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ABSTRACT
In this paper, we introduce Facet, an unobservable transport service
for social video sites. Facet evades detection by Internet censors
by streaming social videos over Skype calls, and applying a novel
traffic-analysis countermeasure called video morphing. We report
on the performance and security of a prototype implementation of
Facet and find that a single Facet server can support roughly 20 si-
multaneous sessions, while providing strong unobservability: using
the best known traffic analysis methods, a censor seeking to block
90% of Facet calls would need to block over 40% of all Skype
calls. An additional benefit of our prototype implementation is that
it avoids the distribution problem: clients can use Facet without
installing any additional software.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Network communications

Keywords
censorship resistance, video conferencing, traffic analysis

1. INTRODUCTION
As the Internet has become a more useful tool for communicat-

ing information between individuals, censors working for Nation
State Adversaries have responded by blocking access to the unfil-
tered versions of these sites. Additionally, these censors have also
deployed increasingly sophisticated tools to identify and block ac-
cess to the tools designed to circumvent this censorship, such as
Tor [13] and other proxy services. These tools include sophisti-
cated protocol fingerprinting via deep packet inspection (DPI), and
even active probing attacks, in which suspected relays are contacted
by the censors in order to confirm participation in the Tor protocol.

In response, researchers have developed systems that attempt to
provide proxy steganography, which intend to make proxy connec-
tions resemble innocent “cover” protocols. For example, “decoy
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routing” [16, 20, 31] systems make connections to relays resem-
ble TLS connections to random websites by hiding the relays in
routers; SkypeMorph [22], CensorSpoofer [26], StegoTorus [27]
and FreeWave [17] attempt to make proxy connections look like
VoIP calls; and Collage [12] hides information in photos posted to
content-sharing sites such as Flickr.

However, recent research [14,15,24] has revealed that these sys-
tems fail against more sophisticated censors due to several different
inconsistencies between the proxy protocol and the cover protocol:

• Emulation inconsistencies can occur because either the client
or proxy does not perfectly implement the cover protocol.
StegoTorus’ HTTP module does not respond to requests in
the same way as any well-known HTTP server, and Skype-
Morph does not simulate the TCP control connections [15].

• Channel inconsistencies can occur because the cover proto-
col responds differently to channel behavior than the proxy
protocol, allowing an adversary to disrupt proxy connections
while minimally impacting innocent connections. Decoy rout-
ing implementations can fail if the censor distributes packets
across multiple AS paths to the “overt” destination, whereas
TLS connections will not be affected [24]; VoIP and video-
conferencing protocols are typically loss tolerant whereas
proxies fetch general data and cannot tolerate packet loss [14].

• Content inconsistencies can arise when the behavior of a cover
protocol depends on the characteristics of the traffic it carries
and proxies do not match content to these characteristics; for
example, since the FreeWave server tunnels modem traffic
instead of voice signal over a VoIP channel, its communica-
tion session can be identified by traffic analysis [14, 28–30].

In light of these potential problems, finding a single cover protocol
to carry arbitrary Internet content seems difficult. However, a re-
cent survey of Chinese users of circumvention tools [1] found most
users circumvent the Chinese “Great Firewall” to use three ser-
vices: unfiltered search engines such as Google, uncensored social
networks such as Facebook and Twitter, and video sharing sites like
YouTube and Vine. This raises the possibility of serving most cir-
cumvention needs through a small set of unobservable transports.

In this paper, we present Facet, a system that enables the clients
in a censored regime to watch YouTube, Vine and Vimeo videos in
real-time. The basic idea of Facet is to send videos from these sites
as the video content of a videoconferencing call – in the case of
our prototype, a Skype call – between a Facet server and a client.
Like all proxy steganography systems, it relies on the assumption
that the censor is unwilling to indiscriminately block all or most
sessions of the cover protocol (Skype) to avoid “collateral damage”.
Under this assumption, Facet provides the following features:



• Facet is Emulation Consistent: because the video is trans-
mitted over an actual two-way Skype call, there is no differ-
ence between implementations to allow identification.

• Facet is Channel Consistent: we transmit videos over a
channel intended for videos, so any disruption to a Facet ses-
sion would cause the same disruption to a regular call.

• Facet is Content Consistent: Arbitrary videos may have dif-
ferent characteristics from videoconferencing calls, leading
to detectable differences in packet sizes. We implement a bi-
nary classifier similar to the approach from Wright et al. [30]
and show that unaltered YouTube videos sent over Skype are
distinguishable from Skype calls. To defeat this, we intro-
duce “video morphing,” in which the Facet server frames the
requested video within a randomly selected videoconference
call. This increases the false positive rate of a classifier that
can recognize 90% of Facet calls to nearly 40%.

• As a result, Facet provides Unobservability. Since video-
conferencing streams are encrypted in transmission, it is dif-
ficult for censors to detect Facet sessions. Even if the video-
conferencing software (or servers, in case calls are not routed
directly between peers) is compromised, the use of random-
ized video morphing forces the censor to decode and analyze
all video calls in real-time to detect Facet sessions.

• Facet’s throughput is high enough to provide real-time video
delivery. Most steganographic anti-censorship tools are de-
signed for regular web browsing, and often have limited band-
width for clients. In contrast, Facet is aimed at delivering
real-time video service for clients, and achieves the same
throughput as the videoconferencing service.

