
Fighting Censorship with Algorithms

Mohammad Mahdian

Yahoo! Research, Santa Clara, CA, USA.
mahdian@alum.mit.edu

WWW home page: http://www.mahdian.org

Abstract. In countries such as China or Iran where Internet censorship
is prevalent, users usually rely on proxies or anonymizers to freely ac-
cess the web. The obvious difficulty with this approach is that once the
address of a proxy or an anonymizer is announced for use to the public,
the authorities can easily filter all traffic to that address. This poses a
challenge as to how proxy addresses can be announced to users without
leaking too much information to the censorship authorities. In this pa-
per, we formulate this question as an interesting algorithmic problem.
We study this problem in a static and a dynamic model, and give almost
tight bounds on the number of proxy servers required to give access to n
people k of whom are adversaries. We will also discuss how trust networks
can be used in this context.

1 Intrduction

Today, Internet is playing an ever-increasing role in social and political move-
ments around the globe. Activists connect and organize online and inform ordi-
nary citizen (and the rest of the world) of the news of arrests and crackdowns
and other news that the political powers do not want to be spread. In particu-
lar, Web 2.0 has broken the media monopoly and has given voice to dissidents
and citizen journalists with no access to traditional media outlets. The role that
Twitter, Facebook, YouTube, CNN’s iReport and many other websites and blogs
have played in the recent events in Iran is a great example of this [9, 10].

Threatened by this paradigm, repressive regimes have tried hard to control
and monitor their citizen’s access to the web. Sophisticated filtering and surveil-
lance technologies are developed or purchased by governments such as China or
Iran to disallow access to certain blacklisted websites (See Figure 1) or moni-
tor the activities of users [19]. Blacklisted websites include news websites such
as BBC or CNN, Web 2.0 websites, many blogs, and even Wikipedia. Internet
censorship activities are documented in great detail by organizations such as
Reporters Without Borders [18] or the OpenNet Initiative [16, 5].

At the same time, users in such countries and supporters of free online speech
have looked for circumvention technologies to get around Internet censorship.
These range from secure peer-to-peer networks like Freenet [1, 2] to anonymous
traffic routing softwares like The Onion Router (Tor) [6] to web proxy systems
such as Psiphon [17]. These tools sometimes use cryptographic protocols to pro-
vide security, but to elude detection and filtering, the common way is to route

Fig. 1. A typical Internet browsing session in Iran involves multiple encounters with
pages like the above. The text in Persian reads: “According to the laws of the Islamic
Republic of Iran and directives from the judiciary access to this website is forbidden.”

traffic through intermediaries not known to the censorship authorities. For ex-
ample, when a user of Psiphon requests a webpage, this request is routed through
a proxy. The proxy is a computer outside the censored country, and therefore
can access the requested webpage and send it back to the user.1 This can be any
computer on the net whose owner is willing to contribute to the anti-censorship
network by installing the Psiphon software. Usually, this is done by people out-
side the censored country who have friends or relatives inside the censored coun-
try. They simply install the software on their machines (with full-time Internet
connectivity), and send an invitation (which is basically a link through which
the recipient can access the Internet) to their friends and family.2

This model works well for users who have friends outside the censored ter-
ritory. The challenge is to provide censorship-free Internet access to those who
have no direct connection to the outside world. In the case of Iran, sometimes
US-sponsored radio stations such as Voice of America or Radio Farda broadcast
URLs of anonymizers on their program. The obvious problem with this approach

1 This is a simplification of how Psiphon operates. In reality (starting from version
2.0), Psiphon is a 2-hop proxy system, where the first hop (the in-proxy) can be
any computer outside the censored country that runs the Psiphon software and
simply forwards the requests, and the second hop (the managed Psiphon server) is
a dedicated computer that serves and manages Psiphon requests. For the purpose
of our discussions, the simplified view is enough.

2 Freenet’s “darknet” mode operates similarly.

is that the censorship authorities also listen to these radio stations and quickly
add the announced URL to their blacklist.

This motivates the main problem studied in this paper: how can a set of prox-
ies be distributed among n users, k of whom adversaries (agents of censorship),
in such a way that all legitimate users can have access to a proxy that is not
filtered. We give a more precise definition of our model in the next section, and
define a static (one-shot) version of this problem, as well as a (more realistic) dy-
namic problem. As we observe in Section 3, the static problem is equivalent to a
previously studied network design problem. The main contribution of this paper
is our solution for the dynamic model, which will be presented in Section 4. In
Section 5, we discuss the role of trust networks in building a user base, and how
this affects the algorithmic problem studied in this paper. We conclude with a
number of open problems and conjectures.

