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Abstract
One means of enforcing Web censorship is to return a block page,
which informs the user that an attempt to access a webpage is unsuc-
cessful. Detecting block pages can provide a more complete picture
of Web censorship, but automatically identifying block pages is
difficult because Web content is dynamic, personalized, and may
even be in different languages. Previous work has manually de-
tected and identified block pages, which is difficult to reproduce;
it is also time-consuming, which makes it difficult to perform con-
tinuous, longitudinal studies of censorship. This paper presents an
automated method both to detect block pages and to fingerprint
the filtering products that generate them. Our automated method
enables continuous measurements of block pages; we found that
our methods successfully detect 95% of block pages and identify
five filtering tools, including a tool that had not been previously
identified “in the wild”.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]:[Security and pro-
tection (e.g., firewalls)]; C.2.3 [Network Operations]: [Network
Monitoring]

Keywords
Censorship; Internet Measurement

1 Introduction
Internet censorship is pervasive; for example, the OpenNet Initia-
tive’s latest measurements detected censorship in 38 of 74 coun-
tries [10]. Censorship mechanisms can take many forms, ranging
from injected TCP RST packets or DNS responses, to explicit Web
pages notifying users that the content has been blocked, or block
pages. Previous work has developed mechanisms to automatically
detect TCP RST packets and altered DNS responses [13, 1], but
a significant share of censorship still consists of block pages. To
provide a more complete picture of Internet censorship, we must
develop automated methods to detect block pages and identify the
filtering tools that create them.

Differentiating accessible content from block pages are difficult
for several reasons:

1. Dynamic Content. Some sites may update content between
requests, returning different versions of the same page. Fig-
ures 1a and 1b illustrate this effect for cnn.com. Block pages
may also change (e.g., to display the blocked URL or category),
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adding yet more problems. Figure 1c illustrates this problem
because the block page includes the URL for cnn.com.

2. Content is personalized. Web sites may personalize content
for an individual or region, thereby decreasing the similarity
between versions of the same page.

3. Content is in different languages. Languages vary across
regions, making keyword matching challenging.

Today, those who wish to measure block pages must manually
create regular expressions to detect specific block pages and identify
filtering tools. Unfortunately, this approach is too slow and resource-
intensive to support consistent, continuous measurements because a
person must manually create new regular expressions. This process
also cannot identify unknown block page templates a priori.

In this paper, we present techniques to automatically detect block
pages and identify the products that serve them. Our detection tech-
nique is based on the insight that it is easier to detect the difference
between a block page and legitimate content than the similarity
between a block page and known block pages. Based upon this
insight, we develop a block page detection method that correctly
identifies 95% of block pages and 98.6% of accessible pages.

Our fingerprinting technique is based on the insight that block
page templates uniquely identify the filtering tool that generated
them. Using this method, we identify five known filtering tools, in-
cluding one that has not been previously observed “in the wild”. We
extend the work of Dalek et al. [2] by automatically identifying fil-
tering tools where possible, and flagging unidentified templates for
researchers to label. Since these methods do not require active prob-
ing, we can apply them to archival censorship measurements from
the OpenNet Initiative and provide the first glimpse into changes in
filtering tools across time.

The rest of this paper describes our methods for detecting block
pages; techniques for fingerprinting block pages to uniquely identify
block page vendors; the accuracy of these detection and fingerprint-
ing methods; and an application of these techniques to five years of
measurements of block pages from 49 countries.

2 Background
In this section, we describe various web filtering mechanisms and
survey related work.

2.1 Censorship and Block Pages
A censor may return a block page using a variety of mechanisms,
such as injecting DNS responses, redirecting traffic through trans-
parent proxies, and inserting packets directly into a TCP stream.
In DNS redirection, the censor injects a fake DNS response when
the user tries to resolve a hostname that contains blocked content,
thereby redirecting the user to a server hosting a block page. Trans-
parent proxies can provide more granularity than DNS injection by
inspecting the content of HTTP streams for restricted keywords or
URLs. If the user tries to access restricted content, the proxy could
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(a) cnn.com on October 24 (b) cnn.com on October 30

(c) Block Page for cnn.com

Figure 1: Differences between accessible pages inhibit block page detection. Figure 1a and Figure 1b are structurally similar, but contain different text and links.
Both of these versions of the page differ from the block page in Figure 1c. The block page in Figure 1c also shows that block pages can contain custom content,
in this case, the blocked URL, cnn.com . Variations in block page content make block page detection challenging and time consuming.

drop the request and return a block page. Because a block page
is overt, it is generally safe to assume that a censor who returns a
block page to the user is not trying to hide the fact that they are
censoring the page and are thus not genearally interested in evading
our detection techniques.