• Our approach is provider independent. Since the emulator
devices in Facet are built independently from the videocon-
ferencing systems, Facet can be adopted widely on any con-
ferencing platform, such as Google Hangout, Skype, Face-
Time or QQ. This feature not only provides accessibility to
users who have access to different videoconferencing sys-
tems, it also provides the ability to evade blocking targeted
at a single protocol or implementation.

• No deployment at client side. For Facet clients, there is no
need to install any client software (which is often blocked),
or to pre-share secrets with the server. This property makes
Facet easier to use and maintain, since software updates only
need to be applied by servers outside of the censored region.

We built a proof-of-concept implementation based on Skype video-
conferencing service, and tested it in a real-world environment.

The remainder of the paper is organized as follows. Section 2
clarifies the threat model and design goals, and Section 3 gives re-
lated works. In Section 4, the high-level design of Facet is given,
and Section 5 describes our prototype implementation. In Section
6, attacks by traffic analysis are introduced, and the countermea-
sures – video & audio morphing – are described in Section 7. We
analyze the security of the Facet in Section 8, and give experimental
results in Section 9. Section 10 concludes the paper.

2. THREAT MODEL AND DESIGN GOALS

2.1 Threat Model
We assume a state-level censor seeking to block unwanted Inter-

net connections and the usage of circumvention tools. Specifically,
the censor is considered to have the following capabilities:

In-depth Traffic Analysis. Censor can sniff the suspicious traf-
fic and block it if signs of unwanted connections are found. The

techniques can be keyword filtering, static IP address filtering, and
protocol fingerprinting. Also, the censor is considered capable
of analyzing covert traffic by statistical techniques. Recent stud-
ies [28–30] show the packet length in covert protocols leaks in-
formation about the transmitted traffic, and it can be used by the
censor to infer the usage of circumvention tools.

Proactive Detection. The censor can be proactive. It can act as a
user of circumvention tools for blockage. This attack can be proac-
tive probing or enumeration attacks. For probing, the censor sends
probes to potential circumvention proxies, which will be blocked if
responding to provide the circumvention service. Enumeration at-
tacks refer to the censor enumerating a proxy pool list, manually or
automatically, for blocking these proxies. Both of these two attacks
have been shown in real-world censorship.

Active Interference. The censor can interrupt circumvention
tools by actively interfering. Particularly, the censor can delay,
drop, or even inject packets into the session of potential circum-
vention systems. Such active interference, if crafted properly, does
not necessarily increases the false alarms. For example, Geddes et
al. [14] show the censor can drop Acks in Skype sessions to disrupt
SkypeMorph with little interference to the genuine Skype sessions.

The censor is considered to permit widely-used encrypted pro-
tocols such as TLS and IPsec. In addition, the censor is assumed
unwilling to block all videoconferencing systems, such as Skype,
Google Hangout, and QQ. The reason could be business related
or the political costs of doing so. This assumption is supported by
the unblocking of GoAgent, one of the most popular circumvention
systems in China. It is believed that the concern of the government
about the side effects on its economy keeps GoAgent alive [1].

2.2 Design Goals
Consistency. The Facet design should satisfy the consistency prin-
ciple. It should be consistent with the genuine system in terms of
protocol, architecture, and content.
Unblockable. Consistency alone is not sufficient to make Facet un-
blockable. In addition, Facet should be designed to defend against
traffic analysis, denial of service attacks, and active interference.
Scalability. The design of Facet should be independent from the
specific videoconferencing systems. This scalability will make Facet
applicable to a wide range of videoconferencing systems. This
property not only makes Facet accessible for the client to use, but
also makes it difficult for the censor to block.
Real-time Delivery. Facet should provide real-time delivery.

3. BACKGROUND AND RELATED WORKS

3.1 Videoconferencing Systems
To guarantee real-time delivery of loss-tolerant content, video-

conferencing systems usually adopt UDP [2,6] to transmit encrypted
video/audio packets. The architecture could be peer to peer, in
which the traffic is transmitted between clients. Skype belongs to
this category [10]. It could also be centralized, which means the
traffic between clients is relayed by a central server. Google Hang-
out and FaceTime lie in this category [4]. Codecs are used to en-
code and decode digital data streams, with most systems adopting
variable bit rate (VBR) encoding for coding efficiency. However,
VBR has been proven to leak information about the transmitted
content [28–30]. These studies show by traffic analysis, the at-
tacker can determine which language is spoken in a Skype VoIP
session with high accuracy.

3.2 Parrot Circumvention Systems
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Figure 1: Facet System Architecture

SkypeMorph [22] disguises the connection between a Tor client
and bridge as Skype call traffic. It initiates the Skype video call
between the bridge and client as camouflage, then it will drop the
genuine Skype connection and transmit Tor’s TCP traffic over non-
Skype UDP. A packetizer module is used to make the UDP traffic
indistinguishable from Skype UDP traffic under traffic analysis.

StegoTorus [27] tries to obfuscate the Tor protocol. When choos-
ing HTTP request as a cover protocol, it embeds hiddentexts in the
URL and cookie fields. For HTTP responses, attached files such as
PDF and Flash are used to carry the hiddentexts.

CensorSpoofer [26] provides an unblocked web browsing ser-
vice by IP spoofing. Since upstream traffic (the requested URLs) is
lightweight, it uses low capacity channels like emails for transmis-
sion. For downstream traffic, which is heavy HTTP responses, it
directly sends the traffic to the user, but with the IP source address
faked to fool the censor. Thus, the IP address of the proxy will not
be revealed in both upstream and downstream traffic.