Related work. To the best of our knowledge, this is the first systematic study of
methods for proxy distribution. As we observe in Section 3, the static version of
this problem is essentially equivalent to finding union-free families of sets [13]. In
coding theory, these objects are known as superimposed codes [12, 8], and have
a wide range of applications (see, for example, [3, 4, 11]). The static case is also
closely related to the combinatorial group testing literature [7]. The dynamic
problem, however, does not fit within the group testing framework, as in our
problem the adversary can strategically delay compromising a proxy.

2 The model

Consider a population of n users, k of whom are adversaries, and the remaining
n− k are legitimate users. We do not know the identities of the adversaries, but
throughout the paper we assume that k � n. We have a set of at most m keys
(representing proxies or anonymizers) that we can distribute among these users
in any way we want. If a key is given to an adversarial user, she can compromise
the key, meaning that from that point on, the key will be unusable. Our goal is
to distribute the keys in such a way that at the end, every legitimate user has
at least one uncompromised key.

This problem can be studied in a static (one shot) model, or in a dynamic
(adaptive) model. The static model is a one-round problem: we give each user
a set of keys at once, and then the adversarial users compromise the keys they
have received. In the dynamic model, there are multiple rounds. In each round
we distribute a number of keys to users who have no uncompromised key. The
next round starts when one or more of the keys given to an adversarial user
is compromised. Note that in this model the adversarial users do not have to
compromise a key as soon as they see them; instead, they can strategically de-
cide when to compromise a key. Also, observe that in this model we can assume
without loss of generality that in any round each user who has no uncompro-
mised key receives only one key (i.e., there is no point in giving more than one
uncompromised key to a user at any time).

In both of the above models, if the number m of available keys is at least
n, the problem is trivially solvable: simply give each user her personal key. Our
objective is to find the smallest value of m for which the problem is solvable. As
we will see in the next sections, it is indeed possible to solve the problem with
only a sublogarithmic number of keys.

Variants of the problem. Several variants of our model can also be considered.
For example, what if instead of requiring all legitimate users to have access at
the end of the algorithm, we only require a 1 − ε fraction? Also, the dynamic
model can be defined not as an adversarial model but as a stochastic one: instead
of having a bound k on the number of adversarial nodes, we can assume that
each node is adversarial with probability p. As we will remark at the end of
Section 4, both of these variants are easily solvable using the same algorithms
that we propose for the main problem (with log(1/ε) replacing log n for the first
variant, and pn replacing k for the second).

A more challenging variant of the problem concerns situations where the
nodes can invite other users to join, forming a trust network structure. This gives
rise to a challenging algorithmic problem that will be discussed in Section 5.

3 Static key distribution

The static key distribution problem is equivalent to designing a bipartite graph
between the set of n users and the set of m available keys. An edge between a
user and a key means that the key is given to that user. k of the user nodes in
this graph are adversaries, and all of the neighbors of these nodes will be com-
promised. After that, a user is blocked if all its adjacent keys are compromised.

This is precisely equivalent to a secure overlay network design problem stud-
ied by Li et al. [14], although the motivating application and therefore the ter-
minology in that problem are different from ours. Users in our problem are
equivalent to Access Points (APs) there, and keys are equivalent to servelets.

The result in [14] that is relevant to our case is Theorem 6 (the adversar-
ial model). That theorem exploits the connection between the solutions of our
problem to k-union-free families of sets [13], and proves the following (restated
using our terminology):

Theorem 1. (Restatement of Theorem 6 in [14]) For every m and k, the max-
imum value of n for which the key distribution problem has a solution is at least
(1− kk

(k+1)k+1)−m/(k+1) and at most O(k2m/km−1/(2k)).

The lower bound in this theorem is proved using the probabilistic method
(giving each key to each user independently with probability 1/(k+ 1)), and the
upper bound is proved using Sperner’s theorem in extremal set theory. A simple
calculation from the above theorem gives the following.

Theorem 2. There is a solution for the static key distribution problem with at
most O(k2 log n) keys. Furthermore, no key distribution scheme with fewer than
Ω(k log(n/k)) keys can guarantee access to all legitimate users.