2.2 Related Work

OONI [11] is the only other censorship measurement tool that
has implemented an automated block page detection method. In
Section 4.1, we describe OONI’s DOM similarity measure, and in
Section 4.2 we compare its method to other block page detection
techniques.

Block page detection relates to both document classification and
web page classification. Document classification aims to classify
documents based on features within the documents. The most rele-
vant document classification technique is term-based classification,
which clusters pages based on the words in a document [4]. Web
page classification is a type of document classification that operates
on web pages. Web page classification may leverage the seman-
tic content of HTML markup [7], which provides information for
visualizing and linking documents. Some classification methods
strip the HTML structure from pages and use existing document
classification schemes on the stripped content.

Previous work has aimed to identify other types of censorship
techniques, such as methods that reset connections or otherwise
interfere with connections. Weaver et al. detected injected TCP
RST packets and tried to isolate the source and purpose of the
injected RST packets [13]. They also fingerprinted filtering tools
that reset TCP connections. More recently, Weaver et al. focus on
identifying the existence and purpose of transparent proxies, but
did not extend the work to measuring censorship due to user safety
concerns [12].

Marqui-Boire et al. scanned networks for Blue Coat devices
and confirmed the manufacturer by actively probing the devices [5].
Noman et al. and the Citizen Lab explored how censorship changes
in response to changes in the URL list for a particular product [8, 6].
Dalek et al. identified URL filtering tools by network scanning and
validated their results with in-network testing [2]. Unfortunately,
these methods are time consuming because each measurement re-
quires generating new URLs and inconsistent because network
scanning may miss devices that do not have public IPs.

3 Data

We used the OpenNet Initiative (ONI) [10] block page corpus,
which has over 500,000 entries. The ONI collected measurements
in 49 countries from 2007 to 2012 using locally and globally sensi-
tive URLs as defined by ONI researchers and collaborators around
the globe. Each entry in the database corresponds to a single mea-
surement for a URL and contains an uncensored version of the
page collected in Toronto, and a test page, collected in the cen-
soring country at approximately the same time. We assume that
the Internet in Toronto is not censored and therefore that page rep-
resents a known good page. Amongst other data, the dataset has
a measurement timestamp, a manually-assigned label indicating
whether the test page is blocked or not, the location of the test, and
the test network. An anonymized version of the dataset and more
information are available online [3].

The ONI dataset has a label for each measurement indicating
if the test page was blocked or accessible. To generate this label-
ing, an ONI staff member generated a regular expression for each
block page in each region; about 28,000 test pages were labeled as
blocked, and the remaining test pages (about 480,000) were labeled
as accessible. We use both sets in our evaluation of detection meth-
ods. Because this labeling process created new regular expressions
for each new test, the labeling accounts for changes in block pages.
Although we identified a few misclassified pages, we have found
the labeling to be mostly accurate; these labels have themselves
served as a means to identify censorship in previous studies [3] and
are thus a reasonable source of an independent label.

4 Block Page Detection

We present methods for detecting block pages based on a simple
insight: block pages are less similar to accessible pages than dif-
ferent versions of accessible pages are to one another. Thus, while
accessible pages may be non-identical, block pages will exhibit
more significant differences. To classify a test page as blocked or
not, we compare the test page to a known unblocked version of
the page using a similarity measure. Each test page was collected
from the region of interest at about the same time as the known
unblocked version of the page. To find the best classifier, we
evaluated many similarity metrics, including page length, cosine
similarity, and DOM similarity (the metric that OONI [11] uses).
We evaluated several other document classification methods such
as inverse document frequency (IDF), which performed poorly; and
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Figure 2: Block pages are typically smaller than accessible pages. The
knee of the blocked page curve is inset.

other methods such as fuzzy hashing. We present the most salient
results below.

4.1 Metrics

Length. In the length similarity metric, we compare the sizes of the
test page and the known unblocked page. The intuition is that block
pages will be smaller than accessible pages, so a test page may be a
block page if its size significantly differs from the size of the known
good page. This simple approach works well because accessible
pages tend to be larger than blocked pages, as Figure 2 illustrates.
To compare pages, we compute the page length difference using
Equation 1, where len1 is the length of the known unblocked page
and len2 is the length of the test page.

