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Abstract. Content providers often face legal or economic pressures to
censor or remove objectionable or infringing content they host. While de-
centralized providers can enable censorship-resistant storage, centralized
content providers remain popular for performance and usability reasons.
But centralized content providers can always choose not to respond to
requests for a specific file, making it difficult to prevent censorship. If it
is not possible to prevent, is it possible to detect and punish censorship
on a centralized service?
A natural approach is to periodically audit the service provider by down-
loading the file. However, failure to download a file is not a proof of
censorship. First, the provider could claim benign failure. Second, the
proof is non-transferable: verifying censorship requires third parties to
individually request the censored file. Moreover, a content provider may
only selectively deny access to particular users or only for a short time
frame. As such, checking by downloading does not work even for third
parties who are online and willing to make queries.
In this paper, we introduce proof of censorship, whereby a content provider
cannot delete or otherwise selectively remove content from their service
without creating transferable cryptographic proof of their misdeed. Even
if the provider restores the file at a later date, the proof remains valid, al-
lowing the reputation of a content provider’s commitment to censorship
resistance to be based on the existence (or absence) of such proofs.

1 Introduction

Online censorship is done in many ways. In addition to blocking access to web-
sites, censors also use legal means to remove information from content providers
directly, such as through laws like the DMCA [5] in the United States. In the
second half of 2016, Twitter received over 5,000 removal requests from govern-
ment and police agencies worldwide, and complied with 19% of them [22]. In
one example from August 2016, Twitter complied with a Brazilian government
request to remove a tweet comparing then-mayoral candidate Rafael Greca to a
fictional villain from the 1992 film Batman Returns [16].

This style of censorship can be significantly less apparent than overt website
blocking. Because the service remains accessible, users are unaware of the con-
tent that may be secretly withheld from them. While some content providers



(including Twitter) publish transparency reports containing overall statistics or
examples of removed content [22, 7, 8], these reports are difficult to confirm or
refute: How can users know if the transparency reports themselves have not been
similarly censored?

While decentralized or distributed tools provide a way to make content ro-
bust against censorship, these techniques do not fully solve the problem. In a
distributed censorship-resistant scheme, users must download and use specialized
software which may itself be blocked by a censor. Due to this requirement, these
tools are only utilized by well-informed users, while the majority of people rely
exclusively on centralized content providers. Thus, there are clear advantages to
providing censorship resistance in a centralized content storage context.

One idea proposed to incentivize censorship-resistant content providers to
not delete data is to use proof of retrievability (PoR) to enable content providers
to prove that they still retain a copy of a file. In PoR, providers respond to
requests or challenges for specific subsets of a file they have agreed to store.
A provider responds with the subset, proving (over many challenges) that they
likely still store the entire contents of the file. With enough successful PoR
challenge responses, a client can reconstruct the file, meaning that a provider
that gives valid PoR responses for a file necessarily provides access to it. While
this is a useful starting point, there are two major problems with this approach.

First, the content provider can always choose to not respond to a PoR request.
Note that this is different from providing an invalid response to a request. By
simply leaving a connection open and providing no response, the service never
provides any incriminating evidence that they are not providing access to the file.
While other clients can see this suspicious behavior, the provider could choose
to respond correctly to some subset of users, seeding confusion and distrust over
claims of censorship.

Second, the content provider can cease this behavior at any time, with no
evidence that they ever censored a file. For example, a provider could wait until
a certain number of users realized a file was removed or journalists started to
ask questions before they reverted the decision to censor a file. Such a provider
could pretend they never censored a file, and those that observed that they did
would have no transferable proof. This allows a provider to censor files at will,
and restore them only when convenient.

In this paper, we describe a way that a content provider can be held account-
able for the files that they censor. We do this via a proof of censorship that a
content provider unavoidably produces should they censor a file. Furthermore,
these proofs are transferable, meaning that once one has been produced, others
can verify the cryptographic proof and see that it attests to a censored file. Even
if the content provider restores the original file, this proof still maintains the
evidence of previous censorship.