4 Dynamic key distribution

In this section, we study the key distribution problem in the dynamic model, i.e.,
when the algorithm can respond to a compromised key by providing new keys
for affected users. The quantity of interest here is the expected number of keys
required before until every legitimate user gets access. The following theorem
shows that O(k log(n/k)) keys suffice.

Theorem 3. The dynamic key distribution problem has a solution with at most
k(1 + dlog2(n/k)e) keys.

Proof. Consider the following algorithm: In the first round, all n users are divided
into k groups of almost equal size, and each group is given a distinct key. After
this, any time a key is compromised, the users that have that key (if there is
more than one such user) are divided into two groups of almost equal size, and
each group is given a new key (i.e., a key that has not been used before). This
completes the description of the algorithm.

One can visualize the above algorithm as a tree, where the root corresponds
to the set of all n users, and each node corresponds to a subset of users. The root
has k children and other nodes have 2. The sets corresponding to the children of
a node comprise an almost balanced partition of the corresponding set. In this
view, any time the key corresponding to a node is compromised, we move one
level down in the tree.

We now show that this procedure uses at most k(1+ dlog2(n/k)e) keys. Con-
sider the k adversarial users. At any point in time, each such node is contained
in one group. At the end of the first round, the size of this group is n/k, and
after that, every time this adversary compromises a key, the size of this group
is divided in half. Therefore, each of the k adversaries can compromise at most
dlog2(n/k)e) keys. Putting this together with the fact that we started with k
keys in the first round gives us the result.

It is not hard to show that in the above algorithm, dividing the users ini-
tially into k groups and then into 2 groups in subsequent rounds is essentially
the best possible for this style of algorithms. That is, we cannot asymptotically
improve the bound given in the above theorem by devising a different partition-
ing scheme. This might lead one to believe that the bound in the above theorem
is asymptotically optimal. However, this is not true. As the following theorem
shows for the case of k = 1, it is possible to solve the problem with a sublog-
arithmic (O(log n/ log log n)) keys. The idea is to “reuse” keys that are already
given to people in other branches. The following theorem will later guide us (and
will serve as a basis of induction) to a solution for general k with sublogarithmic
dependence on n.

Theorem 4. For k = 1, the dynamic key distribution problem has a solution
with O(logn

log logn) keys.

Proof. Let ` = d logn
log logne. As in the proof of the previous theorem, the algorithm

proceeds in a tree-like fashion. At first, the set of all users is divided into `
groups of almost equal size, and a distinct key is given to each set. Once a key is
compromised, we would know that the single adversary is among the users in the
group that has that key. We call this group the suspicious group. Since k = 1,
we know that all users in remaining groups are legitimate users; we call these
users trusted users. We divide the suspicious group into ` subgroups of almost
equal size. But instead of giving each subgroup its distinct new key (as was the
case in the proof of Theorem 3), we give one subgroup a new key, and give the
remaining `−1 subgroups the other `−1 keys that are already in use by trusted
users.

Similarly, when another one of the keys fail, we would know which subgroup
the adversary belongs to; so now only users in that subgroup are suspicious, and
the remaining `− 1 subgroups become trusted. Again, we divide the suspicious
subgroup into ` almost equal-sized subsubgroups. One of these subsubgroups
is given a new key, and the remaining ` − 1 are given the keys already in use.
We also need to give keys to trusted users whose key is compromised (since
there could be trusted users that use the same key as the users in the suspicious
subgroup). We give these users an arbitrary uncompromised key already in the
system. This process continues until the size of the suspicious group reaches 1,
at which point we stop.

Since in each round, the algorithm divides the size of the suspicious group
by `, and in each round exactly one key is compromised, the total number of
compromised key in this algorithm is at most log` n. This, together with the fact
that there are precisely `− 1 keys that remain uncompromised, shows that the
total number of keys used by our algorithm is at most

`− 1 +
log n
log `

≤ log n
log log n

+
log n

logdlog n/ log log ne
= O(

log n
log log n

).

This completes the proof.

We are now ready to give a sublogarithmic bound for the number of required
keys for general k.

Theorem 5. For any k, there is a solution for the dynamic key distribution
problem that uses O(k2 log n/ log log n) keys in expectation.