FreeWave [17] hijacks the Skype protocol for censorship cir-
cumvention. It uses Skype acoustic channels to transmit the web
browsing traffic between a FreeWave client and server. The client
modulates the web request into an acoustic signal, which will be
carried by the VoIP service. At the FreeWave server side, it will
extract the request by demodulating the acoustic signal, and proxy
it to the blocked website. Since FreeWave directly uses the genuine
Skype VoIP service, it is claimed to avoid flaws in camouflage and
therefore be unobservable.

3.3 Attacks on Circumvention Systems
Parrot systems fail to achieve the claimed security goals due to

the inevitable imitation flaws and the intrinsic inconsistency be-
tween the genuine and the circumvention protocol.

Imitation Flaws. Though these systems are aimed at providing
unobservable proxies, a recent study [15] shows they fail to fulfill
this goal. The unobservability of these systems requires the perfect
imitation of the genuine systems. Unfortunately, the complexity
and proprietary nature of the genuine system make this task quite
challenging, and the imitation flaws can be exploited by the censor
to detect camouflage systems. The discovered flaws include:

Fail to imitate side channels. The genuine systems usually have
side channels for traffic control, user login, etc. However both
SkypeMorph and StegoTorus fail to implement these channels.

Fail to imitate reactions. The camouflage systems behave differ-
ently than genuine systems in handling errors and network condi-
tions. StegoTorus returns different error messages when the censor
sends HTTP requests to it. CensorSpoofer fails to properly select
the spoofed IP address/port, making the address/port behave differ-
ently from a genuine SIP client in responding to a censor’s probe.

Incorrect in imitation. Both SkypeMorph and StegoTorus wrongly
imitate Skype UDP packets for lack of SoM field. Also StegoTorus
generates incorrect PDF lacking the xref table. In addition, both
systems reuse generated trace, failing to represent Skype traffic.

Inevitable Inconsistency. Recent work [14] reveals even per-
fect emulation can not guarantee the proxy unobservability and un-
blockability. The failure roots in the inevitable inconsistencies be-
tween genuine and proxy protocols in terms of content and channel.

Content Inconsistency. In FreeWave, a modulated acoustic sig-
nal rather than human speech is transmitted over VoIP. This con-
tent inconsistency is proved sufficient for a censor to identify Free-
Wave traffic. Since VoIP protocols usually adopt VBR encoding,
the packet length can reveal the transmitted content. Thus a censor
can distinguish and block FreeWave traffic by traffic analysis.

Channel Inconsistency. Both SkypeMorph and FreeWave re-
quire reliable channels to transmit Tor TCP packets or synchroniza-
tion frames. But VoIP usually adopt unreliable UDP to transmit
audio/video which can tolerate packet losses. This inconsistency
enables a censor to interrupt SkypeMorph or FreeWave by packet
dropping, while having negligible impacts on the genuine VoIP ser-
vice. It is shown that dropping 90% of the packets for less than a
second can desynchronize the FreeWave Modem, and by dropping
only 5% of packets SkypeMorph can be stalled indefinitely.

4. THE FACET DESIGN
Facet delivers censored videos in real-time. As is shown in Fig-

ure 1, the procedure of a Facet connection is:

1. The Facet server distributes its conferencing ID for service
discovery. The distribution can be public or private, depend-
ing on the architecture of the videoconferencing system.

2. A Facet client sends a contact request to the server. After the
server accepts the request, they establish initial connections.

3. The client sends the Uniform Resource Locator of the cen-
sored video to the server by an instant message or an email.

4. The server extracts the client’s request, initiates audio & video
emulators, and places a conferencing call to the client.

5. Simultaneously, the server forwards the URL to the Facet
pipeline, which will download, decode, and resize the re-
quested video, finally streaming it into the emulator devices.

6. After accepting the videoconferencing request, the client can
watch the video in the videoconferencing session.

7. The client can also send control commands to the server for
video playback or adjusting video speed.

8. After the video is over, or the client ends the conferencing,
the Facet server destructs the emulators, and ends the session.

Navigation. For the Facet clients, an important question is how
to navigate and discover the URL of the censored video. There are
three methods for discovery.

Encrypted Video Search. For regimes where encrypted web search
services (provided by Google, etc.) are not blocked, the client can
use such a service for navigation. The client can specify the key-
words and websites for video searching, and the search engine will
return the results with the URLs of the videos.
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Figure 2: Facet Pipeline: to deliver censored videos in real-time

Video Subscription. The client can also use a subscription ser-
vice. For websites such as YouTube, the client can make a subscrip-
tion to the videos, and periodically it will receive emails including
subscribed video information, such as URLs and titles.

Search Engine Proxy. Facet implementation also includes a search
engine proxy using email tunnels. The client can email search key-
words to the Facet server, which will fetch the search results, and
email a screenshot of the page back to the client. Then the client
can find the videos to watch and their URLs. The email address of
the Facet server can be publicly distributed, and the unobservability
of the email tunnels guarantees its security [32].

Service Discovery. The Facet server has two strategies to dis-
tribute its conferencing ID.

Public Distribution. For centralized videoconferencing systems,
such as Google Hangout and FaceTime, the Facet conferencing ID
can be publicly distributed. Though this strategy also discloses the
ID to the censor, it does not increase the censor’s ability to block
the service. Since the videoconferencing traffic is encrypted the
censor can not link the conferencing ID to a specific session to
block. Even though the censor may proactively probe the service,
it can not pinpoint the Facet server IP address, because this address
is hidden behind the videoconferencing server. Thus, the censor’s
ability to distinguish and block the Facet session is not improved,
even when it knows the server’s conferencing ID.