To construct our proof of censorship, we use private information retrieval
(PIR) which hides what information a client is requesting from a server. At
a high level, servers commit to storing (encrypted) files by signing hashes of
those files on upload. To download a file, a client performs a PIR query, which



the server responds to, signing both the PIR query and the server’s response.
Because the server does not know what file a client is requesting, it cannot
selectively answer queries. To censor a file, the provider must return garbage
data. Upon decryption of the PIR response, the client can confirm the file has
been censored, and can reveal its PIR queries and the signed response to the
world. Anyone with this proof (and the content provider’s long-term public key)
can verify that the content provider has removed the file.

Our proofs of censorship are compact and relatively efficient to verify: in the
event of censorship, for a reasonable size database, the proof is on the order of
a few megabytes, and takes approximately 50 milliseconds to verify on a laptop
computer.

2 Background

Fig. 1. Vector-Matrix PIR — Private Information Retrieval involves a client making
a query against a database. In Vector-Matrix PIR the client encrypts a vector of query
elements and the server then multiplies the query elements against the database blocks
homomorphically, using homomorphic addition to produce a single sum. This results in
an encrypted value corresponding to the element where the client encrypted 1 (instead
of 0), which is sent back to the client for decryption.

To describe our proof of censorship, we first provide background on private
information retrieval (PIR) [13]. PIR allows a client to request data from a server
without revealing to the server what data is being requested. A naive way to
accomplish this is for the client to download the entire database from the server,
then select its data locally. This method is bandwidth inefficient, however, and
does not scale to large datasets.

There are two settings for PIR. In information-theoretic PIR (ITPIR), a set
of N servers share the database, with clients making requests to all of them and
combining their responses to obtain the requested files. If at least one of the
servers is not colluding with the others, the client’s request remains private. In
computational PIR (CPIR), a single server stores the database, and clients use
homomorphic-encrypted requests to retrieve data. As long as the computational
hardness assumptions on the underlying cryptography hold, the server cannot



determine what information the client requested. As we are focused on a single
centralized content provider, in this paper, we only consider and describe CPIR.

Many CPIR schemes fall into the “matrix-vector” model [10], which is illus-
trated in Figure 1. In this model, CPIR uses a (IND-CPA-Secure, additive) ho-
momorphic encryption that allows operations done on ciphertext to correspond
to operations done on the corresponding plaintext. As an example, consider an
additively homomorphic encryption function E() with corresponding decryption
function D() that allows addition of ciphertext and multiplication by a constant;
i.e,:

D(E(a) + E(b)) = a+ b

and
D(E(a) · c) = a · c.

To perform a PIR query, a client constructs a vector of encrypted 0s and 1s.
For example, if the server has n blocks, and the client wishes to retrieve block x
from the server where 0 ≤ x < n , the client sends a query vector Q to the server,
comprised of qi 6=x = E(0), and qx = E(1). Note that the IND-CPA security of
the encryption scheme implies that the server cannot determine which qi is the
encryption of 1.

With Q, the server (homomorphically) multiplies each qi with its correspond-
ing data block di in the database. The server then takes the homomorphic
sum over the result. When i 6= x, the multiplication by E(0) will ensure the
corresponding block does not contribute to the later-decrypted sum. The re-
sponse is sent back to and decrypted by the client, resulting in D(

∑
i qi · di) =

D(E(1) · dx) = 1 · dx.
The PIR library that we use (XPIR [2]) provides two optimizations: recursion

and aggregation. Recursion allows clients to send fewer query elements to the
server, by breaking the database into a d-dimensional cube, and having the query
select the row/column vectors. For example with a database of 100 records, it
can be broken into a 10×10 table of elements. The client sends 10 queries, which
the server copies and applies to each row effectively selecting a singular column.
Then, a separate 10 queries can be used to select a single element from that
column. Thus the client sends a total of 20 query elements, as opposed to 100
(with no recursion).

Aggregation allows a client and server to pack multiple plaintext files into
a single element. For example, if the ciphertext allows for an absorption of
768 bytes, but files are only 128 bytes, the database could utilize aggregation,
fitting 6 files into each block. Clients then select the block of 6 files that contains
their requested file, and locally discard the other 5. With aggregation, the client
sends fewer request elements to the server, resulting in smaller queries.