Proof. First, note that we can assume without loss of generality that k <
log log n, since for larger values of k, Theorem 3 already implies the desired
bound. We use induction on k. The k = 1 case is already solved in Theorem 4.
For k > 1, we proceed as follows. The structure of the first stage of our algorithm
is similar to the algorithm in the proof of Theorem 4: we fix ` = d logn

log logne, and
start by dividing the users into ` groups of almost equal size (to do this, we
can put each user in one of the ` groups uniformly at random). At any point
in this stage, there are precisely ` uncompromised keys in the system. Once a
key is compromised, we replace it by a new key, split all groups that have the

compromised key into ` groups and give each group one of the ` available keys.
In other words, once a key is compromised, it is replaced by a new one and each
user who was using that key receives a random key among the ` available keys.
This process is repeated for R rounds, where R will be fixed later.

The sketch of the rest of the proof is as follows: for any legitimate user, in each
round the probability that the user receives a key shared by an adversary is at
most k/` (since there are k adversaries and ` keys available, and key assignments
are random). Therefore, in expectation, after R rounds, this user has had at most
Rk/` compromised keys. However, at least one of the k adversaries has had at
least R/k compromised keys in this stage (since each compromised key is given to
an adversary). By setting the right value for R and using the Chernoff bound, we
will be able to show that the set of users that have had at least R/k compromised
keys contains at least one adversary and almost surely no legitimate user. Given
this, we can give each user in this set her personal key, and solve the problem
recursively (with at least one fewer adversary) for the remaining set of users.

We now formalize the proof. Consider an arbitrary legitimate user u, and
define a sequence of random events that determine the number of times this
user’s key is compromised. Every time u is given a new key, there is probability
of at most k/` (independent of all the previous events) that she receives a key
that one of the adversaries in the system already has. If this event occurs, we wait
until this key is compromised (if at all) and a new key is given to u; otherwise,
the next event corresponds to the next time one of the adversaries compromises
a key. At that time, one or more adversaries will receive other random keys.
The next event, whose probability can also be bounded by k/` is that one of
the keys given to the adversaries is the one u already has. We proceed until the
end of the R rounds. This gives us a sequence of events at most R, each with
probability k/` of occuring independent of the previous events, and the number
of time u’s key is compromised can be bounded by the number of events that
occur in this sequence. Therefore, this number can be bounded by the sum of
R Bernoulli random variables, each with probability k/` of being one. Let this
sum be denoted by X. We have µ := Exp[X] = Rk/`. By the Chernoff bound
(Theorem 4.1 in [15]) with 1 + δ = `/k2 we have:

Pr[X > R/k] = Pr[X > (1 + δ)µ] <
[

eδ

(1 + δ)1+δ

]µ
<

(
ek2

`

)R/k
.

Setting R = ck log n/ log log n for a large constant c, the above probability
can be bounded by:

exp
(
c log n

log log n
log(

ek2 log log n
log n

)
)
< exp(− c

2
log n) = n−c/2,

where the inequality follows from the fact that k < log log n and therefore asymp-
totically, log(ek

2 log logn
logn) < − 1

2 log log n. By the above inequality, we know that
the probability that the set S of users whose key is compromised at least R/k
times contains u is at most n−c/2. Therefore, the expected cardinality of this set

is at most k + n1−c/2, and hence we can afford to give each user in this set her
personal proxy (just in the case of the unlikely event that there is a legitimate
user in this set). On the other hand, with probability 1 there is at least one
adversary in S. Hence, by removing S, our problem reduces to one with fewer
adversaries. We use induction to solve the remaining problem.

The expected total number of keys required by the above procedure is at
most ` (the initial keys) plus R (the number of keys that replace a compromised
key) plus k + n1−c/2 (for the set S), plus keys that are needed for the recursive
procedure. It is easy to see that this number is O(k2 log n/ log log n).

Our last result is a lower bound that shows that the upper bound in the above
theorem is tight upto a factor of k, i.e., as a function of n, the optimal solution
to the dynamic key distribution problem grows precisely as log n/ log log n. This
theorem is proved using a simple entropy argument.

Theorem 6. Any solution to the dynamic key distribution problem requires at
least Ω(k log(n/k)

log k+log logn) keys.

Proof. Consider an oblivious adversary: initially k random users are adversarial,
and in each stage a random adversarial user compromises her key. Let ` denote
the number of keys used by the algorithm. Since the algorithm eventually proves
access to all legitimate users, it must be able to identify the set of all adversarial
users. There are

(
n
k

)
such sets, and they are all equally likely. The information

that the algorithm receives in each round is the index of the key that is compro-
mised. This index has one of the ` values, and therefore can be written in log `
bits. Since the total number of rounds is at most `, all the information that the
algorithm receives can be written as an ` log ` bit binary sequence. Since this
information is enough to find the k adversarial nodes, we must have

` log ` ≥ log
(
n

k

)
= Ω(k log(n/k)).