Private Distribution. For decentralized videoconferencing sys-
tems such as Skype, the two entities send traffic to each other di-
rectly. Consequently, the Facet server ID should only be distributed
privately. Otherwise, the censor can pinpoint and block the Facet
server IP address by proactively probing the service.

Security. The censor may block the potential Facet session in
which the video stream is only unidirectional. In this situation,
the Facet client should enable the camera in the conferencing. To
prevent denial-of-service (DoS) attacks, the Facet server is con-
figured to not accept strangers’ requests. Thus, a potential Facet
client is required to register with the server, by sending an “add
contact” request to the server’s conferencing ID. Only after this
request is proved by the Facet server, can the client access to the
service. Also, the Facet server enforces usage limits on each regis-
tered client ID to further defend against DoS attacks.

5. IMPLEMENTATION
The Facet server is implemented by selecting Skype as the video-

conferencing system. The server is built on Ubuntu 12.04 Pre-
cise Pangolin, and can support most popular video sites, such as
YouTube, Vine, and Vimeo.

5.1 Facet Pipeline
The real-time delivery of the censored videos requires Facet to

construct a pipeline to handle video downloading, decoding, and
playing in parallel. The pipeline implementation mainly relies on
Gstreamer [3], an open source multimedia framework. A typical

Facet adopts Google video search as the search engine, and the
video URLs are literally shown in the screenshots.

Facet pipeline is shown in Figure 2, which consists of the Down-
loader, Video Handler, and Camera & Microphone Emulators.

Downloader. Popular video websites usually utilize HTTP based
dynamic video streaming [18], so the downloader needs to decode
the video URL to obtain the actual data streaming address. This
address is obtained by utilizing youtube-dl, which is an open
source video downloading toolkit, and can support websites such as
YouTube, Vimeo, Vine, and MetaCafe. Then, this obtained stream-
ing address is forwarded to a Gstreamer element souphttpsrc
to download the video. It is worth noting that souphttpsrc can
directly forward the received stream to the video handler, without
having to wait until downloading the entire video.

Video Handler. The video handler is implemented with the
Gstreamer framework to convert the downloaded stream live. The
functionality of Gstreamer elements is listed in Table 1. The stream
is split by decodebin2 to obtain the video & audio stream. Each
is placed into its respective emulator for playing. Since the down-
loaded video stream may fail to satisfy the emulator’s requirement
in colorspace, resolution, and frame rate, additional elements such
as videoscale, videorate, and ffmpegcolorspace are
utilized to make the conversion.

Emulator. Facet initiates two emulators to deliver the video &
audio stream. For the camera emulator, our Facet implementation
utilizes v4l2loopback, a kernel module to create a v4l2 device
emulator. For the microphone emulator, Facet utilizes pactl, a
program controlling PulseAudio sound server, to initiate a micro-
phone device instance. Both of these two emulators can be recog-
nized by the conferencing systems.

5.2 Other Implementation Details
The Facet server needs to initiate or end videoconferencing re-

quest automatically. For our implementation, we use skype4py [8]
for automation, which is a python wrapper for the Skype API. Also,
the server can run multiple videoconferencing sessions to serve
more clients. Our implementation shows for a Facet server which
has 15 Mbit/s bandwidth and 4 virtual cores, it can support up to
20 simultaneous sessions.

Another implementation detail is URL submission. Facet sup-
ports instant message submission: the user can give the video URL
to server by using the videoconferencing’s instant message service.
Facet also supports email submission, which is more secure when
the videoconferencing provider is considered to collude with the
censor. A detailed analysis is given in Section 8.

6. TRAFFIC ANALYSIS
Since videoconferencing adopts VBR codecs and length preserv-

ing encryption, the packet length can leak information about the
content being transmitted. Previous research shows the rate of dis-
tinguishing phrases, languages, and even speaker identity in a VoIP
conversation. Thus, it is necessary to study whether the censor can
distinguish the Facet connection by traffic analysis.

Classifier. [30] reveals a χ2 classifier to distinguish the lan-
guage in a VoIP call. With about 90% accuracy, the classifier can



Element Fuctionality
souphttpsrc receive HTTP network data as a libsoup client
decodebin2 decode and demultiplex the data stream from souphttpsrc

queue audio/video stream queue
videoscale resize the received video frame to match the camera emulator
videorate manipulate the timestamps on video frames to adjust frame rate
pulsesink direct audio to the PulseAudio server
v4l2sink play the video in v4l2 device

ffmpegcolorspace convert the video from one colorspace to another

Table 1: Gstreamer Elements

(a) 2-gram Distribution for Chat Videos (b) 2-gram Distribution for YouTube Videos

Figure 3: Traffic Analysis: Chat and YouTube videos have different traffic patterns.

narrow down from the two possible languages to one. We adopt
this best known binary classifier, and investigate whether a censor
can identify the Facet session, or in other words, how accurate it
can determine whether the videoconferencing is genuine or not.

The χ2 classifier takes the packet length as input, and adopts
n-gram as feature extraction, which is a contiguous sequence of n
packet lengths from the time series traffic. Suppose the traffic is (a,
b, c, d), where a, b, c, and d are the packet lengths, then the 2-grams
are (a, b), (b, c), and (c, d). The reason for not including traffic
delay in the classifier is that this feature is not stable. It can be
easily affected by network conditions. Besides, the delay in VoIP
traffic is usually fixed [29]. The packet length is discretized into
equal partitions of size K before calculating the n-gram, to avoid
the curse of dimensionality and improve the classification accuracy.
GK(n) is used to denote the set of all the possible discretized n-
grams. Then, for a given traffic, the probability over each element
of GK(n) can be used as its fingerprint for classification.