3 Threat model

We consider a setting consisting of a single centralized content provider with
multiple clients who upload and download content. Clients upload files to the



provider, and distribute tickets that enable others to download the file. The
information in a ticket can be summarized in a URL to be provided to others.
This allows clients to easily share tickets in the same way they would distribute
online content to others. In this model, we wish to detect a censoring content
provider while preventing malicious clients from making false accusations. We
achieve two properties:

Non-repudiation of targeted censorship A provider cannot selectively cen-
sor a file while responding to queries from honest clients without producing
a transferable proof of their misdeed.

Unforgeability Against a non-censoring content provider, an attacker cannot
forge a proof that a file was censored.

We note that our threat model does not prohibit a provider that chooses
to delete or remove access to all of its files: a provider can always shut down
entirely, or refuse to sign statements with its private key.

4 System design

In this section, we describe the details of our proof of censorship. A proof of
censorship has two parts: a commitment from the server that it will store and
distribute a file, and second, a later proof that it failed to uphold that com-
mitment. The first part is obtained during file upload, where the server returns
a signed and timestamped ticket that efficiently represents the commitment to
store the file, while the second part is obtained when a client downloads the file
the server is attempting to censor. We assume the server has a widely published
long-term public signing key.

We begin our description assuming that a file fits in a single block that can
be requested in a single PIR query to the server. In Section 4.2, we describe how
to efficiently extend this idea to provide proofs of censorship for files that span
multiple blocks.

4.1 Proof of censorship construction

Ticket construction On upload, a client will upload an encrypted block that
represents the file. The server chooses an index for the block to be stored, and
provides a signature over the data and the index. For block data Bi stored at
index i, the server hashes the block data to obtain H(Bi). The server then signs
the tuple containing a timestamp t, the index i, and the block hash H(Bi) using
its long-term private key. This signature, along with t, i, and H(Bi) are sent to
the client in the form of a ticket.

This ticket can be encoded into a URL that can be distributed easily to other
users in the form of:

https://<service>/#H(Bi)/i/t/sig



Fig. 2. Ticket creation — When a file is uploaded, the server produces a signed ticket
that commits the server to storing the block of data. The server signs a timestamp, the
index where the data is stored, and a hash of the data, and returns this to the client
for local storage.

where sig is the server’s signature of the ticket. This gives the client all of the
information it needs to verify as well as a simple way to distribute the ticket.
Additionally the sensitive information is provided to the client in such a manner
that it is not passed to the server, as values after a # symbol are only handled
locally in browsers.

The client then verifies that the ticket is well formed and valid. First, the
client hashes the data it has uploaded to obtain H(B). Then, it ensures that the
timestamp t it received from the server is a recent timestamp3. Finally, the client
checks the signature of the ticket, using t, i, and the client-computed H(B). If
the signature is valid, the client stores the ticket for this block. If any checks fail,
the client can attempt to re-upload their file until they receive a well-formed
ticket. Figure 2 illustrates how tickets are generated during file upload.

File download To download a file, a client creates a PIR query that will result in
a proof of censorship if it does not receive the file requested. During a normal PIR
request, a client encrypts a vector of 0 and 1 elements using using random coins
for the encryption. In our scheme, these coins are the output of a pseudorandom
generator with a seed (Qseed) randomly selected by the client. This allows us to
later reproduce the same query with only the seed and the index i. With this we
create a compressed representation of the query which consists of the queried
index (in the clear), and the seed.

The client creates the request Q and sends it to the server, along with the
public key (as well as any cryptographic parameters needed to allow the server to

3 The client must ensure t is not located days in the future to avoid a server producing
invalid proofs later.



Fig. 3. Proof of censorship — To verify a file is still in place, a client constructs
a PIR query for its block. The server, without knowing which block was requested,
signs the encrypted PIR query and the response it produces. The client decrypts the
response, and can verify the data is correct. If it is not, the client can combine the
signed response, the parameters it used to generate the PIR query, and the original
ticket for this file to produce a stand-alone proof-of-censorship that can be verified by
a third party.

perform homomorphic operations on the query4). The server then performs the
query over its database using PIR, producing a short reply R that contains an
encrypted representation of Bi. The server then hashes Q (including the public
key) to obtain H(Q), and produces a signature over a timestamp t, the query
hash H(Q), and the reply R. The server sends this signature, along with t and
R to the client.