Length Percent Diff =
|len1− len2|

max{len1, len2} (1)

Cosine Similarity. The cosine similarity metric [4] compares pages
based on a term frequency vector, which is a data structure that
stores the number of times the words in a document occur. In the
context of block page identification, the terms are HTML tags; the
term frequency vector stores the number of times each HTML tag
appears within a page. Representing a page by its HTML structure
allows us to elide most dynamic content, which reduces the variance
between accessible pages and (hence) the false positive rate.
DOM Similarity. The developers of OONI [11] proposed compar-
ing the HTML structure of block pages using a DOM similarity
measure. The metric creates an adjacency matrix with the proba-
bilities of transitioning between HTML tags. The DOM similarity
measure then compresses the adjacency matrix for each page into a
vector of its eigenvalues and compares these vectors with a normal-
ized dot product.

4.2 Results
We find that our automated detection methods are accurate, and
that the page length similarity measure works best. To evaluate
these measures, we compute precision, recall, and false positive
rates for each metric using a ten-fold cross-validation and compare
precision-recall and ROC curves.

The length comparison measure scored blocked and accessible
pages differently, as Figure 3 shows: A threshold that marks any
difference in size over 30% as blocked achieves a true positive rate
of 95% and a false positive rate of 1.37%. These numbers compare
favorably to other similarity measures, as shown in Table 1. Further-
more, the low standard deviation shows that the length comparison
metric performed consistently well during cross-validation, imply-
ing that these results will generalize to other block pages. Figure 4
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Figure 3: Differences in page length for blocked and accessible sites imply
that the length comparison measure can differentiate between blocked and
accessible pages. The knee of the accessible page scores curve is shown
inset.

shows the precision-recall and ROC curves for each metric, further
illustrating that length comparison is the best metric.

5 Block Page Fingerprinting
To fingerprint filtering tools, we identify block page templates and
match signatures for each template. Though signature matching
for block pages is not new, automated detection of block page
templates reduces the effort and increases consistency of filtering
product identification.

5.1 Approach
We fingerprint block pages using two features from the block page
detection methods: page length and term frequency vectors. Using
these features, we cluster the block pages and label each cluster
with the filtering tool that generated the template. We assume that
filtering tools generate block pages from a template, and that each
template is unique to the filtering tool, though a single filtering tool
may have many templates. Our analysis of changes in censorship
in Section 5.2 and prior work[3] validate this assumption.

We used both term frequency vectors and page length as features
for clustering. The intuition behind page length clustering is that
block-page templates change at most a few words between different
URLs. We used single-link hierarchical clustering to generate
clusters on the basis of the block page sizes without knowing the
number of clusters a priori.

Similarly, the intuition behind term frequency clustering is that
the censor will not vary the structure of a block page within the
same template. This intuition appears to be accurate because there
are only 37 distinct term frequency vectors from the 5 years of data.
We partitioned the data into different clusters on the basis of unique
term frequency vectors.

5.2 Results
To validate the clusters that our algorithm produced, we compared
the clusterings to manually labeled block page templates. We man-
ually identified 27 block page templates and computed the longest
common subsequences for each template. We used these subse-
quences to represent the ground truth for distinct clusters and them
to calculate precision and recall for each cluster. In this context,
precision is the number of pages in the cluster which come from
the same block page template. Recall is the number of pages in
the cluster which match a block page template out of all the pages
that match a block page template. This method may not capture all
block page templates, but this should not be a problem because of
our evaluation method. Because we are using precision and recall,
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Similarity Measure True Positive/ Recall (%) False Positive (%) Precision (%) Threshold

Page Length 95.03 ±1.128 ·10−3 1.371 ±1.829 ·10−16 79.80 ±1.915 ·10−4 30.19%
Cosine Similarity 97.94 ±2.341 ·10−14 1.938 ±3.657 ·10−16 74.23 ±1.170 ·10−14 0.816
DOM Similarity 95.35 ±1.242 ·10−2 3.732 ±1.866 ·10−3 59.28 ±8.929 ·10−3 0.995

Diff 99.13 30.95 15.44 n/a

Table 1: Mean detection rates for similarity measures ± standard deviation are much better than a simple diff.
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(a) Precision-recall curve for similarity measures.
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(b) ROC curve for similarity measures.

Figure 4: Precision-recall and ROC curves demonstrate that the length comparison measure is the best similarity measure. Green dots mark the selected
threshold values on the graph.

we are evaluating our clustering based upon how well it identifies
the templates we know about. Our method may also find templates
we did not manually identify, but we do not evaluate the quality of
those clusters.