A simple calculation from the above inequality implies the lower bound.

Variants of the problem. It is not hard to see that if we only require access for
a 1− ε fraction of the legitimate users, the upper bounds in the above theorems
can be improved significantly. Namely, Theorem 3 can be adapted to solve the
problem with only O(k log(1/ε)) keys.

Also, the upper bounds in this section do not require a precise knowledge
of the value of k. Therefore, for the stochastic version of the problem, the same
upper bounds hold with k replaced by pn. Furthermore, since the lower bound
proof only uses a simple randomized adversary, a similar lower bound holds for
the stochastic model. The details of these proofs are left to the final version of
the paper.

5 Trust Networks

A common way to build a user base in a country under censorship is through
personal trust relationships: the system starts with a few trusted users, and
then each trusted user will be allowed to invite new users whom she trusts to
the system. In this way, the set of users grows like a trust network, a rooted
tree on the set of users with the initial trusted users as the children of the root,
and edges indicating trust relationships. In fact, newer versions of the Psiphon
system rely on an invitation-based method very similar to this to build a user
base and a tree structure of trusts among them [17].

Using trust networks to build the user base poses an additional risk to the
system: if an adversary infiltrates the network, she can invite new adversarial
users (perhaps even fake accounts controlled by herself) to the network, increas-
ing the value of k for the algorithms in the previous section to an unacceptable
level. In this section, we formulate this problem theoretically. We will leave it as
an open problem for the most part; but for k = 1, we give non-trivial solutions,
exhibiting that the general problem is interesting and possibly tractable.

The model. We have a population of n users that are nodes of a rooted tree
(called the trust network) T . We assume that the depth of the tree T is small
(e.g., at most O(log n)).3 The adversary controls at most k nodes in this tree
and all nodes descending from them. Our objective is to design a dynamic key
distribution scheme that eventually guarantees that each legitimate user receives
an uncompromised key. The challenge is to do this with the minimum number
of keys.

In the following theorem, we show that for k = 1, it is possible to solve this
problem with O(log n) keys. We leave the problem for k > 1 as an open question.

Theorem 7. For k = 1, there is a solution for the dynamic key distribution
problem on a trust network that uses at most O(log n) keys.

Proof (Proof Sketch). We use a binary division method similar to the one used
in Theorem 3, except here we keep the divisions consistent with the trust tree T .
Recall that the algorithm in the proof of Theorem 3 maintains a suspicious group
of users, and every time a new key is compromised, it divides the suspicious
group into two subgroups of almost equal size, giving a distinct key to each
subgroup. We do the same, except we maintain the following invariant: at any
point, the suspicious group consists of some children u1, . . . , ur (r ≥ 2) of a node
u (we call u the root of the suspicious group), and all descendants of ui’s. Of
course we cannot be sure that u and its ancestors are legitimate, but if any of
them is an adversary, we have already achieved the goal of giving access to all
legitimate users. Therefore, we treat them as if they are legitimate. However, we
3 This assumption is necessary. For example, if the trust structure is a long path, it is

easy to see that the problem has no non-trivial solution, even for k = 1. Furthermore,
this is a realistic assumption since trust networks are generally small-world networks
and have small diameter.

need to be careful about the possibility that the are adversarial, and will try to
get our algorithm to use too many keys after all legitimate nodes already get
access. This can occur if we see the key that is given to nodes that our algorithm
already assumes to be legitimate is compromised. In this case, we simply give
new personal keys to all the nodes on the path from the root of the tree to the
root of the suspicious subtree, and stop the algorithm.

It is not hard to show that since the number of nodes in the suspicious group
reduces by a constant factor in each iteration, and the depth of T is at most
logarithmic, the total number of keys used by the above algorithm is at most
logarithmic in n.

6 Conclusion and Open Problems

In this paper we studied a key distribution problem motivated by applications in
censorship circumvention technologies. The algorithms we give for the problem
are simple and intuitive, and therefore have a chance at being useful in practice.
From a theoretical point of view, still a few questions remain open:

– In the dynamic model, what is the optimal dependence of the number of
required keys on k? There is a gap of roughly O(k) between our best lower
and upper bounds. Our conjecture is that (at least for k up to O(log n)),
O(k log n/ log log n) is the right answer for this problem.
A similar question can be asked for the static problem, but given the con-
nection between this problem and a long-standing open problem in extremal
set theory on k-union-free families of sets [13], this problem is unlikely to
have a simple solution.