Training. Let T0 denote the set of genuine chat videos, and T1

denotes the set of the censored videos in the training process. The
models for the genuine chat and censored videos are built as fol-
lows:

P̄ r(i, g) =
1∑

v∈Ti
Nv

∗
∑
v∈Ti

Nv ∗ Pr(i, v, g), g ∈ GK(n) (1)

where Nv denotes the number of grams for video v.
Classifying. The original classifier assigns a test case to the

category whose model is closer to that of the test case in terms
of χ2 distance. This decision rule only allows fixed false posi-
tive/negative rates. Considering a censor should be able to adjust
its aggressiveness in blocking unwanted connections, we use the

following rule:

Θ =
∆(v, T0, GK(n))

∆(v, T1, GK(n))
H0 <

≥ H1
δ (2)

where H0 represents the video is classified as chat video, and H1

denotes it is determined to be a censored video. Θ is the χ2 distance
ratio, and ∆(v, Ti, GK(n)) is the χ2 distance between video v and
training set Ti:

∆(v, Ti, GK(n)) =
∑

g∈GK(n)

[P̄ r(i, g)− Pr(i, v, g)]2

Pr(i, v, g)
(3)

This allows the censor to adjust the value of δ to change its block-
ing strategy. In the experiment part we will discuss how the censor
chooses a proper δ value in order to block a given percentage of
unwanted traffic. In addition, the classifier includes the gram se-
lection algorithm introduced in [30]. The general idea is to exclude
the grams which have negative influence on classification results.

For our dataset, we use the 2 fold cross-validation in evalua-
tion [21]. The dataset is randomly separated into two groups d0
and d1 with equal size. Each group will alternatively be the train-
ing set in two rounds.

Accuracy. The censored video dataset consists of 1013 popu-
lar YouTube videos, and 1045 YouNow videos are used as the chat
video set (details are given in section 9). With n = 2 and K = 50
the experimental results are shown in Figure 3 and Figure 4. The
classification is measured by false positive rate, the probability of
wrongly determining the traffic of chat videos as that of YouTube
videos, and the false negative rate, the probability of determining
the traffic of YouTube videos as that of chat videos [25]. It shows
with a rate of 90%, the censor can correctly distinguish the traf-



fic pattern of the streamed YouTube video, with only the cost of
10% false positive rate. Another observation is that the censor can
even adjust needs to disrupt only 2% of genuine videoconferenc-
ing connections to block 80% of Facet connections. This result is
further demonstrated by the difference on averaged traffic patterns
between chat videos and YouTube videos in Figure 3(a) and 3(b).
Thus, traffic morphing is necessary to protect Facet from blockage.
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Figure 4: Traffic Analysis: the receiver operating characteristic
(ROC) curve of the classifier

7. MORPHING
This section introduces video & audio morphing to defend against

the censor’s traffic analysis. An intuitive method for traffic shaping
is to manipulate packets, but [15] demonstrated the flaws in such
morphing. Facet proposes video & audio morphing to shape the
traffic. The property of video & audio is transformed to simulate
that of chat video & audio, modifying the traffic pattern without
packet dropping.

7.1 Audio Morphing
Observation. Region 1 in Figure 3 reveals for genuine confer-

encing, there are more packets with a length in the range of 100 to
150 bytes and less packets with a length in the range of 150 to 200
bytes as compared to Facet streaming the YouTube videos. The pri-
mary reason for this difference is that the conferencing audio has
lower quality, and shorter packets can be used to transmit the au-
dio. This difference is further demonstrated by the discrepancy in
sampling rate. The relation between audio quality and sampling
rate is that the higher the sampling rate, the better the quality [5].
For our chat video dataset, the sampling rate is 11,500hz, but a typ-
ical YouTube video has a sampling rate of 44,100hz. In addition,
the chat videos have only one channel with 16 bit width, while
YouTube videos have two channels with 32 bit width.

Audio Morphing. The Facet audio is resampled live to simulate
the quality of the chat audio, and this requires Facet pipeline to
include a audioresample element. In the following, we take
the YouTube audio as an example, and show how to determine the
resampling rate empirically. For the chat video dataset, the video
& audio is streamed simultaneously, while for the YouTube dataset,
YouTube audio and chat video are streamed. Thus, the difference
in traffic pattern is only related with the audio. Figure 5 (a) shows
when the sampling rate is 3,000, the morphing is at its best. Also,
the YouTube audio which usually has two channels is converted
into mono-channel, and the bit width is set to 16.

It is worth noting that though the classifier can still do better
than random guessing, the audio morphing can practically disable
the detection as is analyzed in Section 8.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False Positive Rate

F
al

se
 N

eg
at

iv
e 

R
at

e

 

 

3000
2000
4000
8000
10000

(a)

�����������

	
�� 	�
�����
����������

(b)

Figure 5: (a) Audio Morphing: choose resampling rate, and (b)
Video Morphing: embed the censored video in a chat video

7.2 Video Morphing
Observation. Region 2 of Figure 3 shows chat video traffic has

more large packets than that of YouTube videos. Our results show
chat videos have more packets in the range of 400 to 600 bytes, and
800 to 1000 bytes than YouTube videos. The possible explanation
is that the chat videos are usually slower motion which causes the
video encoder to handle them differently.