The client then extracts Bi from R using standard PIR extraction (i.e. de-
crypting R with its Qseed-derived private key). The client then checks if this is
the expected file by comparing it to the hash in the corresponding ticket for this
file. If the client detects that the block has been censored, it now has a proof of
censorship in the form of the server’s response. The client publishes the original
ticket, the server’s signed PIR reply, and its Qseed as a proof of censorship.

During this process, the server does not know what file is being requested.
Therefore, to censor a file, the server must either not respond to any queries, or
risk revealing that it has removed a file from its database.

Verifying proofs of censorship Given the server’s public key, a signed ticket, a
signed reply, and a query seed, a third party can verify whether the proof is valid
evidence of censorship. To verify a proof of censorship, a verifier must perform
several steps, detailed below.

4 E.g. in Paillier, this involves the public modulus generated by the client.



1. Check timestamps The verifier checks that the ticket’s timestamp (tt) is
before the reply’s timestamp (tr), ensuring that the query took place after
the server committed to storing the file.

2. Check ticket signature Given the ticket’s timestamp tt, the requested
index i, and the hash of the file H(Bi), the verifier validates the ticket’s
signature with the server’s public key.

3. Regenerate PIR query Verifier uses Qseed and the index i to determin-
istically derive the PIR query Q, and computes the hash over the query
H(Q).

4. Check reply signature Given the reply’s timestamp tr, the computed hash
H(Q), and the server’s reply, the verifier checks the reply’s signature using
the server’s public key.

5. Extract reply Again using the key derived from Qseed, the client extracts
the PIR reply R to obtain Bi.

6. Check data hash The verifier finally compares the hash of the extracted
data Bi to the hash committed to in the ticket. If the hashes are equal, the
server did not censor the file, and returned the expected result. However, if
the hashes do not match, this is a valid proof of censorship.

4.2 Handling multiple blocks

So far, we have described how a client can efficiently receive a proof of censorship
for a single uploaded block, but this does not address what happens if a file is
larger than a single block. While a client could easily split up a file into multiple
blocks, and receive a ticket for each block, storing each of these signed tickets
may be expensive.

Instead, we can extend our design to allow for multiple blocks to receive
a single ticket, while still allowing a proof to catch if an individual block is
censored. To do this, our ticket will contain a Merkle tree root [18] in place
of the single block’s hash. The leaves of the Merkle tree will be the hashes of
each block’s data, and the ticket will consist of the list of hashes, and the final
signature over the Merkle root, timestamp, and block index range.

To verify a proof, the verifier reconstructs the Merkle root from the suspected
censored block and its Merkle tree-adjacent neighbors, and uses the root to verify
the ticket. Thus, a verifier does not have to know all of the hashes of the tree,
but rather only those that allow it to reconstruct the Merkle root (log(N) hashes
for an N -block file). This allows proofs to stay relatively compact even as the
file size grows. After validation of the ticket, the verifier can be assured that the
hash of the suspected block (H(Bi)) they have been given is the correct hash for
the given block Bi, and can perform the remaining checks described previously.

4.3 Security argument

Non-repudiation We describe four basic ways a censoring server might at-
tempt to behave in order to censor files while avoiding generating a proof of
censorship. For these threats, we assume an honest client, that H is a collision



resistant hash function, and the query privacy of the PIR scheme. Our four sce-
narios enumerate the combination of if a server’s strategy is to provide incorrect
data vs. no data (or equivalently, forge signatures, as this will result in clients
terminating), as well as if they they apply their strategy only to a specific set of
files vs. indiscriminately. We model the server as a probabilistic polynomial-time
algorithm.

1. Indiscriminate incorrect data In this scenario, the censoring server at-
tempts to return incorrect responses to all queries. The server replaces all
content Bi with B′

i indiscriminately, censoring all files. However due to the
collision resistance of H, H(Bi) 6= H(B′

i) with all but negligible probabil-
ity. Every client, upon receiving a response, will possess a valid proof-of-
censorship that can be distributed.

2. Targeted incorrect data The server replaces only a specific (set of) Bi with
B′

i, and responds honestly for all other files. As above, a client requesting file
i will receive B′

i and, due to the collision resistance of H, will now possess
a proof-of-censorship. In contrast to the indiscriminate case, this strategy
only provides proofs of censorship for queries requesting file Bi in the set of
censored files.

3. Indiscriminate non response The censoring server simply shuts down and
responds to no queries. Proof-of-censorship cannot stop complete denial of
services of this nature.