– Our upper bound in Theorem 5 is on the expected number of keys used,
whereas the weaker bound in Theorem 3 holds with probability 1. Is it pos-
sible to prove a bound similar to Theorem 5 with probability 1? This is
mainly a theoretical curiosity, since the bound in Theorem 5 holds not only
in expectation but also with high probability.

– The key distribution problem with trust networks for k > 1.

Acknowledgments. I would like to thank Olgica Milenkovic for pointing me to
the literature on superimposed codes. Also, I am thankful to Nicole Immorlica
and Abie Flaxman for discussions on an earlier version of this problem.

References

1. Ian Clarke, Oskar Sandberg, Brandon Wiley, Theodore W. Hong, “Freenet: A
Distributed Anonymous Information Storage and Retrieval System,” in Designing
Privacy Enhancing Technologies, Lecture Notes in Computer Science 2009, H. Fed-
errath, ed., pp. 46–66 Springer-Verlag, Berlin, 2001.

2. Ian Clarke, Scott G. Miller, Theodore W. Hong, Oskar Sandberg, Brandon Wiley,
“Protecting Free Expression Online with Freenet,” IEEE Internet Computing, pp.
40–49, January/February, 2002.

3. A. E. Clementi, A. Monti, and R. Silvestri, Selective families, superimposed codes,
and broadcasting on unknown radio networks. In Proceedings of the 12th Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 709-718, 2001.

4. W. Dai and O. Milenkovic, Weighted Superimposed Codes and Integer Compressive
Sensing, submitted to IEEE Trans. on Inform. Theory, June 2008.

5. Ronald J. Deibert, John G. Palfrey, Rafal Rohozinski, and Jonathan Zittrain (edi-
tors), ACCESS DENIED: The Practice and Politics of Internet Filtering, The MIT
Press, 2008.

6. R. Dingledine, N. Mathewson, and P. Syverson, Tor: the second-generation onion
router. In Proceedings of the 13th Conference on USENIX Security Symposium,
pp. 21–21, 2004.

7. Ding-Zhu Du and Frank K. Hwang, Combinatorial group testing and its applica-
tions, World Scientific Publishing Co, 2000.

8. Arkadii D’yachkov, Vladimir Lebedev, Pavel Vilenkin, and Sergey Yekhanin,
Cover-free families and superimposed codes: constructions, bounds and applica-
tions to cryptography and group testing, Proceedings of International Symposium
on Information Theory (ISIT), p. 117, 2001.

9. Joe Fay, Iran’s revolution will not be televised, but could be tweeted, The Register,
June 16, 2009. available at
http://www.theregister.co.uk/2009/06/16/iran_twitter/

10. Lev Grossman, Iran Protests: Twitter, the Medium of the Movement, Time, June
17, 2009. available at
http://www.time.com/time/world/article/0,8599,1905125,00.html

11. P. Indyk, Deterministic Superimposed Coding with Applications to Pattern Match-
ing. In Proceedings of the 38th Annual Symposium on Foundations of Computer
Science, p. 127, 1997.

12. W. Kautz and R. Singleton, Nonrandom binary superimposed codes, IEEE Trans-
actions on Information Theory, Volume 10, No 4, pp. 363-377, 1964.

13. D. Kleitman and J. Spencer. Families of k-independent sets. Discrete Mathematics,
6:255262, 1973.

14. Li Li, Mohammad Mahdian, and Vahab Mirrokni, Secure Overlay Network Design,
Algorithmica, Volume 57, No 1, pp. 82–96, May 2010.

15. Rajeev Motwani and Prabhakar Raghavan, Randomized Algorithms, Cambridge
University Press, 1995.

16. OpenNet Initiative, ONI reports and articles. available at
http://opennet.net/reports

17. Psiphon, http://psiphon.ca, Developed at the Citizen Lab at the University of
Toronto.

18. Reporters Without Borders, Internet Enemies, 2009 edition, March 12, 2009. avail-
able at
http://www.rsf.org/IMG/pdf/Internet_enemies_2009_2_.pdf

19. Christopher Rhoads and Loretta Chao, Iran’s Web Spying Aided By Western Tech-
nology, The Wall Street Journal, page A1, June 22, 2009.