The encoder can use the temporal redundancy of the slow mo-
tion video to optimize its coding efficiency. Take the H.264 codec
as an example. There are mainly three types of frames in H.264:
the I frame, B frame, and P frame [7, 19]. The I frame is encoded
independently from other frames, only exploiting the spatial redun-
dancy to compress the video stream. Differently, the P frame and B
frame depend on the previous frames or even future frames, taking
advantage of temporal redundancy. Typically, the I frame is sig-
nificantly larger than the P and B frames. Thus, for videos with
different temporal redundancy, the encoding results are different.

Video Morphing. The video morphing in Facet is based on the
block-oriented feature of H.264 codecs. In H.264, each frame is
divided into multiple small square blocks called macroblocks. The
coding tools or kernels are applied to these macroblocks rather than
the whole frame. Facet performs its traffic shaping by manipulat-
ing these macroblocks. Specifically, it places the censored video
on several adjacent blocks, with a randomly selected chat video be-
ing played on the remainder of the blocks. By adjusting the width
and height of the censored video, the traffic pattern is expected to
shift between that of the censored video and the chat video. This
mechanism is illustrated in Figure 5 (b).

The Facet server can make the trade off between steganography
and the video quality. We define the steganography level s to be the
scale of the censored video. Suppose the original width and height
for the video is w and h, then the embedded video has width w · s
and height h · s. The experimental results in Section 9 show the
video morphing can effectively defeat the censor’s traffic analysis.

8. SECURITY ANALYSIS
Attacks Exploiting Emulation Flaws. Facet uses the videocon-

ferencing systems directly without trying to emulate the system,
the emulation flaw problem does not exist. So, such attacks fail to
block Facet connections.

Attacks Exploiting Content Mismatch. Facet is content con-
sistent. It utilizes the video (or audio) channel to transmit the video
(or audio). In addition, the morphing techniques can further secure
Facet against the traffic analysis. Our experimental results show
the censor is incapable of blocking the Facet without apparently
disrupting genuine connections. Considering the assumption that
the censor is not willing to largely disrupt the videoconferencing



systems, our morphing techniques can practically disable traffic
analysis. This is further supported by the observation that gen-
uine videoconferencing connections are enormously more frequent
than Facet connections, which means if the censor tries to block
Facet, the number of blocked genuine videoconferencing connec-
tions would be much more than the blocked Facet connections.

Attacks Exploiting Architecture Mismatch. When a central-
ized conferencing system is adopted, its server relays the confer-
encing traffic between two clients. This is consistent with the proxy-
client architecture, and the censor can not detect Facet connections
by architecture analysis. If Facet utilizes a decentralized conferenc-
ing system, The Facet server can tunnel through multiple proxies
out of a censored region when connecting to clients via videocon-
ferencing. This strategy can prevent Facet server from being the
hot spot, and secure it against the architecture analysis.

Attacks Exploiting Channel Mismatch. Facet is channel con-
sistent. Since the nature of its channel is exactly that of the genuine
channel, the packet dropping, duplicating, and delaying will not
have any more impact on Facet than the videoconferencing system.
Thus, Facet is secure against attacks exploiting channel mismatch.

Private Watching. A corrupted Facet server may pose as a po-
tential privacy violation to the client. The strategy for the client to
protect its privacy is to use a pseudonym ID. Then, the Facet server
can only link the watching history to a pseudonym rather than the
client. The server may try to break such pseudonym by IP geoloca-
tion. We argue that if the videoconferencing system is centralized,
the client’s actual IP address is hidden behind the central server,
thus the Facet server can not know the client’s IP address. For de-
centralized videoconferencing systems, the client should configure
a proxy before initiating the videoconferencing to defeat this attack.
This proxy can be located in or out of the censored region.

Denial of Service Attack. When Facet server ID is distributed
publicly, the censor may launch a DoS attack. CAPTCHA [11] can
be used to mitigate the censor’s enumeration. In addition, the server
can enforce usage limitations on each client ID. Besides, puzzles
can be used to defeat the Sibil identify attack.

Colluding Videoconferencing Provider. A provider may col-
lude with the censor. In such situation, the client should submit
its URL by emails, not instant messages, or the provider can de-
tect the Facet connection by text surveillance. We argue even if a
provider is colluding with the censor, it is much more expensive
and difficult to filter audio/video than text messages. In addition,
the provider has to block the connection quickly, or the blockage
is too late to have a significant effect. Furthermore, the number of
videoconferencing connections could be too large for the provider
to check in time. Thus, the provider is believed unlikely to block
Facet connections. Also, since Facet is independent from any par-
ticular provider, we can simply turn to the other providers which do
not collude with the censor to avoid such attacks.

Fingerprints of Frequently Viewed Videos. Popular videos
may be viewed frequently by Facet users, resulting in the unchanged
replay of the traffic pattern. The censor may identify this repeated
pattern and block the session. In order to combat this attack, the
Facet server can switch the background chat video or modify the
audio rate in each session to obfuscate the traffic fingerprint. Con-
sidering the Facet server has plenty of choices in selecting the back-
ground chat video, this scheme can provide sufficient obfuscations.
Another possible fingerprint of the frequently viewed videos comes
to the video length. To obfuscate it, a random video can be ap-
pended right after the requested video. Then for the censor, it can
not identify the repeated sessions by video length.