4. Targeted non response The censoring server attempts to not respond to
queries for a specific file or files, while honestly responding to all others, thus
not creating a proof for the censorship of the specific files. However, this is
infeasible under our assumptions: Suppose a censoring server possesses such a
capability. That is, assume the server has access to a probabilistic polynomial
time (PPT) algorithm, A, that can decide whether it should respond to a
given query q. With non-negligible advantage, for the targeted file A(q) should
ideally return no response, while queries for other (non-censored) files, A(q)
should respond with the correct data. In this case, the censoring server can
construct a second PPT algorithm, B, that uses A as an oracle to distinguish
between queries for a specific file vs. all other files. Thus, B succeeds in
identifying queries for a specific file with the same non-negligible advantage as
A. Since B would violate the query privacy of the PIR scheme, the algorithm
A cannot exist.

Unforgeability We show that the scheme is unforgeable assuming the server’s
signature scheme is unforgeable, H is a random oracle, and the PIR scheme is the
“vector-matrix type” [10] with an underlying homomorphic encryption scheme
for which correctness holds with all but negligible probability.

Consider an attacker interacting with an honest content provider who pro-
duces a ticket and a forged proof of censorship for that ticket. Either the ticket
or the PIR transcript (proof of censorship) must be forged. Forgeries in the
ticket are prevented by the collision resistance of H and the security of the
signature scheme. We now consider the case of forgeries in the PIR transcript.



By the collision resistance of the hash function and security of the signature
scheme, an attacker cannot substitute either the query or response. As such the
PIR transcript itself must represent the actual query to and response from the
provider. The only freedom an attacker has here is the choice of openings for the
transcript (i.e. the random coins used for encryption and the public and private
keys.), which she must reveal as part of the proof. Thus an attack must produce
a correct looking query vector that when honestly combined with the database
vector does not produce the correct result.

A homomorphic encryption scheme is said to be perfectly correct if for all
choices of random coins, the operations gen, enc, dec, ·,+ perform correctly. Per-
fect correctness nearly suffices to prevent an attacker from producing a purported
query vector and ciphertext response that open to an invalid response.

However, there are two problems. First, correctness only holds with respect
to the output of the algorithms. An attacker is not automatically bound to use
the output of gen to make a key or enc to produce a ciphertext. If he does not
use these algorithms, correctness makes no guarantees. A proof of censorship
forces the attacker is to reveal their choice of random coins. This allows any
verifier to check that a potential accuser did use gen and enc to produce keys
and ciphertext for queries.

The second issue is that perfect correctness is a very strong property and
does not hold for many cryptographic systems. Instead, correctness typically
holds statistically. I.e when coins are chosen randomly, the probability of failure
is negligible. This does not preclude an attacker from intentionally choosing such
coins. To prevent this, we force coins to be selected as the output of a random
oracle. I.e H(nonce|i) where i is the index to be queried and nonce is a randomly
selected number.

As a result, an attacker who produces a forged transcript must have violated
the correctness property of the encryption scheme underlying the PIR scheme
(or successfully preimaged the secure hash function).

5 Implementation and Evaluation

We implemented our proof of censorship construction on top of XPIR, a fast
PIR tool written in C++ [2]. Our implementation consisted of several hundred
lines of modifications to XPIR, as well as an approximately 500-line application
using the resulting libXPIR library. We used OpenSSL to perform the necessary
signatures and hashes in our protocol.

The parameters we selected for testing were motivated by a simple text-
only Twitter-like application, where messages are short (256 bytes, enough to
include a short post and its metadata). We tested against a database of 1 million
simulated messages in order to evaluate the time and size of different parts of
the system. We used a quad-core Intel Core i5 CPU (3.30 GHz) with 32 GBytes
of RAM to evaluate our prototype.

