a transition probability
ai j, between two states i ∈ St and j ∈ St−1, such that:

ai j = P(st = i | st−1 = j)

where st denotes the state at the current step and st−1 the
state at the previous step.

Decoding Algorithm. Given a dictionary D and a se-
quence of bin words w1, . . . ,wm, the decoder performs
the following steps:

1. For every word wi, a set Ai is constructed.

2. From the sequence A1, . . . ,Am the sequence of sets
S1, . . . ,ST , is constructed, where T = dm

r e, for some
grouping factor r ≤ m.

3. For every state i ∈ S1, its initial state probability is
computed: εi = P(s1 = i)

4. For every state i∈St , 1 < t ≤ T , its state probability
εi is computed: εi = max j∈St−1 ε j ai j

Once all the state probabilities have been computed,
the most probable state sequence s∗1, . . . ,s

∗
T is derived as:

s∗T = argmax
i∈ST

εi

s∗t−1 = arg max
j∈St−1

ε j a jst

Finally, the estimation of the most probable message sent
is computed as m∗ =C−1(D−1(s∗1, . . . ,s

∗
T)).

Approximations. We assume that the state and transi-
tion probabilities can be approximated by the probabil-
ities given by an m-order Markov model of the English
characters x ∈ X , where X denotes here all the printable
ASCII characters. That is, we use probabilities of se-
quences of English characters to approximate the proba-
bilities of bin sequences, i.e., of the states at each step t.
A bin sequence can be converted back to a bit sequence
using a dictionary D, and consecutively to a message in
English using a Huffman codebook C.

The initial state probabilities are computed as follows:

εi ≈ P(B1, . . . ,Br) = P(D−1(B1, . . . ,Br)) =

= P(C−1(D−1(B1, . . . ,Br))) = P(x1, . . . ,xn) =

=
n

∏
j=1

P(x j|x j−(m−1), . . . ,x j−1)

The transition probabilities are computed as follows:

ai j ≈ P(Br+1, . . . ,Br′ | B1, . . . ,Br)

= P(D−1(Br+1, . . . ,Br′) | D−1(B1, . . . ,Br))

= P(C−1(D−1(Br+1, . . . ,Br′)) |C−1(D−1(B1, . . . ,Br)))

= P(xn+1, . . . ,xn′ | x1, . . . ,xn)

=
n′

∏
j=n+1

P(x j|x j−(m−1), . . . ,x j−1)

Key Points. We make two assumptions: (a) The mes-
sage sent by Alice is valid English language, (b) Bob has
at his disposal an m-order Markov model that accurately
models the English language. The first assumption im-
plies that messages with typos, very rare words, loans
from spoken language, etc. may be very difficult or im-
possible to retrieve. The second assumption implies that
the Markov model of the English characters has been
trained over a large English text corpus and also for suf-
ficiently large values of m, i.e., character sequences. The
same assumptions hold in the case where Alice uses a
different input language than English.

5

Corpus Parameters
Name Description |WR| |WB| |WS| b p k

dreams A Guardian article about dreams and academic anxiety. 425 277 148 6 5 4
animals A collection of stories for kids about animals. 1,600 823 777 6 15 3
facebook A longform article from BuzzFeed about Facebook. 1,423 461 962 5 15 3

Table 1: Input parameters for the MTurk experiments.

“I have become tired of facebook’s many years of existence.
The change over the years by the engineers sucks. It seems
facebook’s wacky algorithm will never make sense. The posts
make the code on facebook obsolete.”

(a) A human understandable stegotext enhancement.

“Does facebook’s CEO feed people feed dogs. Can’t yet use
data base set book. Two posts are uses people facebook apps.
Mary Cox able humans into keeping up”

(b) A sloppy stegotext enhancement.

Figure 2: Examples of stegotexts enhanced by MTurk
users. The bin words are shown in bolt.

5 Experimental Evaluation

We use Amazon’s Mechanical Turk (MTurk) 4 to eval-
uate our end-to-end system, and in particular the effort
required by human users to turn various stegotexts pro-
duced by our encoder into meaningful natural language
texts. We encode 50 different messages (of 4-15 words)
using the parameters in Table 1. For each corpus R we
produce a dictionary DR and a 5-gram language model
LR, and we use the same mixed Huffman codebook. We
restrict the location of the MTurk users to be the United
States and we allow each user to enhance up to 3 stego-
texts per experiment.

First, we measure the completion time (in minutes),
i.e., the time needed to enhance the output of the encoder,
and the extra words inserted by the user while doing so.
We find that on average the users needed 5.0, 4.0 and 5.8
minutes, in each experiment respectively, which is com-
parable to the time needed to write a short e-mail. The
average number of extra words per sentence was 8 for
the dreams experiment, 4 for animals and 4 for facebook;
by increasing p and reducing k we see that the produced
sentences need less user-effort, i.e., they are closer to be-
ing good quality NL sentences, hence the users need to
insert less words. To demonstrate the effectiveness of
our approach, we compare to a random technique, where
words are simply uniformly at random chosen from the
bin sequence to produce the stegotexts. We observed
that ours consistently outperformed the random one: the
users needed always more time for enhancing and in-

4https://www.mturk.com/mturk/

dreams animals facebook
0

20

40

60

80

100

%

Figure 3: Sentences classified as natural language.

troduced more extra words. For example, users needed
roughly 2 mins more on average to enhance the sentences
of the animals experiment, and introduced almost double
the number of extra words per sentence.

Second, we measure the covert rate achieved, that is,
the number of hidden bits per word of enhanced stego-
text (the sum of bin words and stop words produced by
the encoder and the extra words inserted by users). In
all our experiments the average covert rate achieved was
roughly 3 bits/word; for a hidden message of 5 words,
each of 5.5 characters on average, the final enhanced ste-
gotext will be around 73 words.