9. EXPERIMENT
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Figure 6: YouTube Video without Morphing: probability den-
sity function of χ2 distance ratio Θ
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Figure 7: False Positive Rate (no Morphing): if the censor
blocks 70%, 80%, or 90% Facet connections.

9.1 Dataset
Chat Video Set. The chat videos are from YouNow.com, a pop-

ular live video blogging website. YouNow videos can simulate the
chat video well for the following reasons. First, it does not lack
interactions. A special feature of YouNow is that it allows the au-
diences to interact with the blogger by instant messages. Conse-
quently, the blogger often pauses and answers questions, simulat-
ing the interactions in genuine video chat. Second, the users seldom
use any video editing in the live video blogging (the reason could
be the inconvenience of live editing), the videos hold the nature of
webcam video chats. Third, the YouNow has a large amount of di-
versified webcam videos representing different situations in video
chats. All these features make YouNow videos suitable.

The videos were collected on Sep 17, 24, and Oct 5. The users
were picked out by using YouNow’s “recently Broadcasted” fea-
ture, and for each user only their latest video is included. Finally,
1045 YouNow videos are included in the chat video set.

Censored Video Set. Highly viewed YouTube videos are cho-
sen to construct the censored video set. YouTube charts list the
most popular videos by category for a time period of one week, one
month, or all time. For each category, we harvested all the videos
with length more than 1.5 minutes. 1013 YouTube videos under 15
categories are included in the dataset, as is shown in Table 2. The
video format is selected to be FLV, and the resolution is 360p.

9.2 Experimental Setup
The experiment is run on a MacBook Pro with a 2.3Ghz Intel

Core i7 processor, and OS X version 10.9. A guest operating sys-
tem, Ubuntu Precise Pangolin (12.04), is installed on a VMware
virtual machine, in which the Facet server is implemented. The
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Figure 8: YouTube Video with Morphing: probability density
function of χ2 distance ratio Θ

host machine acts as the Facet client. The connection between host
and guest machine is through a private virtual network [9].

Skype is selected as the videoconferencing system. The traffic
between the two videoconferencing clients is exchanged through
the VMware private virtual network. For the host, the Skype ver-
sion number is 6.9 (701), and for the guest machine, the version is
4.2.0.11. Skype uses H.264 as the video codec, and SILK_V3 as
the audio codec. The Frames Per Second (FPS) is 30.

Both of chat videos and YouTube videos are streamed into cam-
era & microphone emulators. For each video, the packet capture is
started after the video has been playing for 30 seconds, and the cap-
ture lasts for one minute. Skype’s technical call information shows
the packet loss rate is 0% in the experiment. For the camera emu-
lator, we set the timeout to 1000 seconds, with YUY2 format. The
emulator resolution is selected to be 320× 240.

Category No. Category No. Category No.
Animation 80 Autos 39 Travel 38
Comedy 85 Edu 84 Sci 51
Entertain 74 Gaming 98 Sport 59
Howto 86 Music 94 People 64
News 57 Nonprofit 58 Pet 46

Table 2: YouTube Video Set

9.3 Morphing Effectiveness
This part evaluates the effectiveness of Facet morphing. The ex-

periment captures the traffic of the chat video set, morphed YouTube
videos with s = 0.125, 0.25 and 0.5, and non-morphed YouTube
videos. Then, the chat video set is grouped with each of these four
YouTube video sets individually for binary classification.

We set n = 2 and n = 3 respectively. We do not include a
larger n case, because the classifier with n > 3 performs poorly
(and therefore not representative) due to the curse of dimension-
ality [23]. Suppose n = 4. If for each packet, there are 20 dis-
cretized lengths, then 204 = 160000 grams are possible for video-
conferencing traffic. When dimensionality is high, the volume of
the space becomes so large that the the training samples are too
sparse to represent the model, therefore, the classification in high
dimensional space performs poorly. Also, we tune the discretiza-
tion parameter K to be 20.

Figure 6 and Figure 8 give the probability density function (PDF)
of the test statistic (χ2 distance ratio Θ) for different cases, which
indicates how the classifier performs for binary classification. Also,
the false positive rate (or false negative rate) is given, when it equals
to false negative rate (or false positive rate). This value can be used
to compare the classifier performance for different cases.

Figure 6 shows the PDF of Θ when the classifier is used to dis-
tinguish genuine YouTube and chat video traffic. (a) uses 2-gram as
the feature extraction, and (b) 3-gram. Both of them have K = 20.
These figures show the traffic of chat and YouTube videos have dis-
tinct Θ distributions, thus the censor can specify a proper threshold
to block a majority of unwanted traffic while keeping most of the
genuine conferencing connections alive.

Figure 8 is the PDF of Θ when the classifier is used to deter-
mine morphed YouTube video traffic from chat video traffic with
K = 20. For (a) and (d) s = 0.125, and the figures show Θ of the
morphed YouTube video has more distribution in the 0 to 1 range,
which means by morphing, the YouTube video is more likely to
be regarded as the chat video. From the perspective of false pos-
itive/negative rate, the classifier only has FPR = FNR = 0.25
for 2-gram and FPR = FNR = 0.27 for 3-gram. The results
demonstrate the morphing effectiveness.

Also, the distribution of Θ for different morphing levels is given
in (b) (c) (e) (f). We show with a smaller morphing level s, the
distribution of Θ for morphed YouTube videos resides more on
the range of 0 to 1, and the false positive/negative rate is higher.
This demonstrates when morphing level s is smaller, the morphed
YouTube video session is more secure against traffic analysis.