To evaluate the quality of each clustering, we computed an
F-1 measure for each cluster. The F-1 measure is a common
clustering evaluation measure that combines precision and recall
equally: 2·precision·recall

precision+recall . Finally, we calculated the overall F-1 mea-
sure by summing the maximum F-measure for each subsequence:
∑i∈clusters

ni
N ·max j∈subsequences{ f (i, j)}, where N is the total num-

ber of block pages, ni is the number of block pages in the i’th cluster,
and f (i, j) is the F-measure for cluster i and subsequence j. By
taking the maximum F-measure for each subsequence, we associate
the block page template, or template subsequence, with the cluster
that best matches the template. We then average the F-measures
by weighting the F-measure for each subsequence according to the
number of pages using that template. Intuitively, this weighting
ensures that an outcome with 20 clusters each with one element
and an F-measure of 1 and one cluster with 1000 elements and an
F-measure of 0.01 does not score well. The F-1 measure scales
between 0 and 1; a higher score correlates with higher precision
and recall. When the F-1 measure is higher, the clustering strongly
corresponds with the identified common subsequences. Because
we generate common subsequences from a random sample of block
pages and each page matched at most one subsequence, clusters
with a high F-measure also strongly correspond to a single template.

Term frequency clustering performs well, with an F-1 measure
of 0.98; clustering based on page length is much worse, with an
F-1 measure of 0.64. This result makes sense because block pages
are generated from a template. Therefore, they often share the
same structure. Term frequency clustering identifies block page
templates despite noise introduced by pages mislabeled as blocked
and a significant amount of noise introduced by standard HTTP
error messages. For instance, the data set included a large number
of HTTP 302 and 404 responses. On the other hand, we were
surprised that page length produced poor-quality clusters. Block
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Figure 5: Block pages have only a few distinct lengths.

page templates only replace small amounts of text (e.g.the URL of
the blocked Web site), so we expected similar page lengths within
a cluster. Interestingly, Figure 5 shows that block pages have few
distinct sizes; there are fewer clusters than templates.

Fingerprinting Filtering Tools. Where possible, we label each
cluster according to known signatures (e.g., from previous work [2]);
otherwise, we attempt to manually identify the block page vendor
based on features of each template. Using this method, we identified
five filtering tools that generated 7 out of 36 clusters from the dataset.
In these cases, copyright notices within HTML comments, HTTP
header fields, or other signatures offered a definitive identification.
The remainder of the clusters had no identifying information in the
fingerprint, although unique HTTP headers indicated the use of a
distinct tool. Table 2 summarizes these results.

6 Case Studies
We now apply our detection and fingerprinting techniques to the
ONI dataset to explore how the use of various block page methods
has evolved over time. Unfortunately, the ONI did not continuously
gather measurements, so we can only explore measurements from
small snapshots. Fortunately, each snapshot contains enough mea-
surements to make inferences about the presence of specific filtering
tools. Because the censor could always choose to return nothing or
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Number of
Clusters

Product
Manufacturer

Network Time
Frame

Fingerprint

2 FortiGuard AS 24090 (Malaysia) 2009 Block page contains the text “Powered by
FortiGuard”

1 Squid Proxy
Server

AS 2609 (Tunisia) 2010 HTTP Headers contain the text “Server:
squid/2.6.STABLE16”

1 Netsweeper AS 12486 (United States), AS 15802 (United Arab
Emirates), and AS 12586 (Yemen)

2010-
2012

“webadmin/deny” in URL, which indicates that
Netsweeper is in use [2]

1 Websense AS 29584 (Azerbaijan) 2010 Websense copyright disclaimer is included in
HTML comments

2 WireFilter AS 25019 (Saudi Arabia) 2011 HTTP Headers contain the text “Server:
Protected by WireFilter”

Table 2: Filtering tools identified from block page templates
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Figure 6: Filtering mechanisms used in AS 18399 in Burma.

change the block page, the absence of a block page cluster does not
indicate that the given filtering tool is no longer in use. To account
for this ambiguity, we include other types of blocking to give further
insight into changes in filtering tools and capabilities. Specifically,
vectors refer to block page templates, HTTP indicates no response
to an HTTP request, DNS corresponds to either manipulation by
redirection or the lack of a response, TCP RST refers to TCP RST
filtering, and runs shows when measurements were taken.

We also extend our analysis by determining if block pages are
the result of DNS redirection or not. We assume that the censor
can only use a few IP addresses to host block pages, so if DNS
redirection is in use, we expect the block pages to resolve to a
limited number of IP addresses. Though the number of resolved
IP addresses can fluctuate due to CDNs, DNS redirection should
return significantly fewer IP addresses than the number of distinct
URLs measured.