We next use an One-Class Support Vector Machine
(SVM) [11] to classify sentences as natural language
(NL) or non-NL (out-of-class). We form a training set
of 150K NL sentences derived from various texts of
Wikipedia [8], the Brown [1] and the Reuters [2] corpora.
For each sentence i in the training set we use the lexical-
ized Stanford Parser 5 to infer its score (the probability
of the most likely parsing) and its Part-of-Speech (POS)
tags to construct a feature vector with the score, the num-
ber of nouns, verbs, adjectives and adverbs (each normal-
ized by the sentence length in words) and the length in
words:

zi =< score, #nouns, #verbs, #adverbs, #adjectives, length >,

We use the observations z1, . . . ,zn (n = 150K) to train
the SVM using a Gaussian Radial Base Function (RBF).
To check our classifier we tested 10K NL sentences –
95% were correctly classified – and 10K random sen-
tences 6 out of which 97% were classified as non-NL.

We analyze (Fig. 3) the sentences produced by our en-
coder before and after enhancement from MTurk users,

5http://nlp.stanford.edu/
6Produced using an on-line random sentence generator

6

and we find that 25%, 58% and 50%, for each exper-
iment respectively, were classified as NL; although the
output of the encoder would not always pass as is the test,
this result indicates that the sentences we produce are not
completely non-NL. After user enhancement these per-
centages rise to 88% on average – some poorly enhanced
sentences were detected (like the ones in Fig. 2(b)) as
expected. For comparison, the sentences produced by
the random technique were almost always classified as
non-NL.

Finally, we investigate the performance of our prob-
abilistic decoder by measuring the character error rate
achieved. We build a 6-order Markov model of English
characters using a large text corpus.7 We found that in
each experiment the decoded messages with zero error
rate where 96%, 93%, 95% resp. For the few cases where
the decoder did some mistakes, we found that the de-
coded messages where only partially corrupted, namely
on average 15% of characters were wrongly decoded.

6 Related Work

Existing approaches to linguistic steganography apply
automated text modifications techniques (see Bergmair
[3] and references therein), the majority of which re-
quire access to sophisticated NLP tools and large linguis-
tic datasets to operate. Moreover, they usually introduce
unnaturalness into the text, easily detectable by steganal-
ysis methods [12, 5], and they usually achieve a covert
rate of less than 1 bit per word. For example, Spam-
mimic 8 produces steganographic e-mails (with a rate of
approx. 0.3 bits per word), that can get easily detected as
suspicious due to long length and theme (Alice and Bob
do not usually exchange spam). Closer to our work is
the approach of Grosvald et al. [7]. Similarly to us, the
proposed approach consists of mapping the hidden mes-
sage to a sequence of words which the user modifies to
produce text. Differently to us, no significant attention
is given in forming the bin words sets and in choosing
the words, so that minimal user-effort (indeed no formal
evaluation is presented) is required. Finally, a demon-
strated example implies a covert rate of 0.5 bits per word.
Our approach differs from the existing ones since its de-
sign aims in achieving high covert rate, while remaining
practical and usable. The “human-in-the-loop” design
choice we do may require higher amount of user-effort
but it also introduces elements that make robust our ste-
gotexts to sophisticated attacks.

7The compressed data of the model amounts to 43MB.
8http://spammimic.com/

7 Acknowledgments

We are grateful to Balachander Krishnamurthy and
David Applegate for their contributions; their employer’s
policy prevented them from being included as co-authors
of this work.

References
[1] The brown corpus. http://www.essex.ac.uk/

linguistics/external/clmt/w3c/corpus_ling/

content/corpora/list/private/brown/brown.html.
Accessed April 6, 2016.

[2] Reuters corpora. http://trec.nist.gov/data/reuters/

reuters.html. Accessed April 6, 2016.

[3] BERGMAIR, R. A comprehensive bibliography of linguistic
steganography. In Electronic Imaging 2007 (2007), International
Society for Optics and Photonics, pp. 65050W–65050W.

[4] CARPENTER, B. Scaling high-order character language models
to gigabytes. In Proceedings of the Workshop on Software (2005),
Association for Computational Linguistics, pp. 86–99.

[5] CHEN, Z.-L., HUANG, L.-S., YU, Z.-S., ZHAO, X.-X., AND
ZHAO, X.-L. Effective linguistic steganography detection. In
Computer and Information Technology Workshops, IEEE 8th In-
ternational Conference on (2008), IEEE, pp. 224–229.

[6] FRY, E. B., AND KRESS, J. E. The reading teacher’s book of
lists, vol. 55. John Wiley & Sons, 2012.

[7] GROSVALD, M., AND ORGUN, C. O. Free from the cover
text: a human-generated natural language approach to text-based
steganography. Journal of Information Hiding and Multimedia
Signal Processing 2, 2 (2011).

[8] JONES, E. Extracting text from wikipedia. http://

www.evanjones.ca/software/wikipedia2text.html. Ac-
cessed April 6, 2016.

[9] MCGREW, D., AND VIEGA, J. The galois/counter mode
of operation (gcm). Submission to NIST. http://csrc. nist.
gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec. pdf
(2004).

[10] OPENGRM. Ngram library. http://www.opengrm.org/.

[11] SCHÖLKOPF, B., WILLIAMSON, R. C., SMOLA, A. J., SHAWE-
TAYLOR, J., PLATT, J. C., ET AL. Support vector method for
novelty detection. In NIPS (1999), vol. 12, Citeseer, pp. 582–
588.

[12] TASKIRAN, C. M., TOPKARA, U., TOPKARA, M., AND DELP,
E. J. Attacks on lexical natural language steganography systems.
In Electronic Imaging (2006), pp. 607209–607209.

7