Table 1 shows the size and time to generate and validate our ticket, PIR
query, and PIR reply (containing the proof). For our XPIR parameters, we



Size Generation time (std-dev) Validation time (std-dev)

Ticket 120 bytes 334 µs (0.53) 381 µs (4.61)
Query 3.8 Mbytes 28 ms (0.44) n/a
Reply/Proof 2.0 Mbytes 2.8 s (0.19) 52 ms (0.54)

Table 1. Ticket and proof size — We implemented a prototype of our proof-of-
censorship system, simulating a database of 1 million 256-byte messages. We are able
to keep a constant size of our proof at 2 MB. This allows clients that receive a proof
of censorship to be able to easily distribute it.

choose to use XPIR’s Learning with Errors implementation with 248 bits of
security, using a polynomial of degree 2048 and a modulus of 60 bits, with
recursion level (d) 3, and aggregation (α) 16. All of the client operations are
relatively fast: ticket validation (395 µs), query generation (27 ms), plaintext
extraction (3.5 ms), and proof validation (45 ms) suggest that clients could be
implemented in smartphones or even Javascript web pages without significant
performance issues [1].

5.1 Scalability

We performed measurements of our proof of censorship and underlying PIR li-
brary to determine how the system scales. We measured the performance of
downloading a single file with various database sizes, ranging from 5,000 to 1 mil-
lion files of both small (256 byte) and large (1 MByte) size. For each database
size, we used XPIR’s built-in optimizer to determine the best parameters. XPIR
chooses between two encryption options (Paillier, and the lattice-based learning
with errors (LWE)), varying parameters of each to be optimal given a band-
width estimate, file size, and number of files. We encouraged XPIR to optimize
for small query and response sizes by providing a low bandwidth. Although Pail-
lier produced the smallest query/responses, its server-side processing time was
many orders of magnitude slower than LWE, effectively making it impractical.
As a compromise between bandwidth and processing time, we selected LWE en-
cryption optimized for small query and response sizes. For small files (256 bytes),
the XPIR optimizer selected a polynomial of degree 2048 and 60-bit modulus
with varying recursion and aggregation values depending on database size. When
considering 1 MByte files the optimizer selected differing LWE flavors, all above
the 80-bit security level, with polynomial degrees ranging from 2048 bits to 4096
bits and modulus bits ranging from 60 bits to 180 bits.

For each database size we measured the size of queries a client would have
to generate and the time to generate them. On the server side we measured the
amount of replies it needed to send (based on file size and aggregation value)
and the time it took to construct those queries. And finally, back on the client
side, we measured the time it took to extract the actual response from the given
replies. The results of our experiments are shown in Tables 2, 3 and Figure 4.

For comparison, we allowed the optimizer to select Paillier 1024, which gen-
erates a 34.7 KB query and a 9.6 KB response when querying a 256 byte file



Number of files 5k 10k 50k 100k 500k 1M 10M 100M

Recursion depth 1 1 2 2 2 3 3 3
Aggregation value 300 420 96 64 126 16 16 15

Query size (MBytes) 0.53 0.75 1.44 2.5 3.9 3.8 8.0 17.7
Reply size (MBytes) 0.56 0.78 1.44 1.0 2.0 2.0 2.0 2.4

Table 2. Small file scaling — We measured query and response sizes generated for
several different database sizes with 256 byte files to determine how the system scales
for a Twitter-like content server. We find that even at millions of files, the system
remains relatively practical: an 8 MByte query and 2 MByte response are needed to
select a single file privately (with accompanying proof of censorship) from 10 million
files.

Number of files 5k 10k 50k 100k 500k 1M 10M 100M

Recursion depth 2 2 2 2 2 2 3 3
Aggregation value 1 1 1 1 1 1 1 1

Query size (MBytes) 17.8 25.0 14.0 19.8 44.2 62.5 121.3 174.1
Reply size (MBytes) 32.8 32.8 73.1 73.1 83.7 83.7 138.4 199.4

Table 3. Large file scaling — We also measured query and response sizes assuming
1 MByte files, to approximate our system being applied to an image or video-streaming
content server. The XPIR optimizer chooses different security, polynomial and modulus
parameters for each database size for 1 MByte files, due to it attempting to limit
the amount of data the client has to send and receive over the network. While the
parameters that are chosen are not always the most secure or privacy preserving, these
parameters do result in the least amount of bandwidth necessary for clients to use.
Additionally, while overheads are low, even with only 50 thousand files in a database,
responses are 73 MBytes for a single megabyte file, likely making application of proof
of censorship impractical to video streaming content providers.

from 1 million files. While this is several orders of magnitude smaller than LWE,
server reply generation took nearly 2 hours for a single query. However, query
generation and extraction times on the client were still fast (100ms and 77ms
respectively). This suggests that with specialized modular arithmetic hardware
on the centralized server, reply times could be considerably improved, poten-
tially making this scheme practical and very attractive for its small query and
response sizes.