Political Shifts (Burma). Analyzing changes in filtering mecha-
nisms and block pages in Burma (Myanmar) provides insight into
how censorship evolves as filtering tools and regimes change. Fig-
ure 6 shows the censorship enforcement mechanisms and block
page clusters used in AS 18399 in Burma between 2007 and 2012.
Until mid 2009, AS 18399 used DNS redirection as a form of cen-
sorship. In mid-2009, a custom block page template for AS 18399,
vector 0, appears. Because the block pages in vector 0 resolved
568 URLs to 659 IPs, vector 0 does not appear to be using DNS
redirection. Unfortunately, we could not identify the product be-
hind vector 0, but these results indicate that AS 18399 in Burma
may have acquired a new filtering tool in mid 2009. In late 2011,
Burma underwent a massive political shift and significantly reduced
the extent of censorship [9], which may be reflected in the lack of
detected block pages after this time.
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Figure 7: The appearance of two block page templates in AS 25019 marks
the use of WireFilter, a new filtering tool in Saudi Arabia.

New Filtering Tools (Saudi Arabia). We observed that Saudi Ara-
bia, like many countries, has upgraded its censorship equipment
in recent years. Figure 7 illustrates this shift for AS 25019. Al-
though we do not know what type of filtering equipment was used
in AS 25019 prior to 2011, we can conclude that a new filtering tool,
WireFilter, begins censoring content in 2011. Oddly, WireFilter
appears to be using multiple block page templates concurrently,
which implies that multiple devices are in use.

Different Techniques in Different ISPs (Thailand). Different
ISPs implement Thailand’s censorship mandate differently. Figure 8
illustrates that AS 9737 and AS 17552 use different filtering tools
and mechanisms to enforce censorship.

Figure 8a shows that AS 9737 has changed censorship mech-
anisms over time. The first set of measurements in 2008 show
that AS 9737 uses DNS redirection and drops HTTP requests to
censor content. In 2010, AS 9737 starts using a new filtering tool,
represented by vector 17. We could not identify vector 17, but it
appears to be a transparent proxy because the 30 URLS blocked by
vector 17 resolved to 48 unique IP addresses, indicating that DNS
injection was not used. It appears that AS 9737 is also trying to
mask the identity of its filtering software because all HTTP headers
for vector 17 contain the string “Server: Apache/2.2.9 (Debian)”.

Figure 8b shows that AS 17552 and AS 9737 use different cen-
sorship enforcement mechanisms though they have both changed
their filtering over time. Our data shows that AS 17552 switched
from DNS redirection to a new filtering tool in late 2009, shown by
vector 8. Vector 8 does not appear to be the result of DNS redirec-
tion because its 19 URLS resolved to 28 IP addresses. AS 17552
also appears to obfuscate the identity of their filtering tool because
all HTTP headers for the block page contain the string “Server:
Apache”.
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(a) Filtering mechanisms used in AS 9737 in Thailand

2007
2008

2009
2010

2011
2012

2013

Time

Runs

TCP RST

DNS

HTTP

Vector 8

B
lo

ck
in

g
Ty

pe
s

(b) Filtering mechanisms used in AS 17552 in Thailand

Figure 8: ASes 9737 and 17552 show that government mandated censorship can vary by ISP

Though ASes 9737 and 17552 use different block page templates,
they may be using different configurations of the same filtering tool.
Vectors 8 and 17, the block pages for ASes 9737 and 17552, have
different structures, as vector 8 uses tables for layout and is around
6000 bytes in length, whereas vector 17 uses div tags for layout and
is around 1000 bytes in length. Despite these differences, the filter-
ing tools both appear to be transparent proxies, the filtering tools
return similar HTTP headers, and both block pages contain similar
strings such as “The page you are trying to visit has been blocked
by the Ministry of Information and Communication Technology”
(vector 8) and “This website has been blocked by ICT” (vector 17).

7 Conclusion
We developed block page detection and filtering tool identification
techniques to enable scalable, continuous, and accurate censorship
measurements. Using these techniques, we built a block page de-
tection method with a 95.03% true positive rate and a 1.371% false
positive rate and a block page identification method which correctly
identified block page templates for 5 known filtering tools. These
methods significantly improve the state of the art in censorship
measurement and set the stage for the next generation of censorship
measurements. Because the vendor and product behind many clus-
ters remains unidentified, future work could include fingerprinting
existing block page products and using the fingerprints to find more
template matches.
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