9.4 Security Against Blockage
In our attack model, the censor is assumed to be unwilling to

block or disrupt the genuine conferencing. Here, we investigate in
order to block a given fraction of Facet connections, how likely the
censor is to affect the genuine conferencing.

The censor is set to block 0.9, 0.8 and 0.7 Facet connections.
The corresponding false positive rate is investigated for morphed
YouTube videos as well as the genuine YouTube videos. The ex-
periment results are given in Figure 7 and Figure 9.
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Figure 9: False Positive Rate (with Morphing): if the censor
blocks 70%, 80%, or 90% Facet connections.

In Figure 7(a) and (b), the false positive rate is given when the
censor tries to block 70%, 80%, or 90% Facet sessions playing
genuine YouTube videos. We can see without morphing, the censor
only has to disrupt 4% genuine videoconferencing to block 80%
Facet connections. If it is aimed at blocking 70%, the false positive
rate is even lower, only 2%. The figures show the necessity of
adopting morphing mechanisms in the Facet design.

Figure 9 (a) to (f) show the false positive rate when the censor at-
tempts to block 70%, 80%, or 90% Facet sessions playing morphed
YouTube videos. For (a) and (d), the false negative rate is set to 0.3,
and we can see even if the censor chooses the optimal parameters,
such as K = 20 and n = 2, it has to disrupt more than 20% gen-
uine videoconferencing. For (c) and (f), when the censor attempts
to block 90% of the Facet connections, it has to block 40% of the
genuine videoconferencing connections. To conclude, if the censor
wants to massively block the Facet connections, it has to disrupt at
least 20% genuine videoconferencing connections. This cost, un-
der our assumption, can make Facet less vulnerable to blockage,
especially considering genuine videoconferencing connections are
enormously more frequent than those of Facet.

Also, the figures show the smaller s is, the more secure the Facet
server is against blockage. But considering the aggressiveness and

200

300

400

500

600

700

D
at

a 
R

at
e 

(k
b

it
/s

)

Facet
(Upstream)

Squid
(Downstream)

Squid
(Upstream)

Facet
(Downstream)

Figure 10: Bandwidth Consumption: Facet vs. Squid

Downstream Upstream
Skype Gstreamer Skype Gstreamer

Mean 42.49 232.62 409.11 8.71
Max 51.83 265.32 471.91 10.81
Min 30.85 189.63 215.90 6.48
Med. 45.36 236.58 424.94 8.45
Std. 7.11 12.88 49.96 1.39

Table 3: Facet Traffic Break Down (kbit/s)

capability of the censor may vary, the value s can be adjusted by
the Facet server to provide a higher quality service. In addition, it
shows the classifier with n = 2 in general outperforms the classi-
fier with n = 3, though 3-grams can have more complete feature
extraction. The reason for this is the curse of dimensionality.

9.5 Performance Analysis
Setup. 106 YouTube videos (with length below 180s) are se-

lected from our censored video dataset. When the Facet server
plays these videos, the upstream & downstream bandwidth, to-
gether with CPU & Memory usage are recorded. Also the client
is set to disable the camera. For the purpose of comparison, a tradi-
tional web proxy Squid is adopted. In the experiment, the client
uses the Squid proxy and plays the YouTube videos by using the
Firefox. Also, the video resolution is set to 240p in both cases.

Experimental Results. The bandwidth costs are given in Figure
10 and Table 3. It is shown that the downstream bandwidth of the
Facet server is lower than that of the Squid server. If the client uses
Facet, about 150 kbit/s downstream bandwidth is saved. A possible
reason for this difference is that for web browsing, extra informa-
tion (such as advertisements and pictures, etc.) are fetched, and for
a Facet connection, the client only downloads the required video.
When it comes to upstream, the bandwidth costs of these two sys-
tems are close. It is worth noting that although the downstream
bandwidth of the Facet server will be increased if the client enables
its camera, Table 3 shows the downstream bandwidth is still less
than 700 kbit/s if the client’s camera has the same resolution with
that of the server. These experimental results show Facet server
has high efficiency in bandwidth usage. For a Facet server with 15
Mbit/s bandwidth, it can support up to 20 simultaneous sessions.

The computational costs for these two systems are shown in Ta-
ble 4. For Facet server, the costs comes from making a Skype video
call (Skype), downloading and redirecting video & audio stream
(Gstreamer), and executing a Skype wrapper (Python). Though the
table shows the Facet server consumes more CPU cycles and mem-
ory than Squid (most of which comes from the Skype video call),
this cost is acceptable. Still, a computer with one virtual core can
support up to 5 Facet sessions, and for a computer with 4 virtual
cores, it can support 20 sessions.



Category Program CPU Memory (4GB)

Facet (s=1)
Skype 14.4% 2.4%

Gstreamer 3.7% 0.5%
Python 0.6% 0.1%

Web Proxy Squid 0.4% 0.3%

Table 4: Facet CPU & Memory Usage

10. CONCLUSION
This paper presents Facet, a censorship circumvention system to

deliver censored videos in real-time. Facet emulates the input de-
vices for a conferencing system, and streams the censored video
over them. Compared with other censorship circumvention sys-
tems, Facet is consistent with genuine conferencing in terms of
content, channel, and architecture. To further defend against the
censor’s traffic analysis, audio and video morphing are proposed.
Our experimental results show such morphing can effectively de-
fend against traffic analysis.
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