We also note that a server need not contain all of its files in a single PIR
database. Instead, one could partition the file space into many buckets, and
requests could be made over a much smaller number of files in each bucket,
similar to an idea proposed in bbPIR [25]. This allows for a tradeoff between
the granularity at which a server can censor without producing a proof, and the
efficiency or scalability of the system as a whole. With more buckets, a server
could choose to not respond to queries for an entire bucket without producing
a proof of censorship. If each bucket only contained a few files, the collateral
damage to censoring the entire bucket could be small. In addition, if multiple
buckets exist, a server that wishes to censor could place new files in their own
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Fig. 4. Amount of time taken for the actions necessary for our tool to work. The time
taken for the client to generate queries, and to extract the response from the server
replies is very minimal compared to the amount of time that is spent by the server
generating the replies to send back to the server. This time however can be decreased
by using servers with hardware specifically designed to do these computations.

bucket, allowing for free censorship of the file in the future should it desire. To
combat this, clients could choose which buckets they insert files into.

6 Discussion

In this section, we discuss possible attacks and defenses on our proof of censorship
system, as well as describe potential incentives and future applications for this
type of proof.

6.1 Attacks

Server produces invalid tickets The server can choose to either not sign or not
produce tickets during file upload, allowing it to delete those files later. However,
the server does not know what file is being uploaded at the time of upload: the
file could be encrypted, where the information to download the file (e.g. URL)
contains the key used to decrypt it. Thus, the server must choose to produce
tickets or not without knowing file contents, making it difficult to target specific
content. In addition, clients that do not receive a valid ticket could reupload the
file (perhaps through an anonymous proxy [6]) until they receive one.

Server doesn’t sign replies By using PIR, the server does not know what file
is being downloaded. Therefore, it cannot know if a particular request is for



the file it wishes to censor. It can choose to never sign replies (or sign them
randomly), but it does so without knowledge of the file involved. In this case,
we can require that honest clients refuse to extract downloaded files unless the
PIR reply contains a valid signature, meaning that the server effectively would
be censoring unknown files that were requested. This is effectively the same as
a server shutting down its service by not responding to any queries.

Incorrect timestamps A server can advance timestamps in tickets (or delay them
in replies), tricking verifying clients into thinking a proof of censorship is invalid
because the reply appears to come after the ticket (a feature used to protect
against client forgeability). To solve this, we require clients to check the times-
tamps of tickets and replies and ensure they are recent before considering the
response valid. This may still leave room for an equivocating server to leave a
small window to censor a file, but if uploaded files are encrypted, the server
will have little information to determine if the file should be censored before the
window has passed.

6.2 Incentives and Applications

How do we use a proof of censorship? The first answer is as a reputation sentinel:
Proofs of censorship can be used to show others that a censoring content provider
cannot be trusted. However, this only works if the proof is widely distributed
(and not itself censored). As the proof is on the order of a few megabytes, it
should be transferable to other verifiers via social media, email, or other content-
sharing sites.

An intriguing possibility is to use proofs of censorship to impose a financial
penalty. This could take the form of a smart contract in Ethereum [26] that
controls a bond posted by the provider which is payable (in part) to whoever
submits a valid proof of censorship.

Another option is to force the provider to reveal some sensitive secret if they
ever censor a file. This can be accomplished via either multi party computation or
trusted hardware. In either case, the content provider is forced to blindly interact
with someone and evaluate a function that either returns nothing or, if fed a valid
proof of work, returns the secret. For example, every request for a file could be
accompanied by a query to the provider’s SGX enclave [11] via an encrypted
channel that is terminated within the enclave. The enclave could derive a private
key from the server’s secret, and use it to sign responses (requiring the enclave
to have the secret loaded). If the enclave receives a valid proof of censorship,
it returns the secret encrypted under the requester’s key. Otherwise, it returns
a dummy value. If the server chooses to provide no response at all, the honest
client aborts.5 This forces a censoring provider to either take down their whole
system service once they have censored a file, or risk leaking their secret.

5 To prevent lazy but well meaning clients simply ignoring empty enclave responses,
the enclave could instead return a decryption key needed for the particular file.



Proofs of censorship may also be purposefully created by a provider to dis-
close the extent of what they have censored. In an effort toward transparency,
many content providers voluntarily report takedown notices and removal re-
quests to Lumen [15] (formerly Chilling Effects). However, there is no guarantee
that a provider hasn’t withheld reports from this database. To combat this,
providers could submit their own proofs of censorship to the database, and any
proofs of censorship not present in the database serve as evidence of the provider
attempting to secretly censor without reporting.

7 Related work

Previous research has explored alternative solutions to the problem of content
censorship.

One such approach is proof of retrievability, proposed by Juels et al. in
2007 [12]. In this model, servers provide cryptographic proof to users that they
have access to a file. However, as previously mentioned, this does not mean that
a server must provide such a proof for every file requested: if the server knows
what portion of a file is being requested, they can censor specific parts or files
by simply not responding.

Several works have provided monetary incentives for successful proofs of re-
trievability. Permacoin proposes a cryptocurrency with proof of retrievability of
an agreed-upon file in place of the traditional proof of work [19]. This encourages
miners to keep portions of the file around in order to qualify for mining rewards
associated with the currency. Lavinia incentivizes publishers to store documents
by having a third-party verifier check and provide payments to well-behaved
publishers in a distributed system [3].

Numerous projects have detailed the idea of combining files to discourage
their removal from servers. Tangler [23] stores files across multiple servers and
“entangles” newly uploaded files with existing files using Shamir secret shar-
ing [20]. This entanglement means that deleting an old file may inadvertently
remove more recently uploaded files that depend on it, increasing the collateral
damage in censoring a file. Dagster [21] xors blocks of data together requiring
users to obtain multiple blocks from the server in order to retrieve one block of
desired data. This combining of blocks ties files together in such a way that if
older blocks are removed, newer blocks are no longer accessible. However, newly
uploaded files are not protected, and access patterns of files could be used to
detect what file is being downloaded.

Others have leveraged distributed systems to make content harder to censor.
Publius [24] allows clients to upload encrypted files to multiple servers along
with parts of a split encrypted key in such a way that a threshold of servers
behaving honestly will allow the file to be retrievable. Freenet [4] provides a
volunteer-based peer-to-peer network for file retrieval with the aim of allowing
both authors and readers to remain anonymous. Tor [6] supports hidden ser-
vices, where a central provider could potentially obscure its network location
while hosting objectionable content. However, all of these schemes lack a mech-



anism to discourage servers or participants from misbehaving, opting instead to
either hide or share responsibility of hosted content. Moreover, they provide no
guarantees on file lifetimes, which is determined by the resource constraints of
the participating servers.

8 Future Work

Proof of censorship could be extended in several directions and applications.
As mentioned previously, monetary incentives built on top of such proofs could
encourage content providers to deploy such a system and keep them honest.

Beyond this, there are many open problems in how to apply proof of cen-
sorship to different applications in an efficient manner. For instance, applying
this scheme to a video streaming service would be a difficult engineering task,
as large file sizes, database volumes, and high bandwidth demands require low-
overhead efficient solutions. To solve this problem, it may be possible to combine
proof of censorship with other scalable private media retrieval systems such as
Popcorn [9].

Proof of censorship could also augment existing key transparency applica-
tions, such as Certificate Transparency [14] or CONIKS [17]. Although these
systems already detect server equivocation when a server modifies a particular
object, they fail to provide any sort of guarantee on responses for every object
in their certificate or key store. Using proof of censorship, these systems could
provide such an assurance in addition to the protections provided.
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10 Conclusion

Content censorship from providers remains a growing problem. As network ef-
fects push users and content toward more centralized provider platforms, legal
and political pressures have followed suit. While centralized providers can claim
they stand for free speech or open access, they have no mechanism to prove they
do.

In this paper, we have presented a scheme whereby a content provider can
stand behind such a claim cryptographically. By deploying this scheme, providers
will create a cryptographically verifiable and transferable proof of censorship
should they delete or remove access to a specific file. The threat of this proof
provides a disincentive to content providers from even temporarily censoring a
file, as their reputation with respect to Internet freedom is at stake.
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